1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
  25  * Copyright (c) 2013, 2014, Nexenta Systems, Inc.  All rights reserved.
  26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
  27  */
  28 
  29 /*
  30  * SPA: Storage Pool Allocator
  31  *
  32  * This file contains all the routines used when modifying on-disk SPA state.
  33  * This includes opening, importing, destroying, exporting a pool, and syncing a
  34  * pool.
  35  */
  36 
  37 #include <sys/zfs_context.h>
  38 #include <sys/fm/fs/zfs.h>
  39 #include <sys/spa_impl.h>
  40 #include <sys/zio.h>
  41 #include <sys/zio_checksum.h>
  42 #include <sys/dmu.h>
  43 #include <sys/dmu_tx.h>
  44 #include <sys/zap.h>
  45 #include <sys/zil.h>
  46 #include <sys/ddt.h>
  47 #include <sys/vdev_impl.h>
  48 #include <sys/metaslab.h>
  49 #include <sys/metaslab_impl.h>
  50 #include <sys/uberblock_impl.h>
  51 #include <sys/txg.h>
  52 #include <sys/avl.h>
  53 #include <sys/dmu_traverse.h>
  54 #include <sys/dmu_objset.h>
  55 #include <sys/unique.h>
  56 #include <sys/dsl_pool.h>
  57 #include <sys/dsl_dataset.h>
  58 #include <sys/dsl_dir.h>
  59 #include <sys/dsl_prop.h>
  60 #include <sys/dsl_synctask.h>
  61 #include <sys/fs/zfs.h>
  62 #include <sys/arc.h>
  63 #include <sys/callb.h>
  64 #include <sys/systeminfo.h>
  65 #include <sys/spa_boot.h>
  66 #include <sys/zfs_ioctl.h>
  67 #include <sys/dsl_scan.h>
  68 #include <sys/zfeature.h>
  69 #include <sys/dsl_destroy.h>
  70 
  71 #ifdef  _KERNEL
  72 #include <sys/bootprops.h>
  73 #include <sys/callb.h>
  74 #include <sys/cpupart.h>
  75 #include <sys/pool.h>
  76 #include <sys/sysdc.h>
  77 #include <sys/zone.h>
  78 #endif  /* _KERNEL */
  79 
  80 #include "zfs_prop.h"
  81 #include "zfs_comutil.h"
  82 
  83 /*
  84  * The interval, in seconds, at which failed configuration cache file writes
  85  * should be retried.
  86  */
  87 static int zfs_ccw_retry_interval = 300;
  88 
  89 typedef enum zti_modes {
  90         ZTI_MODE_FIXED,                 /* value is # of threads (min 1) */
  91         ZTI_MODE_BATCH,                 /* cpu-intensive; value is ignored */
  92         ZTI_MODE_NULL,                  /* don't create a taskq */
  93         ZTI_NMODES
  94 } zti_modes_t;
  95 
  96 #define ZTI_P(n, q)     { ZTI_MODE_FIXED, (n), (q) }
  97 #define ZTI_BATCH       { ZTI_MODE_BATCH, 0, 1 }
  98 #define ZTI_NULL        { ZTI_MODE_NULL, 0, 0 }
  99 
 100 #define ZTI_N(n)        ZTI_P(n, 1)
 101 #define ZTI_ONE         ZTI_N(1)
 102 
 103 typedef struct zio_taskq_info {
 104         zti_modes_t zti_mode;
 105         uint_t zti_value;
 106         uint_t zti_count;
 107 } zio_taskq_info_t;
 108 
 109 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
 110         "issue", "issue_high", "intr", "intr_high"
 111 };
 112 
 113 /*
 114  * This table defines the taskq settings for each ZFS I/O type. When
 115  * initializing a pool, we use this table to create an appropriately sized
 116  * taskq. Some operations are low volume and therefore have a small, static
 117  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
 118  * macros. Other operations process a large amount of data; the ZTI_BATCH
 119  * macro causes us to create a taskq oriented for throughput. Some operations
 120  * are so high frequency and short-lived that the taskq itself can become a a
 121  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
 122  * additional degree of parallelism specified by the number of threads per-
 123  * taskq and the number of taskqs; when dispatching an event in this case, the
 124  * particular taskq is chosen at random.
 125  *
 126  * The different taskq priorities are to handle the different contexts (issue
 127  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
 128  * need to be handled with minimum delay.
 129  */
 130 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
 131         /* ISSUE        ISSUE_HIGH      INTR            INTR_HIGH */
 132         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* NULL */
 133         { ZTI_N(8),     ZTI_NULL,       ZTI_P(12, 8),   ZTI_NULL }, /* READ */
 134         { ZTI_BATCH,    ZTI_N(5),       ZTI_N(8),       ZTI_N(5) }, /* WRITE */
 135         { ZTI_P(12, 8), ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* FREE */
 136         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* CLAIM */
 137         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* IOCTL */
 138 };
 139 
 140 static void spa_sync_version(void *arg, dmu_tx_t *tx);
 141 static void spa_sync_props(void *arg, dmu_tx_t *tx);
 142 static boolean_t spa_has_active_shared_spare(spa_t *spa);
 143 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
 144     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
 145     char **ereport);
 146 static void spa_vdev_resilver_done(spa_t *spa);
 147 
 148 uint_t          zio_taskq_batch_pct = 75;       /* 1 thread per cpu in pset */
 149 id_t            zio_taskq_psrset_bind = PS_NONE;
 150 boolean_t       zio_taskq_sysdc = B_TRUE;       /* use SDC scheduling class */
 151 uint_t          zio_taskq_basedc = 80;          /* base duty cycle */
 152 
 153 boolean_t       spa_create_process = B_TRUE;    /* no process ==> no sysdc */
 154 extern int      zfs_sync_pass_deferred_free;
 155 
 156 /*
 157  * This (illegal) pool name is used when temporarily importing a spa_t in order
 158  * to get the vdev stats associated with the imported devices.
 159  */
 160 #define TRYIMPORT_NAME  "$import"
 161 
 162 /*
 163  * ==========================================================================
 164  * SPA properties routines
 165  * ==========================================================================
 166  */
 167 
 168 /*
 169  * Add a (source=src, propname=propval) list to an nvlist.
 170  */
 171 static void
 172 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
 173     uint64_t intval, zprop_source_t src)
 174 {
 175         const char *propname = zpool_prop_to_name(prop);
 176         nvlist_t *propval;
 177 
 178         VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 179         VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
 180 
 181         if (strval != NULL)
 182                 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
 183         else
 184                 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
 185 
 186         VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
 187         nvlist_free(propval);
 188 }
 189 
 190 /*
 191  * Get property values from the spa configuration.
 192  */
 193 static void
 194 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
 195 {
 196         vdev_t *rvd = spa->spa_root_vdev;
 197         dsl_pool_t *pool = spa->spa_dsl_pool;
 198         uint64_t size, alloc, cap, version;
 199         zprop_source_t src = ZPROP_SRC_NONE;
 200         spa_config_dirent_t *dp;
 201         metaslab_class_t *mc = spa_normal_class(spa);
 202 
 203         ASSERT(MUTEX_HELD(&spa->spa_props_lock));
 204 
 205         if (rvd != NULL) {
 206                 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
 207                 size = metaslab_class_get_space(spa_normal_class(spa));
 208                 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
 209                 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
 210                 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
 211                 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
 212                     size - alloc, src);
 213 
 214                 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
 215                     metaslab_class_fragmentation(mc), src);
 216                 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
 217                     metaslab_class_expandable_space(mc), src);
 218                 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
 219                     (spa_mode(spa) == FREAD), src);
 220 
 221                 cap = (size == 0) ? 0 : (alloc * 100 / size);
 222                 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
 223 
 224                 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
 225                     ddt_get_pool_dedup_ratio(spa), src);
 226 
 227                 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
 228                     rvd->vdev_state, src);
 229 
 230                 version = spa_version(spa);
 231                 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
 232                         src = ZPROP_SRC_DEFAULT;
 233                 else
 234                         src = ZPROP_SRC_LOCAL;
 235                 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
 236         }
 237 
 238         if (pool != NULL) {
 239                 /*
 240                  * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
 241                  * when opening pools before this version freedir will be NULL.
 242                  */
 243                 if (pool->dp_free_dir != NULL) {
 244                         spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
 245                             dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
 246                             src);
 247                 } else {
 248                         spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
 249                             NULL, 0, src);
 250                 }
 251 
 252                 if (pool->dp_leak_dir != NULL) {
 253                         spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
 254                             dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
 255                             src);
 256                 } else {
 257                         spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
 258                             NULL, 0, src);
 259                 }
 260         }
 261 
 262         spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
 263 
 264         if (spa->spa_comment != NULL) {
 265                 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
 266                     0, ZPROP_SRC_LOCAL);
 267         }
 268 
 269         if (spa->spa_root != NULL)
 270                 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
 271                     0, ZPROP_SRC_LOCAL);
 272 
 273         if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
 274                 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
 275                     MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
 276         } else {
 277                 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
 278                     SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
 279         }
 280 
 281         if ((dp = list_head(&spa->spa_config_list)) != NULL) {
 282                 if (dp->scd_path == NULL) {
 283                         spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 284                             "none", 0, ZPROP_SRC_LOCAL);
 285                 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
 286                         spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 287                             dp->scd_path, 0, ZPROP_SRC_LOCAL);
 288                 }
 289         }
 290 }
 291 
 292 /*
 293  * Get zpool property values.
 294  */
 295 int
 296 spa_prop_get(spa_t *spa, nvlist_t **nvp)
 297 {
 298         objset_t *mos = spa->spa_meta_objset;
 299         zap_cursor_t zc;
 300         zap_attribute_t za;
 301         int err;
 302 
 303         VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 304 
 305         mutex_enter(&spa->spa_props_lock);
 306 
 307         /*
 308          * Get properties from the spa config.
 309          */
 310         spa_prop_get_config(spa, nvp);
 311 
 312         /* If no pool property object, no more prop to get. */
 313         if (mos == NULL || spa->spa_pool_props_object == 0) {
 314                 mutex_exit(&spa->spa_props_lock);
 315                 return (0);
 316         }
 317 
 318         /*
 319          * Get properties from the MOS pool property object.
 320          */
 321         for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
 322             (err = zap_cursor_retrieve(&zc, &za)) == 0;
 323             zap_cursor_advance(&zc)) {
 324                 uint64_t intval = 0;
 325                 char *strval = NULL;
 326                 zprop_source_t src = ZPROP_SRC_DEFAULT;
 327                 zpool_prop_t prop;
 328 
 329                 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
 330                         continue;
 331 
 332                 switch (za.za_integer_length) {
 333                 case 8:
 334                         /* integer property */
 335                         if (za.za_first_integer !=
 336                             zpool_prop_default_numeric(prop))
 337                                 src = ZPROP_SRC_LOCAL;
 338 
 339                         if (prop == ZPOOL_PROP_BOOTFS) {
 340                                 dsl_pool_t *dp;
 341                                 dsl_dataset_t *ds = NULL;
 342 
 343                                 dp = spa_get_dsl(spa);
 344                                 dsl_pool_config_enter(dp, FTAG);
 345                                 if (err = dsl_dataset_hold_obj(dp,
 346                                     za.za_first_integer, FTAG, &ds)) {
 347                                         dsl_pool_config_exit(dp, FTAG);
 348                                         break;
 349                                 }
 350 
 351                                 strval = kmem_alloc(
 352                                     MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
 353                                     KM_SLEEP);
 354                                 dsl_dataset_name(ds, strval);
 355                                 dsl_dataset_rele(ds, FTAG);
 356                                 dsl_pool_config_exit(dp, FTAG);
 357                         } else {
 358                                 strval = NULL;
 359                                 intval = za.za_first_integer;
 360                         }
 361 
 362                         spa_prop_add_list(*nvp, prop, strval, intval, src);
 363 
 364                         if (strval != NULL)
 365                                 kmem_free(strval,
 366                                     MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
 367 
 368                         break;
 369 
 370                 case 1:
 371                         /* string property */
 372                         strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
 373                         err = zap_lookup(mos, spa->spa_pool_props_object,
 374                             za.za_name, 1, za.za_num_integers, strval);
 375                         if (err) {
 376                                 kmem_free(strval, za.za_num_integers);
 377                                 break;
 378                         }
 379                         spa_prop_add_list(*nvp, prop, strval, 0, src);
 380                         kmem_free(strval, za.za_num_integers);
 381                         break;
 382 
 383                 default:
 384                         break;
 385                 }
 386         }
 387         zap_cursor_fini(&zc);
 388         mutex_exit(&spa->spa_props_lock);
 389 out:
 390         if (err && err != ENOENT) {
 391                 nvlist_free(*nvp);
 392                 *nvp = NULL;
 393                 return (err);
 394         }
 395 
 396         return (0);
 397 }
 398 
 399 /*
 400  * Validate the given pool properties nvlist and modify the list
 401  * for the property values to be set.
 402  */
 403 static int
 404 spa_prop_validate(spa_t *spa, nvlist_t *props)
 405 {
 406         nvpair_t *elem;
 407         int error = 0, reset_bootfs = 0;
 408         uint64_t objnum = 0;
 409         boolean_t has_feature = B_FALSE;
 410 
 411         elem = NULL;
 412         while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
 413                 uint64_t intval;
 414                 char *strval, *slash, *check, *fname;
 415                 const char *propname = nvpair_name(elem);
 416                 zpool_prop_t prop = zpool_name_to_prop(propname);
 417 
 418                 switch (prop) {
 419                 case ZPROP_INVAL:
 420                         if (!zpool_prop_feature(propname)) {
 421                                 error = SET_ERROR(EINVAL);
 422                                 break;
 423                         }
 424 
 425                         /*
 426                          * Sanitize the input.
 427                          */
 428                         if (nvpair_type(elem) != DATA_TYPE_UINT64) {
 429                                 error = SET_ERROR(EINVAL);
 430                                 break;
 431                         }
 432 
 433                         if (nvpair_value_uint64(elem, &intval) != 0) {
 434                                 error = SET_ERROR(EINVAL);
 435                                 break;
 436                         }
 437 
 438                         if (intval != 0) {
 439                                 error = SET_ERROR(EINVAL);
 440                                 break;
 441                         }
 442 
 443                         fname = strchr(propname, '@') + 1;
 444                         if (zfeature_lookup_name(fname, NULL) != 0) {
 445                                 error = SET_ERROR(EINVAL);
 446                                 break;
 447                         }
 448 
 449                         has_feature = B_TRUE;
 450                         break;
 451 
 452                 case ZPOOL_PROP_VERSION:
 453                         error = nvpair_value_uint64(elem, &intval);
 454                         if (!error &&
 455                             (intval < spa_version(spa) ||
 456                             intval > SPA_VERSION_BEFORE_FEATURES ||
 457                             has_feature))
 458                                 error = SET_ERROR(EINVAL);
 459                         break;
 460 
 461                 case ZPOOL_PROP_DELEGATION:
 462                 case ZPOOL_PROP_AUTOREPLACE:
 463                 case ZPOOL_PROP_LISTSNAPS:
 464                 case ZPOOL_PROP_AUTOEXPAND:
 465                         error = nvpair_value_uint64(elem, &intval);
 466                         if (!error && intval > 1)
 467                                 error = SET_ERROR(EINVAL);
 468                         break;
 469 
 470                 case ZPOOL_PROP_BOOTFS:
 471                         /*
 472                          * If the pool version is less than SPA_VERSION_BOOTFS,
 473                          * or the pool is still being created (version == 0),
 474                          * the bootfs property cannot be set.
 475                          */
 476                         if (spa_version(spa) < SPA_VERSION_BOOTFS) {
 477                                 error = SET_ERROR(ENOTSUP);
 478                                 break;
 479                         }
 480 
 481                         /*
 482                          * Make sure the vdev config is bootable
 483                          */
 484                         if (!vdev_is_bootable(spa->spa_root_vdev)) {
 485                                 error = SET_ERROR(ENOTSUP);
 486                                 break;
 487                         }
 488 
 489                         reset_bootfs = 1;
 490 
 491                         error = nvpair_value_string(elem, &strval);
 492 
 493                         if (!error) {
 494                                 objset_t *os;
 495                                 uint64_t propval;
 496 
 497                                 if (strval == NULL || strval[0] == '\0') {
 498                                         objnum = zpool_prop_default_numeric(
 499                                             ZPOOL_PROP_BOOTFS);
 500                                         break;
 501                                 }
 502 
 503                                 if (error = dmu_objset_hold(strval, FTAG, &os))
 504                                         break;
 505 
 506                                 /*
 507                                  * Must be ZPL, and its property settings
 508                                  * must be supported by GRUB (compression
 509                                  * is not gzip, and large blocks are not used).
 510                                  */
 511 
 512                                 if (dmu_objset_type(os) != DMU_OST_ZFS) {
 513                                         error = SET_ERROR(ENOTSUP);
 514                                 } else if ((error =
 515                                     dsl_prop_get_int_ds(dmu_objset_ds(os),
 516                                     zfs_prop_to_name(ZFS_PROP_COMPRESSION),
 517                                     &propval)) == 0 &&
 518                                     !BOOTFS_COMPRESS_VALID(propval)) {
 519                                         error = SET_ERROR(ENOTSUP);
 520                                 } else if ((error =
 521                                     dsl_prop_get_int_ds(dmu_objset_ds(os),
 522                                     zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
 523                                     &propval)) == 0 &&
 524                                     propval > SPA_OLD_MAXBLOCKSIZE) {
 525                                         error = SET_ERROR(ENOTSUP);
 526                                 } else {
 527                                         objnum = dmu_objset_id(os);
 528                                 }
 529                                 dmu_objset_rele(os, FTAG);
 530                         }
 531                         break;
 532 
 533                 case ZPOOL_PROP_FAILUREMODE:
 534                         error = nvpair_value_uint64(elem, &intval);
 535                         if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
 536                             intval > ZIO_FAILURE_MODE_PANIC))
 537                                 error = SET_ERROR(EINVAL);
 538 
 539                         /*
 540                          * This is a special case which only occurs when
 541                          * the pool has completely failed. This allows
 542                          * the user to change the in-core failmode property
 543                          * without syncing it out to disk (I/Os might
 544                          * currently be blocked). We do this by returning
 545                          * EIO to the caller (spa_prop_set) to trick it
 546                          * into thinking we encountered a property validation
 547                          * error.
 548                          */
 549                         if (!error && spa_suspended(spa)) {
 550                                 spa->spa_failmode = intval;
 551                                 error = SET_ERROR(EIO);
 552                         }
 553                         break;
 554 
 555                 case ZPOOL_PROP_CACHEFILE:
 556                         if ((error = nvpair_value_string(elem, &strval)) != 0)
 557                                 break;
 558 
 559                         if (strval[0] == '\0')
 560                                 break;
 561 
 562                         if (strcmp(strval, "none") == 0)
 563                                 break;
 564 
 565                         if (strval[0] != '/') {
 566                                 error = SET_ERROR(EINVAL);
 567                                 break;
 568                         }
 569 
 570                         slash = strrchr(strval, '/');
 571                         ASSERT(slash != NULL);
 572 
 573                         if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
 574                             strcmp(slash, "/..") == 0)
 575                                 error = SET_ERROR(EINVAL);
 576                         break;
 577 
 578                 case ZPOOL_PROP_COMMENT:
 579                         if ((error = nvpair_value_string(elem, &strval)) != 0)
 580                                 break;
 581                         for (check = strval; *check != '\0'; check++) {
 582                                 /*
 583                                  * The kernel doesn't have an easy isprint()
 584                                  * check.  For this kernel check, we merely
 585                                  * check ASCII apart from DEL.  Fix this if
 586                                  * there is an easy-to-use kernel isprint().
 587                                  */
 588                                 if (*check >= 0x7f) {
 589                                         error = SET_ERROR(EINVAL);
 590                                         break;
 591                                 }
 592                                 check++;
 593                         }
 594                         if (strlen(strval) > ZPROP_MAX_COMMENT)
 595                                 error = E2BIG;
 596                         break;
 597 
 598                 case ZPOOL_PROP_DEDUPDITTO:
 599                         if (spa_version(spa) < SPA_VERSION_DEDUP)
 600                                 error = SET_ERROR(ENOTSUP);
 601                         else
 602                                 error = nvpair_value_uint64(elem, &intval);
 603                         if (error == 0 &&
 604                             intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
 605                                 error = SET_ERROR(EINVAL);
 606                         break;
 607                 }
 608 
 609                 if (error)
 610                         break;
 611         }
 612 
 613         if (!error && reset_bootfs) {
 614                 error = nvlist_remove(props,
 615                     zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
 616 
 617                 if (!error) {
 618                         error = nvlist_add_uint64(props,
 619                             zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
 620                 }
 621         }
 622 
 623         return (error);
 624 }
 625 
 626 void
 627 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
 628 {
 629         char *cachefile;
 630         spa_config_dirent_t *dp;
 631 
 632         if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
 633             &cachefile) != 0)
 634                 return;
 635 
 636         dp = kmem_alloc(sizeof (spa_config_dirent_t),
 637             KM_SLEEP);
 638 
 639         if (cachefile[0] == '\0')
 640                 dp->scd_path = spa_strdup(spa_config_path);
 641         else if (strcmp(cachefile, "none") == 0)
 642                 dp->scd_path = NULL;
 643         else
 644                 dp->scd_path = spa_strdup(cachefile);
 645 
 646         list_insert_head(&spa->spa_config_list, dp);
 647         if (need_sync)
 648                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
 649 }
 650 
 651 int
 652 spa_prop_set(spa_t *spa, nvlist_t *nvp)
 653 {
 654         int error;
 655         nvpair_t *elem = NULL;
 656         boolean_t need_sync = B_FALSE;
 657 
 658         if ((error = spa_prop_validate(spa, nvp)) != 0)
 659                 return (error);
 660 
 661         while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
 662                 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
 663 
 664                 if (prop == ZPOOL_PROP_CACHEFILE ||
 665                     prop == ZPOOL_PROP_ALTROOT ||
 666                     prop == ZPOOL_PROP_READONLY)
 667                         continue;
 668 
 669                 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
 670                         uint64_t ver;
 671 
 672                         if (prop == ZPOOL_PROP_VERSION) {
 673                                 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
 674                         } else {
 675                                 ASSERT(zpool_prop_feature(nvpair_name(elem)));
 676                                 ver = SPA_VERSION_FEATURES;
 677                                 need_sync = B_TRUE;
 678                         }
 679 
 680                         /* Save time if the version is already set. */
 681                         if (ver == spa_version(spa))
 682                                 continue;
 683 
 684                         /*
 685                          * In addition to the pool directory object, we might
 686                          * create the pool properties object, the features for
 687                          * read object, the features for write object, or the
 688                          * feature descriptions object.
 689                          */
 690                         error = dsl_sync_task(spa->spa_name, NULL,
 691                             spa_sync_version, &ver,
 692                             6, ZFS_SPACE_CHECK_RESERVED);
 693                         if (error)
 694                                 return (error);
 695                         continue;
 696                 }
 697 
 698                 need_sync = B_TRUE;
 699                 break;
 700         }
 701 
 702         if (need_sync) {
 703                 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
 704                     nvp, 6, ZFS_SPACE_CHECK_RESERVED));
 705         }
 706 
 707         return (0);
 708 }
 709 
 710 /*
 711  * If the bootfs property value is dsobj, clear it.
 712  */
 713 void
 714 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
 715 {
 716         if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
 717                 VERIFY(zap_remove(spa->spa_meta_objset,
 718                     spa->spa_pool_props_object,
 719                     zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
 720                 spa->spa_bootfs = 0;
 721         }
 722 }
 723 
 724 /*ARGSUSED*/
 725 static int
 726 spa_change_guid_check(void *arg, dmu_tx_t *tx)
 727 {
 728         uint64_t *newguid = arg;
 729         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 730         vdev_t *rvd = spa->spa_root_vdev;
 731         uint64_t vdev_state;
 732 
 733         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 734         vdev_state = rvd->vdev_state;
 735         spa_config_exit(spa, SCL_STATE, FTAG);
 736 
 737         if (vdev_state != VDEV_STATE_HEALTHY)
 738                 return (SET_ERROR(ENXIO));
 739 
 740         ASSERT3U(spa_guid(spa), !=, *newguid);
 741 
 742         return (0);
 743 }
 744 
 745 static void
 746 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
 747 {
 748         uint64_t *newguid = arg;
 749         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 750         uint64_t oldguid;
 751         vdev_t *rvd = spa->spa_root_vdev;
 752 
 753         oldguid = spa_guid(spa);
 754 
 755         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 756         rvd->vdev_guid = *newguid;
 757         rvd->vdev_guid_sum += (*newguid - oldguid);
 758         vdev_config_dirty(rvd);
 759         spa_config_exit(spa, SCL_STATE, FTAG);
 760 
 761         spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
 762             oldguid, *newguid);
 763 }
 764 
 765 /*
 766  * Change the GUID for the pool.  This is done so that we can later
 767  * re-import a pool built from a clone of our own vdevs.  We will modify
 768  * the root vdev's guid, our own pool guid, and then mark all of our
 769  * vdevs dirty.  Note that we must make sure that all our vdevs are
 770  * online when we do this, or else any vdevs that weren't present
 771  * would be orphaned from our pool.  We are also going to issue a
 772  * sysevent to update any watchers.
