1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 */
28
29 /*
30 * SPA: Storage Pool Allocator
31 *
32 * This file contains all the routines used when modifying on-disk SPA state.
33 * This includes opening, importing, destroying, exporting a pool, and syncing a
34 * pool.
35 */
36
37 #include <sys/zfs_context.h>
38 #include <sys/fm/fs/zfs.h>
39 #include <sys/spa_impl.h>
40 #include <sys/zio.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu.h>
43 #include <sys/dmu_tx.h>
44 #include <sys/zap.h>
45 #include <sys/zil.h>
46 #include <sys/ddt.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/metaslab.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/uberblock_impl.h>
51 #include <sys/txg.h>
52 #include <sys/avl.h>
53 #include <sys/dmu_traverse.h>
54 #include <sys/dmu_objset.h>
55 #include <sys/unique.h>
56 #include <sys/dsl_pool.h>
57 #include <sys/dsl_dataset.h>
58 #include <sys/dsl_dir.h>
59 #include <sys/dsl_prop.h>
60 #include <sys/dsl_synctask.h>
61 #include <sys/fs/zfs.h>
62 #include <sys/arc.h>
63 #include <sys/callb.h>
64 #include <sys/systeminfo.h>
65 #include <sys/spa_boot.h>
66 #include <sys/zfs_ioctl.h>
67 #include <sys/dsl_scan.h>
68 #include <sys/zfeature.h>
69 #include <sys/dsl_destroy.h>
70
71 #ifdef _KERNEL
72 #include <sys/bootprops.h>
73 #include <sys/callb.h>
74 #include <sys/cpupart.h>
75 #include <sys/pool.h>
76 #include <sys/sysdc.h>
77 #include <sys/zone.h>
78 #endif /* _KERNEL */
79
80 #include "zfs_prop.h"
81 #include "zfs_comutil.h"
82
83 /*
84 * The interval, in seconds, at which failed configuration cache file writes
85 * should be retried.
86 */
87 static int zfs_ccw_retry_interval = 300;
88
89 typedef enum zti_modes {
90 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
91 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
92 ZTI_MODE_NULL, /* don't create a taskq */
93 ZTI_NMODES
94 } zti_modes_t;
95
96 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
97 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
98 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
99
100 #define ZTI_N(n) ZTI_P(n, 1)
101 #define ZTI_ONE ZTI_N(1)
102
103 typedef struct zio_taskq_info {
104 zti_modes_t zti_mode;
105 uint_t zti_value;
106 uint_t zti_count;
107 } zio_taskq_info_t;
108
109 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
110 "issue", "issue_high", "intr", "intr_high"
111 };
112
113 /*
114 * This table defines the taskq settings for each ZFS I/O type. When
115 * initializing a pool, we use this table to create an appropriately sized
116 * taskq. Some operations are low volume and therefore have a small, static
117 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
118 * macros. Other operations process a large amount of data; the ZTI_BATCH
119 * macro causes us to create a taskq oriented for throughput. Some operations
120 * are so high frequency and short-lived that the taskq itself can become a a
121 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
122 * additional degree of parallelism specified by the number of threads per-
123 * taskq and the number of taskqs; when dispatching an event in this case, the
124 * particular taskq is chosen at random.
125 *
126 * The different taskq priorities are to handle the different contexts (issue
127 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
128 * need to be handled with minimum delay.
129 */
130 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
131 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
132 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
133 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
134 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
135 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
137 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
138 };
139
140 static void spa_sync_version(void *arg, dmu_tx_t *tx);
141 static void spa_sync_props(void *arg, dmu_tx_t *tx);
142 static boolean_t spa_has_active_shared_spare(spa_t *spa);
143 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
144 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
145 char **ereport);
146 static void spa_vdev_resilver_done(spa_t *spa);
147
148 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
149 id_t zio_taskq_psrset_bind = PS_NONE;
150 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
151 uint_t zio_taskq_basedc = 80; /* base duty cycle */
152
153 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
154 extern int zfs_sync_pass_deferred_free;
155
156 /*
157 * This (illegal) pool name is used when temporarily importing a spa_t in order
158 * to get the vdev stats associated with the imported devices.
159 */
160 #define TRYIMPORT_NAME "$import"
161
162 /*
163 * ==========================================================================
164 * SPA properties routines
165 * ==========================================================================
166 */
167
168 /*
169 * Add a (source=src, propname=propval) list to an nvlist.
170 */
171 static void
172 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
173 uint64_t intval, zprop_source_t src)
174 {
175 const char *propname = zpool_prop_to_name(prop);
176 nvlist_t *propval;
177
178 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
179 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
180
181 if (strval != NULL)
182 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
183 else
184 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
185
186 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
187 nvlist_free(propval);
188 }
189
190 /*
191 * Get property values from the spa configuration.
192 */
193 static void
194 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
195 {
196 vdev_t *rvd = spa->spa_root_vdev;
197 dsl_pool_t *pool = spa->spa_dsl_pool;
198 uint64_t size, alloc, cap, version;
199 zprop_source_t src = ZPROP_SRC_NONE;
200 spa_config_dirent_t *dp;
201 metaslab_class_t *mc = spa_normal_class(spa);
202
203 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
204
205 if (rvd != NULL) {
206 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
207 size = metaslab_class_get_space(spa_normal_class(spa));
208 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
209 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
210 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
211 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
212 size - alloc, src);
213
214 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
215 metaslab_class_fragmentation(mc), src);
216 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
217 metaslab_class_expandable_space(mc), src);
218 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
219 (spa_mode(spa) == FREAD), src);
220
221 cap = (size == 0) ? 0 : (alloc * 100 / size);
222 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
223
224 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
225 ddt_get_pool_dedup_ratio(spa), src);
226
227 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
228 rvd->vdev_state, src);
229
230 version = spa_version(spa);
231 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
232 src = ZPROP_SRC_DEFAULT;
233 else
234 src = ZPROP_SRC_LOCAL;
235 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
236 }
237
238 if (pool != NULL) {
239 /*
240 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
241 * when opening pools before this version freedir will be NULL.
242 */
243 if (pool->dp_free_dir != NULL) {
244 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
245 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
246 src);
247 } else {
248 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
249 NULL, 0, src);
250 }
251
252 if (pool->dp_leak_dir != NULL) {
253 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
254 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
255 src);
256 } else {
257 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
258 NULL, 0, src);
259 }
260 }
261
262 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
263
264 if (spa->spa_comment != NULL) {
265 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
266 0, ZPROP_SRC_LOCAL);
267 }
268
269 if (spa->spa_root != NULL)
270 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
271 0, ZPROP_SRC_LOCAL);
272
273 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
274 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
275 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
276 } else {
277 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
278 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
279 }
280
281 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
282 if (dp->scd_path == NULL) {
283 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
284 "none", 0, ZPROP_SRC_LOCAL);
285 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
286 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
287 dp->scd_path, 0, ZPROP_SRC_LOCAL);
288 }
289 }
290 }
291
292 /*
293 * Get zpool property values.
294 */
295 int
296 spa_prop_get(spa_t *spa, nvlist_t **nvp)
297 {
298 objset_t *mos = spa->spa_meta_objset;
299 zap_cursor_t zc;
300 zap_attribute_t za;
301 int err;
302
303 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
304
305 mutex_enter(&spa->spa_props_lock);
306
307 /*
308 * Get properties from the spa config.
309 */
310 spa_prop_get_config(spa, nvp);
311
312 /* If no pool property object, no more prop to get. */
313 if (mos == NULL || spa->spa_pool_props_object == 0) {
314 mutex_exit(&spa->spa_props_lock);
315 return (0);
316 }
317
318 /*
319 * Get properties from the MOS pool property object.
320 */
321 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
322 (err = zap_cursor_retrieve(&zc, &za)) == 0;
323 zap_cursor_advance(&zc)) {
324 uint64_t intval = 0;
325 char *strval = NULL;
326 zprop_source_t src = ZPROP_SRC_DEFAULT;
327 zpool_prop_t prop;
328
329 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
330 continue;
331
332 switch (za.za_integer_length) {
333 case 8:
334 /* integer property */
335 if (za.za_first_integer !=
336 zpool_prop_default_numeric(prop))
337 src = ZPROP_SRC_LOCAL;
338
339 if (prop == ZPOOL_PROP_BOOTFS) {
340 dsl_pool_t *dp;
341 dsl_dataset_t *ds = NULL;
342
343 dp = spa_get_dsl(spa);
344 dsl_pool_config_enter(dp, FTAG);
345 if (err = dsl_dataset_hold_obj(dp,
346 za.za_first_integer, FTAG, &ds)) {
347 dsl_pool_config_exit(dp, FTAG);
348 break;
349 }
350
351 strval = kmem_alloc(
352 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
353 KM_SLEEP);
354 dsl_dataset_name(ds, strval);
355 dsl_dataset_rele(ds, FTAG);
356 dsl_pool_config_exit(dp, FTAG);
357 } else {
358 strval = NULL;
359 intval = za.za_first_integer;
360 }
361
362 spa_prop_add_list(*nvp, prop, strval, intval, src);
363
364 if (strval != NULL)
365 kmem_free(strval,
366 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
367
368 break;
369
370 case 1:
371 /* string property */
372 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
373 err = zap_lookup(mos, spa->spa_pool_props_object,
374 za.za_name, 1, za.za_num_integers, strval);
375 if (err) {
376 kmem_free(strval, za.za_num_integers);
377 break;
378 }
379 spa_prop_add_list(*nvp, prop, strval, 0, src);
380 kmem_free(strval, za.za_num_integers);
381 break;
382
383 default:
384 break;
385 }
386 }
387 zap_cursor_fini(&zc);
388 mutex_exit(&spa->spa_props_lock);
389 out:
390 if (err && err != ENOENT) {
391 nvlist_free(*nvp);
392 *nvp = NULL;
393 return (err);
394 }
395
396 return (0);
397 }
398
399 /*
400 * Validate the given pool properties nvlist and modify the list
401 * for the property values to be set.