 773  */
 774 int
 775 spa_change_guid(spa_t *spa)
 776 {
 777         int error;
 778         uint64_t guid;
 779 
 780         mutex_enter(&spa->spa_vdev_top_lock);
 781         mutex_enter(&spa_namespace_lock);
 782         guid = spa_generate_guid(NULL);
 783 
 784         error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
 785             spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
 786 
 787         if (error == 0) {
 788                 spa_config_sync(spa, B_FALSE, B_TRUE);
 789                 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
 790         }
 791 
 792         mutex_exit(&spa_namespace_lock);
 793         mutex_exit(&spa->spa_vdev_top_lock);
 794 
 795         return (error);
 796 }
 797 
 798 /*
 799  * ==========================================================================
 800  * SPA state manipulation (open/create/destroy/import/export)
 801  * ==========================================================================
 802  */
 803 
 804 static int
 805 spa_error_entry_compare(const void *a, const void *b)
 806 {
 807         spa_error_entry_t *sa = (spa_error_entry_t *)a;
 808         spa_error_entry_t *sb = (spa_error_entry_t *)b;
 809         int ret;
 810 
 811         ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
 812             sizeof (zbookmark_phys_t));
 813 
 814         if (ret < 0)
 815                 return (-1);
 816         else if (ret > 0)
 817                 return (1);
 818         else
 819                 return (0);
 820 }
 821 
 822 /*
 823  * Utility function which retrieves copies of the current logs and
 824  * re-initializes them in the process.
 825  */
 826 void
 827 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
 828 {
 829         ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
 830 
 831         bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
 832         bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
 833 
 834         avl_create(&spa->spa_errlist_scrub,
 835             spa_error_entry_compare, sizeof (spa_error_entry_t),
 836             offsetof(spa_error_entry_t, se_avl));
 837         avl_create(&spa->spa_errlist_last,
 838             spa_error_entry_compare, sizeof (spa_error_entry_t),
 839             offsetof(spa_error_entry_t, se_avl));
 840 }
 841 
 842 static void
 843 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
 844 {
 845         const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
 846         enum zti_modes mode = ztip->zti_mode;
 847         uint_t value = ztip->zti_value;
 848         uint_t count = ztip->zti_count;
 849         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 850         char name[32];
 851         uint_t flags = 0;
 852         boolean_t batch = B_FALSE;
 853 
 854         if (mode == ZTI_MODE_NULL) {
 855                 tqs->stqs_count = 0;
 856                 tqs->stqs_taskq = NULL;
 857                 return;
 858         }
 859 
 860         ASSERT3U(count, >, 0);
 861 
 862         tqs->stqs_count = count;
 863         tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
 864 
 865         switch (mode) {
 866         case ZTI_MODE_FIXED:
 867                 ASSERT3U(value, >=, 1);
 868                 value = MAX(value, 1);
 869                 break;
 870 
 871         case ZTI_MODE_BATCH:
 872                 batch = B_TRUE;
 873                 flags |= TASKQ_THREADS_CPU_PCT;
 874                 value = zio_taskq_batch_pct;
 875                 break;
 876 
 877         default:
 878                 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
 879                     "spa_activate()",
 880                     zio_type_name[t], zio_taskq_types[q], mode, value);
 881                 break;
 882         }
 883 
 884         for (uint_t i = 0; i < count; i++) {
 885                 taskq_t *tq;
 886 
 887                 if (count > 1) {
 888                         (void) snprintf(name, sizeof (name), "%s_%s_%u",
 889                             zio_type_name[t], zio_taskq_types[q], i);
 890                 } else {
 891                         (void) snprintf(name, sizeof (name), "%s_%s",
 892                             zio_type_name[t], zio_taskq_types[q]);
 893                 }
 894 
 895                 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
 896                         if (batch)
 897                                 flags |= TASKQ_DC_BATCH;
 898 
 899                         tq = taskq_create_sysdc(name, value, 50, INT_MAX,
 900                             spa->spa_proc, zio_taskq_basedc, flags);
 901                 } else {
 902                         pri_t pri = maxclsyspri;
 903                         /*
 904                          * The write issue taskq can be extremely CPU
 905                          * intensive.  Run it at slightly lower priority
 906                          * than the other taskqs.
 907                          */
 908                         if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
 909                                 pri--;
 910 
 911                         tq = taskq_create_proc(name, value, pri, 50,
 912                             INT_MAX, spa->spa_proc, flags);
 913                 }
 914 
 915                 tqs->stqs_taskq[i] = tq;
 916         }
 917 }
 918 
 919 static void
 920 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
 921 {
 922         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 923 
 924         if (tqs->stqs_taskq == NULL) {
 925                 ASSERT0(tqs->stqs_count);
 926                 return;
 927         }
 928 
 929         for (uint_t i = 0; i < tqs->stqs_count; i++) {
 930                 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
 931                 taskq_destroy(tqs->stqs_taskq[i]);
 932         }
 933 
 934         kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
 935         tqs->stqs_taskq = NULL;
 936 }
 937 
 938 /*
 939  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
 940  * Note that a type may have multiple discrete taskqs to avoid lock contention
 941  * on the taskq itself. In that case we choose which taskq at random by using
 942  * the low bits of gethrtime().
 943  */
 944 void
 945 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
 946     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
 947 {
 948         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 949         taskq_t *tq;
 950 
 951         ASSERT3P(tqs->stqs_taskq, !=, NULL);
 952         ASSERT3U(tqs->stqs_count, !=, 0);
 953 
 954         if (tqs->stqs_count == 1) {
 955                 tq = tqs->stqs_taskq[0];
 956         } else {
 957                 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
 958         }
 959 
 960         taskq_dispatch_ent(tq, func, arg, flags, ent);
 961 }
 962 
 963 static void
 964 spa_create_zio_taskqs(spa_t *spa)
 965 {
 966         for (int t = 0; t < ZIO_TYPES; t++) {
 967                 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
 968                         spa_taskqs_init(spa, t, q);
 969                 }
 970         }
 971 }
 972 
 973 #ifdef _KERNEL
 974 static void
 975 spa_thread(void *arg)
 976 {
 977         callb_cpr_t cprinfo;
 978 
 979         spa_t *spa = arg;
 980         user_t *pu = PTOU(curproc);
 981 
 982         CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
 983             spa->spa_name);
 984 
 985         ASSERT(curproc != &p0);
 986         (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
 987             "zpool-%s", spa->spa_name);
 988         (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
 989 
 990         /* bind this thread to the requested psrset */
 991         if (zio_taskq_psrset_bind != PS_NONE) {
 992                 pool_lock();
 993                 mutex_enter(&cpu_lock);
 994                 mutex_enter(&pidlock);
 995                 mutex_enter(&curproc->p_lock);
 996 
 997                 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
 998                     0, NULL, NULL) == 0)  {
 999                         curthread->t_bind_pset = zio_taskq_psrset_bind;
1000                 } else {
1001                         cmn_err(CE_WARN,
1002                             "Couldn't bind process for zfs pool \"%s\" to "
1003                             "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1004                 }
1005 
1006                 mutex_exit(&curproc->p_lock);
1007                 mutex_exit(&pidlock);
1008                 mutex_exit(&cpu_lock);
1009                 pool_unlock();
1010         }
1011 
1012         if (zio_taskq_sysdc) {
1013                 sysdc_thread_enter(curthread, 100, 0);
1014         }
1015 
1016         spa->spa_proc = curproc;
1017         spa->spa_did = curthread->t_did;
1018 
1019         spa_create_zio_taskqs(spa);
1020 
1021         mutex_enter(&spa->spa_proc_lock);
1022         ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1023 
1024         spa->spa_proc_state = SPA_PROC_ACTIVE;
1025         cv_broadcast(&spa->spa_proc_cv);
1026 
1027         CALLB_CPR_SAFE_BEGIN(&cprinfo);
1028         while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1029                 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1030         CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1031 
1032         ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1033         spa->spa_proc_state = SPA_PROC_GONE;
1034         spa->spa_proc = &p0;
1035         cv_broadcast(&spa->spa_proc_cv);
1036         CALLB_CPR_EXIT(&cprinfo);   /* drops spa_proc_lock */
1037 
1038         mutex_enter(&curproc->p_lock);
1039         lwp_exit();
1040 }
1041 #endif
1042 
1043 /*
1044  * Activate an uninitialized pool.
1045  */
1046 static void
1047 spa_activate(spa_t *spa, int mode)
1048 {
1049         ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1050 
1051         spa->spa_state = POOL_STATE_ACTIVE;
1052         spa->spa_mode = mode;
1053 
1054         spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1055         spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1056 
1057         /* Try to create a covering process */
1058         mutex_enter(&spa->spa_proc_lock);
1059         ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1060         ASSERT(spa->spa_proc == &p0);
1061         spa->spa_did = 0;
1062 
1063         /* Only create a process if we're going to be around a while. */
1064         if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1065                 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1066                     NULL, 0) == 0) {
1067                         spa->spa_proc_state = SPA_PROC_CREATED;
1068                         while (spa->spa_proc_state == SPA_PROC_CREATED) {
1069                                 cv_wait(&spa->spa_proc_cv,
1070                                     &spa->spa_proc_lock);
1071                         }
1072                         ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1073                         ASSERT(spa->spa_proc != &p0);
1074                         ASSERT(spa->spa_did != 0);
1075                 } else {
1076 #ifdef _KERNEL
1077                         cmn_err(CE_WARN,
1078                             "Couldn't create process for zfs pool \"%s\"\n",
1079                             spa->spa_name);
1080 #endif
1081                 }
1082         }
1083         mutex_exit(&spa->spa_proc_lock);
1084 
1085         /* If we didn't create a process, we need to create our taskqs. */
1086         if (spa->spa_proc == &p0) {
1087                 spa_create_zio_taskqs(spa);
1088         }
1089 
1090         list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1091             offsetof(vdev_t, vdev_config_dirty_node));
1092         list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1093             offsetof(objset_t, os_evicting_node));
1094         list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1095             offsetof(vdev_t, vdev_state_dirty_node));
1096 
1097         txg_list_create(&spa->spa_vdev_txg_list,
1098             offsetof(struct vdev, vdev_txg_node));
1099 
1100         avl_create(&spa->spa_errlist_scrub,
1101             spa_error_entry_compare, sizeof (spa_error_entry_t),
1102             offsetof(spa_error_entry_t, se_avl));
1103         avl_create(&spa->spa_errlist_last,
1104             spa_error_entry_compare, sizeof (spa_error_entry_t),
1105             offsetof(spa_error_entry_t, se_avl));
1106 }
1107 
1108 /*
1109  * Opposite of spa_activate().
1110  */
1111 static void
1112 spa_deactivate(spa_t *spa)
1113 {
1114         ASSERT(spa->spa_sync_on == B_FALSE);
1115         ASSERT(spa->spa_dsl_pool == NULL);
1116         ASSERT(spa->spa_root_vdev == NULL);
1117         ASSERT(spa->spa_async_zio_root == NULL);
1118         ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1119 
1120         spa_evicting_os_wait(spa);
1121 
1122         txg_list_destroy(&spa->spa_vdev_txg_list);
1123 
1124         list_destroy(&spa->spa_config_dirty_list);
1125         list_destroy(&spa->spa_evicting_os_list);
1126         list_destroy(&spa->spa_state_dirty_list);
1127 
1128         for (int t = 0; t < ZIO_TYPES; t++) {
1129                 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1130                         spa_taskqs_fini(spa, t, q);
1131                 }
1132         }
1133 
1134         metaslab_class_destroy(spa->spa_normal_class);
1135         spa->spa_normal_class = NULL;
1136 
1137         metaslab_class_destroy(spa->spa_log_class);
1138         spa->spa_log_class = NULL;
1139 
1140         /*
1141          * If this was part of an import or the open otherwise failed, we may
1142          * still have errors left in the queues.  Empty them just in case.
1143          */
1144         spa_errlog_drain(spa);
1145 
1146         avl_destroy(&spa->spa_errlist_scrub);
1147         avl_destroy(&spa->spa_errlist_last);
1148 
1149         spa->spa_state = POOL_STATE_UNINITIALIZED;
1150 
1151         mutex_enter(&spa->spa_proc_lock);
1152         if (spa->spa_proc_state != SPA_PROC_NONE) {
1153                 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1154                 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1155                 cv_broadcast(&spa->spa_proc_cv);
1156                 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1157                         ASSERT(spa->spa_proc != &p0);
1158                         cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1159                 }
1160                 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1161                 spa->spa_proc_state = SPA_PROC_NONE;
1162         }
1163         ASSERT(spa->spa_proc == &p0);
1164         mutex_exit(&spa->spa_proc_lock);
1165 
1166         /*
1167          * We want to make sure spa_thread() has actually exited the ZFS
1168          * module, so that the module can't be unloaded out from underneath
1169          * it.
1170          */
1171         if (spa->spa_did != 0) {
1172                 thread_join(spa->spa_did);
1173                 spa->spa_did = 0;
1174         }
1175 }
1176 
1177 /*
1178  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1179  * will create all the necessary vdevs in the appropriate layout, with each vdev
1180  * in the CLOSED state.  This will prep the pool before open/creation/import.
1181  * All vdev validation is done by the vdev_alloc() routine.
1182  */
1183 static int
1184 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1185     uint_t id, int atype)
1186 {
1187         nvlist_t **child;
1188         uint_t children;
1189         int error;
1190 
1191         if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1192                 return (error);
1193 
1194         if ((*vdp)->vdev_ops->vdev_op_leaf)
1195                 return (0);
1196 
1197         error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1198             &child, &children);
1199 
1200         if (error == ENOENT)
1201                 return (0);
1202 
1203         if (error) {
1204                 vdev_free(*vdp);
1205                 *vdp = NULL;
1206                 return (SET_ERROR(EINVAL));
1207         }
1208 
1209         for (int c = 0; c < children; c++) {
1210                 vdev_t *vd;
1211                 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1212                     atype)) != 0) {
1213                         vdev_free(*vdp);
1214                         *vdp = NULL;
1215                         return (error);
1216                 }
1217         }
1218 
1219         ASSERT(*vdp != NULL);
1220 
1221         return (0);
1222 }
1223 
1224 /*
1225  * Opposite of spa_load().
1226  */
1227 static void
1228 spa_unload(spa_t *spa)
1229 {
1230         int i;
1231 
1232         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1233 
1234         /*
1235          * Stop async tasks.
1236          */
1237         spa_async_suspend(spa);
1238 
1239         /*
1240          * Stop syncing.
1241          */
1242         if (spa->spa_sync_on) {
1243                 txg_sync_stop(spa->spa_dsl_pool);
1244                 spa->spa_sync_on = B_FALSE;
1245         }
1246 
1247         /*
1248          * Wait for any outstanding async I/O to complete.
1249          */
1250         if (spa->spa_async_zio_root != NULL) {
1251                 for (int i = 0; i < max_ncpus; i++)
1252                         (void) zio_wait(spa->spa_async_zio_root[i]);
1253                 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1254                 spa->spa_async_zio_root = NULL;
1255         }
1256 
1257         bpobj_close(&spa->spa_deferred_bpobj);
1258 
1259         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1260 
1261         /*
1262          * Close all vdevs.
1263          */
1264         if (spa->spa_root_vdev)
1265                 vdev_free(spa->spa_root_vdev);
1266         ASSERT(spa->spa_root_vdev == NULL);
1267 
1268         /*
1269          * Close the dsl pool.
1270          */
1271         if (spa->spa_dsl_pool) {
1272                 dsl_pool_close(spa->spa_dsl_pool);
1273                 spa->spa_dsl_pool = NULL;
1274                 spa->spa_meta_objset = NULL;
1275         }
1276 
1277         ddt_unload(spa);
1278 
1279 
1280         /*
1281          * Drop and purge level 2 cache
1282          */
1283         spa_l2cache_drop(spa);
1284 
1285         for (i = 0; i < spa->spa_spares.sav_count; i++)
1286                 vdev_free(spa->spa_spares.sav_vdevs[i]);
1287         if (spa->spa_spares.sav_vdevs) {
1288                 kmem_free(spa->spa_spares.sav_vdevs,
1289                     spa->spa_spares.sav_count * sizeof (void *));
1290                 spa->spa_spares.sav_vdevs = NULL;
1291         }
1292         if (spa->spa_spares.sav_config) {
1293                 nvlist_free(spa->spa_spares.sav_config);
1294                 spa->spa_spares.sav_config = NULL;
1295         }
1296         spa->spa_spares.sav_count = 0;
1297 
1298         for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1299                 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1300                 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1301         }
1302         if (spa->spa_l2cache.sav_vdevs) {
1303                 kmem_free(spa->spa_l2cache.sav_vdevs,
1304                     spa->spa_l2cache.sav_count * sizeof (void *));
1305                 spa->spa_l2cache.sav_vdevs = NULL;
1306         }
1307         if (spa->spa_l2cache.sav_config) {
1308                 nvlist_free(spa->spa_l2cache.sav_config);
1309                 spa->spa_l2cache.sav_config = NULL;
1310         }
1311         spa->spa_l2cache.sav_count = 0;
1312 
1313         spa->spa_async_suspended = 0;
1314 
1315         if (spa->spa_comment != NULL) {
1316                 spa_strfree(spa->spa_comment);
1317                 spa->spa_comment = NULL;
1318         }
1319 
1320         spa_config_exit(spa, SCL_ALL, FTAG);
1321 }
1322 
1323 /*
1324  * Load (or re-load) the current list of vdevs describing the active spares for
1325  * this pool.  When this is called, we have some form of basic information in
1326  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1327  * then re-generate a more complete list including status information.
1328  */
1329 static void
1330 spa_load_spares(spa_t *spa)
1331 {
1332         nvlist_t **spares;
1333         uint_t nspares;
1334         int i;
1335         vdev_t *vd, *tvd;
1336 
1337         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1338 
1339         /*
1340          * First, close and free any existing spare vdevs.
1341          */
1342         for (i = 0; i < spa->spa_spares.sav_count; i++) {
1343                 vd = spa->spa_spares.sav_vdevs[i];
1344 
1345                 /* Undo the call to spa_activate() below */
1346                 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1347                     B_FALSE)) != NULL && tvd->vdev_isspare)
1348                         spa_spare_remove(tvd);
1349                 vdev_close(vd);
1350                 vdev_free(vd);
1351         }
1352 
1353         if (spa->spa_spares.sav_vdevs)
1354                 kmem_free(spa->spa_spares.sav_vdevs,
1355                     spa->spa_spares.sav_count * sizeof (void *));
1356 
1357         if (spa->spa_spares.sav_config == NULL)
1358                 nspares = 0;
1359         else
1360                 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1361                     ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1362 
1363         spa->spa_spares.sav_count = (int)nspares;
1364         spa->spa_spares.sav_vdevs = NULL;
1365 
1366         if (nspares == 0)
1367                 return;
1368 
1369         /*
1370          * Construct the array of vdevs, opening them to get status in the
1371          * process.   For each spare, there is potentially two different vdev_t
1372          * structures associated with it: one in the list of spares (used only
1373          * for basic validation purposes) and one in the active vdev
1374          * configuration (if it's spared in).  During this phase we open and
1375          * validate each vdev on the spare list.  If the vdev also exists in the
1376          * active configuration, then we also mark this vdev as an active spare.
1377          */
1378         spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1379             KM_SLEEP);
1380         for (i = 0; i < spa->spa_spares.sav_count; i++) {
1381                 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1382                     VDEV_ALLOC_SPARE) == 0);
1383                 ASSERT(vd != NULL);
1384 
1385                 spa->spa_spares.sav_vdevs[i] = vd;
1386 
1387                 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1388                     B_FALSE)) != NULL) {
1389                         if (!tvd->vdev_isspare)
1390                                 spa_spare_add(tvd);
1391 
1392                         /*
1393                          * We only mark the spare active if we were successfully
1394                          * able to load the vdev.  Otherwise, importing a pool
1395                          * with a bad active spare would result in strange
1396                          * behavior, because multiple pool would think the spare
1397                          * is actively in use.
1398                          *
1399                          * There is a vulnerability here to an equally bizarre
1400                          * circumstance, where a dead active spare is later
1401                          * brought back to life (onlined or otherwise).  Given
1402                          * the rarity of this scenario, and the extra complexity
1403                          * it adds, we ignore the possibility.
1404                          */
1405                         if (!vdev_is_dead(tvd))
1406                                 spa_spare_activate(tvd);
1407                 }
1408 
1409                 vd->vdev_top = vd;
1410                 vd->vdev_aux = &spa->spa_spares;
1411 
1412                 if (vdev_open(vd) != 0)
1413                         continue;
1414 
1415                 if (vdev_validate_aux(vd) == 0)
1416                         spa_spare_add(vd);
1417         }
1418 
1419         /*
1420          * Recompute the stashed list of spares, with status information
1421          * this time.
1422          */
1423         VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1424             DATA_TYPE_NVLIST_ARRAY) == 0);
1425 
1426         spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1427             KM_SLEEP);
1428         for (i = 0; i < spa->spa_spares.sav_count; i++)
1429                 spares[i] = vdev_config_generate(spa,
1430                     spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1431         VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1432             ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1433         for (i = 0; i < spa->spa_spares.sav_count; i++)
1434                 nvlist_free(spares[i]);
1435         kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1436 }
1437 
1438 /*
1439  * Load (or re-load) the current list of vdevs describing the active l2cache for
1440  * this pool.  When this is called, we have some form of basic information in
1441  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1442  * then re-generate a more complete list including status information.
1443  * Devices which are already active have their details maintained, and are
1444  * not re-opened.
1445  */
1446 static void
1447 spa_load_l2cache(spa_t *spa)
1448 {
1449         nvlist_t **l2cache;
1450         uint_t nl2cache;
1451         int i, j, oldnvdevs;
1452         uint64_t guid;
1453         vdev_t *vd, **oldvdevs, **newvdevs;
1454         spa_aux_vdev_t *sav = &spa->spa_l2cache;
1455 
1456         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1457 
1458         if (sav->sav_config != NULL) {
1459                 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1460                     ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1461                 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1462         } else {
1463                 nl2cache = 0;
1464                 newvdevs = NULL;
1465         }
1466 
1467         oldvdevs = sav->sav_vdevs;
1468         oldnvdevs = sav->sav_count;
1469         sav->sav_vdevs = NULL;
1470         sav->sav_count = 0;
1471 
1472         /*
1473          * Process new nvlist of vdevs.
1474          */
1475         for (i = 0; i < nl2cache; i++) {
1476                 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1477                     &guid) == 0);
1478 
1479                 newvdevs[i] = NULL;
1480                 for (j = 0; j < oldnvdevs; j++) {
1481                         vd = oldvdevs[j];
1482                         if (vd != NULL && guid == vd->vdev_guid) {
1483                                 /*
1484                                  * Retain previous vdev for add/remove ops.
1485                                  */
1486                                 newvdevs[i] = vd;
1487                                 oldvdevs[j] = NULL;
1488                                 break;
1489                         }
1490                 }
1491 
1492                 if (newvdevs[i] == NULL) {
1493                         /*
1494                          * Create new vdev
1495                          */
1496                         VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1497                             VDEV_ALLOC_L2CACHE) == 0);
1498                         ASSERT(vd != NULL);
1499                         newvdevs[i] = vd;
1500 
1501                         /*
1502                          * Commit this vdev as an l2cache device,
1503                          * even if it fails to open.
1504                          */
1505                         spa_l2cache_add(vd);
1506 
1507                         vd->vdev_top = vd;
1508                         vd->vdev_aux = sav;
1509 
1510                         spa_l2cache_activate(vd);
1511 
1512                         if (vdev_open(vd) != 0)
1513                                 continue;
1514 
1515                         (void) vdev_validate_aux(vd);
1516 
1517                         if (!vdev_is_dead(vd))
1518                                 l2arc_add_vdev(spa, vd);
1519                 }
1520         }
1521 
1522         /*
1523          * Purge vdevs that were dropped
1524          */
1525         for (i = 0; i < oldnvdevs; i++) {
1526                 uint64_t pool;
1527 
1528                 vd = oldvdevs[i];
1529                 if (vd != NULL) {
1530                         ASSERT(vd->vdev_isl2cache);
1531 
1532                         if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1533                             pool != 0ULL && l2arc_vdev_present(vd))
1534                                 l2arc_remove_vdev(vd);
1535                         vdev_clear_stats(vd);
1536                         vdev_free(vd);
1537                 }
1538         }
1539 
1540         if (oldvdevs)
1541                 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1542 
1543         if (sav->sav_config == NULL)
1544                 goto out;
1545 
1546         sav->sav_vdevs = newvdevs;
1547         sav->sav_count = (int)nl2cache;
1548 
1549         /*
1550          * Recompute the stashed list of l2cache devices, with status
1551          * information this time.
1552          */
1553         VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1554             DATA_TYPE_NVLIST_ARRAY) == 0);
1555 
1556         l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1557         for (i = 0; i < sav->sav_count; i++)
1558                 l2cache[i] = vdev_config_generate(spa,
1559                     sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1560         VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1561             ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1562 out:
1563         for (i = 0; i < sav->sav_count; i++)
1564                 nvlist_free(l2cache[i]);
1565         if (sav->sav_count)
1566                 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1567 }
1568 
1569 static int
1570 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1571 {
1572         dmu_buf_t *db;
1573         char *packed = NULL;
1574         size_t nvsize = 0;
1575         int error;
1576         *value = NULL;
1577 
1578         VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1579         nvsize = *(uint64_t *)db->db_data;
1580         dmu_buf_rele(db, FTAG);
1581 
1582         packed = kmem_alloc(nvsize, KM_SLEEP);
1583         error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1584             DMU_READ_PREFETCH);
1585         if (error == 0)
1586                 error = nvlist_unpack(packed, nvsize, value, 0);
1587         kmem_free(packed, nvsize);
1588 
1589         return (error);
1590 }
1591 
1592 /*
1593  * Checks to see if the given vdev could not be opened, in which case we post a
1594  * sysevent to notify the autoreplace code that the device has been removed.
1595  */
1596 static void
1597 spa_check_removed(vdev_t *vd)
1598 {
1599         for (int c = 0; c < vd->vdev_children; c++)
1600                 spa_check_removed(vd->vdev_child[c]);
1601 
1602         if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1603             !vd->vdev_ishole) {
1604                 zfs_post_autoreplace(vd->vdev_spa, vd);
1605                 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1606         }
1607 }
1608 
1609 /*
1610  * Validate the current config against the MOS config
1611  */
1612 static boolean_t
1613 spa_config_valid(spa_t *spa, nvlist_t *config)
1614 {
1615         vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1616         nvlist_t *nv;
1617 
1618         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1619 
1620         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1621         VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1622 
1623         ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1624 
1625         /*
1626          * If we're doing a normal import, then build up any additional
1627          * diagnostic information about missing devices in this config.
1628          * We'll pass this up to the user for further processing.
1629          */
1630         if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1631                 nvlist_t **child, *nv;
1632                 uint64_t idx = 0;
1633 
1634                 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1635                     KM_SLEEP);
1636                 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1637 
1638                 for (int c = 0; c < rvd->vdev_children; c++) {
1639                         vdev_t *tvd = rvd->vdev_child[c];
1640                         vdev_t *mtvd  = mrvd->vdev_child[c];
1641 
1642                         if (tvd->vdev_ops == &vdev_missing_ops &&
1643                             mtvd->vdev_ops != &vdev_missing_ops &&
1644                             mtvd->vdev_islog)
1645                                 child[idx++] = vdev_config_generate(spa, mtvd,
1646                                     B_FALSE, 0);
1647                 }
1648 
1649                 if (idx) {
1650                         VERIFY(nvlist_add_nvlist_array(nv,
1651                             ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1652                         VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1653                             ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1654 
1655                         for (int i = 0; i < idx; i++)
1656                                 nvlist_free(child[i]);
1657                 }
1658                 nvlist_free(nv);
1659                 kmem_free(child, rvd->vdev_children * sizeof (char **));
1660         }
1661 
1662         /*
1663          * Compare the root vdev tree with the information we have
1664          * from the MOS config (mrvd). Check each top-level vdev
1665          * with the corresponding MOS config top-level (mtvd).
1666          */
1667         for (int c = 0; c < rvd->vdev_children; c++) {
1668                 vdev_t *tvd = rvd->vdev_child[c];
1669                 vdev_t *mtvd  = mrvd->vdev_child[c];
1670 
1671                 /*
1672                  * Resolve any "missing" vdevs in the current configuration.
1673                  * If we find that the MOS config has more accurate information
1674                  * about the top-level vdev then use that vdev instead.
1675                  */
1676                 if (tvd->vdev_ops == &vdev_missing_ops &&
1677                     mtvd->vdev_ops != &vdev_missing_ops) {
1678 
1679                         if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1680                                 continue;
1681 
1682                         /*
1683                          * Device specific actions.
1684                          */
1685                         if (mtvd->vdev_islog) {
1686                                 spa_set_log_state(spa, SPA_LOG_CLEAR);
1687                         } else {
1688                                 /*
1689                                  * XXX - once we have 'readonly' pool
1690                                  * support we should be able to handle
1691                                  * missing data devices by transitioning
1692                                  * the pool to readonly.
1693                                  */
1694                                 continue;
1695                         }
1696 
1697                         /*
1698                          * Swap the missing vdev with the data we were
1699                          * able to obtain from the MOS config.
1700                          */
1701                         vdev_remove_child(rvd, tvd);
1702                         vdev_remove_child(mrvd, mtvd);
1703 
1704                         vdev_add_child(rvd, mtvd);
1705                         vdev_add_child(mrvd, tvd);
1706 
1707                         spa_config_exit(spa, SCL_ALL, FTAG);
1708                         vdev_load(mtvd);
1709                         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1710 
1711                         vdev_reopen(rvd);
1712                 } else if (mtvd->vdev_islog) {
1713                         /*
1714                          * Load the slog device's state from the MOS config
1715                          * since it's possible that the label does not
1716                          * contain the most up-to-date information.
1717                          */
1718                         vdev_load_log_state(tvd, mtvd);
1719                         vdev_reopen(tvd);
1720                 }
1721         }
1722         vdev_free(mrvd);
1723         spa_config_exit(spa, SCL_ALL, FTAG);
1724 
1725         /*
1726          * Ensure we were able to validate the config.
1727          */
1728         return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1729 }
1730 
1731 /*
1732  * Check for missing log devices
1733  */
1734 static boolean_t
1735 spa_check_logs(spa_t *spa)
1736 {
1737         boolean_t rv = B_FALSE;
1738 
1739         switch (spa->spa_log_state) {
1740         case SPA_LOG_MISSING:
1741                 /* need to recheck in case slog has been restored */
1742         case SPA_LOG_UNKNOWN:
1743                 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1744                     NULL, DS_FIND_CHILDREN) != 0);
1745                 if (rv)
1746                         spa_set_log_state(spa, SPA_LOG_MISSING);
1747                 break;
1748         }
1749         return (rv);
1750 }
1751 
1752 static boolean_t
1753 spa_passivate_log(spa_t *spa)
1754 {
1755         vdev_t *rvd = spa->spa_root_vdev;
1756         boolean_t slog_found = B_FALSE;
1757 
1758         ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1759 
1760         if (!spa_has_slogs(spa))
1761                 return (B_FALSE);
1762 
1763         for (int c = 0; c < rvd->vdev_children; c++) {
1764                 vdev_t *tvd = rvd->vdev_child[c];
1765                 metaslab_group_t *mg = tvd->vdev_mg;
1766 
1767                 if (tvd->vdev_islog) {
1768                         metaslab_group_passivate(mg);
1769                         slog_found = B_TRUE;
1770                 }
1771         }
1772 
1773         return (slog_found);
1774 }
1775 
1776 static void
1777 spa_activate_log(spa_t *spa)
1778 {
1779         vdev_t *rvd = spa->spa_root_vdev;
1780 
1781         ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1782 
1783         for (int c = 0; c < rvd->vdev_children; c++) {
1784                 vdev_t *tvd = rvd->vdev_child[c];
1785                 metaslab_group_t *mg = tvd->vdev_mg;
1786 
1787                 if (tvd->vdev_islog)
1788                         metaslab_group_activate(mg);
1789         }
1790 }
1791 
1792 int
1793 spa_offline_log(spa_t *spa)
1794 {
1795         int error;
1796 
1797         error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1798             NULL, DS_FIND_CHILDREN);
1799         if (error == 0) {
1800                 /*
1801                  * We successfully offlined the log device, sync out the
1802                  * current txg so that the "stubby" block can be removed
1803                  * by zil_sync().
1804                  */
1805                 txg_wait_synced(spa->spa_dsl_pool, 0);
1806         }
1807         return (error);
1808 }
1809 
1810 static void
1811 spa_aux_check_removed(spa_aux_vdev_t *sav)
1812 {
1813         for (int i = 0; i < sav->sav_count; i++)
1814                 spa_check_removed(sav->sav_vdevs[i]);
1815 }
1816 
1817 void
1818 spa_claim_notify(zio_t *zio)
1819 {
1820         spa_t *spa = zio->io_spa;
1821 
1822         if (zio->io_error)
1823                 return;
1824 
1825         mutex_enter(&spa->spa_props_lock);       /* any mutex will do */
1826         if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1827                 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1828         mutex_exit(&spa->spa_props_lock);
1829 }
1830 
1831 typedef struct spa_load_error {
1832         uint64_t        sle_meta_count;
1833         uint64_t        sle_data_count;
1834 } spa_load_error_t;
1835 
1836 static void
1837 spa_load_verify_done(zio_t *zio)
1838 {
1839         blkptr_t *bp = zio->io_bp;
1840         spa_load_error_t *sle = zio->io_private;
1841         dmu_object_type_t type = BP_GET_TYPE(bp);
1842         int error = zio->io_error;
1843         spa_t *spa = zio->io_spa;
1844 
1845         if (error) {
1846                 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1847                     type != DMU_OT_INTENT_LOG)
1848                         atomic_inc_64(&sle->sle_meta_count);
1849                 else
1850                         atomic_inc_64(&sle->sle_data_count);
1851         }
1852         zio_data_buf_free(zio->io_data, zio->io_size);
1853 
1854         mutex_enter(&spa->spa_scrub_lock);
1855         spa->spa_scrub_inflight--;
1856         cv_broadcast(&spa->spa_scrub_io_cv);
1857         mutex_exit(&spa->spa_scrub_lock);
1858 }
1859 
1860 /*
1861  * Maximum number of concurrent scrub i/os to create while verifying
1862  * a pool while importing it.
1863  */
1864 int spa_load_verify_maxinflight = 10000;
1865 boolean_t spa_load_verify_metadata = B_TRUE;
1866 boolean_t spa_load_verify_data = B_TRUE;
1867 
1868 /*ARGSUSED*/
1869 static int
1870 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1871     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1872 {
1873         if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1874                 return (0);
1875         /*
1876          * Note: normally this routine will not be called if
1877          * spa_load_verify_metadata is not set.  However, it may be useful
1878          * to manually set the flag after the traversal has begun.
1879          */
1880         if (!spa_load_verify_metadata)
1881                 return (0);
1882         if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1883                 return (0);
1884 
1885         zio_t *rio = arg;
1886         size_t size = BP_GET_PSIZE(bp);
1887         void *data = zio_data_buf_alloc(size);
1888 
1889         mutex_enter(&spa->spa_scrub_lock);
1890         while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1891                 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1892         spa->spa_scrub_inflight++;
1893         mutex_exit(&spa->spa_scrub_lock);
1894 
1895         zio_nowait(zio_read(rio, spa, bp, data, size,
1896             spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1897             ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1898             ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1899         return (0);
1900 }
1901 
1902 static int
1903 spa_load_verify(spa_t *spa)
1904 {
1905         zio_t *rio;
1906         spa_load_error_t sle = { 0 };
1907         zpool_rewind_policy_t policy;
1908         boolean_t verify_ok = B_FALSE;
1909         int error = 0;
1910 
1911         zpool_get_rewind_policy(spa->spa_config, &policy);
1912 
1913         if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1914                 return (0);
1915 
1916         rio = zio_root(spa, NULL, &sle,
1917             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1918 
1919         if (spa_load_verify_metadata) {
1920                 error = traverse_pool(spa, spa->spa_verify_min_txg,
1921                     TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1922                     spa_load_verify_cb, rio);
1923         }
1924 
1925         (void) zio_wait(rio);
1926 
1927         spa->spa_load_meta_errors = sle.sle_meta_count;
1928         spa->spa_load_data_errors = sle.sle_data_count;
1929 
1930         if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1931             sle.sle_data_count <= policy.zrp_maxdata) {
1932                 int64_t loss = 0;
1933 
1934                 verify_ok = B_TRUE;
1935                 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1936                 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1937 
1938                 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1939                 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1940                     ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1941                 VERIFY(nvlist_add_int64(spa->spa_load_info,
1942                     ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1943                 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1944                     ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1945         } else {
1946                 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1947         }
1948 
1949         if (error) {
1950                 if (error != ENXIO && error != EIO)
1951                         error = SET_ERROR(EIO);
1952                 return (error);
1953         }
1954 
1955         return (verify_ok ? 0 : EIO);
1956 }
1957 
1958 /*
1959  * Find a value in the pool props object.
1960  */
1961 static void
1962 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1963 {
1964         (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1965             zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1966 }
1967 
1968 /*
1969  * Find a value in the pool directory object.
1970  */
1971 static int
1972 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1973 {
1974         return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1975             name, sizeof (uint64_t), 1, val));
1976 }
1977 
1978 static int
1979 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1980 {
1981         vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1982         return (err);
1983 }
1984 
1985 /*
1986  * Fix up config after a partly-completed split.  This is done with the
1987  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1988  * pool have that entry in their config, but only the splitting one contains
1989  * a list of all the guids of the vdevs that are being split off.
1990  *
1991  * This function determines what to do with that list: either rejoin
1992  * all the disks to the pool, or complete the splitting process.  To attempt
1993  * the rejoin, each disk that is offlined is marked online again, and
1994  * we do a reopen() call.  If the vdev label for every disk that was
1995  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1996  * then we call vdev_split() on each disk, and complete the split.
1997  *
1998  * Otherwise we leave the config alone, with all the vdevs in place in
1999  * the original pool.
2000  */
2001 static void
2002 spa_try_repair(spa_t *spa, nvlist_t *config)
2003 {
2004         uint_t extracted;
2005         uint64_t *glist;
2006         uint_t i, gcount;
2007         nvlist_t *nvl;
2008         vdev_t **vd;
2009         boolean_t attempt_reopen;
2010 
2011         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2012                 return;
2013 
2014         /* check that the config is complete */
2015         if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2016             &glist, &gcount) != 0)
2017                 return;
2018 
2019         vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2020 
2021         /* attempt to online all the vdevs & validate */
2022         attempt_reopen = B_TRUE;
2023         for (i = 0; i < gcount; i++) {
2024                 if (glist[i] == 0)      /* vdev is hole */
2025                         continue;
2026 
2027                 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2028                 if (vd[i] == NULL) {
2029                         /*
2030                          * Don't bother attempting to reopen the disks;
2031                          * just do the split.
2032                          */
2033                         attempt_reopen = B_FALSE;
2034                 } else {
2035                         /* attempt to re-online it */
2036                         vd[i]->vdev_offline = B_FALSE;
2037                 }
2038         }
2039 
2040         if (attempt_reopen) {
2041                 vdev_reopen(spa->spa_root_vdev);
2042 
2043                 /* check each device to see what state it's in */
2044                 for (extracted = 0, i = 0; i < gcount; i++) {
2045                         if (vd[i] != NULL &&
2046                             vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2047                                 break;
2048                         ++extracted;
2049                 }
2050         }
2051 
2052         /*
2053          * If every disk has been moved to the new pool, or if we never
2054          * even attempted to look at them, then we split them off for
2055          * good.
2056          */
2057         if (!attempt_reopen || gcount == extracted) {
2058                 for (i = 0; i < gcount; i++)
2059                         if (vd[i] != NULL)
2060                                 vdev_split(vd[i]);
2061                 vdev_reopen(spa->spa_root_vdev);
2062         }
2063 
2064         kmem_free(vd, gcount * sizeof (vdev_t *));
2065 }
2066 
2067 static int
2068 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2069     boolean_t mosconfig)
2070 {
2071         nvlist_t *config = spa->spa_config;
2072         char *ereport = FM_EREPORT_ZFS_POOL;
2073         char *comment;
2074         int error;
2075         uint64_t pool_guid;
2076         nvlist_t *nvl;
2077 
2078         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2079                 return (SET_ERROR(EINVAL));
2080 
2081         ASSERT(spa->spa_comment == NULL);
2082         if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2083                 spa->spa_comment = spa_strdup(comment);
2084 
2085         /*
2086          * Versioning wasn't explicitly added to the label until later, so if
2087          * it's not present treat it as the initial version.
2088          */
2089         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2090             &spa->spa_ubsync.ub_version) != 0)
2091                 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2092 
2093         (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2094             &spa->spa_config_txg);
2095 
2096         if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2097             spa_guid_exists(pool_guid, 0)) {
2098                 error = SET_ERROR(EEXIST);
2099         } else {
2100                 spa->spa_config_guid = pool_guid;
2101 
2102                 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2103                     &nvl) == 0) {
2104                         VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2105                             KM_SLEEP) == 0);
2106                 }
2107 
2108                 nvlist_free(spa->spa_load_info);
2109                 spa->spa_load_info = fnvlist_alloc();
2110 
2111                 gethrestime(&spa->spa_loaded_ts);
2112                 error = spa_load_impl(spa, pool_guid, config, state, type,
2113                     mosconfig, &ereport);
2114         }
2115 
2116         /*
2117          * Don't count references from objsets that are already closed
2118          * and are making their way through the eviction process.
2119          */
2120         spa_evicting_os_wait(spa);
2121         spa->spa_minref = refcount_count(&spa->spa_refcount);
2122         if (error) {
2123                 if (error != EEXIST) {
2124                         spa->spa_loaded_ts.tv_sec = 0;
2125                         spa->spa_loaded_ts.tv_nsec = 0;
2126                 }
2127                 if (error != EBADF) {
2128                         zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2129                 }
2130         }
2131         spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2132         spa->spa_ena = 0;
2133 
2134         return (error);
2135 }
2136 
2137 /*
2138  * Load an existing storage pool, using the pool's builtin spa_config as a
2139  * source of configuration information.
2140  */
2141 static int
2142 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2143     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2144     char **ereport)
2145 {
2146         int error = 0;
2147         nvlist_t *nvroot = NULL;
2148         nvlist_t *label;
2149         vdev_t *rvd;
2150         uberblock_t *ub = &spa->spa_uberblock;
2151         uint64_t children, config_cache_txg = spa->spa_config_txg;
2152         int orig_mode = spa->spa_mode;
2153         int parse;
2154         uint64_t obj;
2155         boolean_t missing_feat_write = B_FALSE;
2156 
2157         /*
2158          * If this is an untrusted config, access the pool in read-only mode.
2159          * This prevents things like resilvering recently removed devices.
2160          */
2161         if (!mosconfig)
2162                 spa->spa_mode = FREAD;
2163 
2164         ASSERT(MUTEX_HELD(&spa_namespace_lock));
2165 
2166         spa->spa_load_state = state;
2167 
2168         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2169                 return (SET_ERROR(EINVAL));
2170 
2171         parse = (type == SPA_IMPORT_EXISTING ?
2172             VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2173 
2174         /*
2175          * Create "The Godfather" zio to hold all async IOs
2176          */
2177         spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2178             KM_SLEEP);
2179         for (int i = 0; i < max_ncpus; i++) {
2180                 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2181                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2182                     ZIO_FLAG_GODFATHER);
2183         }
2184 
2185         /*
2186          * Parse the configuration into a vdev tree.  We explicitly set the
2187          * value that will be returned by spa_version() since parsing the
2188          * configuration requires knowing the version number.
2189          */
2190         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2191         error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2192         spa_config_exit(spa, SCL_ALL, FTAG);
2193 
2194         if (error != 0)
2195                 return (error);
2196 
2197         ASSERT(spa->spa_root_vdev == rvd);
2198 
2199         if (type != SPA_IMPORT_ASSEMBLE) {
2200                 ASSERT(spa_guid(spa) == pool_guid);
2201         }
2202 
2203         /*
2204          * Try to open all vdevs, loading each label in the process.
2205          */
2206         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2207         error = vdev_open(rvd);
2208         spa_config_exit(spa, SCL_ALL, FTAG);
2209         if (error != 0)
2210                 return (error);
2211 
2212         /*
2213          * We need to validate the vdev labels against the configuration that
2214          * we have in hand, which is dependent on the setting of mosconfig. If
2215          * mosconfig is true then we're validating the vdev labels based on
2216          * that config.  Otherwise, we're validating against the cached config
2217          * (zpool.cache) that was read when we loaded the zfs module, and then
2218          * later we will recursively call spa_load() and validate against
2219          * the vdev config.
2220          *
2221          * If we're assembling a new pool that's been split off from an
2222          * existing pool, the labels haven't yet been updated so we skip
2223          * validation for now.
2224          */
2225         if (type != SPA_IMPORT_ASSEMBLE) {
2226                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2227                 error = vdev_validate(rvd, mosconfig);
2228                 spa_config_exit(spa, SCL_ALL, FTAG);
2229 
2230                 if (error != 0)
2231                         return (error);
2232 
2233                 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2234                         return (SET_ERROR(ENXIO));
2235         }
2236 
2237         /*
2238          * Find the best uberblock.
2239          */
2240         vdev_uberblock_load(rvd, ub, &label);
2241 
2242         /*
2243          * If we weren't able to find a single valid uberblock, return failure.
2244          */
2245         if (ub->ub_txg == 0) {
2246                 nvlist_free(label);
2247                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2248         }
2249 
2250         /*
2251          * If the pool has an unsupported version we can't open it.
2252          */
2253         if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2254                 nvlist_free(label);
2255                 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2256         }
2257 
2258         if (ub->ub_version >= SPA_VERSION_FEATURES) {
2259                 nvlist_t *features;
2260 
2261                 /*
2262                  * If we weren't able to find what's necessary for reading the
2263                  * MOS in the label, return failure.
2264                  */
2265                 if (label == NULL || nvlist_lookup_nvlist(label,
2266                     ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2267                         nvlist_free(label);
2268                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2269                             ENXIO));
2270                 }
2271 
2272                 /*
2273                  * Update our in-core representation with the definitive values
2274                  * from the label.
2275                  */
2276                 nvlist_free(spa->spa_label_features);
2277                 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2278         }
2279 
2280         nvlist_free(label);
2281 
2282         /*
2283          * Look through entries in the label nvlist's features_for_read. If
2284          * there is a feature listed there which we don't understand then we
2285          * cannot open a pool.
2286          */
2287         if (ub->ub_version >= SPA_VERSION_FEATURES) {
2288                 nvlist_t *unsup_feat;
2289 
2290                 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2291                     0);
2292 
2293                 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2294                     NULL); nvp != NULL;
2295                     nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2296                         if (!zfeature_is_supported(nvpair_name(nvp))) {
2297                                 VERIFY(nvlist_add_string(unsup_feat,
2298                                     nvpair_name(nvp), "") == 0);
2299                         }
2300                 }
2301 
2302                 if (!nvlist_empty(unsup_feat)) {
2303                         VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2304                             ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2305                         nvlist_free(unsup_feat);
2306                         return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2307                             ENOTSUP));
2308                 }
2309 
2310                 nvlist_free(unsup_feat);
2311         }
2312 
2313         /*
2314          * If the vdev guid sum doesn't match the uberblock, we have an
2315          * incomplete configuration.  We first check to see if the pool
2316          * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2317          * If it is, defer the vdev_guid_sum check till later so we
2318          * can handle missing vdevs.
2319          */
2320         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2321             &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2322             rvd->vdev_guid_sum != ub->ub_guid_sum)
2323                 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2324 
2325         if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2326                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2327                 spa_try_repair(spa, config);
2328                 spa_config_exit(spa, SCL_ALL, FTAG);
2329                 nvlist_free(spa->spa_config_splitting);
2330                 spa->spa_config_splitting = NULL;
2331         }
2332 
2333         /*
2334          * Initialize internal SPA structures.
2335          */
2336         spa->spa_state = POOL_STATE_ACTIVE;
2337         spa->spa_ubsync = spa->spa_uberblock;
2338         spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2339             TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2340         spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2341             spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2342         spa->spa_claim_max_txg = spa->spa_first_txg;
2343         spa->spa_prev_software_version = ub->ub_software_version;
2344 
2345         error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2346         if (error)
2347                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2348         spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2349 
2350         if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2351                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2352 
2353         if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2354                 boolean_t missing_feat_read = B_FALSE;
2355                 nvlist_t *unsup_feat, *enabled_feat;
2356 
2357                 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2358                     &spa->spa_feat_for_read_obj) != 0) {
2359                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2360                 }
2361 
2362                 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2363                     &spa->spa_feat_for_write_obj) != 0) {
2364                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2365                 }
2366 
2367                 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2368                     &spa->spa_feat_desc_obj) != 0) {
2369                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2370                 }
2371 
2372                 enabled_feat = fnvlist_alloc();
2373                 unsup_feat = fnvlist_alloc();
2374 
2375                 if (!spa_features_check(spa, B_FALSE,
2376                     unsup_feat, enabled_feat))
2377                         missing_feat_read = B_TRUE;
2378 
2379                 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2380                         if (!spa_features_check(spa, B_TRUE,
2381                             unsup_feat, enabled_feat)) {
2382                                 missing_feat_write = B_TRUE;
2383                         }
2384                 }
2385 
2386                 fnvlist_add_nvlist(spa->spa_load_info,
2387                     ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2388 
2389                 if (!nvlist_empty(unsup_feat)) {
2390                         fnvlist_add_nvlist(spa->spa_load_info,
2391                             ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2392                 }
2393 
2394                 fnvlist_free(enabled_feat);
2395                 fnvlist_free(unsup_feat);
2396 
2397                 if (!missing_feat_read) {
2398                         fnvlist_add_boolean(spa->spa_load_info,
2399                             ZPOOL_CONFIG_CAN_RDONLY);
2400                 }
2401 
2402                 /*
2403                  * If the state is SPA_LOAD_TRYIMPORT, our objective is
2404                  * twofold: to determine whether the pool is available for
2405                  * import in read-write mode and (if it is not) whether the
2406                  * pool is available for import in read-only mode. If the pool
2407                  * is available for import in read-write mode, it is displayed
2408                  * as available in userland; if it is not available for import
2409                  * in read-only mode, it is displayed as unavailable in
2410                  * userland. If the pool is available for import in read-only
2411                  * mode but not read-write mode, it is displayed as unavailable
2412                  * in userland with a special note that the pool is actually
2413                  * available for open in read-only mode.
2414                  *
2415                  * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2416                  * missing a feature for write, we must first determine whether
2417                  * the pool can be opened read-only before returning to
2418                  * userland in order to know whether to display the
2419                  * abovementioned note.
2420                  */
2421                 if (missing_feat_read || (missing_feat_write &&
2422                     spa_writeable(spa))) {
2423                         return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2424                             ENOTSUP));
2425                 }
2426 
2427                 /*
2428                  * Load refcounts for ZFS features from disk into an in-memory
2429                  * cache during SPA initialization.
2430                  */
2431                 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2432                         uint64_t refcount;
2433 
2434                         error = feature_get_refcount_from_disk(spa,
2435                             &spa_feature_table[i], &refcount);
2436                         if (error == 0) {
2437                                 spa->spa_feat_refcount_cache[i] = refcount;
2438                         } else if (error == ENOTSUP) {
2439                                 spa->spa_feat_refcount_cache[i] =
2440                                     SPA_FEATURE_DISABLED;
2441                         } else {
2442                                 return (spa_vdev_err(rvd,
2443                                     VDEV_AUX_CORRUPT_DATA, EIO));
2444                         }
2445                 }
2446         }
2447 
2448         if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2449                 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2450                     &spa->spa_feat_enabled_txg_obj) != 0)
2451                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2452         }
2453 
2454         spa->spa_is_initializing = B_TRUE;
2455         error = dsl_pool_open(spa->spa_dsl_pool);
2456         spa->spa_is_initializing = B_FALSE;
2457         if (error != 0)
2458                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2459 
2460         if (!mosconfig) {
2461                 uint64_t hostid;
2462                 nvlist_t *policy = NULL, *nvconfig;
2463 
2464                 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2465                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2466 
2467                 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2468                     ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2469                         char *hostname;
2470                         unsigned long myhostid = 0;
2471 
2472                         VERIFY(nvlist_lookup_string(nvconfig,
2473                             ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2474 
2475 #ifdef  _KERNEL
2476                         myhostid = zone_get_hostid(NULL);
2477 #else   /* _KERNEL */
2478                         /*
2479                          * We're emulating the system's hostid in userland, so
2480                          * we can't use zone_get_hostid().