402 */
403 static int
404 spa_prop_validate(spa_t *spa, nvlist_t *props)
405 {
406 nvpair_t *elem;
407 int error = 0, reset_bootfs = 0;
408 uint64_t objnum = 0;
409 boolean_t has_feature = B_FALSE;
410
411 elem = NULL;
412 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
413 uint64_t intval;
414 char *strval, *slash, *check, *fname;
415 const char *propname = nvpair_name(elem);
416 zpool_prop_t prop = zpool_name_to_prop(propname);
417
418 switch (prop) {
419 case ZPROP_INVAL:
420 if (!zpool_prop_feature(propname)) {
421 error = SET_ERROR(EINVAL);
422 break;
423 }
424
425 /*
426 * Sanitize the input.
427 */
428 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
429 error = SET_ERROR(EINVAL);
430 break;
431 }
432
433 if (nvpair_value_uint64(elem, &intval) != 0) {
434 error = SET_ERROR(EINVAL);
435 break;
436 }
437
438 if (intval != 0) {
439 error = SET_ERROR(EINVAL);
440 break;
441 }
442
443 fname = strchr(propname, '@') + 1;
444 if (zfeature_lookup_name(fname, NULL) != 0) {
445 error = SET_ERROR(EINVAL);
446 break;
447 }
448
449 has_feature = B_TRUE;
450 break;
451
452 case ZPOOL_PROP_VERSION:
453 error = nvpair_value_uint64(elem, &intval);
454 if (!error &&
455 (intval < spa_version(spa) ||
456 intval > SPA_VERSION_BEFORE_FEATURES ||
457 has_feature))
458 error = SET_ERROR(EINVAL);
459 break;
460
461 case ZPOOL_PROP_DELEGATION:
462 case ZPOOL_PROP_AUTOREPLACE:
463 case ZPOOL_PROP_LISTSNAPS:
464 case ZPOOL_PROP_AUTOEXPAND:
465 error = nvpair_value_uint64(elem, &intval);
466 if (!error && intval > 1)
467 error = SET_ERROR(EINVAL);
468 break;
469
470 case ZPOOL_PROP_BOOTFS:
471 /*
472 * If the pool version is less than SPA_VERSION_BOOTFS,
473 * or the pool is still being created (version == 0),
474 * the bootfs property cannot be set.
475 */
476 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
477 error = SET_ERROR(ENOTSUP);
478 break;
479 }
480
481 /*
482 * Make sure the vdev config is bootable
483 */
484 if (!vdev_is_bootable(spa->spa_root_vdev)) {
485 error = SET_ERROR(ENOTSUP);
486 break;
487 }
488
489 reset_bootfs = 1;
490
491 error = nvpair_value_string(elem, &strval);
492
493 if (!error) {
494 objset_t *os;
495 uint64_t propval;
496
497 if (strval == NULL || strval[0] == '\0') {
498 objnum = zpool_prop_default_numeric(
499 ZPOOL_PROP_BOOTFS);
500 break;
501 }
502
503 if (error = dmu_objset_hold(strval, FTAG, &os))
504 break;
505
506 /*
507 * Must be ZPL, and its property settings
508 * must be supported by GRUB (compression
509 * is not gzip, and large blocks are not used).
510 */
511
512 if (dmu_objset_type(os) != DMU_OST_ZFS) {
513 error = SET_ERROR(ENOTSUP);
514 } else if ((error =
515 dsl_prop_get_int_ds(dmu_objset_ds(os),
516 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
517 &propval)) == 0 &&
518 !BOOTFS_COMPRESS_VALID(propval)) {
519 error = SET_ERROR(ENOTSUP);
520 } else if ((error =
521 dsl_prop_get_int_ds(dmu_objset_ds(os),
522 zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
523 &propval)) == 0 &&
524 propval > SPA_OLD_MAXBLOCKSIZE) {
525 error = SET_ERROR(ENOTSUP);
526 } else {
527 objnum = dmu_objset_id(os);
528 }
529 dmu_objset_rele(os, FTAG);
530 }
531 break;
532
533 case ZPOOL_PROP_FAILUREMODE:
534 error = nvpair_value_uint64(elem, &intval);
535 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
536 intval > ZIO_FAILURE_MODE_PANIC))
537 error = SET_ERROR(EINVAL);
538
539 /*
540 * This is a special case which only occurs when
541 * the pool has completely failed. This allows
542 * the user to change the in-core failmode property
543 * without syncing it out to disk (I/Os might
544 * currently be blocked). We do this by returning
545 * EIO to the caller (spa_prop_set) to trick it
546 * into thinking we encountered a property validation
547 * error.
548 */
549 if (!error && spa_suspended(spa)) {
550 spa->spa_failmode = intval;
551 error = SET_ERROR(EIO);
552 }
553 break;
554
555 case ZPOOL_PROP_CACHEFILE:
556 if ((error = nvpair_value_string(elem, &strval)) != 0)
557 break;
558
559 if (strval[0] == '\0')
560 break;
561
562 if (strcmp(strval, "none") == 0)
563 break;
564
565 if (strval[0] != '/') {
566 error = SET_ERROR(EINVAL);
567 break;
568 }
569
570 slash = strrchr(strval, '/');
571 ASSERT(slash != NULL);
572
573 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
574 strcmp(slash, "/..") == 0)
575 error = SET_ERROR(EINVAL);
576 break;
577
578 case ZPOOL_PROP_COMMENT:
579 if ((error = nvpair_value_string(elem, &strval)) != 0)
580 break;
581 for (check = strval; *check != '\0'; check++) {
582 /*
583 * The kernel doesn't have an easy isprint()
584 * check. For this kernel check, we merely
585 * check ASCII apart from DEL. Fix this if
586 * there is an easy-to-use kernel isprint().
587 */
588 if (*check >= 0x7f) {
589 error = SET_ERROR(EINVAL);
590 break;
591 }
592 check++;
593 }
594 if (strlen(strval) > ZPROP_MAX_COMMENT)
595 error = E2BIG;
596 break;
597
598 case ZPOOL_PROP_DEDUPDITTO:
599 if (spa_version(spa) < SPA_VERSION_DEDUP)
600 error = SET_ERROR(ENOTSUP);
601 else
602 error = nvpair_value_uint64(elem, &intval);
603 if (error == 0 &&
604 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
605 error = SET_ERROR(EINVAL);
606 break;
607 }
608
609 if (error)
610 break;
611 }
612
613 if (!error && reset_bootfs) {
614 error = nvlist_remove(props,
615 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
616
617 if (!error) {
618 error = nvlist_add_uint64(props,
619 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
620 }
621 }
622
623 return (error);
624 }
625
626 void
627 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
628 {
629 char *cachefile;
630 spa_config_dirent_t *dp;
631
632 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
633 &cachefile) != 0)
634 return;
635
636 dp = kmem_alloc(sizeof (spa_config_dirent_t),
637 KM_SLEEP);
638
639 if (cachefile[0] == '\0')
640 dp->scd_path = spa_strdup(spa_config_path);
641 else if (strcmp(cachefile, "none") == 0)
642 dp->scd_path = NULL;
643 else
644 dp->scd_path = spa_strdup(cachefile);
645
646 list_insert_head(&spa->spa_config_list, dp);
647 if (need_sync)
648 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
649 }
650
651 int
652 spa_prop_set(spa_t *spa, nvlist_t *nvp)
653 {
654 int error;
655 nvpair_t *elem = NULL;
656 boolean_t need_sync = B_FALSE;
657
658 if ((error = spa_prop_validate(spa, nvp)) != 0)
659 return (error);
660
661 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
662 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
663
664 if (prop == ZPOOL_PROP_CACHEFILE ||
665 prop == ZPOOL_PROP_ALTROOT ||
666 prop == ZPOOL_PROP_READONLY)
667 continue;
668
669 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
670 uint64_t ver;
671
672 if (prop == ZPOOL_PROP_VERSION) {
673 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
674 } else {
675 ASSERT(zpool_prop_feature(nvpair_name(elem)));
676 ver = SPA_VERSION_FEATURES;
677 need_sync = B_TRUE;
678 }
679
680 /* Save time if the version is already set. */
681 if (ver == spa_version(spa))
682 continue;
683
684 /*
685 * In addition to the pool directory object, we might
686 * create the pool properties object, the features for
687 * read object, the features for write object, or the
688 * feature descriptions object.
689 */
690 error = dsl_sync_task(spa->spa_name, NULL,
691 spa_sync_version, &ver,
692 6, ZFS_SPACE_CHECK_RESERVED);
693 if (error)
694 return (error);
695 continue;
696 }
697
698 need_sync = B_TRUE;
699 break;
700 }
701
702 if (need_sync) {
703 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
704 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
705 }
706
707 return (0);
708 }
709
710 /*
711 * If the bootfs property value is dsobj, clear it.
712 */
713 void
714 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
715 {
716 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
717 VERIFY(zap_remove(spa->spa_meta_objset,
718 spa->spa_pool_props_object,
719 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
720 spa->spa_bootfs = 0;
721 }
722 }
723
724 /*ARGSUSED*/
725 static int
726 spa_change_guid_check(void *arg, dmu_tx_t *tx)
727 {
728 uint64_t *newguid = arg;
729 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
730 vdev_t *rvd = spa->spa_root_vdev;
731 uint64_t vdev_state;
732
733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
734 vdev_state = rvd->vdev_state;
735 spa_config_exit(spa, SCL_STATE, FTAG);
736
737 if (vdev_state != VDEV_STATE_HEALTHY)
738 return (SET_ERROR(ENXIO));
739
740 ASSERT3U(spa_guid(spa), !=, *newguid);
741
742 return (0);
743 }
744
745 static void
746 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
747 {
748 uint64_t *newguid = arg;
749 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
750 uint64_t oldguid;
751 vdev_t *rvd = spa->spa_root_vdev;
752
753 oldguid = spa_guid(spa);
754
755 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
756 rvd->vdev_guid = *newguid;
757 rvd->vdev_guid_sum += (*newguid - oldguid);
758 vdev_config_dirty(rvd);
759 spa_config_exit(spa, SCL_STATE, FTAG);
760
761 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
762 oldguid, *newguid);
763 }
764
765 /*
766 * Change the GUID for the pool. This is done so that we can later
767 * re-import a pool built from a clone of our own vdevs. We will modify
768 * the root vdev's guid, our own pool guid, and then mark all of our
769 * vdevs dirty. Note that we must make sure that all our vdevs are
770 * online when we do this, or else any vdevs that weren't present
771 * would be orphaned from our pool. We are also going to issue a
772 * sysevent to update any watchers.