2481                          */
2482                         (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2483 #endif  /* _KERNEL */
2484                         if (hostid != 0 && myhostid != 0 &&
2485                             hostid != myhostid) {
2486                                 nvlist_free(nvconfig);
2487                                 cmn_err(CE_WARN, "pool '%s' could not be "
2488                                     "loaded as it was last accessed by "
2489                                     "another system (host: %s hostid: 0x%lx). "
2490                                     "See: http://illumos.org/msg/ZFS-8000-EY",
2491                                     spa_name(spa), hostname,
2492                                     (unsigned long)hostid);
2493                                 return (SET_ERROR(EBADF));
2494                         }
2495                 }
2496                 if (nvlist_lookup_nvlist(spa->spa_config,
2497                     ZPOOL_REWIND_POLICY, &policy) == 0)
2498                         VERIFY(nvlist_add_nvlist(nvconfig,
2499                             ZPOOL_REWIND_POLICY, policy) == 0);
2500 
2501                 spa_config_set(spa, nvconfig);
2502                 spa_unload(spa);
2503                 spa_deactivate(spa);
2504                 spa_activate(spa, orig_mode);
2505 
2506                 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2507         }
2508 
2509         if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2510                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2511         error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2512         if (error != 0)
2513                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2514 
2515         /*
2516          * Load the bit that tells us to use the new accounting function
2517          * (raid-z deflation).  If we have an older pool, this will not
2518          * be present.
2519          */
2520         error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2521         if (error != 0 && error != ENOENT)
2522                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2523 
2524         error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2525             &spa->spa_creation_version);
2526         if (error != 0 && error != ENOENT)
2527                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2528 
2529         /*
2530          * Load the persistent error log.  If we have an older pool, this will
2531          * not be present.
2532          */
2533         error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2534         if (error != 0 && error != ENOENT)
2535                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2536 
2537         error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2538             &spa->spa_errlog_scrub);
2539         if (error != 0 && error != ENOENT)
2540                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2541 
2542         /*
2543          * Load the history object.  If we have an older pool, this
2544          * will not be present.
2545          */
2546         error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2547         if (error != 0 && error != ENOENT)
2548                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2549 
2550         /*
2551          * If we're assembling the pool from the split-off vdevs of
2552          * an existing pool, we don't want to attach the spares & cache
2553          * devices.
2554          */
2555 
2556         /*
2557          * Load any hot spares for this pool.
2558          */
2559         error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2560         if (error != 0 && error != ENOENT)
2561                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2562         if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2563                 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2564                 if (load_nvlist(spa, spa->spa_spares.sav_object,
2565                     &spa->spa_spares.sav_config) != 0)
2566                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2567 
2568                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2569                 spa_load_spares(spa);
2570                 spa_config_exit(spa, SCL_ALL, FTAG);
2571         } else if (error == 0) {
2572                 spa->spa_spares.sav_sync = B_TRUE;
2573         }
2574 
2575         /*
2576          * Load any level 2 ARC devices for this pool.
2577          */
2578         error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2579             &spa->spa_l2cache.sav_object);
2580         if (error != 0 && error != ENOENT)
2581                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2582         if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2583                 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2584                 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2585                     &spa->spa_l2cache.sav_config) != 0)
2586                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2587 
2588                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2589                 spa_load_l2cache(spa);
2590                 spa_config_exit(spa, SCL_ALL, FTAG);
2591         } else if (error == 0) {
2592                 spa->spa_l2cache.sav_sync = B_TRUE;
2593         }
2594 
2595         spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2596 
2597         error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2598         if (error && error != ENOENT)
2599                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2600 
2601         if (error == 0) {
2602                 uint64_t autoreplace;
2603 
2604                 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2605                 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2606                 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2607                 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2608                 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2609                 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2610                     &spa->spa_dedup_ditto);
2611 
2612                 spa->spa_autoreplace = (autoreplace != 0);
2613         }
2614 
2615         /*
2616          * If the 'autoreplace' property is set, then post a resource notifying
2617          * the ZFS DE that it should not issue any faults for unopenable
2618          * devices.  We also iterate over the vdevs, and post a sysevent for any
2619          * unopenable vdevs so that the normal autoreplace handler can take
2620          * over.
2621          */
2622         if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2623                 spa_check_removed(spa->spa_root_vdev);
2624                 /*
2625                  * For the import case, this is done in spa_import(), because
2626                  * at this point we're using the spare definitions from
2627                  * the MOS config, not necessarily from the userland config.
2628                  */
2629                 if (state != SPA_LOAD_IMPORT) {
2630                         spa_aux_check_removed(&spa->spa_spares);
2631                         spa_aux_check_removed(&spa->spa_l2cache);
2632                 }
2633         }
2634 
2635         /*
2636          * Load the vdev state for all toplevel vdevs.
2637          */
2638         vdev_load(rvd);
2639 
2640         /*
2641          * Propagate the leaf DTLs we just loaded all the way up the tree.
2642          */
2643         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2644         vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2645         spa_config_exit(spa, SCL_ALL, FTAG);
2646 
2647         /*
2648          * Load the DDTs (dedup tables).
2649          */
2650         error = ddt_load(spa);
2651         if (error != 0)
2652                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2653 
2654         spa_update_dspace(spa);
2655 
2656         /*
2657          * Validate the config, using the MOS config to fill in any
2658          * information which might be missing.  If we fail to validate
2659          * the config then declare the pool unfit for use. If we're
2660          * assembling a pool from a split, the log is not transferred
2661          * over.
2662          */
2663         if (type != SPA_IMPORT_ASSEMBLE) {
2664                 nvlist_t *nvconfig;
2665 
2666                 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2667                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2668 
2669                 if (!spa_config_valid(spa, nvconfig)) {
2670                         nvlist_free(nvconfig);
2671                         return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2672                             ENXIO));
2673                 }
2674                 nvlist_free(nvconfig);
2675 
2676                 /*
2677                  * Now that we've validated the config, check the state of the
2678                  * root vdev.  If it can't be opened, it indicates one or
2679                  * more toplevel vdevs are faulted.
2680                  */
2681                 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2682                         return (SET_ERROR(ENXIO));
2683 
2684                 if (spa_check_logs(spa)) {
2685                         *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2686                         return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2687                 }
2688         }
2689 
2690         if (missing_feat_write) {
2691                 ASSERT(state == SPA_LOAD_TRYIMPORT);
2692 
2693                 /*
2694                  * At this point, we know that we can open the pool in
2695                  * read-only mode but not read-write mode. We now have enough
2696                  * information and can return to userland.
2697                  */
2698                 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2699         }
2700 
2701         /*
2702          * We've successfully opened the pool, verify that we're ready
2703          * to start pushing transactions.
2704          */
2705         if (state != SPA_LOAD_TRYIMPORT) {
2706                 if (error = spa_load_verify(spa))
2707                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2708                             error));
2709         }
2710 
2711         if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2712             spa->spa_load_max_txg == UINT64_MAX)) {
2713                 dmu_tx_t *tx;
2714                 int need_update = B_FALSE;
2715 
2716                 ASSERT(state != SPA_LOAD_TRYIMPORT);
2717 
2718                 /*
2719                  * Claim log blocks that haven't been committed yet.
2720                  * This must all happen in a single txg.
2721                  * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2722                  * invoked from zil_claim_log_block()'s i/o done callback.
2723                  * Price of rollback is that we abandon the log.
2724                  */
2725                 spa->spa_claiming = B_TRUE;
2726 
2727                 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2728                     spa_first_txg(spa));
2729                 (void) dmu_objset_find(spa_name(spa),
2730                     zil_claim, tx, DS_FIND_CHILDREN);
2731                 dmu_tx_commit(tx);
2732 
2733                 spa->spa_claiming = B_FALSE;
2734 
2735                 spa_set_log_state(spa, SPA_LOG_GOOD);
2736                 spa->spa_sync_on = B_TRUE;
2737                 txg_sync_start(spa->spa_dsl_pool);
2738 
2739                 /*
2740                  * Wait for all claims to sync.  We sync up to the highest
2741                  * claimed log block birth time so that claimed log blocks
2742                  * don't appear to be from the future.  spa_claim_max_txg
2743                  * will have been set for us by either zil_check_log_chain()
2744                  * (invoked from spa_check_logs()) or zil_claim() above.
2745                  */
2746                 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2747 
2748                 /*
2749                  * If the config cache is stale, or we have uninitialized
2750                  * metaslabs (see spa_vdev_add()), then update the config.
2751                  *
2752                  * If this is a verbatim import, trust the current
2753                  * in-core spa_config and update the disk labels.
2754                  */
2755                 if (config_cache_txg != spa->spa_config_txg ||
2756                     state == SPA_LOAD_IMPORT ||
2757                     state == SPA_LOAD_RECOVER ||
2758                     (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2759                         need_update = B_TRUE;
2760 
2761                 for (int c = 0; c < rvd->vdev_children; c++)
2762                         if (rvd->vdev_child[c]->vdev_ms_array == 0)
2763                                 need_update = B_TRUE;
2764 
2765                 /*
2766                  * Update the config cache asychronously in case we're the
2767                  * root pool, in which case the config cache isn't writable yet.
2768                  */
2769                 if (need_update)
2770                         spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2771 
2772                 /*
2773                  * Check all DTLs to see if anything needs resilvering.
2774                  */
2775                 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2776                     vdev_resilver_needed(rvd, NULL, NULL))
2777                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2778 
2779                 /*
2780                  * Log the fact that we booted up (so that we can detect if
2781                  * we rebooted in the middle of an operation).
2782                  */
2783                 spa_history_log_version(spa, "open");
2784 
2785                 /*
2786                  * Delete any inconsistent datasets.
2787                  */
2788                 (void) dmu_objset_find(spa_name(spa),
2789                     dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2790 
2791                 /*
2792                  * Clean up any stale temporary dataset userrefs.
2793                  */
2794                 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2795         }
2796 
2797         return (0);
2798 }
2799 
2800 static int
2801 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2802 {
2803         int mode = spa->spa_mode;
2804 
2805         spa_unload(spa);
2806         spa_deactivate(spa);
2807 
2808         spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2809 
2810         spa_activate(spa, mode);
2811         spa_async_suspend(spa);
2812 
2813         return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2814 }
2815 
2816 /*
2817  * If spa_load() fails this function will try loading prior txg's. If
2818  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2819  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2820  * function will not rewind the pool and will return the same error as
2821  * spa_load().
2822  */
2823 static int
2824 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2825     uint64_t max_request, int rewind_flags)
2826 {
2827         nvlist_t *loadinfo = NULL;
2828         nvlist_t *config = NULL;
2829         int load_error, rewind_error;
2830         uint64_t safe_rewind_txg;
2831         uint64_t min_txg;
2832 
2833         if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2834                 spa->spa_load_max_txg = spa->spa_load_txg;
2835                 spa_set_log_state(spa, SPA_LOG_CLEAR);
2836         } else {
2837                 spa->spa_load_max_txg = max_request;
2838                 if (max_request != UINT64_MAX)
2839                         spa->spa_extreme_rewind = B_TRUE;
2840         }
2841 
2842         load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2843             mosconfig);
2844         if (load_error == 0)
2845                 return (0);
2846 
2847         if (spa->spa_root_vdev != NULL)
2848                 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2849 
2850         spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2851         spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2852 
2853         if (rewind_flags & ZPOOL_NEVER_REWIND) {
2854                 nvlist_free(config);
2855                 return (load_error);
2856         }
2857 
2858         if (state == SPA_LOAD_RECOVER) {
2859                 /* Price of rolling back is discarding txgs, including log */
2860                 spa_set_log_state(spa, SPA_LOG_CLEAR);
2861         } else {
2862                 /*
2863                  * If we aren't rolling back save the load info from our first
2864                  * import attempt so that we can restore it after attempting
2865                  * to rewind.
2866                  */
2867                 loadinfo = spa->spa_load_info;
2868                 spa->spa_load_info = fnvlist_alloc();
2869         }
2870 
2871         spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2872         safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2873         min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2874             TXG_INITIAL : safe_rewind_txg;
2875 
2876         /*
2877          * Continue as long as we're finding errors, we're still within
2878          * the acceptable rewind range, and we're still finding uberblocks
2879          */
2880         while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2881             spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2882                 if (spa->spa_load_max_txg < safe_rewind_txg)
2883                         spa->spa_extreme_rewind = B_TRUE;
2884                 rewind_error = spa_load_retry(spa, state, mosconfig);
2885         }
2886 
2887         spa->spa_extreme_rewind = B_FALSE;
2888         spa->spa_load_max_txg = UINT64_MAX;
2889 
2890         if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2891                 spa_config_set(spa, config);
2892 
2893         if (state == SPA_LOAD_RECOVER) {
2894                 ASSERT3P(loadinfo, ==, NULL);
2895                 return (rewind_error);
2896         } else {
2897                 /* Store the rewind info as part of the initial load info */
2898                 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2899                     spa->spa_load_info);
2900 
2901                 /* Restore the initial load info */
2902                 fnvlist_free(spa->spa_load_info);
2903                 spa->spa_load_info = loadinfo;
2904 
2905                 return (load_error);
2906         }
2907 }
2908 
2909 /*
2910  * Pool Open/Import
2911  *
2912  * The import case is identical to an open except that the configuration is sent
2913  * down from userland, instead of grabbed from the configuration cache.  For the
2914  * case of an open, the pool configuration will exist in the
2915  * POOL_STATE_UNINITIALIZED state.
2916  *
2917  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2918  * the same time open the pool, without having to keep around the spa_t in some
2919  * ambiguous state.
2920  */
2921 static int
2922 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2923     nvlist_t **config)
2924 {
2925         spa_t *spa;
2926         spa_load_state_t state = SPA_LOAD_OPEN;
2927         int error;
2928         int locked = B_FALSE;
2929 
2930         *spapp = NULL;
2931 
2932         /*
2933          * As disgusting as this is, we need to support recursive calls to this
2934          * function because dsl_dir_open() is called during spa_load(), and ends
2935          * up calling spa_open() again.  The real fix is to figure out how to
2936          * avoid dsl_dir_open() calling this in the first place.
2937          */
2938         if (mutex_owner(&spa_namespace_lock) != curthread) {
2939                 mutex_enter(&spa_namespace_lock);
2940                 locked = B_TRUE;
2941         }
2942 
2943         if ((spa = spa_lookup(pool)) == NULL) {
2944                 if (locked)
2945                         mutex_exit(&spa_namespace_lock);
2946                 return (SET_ERROR(ENOENT));
2947         }
2948 
2949         if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2950                 zpool_rewind_policy_t policy;
2951 
2952                 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2953                     &policy);
2954                 if (policy.zrp_request & ZPOOL_DO_REWIND)
2955                         state = SPA_LOAD_RECOVER;
2956 
2957                 spa_activate(spa, spa_mode_global);
2958 
2959                 if (state != SPA_LOAD_RECOVER)
2960                         spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2961 
2962                 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2963                     policy.zrp_request);
2964 
2965                 if (error == EBADF) {
2966                         /*
2967                          * If vdev_validate() returns failure (indicated by
2968                          * EBADF), it indicates that one of the vdevs indicates
2969                          * that the pool has been exported or destroyed.  If
2970                          * this is the case, the config cache is out of sync and
2971                          * we should remove the pool from the namespace.
2972                          */
2973                         spa_unload(spa);
2974                         spa_deactivate(spa);
2975                         spa_config_sync(spa, B_TRUE, B_TRUE);
2976                         spa_remove(spa);
2977                         if (locked)
2978                                 mutex_exit(&spa_namespace_lock);
2979                         return (SET_ERROR(ENOENT));
2980                 }
2981 
2982                 if (error) {
2983                         /*
2984                          * We can't open the pool, but we still have useful
2985                          * information: the state of each vdev after the
2986                          * attempted vdev_open().  Return this to the user.
2987                          */
2988                         if (config != NULL && spa->spa_config) {
2989                                 VERIFY(nvlist_dup(spa->spa_config, config,
2990                                     KM_SLEEP) == 0);
2991                                 VERIFY(nvlist_add_nvlist(*config,
2992                                     ZPOOL_CONFIG_LOAD_INFO,
2993                                     spa->spa_load_info) == 0);
2994                         }
2995                         spa_unload(spa);
2996                         spa_deactivate(spa);
2997                         spa->spa_last_open_failed = error;
2998                         if (locked)
2999                                 mutex_exit(&spa_namespace_lock);
3000                         *spapp = NULL;
3001                         return (error);
3002                 }
3003         }
3004 
3005         spa_open_ref(spa, tag);
3006 
3007         if (config != NULL)
3008                 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3009 
3010         /*
3011          * If we've recovered the pool, pass back any information we
3012          * gathered while doing the load.
3013          */
3014         if (state == SPA_LOAD_RECOVER) {
3015                 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3016                     spa->spa_load_info) == 0);
3017         }
3018 
3019         if (locked) {
3020                 spa->spa_last_open_failed = 0;
3021                 spa->spa_last_ubsync_txg = 0;
3022                 spa->spa_load_txg = 0;
3023                 mutex_exit(&spa_namespace_lock);
3024         }
3025 
3026         *spapp = spa;
3027 
3028         return (0);
3029 }
3030 
3031 int
3032 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3033     nvlist_t **config)
3034 {
3035         return (spa_open_common(name, spapp, tag, policy, config));
3036 }
3037 
3038 int
3039 spa_open(const char *name, spa_t **spapp, void *tag)
3040 {
3041         return (spa_open_common(name, spapp, tag, NULL, NULL));
3042 }
3043 
3044 /*
3045  * Lookup the given spa_t, incrementing the inject count in the process,
3046  * preventing it from being exported or destroyed.
3047  */
3048 spa_t *
3049 spa_inject_addref(char *name)
3050 {
3051         spa_t *spa;
3052 
3053         mutex_enter(&spa_namespace_lock);
3054         if ((spa = spa_lookup(name)) == NULL) {
3055                 mutex_exit(&spa_namespace_lock);
3056                 return (NULL);
3057         }
3058         spa->spa_inject_ref++;
3059         mutex_exit(&spa_namespace_lock);
3060 
3061         return (spa);
3062 }
3063 
3064 void
3065 spa_inject_delref(spa_t *spa)
3066 {
3067         mutex_enter(&spa_namespace_lock);
3068         spa->spa_inject_ref--;
3069         mutex_exit(&spa_namespace_lock);
3070 }
3071 
3072 /*
3073  * Add spares device information to the nvlist.
3074  */
3075 static void
3076 spa_add_spares(spa_t *spa, nvlist_t *config)
3077 {
3078         nvlist_t **spares;
3079         uint_t i, nspares;
3080         nvlist_t *nvroot;
3081         uint64_t guid;
3082         vdev_stat_t *vs;
3083         uint_t vsc;
3084         uint64_t pool;
3085 
3086         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3087 
3088         if (spa->spa_spares.sav_count == 0)
3089                 return;
3090 
3091         VERIFY(nvlist_lookup_nvlist(config,
3092             ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3093         VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3094             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3095         if (nspares != 0) {
3096                 VERIFY(nvlist_add_nvlist_array(nvroot,
3097                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3098                 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3099                     ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3100 
3101                 /*
3102                  * Go through and find any spares which have since been
3103                  * repurposed as an active spare.  If this is the case, update
3104                  * their status appropriately.
3105                  */
3106                 for (i = 0; i < nspares; i++) {
3107                         VERIFY(nvlist_lookup_uint64(spares[i],
3108                             ZPOOL_CONFIG_GUID, &guid) == 0);
3109                         if (spa_spare_exists(guid, &pool, NULL) &&
3110                             pool != 0ULL) {
3111                                 VERIFY(nvlist_lookup_uint64_array(
3112                                     spares[i], ZPOOL_CONFIG_VDEV_STATS,
3113                                     (uint64_t **)&vs, &vsc) == 0);
3114                                 vs->vs_state = VDEV_STATE_CANT_OPEN;
3115                                 vs->vs_aux = VDEV_AUX_SPARED;
3116                         }
3117                 }
3118         }
3119 }
3120 
3121 /*
3122  * Add l2cache device information to the nvlist, including vdev stats.
3123  */
3124 static void
3125 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3126 {
3127         nvlist_t **l2cache;
3128         uint_t i, j, nl2cache;
3129         nvlist_t *nvroot;
3130         uint64_t guid;
3131         vdev_t *vd;
3132         vdev_stat_t *vs;
3133         uint_t vsc;
3134 
3135         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3136 
3137         if (spa->spa_l2cache.sav_count == 0)
3138                 return;
3139 
3140         VERIFY(nvlist_lookup_nvlist(config,
3141             ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3142         VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3143             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3144         if (nl2cache != 0) {
3145                 VERIFY(nvlist_add_nvlist_array(nvroot,
3146                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3147                 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3148                     ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3149 
3150                 /*
3151                  * Update level 2 cache device stats.
3152                  */
3153 
3154                 for (i = 0; i < nl2cache; i++) {
3155                         VERIFY(nvlist_lookup_uint64(l2cache[i],
3156                             ZPOOL_CONFIG_GUID, &guid) == 0);
3157 
3158                         vd = NULL;
3159                         for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3160                                 if (guid ==
3161                                     spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3162                                         vd = spa->spa_l2cache.sav_vdevs[j];
3163                                         break;
3164                                 }
3165                         }
3166                         ASSERT(vd != NULL);
3167 
3168                         VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3169                             ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3170                             == 0);
3171                         vdev_get_stats(vd, vs);
3172                 }
3173         }
3174 }
3175 
3176 static void
3177 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3178 {
3179         nvlist_t *features;
3180         zap_cursor_t zc;
3181         zap_attribute_t za;
3182 
3183         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3184         VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3185 
3186         if (spa->spa_feat_for_read_obj != 0) {
3187                 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3188                     spa->spa_feat_for_read_obj);
3189                     zap_cursor_retrieve(&zc, &za) == 0;
3190                     zap_cursor_advance(&zc)) {
3191                         ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3192                             za.za_num_integers == 1);
3193                         VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3194                             za.za_first_integer));
3195                 }
3196                 zap_cursor_fini(&zc);
3197         }
3198 
3199         if (spa->spa_feat_for_write_obj != 0) {
3200                 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3201                     spa->spa_feat_for_write_obj);
3202                     zap_cursor_retrieve(&zc, &za) == 0;
3203                     zap_cursor_advance(&zc)) {
3204                         ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3205                             za.za_num_integers == 1);
3206                         VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3207                             za.za_first_integer));
3208                 }
3209                 zap_cursor_fini(&zc);
3210         }
3211 
3212         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3213             features) == 0);
3214         nvlist_free(features);
3215 }
3216 
3217 int
3218 spa_get_stats(const char *name, nvlist_t **config,
3219     char *altroot, size_t buflen)
3220 {
3221         int error;
3222         spa_t *spa;
3223 
3224         *config = NULL;
3225         error = spa_open_common(name, &spa, FTAG, NULL, config);
3226 
3227         if (spa != NULL) {
3228                 /*
3229                  * This still leaves a window of inconsistency where the spares
3230                  * or l2cache devices could change and the config would be
3231                  * self-inconsistent.
3232                  */
3233                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3234 
3235                 if (*config != NULL) {
3236                         uint64_t loadtimes[2];
3237 
3238                         loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3239                         loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3240                         VERIFY(nvlist_add_uint64_array(*config,
3241                             ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3242 
3243                         VERIFY(nvlist_add_uint64(*config,
3244                             ZPOOL_CONFIG_ERRCOUNT,
3245                             spa_get_errlog_size(spa)) == 0);
3246 
3247                         if (spa_suspended(spa))
3248                                 VERIFY(nvlist_add_uint64(*config,
3249                                     ZPOOL_CONFIG_SUSPENDED,
3250                                     spa->spa_failmode) == 0);
3251 
3252                         spa_add_spares(spa, *config);
3253                         spa_add_l2cache(spa, *config);
3254                         spa_add_feature_stats(spa, *config);
3255                 }
3256         }
3257 
3258         /*
3259          * We want to get the alternate root even for faulted pools, so we cheat
3260          * and call spa_lookup() directly.
3261          */
3262         if (altroot) {
3263                 if (spa == NULL) {
3264                         mutex_enter(&spa_namespace_lock);
3265                         spa = spa_lookup(name);
3266                         if (spa)
3267                                 spa_altroot(spa, altroot, buflen);
3268                         else
3269                                 altroot[0] = '\0';
3270                         spa = NULL;
3271                         mutex_exit(&spa_namespace_lock);
3272                 } else {
3273                         spa_altroot(spa, altroot, buflen);
3274                 }
3275         }
3276 
3277         if (spa != NULL) {
3278                 spa_config_exit(spa, SCL_CONFIG, FTAG);
3279                 spa_close(spa, FTAG);
3280         }
3281 
3282         return (error);
3283 }
3284 
3285 /*
3286  * Validate that the auxiliary device array is well formed.  We must have an
3287  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3288  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3289  * specified, as long as they are well-formed.
3290  */
3291 static int
3292 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3293     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3294     vdev_labeltype_t label)
3295 {
3296         nvlist_t **dev;
3297         uint_t i, ndev;
3298         vdev_t *vd;
3299         int error;
3300 
3301         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3302 
3303         /*
3304          * It's acceptable to have no devs specified.
3305          */
3306         if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3307                 return (0);
3308 
3309         if (ndev == 0)
3310                 return (SET_ERROR(EINVAL));
3311 
3312         /*
3313          * Make sure the pool is formatted with a version that supports this
3314          * device type.