773 */
774 int
775 spa_change_guid(spa_t *spa)
776 {
777 int error;
778 uint64_t guid;
779
780 mutex_enter(&spa->spa_vdev_top_lock);
781 mutex_enter(&spa_namespace_lock);
782 guid = spa_generate_guid(NULL);
783
784 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
785 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
786
787 if (error == 0) {
788 spa_config_sync(spa, B_FALSE, B_TRUE);
789 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
790 }
791
792 mutex_exit(&spa_namespace_lock);
793 mutex_exit(&spa->spa_vdev_top_lock);
794
795 return (error);
796 }
797
798 /*
799 * ==========================================================================
800 * SPA state manipulation (open/create/destroy/import/export)
801 * ==========================================================================
802 */
803
804 static int
805 spa_error_entry_compare(const void *a, const void *b)
806 {
807 spa_error_entry_t *sa = (spa_error_entry_t *)a;
808 spa_error_entry_t *sb = (spa_error_entry_t *)b;
809 int ret;
810
811 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
812 sizeof (zbookmark_phys_t));
813
814 if (ret < 0)
815 return (-1);
816 else if (ret > 0)
817 return (1);
818 else
819 return (0);
820 }
821
822 /*
823 * Utility function which retrieves copies of the current logs and
824 * re-initializes them in the process.
825 */
826 void
827 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
828 {
829 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
830
831 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
832 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
833
834 avl_create(&spa->spa_errlist_scrub,
835 spa_error_entry_compare, sizeof (spa_error_entry_t),
836 offsetof(spa_error_entry_t, se_avl));
837 avl_create(&spa->spa_errlist_last,
838 spa_error_entry_compare, sizeof (spa_error_entry_t),
839 offsetof(spa_error_entry_t, se_avl));
840 }
841
842 static void
843 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
844 {
845 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
846 enum zti_modes mode = ztip->zti_mode;
847 uint_t value = ztip->zti_value;
848 uint_t count = ztip->zti_count;
849 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
850 char name[32];
851 uint_t flags = 0;
852 boolean_t batch = B_FALSE;
853
854 if (mode == ZTI_MODE_NULL) {
855 tqs->stqs_count = 0;
856 tqs->stqs_taskq = NULL;
857 return;
858 }
859
860 ASSERT3U(count, >, 0);
861
862 tqs->stqs_count = count;
863 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
864
865 switch (mode) {
866 case ZTI_MODE_FIXED:
867 ASSERT3U(value, >=, 1);
868 value = MAX(value, 1);
869 break;
870
871 case ZTI_MODE_BATCH:
872 batch = B_TRUE;
873 flags |= TASKQ_THREADS_CPU_PCT;
874 value = zio_taskq_batch_pct;
875 break;
876
877 default:
878 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
879 "spa_activate()",
880 zio_type_name[t], zio_taskq_types[q], mode, value);
881 break;
882 }
883
884 for (uint_t i = 0; i < count; i++) {
885 taskq_t *tq;
886
887 if (count > 1) {
888 (void) snprintf(name, sizeof (name), "%s_%s_%u",
889 zio_type_name[t], zio_taskq_types[q], i);
890 } else {
891 (void) snprintf(name, sizeof (name), "%s_%s",
892 zio_type_name[t], zio_taskq_types[q]);
893 }
894
895 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
896 if (batch)
897 flags |= TASKQ_DC_BATCH;
898
899 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
900 spa->spa_proc, zio_taskq_basedc, flags);
901 } else {
902 pri_t pri = maxclsyspri;
903 /*
904 * The write issue taskq can be extremely CPU
905 * intensive. Run it at slightly lower priority
906 * than the other taskqs.
907 */
908 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
909 pri--;
910
911 tq = taskq_create_proc(name, value, pri, 50,
912 INT_MAX, spa->spa_proc, flags);
913 }
914
915 tqs->stqs_taskq[i] = tq;
916 }
917 }
918
919 static void
920 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
921 {
922 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
923
924 if (tqs->stqs_taskq == NULL) {
925 ASSERT0(tqs->stqs_count);
926 return;
927 }
928
929 for (uint_t i = 0; i < tqs->stqs_count; i++) {
930 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
931 taskq_destroy(tqs->stqs_taskq[i]);
932 }
933
934 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
935 tqs->stqs_taskq = NULL;
936 }
937
938 /*
939 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
940 * Note that a type may have multiple discrete taskqs to avoid lock contention
941 * on the taskq itself. In that case we choose which taskq at random by using
942 * the low bits of gethrtime().
943 */
944 void
945 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
946 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
947 {
948 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
949 taskq_t *tq;
950
951 ASSERT3P(tqs->stqs_taskq, !=, NULL);
952 ASSERT3U(tqs->stqs_count, !=, 0);
953
954 if (tqs->stqs_count == 1) {
955 tq = tqs->stqs_taskq[0];
956 } else {
957 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
958 }
959
960 taskq_dispatch_ent(tq, func, arg, flags, ent);
961 }
962
963 static void
964 spa_create_zio_taskqs(spa_t *spa)
965 {
966 for (int t = 0; t < ZIO_TYPES; t++) {
967 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
968 spa_taskqs_init(spa, t, q);
969 }
970 }
971 }
972
973 #ifdef _KERNEL
974 static void
975 spa_thread(void *arg)
976 {
977 callb_cpr_t cprinfo;
978
979 spa_t *spa = arg;
980 user_t *pu = PTOU(curproc);
981
982 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
983 spa->spa_name);
984
985 ASSERT(curproc != &p0);
986 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
987 "zpool-%s", spa->spa_name);
988 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
989
990 /* bind this thread to the requested psrset */
991 if (zio_taskq_psrset_bind != PS_NONE) {
992 pool_lock();
993 mutex_enter(&cpu_lock);
994 mutex_enter(&pidlock);
995 mutex_enter(&curproc->p_lock);
996
997 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
998 0, NULL, NULL) == 0) {
999 curthread->t_bind_pset = zio_taskq_psrset_bind;
1000 } else {
1001 cmn_err(CE_WARN,
1002 "Couldn't bind process for zfs pool \"%s\" to "
1003 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1004 }
1005
1006 mutex_exit(&curproc->p_lock);
1007 mutex_exit(&pidlock);
1008 mutex_exit(&cpu_lock);
1009 pool_unlock();
1010 }
1011
1012 if (zio_taskq_sysdc) {
1013 sysdc_thread_enter(curthread, 100, 0);
1014 }
1015
1016 spa->spa_proc = curproc;
1017 spa->spa_did = curthread->t_did;
1018
1019 spa_create_zio_taskqs(spa);
1020
1021 mutex_enter(&spa->spa_proc_lock);
1022 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1023
1024 spa->spa_proc_state = SPA_PROC_ACTIVE;
1025 cv_broadcast(&spa->spa_proc_cv);
1026
1027 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1028 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1029 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1030 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1031
1032 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1033 spa->spa_proc_state = SPA_PROC_GONE;
1034 spa->spa_proc = &p0;
1035 cv_broadcast(&spa->spa_proc_cv);
1036 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1037
1038 mutex_enter(&curproc->p_lock);
1039 lwp_exit();
1040 }
1041 #endif
1042
1043 /*
1044 * Activate an uninitialized pool.
1045 */
1046 static void
1047 spa_activate(spa_t *spa, int mode)
1048 {
1049 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1050
1051 spa->spa_state = POOL_STATE_ACTIVE;
1052 spa->spa_mode = mode;
1053
1054 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1055 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1056
1057 /* Try to create a covering process */
1058 mutex_enter(&spa->spa_proc_lock);
1059 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1060 ASSERT(spa->spa_proc == &p0);
1061 spa->spa_did = 0;
1062
1063 /* Only create a process if we're going to be around a while. */
1064 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1065 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1066 NULL, 0) == 0) {
1067 spa->spa_proc_state = SPA_PROC_CREATED;
1068 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1069 cv_wait(&spa->spa_proc_cv,
1070 &spa->spa_proc_lock);
1071 }
1072 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1073 ASSERT(spa->spa_proc != &p0);
1074 ASSERT(spa->spa_did != 0);
1075 } else {
1076 #ifdef _KERNEL
1077 cmn_err(CE_WARN,
1078 "Couldn't create process for zfs pool \"%s\"\n",
1079 spa->spa_name);
1080 #endif
1081 }
1082 }
1083 mutex_exit(&spa->spa_proc_lock);
1084
1085 /* If we didn't create a process, we need to create our taskqs. */
1086 if (spa->spa_proc == &p0) {
1087 spa_create_zio_taskqs(spa);
1088 }
1089
1090 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1091 offsetof(vdev_t, vdev_config_dirty_node));
1092 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1093 offsetof(objset_t, os_evicting_node));
1094 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1095 offsetof(vdev_t, vdev_state_dirty_node));
1096
1097 txg_list_create(&spa->spa_vdev_txg_list,
1098 offsetof(struct vdev, vdev_txg_node));
1099
1100 avl_create(&spa->spa_errlist_scrub,
1101 spa_error_entry_compare, sizeof (spa_error_entry_t),
1102 offsetof(spa_error_entry_t, se_avl));
1103 avl_create(&spa->spa_errlist_last,
1104 spa_error_entry_compare, sizeof (spa_error_entry_t),
1105 offsetof(spa_error_entry_t, se_avl));
1106 }
1107
1108 /*
1109 * Opposite of spa_activate().
1110 */
1111 static void
1112 spa_deactivate(spa_t *spa)
1113 {
1114 ASSERT(spa->spa_sync_on == B_FALSE);
1115 ASSERT(spa->spa_dsl_pool == NULL);
1116 ASSERT(spa->spa_root_vdev == NULL);
1117 ASSERT(spa->spa_async_zio_root == NULL);
1118 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1119
1120 spa_evicting_os_wait(spa);
1121
1122 txg_list_destroy(&spa->spa_vdev_txg_list);
1123
1124 list_destroy(&spa->spa_config_dirty_list);
1125 list_destroy(&spa->spa_evicting_os_list);
1126 list_destroy(&spa->spa_state_dirty_list);
1127
1128 for (int t = 0; t < ZIO_TYPES; t++) {
1129 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1130 spa_taskqs_fini(spa, t, q);
1131 }
1132 }
1133
1134 metaslab_class_destroy(spa->spa_normal_class);
1135 spa->spa_normal_class = NULL;
1136
1137 metaslab_class_destroy(spa->spa_log_class);
1138 spa->spa_log_class = NULL;
1139
1140 /*
1141 * If this was part of an import or the open otherwise failed, we may
1142 * still have errors left in the queues. Empty them just in case.
1143 */
1144 spa_errlog_drain(spa);
1145
1146 avl_destroy(&spa->spa_errlist_scrub);
1147 avl_destroy(&spa->spa_errlist_last);
1148
1149 spa->spa_state = POOL_STATE_UNINITIALIZED;
1150
1151 mutex_enter(&spa->spa_proc_lock);
1152 if (spa->spa_proc_state != SPA_PROC_NONE) {
1153 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1154 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1155 cv_broadcast(&spa->spa_proc_cv);
1156 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1157 ASSERT(spa->spa_proc != &p0);
1158 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1159 }
1160 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1161 spa->spa_proc_state = SPA_PROC_NONE;
1162 }
1163 ASSERT(spa->spa_proc == &p0);
1164 mutex_exit(&spa->spa_proc_lock);
1165
1166 /*
1167 * We want to make sure spa_thread() has actually exited the ZFS
1168 * module, so that the module can't be unloaded out from underneath
1169 * it.
1170 */
1171 if (spa->spa_did != 0) {
1172 thread_join(spa->spa_did);
1173 spa->spa_did = 0;
1174 }
1175 }
1176
1177 /*
1178 * Verify a pool configuration, and construct the vdev tree appropriately. This
1179 * will create all the necessary vdevs in the appropriate layout, with each vdev
1180 * in the CLOSED state. This will prep the pool before open/creation/import.
1181 * All vdev validation is done by the vdev_alloc() routine.
1182 */
1183 static int
1184 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1185 uint_t id, int atype)
1186 {
1187 nvlist_t **child;
1188 uint_t children;
1189 int error;
1190
1191 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1192 return (error);
1193
1194 if ((*vdp)->vdev_ops->vdev_op_leaf)
1195 return (0);
1196
1197 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1198 &child, &children);
1199
1200 if (error == ENOENT)
1201 return (0);
1202
1203 if (error) {
1204 vdev_free(*vdp);
1205 *vdp = NULL;
1206 return (SET_ERROR(EINVAL));
1207 }
1208
1209 for (int c = 0; c < children; c++) {
1210 vdev_t *vd;
1211 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1212 atype)) != 0) {
1213 vdev_free(*vdp);
1214 *vdp = NULL;
1215 return (error);
1216 }
1217 }
1218
1219 ASSERT(*vdp != NULL);
1220
1221 return (0);
1222 }
1223
1224 /*
1225 * Opposite of spa_load().
1226 */
1227 static void
1228 spa_unload(spa_t *spa)
1229 {
1230 int i;
1231
1232 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1233
1234 /*
1235 * Stop async tasks.
1236 */
1237 spa_async_suspend(spa);
1238
1239 /*
1240 * Stop syncing.
1241 */
1242 if (spa->spa_sync_on) {
1243 txg_sync_stop(spa->spa_dsl_pool);
1244 spa->spa_sync_on = B_FALSE;
1245 }
1246
1247 /*
1248 * Wait for any outstanding async I/O to complete.
1249 */
1250 if (spa->spa_async_zio_root != NULL) {
1251 for (int i = 0; i < max_ncpus; i++)
1252 (void) zio_wait(spa->spa_async_zio_root[i]);
1253 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1254 spa->spa_async_zio_root = NULL;
1255 }
1256
1257 bpobj_close(&spa->spa_deferred_bpobj);
1258
1259 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1260
1261 /*
1262 * Close all vdevs.
1263 */
1264 if (spa->spa_root_vdev)
1265 vdev_free(spa->spa_root_vdev);
1266 ASSERT(spa->spa_root_vdev == NULL);
1267
1268 /*
1269 * Close the dsl pool.
1270 */
1271 if (spa->spa_dsl_pool) {
1272 dsl_pool_close(spa->spa_dsl_pool);
1273 spa->spa_dsl_pool = NULL;
1274 spa->spa_meta_objset = NULL;
1275 }
1276
1277 ddt_unload(spa);
1278
1279
1280 /*
1281 * Drop and purge level 2 cache
1282 */
1283 spa_l2cache_drop(spa);
1284
1285 for (i = 0; i < spa->spa_spares.sav_count; i++)
1286 vdev_free(spa->spa_spares.sav_vdevs[i]);
1287 if (spa->spa_spares.sav_vdevs) {
1288 kmem_free(spa->spa_spares.sav_vdevs,
1289 spa->spa_spares.sav_count * sizeof (void *));
1290 spa->spa_spares.sav_vdevs = NULL;
1291 }
1292 if (spa->spa_spares.sav_config) {
1293 nvlist_free(spa->spa_spares.sav_config);
1294 spa->spa_spares.sav_config = NULL;
1295 }
1296 spa->spa_spares.sav_count = 0;
1297
1298 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1299 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1300 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1301 }
1302 if (spa->spa_l2cache.sav_vdevs) {
1303 kmem_free(spa->spa_l2cache.sav_vdevs,
1304 spa->spa_l2cache.sav_count * sizeof (void *));
1305 spa->spa_l2cache.sav_vdevs = NULL;
1306 }
1307 if (spa->spa_l2cache.sav_config) {
1308 nvlist_free(spa->spa_l2cache.sav_config);
1309 spa->spa_l2cache.sav_config = NULL;
1310 }
1311 spa->spa_l2cache.sav_count = 0;
1312
1313 spa->spa_async_suspended = 0;
1314
1315 if (spa->spa_comment != NULL) {
1316 spa_strfree(spa->spa_comment);
1317 spa->spa_comment = NULL;
1318 }
1319
1320 spa_config_exit(spa, SCL_ALL, FTAG);
1321 }
1322
1323 /*
1324 * Load (or re-load) the current list of vdevs describing the active spares for
1325 * this pool. When this is called, we have some form of basic information in
1326 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1327 * then re-generate a more complete list including status information.
1328 */
1329 static void
1330 spa_load_spares(spa_t *spa)
1331 {
1332 nvlist_t **spares;
1333 uint_t nspares;
1334 int i;
1335 vdev_t *vd, *tvd;
1336
1337 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1338
1339 /*
1340 * First, close and free any existing spare vdevs.
1341 */
1342 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1343 vd = spa->spa_spares.sav_vdevs[i];
1344
1345 /* Undo the call to spa_activate() below */
1346 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1347 B_FALSE)) != NULL && tvd->vdev_isspare)
1348 spa_spare_remove(tvd);
1349 vdev_close(vd);
1350 vdev_free(vd);
1351 }
1352
1353 if (spa->spa_spares.sav_vdevs)
1354 kmem_free(spa->spa_spares.sav_vdevs,
1355 spa->spa_spares.sav_count * sizeof (void *));
1356
1357 if (spa->spa_spares.sav_config == NULL)
1358 nspares = 0;
1359 else
1360 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1361 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1362
1363 spa->spa_spares.sav_count = (int)nspares;
1364 spa->spa_spares.sav_vdevs = NULL;
1365
1366 if (nspares == 0)
1367 return;
1368
1369 /*
1370 * Construct the array of vdevs, opening them to get status in the
1371 * process. For each spare, there is potentially two different vdev_t
1372 * structures associated with it: one in the list of spares (used only
1373 * for basic validation purposes) and one in the active vdev
1374 * configuration (if it's spared in). During this phase we open and
1375 * validate each vdev on the spare list. If the vdev also exists in the
1376 * active configuration, then we also mark this vdev as an active spare.
1377 */
1378 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1379 KM_SLEEP);
1380 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1381 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1382 VDEV_ALLOC_SPARE) == 0);
1383 ASSERT(vd != NULL);
1384
1385 spa->spa_spares.sav_vdevs[i] = vd;
1386
1387 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1388 B_FALSE)) != NULL) {
1389 if (!tvd->vdev_isspare)
1390 spa_spare_add(tvd);
1391
1392 /*
1393 * We only mark the spare active if we were successfully
1394 * able to load the vdev. Otherwise, importing a pool
1395 * with a bad active spare would result in strange
1396 * behavior, because multiple pool would think the spare
1397 * is actively in use.
1398 *
1399 * There is a vulnerability here to an equally bizarre
1400 * circumstance, where a dead active spare is later
1401 * brought back to life (onlined or otherwise). Given
1402 * the rarity of this scenario, and the extra complexity
1403 * it adds, we ignore the possibility.
1404 */
1405 if (!vdev_is_dead(tvd))
1406 spa_spare_activate(tvd);
1407 }
1408
1409 vd->vdev_top = vd;
1410 vd->vdev_aux = &spa->spa_spares;
1411
1412 if (vdev_open(vd) != 0)
1413 continue;
1414
1415 if (vdev_validate_aux(vd) == 0)
1416 spa_spare_add(vd);
1417 }
1418
1419 /*
1420 * Recompute the stashed list of spares, with status information
1421 * this time.
1422 */
1423 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1424 DATA_TYPE_NVLIST_ARRAY) == 0);
1425
1426 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1427 KM_SLEEP);
1428 for (i = 0; i < spa->spa_spares.sav_count; i++)
1429 spares[i] = vdev_config_generate(spa,
1430 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1431 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1432 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1433 for (i = 0; i < spa->spa_spares.sav_count; i++)
1434 nvlist_free(spares[i]);
1435 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1436 }
1437
1438 /*
1439 * Load (or re-load) the current list of vdevs describing the active l2cache for
1440 * this pool. When this is called, we have some form of basic information in
1441 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1442 * then re-generate a more complete list including status information.