3315          */
3316         if (spa_version(spa) < version)
3317                 return (SET_ERROR(ENOTSUP));
3318 
3319         /*
3320          * Set the pending device list so we correctly handle device in-use
3321          * checking.
3322          */
3323         sav->sav_pending = dev;
3324         sav->sav_npending = ndev;
3325 
3326         for (i = 0; i < ndev; i++) {
3327                 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3328                     mode)) != 0)
3329                         goto out;
3330 
3331                 if (!vd->vdev_ops->vdev_op_leaf) {
3332                         vdev_free(vd);
3333                         error = SET_ERROR(EINVAL);
3334                         goto out;
3335                 }
3336 
3337                 /*
3338                  * The L2ARC currently only supports disk devices in
3339                  * kernel context.  For user-level testing, we allow it.
3340                  */
3341 #ifdef _KERNEL
3342                 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3343                     strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3344                         error = SET_ERROR(ENOTBLK);
3345                         vdev_free(vd);
3346                         goto out;
3347                 }
3348 #endif
3349                 vd->vdev_top = vd;
3350 
3351                 if ((error = vdev_open(vd)) == 0 &&
3352                     (error = vdev_label_init(vd, crtxg, label)) == 0) {
3353                         VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3354                             vd->vdev_guid) == 0);
3355                 }
3356 
3357                 vdev_free(vd);
3358 
3359                 if (error &&
3360                     (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3361                         goto out;
3362                 else
3363                         error = 0;
3364         }
3365 
3366 out:
3367         sav->sav_pending = NULL;
3368         sav->sav_npending = 0;
3369         return (error);
3370 }
3371 
3372 static int
3373 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3374 {
3375         int error;
3376 
3377         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3378 
3379         if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3380             &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3381             VDEV_LABEL_SPARE)) != 0) {
3382                 return (error);
3383         }
3384 
3385         return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3386             &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3387             VDEV_LABEL_L2CACHE));
3388 }
3389 
3390 static void
3391 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3392     const char *config)
3393 {
3394         int i;
3395 
3396         if (sav->sav_config != NULL) {
3397                 nvlist_t **olddevs;
3398                 uint_t oldndevs;
3399                 nvlist_t **newdevs;
3400 
3401                 /*
3402                  * Generate new dev list by concatentating with the
3403                  * current dev list.
3404                  */
3405                 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3406                     &olddevs, &oldndevs) == 0);
3407 
3408                 newdevs = kmem_alloc(sizeof (void *) *
3409                     (ndevs + oldndevs), KM_SLEEP);
3410                 for (i = 0; i < oldndevs; i++)
3411                         VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3412                             KM_SLEEP) == 0);
3413                 for (i = 0; i < ndevs; i++)
3414                         VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3415                             KM_SLEEP) == 0);
3416 
3417                 VERIFY(nvlist_remove(sav->sav_config, config,
3418                     DATA_TYPE_NVLIST_ARRAY) == 0);
3419 
3420                 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3421                     config, newdevs, ndevs + oldndevs) == 0);
3422                 for (i = 0; i < oldndevs + ndevs; i++)
3423                         nvlist_free(newdevs[i]);
3424                 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3425         } else {
3426                 /*
3427                  * Generate a new dev list.
3428                  */
3429                 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3430                     KM_SLEEP) == 0);
3431                 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3432                     devs, ndevs) == 0);
3433         }
3434 }
3435 
3436 /*
3437  * Stop and drop level 2 ARC devices
3438  */
3439 void
3440 spa_l2cache_drop(spa_t *spa)
3441 {
3442         vdev_t *vd;
3443         int i;
3444         spa_aux_vdev_t *sav = &spa->spa_l2cache;
3445 
3446         for (i = 0; i < sav->sav_count; i++) {
3447                 uint64_t pool;
3448 
3449                 vd = sav->sav_vdevs[i];
3450                 ASSERT(vd != NULL);
3451 
3452                 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3453                     pool != 0ULL && l2arc_vdev_present(vd))
3454                         l2arc_remove_vdev(vd);
3455         }
3456 }
3457 
3458 /*
3459  * Pool Creation
3460  */
3461 int
3462 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3463     nvlist_t *zplprops)
3464 {
3465         spa_t *spa;
3466         char *altroot = NULL;
3467         vdev_t *rvd;
3468         dsl_pool_t *dp;
3469         dmu_tx_t *tx;
3470         int error = 0;
3471         uint64_t txg = TXG_INITIAL;
3472         nvlist_t **spares, **l2cache;
3473         uint_t nspares, nl2cache;
3474         uint64_t version, obj;
3475         boolean_t has_features;
3476 
3477         /*
3478          * If this pool already exists, return failure.
3479          */
3480         mutex_enter(&spa_namespace_lock);
3481         if (spa_lookup(pool) != NULL) {
3482                 mutex_exit(&spa_namespace_lock);
3483                 return (SET_ERROR(EEXIST));
3484         }
3485 
3486         /*
3487          * Allocate a new spa_t structure.
3488          */
3489         (void) nvlist_lookup_string(props,
3490             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3491         spa = spa_add(pool, NULL, altroot);
3492         spa_activate(spa, spa_mode_global);
3493 
3494         if (props && (error = spa_prop_validate(spa, props))) {
3495                 spa_deactivate(spa);
3496                 spa_remove(spa);
3497                 mutex_exit(&spa_namespace_lock);
3498                 return (error);
3499         }
3500 
3501         has_features = B_FALSE;
3502         for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3503             elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3504                 if (zpool_prop_feature(nvpair_name(elem)))
3505                         has_features = B_TRUE;
3506         }
3507 
3508         if (has_features || nvlist_lookup_uint64(props,
3509             zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3510                 version = SPA_VERSION;
3511         }
3512         ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3513 
3514         spa->spa_first_txg = txg;
3515         spa->spa_uberblock.ub_txg = txg - 1;
3516         spa->spa_uberblock.ub_version = version;
3517         spa->spa_ubsync = spa->spa_uberblock;
3518 
3519         /*
3520          * Create "The Godfather" zio to hold all async IOs
3521          */
3522         spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3523             KM_SLEEP);
3524         for (int i = 0; i < max_ncpus; i++) {
3525                 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3526                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3527                     ZIO_FLAG_GODFATHER);
3528         }
3529 
3530         /*
3531          * Create the root vdev.
3532          */
3533         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3534 
3535         error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3536 
3537         ASSERT(error != 0 || rvd != NULL);
3538         ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3539 
3540         if (error == 0 && !zfs_allocatable_devs(nvroot))
3541                 error = SET_ERROR(EINVAL);
3542 
3543         if (error == 0 &&
3544             (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3545             (error = spa_validate_aux(spa, nvroot, txg,
3546             VDEV_ALLOC_ADD)) == 0) {
3547                 for (int c = 0; c < rvd->vdev_children; c++) {
3548                         vdev_metaslab_set_size(rvd->vdev_child[c]);
3549                         vdev_expand(rvd->vdev_child[c], txg);
3550                 }
3551         }
3552 
3553         spa_config_exit(spa, SCL_ALL, FTAG);
3554 
3555         if (error != 0) {
3556                 spa_unload(spa);
3557                 spa_deactivate(spa);
3558                 spa_remove(spa);
3559                 mutex_exit(&spa_namespace_lock);
3560                 return (error);
3561         }
3562 
3563         /*
3564          * Get the list of spares, if specified.
3565          */
3566         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3567             &spares, &nspares) == 0) {
3568                 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3569                     KM_SLEEP) == 0);
3570                 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3571                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3572                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3573                 spa_load_spares(spa);
3574                 spa_config_exit(spa, SCL_ALL, FTAG);
3575                 spa->spa_spares.sav_sync = B_TRUE;
3576         }
3577 
3578         /*
3579          * Get the list of level 2 cache devices, if specified.
3580          */
3581         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3582             &l2cache, &nl2cache) == 0) {
3583                 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3584                     NV_UNIQUE_NAME, KM_SLEEP) == 0);
3585                 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3586                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3587                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3588                 spa_load_l2cache(spa);
3589                 spa_config_exit(spa, SCL_ALL, FTAG);
3590                 spa->spa_l2cache.sav_sync = B_TRUE;
3591         }
3592 
3593         spa->spa_is_initializing = B_TRUE;
3594         spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3595         spa->spa_meta_objset = dp->dp_meta_objset;
3596         spa->spa_is_initializing = B_FALSE;
3597 
3598         /*
3599          * Create DDTs (dedup tables).
3600          */
3601         ddt_create(spa);
3602 
3603         spa_update_dspace(spa);
3604 
3605         tx = dmu_tx_create_assigned(dp, txg);
3606 
3607         /*
3608          * Create the pool config object.
3609          */
3610         spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3611             DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3612             DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3613 
3614         if (zap_add(spa->spa_meta_objset,
3615             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3616             sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3617                 cmn_err(CE_PANIC, "failed to add pool config");
3618         }
3619 
3620         if (spa_version(spa) >= SPA_VERSION_FEATURES)
3621                 spa_feature_create_zap_objects(spa, tx);
3622 
3623         if (zap_add(spa->spa_meta_objset,
3624             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3625             sizeof (uint64_t), 1, &version, tx) != 0) {
3626                 cmn_err(CE_PANIC, "failed to add pool version");
3627         }
3628 
3629         /* Newly created pools with the right version are always deflated. */
3630         if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3631                 spa->spa_deflate = TRUE;
3632                 if (zap_add(spa->spa_meta_objset,
3633                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3634                     sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3635                         cmn_err(CE_PANIC, "failed to add deflate");
3636                 }
3637         }
3638 
3639         /*
3640          * Create the deferred-free bpobj.  Turn off compression
3641          * because sync-to-convergence takes longer if the blocksize
3642          * keeps changing.
3643          */
3644         obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3645         dmu_object_set_compress(spa->spa_meta_objset, obj,
3646             ZIO_COMPRESS_OFF, tx);
3647         if (zap_add(spa->spa_meta_objset,
3648             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3649             sizeof (uint64_t), 1, &obj, tx) != 0) {
3650                 cmn_err(CE_PANIC, "failed to add bpobj");
3651         }
3652         VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3653             spa->spa_meta_objset, obj));
3654 
3655         /*
3656          * Create the pool's history object.
3657          */
3658         if (version >= SPA_VERSION_ZPOOL_HISTORY)
3659                 spa_history_create_obj(spa, tx);
3660 
3661         /*
3662          * Set pool properties.
3663          */
3664         spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3665         spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3666         spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3667         spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3668 
3669         if (props != NULL) {
3670                 spa_configfile_set(spa, props, B_FALSE);
3671                 spa_sync_props(props, tx);
3672         }
3673 
3674         dmu_tx_commit(tx);
3675 
3676         spa->spa_sync_on = B_TRUE;
3677         txg_sync_start(spa->spa_dsl_pool);
3678 
3679         /*
3680          * We explicitly wait for the first transaction to complete so that our
3681          * bean counters are appropriately updated.
3682          */
3683         txg_wait_synced(spa->spa_dsl_pool, txg);
3684 
3685         spa_config_sync(spa, B_FALSE, B_TRUE);
3686 
3687         spa_history_log_version(spa, "create");
3688 
3689         /*
3690          * Don't count references from objsets that are already closed
3691          * and are making their way through the eviction process.
3692          */
3693         spa_evicting_os_wait(spa);
3694         spa->spa_minref = refcount_count(&spa->spa_refcount);
3695 
3696         mutex_exit(&spa_namespace_lock);
3697 
3698         return (0);
3699 }
3700 
3701 #ifdef _KERNEL
3702 /*
3703  * Get the root pool information from the root disk, then import the root pool
3704  * during the system boot up time.
3705  */
3706 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3707 
3708 static nvlist_t *
3709 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3710 {
3711         nvlist_t *config;
3712         nvlist_t *nvtop, *nvroot;
3713         uint64_t pgid;
3714 
3715         if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3716                 return (NULL);
3717 
3718         /*
3719          * Add this top-level vdev to the child array.
3720          */
3721         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3722             &nvtop) == 0);
3723         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3724             &pgid) == 0);
3725         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3726 
3727         /*
3728          * Put this pool's top-level vdevs into a root vdev.
3729          */
3730         VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3731         VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3732             VDEV_TYPE_ROOT) == 0);
3733         VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3734         VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3735         VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3736             &nvtop, 1) == 0);
3737 
3738         /*
3739          * Replace the existing vdev_tree with the new root vdev in
3740          * this pool's configuration (remove the old, add the new).
3741          */
3742         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3743         nvlist_free(nvroot);
3744         return (config);
3745 }
3746 
3747 /*
3748  * Walk the vdev tree and see if we can find a device with "better"
3749  * configuration. A configuration is "better" if the label on that
3750  * device has a more recent txg.
3751  */
3752 static void
3753 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3754 {
3755         for (int c = 0; c < vd->vdev_children; c++)
3756                 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3757 
3758         if (vd->vdev_ops->vdev_op_leaf) {
3759                 nvlist_t *label;
3760                 uint64_t label_txg;
3761 
3762                 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3763                     &label) != 0)
3764                         return;
3765 
3766                 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3767                     &label_txg) == 0);
3768 
3769                 /*
3770                  * Do we have a better boot device?
3771                  */
3772                 if (label_txg > *txg) {
3773                         *txg = label_txg;
3774                         *avd = vd;
3775                 }
3776                 nvlist_free(label);
3777         }
3778 }
3779 
3780 /*
3781  * Import a root pool.
3782  *
3783  * For x86. devpath_list will consist of devid and/or physpath name of
3784  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3785  * The GRUB "findroot" command will return the vdev we should boot.
3786  *
3787  * For Sparc, devpath_list consists the physpath name of the booting device
3788  * no matter the rootpool is a single device pool or a mirrored pool.
3789  * e.g.
3790  *      "/pci@1f,0/ide@d/disk@0,0:a"
3791  */
3792 int
3793 spa_import_rootpool(char *devpath, char *devid)
3794 {
3795         spa_t *spa;
3796         vdev_t *rvd, *bvd, *avd = NULL;
3797         nvlist_t *config, *nvtop;
3798         uint64_t guid, txg;
3799         char *pname;
3800         int error;
3801 
3802         /*
3803          * Read the label from the boot device and generate a configuration.
3804          */
3805         config = spa_generate_rootconf(devpath, devid, &guid);
3806 #if defined(_OBP) && defined(_KERNEL)
3807         if (config == NULL) {
3808                 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3809                         /* iscsi boot */
3810                         get_iscsi_bootpath_phy(devpath);
3811                         config = spa_generate_rootconf(devpath, devid, &guid);
3812                 }
3813         }
3814 #endif
3815         if (config == NULL) {
3816                 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3817                     devpath);
3818                 return (SET_ERROR(EIO));
3819         }
3820 
3821         VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3822             &pname) == 0);
3823         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3824 
3825         mutex_enter(&spa_namespace_lock);
3826         if ((spa = spa_lookup(pname)) != NULL) {
3827                 /*
3828                  * Remove the existing root pool from the namespace so that we
3829                  * can replace it with the correct config we just read in.
3830                  */
3831                 spa_remove(spa);
3832         }
3833 
3834         spa = spa_add(pname, config, NULL);
3835         spa->spa_is_root = B_TRUE;
3836         spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3837 
3838         /*
3839          * Build up a vdev tree based on the boot device's label config.
3840          */
3841         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3842             &nvtop) == 0);
3843         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3844         error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3845             VDEV_ALLOC_ROOTPOOL);
3846         spa_config_exit(spa, SCL_ALL, FTAG);
3847         if (error) {
3848                 mutex_exit(&spa_namespace_lock);
3849                 nvlist_free(config);
3850                 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3851                     pname);
3852                 return (error);
3853         }
3854 
3855         /*
3856          * Get the boot vdev.
3857          */
3858         if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3859                 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3860                     (u_longlong_t)guid);
3861                 error = SET_ERROR(ENOENT);
3862                 goto out;
3863         }
3864 
3865         /*
3866          * Determine if there is a better boot device.
3867          */
3868         avd = bvd;
3869         spa_alt_rootvdev(rvd, &avd, &txg);
3870         if (avd != bvd) {
3871                 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3872                     "try booting from '%s'", avd->vdev_path);
3873                 error = SET_ERROR(EINVAL);
3874                 goto out;
3875         }
3876 
3877         /*
3878          * If the boot device is part of a spare vdev then ensure that
3879          * we're booting off the active spare.
3880          */
3881         if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3882             !bvd->vdev_isspare) {
3883                 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3884                     "try booting from '%s'",
3885                     bvd->vdev_parent->
3886                     vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3887                 error = SET_ERROR(EINVAL);
3888                 goto out;
3889         }
3890 
3891         error = 0;
3892 out:
3893         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3894         vdev_free(rvd);
3895         spa_config_exit(spa, SCL_ALL, FTAG);
3896         mutex_exit(&spa_namespace_lock);
3897 
3898         nvlist_free(config);
3899         return (error);
3900 }
3901 
3902 #endif
3903 
3904 /*
3905  * Import a non-root pool into the system.
3906  */
3907 int
3908 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3909 {
3910         spa_t *spa;
3911         char *altroot = NULL;
3912         spa_load_state_t state = SPA_LOAD_IMPORT;
3913         zpool_rewind_policy_t policy;
3914         uint64_t mode = spa_mode_global;
3915         uint64_t readonly = B_FALSE;
3916         int error;
3917         nvlist_t *nvroot;
3918         nvlist_t **spares, **l2cache;
3919         uint_t nspares, nl2cache;
3920 
3921         /*
3922          * If a pool with this name exists, return failure.
3923          */
3924         mutex_enter(&spa_namespace_lock);
3925         if (spa_lookup(pool) != NULL) {
3926                 mutex_exit(&spa_namespace_lock);
3927                 return (SET_ERROR(EEXIST));
3928         }
3929 
3930         /*
3931          * Create and initialize the spa structure.
3932          */
3933         (void) nvlist_lookup_string(props,
3934             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3935         (void) nvlist_lookup_uint64(props,
3936             zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3937         if (readonly)
3938                 mode = FREAD;
3939         spa = spa_add(pool, config, altroot);
3940         spa->spa_import_flags = flags;
3941 
3942         /*
3943          * Verbatim import - Take a pool and insert it into the namespace
3944          * as if it had been loaded at boot.
3945          */
3946         if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3947                 if (props != NULL)
3948                         spa_configfile_set(spa, props, B_FALSE);
3949 
3950                 spa_config_sync(spa, B_FALSE, B_TRUE);
3951 
3952                 mutex_exit(&spa_namespace_lock);
3953                 return (0);
3954         }
3955 
3956         spa_activate(spa, mode);
3957 
3958         /*
3959          * Don't start async tasks until we know everything is healthy.
3960          */
3961         spa_async_suspend(spa);
3962 
3963         zpool_get_rewind_policy(config, &policy);
3964         if (policy.zrp_request & ZPOOL_DO_REWIND)
3965                 state = SPA_LOAD_RECOVER;
3966 
3967         /*
3968          * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3969          * because the user-supplied config is actually the one to trust when
3970          * doing an import.
3971          */
3972         if (state != SPA_LOAD_RECOVER)
3973                 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3974 
3975         error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3976             policy.zrp_request);
3977 
3978         /*
3979          * Propagate anything learned while loading the pool and pass it
3980          * back to caller (i.e. rewind info, missing devices, etc).
3981          */
3982         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3983             spa->spa_load_info) == 0);
3984 
3985         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3986         /*
3987          * Toss any existing sparelist, as it doesn't have any validity
3988          * anymore, and conflicts with spa_has_spare().
3989          */
3990         if (spa->spa_spares.sav_config) {
3991                 nvlist_free(spa->spa_spares.sav_config);
3992                 spa->spa_spares.sav_config = NULL;
3993                 spa_load_spares(spa);
3994         }
3995         if (spa->spa_l2cache.sav_config) {
3996                 nvlist_free(spa->spa_l2cache.sav_config);
3997                 spa->spa_l2cache.sav_config = NULL;
3998                 spa_load_l2cache(spa);
3999         }
4000 
4001         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4002             &nvroot) == 0);
4003         if (error == 0)
4004                 error = spa_validate_aux(spa, nvroot, -1ULL,
4005                     VDEV_ALLOC_SPARE);
4006         if (error == 0)
4007                 error = spa_validate_aux(spa, nvroot, -1ULL,
4008                     VDEV_ALLOC_L2CACHE);
4009         spa_config_exit(spa, SCL_ALL, FTAG);
4010 
4011         if (props != NULL)
4012                 spa_configfile_set(spa, props, B_FALSE);
4013 
4014         if (error != 0 || (props && spa_writeable(spa) &&
4015             (error = spa_prop_set(spa, props)))) {
4016                 spa_unload(spa);
4017                 spa_deactivate(spa);
4018                 spa_remove(spa);
4019                 mutex_exit(&spa_namespace_lock);
4020                 return (error);
4021         }
4022 
4023         spa_async_resume(spa);
4024 
4025         /*
4026          * Override any spares and level 2 cache devices as specified by
4027          * the user, as these may have correct device names/devids, etc.
4028          */
4029         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4030             &spares, &nspares) == 0) {
4031                 if (spa->spa_spares.sav_config)
4032                         VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4033                             ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4034                 else
4035                         VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4036                             NV_UNIQUE_NAME, KM_SLEEP) == 0);
4037                 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4038                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4039                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4040                 spa_load_spares(spa);
4041                 spa_config_exit(spa, SCL_ALL, FTAG);
4042                 spa->spa_spares.sav_sync = B_TRUE;
4043         }
4044         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4045             &l2cache, &nl2cache) == 0) {
4046                 if (spa->spa_l2cache.sav_config)
4047                         VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4048                             ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4049                 else
4050                         VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4051                             NV_UNIQUE_NAME, KM_SLEEP) == 0);
4052                 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4053                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4054                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4055                 spa_load_l2cache(spa);
4056                 spa_config_exit(spa, SCL_ALL, FTAG);
4057                 spa->spa_l2cache.sav_sync = B_TRUE;
4058         }
4059 
4060         /*
4061          * Check for any removed devices.
4062          */
4063         if (spa->spa_autoreplace) {
4064                 spa_aux_check_removed(&spa->spa_spares);
4065                 spa_aux_check_removed(&spa->spa_l2cache);
4066         }
4067 
4068         if (spa_writeable(spa)) {
4069                 /*
4070                  * Update the config cache to include the newly-imported pool.
4071                  */
4072                 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4073         }
4074 
4075         /*
4076          * It's possible that the pool was expanded while it was exported.
4077          * We kick off an async task to handle this for us.
4078          */
4079         spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4080 
4081         mutex_exit(&spa_namespace_lock);
4082         spa_history_log_version(spa, "import");
4083 
4084         return (0);
4085 }
4086 
4087 nvlist_t *
4088 spa_tryimport(nvlist_t *tryconfig)
4089 {
4090         nvlist_t *config = NULL;
4091         char *poolname;
4092         spa_t *spa;
4093         uint64_t state;
4094         int error;
4095 
4096         if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4097                 return (NULL);
4098 
4099         if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4100                 return (NULL);
4101 
4102         /*
4103          * Create and initialize the spa structure.
4104          */
4105         mutex_enter(&spa_namespace_lock);
4106         spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4107         spa_activate(spa, FREAD);
4108 
4109         /*
4110          * Pass off the heavy lifting to spa_load().
4111          * Pass TRUE for mosconfig because the user-supplied config
4112          * is actually the one to trust when doing an import.
4113          */
4114         error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4115 
4116         /*
4117          * If 'tryconfig' was at least parsable, return the current config.
4118          */
4119         if (spa->spa_root_vdev != NULL) {
4120                 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4121                 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4122                     poolname) == 0);
4123                 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4124                     state) == 0);
4125                 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4126                     spa->spa_uberblock.ub_timestamp) == 0);
4127                 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4128                     spa->spa_load_info) == 0);
4129 
4130                 /*
4131                  * If the bootfs property exists on this pool then we
4132                  * copy it out so that external consumers can tell which
4133                  * pools are bootable.
4134                  */
4135                 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4136                         char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4137 
4138                         /*
4139                          * We have to play games with the name since the
4140                          * pool was opened as TRYIMPORT_NAME.
4141                          */
4142                         if (dsl_dsobj_to_dsname(spa_name(spa),
4143                             spa->spa_bootfs, tmpname) == 0) {
4144                                 char *cp;
4145                                 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4146 
4147                                 cp = strchr(tmpname, '/');
4148                                 if (cp == NULL) {
4149                                         (void) strlcpy(dsname, tmpname,
4150                                             MAXPATHLEN);
4151                                 } else {
4152                                         (void) snprintf(dsname, MAXPATHLEN,
4153                                             "%s/%s", poolname, ++cp);
4154                                 }
4155                                 VERIFY(nvlist_add_string(config,
4156                                     ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4157                                 kmem_free(dsname, MAXPATHLEN);
4158                         }
4159                         kmem_free(tmpname, MAXPATHLEN);
4160                 }
4161 
4162                 /*
4163                  * Add the list of hot spares and level 2 cache devices.
4164                  */
4165                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4166                 spa_add_spares(spa, config);
4167                 spa_add_l2cache(spa, config);
4168                 spa_config_exit(spa, SCL_CONFIG, FTAG);
4169         }
4170 
4171         spa_unload(spa);
4172         spa_deactivate(spa);
4173         spa_remove(spa);
4174         mutex_exit(&spa_namespace_lock);
4175 
4176         return (config);
4177 }
4178 
4179 /*
4180  * Pool export/destroy
4181  *
4182  * The act of destroying or exporting a pool is very simple.  We make sure there
4183  * is no more pending I/O and any references to the pool are gone.  Then, we
4184  * update the pool state and sync all the labels to disk, removing the
4185  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4186  * we don't sync the labels or remove the configuration cache.
4187  */
4188 static int
4189 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4190     boolean_t force, boolean_t hardforce)
4191 {
4192         spa_t *spa;
4193 
4194         if (oldconfig)
4195                 *oldconfig = NULL;
4196 
4197         if (!(spa_mode_global & FWRITE))
4198                 return (SET_ERROR(EROFS));
4199 
4200         mutex_enter(&spa_namespace_lock);
4201         if ((spa = spa_lookup(pool)) == NULL) {
4202                 mutex_exit(&spa_namespace_lock);
4203                 return (SET_ERROR(ENOENT));
4204         }
4205 
4206         /*
4207          * Put a hold on the pool, drop the namespace lock, stop async tasks,
4208          * reacquire the namespace lock, and see if we can export.
4209          */
4210         spa_open_ref(spa, FTAG);
4211         mutex_exit(&spa_namespace_lock);
4212         spa_async_suspend(spa);
4213         mutex_enter(&spa_namespace_lock);
4214         spa_close(spa, FTAG);
4215 
4216         /*
4217          * The pool will be in core if it's openable,
4218          * in which case we can modify its state.
4219          */
4220         if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4221                 /*
4222                  * Objsets may be open only because they're dirty, so we
4223                  * have to force it to sync before checking spa_refcnt.
4224                  */
4225                 txg_wait_synced(spa->spa_dsl_pool, 0);
4226                 spa_evicting_os_wait(spa);
4227 
4228                 /*
4229                  * A pool cannot be exported or destroyed if there are active
4230                  * references.  If we are resetting a pool, allow references by
4231                  * fault injection handlers.
4232                  */
4233                 if (!spa_refcount_zero(spa) ||
4234                     (spa->spa_inject_ref != 0 &&
4235                     new_state != POOL_STATE_UNINITIALIZED)) {
4236                         spa_async_resume(spa);
4237                         mutex_exit(&spa_namespace_lock);
4238                         return (SET_ERROR(EBUSY));
4239                 }
4240 
4241                 /*
4242                  * A pool cannot be exported if it has an active shared spare.
4243                  * This is to prevent other pools stealing the active spare
4244                  * from an exported pool. At user's own will, such pool can
4245                  * be forcedly exported.
4246                  */
4247                 if (!force && new_state == POOL_STATE_EXPORTED &&
4248                     spa_has_active_shared_spare(spa)) {
4249                         spa_async_resume(spa);
4250                         mutex_exit(&spa_namespace_lock);
4251                         return (SET_ERROR(EXDEV));
4252                 }
4253 
4254                 /*
4255                  * We want this to be reflected on every label,
4256                  * so mark them all dirty.  spa_unload() will do the
4257                  * final sync that pushes these changes out.
4258                  */
4259                 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4260                         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4261                         spa->spa_state = new_state;
4262                         spa->spa_final_txg = spa_last_synced_txg(spa) +
4263                             TXG_DEFER_SIZE + 1;
4264                         vdev_config_dirty(spa->spa_root_vdev);
4265                         spa_config_exit(spa, SCL_ALL, FTAG);
4266                 }
4267         }
4268 
4269         spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4270 
4271         if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4272                 spa_unload(spa);
4273                 spa_deactivate(spa);
4274         }
4275 
4276         if (oldconfig && spa->spa_config)
4277                 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4278 
4279         if (new_state != POOL_STATE_UNINITIALIZED) {
4280                 if (!hardforce)
4281                         spa_config_sync(spa, B_TRUE, B_TRUE);
4282                 spa_remove(spa);
4283         }
4284         mutex_exit(&spa_namespace_lock);
4285 
4286         return (0);
4287 }
4288 
4289 /*
4290  * Destroy a storage pool.
4291  */
4292 int
4293 spa_destroy(char *pool)
4294 {
4295         return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4296             B_FALSE, B_FALSE));
4297 }
4298 
4299 /*
4300  * Export a storage pool.
4301  */
4302 int
4303 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4304     boolean_t hardforce)
4305 {
4306         return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4307             force, hardforce));
4308 }
4309 
4310 /*
4311  * Similar to spa_export(), this unloads the spa_t without actually removing it
4312  * from the namespace in any way.
4313  */
4314 int
4315 spa_reset(char *pool)
4316 {
4317         return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4318             B_FALSE, B_FALSE));
4319 }
4320 
4321 /*
4322  * ==========================================================================
4323  * Device manipulation
4324  * ==========================================================================
4325  */
4326 
4327 /*
4328  * Add a device to a storage pool.
4329  */
4330 int
4331 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4332 {
4333         uint64_t txg, id;
4334         int error;
4335         vdev_t *rvd = spa->spa_root_vdev;
4336         vdev_t *vd, *tvd;
4337         nvlist_t **spares, **l2cache;
4338         uint_t nspares, nl2cache;
4339 
4340         ASSERT(spa_writeable(spa));
4341 
4342         txg = spa_vdev_enter(spa);
4343 
4344         if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4345             VDEV_ALLOC_ADD)) != 0)
4346                 return (spa_vdev_exit(spa, NULL, txg, error));
4347 
4348         spa->spa_pending_vdev = vd;  /* spa_vdev_exit() will clear this */
4349 
4350         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4351             &nspares) != 0)
4352                 nspares = 0;
4353 
4354         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4355             &nl2cache) != 0)
4356                 nl2cache = 0;
4357 
4358         if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4359                 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4360 
4361         if (vd->vdev_children != 0 &&
4362             (error = vdev_create(vd, txg, B_FALSE)) != 0)
4363                 return (spa_vdev_exit(spa, vd, txg, error));
4364 
4365         /*
4366          * We must validate the spares and l2cache devices after checking the
4367          * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4368          */
4369         if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4370                 return (spa_vdev_exit(spa, vd, txg, error));
4371 
4372         /*
4373          * Transfer each new top-level vdev from vd to rvd.
4374          */
4375         for (int c = 0; c < vd->vdev_children; c++) {
4376 
4377                 /*
4378                  * Set the vdev id to the first hole, if one exists.
4379                  */
4380                 for (id = 0; id < rvd->vdev_children; id++) {
4381                         if (rvd->vdev_child[id]->vdev_ishole) {
4382                                 vdev_free(rvd->vdev_child[id]);
4383                                 break;
4384                         }
4385                 }
4386                 tvd = vd->vdev_child[c];
4387                 vdev_remove_child(vd, tvd);
4388                 tvd->vdev_id = id;
4389                 vdev_add_child(rvd, tvd);
4390                 vdev_config_dirty(tvd);
4391         }
4392 
4393         if (nspares != 0) {
4394                 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4395                     ZPOOL_CONFIG_SPARES);
4396                 spa_load_spares(spa);
4397                 spa->spa_spares.sav_sync = B_TRUE;
4398         }
4399 
4400         if (nl2cache != 0) {
4401                 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4402                     ZPOOL_CONFIG_L2CACHE);
4403                 spa_load_l2cache(spa);
4404                 spa->spa_l2cache.sav_sync = B_TRUE;
4405         }
4406 
4407         /*
4408          * We have to be careful when adding new vdevs to an existing pool.
4409          * If other threads start allocating from these vdevs before we
4410          * sync the config cache, and we lose power, then upon reboot we may
4411          * fail to open the pool because there are DVAs that the config cache
4412          * can't translate.  Therefore, we first add the vdevs without
4413          * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4414          * and then let spa_config_update() initialize the new metaslabs.
4415          *
4416          * spa_load() checks for added-but-not-initialized vdevs, so that
4417          * if we lose power at any point in this sequence, the remaining
4418          * steps will be completed the next time we load the pool.
4419          */
4420         (void) spa_vdev_exit(spa, vd, txg, 0);
4421 
4422         mutex_enter(&spa_namespace_lock);
4423         spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4424         mutex_exit(&spa_namespace_lock);
4425 
4426         return (0);
4427 }
4428 
4429 /*
4430  * Attach a device to a mirror.  The arguments are the path to any device
4431  * in the mirror, and the nvroot for the new device.  If the path specifies
4432  * a device that is not mirrored, we automatically insert the mirror vdev.
4433  *
4434  * If 'replacing' is specified, the new device is intended to replace the
4435  * existing device; in this case the two devices are made into their own
4436  * mirror using the 'replacing' vdev, which is functionally identical to
4437  * the mirror vdev (it actually reuses all the same ops) but has a few
4438  * extra rules: you can't attach to it after it's been created, and upon
4439  * completion of resilvering, the first disk (the one being replaced)
4440  * is automatically detached.
4441  */
4442 int
4443 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4444 {
4445         uint64_t txg, dtl_max_txg;
4446         vdev_t *rvd = spa->spa_root_vdev;
4447         vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4448         vdev_ops_t *pvops;
4449         char *oldvdpath, *newvdpath;
4450         int newvd_isspare;
4451         int error;
4452 
4453         ASSERT(spa_writeable(spa));
4454 
4455         txg = spa_vdev_enter(spa);
4456 
4457         oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4458 
4459         if (oldvd == NULL)
4460                 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4461 
4462         if (!oldvd->vdev_ops->vdev_op_leaf)
4463                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4464 
4465         pvd = oldvd->vdev_parent;
4466 
4467         if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4468             VDEV_ALLOC_ATTACH)) != 0)
4469                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4470 
4471         if (newrootvd->vdev_children != 1)
4472                 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4473 
4474         newvd = newrootvd->vdev_child[0];
4475 
4476         if (!newvd->vdev_ops->vdev_op_leaf)
4477                 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4478 
4479         if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4480                 return (spa_vdev_exit(spa, newrootvd, txg, error));
4481 
4482         /*
4483          * Spares can't replace logs
4484          */
4485         if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4486                 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4487 
4488         if (!replacing) {
4489                 /*
4490                  * For attach, the only allowable parent is a mirror or the root
4491                  * vdev.
4492                  */
4493                 if (pvd->vdev_ops != &vdev_mirror_ops &&
4494                     pvd->vdev_ops != &vdev_root_ops)
4495                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4496 
4497                 pvops = &vdev_mirror_ops;
4498         } else {
4499                 /*
4500                  * Active hot spares can only be replaced by inactive hot
4501                  * spares.
4502                  */
4503                 if (pvd->vdev_ops == &vdev_spare_ops &&
4504                     oldvd->vdev_isspare &&
4505                     !spa_has_spare(spa, newvd->vdev_guid))
4506                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4507 
4508                 /*
4509                  * If the source is a hot spare, and the parent isn't already a
4510                  * spare, then we want to create a new hot spare.  Otherwise, we
4511                  * want to create a replacing vdev.  The user is not allowed to
4512                  * attach to a spared vdev child unless the 'isspare' state is
4513                  * the same (spare replaces spare, non-spare replaces
4514                  * non-spare).
4515                  */
4516                 if (pvd->vdev_ops == &vdev_replacing_ops &&
4517                     spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4518                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4519                 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4520                     newvd->vdev_isspare != oldvd->vdev_isspare) {
4521                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4522                 }
4523 
4524                 if (newvd->vdev_isspare)
4525                         pvops = &vdev_spare_ops;
4526                 else
4527                         pvops = &vdev_replacing_ops;
4528         }
4529 
4530         /*
4531          * Make sure the new device is big enough.
4532          */
4533         if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4534                 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4535 
4536         /*
4537          * The new device cannot have a higher alignment requirement
4538          * than the top-level vdev.
4539          */
4540         if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4541                 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4542 
4543         /*
4544          * If this is an in-place replacement, update oldvd's path and devid
4545          * to make it distinguishable from newvd, and unopenable from now on.
4546          */
4547         if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4548                 spa_strfree(oldvd->vdev_path);
4549                 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4550                     KM_SLEEP);
4551                 (void) sprintf(oldvd->vdev_path, "%s/%s",
4552                     newvd->vdev_path, "old");
4553                 if (oldvd->vdev_devid != NULL) {
4554                         spa_strfree(oldvd->vdev_devid);
4555                         oldvd->vdev_devid = NULL;
4556                 }
4557         }
4558 
4559         /* mark the device being resilvered */
4560         newvd->vdev_resilver_txg = txg;
4561 
4562         /*
4563          * If the parent is not a mirror, or if we're replacing, insert the new
4564          * mirror/replacing/spare vdev above oldvd.
4565          */
4566         if (pvd->vdev_ops != pvops)
4567                 pvd = vdev_add_parent(oldvd, pvops);
4568 
4569         ASSERT(pvd->vdev_top->vdev_parent == rvd);
4570         ASSERT(pvd->vdev_ops == pvops);
4571         ASSERT(oldvd->vdev_parent == pvd);
4572 
4573         /*
4574          * Extract the new device from its root and add it to pvd.
4575          */
4576         vdev_remove_child(newrootvd, newvd);
4577         newvd->vdev_id = pvd->vdev_children;
4578         newvd->vdev_crtxg = oldvd->vdev_crtxg;
4579         vdev_add_child(pvd, newvd);
4580 
4581         tvd = newvd->vdev_top;
4582         ASSERT(pvd->vdev_top == tvd);
4583         ASSERT(tvd->vdev_parent == rvd);
4584 
4585         vdev_config_dirty(tvd);
4586 
4587         /*
4588          * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4589          * for any dmu_sync-ed blocks.  It will propagate upward when
4590          * spa_vdev_exit() calls vdev_dtl_reassess().
4591          */
4592         dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4593 
4594         vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4595             dtl_max_txg - TXG_INITIAL);
4596 
4597         if (newvd->vdev_isspare) {
4598                 spa_spare_activate(newvd);
4599                 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4600         }
4601 
4602         oldvdpath = spa_strdup(oldvd->vdev_path);
4603         newvdpath = spa_strdup(newvd->vdev_path);
4604         newvd_isspare = newvd->vdev_isspare;
4605 
4606         /*
4607          * Mark newvd's DTL dirty in this txg.
4608          */
4609         vdev_dirty(tvd, VDD_DTL, newvd, txg);
4610 
4611         /*
4612          * Schedule the resilver to restart in the future. We do this to
4613          * ensure that dmu_sync-ed blocks have been stitched into the
4614          * respective datasets.
4615          */
4616         dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4617 
4618         /*
4619          * Commit the config
4620          */
4621         (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4622 
4623         spa_history_log_internal(spa, "vdev attach", NULL,
4624             "%s vdev=%s %s vdev=%s",
4625             replacing && newvd_isspare ? "spare in" :
4626             replacing ? "replace" : "attach", newvdpath,
4627             replacing ? "for" : "to", oldvdpath);
4628 
4629         spa_strfree(oldvdpath);
4630         spa_strfree(newvdpath);
4631 
4632         if (spa->spa_bootfs)
4633                 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4634 
4635         return (0);
4636 }
4637 
4638 /*
4639  * Detach a device from a mirror or replacing vdev.
4640  *
4641  * If 'replace_done' is specified, only detach if the parent
4642  * is a replacing vdev.
4643  */
4644 int
4645 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4646 {
4647         uint64_t txg;
4648         int error;
4649         vdev_t *rvd = spa->spa_root_vdev;
4650         vdev_t *vd, *pvd, *cvd, *tvd;
4651         boolean_t unspare = B_FALSE;
4652         uint64_t unspare_guid = 0;
4653         char *vdpath;
4654 
4655         ASSERT(spa_writeable(spa));
4656 
4657         txg = spa_vdev_enter(spa);
4658 
4659         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4660 
4661         if (vd == NULL)
4662                 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4663 
4664         if (!vd->vdev_ops->vdev_op_leaf)
4665                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4666 
4667         pvd = vd->vdev_parent;
4668 
4669         /*
4670          * If the parent/child relationship is not as expected, don't do it.
4671          * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4672          * vdev that's replacing B with C.  The user's intent in replacing
4673          * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4674          * the replace by detaching C, the expected behavior is to end up
4675          * M(A,B).  But suppose that right after deciding to detach C,
4676          * the replacement of B completes.  We would have M(A,C), and then
4677          * ask to detach C, which would leave us with just A -- not what
4678          * the user wanted.  To prevent this, we make sure that the
4679          * parent/child relationship hasn't changed -- in this example,
4680          * that C's parent is still the replacing vdev R.
4681          */
4682         if (pvd->vdev_guid != pguid && pguid != 0)
4683                 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4684 
4685         /*
4686          * Only 'replacing' or 'spare' vdevs can be replaced.
4687          */
4688         if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4689             pvd->vdev_ops != &vdev_spare_ops)
4690                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4691 
4692         ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4693             spa_version(spa) >= SPA_VERSION_SPARES);
4694 
4695         /*
4696          * Only mirror, replacing, and spare vdevs support detach.
4697          */
4698         if (pvd->vdev_ops != &vdev_replacing_ops &&
4699             pvd->vdev_ops != &vdev_mirror_ops &&
4700             pvd->vdev_ops != &vdev_spare_ops)
4701                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4702 
4703         /*
4704          * If this device has the only valid copy of some data,
4705          * we cannot safely detach it.
4706          */
4707         if (vdev_dtl_required(vd))
4708                 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4709 
4710         ASSERT(pvd->vdev_children >= 2);
4711 
4712         /*
4713          * If we are detaching the second disk from a replacing vdev, then
4714          * check to see if we changed the original vdev's path to have "/old"
4715          * at the end in spa_vdev_attach().  If so, undo that change now.
4716          */
4717         if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4718             vd->vdev_path != NULL) {
4719                 size_t len = strlen(vd->vdev_path);
4720 
4721                 for (int c = 0; c < pvd->vdev_children; c++) {
4722                         cvd = pvd->vdev_child[c];
4723 
4724                         if (cvd == vd || cvd->vdev_path == NULL)
4725                                 continue;
4726 
4727                         if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4728                             strcmp(cvd->vdev_path + len, "/old") == 0) {
4729                                 spa_strfree(cvd->vdev_path);
4730                                 cvd->vdev_path = spa_strdup(vd->vdev_path);
4731                                 break;
4732                         }
4733                 }
4734         }
4735 
4736         /*
4737          * If we are detaching the original disk from a spare, then it implies
4738          * that the spare should become a real disk, and be removed from the
4739          * active spare list for the pool.
4740          */
4741         if (pvd->vdev_ops == &vdev_spare_ops &&
4742             vd->vdev_id == 0 &&
4743             pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4744                 unspare = B_TRUE;
4745 
4746         /*
4747          * Erase the disk labels so the disk can be used for other things.
4748          * This must be done after all other error cases are handled,
4749          * but before we disembowel vd (so we can still do I/O to it).
4750          * But if we can't do it, don't treat the error as fatal --
4751          * it may be that the unwritability of the disk is the reason
4752          * it's being detached!
4753          */
4754         error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4755 
4756         /*
4757          * Remove vd from its parent and compact the parent's children.
4758          */
4759         vdev_remove_child(pvd, vd);
4760         vdev_compact_children(pvd);
4761 
4762         /*
4763          * Remember one of the remaining children so we can get tvd below.
4764          */
4765         cvd = pvd->vdev_child[pvd->vdev_children - 1];
4766 
4767         /*
4768          * If we need to remove the remaining child from the list of hot spares,
4769          * do it now, marking the vdev as no longer a spare in the process.
4770          * We must do this before vdev_remove_parent(), because that can
4771          * change the GUID if it creates a new toplevel GUID.  For a similar
4772          * reason, we must remove the spare now, in the same txg as the detach;
4773          * otherwise someone could attach a new sibling, change the GUID, and
4774          * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4775          */
4776         if (unspare) {
4777                 ASSERT(cvd->vdev_isspare);
4778                 spa_spare_remove(cvd);
4779                 unspare_guid = cvd->vdev_guid;
4780                 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4781                 cvd->vdev_unspare = B_TRUE;
4782         }
4783 
4784         /*
4785          * If the parent mirror/replacing vdev only has one child,
4786          * the parent is no longer needed.  Remove it from the tree.
4787          */
4788         if (pvd->vdev_children == 1) {
4789                 if (pvd->vdev_ops == &vdev_spare_ops)
4790                         cvd->vdev_unspare = B_FALSE;
4791                 vdev_remove_parent(cvd);
4792         }
4793 
4794 
4795         /*
4796          * We don't set tvd until now because the parent we just removed
4797          * may have been the previous top-level vdev.
4798          */
4799         tvd = cvd->vdev_top;
4800         ASSERT(tvd->vdev_parent == rvd);
4801 
4802         /*
4803          * Reevaluate the parent vdev state.
4804          */
4805         vdev_propagate_state(cvd);
4806 
4807         /*
4808          * If the 'autoexpand' property is set on the pool then automatically
4809          * try to expand the size of the pool. For example if the device we
4810          * just detached was smaller than the others, it may be possible to
4811          * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4812          * first so that we can obtain the updated sizes of the leaf vdevs.
4813          */
4814         if (spa->spa_autoexpand) {
4815                 vdev_reopen(tvd);
4816                 vdev_expand(tvd, txg);
4817         }
4818 
4819         vdev_config_dirty(tvd);
4820 
4821         /*
4822          * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4823          * vd->vdev_detached is set and free vd's DTL object in syncing context.
4824          * But first make sure we're not on any *other* txg's DTL list, to
4825          * prevent vd from being accessed after it's freed.
4826          */
4827         vdpath = spa_strdup(vd->vdev_path);
4828         for (int t = 0; t < TXG_SIZE; t++)
4829                 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4830         vd->vdev_detached = B_TRUE;
4831         vdev_dirty(tvd, VDD_DTL, vd, txg);
4832 
4833         spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4834 
4835         /* hang on to the spa before we release the lock */
4836         spa_open_ref(spa, FTAG);
4837 
4838         error = spa_vdev_exit(spa, vd, txg, 0);
4839 
4840         spa_history_log_internal(spa, "detach", NULL,
4841             "vdev=%s", vdpath);
4842         spa_strfree(vdpath);
4843 
4844         /*
4845          * If this was the removal of the original device in a hot spare vdev,
4846          * then we want to go through and remove the device from the hot spare
4847          * list of every other pool.
4848          */
4849         if (unspare) {
4850                 spa_t *altspa = NULL;
4851 
4852                 mutex_enter(&spa_namespace_lock);
4853                 while ((altspa = spa_next(altspa)) != NULL) {
4854                         if (altspa->spa_state != POOL_STATE_ACTIVE ||
4855                             altspa == spa)
4856                                 continue;
4857 
4858                         spa_open_ref(altspa, FTAG);
4859                         mutex_exit(&spa_namespace_lock);
4860                         (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4861                         mutex_enter(&spa_namespace_lock);
4862                         spa_close(altspa, FTAG);
4863                 }
4864                 mutex_exit(&spa_namespace_lock);
4865 
4866                 /* search the rest of the vdevs for spares to remove */
4867                 spa_vdev_resilver_done(spa);
4868         }
4869 
4870         /* all done with the spa; OK to release */
4871         mutex_enter(&spa_namespace_lock);
4872         spa_close(spa, FTAG);
4873         mutex_exit(&spa_namespace_lock);
4874 
4875         return (error);
4876 }
4877 
4878 /*
4879  * Split a set of devices from their mirrors, and create a new pool from them.
4880  */
4881 int
4882 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4883     nvlist_t *props, boolean_t exp)
4884 {
4885         int error = 0;
4886         uint64_t txg, *glist;
4887         spa_t *newspa;
4888         uint_t c, children, lastlog;
4889         nvlist_t **child, *nvl, *tmp;
4890         dmu_tx_t *tx;
4891         char *altroot = NULL;
4892         vdev_t *rvd, **vml = NULL;                      /* vdev modify list */
4893         boolean_t activate_slog;
4894 
4895         ASSERT(spa_writeable(spa));
4896 
4897         txg = spa_vdev_enter(spa);
4898 
4899         /* clear the log and flush everything up to now */
4900         activate_slog = spa_passivate_log(spa);
4901         (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4902         error = spa_offline_log(spa);
4903         txg = spa_vdev_config_enter(spa);
4904 
4905         if (activate_slog)
4906                 spa_activate_log(spa);
4907 
4908         if (error != 0)
4909                 return (spa_vdev_exit(spa, NULL, txg, error));
4910 
4911         /* check new spa name before going any further */
4912         if (spa_lookup(newname) != NULL)
4913                 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4914 
4915         /*
4916          * scan through all the children to ensure they're all mirrors
4917          */
4918         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4919             nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4920             &children) != 0)
4921                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4922 
4923         /* first, check to ensure we've got the right child count */
4924         rvd = spa->spa_root_vdev;
4925         lastlog = 0;
4926         for (c = 0; c < rvd->vdev_children; c++) {
4927                 vdev_t *vd = rvd->vdev_child[c];
4928 
4929                 /* don't count the holes & logs as children */
4930                 if (vd->vdev_islog || vd->vdev_ishole) {
4931                         if (lastlog == 0)
4932                                 lastlog = c;
4933                         continue;
4934                 }
4935 
4936                 lastlog = 0;
4937         }
4938         if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4939                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4940 
4941         /* next, ensure no spare or cache devices are part of the split */
4942         if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4943             nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4944                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4945 
4946         vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4947         glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4948 
4949         /* then, loop over each vdev and validate it */
4950         for (c = 0; c < children; c++) {
4951                 uint64_t is_hole = 0;
4952 
4953                 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4954                     &is_hole);
4955 
4956                 if (is_hole != 0) {
4957                         if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4958                             spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4959                                 continue;
4960                         } else {
4961                                 error = SET_ERROR(EINVAL);
4962                                 break;
4963                         }
4964                 }
4965 
4966                 /* which disk is going to be split? */
4967                 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4968                     &glist[c]) != 0) {
4969                         error = SET_ERROR(EINVAL);
4970                         break;
4971                 }
4972 
4973                 /* look it up in the spa */
4974                 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4975                 if (vml[c] == NULL) {
4976                         error = SET_ERROR(ENODEV);
4977                         break;
4978                 }
4979 
4980                 /* make sure there's nothing stopping the split */
4981                 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4982                     vml[c]->vdev_islog ||
4983                     vml[c]->vdev_ishole ||
4984                     vml[c]->vdev_isspare ||
4985                     vml[c]->vdev_isl2cache ||
4986                     !vdev_writeable(vml[c]) ||
4987                     vml[c]->vdev_children != 0 ||
4988                     vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4989                     c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4990                         error = SET_ERROR(EINVAL);
4991                         break;
4992                 }
4993 
4994                 if (vdev_dtl_required(vml[c])) {
4995                         error = SET_ERROR(EBUSY);
4996                         break;
4997                 }
4998 
4999                 /* we need certain info from the top level */
5000                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5001                     vml[c]->vdev_top->vdev_ms_array) == 0);
5002                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5003                     vml[c]->vdev_top->vdev_ms_shift) == 0);
5004                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5005                     vml[c]->vdev_top->vdev_asize) == 0);
5006                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5007                     vml[c]->vdev_top->vdev_ashift) == 0);
5008         }
5009 
5010         if (error != 0) {
5011                 kmem_free(vml, children * sizeof (vdev_t *));
5012                 kmem_free(glist, children * sizeof (uint64_t));
5013                 return (spa_vdev_exit(spa, NULL, txg, error));
5014         }
5015 
5016         /* stop writers from using the disks */
5017         for (c = 0; c < children; c++) {
5018                 if (vml[c] != NULL)
5019                         vml[c]->vdev_offline = B_TRUE;
5020         }
5021         vdev_reopen(spa->spa_root_vdev);
5022 
5023         /*
5024          * Temporarily record the splitting vdevs in the spa config.  This
5025          * will disappear once the config is regenerated.