1443 * Devices which are already active have their details maintained, and are
1444 * not re-opened.
1445 */
1446 static void
1447 spa_load_l2cache(spa_t *spa)
1448 {
1449 nvlist_t **l2cache;
1450 uint_t nl2cache;
1451 int i, j, oldnvdevs;
1452 uint64_t guid;
1453 vdev_t *vd, **oldvdevs, **newvdevs;
1454 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1455
1456 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1457
1458 if (sav->sav_config != NULL) {
1459 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1460 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1461 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1462 } else {
1463 nl2cache = 0;
1464 newvdevs = NULL;
1465 }
1466
1467 oldvdevs = sav->sav_vdevs;
1468 oldnvdevs = sav->sav_count;
1469 sav->sav_vdevs = NULL;
1470 sav->sav_count = 0;
1471
1472 /*
1473 * Process new nvlist of vdevs.
1474 */
1475 for (i = 0; i < nl2cache; i++) {
1476 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1477 &guid) == 0);
1478
1479 newvdevs[i] = NULL;
1480 for (j = 0; j < oldnvdevs; j++) {
1481 vd = oldvdevs[j];
1482 if (vd != NULL && guid == vd->vdev_guid) {
1483 /*
1484 * Retain previous vdev for add/remove ops.
1485 */
1486 newvdevs[i] = vd;
1487 oldvdevs[j] = NULL;
1488 break;
1489 }
1490 }
1491
1492 if (newvdevs[i] == NULL) {
1493 /*
1494 * Create new vdev
1495 */
1496 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1497 VDEV_ALLOC_L2CACHE) == 0);
1498 ASSERT(vd != NULL);
1499 newvdevs[i] = vd;
1500
1501 /*
1502 * Commit this vdev as an l2cache device,
1503 * even if it fails to open.
1504 */
1505 spa_l2cache_add(vd);
1506
1507 vd->vdev_top = vd;
1508 vd->vdev_aux = sav;
1509
1510 spa_l2cache_activate(vd);
1511
1512 if (vdev_open(vd) != 0)
1513 continue;
1514
1515 (void) vdev_validate_aux(vd);
1516
1517 if (!vdev_is_dead(vd))
1518 l2arc_add_vdev(spa, vd);
1519 }
1520 }
1521
1522 /*
1523 * Purge vdevs that were dropped
1524 */
1525 for (i = 0; i < oldnvdevs; i++) {
1526 uint64_t pool;
1527
1528 vd = oldvdevs[i];
1529 if (vd != NULL) {
1530 ASSERT(vd->vdev_isl2cache);
1531
1532 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1533 pool != 0ULL && l2arc_vdev_present(vd))
1534 l2arc_remove_vdev(vd);
1535 vdev_clear_stats(vd);
1536 vdev_free(vd);
1537 }
1538 }
1539
1540 if (oldvdevs)
1541 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1542
1543 if (sav->sav_config == NULL)
1544 goto out;
1545
1546 sav->sav_vdevs = newvdevs;
1547 sav->sav_count = (int)nl2cache;
1548
1549 /*
1550 * Recompute the stashed list of l2cache devices, with status
1551 * information this time.
1552 */
1553 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1554 DATA_TYPE_NVLIST_ARRAY) == 0);
1555
1556 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1557 for (i = 0; i < sav->sav_count; i++)
1558 l2cache[i] = vdev_config_generate(spa,
1559 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1560 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1561 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1562 out:
1563 for (i = 0; i < sav->sav_count; i++)
1564 nvlist_free(l2cache[i]);
1565 if (sav->sav_count)
1566 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1567 }
1568
1569 static int
1570 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1571 {
1572 dmu_buf_t *db;
1573 char *packed = NULL;
1574 size_t nvsize = 0;
1575 int error;
1576 *value = NULL;
1577
1578 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1579 nvsize = *(uint64_t *)db->db_data;
1580 dmu_buf_rele(db, FTAG);
1581
1582 packed = kmem_alloc(nvsize, KM_SLEEP);
1583 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1584 DMU_READ_PREFETCH);
1585 if (error == 0)
1586 error = nvlist_unpack(packed, nvsize, value, 0);
1587 kmem_free(packed, nvsize);
1588
1589 return (error);
1590 }
1591
1592 /*
1593 * Checks to see if the given vdev could not be opened, in which case we post a
1594 * sysevent to notify the autoreplace code that the device has been removed.
1595 */
1596 static void
1597 spa_check_removed(vdev_t *vd)
1598 {
1599 for (int c = 0; c < vd->vdev_children; c++)
1600 spa_check_removed(vd->vdev_child[c]);
1601
1602 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1603 !vd->vdev_ishole) {
1604 zfs_post_autoreplace(vd->vdev_spa, vd);
1605 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1606 }
1607 }
1608
1609 /*
1610 * Validate the current config against the MOS config
1611 */
1612 static boolean_t
1613 spa_config_valid(spa_t *spa, nvlist_t *config)
1614 {
1615 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1616 nvlist_t *nv;
1617
1618 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1619
1620 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1621 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1622
1623 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1624
1625 /*
1626 * If we're doing a normal import, then build up any additional
1627 * diagnostic information about missing devices in this config.
1628 * We'll pass this up to the user for further processing.
1629 */
1630 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1631 nvlist_t **child, *nv;
1632 uint64_t idx = 0;
1633
1634 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1635 KM_SLEEP);
1636 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1637
1638 for (int c = 0; c < rvd->vdev_children; c++) {
1639 vdev_t *tvd = rvd->vdev_child[c];
1640 vdev_t *mtvd = mrvd->vdev_child[c];
1641
1642 if (tvd->vdev_ops == &vdev_missing_ops &&
1643 mtvd->vdev_ops != &vdev_missing_ops &&
1644 mtvd->vdev_islog)
1645 child[idx++] = vdev_config_generate(spa, mtvd,
1646 B_FALSE, 0);
1647 }
1648
1649 if (idx) {
1650 VERIFY(nvlist_add_nvlist_array(nv,
1651 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1652 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1653 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1654
1655 for (int i = 0; i < idx; i++)
1656 nvlist_free(child[i]);
1657 }
1658 nvlist_free(nv);
1659 kmem_free(child, rvd->vdev_children * sizeof (char **));
1660 }
1661
1662 /*
1663 * Compare the root vdev tree with the information we have
1664 * from the MOS config (mrvd). Check each top-level vdev
1665 * with the corresponding MOS config top-level (mtvd).
1666 */
1667 for (int c = 0; c < rvd->vdev_children; c++) {
1668 vdev_t *tvd = rvd->vdev_child[c];
1669 vdev_t *mtvd = mrvd->vdev_child[c];
1670
1671 /*
1672 * Resolve any "missing" vdevs in the current configuration.
1673 * If we find that the MOS config has more accurate information
1674 * about the top-level vdev then use that vdev instead.
1675 */
1676 if (tvd->vdev_ops == &vdev_missing_ops &&
1677 mtvd->vdev_ops != &vdev_missing_ops) {
1678
1679 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1680 continue;
1681
1682 /*
1683 * Device specific actions.
1684 */
1685 if (mtvd->vdev_islog) {
1686 spa_set_log_state(spa, SPA_LOG_CLEAR);
1687 } else {
1688 /*
1689 * XXX - once we have 'readonly' pool
1690 * support we should be able to handle
1691 * missing data devices by transitioning
1692 * the pool to readonly.
1693 */
1694 continue;
1695 }
1696
1697 /*
1698 * Swap the missing vdev with the data we were
1699 * able to obtain from the MOS config.
1700 */
1701 vdev_remove_child(rvd, tvd);
1702 vdev_remove_child(mrvd, mtvd);
1703
1704 vdev_add_child(rvd, mtvd);
1705 vdev_add_child(mrvd, tvd);
1706
1707 spa_config_exit(spa, SCL_ALL, FTAG);
1708 vdev_load(mtvd);
1709 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1710
1711 vdev_reopen(rvd);
1712 } else if (mtvd->vdev_islog) {
1713 /*
1714 * Load the slog device's state from the MOS config
1715 * since it's possible that the label does not
1716 * contain the most up-to-date information.
1717 */
1718 vdev_load_log_state(tvd, mtvd);
1719 vdev_reopen(tvd);
1720 }
1721 }
1722 vdev_free(mrvd);
1723 spa_config_exit(spa, SCL_ALL, FTAG);
1724
1725 /*
1726 * Ensure we were able to validate the config.
1727 */
1728 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1729 }
1730
1731 /*
1732 * Check for missing log devices
1733 */
1734 static boolean_t
1735 spa_check_logs(spa_t *spa)
1736 {
1737 boolean_t rv = B_FALSE;
1738
1739 switch (spa->spa_log_state) {
1740 case SPA_LOG_MISSING:
1741 /* need to recheck in case slog has been restored */
1742 case SPA_LOG_UNKNOWN:
1743 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1744 NULL, DS_FIND_CHILDREN) != 0);
1745 if (rv)
1746 spa_set_log_state(spa, SPA_LOG_MISSING);
1747 break;
1748 }
1749 return (rv);
1750 }
1751
1752 static boolean_t
1753 spa_passivate_log(spa_t *spa)
1754 {
1755 vdev_t *rvd = spa->spa_root_vdev;
1756 boolean_t slog_found = B_FALSE;
1757
1758 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1759
1760 if (!spa_has_slogs(spa))
1761 return (B_FALSE);
1762
1763 for (int c = 0; c < rvd->vdev_children; c++) {
1764 vdev_t *tvd = rvd->vdev_child[c];
1765 metaslab_group_t *mg = tvd->vdev_mg;
1766
1767 if (tvd->vdev_islog) {
1768 metaslab_group_passivate(mg);
1769 slog_found = B_TRUE;
1770 }
1771 }
1772
1773 return (slog_found);
1774 }
1775
1776 static void
1777 spa_activate_log(spa_t *spa)
1778 {
1779 vdev_t *rvd = spa->spa_root_vdev;
1780
1781 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1782
1783 for (int c = 0; c < rvd->vdev_children; c++) {
1784 vdev_t *tvd = rvd->vdev_child[c];
1785 metaslab_group_t *mg = tvd->vdev_mg;
1786
1787 if (tvd->vdev_islog)
1788 metaslab_group_activate(mg);
1789 }
1790 }
1791
1792 int
1793 spa_offline_log(spa_t *spa)
1794 {
1795 int error;
1796
1797 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1798 NULL, DS_FIND_CHILDREN);
1799 if (error == 0) {
1800 /*
1801 * We successfully offlined the log device, sync out the
1802 * current txg so that the "stubby" block can be removed
1803 * by zil_sync().