5026          */
5027         VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5028         VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5029             glist, children) == 0);
5030         kmem_free(glist, children * sizeof (uint64_t));
5031 
5032         mutex_enter(&spa->spa_props_lock);
5033         VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5034             nvl) == 0);
5035         mutex_exit(&spa->spa_props_lock);
5036         spa->spa_config_splitting = nvl;
5037         vdev_config_dirty(spa->spa_root_vdev);
5038 
5039         /* configure and create the new pool */
5040         VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5041         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5042             exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5043         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5044             spa_version(spa)) == 0);
5045         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5046             spa->spa_config_txg) == 0);
5047         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5048             spa_generate_guid(NULL)) == 0);
5049         (void) nvlist_lookup_string(props,
5050             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5051 
5052         /* add the new pool to the namespace */
5053         newspa = spa_add(newname, config, altroot);
5054         newspa->spa_config_txg = spa->spa_config_txg;
5055         spa_set_log_state(newspa, SPA_LOG_CLEAR);
5056 
5057         /* release the spa config lock, retaining the namespace lock */
5058         spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5059 
5060         if (zio_injection_enabled)
5061                 zio_handle_panic_injection(spa, FTAG, 1);
5062 
5063         spa_activate(newspa, spa_mode_global);
5064         spa_async_suspend(newspa);
5065 
5066         /* create the new pool from the disks of the original pool */
5067         error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5068         if (error)
5069                 goto out;
5070 
5071         /* if that worked, generate a real config for the new pool */
5072         if (newspa->spa_root_vdev != NULL) {
5073                 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5074                     NV_UNIQUE_NAME, KM_SLEEP) == 0);
5075                 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5076                     ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5077                 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5078                     B_TRUE));
5079         }
5080 
5081         /* set the props */
5082         if (props != NULL) {
5083                 spa_configfile_set(newspa, props, B_FALSE);
5084                 error = spa_prop_set(newspa, props);
5085                 if (error)
5086                         goto out;
5087         }
5088 
5089         /* flush everything */
5090         txg = spa_vdev_config_enter(newspa);
5091         vdev_config_dirty(newspa->spa_root_vdev);
5092         (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5093 
5094         if (zio_injection_enabled)
5095                 zio_handle_panic_injection(spa, FTAG, 2);
5096 
5097         spa_async_resume(newspa);
5098 
5099         /* finally, update the original pool's config */
5100         txg = spa_vdev_config_enter(spa);
5101         tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5102         error = dmu_tx_assign(tx, TXG_WAIT);
5103         if (error != 0)
5104                 dmu_tx_abort(tx);
5105         for (c = 0; c < children; c++) {
5106                 if (vml[c] != NULL) {
5107                         vdev_split(vml[c]);
5108                         if (error == 0)
5109                                 spa_history_log_internal(spa, "detach", tx,
5110                                     "vdev=%s", vml[c]->vdev_path);
5111                         vdev_free(vml[c]);
5112                 }
5113         }
5114         vdev_config_dirty(spa->spa_root_vdev);
5115         spa->spa_config_splitting = NULL;
5116         nvlist_free(nvl);
5117         if (error == 0)
5118                 dmu_tx_commit(tx);
5119         (void) spa_vdev_exit(spa, NULL, txg, 0);
5120 
5121         if (zio_injection_enabled)
5122                 zio_handle_panic_injection(spa, FTAG, 3);
5123 
5124         /* split is complete; log a history record */
5125         spa_history_log_internal(newspa, "split", NULL,
5126             "from pool %s", spa_name(spa));
5127 
5128         kmem_free(vml, children * sizeof (vdev_t *));
5129 
5130         /* if we're not going to mount the filesystems in userland, export */
5131         if (exp)
5132                 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5133                     B_FALSE, B_FALSE);
5134 
5135         return (error);
5136 
5137 out:
5138         spa_unload(newspa);
5139         spa_deactivate(newspa);
5140         spa_remove(newspa);
5141 
5142         txg = spa_vdev_config_enter(spa);
5143 
5144         /* re-online all offlined disks */
5145         for (c = 0; c < children; c++) {
5146                 if (vml[c] != NULL)
5147                         vml[c]->vdev_offline = B_FALSE;
5148         }
5149         vdev_reopen(spa->spa_root_vdev);
5150 
5151         nvlist_free(spa->spa_config_splitting);
5152         spa->spa_config_splitting = NULL;
5153         (void) spa_vdev_exit(spa, NULL, txg, error);
5154 
5155         kmem_free(vml, children * sizeof (vdev_t *));
5156         return (error);
5157 }
5158 
5159 static nvlist_t *
5160 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5161 {
5162         for (int i = 0; i < count; i++) {
5163                 uint64_t guid;
5164 
5165                 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5166                     &guid) == 0);
5167 
5168                 if (guid == target_guid)
5169                         return (nvpp[i]);
5170         }
5171 
5172         return (NULL);
5173 }
5174 
5175 static void
5176 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5177         nvlist_t *dev_to_remove)
5178 {
5179         nvlist_t **newdev = NULL;
5180 
5181         if (count > 1)
5182                 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5183 
5184         for (int i = 0, j = 0; i < count; i++) {
5185                 if (dev[i] == dev_to_remove)
5186                         continue;
5187                 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5188         }
5189 
5190         VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5191         VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5192 
5193         for (int i = 0; i < count - 1; i++)
5194                 nvlist_free(newdev[i]);
5195 
5196         if (count > 1)
5197                 kmem_free(newdev, (count - 1) * sizeof (void *));
5198 }
5199 
5200 /*
5201  * Evacuate the device.
5202  */
5203 static int
5204 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5205 {
5206         uint64_t txg;
5207         int error = 0;
5208 
5209         ASSERT(MUTEX_HELD(&spa_namespace_lock));
5210         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5211         ASSERT(vd == vd->vdev_top);
5212 
5213         /*
5214          * Evacuate the device.  We don't hold the config lock as writer
5215          * since we need to do I/O but we do keep the
5216          * spa_namespace_lock held.  Once this completes the device
5217          * should no longer have any blocks allocated on it.
5218          */
5219         if (vd->vdev_islog) {
5220                 if (vd->vdev_stat.vs_alloc != 0)
5221                         error = spa_offline_log(spa);
5222         } else {
5223                 error = SET_ERROR(ENOTSUP);
5224         }
5225 
5226         if (error)
5227                 return (error);
5228 
5229         /*
5230          * The evacuation succeeded.  Remove any remaining MOS metadata
5231          * associated with this vdev, and wait for these changes to sync.
5232          */
5233         ASSERT0(vd->vdev_stat.vs_alloc);
5234         txg = spa_vdev_config_enter(spa);
5235         vd->vdev_removing = B_TRUE;
5236         vdev_dirty_leaves(vd, VDD_DTL, txg);
5237         vdev_config_dirty(vd);
5238         spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5239 
5240         return (0);
5241 }
5242 
5243 /*
5244  * Complete the removal by cleaning up the namespace.
5245  */
5246 static void
5247 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5248 {
5249         vdev_t *rvd = spa->spa_root_vdev;
5250         uint64_t id = vd->vdev_id;
5251         boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5252 
5253         ASSERT(MUTEX_HELD(&spa_namespace_lock));
5254         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5255         ASSERT(vd == vd->vdev_top);
5256 
5257         /*
5258          * Only remove any devices which are empty.
5259          */
5260         if (vd->vdev_stat.vs_alloc != 0)
5261                 return;
5262 
5263         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5264 
5265         if (list_link_active(&vd->vdev_state_dirty_node))
5266                 vdev_state_clean(vd);
5267         if (list_link_active(&vd->vdev_config_dirty_node))
5268                 vdev_config_clean(vd);
5269 
5270         vdev_free(vd);
5271 
5272         if (last_vdev) {
5273                 vdev_compact_children(rvd);
5274         } else {
5275                 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5276                 vdev_add_child(rvd, vd);
5277         }
5278         vdev_config_dirty(rvd);
5279 
5280         /*
5281          * Reassess the health of our root vdev.
5282          */
5283         vdev_reopen(rvd);
5284 }
5285 
5286 /*
5287  * Remove a device from the pool -
5288  *
5289  * Removing a device from the vdev namespace requires several steps
5290  * and can take a significant amount of time.  As a result we use
5291  * the spa_vdev_config_[enter/exit] functions which allow us to
5292  * grab and release the spa_config_lock while still holding the namespace
5293  * lock.  During each step the configuration is synced out.
5294  *
5295  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5296  * devices.
5297  */
5298 int
5299 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5300 {
5301         vdev_t *vd;
5302         metaslab_group_t *mg;
5303         nvlist_t **spares, **l2cache, *nv;
5304         uint64_t txg = 0;
5305         uint_t nspares, nl2cache;
5306         int error = 0;
5307         boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5308 
5309         ASSERT(spa_writeable(spa));
5310 
5311         if (!locked)
5312                 txg = spa_vdev_enter(spa);
5313 
5314         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5315 
5316         if (spa->spa_spares.sav_vdevs != NULL &&
5317             nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5318             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5319             (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5320                 /*
5321                  * Only remove the hot spare if it's not currently in use
5322                  * in this pool.
5323                  */
5324                 if (vd == NULL || unspare) {
5325                         spa_vdev_remove_aux(spa->spa_spares.sav_config,
5326                             ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5327                         spa_load_spares(spa);
5328                         spa->spa_spares.sav_sync = B_TRUE;
5329                 } else {
5330                         error = SET_ERROR(EBUSY);
5331                 }
5332         } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5333             nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5334             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5335             (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5336                 /*
5337                  * Cache devices can always be removed.
5338                  */
5339                 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5340                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5341                 spa_load_l2cache(spa);
5342                 spa->spa_l2cache.sav_sync = B_TRUE;
5343         } else if (vd != NULL && vd->vdev_islog) {
5344                 ASSERT(!locked);
5345                 ASSERT(vd == vd->vdev_top);
5346 
5347                 mg = vd->vdev_mg;
5348 
5349                 /*
5350                  * Stop allocating from this vdev.
5351                  */
5352                 metaslab_group_passivate(mg);
5353 
5354                 /*
5355                  * Wait for the youngest allocations and frees to sync,
5356                  * and then wait for the deferral of those frees to finish.
5357                  */
5358                 spa_vdev_config_exit(spa, NULL,
5359                     txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5360 
5361                 /*
5362                  * Attempt to evacuate the vdev.
5363                  */
5364                 error = spa_vdev_remove_evacuate(spa, vd);
5365 
5366                 txg = spa_vdev_config_enter(spa);
5367 
5368                 /*
5369                  * If we couldn't evacuate the vdev, unwind.
5370                  */
5371                 if (error) {
5372                         metaslab_group_activate(mg);
5373                         return (spa_vdev_exit(spa, NULL, txg, error));
5374                 }
5375 
5376                 /*
5377                  * Clean up the vdev namespace.
5378                  */
5379                 spa_vdev_remove_from_namespace(spa, vd);
5380 
5381         } else if (vd != NULL) {
5382                 /*
5383                  * Normal vdevs cannot be removed (yet).
5384                  */
5385                 error = SET_ERROR(ENOTSUP);
5386         } else {
5387                 /*
5388                  * There is no vdev of any kind with the specified guid.
5389                  */
5390                 error = SET_ERROR(ENOENT);
5391         }
5392 
5393         if (!locked)
5394                 return (spa_vdev_exit(spa, NULL, txg, error));
5395 
5396         return (error);
5397 }
5398 
5399 /*
5400  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5401  * currently spared, so we can detach it.
5402  */
5403 static vdev_t *
5404 spa_vdev_resilver_done_hunt(vdev_t *vd)
5405 {
5406         vdev_t *newvd, *oldvd;
5407 
5408         for (int c = 0; c < vd->vdev_children; c++) {
5409                 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5410                 if (oldvd != NULL)
5411                         return (oldvd);
5412         }
5413 
5414         /*
5415          * Check for a completed replacement.  We always consider the first
5416          * vdev in the list to be the oldest vdev, and the last one to be
5417          * the newest (see spa_vdev_attach() for how that works).  In
5418          * the case where the newest vdev is faulted, we will not automatically
5419          * remove it after a resilver completes.  This is OK as it will require
5420          * user intervention to determine which disk the admin wishes to keep.
5421          */
5422         if (vd->vdev_ops == &vdev_replacing_ops) {
5423                 ASSERT(vd->vdev_children > 1);
5424 
5425                 newvd = vd->vdev_child[vd->vdev_children - 1];
5426                 oldvd = vd->vdev_child[0];
5427 
5428                 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5429                     vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5430                     !vdev_dtl_required(oldvd))
5431                         return (oldvd);
5432         }
5433 
5434         /*
5435          * Check for a completed resilver with the 'unspare' flag set.
5436          */
5437         if (vd->vdev_ops == &vdev_spare_ops) {
5438                 vdev_t *first = vd->vdev_child[0];
5439                 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5440 
5441                 if (last->vdev_unspare) {
5442                         oldvd = first;
5443                         newvd = last;
5444                 } else if (first->vdev_unspare) {
5445                         oldvd = last;
5446                         newvd = first;
5447                 } else {
5448                         oldvd = NULL;
5449                 }
5450 
5451                 if (oldvd != NULL &&
5452                     vdev_dtl_empty(newvd, DTL_MISSING) &&
5453                     vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5454                     !vdev_dtl_required(oldvd))
5455                         return (oldvd);
5456 
5457                 /*
5458                  * If there are more than two spares attached to a disk,
5459                  * and those spares are not required, then we want to
5460                  * attempt to free them up now so that they can be used
5461                  * by other pools.  Once we're back down to a single
5462                  * disk+spare, we stop removing them.
5463                  */
5464                 if (vd->vdev_children > 2) {
5465                         newvd = vd->vdev_child[1];
5466 
5467                         if (newvd->vdev_isspare && last->vdev_isspare &&
5468                             vdev_dtl_empty(last, DTL_MISSING) &&
5469                             vdev_dtl_empty(last, DTL_OUTAGE) &&
5470                             !vdev_dtl_required(newvd))
5471                                 return (newvd);
5472                 }
5473         }
5474 
5475         return (NULL);
5476 }
5477 
5478 static void
5479 spa_vdev_resilver_done(spa_t *spa)
5480 {
5481         vdev_t *vd, *pvd, *ppvd;
5482         uint64_t guid, sguid, pguid, ppguid;
5483 
5484         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5485 
5486         while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5487                 pvd = vd->vdev_parent;
5488                 ppvd = pvd->vdev_parent;
5489                 guid = vd->vdev_guid;
5490                 pguid = pvd->vdev_guid;
5491                 ppguid = ppvd->vdev_guid;
5492                 sguid = 0;
5493                 /*
5494                  * If we have just finished replacing a hot spared device, then
5495                  * we need to detach the parent's first child (the original hot
5496                  * spare) as well.
5497                  */
5498                 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5499                     ppvd->vdev_children == 2) {
5500                         ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5501                         sguid = ppvd->vdev_child[1]->vdev_guid;
5502                 }
5503                 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5504 
5505                 spa_config_exit(spa, SCL_ALL, FTAG);
5506                 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5507                         return;
5508                 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5509                         return;
5510                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5511         }
5512 
5513         spa_config_exit(spa, SCL_ALL, FTAG);
5514 }
5515 
5516 /*
5517  * Update the stored path or FRU for this vdev.
5518  */
5519 int
5520 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5521     boolean_t ispath)
5522 {
5523         vdev_t *vd;
5524         boolean_t sync = B_FALSE;
5525 
5526         ASSERT(spa_writeable(spa));
5527 
5528         spa_vdev_state_enter(spa, SCL_ALL);
5529 
5530         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5531                 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5532 
5533         if (!vd->vdev_ops->vdev_op_leaf)
5534                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5535 
5536         if (ispath) {
5537                 if (strcmp(value, vd->vdev_path) != 0) {
5538                         spa_strfree(vd->vdev_path);
5539                         vd->vdev_path = spa_strdup(value);
5540                         sync = B_TRUE;
5541                 }
5542         } else {
5543                 if (vd->vdev_fru == NULL) {
5544                         vd->vdev_fru = spa_strdup(value);
5545                         sync = B_TRUE;
5546                 } else if (strcmp(value, vd->vdev_fru) != 0) {
5547                         spa_strfree(vd->vdev_fru);
5548                         vd->vdev_fru = spa_strdup(value);
5549                         sync = B_TRUE;
5550                 }
5551         }
5552 
5553         return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5554 }
5555 
5556 int
5557 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5558 {
5559         return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5560 }
5561 
5562 int
5563 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5564 {
5565         return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5566 }
5567 
5568 /*
5569  * ==========================================================================
5570  * SPA Scanning
5571  * ==========================================================================
5572  */
5573 
5574 int
5575 spa_scan_stop(spa_t *spa)
5576 {
5577         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5578         if (dsl_scan_resilvering(spa->spa_dsl_pool))
5579                 return (SET_ERROR(EBUSY));
5580         return (dsl_scan_cancel(spa->spa_dsl_pool));
5581 }
5582 
5583 int
5584 spa_scan(spa_t *spa, pool_scan_func_t func)
5585 {
5586         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5587 
5588         if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5589                 return (SET_ERROR(ENOTSUP));
5590 
5591         /*
5592          * If a resilver was requested, but there is no DTL on a
5593          * writeable leaf device, we have nothing to do.
5594          */
5595         if (func == POOL_SCAN_RESILVER &&
5596             !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5597                 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5598                 return (0);
5599         }
5600 
5601         return (dsl_scan(spa->spa_dsl_pool, func));
5602 }
5603 
5604 /*
5605  * ==========================================================================
5606  * SPA async task processing
5607  * ==========================================================================
5608  */
5609 
5610 static void
5611 spa_async_remove(spa_t *spa, vdev_t *vd)
5612 {
5613         if (vd->vdev_remove_wanted) {
5614                 vd->vdev_remove_wanted = B_FALSE;
5615                 vd->vdev_delayed_close = B_FALSE;
5616                 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5617 
5618                 /*
5619                  * We want to clear the stats, but we don't want to do a full
5620                  * vdev_clear() as that will cause us to throw away
5621                  * degraded/faulted state as well as attempt to reopen the
5622                  * device, all of which is a waste.
5623                  */
5624                 vd->vdev_stat.vs_read_errors = 0;
5625                 vd->vdev_stat.vs_write_errors = 0;
5626                 vd->vdev_stat.vs_checksum_errors = 0;
5627 
5628                 vdev_state_dirty(vd->vdev_top);
5629         }
5630 
5631         for (int c = 0; c < vd->vdev_children; c++)
5632                 spa_async_remove(spa, vd->vdev_child[c]);
5633 }
5634 
5635 static void
5636 spa_async_probe(spa_t *spa, vdev_t *vd)
5637 {
5638         if (vd->vdev_probe_wanted) {
5639                 vd->vdev_probe_wanted = B_FALSE;
5640                 vdev_reopen(vd);        /* vdev_open() does the actual probe */
5641         }
5642 
5643         for (int c = 0; c < vd->vdev_children; c++)
5644                 spa_async_probe(spa, vd->vdev_child[c]);
5645 }
5646 
5647 static void
5648 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5649 {
5650         sysevent_id_t eid;
5651         nvlist_t *attr;
5652         char *physpath;
5653 
5654         if (!spa->spa_autoexpand)
5655                 return;
5656 
5657         for (int c = 0; c < vd->vdev_children; c++) {
5658                 vdev_t *cvd = vd->vdev_child[c];
5659                 spa_async_autoexpand(spa, cvd);
5660         }
5661 
5662         if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5663                 return;
5664 
5665         physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5666         (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5667 
5668         VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5669         VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5670 
5671         (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5672             ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5673 
5674         nvlist_free(attr);
5675         kmem_free(physpath, MAXPATHLEN);
5676 }
5677 
5678 static void
5679 spa_async_thread(spa_t *spa)
5680 {
5681         int tasks;
5682 
5683         ASSERT(spa->spa_sync_on);
5684 
5685         mutex_enter(&spa->spa_async_lock);
5686         tasks = spa->spa_async_tasks;
5687         spa->spa_async_tasks = 0;
5688         mutex_exit(&spa->spa_async_lock);
5689 
5690         /*
5691          * See if the config needs to be updated.
5692          */
5693         if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5694                 uint64_t old_space, new_space;
5695 
5696                 mutex_enter(&spa_namespace_lock);
5697                 old_space = metaslab_class_get_space(spa_normal_class(spa));
5698                 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5699                 new_space = metaslab_class_get_space(spa_normal_class(spa));
5700                 mutex_exit(&spa_namespace_lock);
5701 
5702                 /*
5703                  * If the pool grew as a result of the config update,
5704                  * then log an internal history event.
5705                  */
5706                 if (new_space != old_space) {
5707                         spa_history_log_internal(spa, "vdev online", NULL,
5708                             "pool '%s' size: %llu(+%llu)",
5709                             spa_name(spa), new_space, new_space - old_space);
5710                 }
5711         }
5712 
5713         /*
5714          * See if any devices need to be marked REMOVED.
5715          */
5716         if (tasks & SPA_ASYNC_REMOVE) {
5717                 spa_vdev_state_enter(spa, SCL_NONE);
5718                 spa_async_remove(spa, spa->spa_root_vdev);
5719                 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5720                         spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5721                 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5722                         spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5723                 (void) spa_vdev_state_exit(spa, NULL, 0);
5724         }
5725 
5726         if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5727                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5728                 spa_async_autoexpand(spa, spa->spa_root_vdev);
5729                 spa_config_exit(spa, SCL_CONFIG, FTAG);
5730         }
5731 
5732         /*
5733          * See if any devices need to be probed.
5734          */
5735         if (tasks & SPA_ASYNC_PROBE) {
5736                 spa_vdev_state_enter(spa, SCL_NONE);
5737                 spa_async_probe(spa, spa->spa_root_vdev);
5738                 (void) spa_vdev_state_exit(spa, NULL, 0);
5739         }
5740 
5741         /*
5742          * If any devices are done replacing, detach them.
5743          */
5744         if (tasks & SPA_ASYNC_RESILVER_DONE)
5745                 spa_vdev_resilver_done(spa);
5746 
5747         /*
5748          * Kick off a resilver.
5749          */
5750         if (tasks & SPA_ASYNC_RESILVER)
5751                 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5752 
5753         /*
5754          * Let the world know that we're done.
5755          */
5756         mutex_enter(&spa->spa_async_lock);
5757         spa->spa_async_thread = NULL;
5758         cv_broadcast(&spa->spa_async_cv);
5759         mutex_exit(&spa->spa_async_lock);
5760         thread_exit();
5761 }
5762 
5763 void
5764 spa_async_suspend(spa_t *spa)
5765 {
5766         mutex_enter(&spa->spa_async_lock);
5767         spa->spa_async_suspended++;
5768         while (spa->spa_async_thread != NULL)
5769                 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5770         mutex_exit(&spa->spa_async_lock);
5771 }
5772 
5773 void
5774 spa_async_resume(spa_t *spa)
5775 {
5776         mutex_enter(&spa->spa_async_lock);
5777         ASSERT(spa->spa_async_suspended != 0);
5778         spa->spa_async_suspended--;
5779         mutex_exit(&spa->spa_async_lock);
5780 }
5781 
5782 static boolean_t
5783 spa_async_tasks_pending(spa_t *spa)
5784 {
5785         uint_t non_config_tasks;
5786         uint_t config_task;
5787         boolean_t config_task_suspended;
5788 
5789         non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5790         config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5791         if (spa->spa_ccw_fail_time == 0) {
5792                 config_task_suspended = B_FALSE;
5793         } else {
5794                 config_task_suspended =
5795                     (gethrtime() - spa->spa_ccw_fail_time) <
5796                     (zfs_ccw_retry_interval * NANOSEC);
5797         }
5798 
5799         return (non_config_tasks || (config_task && !config_task_suspended));
5800 }
5801 
5802 static void
5803 spa_async_dispatch(spa_t *spa)
5804 {
5805         mutex_enter(&spa->spa_async_lock);
5806         if (spa_async_tasks_pending(spa) &&
5807             !spa->spa_async_suspended &&
5808             spa->spa_async_thread == NULL &&
5809             rootdir != NULL)
5810                 spa->spa_async_thread = thread_create(NULL, 0,
5811                     spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5812         mutex_exit(&spa->spa_async_lock);
5813 }
5814 
5815 void
5816 spa_async_request(spa_t *spa, int task)
5817 {
5818         zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5819         mutex_enter(&spa->spa_async_lock);
5820         spa->spa_async_tasks |= task;
5821         mutex_exit(&spa->spa_async_lock);
5822 }
5823 
5824 /*
5825  * ==========================================================================
5826  * SPA syncing routines
5827  * ==========================================================================
5828  */
5829 
5830 static int
5831 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5832 {
5833         bpobj_t *bpo = arg;
5834         bpobj_enqueue(bpo, bp, tx);
5835         return (0);
5836 }
5837 
5838 static int
5839 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5840 {
5841         zio_t *zio = arg;
5842 
5843         zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5844             zio->io_flags));
5845         return (0);
5846 }
5847 
5848 /*
5849  * Note: this simple function is not inlined to make it easier to dtrace the
5850  * amount of time spent syncing frees.
5851  */
5852 static void
5853 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5854 {
5855         zio_t *zio = zio_root(spa, NULL, NULL, 0);
5856         bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5857         VERIFY(zio_wait(zio) == 0);
5858 }
5859 
5860 /*
5861  * Note: this simple function is not inlined to make it easier to dtrace the
5862  * amount of time spent syncing deferred frees.
5863  */
5864 static void
5865 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5866 {
5867         zio_t *zio = zio_root(spa, NULL, NULL, 0);
5868         VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5869             spa_free_sync_cb, zio, tx), ==, 0);
5870         VERIFY0(zio_wait(zio));
5871 }
5872 
5873 
5874 static void
5875 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5876 {
5877         char *packed = NULL;
5878         size_t bufsize;
5879         size_t nvsize = 0;
5880         dmu_buf_t *db;
5881 
5882         VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5883 
5884         /*
5885          * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5886          * information.  This avoids the dmu_buf_will_dirty() path and
5887          * saves us a pre-read to get data we don't actually care about.
5888          */
5889         bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5890         packed = kmem_alloc(bufsize, KM_SLEEP);
5891 
5892         VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5893             KM_SLEEP) == 0);
5894         bzero(packed + nvsize, bufsize - nvsize);
5895 
5896         dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5897 
5898         kmem_free(packed, bufsize);
5899 
5900         VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5901         dmu_buf_will_dirty(db, tx);
5902         *(uint64_t *)db->db_data = nvsize;
5903         dmu_buf_rele(db, FTAG);
5904 }
5905 
5906 static void
5907 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5908     const char *config, const char *entry)
5909 {
5910         nvlist_t *nvroot;
5911         nvlist_t **list;
5912         int i;
5913 
5914         if (!sav->sav_sync)
5915                 return;
5916 
5917         /*
5918          * Update the MOS nvlist describing the list of available devices.
5919          * spa_validate_aux() will have already made sure this nvlist is
5920          * valid and the vdevs are labeled appropriately.
5921          */
5922         if (sav->sav_object == 0) {
5923                 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5924                     DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5925                     sizeof (uint64_t), tx);
5926                 VERIFY(zap_update(spa->spa_meta_objset,
5927                     DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5928                     &sav->sav_object, tx) == 0);
5929         }
5930 
5931         VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5932         if (sav->sav_count == 0) {
5933                 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5934         } else {
5935                 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5936                 for (i = 0; i < sav->sav_count; i++)
5937                         list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5938                             B_FALSE, VDEV_CONFIG_L2CACHE);
5939                 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5940                     sav->sav_count) == 0);
5941                 for (i = 0; i < sav->sav_count; i++)
5942                         nvlist_free(list[i]);
5943                 kmem_free(list, sav->sav_count * sizeof (void *));
5944         }
5945 
5946         spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5947         nvlist_free(nvroot);
5948 
5949         sav->sav_sync = B_FALSE;
5950 }
5951 
5952 static void
5953 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5954 {
5955         nvlist_t *config;
5956 
5957         if (list_is_empty(&spa->spa_config_dirty_list))
5958                 return;
5959 
5960         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5961 
5962         config = spa_config_generate(spa, spa->spa_root_vdev,
5963             dmu_tx_get_txg(tx), B_FALSE);
5964 
5965         /*
5966          * If we're upgrading the spa version then make sure that
5967          * the config object gets updated with the correct version.
5968          */
5969         if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5970                 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5971                     spa->spa_uberblock.ub_version);
5972 
5973         spa_config_exit(spa, SCL_STATE, FTAG);
5974 
5975         if (spa->spa_config_syncing)
5976                 nvlist_free(spa->spa_config_syncing);
5977         spa->spa_config_syncing = config;
5978 
5979         spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5980 }
5981 
5982 static void
5983 spa_sync_version(void *arg, dmu_tx_t *tx)
5984 {
5985         uint64_t *versionp = arg;
5986         uint64_t version = *versionp;
5987         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5988 
5989         /*
5990          * Setting the version is special cased when first creating the pool.
5991          */
5992         ASSERT(tx->tx_txg != TXG_INITIAL);
5993 
5994         ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5995         ASSERT(version >= spa_version(spa));
5996 
5997         spa->spa_uberblock.ub_version = version;
5998         vdev_config_dirty(spa->spa_root_vdev);
5999         spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6000 }
6001 
6002 /*
6003  * Set zpool properties.
6004  */
6005 static void
6006 spa_sync_props(void *arg, dmu_tx_t *tx)
6007 {
6008         nvlist_t *nvp = arg;
6009         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6010         objset_t *mos = spa->spa_meta_objset;
6011         nvpair_t *elem = NULL;
6012 
6013         mutex_enter(&spa->spa_props_lock);
6014 
6015         while ((elem = nvlist_next_nvpair(nvp, elem))) {
6016                 uint64_t intval;
6017                 char *strval, *fname;
6018                 zpool_prop_t prop;
6019                 const char *propname;
6020                 zprop_type_t proptype;
6021                 spa_feature_t fid;
6022 
6023                 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6024                 case ZPROP_INVAL:
6025                         /*
6026                          * We checked this earlier in spa_prop_validate().
6027                          */
6028                         ASSERT(zpool_prop_feature(nvpair_name(elem)));
6029 
6030                         fname = strchr(nvpair_name(elem), '@') + 1;
6031                         VERIFY0(zfeature_lookup_name(fname, &fid));
6032 
6033                         spa_feature_enable(spa, fid, tx);
6034                         spa_history_log_internal(spa, "set", tx,
6035                             "%s=enabled", nvpair_name(elem));
6036                         break;
6037 
6038                 case ZPOOL_PROP_VERSION:
6039                         intval = fnvpair_value_uint64(elem);
6040                         /*
6041                          * The version is synced seperatly before other
6042                          * properties and should be correct by now.
6043                          */
6044                         ASSERT3U(spa_version(spa), >=, intval);
6045                         break;
6046 
6047                 case ZPOOL_PROP_ALTROOT:
6048                         /*
6049                          * 'altroot' is a non-persistent property. It should
6050                          * have been set temporarily at creation or import time.
6051                          */
6052                         ASSERT(spa->spa_root != NULL);
6053                         break;
6054 
6055                 case ZPOOL_PROP_READONLY:
6056                 case ZPOOL_PROP_CACHEFILE:
6057                         /*
6058                          * 'readonly' and 'cachefile' are also non-persisitent
6059                          * properties.
6060                          */
6061                         break;
6062                 case ZPOOL_PROP_COMMENT:
6063                         strval = fnvpair_value_string(elem);
6064                         if (spa->spa_comment != NULL)
6065                                 spa_strfree(spa->spa_comment);
6066                         spa->spa_comment = spa_strdup(strval);
6067                         /*
6068                          * We need to dirty the configuration on all the vdevs
6069                          * so that their labels get updated.  It's unnecessary
6070                          * to do this for pool creation since the vdev's
6071                          * configuratoin has already been dirtied.
6072                          */
6073                         if (tx->tx_txg != TXG_INITIAL)
6074                                 vdev_config_dirty(spa->spa_root_vdev);
6075                         spa_history_log_internal(spa, "set", tx,
6076                             "%s=%s", nvpair_name(elem), strval);
6077                         break;
6078                 default:
6079                         /*
6080                          * Set pool property values in the poolprops mos object.
6081                          */
6082                         if (spa->spa_pool_props_object == 0) {
6083                                 spa->spa_pool_props_object =
6084                                     zap_create_link(mos, DMU_OT_POOL_PROPS,
6085                                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6086                                     tx);
6087                         }
6088 
6089                         /* normalize the property name */
6090                         propname = zpool_prop_to_name(prop);
6091                         proptype = zpool_prop_get_type(prop);
6092 
6093                         if (nvpair_type(elem) == DATA_TYPE_STRING) {
6094                                 ASSERT(proptype == PROP_TYPE_STRING);
6095                                 strval = fnvpair_value_string(elem);
6096                                 VERIFY0(zap_update(mos,
6097                                     spa->spa_pool_props_object, propname,
6098                                     1, strlen(strval) + 1, strval, tx));
6099                                 spa_history_log_internal(spa, "set", tx,
6100                                     "%s=%s", nvpair_name(elem), strval);
6101                         } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6102                                 intval = fnvpair_value_uint64(elem);
6103 
6104                                 if (proptype == PROP_TYPE_INDEX) {
6105                                         const char *unused;
6106                                         VERIFY0(zpool_prop_index_to_string(
6107                                             prop, intval, &unused));
6108                                 }
6109                                 VERIFY0(zap_update(mos,
6110                                     spa->spa_pool_props_object, propname,
6111                                     8, 1, &intval, tx));
6112                                 spa_history_log_internal(spa, "set", tx,
6113                                     "%s=%lld", nvpair_name(elem), intval);
6114                         } else {
6115                                 ASSERT(0); /* not allowed */
6116                         }
6117 
6118                         switch (prop) {
6119                         case ZPOOL_PROP_DELEGATION:
6120                                 spa->spa_delegation = intval;
6121                                 break;
6122                         case ZPOOL_PROP_BOOTFS:
6123                                 spa->spa_bootfs = intval;
6124                                 break;
6125                         case ZPOOL_PROP_FAILUREMODE:
6126                                 spa->spa_failmode = intval;
6127                                 break;
6128                         case ZPOOL_PROP_AUTOEXPAND:
6129                                 spa->spa_autoexpand = intval;
6130                                 if (tx->tx_txg != TXG_INITIAL)
6131                                         spa_async_request(spa,
6132                                             SPA_ASYNC_AUTOEXPAND);
6133                                 break;
6134                         case ZPOOL_PROP_DEDUPDITTO:
6135                                 spa->spa_dedup_ditto = intval;
6136                                 break;
6137                         default:
6138                                 break;
6139                         }
6140                 }
6141 
6142         }
6143 
6144         mutex_exit(&spa->spa_props_lock);
6145 }
6146 
6147 /*
6148  * Perform one-time upgrade on-disk changes.  spa_version() does not
6149  * reflect the new version this txg, so there must be no changes this
6150  * txg to anything that the upgrade code depends on after it executes.
6151  * Therefore this must be called after dsl_pool_sync() does the sync
6152  * tasks.
6153  */
6154 static void
6155 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6156 {
6157         dsl_pool_t *dp = spa->spa_dsl_pool;
6158 
6159         ASSERT(spa->spa_sync_pass == 1);
6160 
6161         rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6162 
6163         if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6164             spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6165                 dsl_pool_create_origin(dp, tx);
6166 
6167                 /* Keeping the origin open increases spa_minref */
6168                 spa->spa_minref += 3;
6169         }
6170 
6171         if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6172             spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6173                 dsl_pool_upgrade_clones(dp, tx);
6174         }
6175 
6176         if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6177             spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6178                 dsl_pool_upgrade_dir_clones(dp, tx);
6179 
6180                 /* Keeping the freedir open increases spa_minref */
6181                 spa->spa_minref += 3;
6182         }
6183 
6184         if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6185             spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6186                 spa_feature_create_zap_objects(spa, tx);
6187         }
6188 
6189         /*
6190          * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6191          * when possibility to use lz4 compression for metadata was added
6192          * Old pools that have this feature enabled must be upgraded to have
6193          * this feature active
6194          */
6195         if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6196                 boolean_t lz4_en = spa_feature_is_enabled(spa,
6197                     SPA_FEATURE_LZ4_COMPRESS);
6198                 boolean_t lz4_ac = spa_feature_is_active(spa,
6199                     SPA_FEATURE_LZ4_COMPRESS);
6200 
6201                 if (lz4_en && !lz4_ac)
6202                         spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6203         }
6204         rrw_exit(&dp->dp_config_rwlock, FTAG);
6205 }
6206 
6207 /*
6208  * Sync the specified transaction group.  New blocks may be dirtied as
6209  * part of the process, so we iterate until it converges.
6210  */
6211 void
6212 spa_sync(spa_t *spa, uint64_t txg)
6213 {
6214         dsl_pool_t *dp = spa->spa_dsl_pool;
6215         objset_t *mos = spa->spa_meta_objset;
6216         bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6217         vdev_t *rvd = spa->spa_root_vdev;
6218         vdev_t *vd;
6219         dmu_tx_t *tx;
6220         int error;
6221 
6222         VERIFY(spa_writeable(spa));
6223 
6224         /*
6225          * Lock out configuration changes.
6226          */
6227         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6228 
6229         spa->spa_syncing_txg = txg;
6230         spa->spa_sync_pass = 0;
6231 
6232         /*
6233          * If there are any pending vdev state changes, convert them
6234          * into config changes that go out with this transaction group.
6235          */
6236         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6237         while (list_head(&spa->spa_state_dirty_list) != NULL) {
6238                 /*
6239                  * We need the write lock here because, for aux vdevs,
6240                  * calling vdev_config_dirty() modifies sav_config.
6241                  * This is ugly and will become unnecessary when we
6242                  * eliminate the aux vdev wart by integrating all vdevs
6243                  * into the root vdev tree.
6244                  */
6245                 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6246                 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6247                 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6248                         vdev_state_clean(vd);
6249                         vdev_config_dirty(vd);
6250                 }
6251                 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6252                 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6253         }
6254         spa_config_exit(spa, SCL_STATE, FTAG);
6255 
6256         tx = dmu_tx_create_assigned(dp, txg);
6257 
6258         spa->spa_sync_starttime = gethrtime();
6259         VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6260             spa->spa_sync_starttime + spa->spa_deadman_synctime));
6261 
6262         /*
6263          * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6264          * set spa_deflate if we have no raid-z vdevs.
6265          */
6266         if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6267             spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6268                 int i;
6269 
6270                 for (i = 0; i < rvd->vdev_children; i++) {
6271                         vd = rvd->vdev_child[i];
6272                         if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6273                                 break;
6274                 }
6275                 if (i == rvd->vdev_children) {
6276                         spa->spa_deflate = TRUE;
6277                         VERIFY(0 == zap_add(spa->spa_meta_objset,
6278                             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6279                             sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6280                 }
6281         }
6282 
6283         /*
6284          * Iterate to convergence.
6285          */
6286         do {
6287                 int pass = ++spa->spa_sync_pass;
6288 
6289                 spa_sync_config_object(spa, tx);
6290                 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6291                     ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6292                 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6293                     ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6294                 spa_errlog_sync(spa, txg);
6295                 dsl_pool_sync(dp, txg);
6296 
6297                 if (pass < zfs_sync_pass_deferred_free) {
6298                         spa_sync_frees(spa, free_bpl, tx);
6299                 } else {
6300                         /*
6301                          * We can not defer frees in pass 1, because
6302                          * we sync the deferred frees later in pass 1.
6303                          */
6304                         ASSERT3U(pass, >, 1);
6305                         bplist_iterate(free_bpl, bpobj_enqueue_cb,
6306                             &spa->spa_deferred_bpobj, tx);
6307                 }
6308 
6309                 ddt_sync(spa, txg);
6310                 dsl_scan_sync(dp, tx);
6311 
6312                 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6313                         vdev_sync(vd, txg);
6314 
6315                 if (pass == 1) {
6316                         spa_sync_upgrades(spa, tx);
6317                         ASSERT3U(txg, >=,
6318                             spa->spa_uberblock.ub_rootbp.blk_birth);
6319                         /*
6320                          * Note: We need to check if the MOS is dirty
6321                          * because we could have marked the MOS dirty
6322                          * without updating the uberblock (e.g. if we
6323                          * have sync tasks but no dirty user data).  We
6324                          * need to check the uberblock's rootbp because
6325                          * it is updated if we have synced out dirty
6326                          * data (though in this case the MOS will most
6327                          * likely also be dirty due to second order
6328                          * effects, we don't want to rely on that here).
6329                          */
6330                         if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6331                             !dmu_objset_is_dirty(mos, txg)) {
6332                                 /*
6333                                  * Nothing changed on the first pass,
6334                                  * therefore this TXG is a no-op.  Avoid
6335                                  * syncing deferred frees, so that we
6336                                  * can keep this TXG as a no-op.
6337                                  */
6338                                 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6339                                     txg));
6340                                 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6341                                 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6342                                 break;
6343                         }
6344                         spa_sync_deferred_frees(spa, tx);
6345                 }
6346 
6347         } while (dmu_objset_is_dirty(mos, txg));
6348 
6349         /*
6350          * Rewrite the vdev configuration (which includes the uberblock)
6351          * to commit the transaction group.
6352          *
6353          * If there are no dirty vdevs, we sync the uberblock to a few
6354          * random top-level vdevs that are known to be visible in the
6355          * config cache (see spa_vdev_add() for a complete description).
6356          * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6357          */
6358         for (;;) {
6359                 /*
6360                  * We hold SCL_STATE to prevent vdev open/close/etc.
6361                  * while we're attempting to write the vdev labels.
6362                  */
6363                 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6364 
6365                 if (list_is_empty(&spa->spa_config_dirty_list)) {
6366                         vdev_t *svd[SPA_DVAS_PER_BP];
6367                         int svdcount = 0;
6368                         int children = rvd->vdev_children;
6369                         int c0 = spa_get_random(children);
6370 
6371                         for (int c = 0; c < children; c++) {
6372                                 vd = rvd->vdev_child[(c0 + c) % children];
6373                                 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6374                                         continue;
6375                                 svd[svdcount++] = vd;
6376                                 if (svdcount == SPA_DVAS_PER_BP)
6377                                         break;
6378                         }
6379                         error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6380                         if (error != 0)
6381                                 error = vdev_config_sync(svd, svdcount, txg,
6382                                     B_TRUE);
6383                 } else {
6384                         error = vdev_config_sync(rvd->vdev_child,
6385                             rvd->vdev_children, txg, B_FALSE);
6386                         if (error != 0)
6387                                 error = vdev_config_sync(rvd->vdev_child,
6388                                     rvd->vdev_children, txg, B_TRUE);
6389                 }
6390 
6391                 if (error == 0)
6392                         spa->spa_last_synced_guid = rvd->vdev_guid;
6393 
6394                 spa_config_exit(spa, SCL_STATE, FTAG);
6395 
6396                 if (error == 0)
6397                         break;
6398                 zio_suspend(spa, NULL);
6399                 zio_resume_wait(spa);
6400         }
6401         dmu_tx_commit(tx);
6402 
6403         VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6404 
6405         /*
6406          * Clear the dirty config list.
6407          */
6408         while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6409                 vdev_config_clean(vd);
6410 
6411         /*
6412          * Now that the new config has synced transactionally,
6413          * let it become visible to the config cache.
6414          */
6415         if (spa->spa_config_syncing != NULL) {
6416                 spa_config_set(spa, spa->spa_config_syncing);
6417                 spa->spa_config_txg = txg;
6418                 spa->spa_config_syncing = NULL;
6419         }
6420 
6421         spa->spa_ubsync = spa->spa_uberblock;
6422 
6423         dsl_pool_sync_done(dp, txg);
6424 
6425         /*
6426          * Update usable space statistics.
6427          */
6428         while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6429                 vdev_sync_done(vd, txg);
6430 
6431         spa_update_dspace(spa);
6432 
6433         /*
6434          * It had better be the case that we didn't dirty anything
6435          * since vdev_config_sync().
6436          */
6437         ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6438         ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6439         ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6440 
6441         spa->spa_sync_pass = 0;
6442 
6443         spa_config_exit(spa, SCL_CONFIG, FTAG);
6444 
6445         spa_handle_ignored_writes(spa);
6446 
6447         /*
6448          * If any async tasks have been requested, kick them off.
6449          */
6450         spa_async_dispatch(spa);
6451 }
6452 
6453 /*
6454  * Sync all pools.  We don't want to hold the namespace lock across these
6455  * operations, so we take a reference on the spa_t and drop the lock during the
6456  * sync.
6457  */
6458 void
6459 spa_sync_allpools(void)
6460 {
6461         spa_t *spa = NULL;
6462         mutex_enter(&spa_namespace_lock);
6463         while ((spa = spa_next(spa)) != NULL) {
6464                 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6465                     !spa_writeable(spa) || spa_suspended(spa))
6466                         continue;
6467                 spa_open_ref(spa, FTAG);
6468                 mutex_exit(&spa_namespace_lock);
6469                 txg_wait_synced(spa_get_dsl(spa), 0);
6470                 mutex_enter(&spa_namespace_lock);
6471                 spa_close(spa, FTAG);
6472         }
6473         mutex_exit(&spa_namespace_lock);
6474 }
6475 
6476 /*
6477  * ==========================================================================
6478  * Miscellaneous routines
6479  * ==========================================================================
6480  */
6481 
6482 /*
6483  * Remove all pools in the system.
6484  */
6485 void
6486 spa_evict_all(void)
6487 {
6488         spa_t *spa;
6489 
6490         /*
6491          * Remove all cached state.  All pools should be closed now,
6492          * so every spa in the AVL tree should be unreferenced.
6493          */
6494         mutex_enter(&spa_namespace_lock);
6495         while ((spa = spa_next(NULL)) != NULL) {
6496                 /*
6497                  * Stop async tasks.  The async thread may need to detach
6498                  * a device that's been replaced, which requires grabbing
6499                  * spa_namespace_lock, so we must drop it here.
6500                  */
6501                 spa_open_ref(spa, FTAG);
6502                 mutex_exit(&spa_namespace_lock);
6503                 spa_async_suspend(spa);
6504                 mutex_enter(&spa_namespace_lock);
6505                 spa_close(spa, FTAG);
6506 
6507                 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6508                         spa_unload(spa);
6509                         spa_deactivate(spa);
6510                 }
6511                 spa_remove(spa);
6512         }
6513         mutex_exit(&spa_namespace_lock);
6514 }
6515 
6516 vdev_t *
6517 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6518 {
6519         vdev_t *vd;
6520         int i;
6521 
6522         if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6523                 return (vd);
6524 
6525         if (aux) {
6526                 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6527                         vd = spa->spa_l2cache.sav_vdevs[i];
6528                         if (vd->vdev_guid == guid)
6529                                 return (vd);
6530                 }
6531 
6532                 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6533                         vd = spa->spa_spares.sav_vdevs[i];
6534                         if (vd->vdev_guid == guid)
6535                                 return (vd);
6536                 }
6537         }
6538 
6539         return (NULL);
6540 }
6541 
6542 void
6543 spa_upgrade(spa_t *spa, uint64_t version)
6544 {
6545         ASSERT(spa_writeable(spa));
6546 
6547         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6548 
6549         /*
6550          * This should only be called for a non-faulted pool, and since a
6551          * future version would result in an unopenable pool, this shouldn't be
6552          * possible.
6553          */
6554         ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6555         ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6556 
6557         spa->spa_uberblock.ub_version = version;
6558         vdev_config_dirty(spa->spa_root_vdev);
6559 
6560         spa_config_exit(spa, SCL_ALL, FTAG);
6561 
6562         txg_wait_synced(spa_get_dsl(spa), 0);
6563 }
6564 
6565 boolean_t
6566 spa_has_spare(spa_t *spa, uint64_t guid)
6567 {
6568         int i;
6569         uint64_t spareguid;
6570         spa_aux_vdev_t *sav = &spa->spa_spares;
6571 
6572         for (i = 0; i < sav->sav_count; i++)
6573                 if (sav->sav_vdevs[i]->vdev_guid == guid)
6574                         return (B_TRUE);
6575 
6576         for (i = 0; i < sav->sav_npending; i++) {
6577                 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6578                     &spareguid) == 0 && spareguid == guid)
6579                         return (B_TRUE);
6580         }
6581 
6582         return (B_FALSE);
6583 }
6584 
6585 /*
6586  * Check if a pool has an active shared spare device.
6587  * Note: reference count of an active spare is 2, as a spare and as a replace
6588  */
6589 static boolean_t
6590 spa_has_active_shared_spare(spa_t *spa)
6591 {
6592         int i, refcnt;
6593         uint64_t pool;
6594         spa_aux_vdev_t *sav = &spa->spa_spares;
6595 
6596         for (i = 0; i < sav->sav_count; i++) {
6597                 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6598                     &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6599                     refcnt > 2)
6600                         return (B_TRUE);
6601         }
6602 
6603         return (B_FALSE);
6604 }
6605 
6606 /*
6607  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6608  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6609  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6610  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6611  * or zdb as real changes.
6612  */
6613 void
6614 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6615 {
6616 #ifdef _KERNEL
6617         sysevent_t              *ev;
6618         sysevent_attr_list_t    *attr = NULL;
6619         sysevent_value_t        value;
6620         sysevent_id_t           eid;
6621 
6622         ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6623             SE_SLEEP);
6624 
6625         value.value_type = SE_DATA_TYPE_STRING;
6626         value.value.sv_string = spa_name(spa);
6627         if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6628                 goto done;
6629 
6630         value.value_type = SE_DATA_TYPE_UINT64;
6631         value.value.sv_uint64 = spa_guid(spa);
6632         if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6633                 goto done;
6634 
6635         if (vd) {
6636                 value.value_type = SE_DATA_TYPE_UINT64;
6637                 value.value.sv_uint64 = vd->vdev_guid;
6638                 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6639                     SE_SLEEP) != 0)
6640                         goto done;
6641 
6642                 if (vd->vdev_path) {
6643                         value.value_type = SE_DATA_TYPE_STRING;
6644                         value.value.sv_string = vd->vdev_path;
6645                         if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6646                             &value, SE_SLEEP) != 0)
6647                                 goto done;
6648                 }
6649         }
6650 
6651         if (sysevent_attach_attributes(ev, attr) != 0)
6652                 goto done;
6653         attr = NULL;
6654 
6655         (void) log_sysevent(ev, SE_SLEEP, &eid);
6656 
6657 done:
6658         if (attr)
6659                 sysevent_free_attr(attr);
6660         sysevent_free(ev);
6661 #endif
6662 }