1804 */
1805 txg_wait_synced(spa->spa_dsl_pool, 0);
1806 }
1807 return (error);
1808 }
1809
1810 static void
1811 spa_aux_check_removed(spa_aux_vdev_t *sav)
1812 {
1813 for (int i = 0; i < sav->sav_count; i++)
1814 spa_check_removed(sav->sav_vdevs[i]);
1815 }
1816
1817 void
1818 spa_claim_notify(zio_t *zio)
1819 {
1820 spa_t *spa = zio->io_spa;
1821
1822 if (zio->io_error)
1823 return;
1824
1825 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1826 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1827 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1828 mutex_exit(&spa->spa_props_lock);
1829 }
1830
1831 typedef struct spa_load_error {
1832 uint64_t sle_meta_count;
1833 uint64_t sle_data_count;
1834 } spa_load_error_t;
1835
1836 static void
1837 spa_load_verify_done(zio_t *zio)
1838 {
1839 blkptr_t *bp = zio->io_bp;
1840 spa_load_error_t *sle = zio->io_private;
1841 dmu_object_type_t type = BP_GET_TYPE(bp);
1842 int error = zio->io_error;
1843 spa_t *spa = zio->io_spa;
1844
1845 if (error) {
1846 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1847 type != DMU_OT_INTENT_LOG)
1848 atomic_inc_64(&sle->sle_meta_count);
1849 else
1850 atomic_inc_64(&sle->sle_data_count);
1851 }
1852 zio_data_buf_free(zio->io_data, zio->io_size);
1853
1854 mutex_enter(&spa->spa_scrub_lock);
1855 spa->spa_scrub_inflight--;
1856 cv_broadcast(&spa->spa_scrub_io_cv);
1857 mutex_exit(&spa->spa_scrub_lock);
1858 }
1859
1860 /*
1861 * Maximum number of concurrent scrub i/os to create while verifying
1862 * a pool while importing it.
1863 */
1864 int spa_load_verify_maxinflight = 10000;
1865 boolean_t spa_load_verify_metadata = B_TRUE;
1866 boolean_t spa_load_verify_data = B_TRUE;
1867
1868 /*ARGSUSED*/
1869 static int
1870 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1871 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1872 {
1873 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1874 return (0);
1875 /*
1876 * Note: normally this routine will not be called if
1877 * spa_load_verify_metadata is not set. However, it may be useful
1878 * to manually set the flag after the traversal has begun.
1879 */
1880 if (!spa_load_verify_metadata)
1881 return (0);
1882 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1883 return (0);
1884
1885 zio_t *rio = arg;
1886 size_t size = BP_GET_PSIZE(bp);
1887 void *data = zio_data_buf_alloc(size);
1888
1889 mutex_enter(&spa->spa_scrub_lock);
1890 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1891 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1892 spa->spa_scrub_inflight++;
1893 mutex_exit(&spa->spa_scrub_lock);
1894
1895 zio_nowait(zio_read(rio, spa, bp, data, size,
1896 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1897 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1898 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1899 return (0);
1900 }
1901
1902 static int
1903 spa_load_verify(spa_t *spa)
1904 {
1905 zio_t *rio;
1906 spa_load_error_t sle = { 0 };
1907 zpool_rewind_policy_t policy;
1908 boolean_t verify_ok = B_FALSE;
1909 int error = 0;
1910
1911 zpool_get_rewind_policy(spa->spa_config, &policy);
1912
1913 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1914 return (0);
1915
1916 rio = zio_root(spa, NULL, &sle,
1917 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1918
1919 if (spa_load_verify_metadata) {
1920 error = traverse_pool(spa, spa->spa_verify_min_txg,
1921 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1922 spa_load_verify_cb, rio);
1923 }
1924
1925 (void) zio_wait(rio);
1926
1927 spa->spa_load_meta_errors = sle.sle_meta_count;
1928 spa->spa_load_data_errors = sle.sle_data_count;
1929
1930 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1931 sle.sle_data_count <= policy.zrp_maxdata) {
1932 int64_t loss = 0;
1933
1934 verify_ok = B_TRUE;
1935 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1936 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1937
1938 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1939 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1940 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1941 VERIFY(nvlist_add_int64(spa->spa_load_info,
1942 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1943 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1944 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1945 } else {
1946 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1947 }
1948
1949 if (error) {
1950 if (error != ENXIO && error != EIO)
1951 error = SET_ERROR(EIO);
1952 return (error);
1953 }
1954
1955 return (verify_ok ? 0 : EIO);
1956 }
1957
1958 /*
1959 * Find a value in the pool props object.
1960 */
1961 static void
1962 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1963 {
1964 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1965 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1966 }
1967
1968 /*
1969 * Find a value in the pool directory object.
1970 */
1971 static int
1972 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1973 {
1974 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1975 name, sizeof (uint64_t), 1, val));
1976 }
1977
1978 static int
1979 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1980 {
1981 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1982 return (err);
1983 }
1984
1985 /*
1986 * Fix up config after a partly-completed split. This is done with the
1987 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1988 * pool have that entry in their config, but only the splitting one contains
1989 * a list of all the guids of the vdevs that are being split off.
1990 *
1991 * This function determines what to do with that list: either rejoin
1992 * all the disks to the pool, or complete the splitting process. To attempt
1993 * the rejoin, each disk that is offlined is marked online again, and
1994 * we do a reopen() call. If the vdev label for every disk that was
1995 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1996 * then we call vdev_split() on each disk, and complete the split.
1997 *
1998 * Otherwise we leave the config alone, with all the vdevs in place in
1999 * the original pool.
2000 */
2001 static void
2002 spa_try_repair(spa_t *spa, nvlist_t *config)
2003 {
2004 uint_t extracted;
2005 uint64_t *glist;
2006 uint_t i, gcount;
2007 nvlist_t *nvl;
2008 vdev_t **vd;
2009 boolean_t attempt_reopen;
2010
2011 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2012 return;
2013
2014 /* check that the config is complete */
2015 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2016 &glist, &gcount) != 0)
2017 return;
2018
2019 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2020
2021 /* attempt to online all the vdevs & validate */
2022 attempt_reopen = B_TRUE;
2023 for (i = 0; i < gcount; i++) {
2024 if (glist[i] == 0) /* vdev is hole */
2025 continue;
2026
2027 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2028 if (vd[i] == NULL) {
2029 /*
2030 * Don't bother attempting to reopen the disks;
2031 * just do the split.
2032 */
2033 attempt_reopen = B_FALSE;
2034 } else {
2035 /* attempt to re-online it */
2036 vd[i]->vdev_offline = B_FALSE;
2037 }
2038 }
2039
2040 if (attempt_reopen) {
2041 vdev_reopen(spa->spa_root_vdev);
2042
2043 /* check each device to see what state it's in */
2044 for (extracted = 0, i = 0; i < gcount; i++) {
2045 if (vd[i] != NULL &&
2046 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2047 break;
2048 ++extracted;
2049 }
2050 }
2051
2052 /*
2053 * If every disk has been moved to the new pool, or if we never
2054 * even attempted to look at them, then we split them off for
2055 * good.
2056 */
2057 if (!attempt_reopen || gcount == extracted) {
2058 for (i = 0; i < gcount; i++)
2059 if (vd[i] != NULL)
2060 vdev_split(vd[i]);
2061 vdev_reopen(spa->spa_root_vdev);
2062 }
2063
2064 kmem_free(vd, gcount * sizeof (vdev_t *));
2065 }
2066
2067 static int
2068 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2069 boolean_t mosconfig)
2070 {
2071 nvlist_t *config = spa->spa_config;
2072 char *ereport = FM_EREPORT_ZFS_POOL;
2073 char *comment;
2074 int error;
2075 uint64_t pool_guid;
2076 nvlist_t *nvl;
2077
2078 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2079 return (SET_ERROR(EINVAL));
2080
2081 ASSERT(spa->spa_comment == NULL);
2082 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2083 spa->spa_comment = spa_strdup(comment);
2084
2085 /*
2086 * Versioning wasn't explicitly added to the label until later, so if
2087 * it's not present treat it as the initial version.
2088 */
2089 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2090 &spa->spa_ubsync.ub_version) != 0)
2091 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2092
2093 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2094 &spa->spa_config_txg);
2095
2096 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2097 spa_guid_exists(pool_guid, 0)) {
2098 error = SET_ERROR(EEXIST);
2099 } else {
2100 spa->spa_config_guid = pool_guid;
2101
2102 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2103 &nvl) == 0) {
2104 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2105 KM_SLEEP) == 0);
2106 }
2107
2108 nvlist_free(spa->spa_load_info);
2109 spa->spa_load_info = fnvlist_alloc();
2110
2111 gethrestime(&spa->spa_loaded_ts);
2112 error = spa_load_impl(spa, pool_guid, config, state, type,
2113 mosconfig, &ereport);
2114 }
2115
2116 /*
2117 * Don't count references from objsets that are already closed
2118 * and are making their way through the eviction process.
2119 */
2120 spa_evicting_os_wait(spa);
2121 spa->spa_minref = refcount_count(&spa->spa_refcount);
2122 if (error) {
2123 if (error != EEXIST) {
2124 spa->spa_loaded_ts.tv_sec = 0;
2125 spa->spa_loaded_ts.tv_nsec = 0;
2126 }
2127 if (error != EBADF) {
2128 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2129 }
2130 }
2131 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2132 spa->spa_ena = 0;
2133
2134 return (error);
2135 }
2136
2137 /*
2138 * Load an existing storage pool, using the pool's builtin spa_config as a
2139 * source of configuration information.
2140 */
2141 static int
2142 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2144 char **ereport)
2145 {
2146 int error = 0;
2147 nvlist_t *nvroot = NULL;
2148 nvlist_t *label;
2149 vdev_t *rvd;
2150 uberblock_t *ub = &spa->spa_uberblock;
2151 uint64_t children, config_cache_txg = spa->spa_config_txg;
2152 int orig_mode = spa->spa_mode;
2153 int parse;
2154 uint64_t obj;
2155 boolean_t missing_feat_write = B_FALSE;
2156
2157 /*
2158 * If this is an untrusted config, access the pool in read-only mode.
2159 * This prevents things like resilvering recently removed devices.
2160 */
2161 if (!mosconfig)
2162 spa->spa_mode = FREAD;
2163
2164 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2165
2166 spa->spa_load_state = state;
2167
2168 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2169 return (SET_ERROR(EINVAL));
2170
2171 parse = (type == SPA_IMPORT_EXISTING ?
2172 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2173
2174 /*
2175 * Create "The Godfather" zio to hold all async IOs
2176 */
2177 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2178 KM_SLEEP);
2179 for (int i = 0; i < max_ncpus; i++) {
2180 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2181 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2182 ZIO_FLAG_GODFATHER);
2183 }
2184
2185 /*
2186 * Parse the configuration into a vdev tree. We explicitly set the
2187 * value that will be returned by spa_version() since parsing the
2188 * configuration requires knowing the version number.
2189 */
2190 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2191 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2192 spa_config_exit(spa, SCL_ALL, FTAG);
2193
2194 if (error != 0)
2195 return (error);
2196
2197 ASSERT(spa->spa_root_vdev == rvd);
2198
2199 if (type != SPA_IMPORT_ASSEMBLE) {
2200 ASSERT(spa_guid(spa) == pool_guid);
2201 }
2202
2203 /*
2204 * Try to open all vdevs, loading each label in the process.
2205 */
2206 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2207 error = vdev_open(rvd);
2208 spa_config_exit(spa, SCL_ALL, FTAG);
2209 if (error != 0)
2210 return (error);
2211
2212 /*
2213 * We need to validate the vdev labels against the configuration that
2214 * we have in hand, which is dependent on the setting of mosconfig. If
2215 * mosconfig is true then we're validating the vdev labels based on
2216 * that config. Otherwise, we're validating against the cached config
2217 * (zpool.cache) that was read when we loaded the zfs module, and then
2218 * later we will recursively call spa_load() and validate against
2219 * the vdev config.
2220 *
2221 * If we're assembling a new pool that's been split off from an
2222 * existing pool, the labels haven't yet been updated so we skip
2223 * validation for now.
2224 */
2225 if (type != SPA_IMPORT_ASSEMBLE) {
2226 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2227 error = vdev_validate(rvd, mosconfig);
2228 spa_config_exit(spa, SCL_ALL, FTAG);
2229
2230 if (error != 0)
2231 return (error);
2232
2233 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2234 return (SET_ERROR(ENXIO));
2235 }
2236
2237 /*
2238 * Find the best uberblock.
2239 */
2240 vdev_uberblock_load(rvd, ub, &label);
2241
2242 /*
2243 * If we weren't able to find a single valid uberblock, return failure.
2244 */
2245 if (ub->ub_txg == 0) {
2246 nvlist_free(label);
2247 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2248 }
2249
2250 /*
2251 * If the pool has an unsupported version we can't open it.
2252 */
2253 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2254 nvlist_free(label);
2255 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2256 }
2257
2258 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2259 nvlist_t *features;
2260
2261 /*
2262 * If we weren't able to find what's necessary for reading the
2263 * MOS in the label, return failure.
2264 */
2265 if (label == NULL || nvlist_lookup_nvlist(label,
2266 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2267 nvlist_free(label);
2268 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2269 ENXIO));
2270 }
2271
2272 /*
2273 * Update our in-core representation with the definitive values
2274 * from the label.
2275 */
2276 nvlist_free(spa->spa_label_features);
2277 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2278 }
2279
2280 nvlist_free(label);
2281
2282 /*
2283 * Look through entries in the label nvlist's features_for_read. If
2284 * there is a feature listed there which we don't understand then we
2285 * cannot open a pool.
2286 */
2287 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2288 nvlist_t *unsup_feat;
2289
2290 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2291 0);
2292
2293 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2294 NULL); nvp != NULL;
2295 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2296 if (!zfeature_is_supported(nvpair_name(nvp))) {
2297 VERIFY(nvlist_add_string(unsup_feat,
2298 nvpair_name(nvp), "") == 0);
2299 }
2300 }
2301
2302 if (!nvlist_empty(unsup_feat)) {
2303 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2304 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2305 nvlist_free(unsup_feat);
2306 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2307 ENOTSUP));
2308 }
2309
2310 nvlist_free(unsup_feat);
2311 }
2312
2313 /*
2314 * If the vdev guid sum doesn't match the uberblock, we have an
2315 * incomplete configuration. We first check to see if the pool
2316 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2317 * If it is, defer the vdev_guid_sum check till later so we
2318 * can handle missing vdevs.
2319 */
2320 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2321 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2322 rvd->vdev_guid_sum != ub->ub_guid_sum)
2323 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2324
2325 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2326 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2327 spa_try_repair(spa, config);
2328 spa_config_exit(spa, SCL_ALL, FTAG);
2329 nvlist_free(spa->spa_config_splitting);
2330 spa->spa_config_splitting = NULL;
2331 }
2332
2333 /*
2334 * Initialize internal SPA structures.
2335 */
2336 spa->spa_state = POOL_STATE_ACTIVE;
2337 spa->spa_ubsync = spa->spa_uberblock;
2338 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2339 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2340 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2341 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2342 spa->spa_claim_max_txg = spa->spa_first_txg;
2343 spa->spa_prev_software_version = ub->ub_software_version;
2344
2345 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2346 if (error)
2347 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2348 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2349
2350 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2351 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2352
2353 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2354 boolean_t missing_feat_read = B_FALSE;
2355 nvlist_t *unsup_feat, *enabled_feat;
2356
2357 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2358 &spa->spa_feat_for_read_obj) != 0) {
2359 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2360 }
2361
2362 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2363 &spa->spa_feat_for_write_obj) != 0) {
2364 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2365 }
2366
2367 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2368 &spa->spa_feat_desc_obj) != 0) {
2369 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2370 }
2371
2372 enabled_feat = fnvlist_alloc();
2373 unsup_feat = fnvlist_alloc();
2374
2375 if (!spa_features_check(spa, B_FALSE,
2376 unsup_feat, enabled_feat))
2377 missing_feat_read = B_TRUE;
2378
2379 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2380 if (!spa_features_check(spa, B_TRUE,
2381 unsup_feat, enabled_feat)) {
2382 missing_feat_write = B_TRUE;
2383 }
2384 }
2385
2386 fnvlist_add_nvlist(spa->spa_load_info,
2387 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2388
2389 if (!nvlist_empty(unsup_feat)) {
2390 fnvlist_add_nvlist(spa->spa_load_info,
2391 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2392 }
2393
2394 fnvlist_free(enabled_feat);
2395 fnvlist_free(unsup_feat);
2396
2397 if (!missing_feat_read) {
2398 fnvlist_add_boolean(spa->spa_load_info,
2399 ZPOOL_CONFIG_CAN_RDONLY);
2400 }
2401
2402 /*
2403 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2404 * twofold: to determine whether the pool is available for
2405 * import in read-write mode and (if it is not) whether the
2406 * pool is available for import in read-only mode. If the pool
2407 * is available for import in read-write mode, it is displayed
2408 * as available in userland; if it is not available for import
2409 * in read-only mode, it is displayed as unavailable in
2410 * userland. If the pool is available for import in read-only
2411 * mode but not read-write mode, it is displayed as unavailable
2412 * in userland with a special note that the pool is actually
2413 * available for open in read-only mode.
2414 *
2415 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2416 * missing a feature for write, we must first determine whether
2417 * the pool can be opened read-only before returning to
2418 * userland in order to know whether to display the
2419 * abovementioned note.
2420 */
2421 if (missing_feat_read || (missing_feat_write &&
2422 spa_writeable(spa))) {
2423 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2424 ENOTSUP));
2425 }
2426
2427 /*
2428 * Load refcounts for ZFS features from disk into an in-memory
2429 * cache during SPA initialization.
2430 */
2431 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2432 uint64_t refcount;
2433
2434 error = feature_get_refcount_from_disk(spa,
2435 &spa_feature_table[i], &refcount);
2436 if (error == 0) {
2437 spa->spa_feat_refcount_cache[i] = refcount;
2438 } else if (error == ENOTSUP) {
2439 spa->spa_feat_refcount_cache[i] =
2440 SPA_FEATURE_DISABLED;
2441 } else {
2442 return (spa_vdev_err(rvd,
2443 VDEV_AUX_CORRUPT_DATA, EIO));
2444 }
2445 }
2446 }
2447
2448 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2449 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2450 &spa->spa_feat_enabled_txg_obj) != 0)
2451 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2452 }
2453
2454 spa->spa_is_initializing = B_TRUE;
2455 error = dsl_pool_open(spa->spa_dsl_pool);
2456 spa->spa_is_initializing = B_FALSE;
2457 if (error != 0)
2458 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2459
2460 if (!mosconfig) {
2461 uint64_t hostid;
2462 nvlist_t *policy = NULL, *nvconfig;
2463
2464 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2465 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2466
2467 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2468 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2469 char *hostname;
2470 unsigned long myhostid = 0;
2471
2472 VERIFY(nvlist_lookup_string(nvconfig,
2473 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2474
2475 #ifdef _KERNEL
2476 myhostid = zone_get_hostid(NULL);
2477 #else /* _KERNEL */
2478 /*
2479 * We're emulating the system's hostid in userland, so
2480 * we can't use zone_get_hostid().
2481 */
2482 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2483 #endif /* _KERNEL */
2484 if (hostid != 0 && myhostid != 0 &&
2485 hostid != myhostid) {
2486 nvlist_free(nvconfig);
2487 cmn_err(CE_WARN, "pool '%s' could not be "
2488 "loaded as it was last accessed by "
2489 "another system (host: %s hostid: 0x%lx). "
2490 "See: http://illumos.org/msg/ZFS-8000-EY",
2491 spa_name(spa), hostname,
2492 (unsigned long)hostid);
2493 return (SET_ERROR(EBADF));
2494 }
2495 }
2496 if (nvlist_lookup_nvlist(spa->spa_config,
2497 ZPOOL_REWIND_POLICY, &policy) == 0)
2498 VERIFY(nvlist_add_nvlist(nvconfig,
2499 ZPOOL_REWIND_POLICY, policy) == 0);
2500
2501 spa_config_set(spa, nvconfig);
2502 spa_unload(spa);
2503 spa_deactivate(spa);
2504 spa_activate(spa, orig_mode);
2505
2506 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2507 }
2508
2509 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2510 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2511 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2512 if (error != 0)
2513 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2514
2515 /*
2516 * Load the bit that tells us to use the new accounting function
2517 * (raid-z deflation). If we have an older pool, this will not
2518 * be present.
2519 */
2520 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2521 if (error != 0 && error != ENOENT)
2522 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2523
2524 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2525 &spa->spa_creation_version);
2526 if (error != 0 && error != ENOENT)
2527 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2528
2529 /*
2530 * Load the persistent error log. If we have an older pool, this will
2531 * not be present.
2532 */
2533 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2534 if (error != 0 && error != ENOENT)
2535 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2536
2537 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2538 &spa->spa_errlog_scrub);
2539 if (error != 0 && error != ENOENT)
2540 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2541
2542 /*
2543 * Load the history object. If we have an older pool, this
2544 * will not be present.
2545 */
2546 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2547 if (error != 0 && error != ENOENT)
2548 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2549
2550 /*
2551 * If we're assembling the pool from the split-off vdevs of
2552 * an existing pool, we don't want to attach the spares & cache
2553 * devices.
2554 */
2555
2556 /*
2557 * Load any hot spares for this pool.
2558 */
2559 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2560 if (error != 0 && error != ENOENT)
2561 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2562 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2563 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2564 if (load_nvlist(spa, spa->spa_spares.sav_object,
2565 &spa->spa_spares.sav_config) != 0)
2566 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2567
2568 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2569 spa_load_spares(spa);
2570 spa_config_exit(spa, SCL_ALL, FTAG);
2571 } else if (error == 0) {
2572 spa->spa_spares.sav_sync = B_TRUE;
2573 }
2574
2575 /*
2576 * Load any level 2 ARC devices for this pool.
2577 */
2578 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2579 &spa->spa_l2cache.sav_object);
2580 if (error != 0 && error != ENOENT)
2581 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2582 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2583 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2584 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2585 &spa->spa_l2cache.sav_config) != 0)
2586 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2587
2588 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2589 spa_load_l2cache(spa);
2590 spa_config_exit(spa, SCL_ALL, FTAG);
2591 } else if (error == 0) {
2592 spa->spa_l2cache.sav_sync = B_TRUE;
2593 }
2594
2595 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2596
2597 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2598 if (error && error != ENOENT)
2599 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2600
2601 if (error == 0) {
2602 uint64_t autoreplace;
2603
2604 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2605 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2606 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2607 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2608 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2609 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2610 &spa->spa_dedup_ditto);
2611
2612 spa->spa_autoreplace = (autoreplace != 0);
2613 }
2614
2615 /*
2616 * If the 'autoreplace' property is set, then post a resource notifying
2617 * the ZFS DE that it should not issue any faults for unopenable
2618 * devices. We also iterate over the vdevs, and post a sysevent for any
2619 * unopenable vdevs so that the normal autoreplace handler can take
2620 * over.
2621 */
2622 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2623 spa_check_removed(spa->spa_root_vdev);
2624 /*
2625 * For the import case, this is done in spa_import(), because
2626 * at this point we're using the spare definitions from
2627 * the MOS config, not necessarily from the userland config.
2628 */
2629 if (state != SPA_LOAD_IMPORT) {
2630 spa_aux_check_removed(&spa->spa_spares);
2631 spa_aux_check_removed(&spa->spa_l2cache);
2632 }
2633 }
2634
2635 /*
2636 * Load the vdev state for all toplevel vdevs.
2637 */
2638 vdev_load(rvd);
2639
2640 /*
2641 * Propagate the leaf DTLs we just loaded all the way up the tree.
2642 */
2643 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2644 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2645 spa_config_exit(spa, SCL_ALL, FTAG);
2646
2647 /*
2648 * Load the DDTs (dedup tables).
2649 */
2650 error = ddt_load(spa);
2651 if (error != 0)
2652 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2653
2654 spa_update_dspace(spa);
2655
2656 /*
2657 * Validate the config, using the MOS config to fill in any
2658 * information which might be missing. If we fail to validate
2659 * the config then declare the pool unfit for use. If we're
2660 * assembling a pool from a split, the log is not transferred
2661 * over.
2662 */
2663 if (type != SPA_IMPORT_ASSEMBLE) {
2664 nvlist_t *nvconfig;
2665
2666 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2667 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2668
2669 if (!spa_config_valid(spa, nvconfig)) {
2670 nvlist_free(nvconfig);
2671 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2672 ENXIO));
2673 }
2674 nvlist_free(nvconfig);
2675
2676 /*
2677 * Now that we've validated the config, check the state of the
2678 * root vdev. If it can't be opened, it indicates one or
2679 * more toplevel vdevs are faulted.
2680 */
2681 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2682 return (SET_ERROR(ENXIO));
2683
2684 if (spa_check_logs(spa)) {
2685 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2686 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2687 }
2688 }
2689
2690 if (missing_feat_write) {
2691 ASSERT(state == SPA_LOAD_TRYIMPORT);
2692
2693 /*
2694 * At this point, we know that we can open the pool in
2695 * read-only mode but not read-write mode. We now have enough
2696 * information and can return to userland.
2697 */
2698 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2699 }
2700
2701 /*
2702 * We've successfully opened the pool, verify that we're ready
2703 * to start pushing transactions.
2704 */
2705 if (state != SPA_LOAD_TRYIMPORT) {
2706 if (error = spa_load_verify(spa))
2707 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2708 error));
2709 }
2710
2711 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2712 spa->spa_load_max_txg == UINT64_MAX)) {
2713 dmu_tx_t *tx;
2714 int need_update = B_FALSE;
2715
2716 ASSERT(state != SPA_LOAD_TRYIMPORT);
2717
2718 /*
2719 * Claim log blocks that haven't been committed yet.
2720 * This must all happen in a single txg.
2721 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2722 * invoked from zil_claim_log_block()'s i/o done callback.
2723 * Price of rollback is that we abandon the log.
2724 */
2725 spa->spa_claiming = B_TRUE;
2726
2727 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2728 spa_first_txg(spa));
2729 (void) dmu_objset_find(spa_name(spa),
2730 zil_claim, tx, DS_FIND_CHILDREN);
2731 dmu_tx_commit(tx);
2732
2733 spa->spa_claiming = B_FALSE;
2734
2735 spa_set_log_state(spa, SPA_LOG_GOOD);
2736 spa->spa_sync_on = B_TRUE;
2737 txg_sync_start(spa->spa_dsl_pool);
2738
2739 /*
2740 * Wait for all claims to sync. We sync up to the highest
2741 * claimed log block birth time so that claimed log blocks
2742 * don't appear to be from the future. spa_claim_max_txg
2743 * will have been set for us by either zil_check_log_chain()
2744 * (invoked from spa_check_logs()) or zil_claim() above.
2745 */
2746 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2747
2748 /*
2749 * If the config cache is stale, or we have uninitialized
2750 * metaslabs (see spa_vdev_add()), then update the config.
2751 *
2752 * If this is a verbatim import, trust the current
2753 * in-core spa_config and update the disk labels.
2754 */
2755 if (config_cache_txg != spa->spa_config_txg ||
2756 state == SPA_LOAD_IMPORT ||
2757 state == SPA_LOAD_RECOVER ||
2758 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2759 need_update = B_TRUE;
2760
2761 for (int c = 0; c < rvd->vdev_children; c++)
2762 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2763 need_update = B_TRUE;
2764
2765 /*
2766 * Update the config cache asychronously in case we're the
2767 * root pool, in which case the config cache isn't writable yet.
2768 */
2769 if (need_update)
2770 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2771
2772 /*
2773 * Check all DTLs to see if anything needs resilvering.
2774 */
2775 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2776 vdev_resilver_needed(rvd, NULL, NULL))
2777 spa_async_request(spa, SPA_ASYNC_RESILVER);
2778
2779 /*
2780 * Log the fact that we booted up (so that we can detect if
2781 * we rebooted in the middle of an operation).
2782 */
2783 spa_history_log_version(spa, "open");
2784
2785 /*
2786 * Delete any inconsistent datasets.
2787 */
2788 (void) dmu_objset_find(spa_name(spa),
2789 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2790
2791 /*
2792 * Clean up any stale temporary dataset userrefs.
2793 */
2794 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2795 }
2796
2797 return (0);
2798 }
2799
2800 static int
2801 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2802 {
2803 int mode = spa->spa_mode;
2804
2805 spa_unload(spa);
2806 spa_deactivate(spa);
2807
2808 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2809
2810 spa_activate(spa, mode);
2811 spa_async_suspend(spa);
2812
2813 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2814 }
2815
2816 /*
2817 * If spa_load() fails this function will try loading prior txg's. If
2818 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2819 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2820 * function will not rewind the pool and will return the same error as
2821 * spa_load().
2822 */
2823 static int
2824 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2825 uint64_t max_request, int rewind_flags)
2826 {
2827 nvlist_t *loadinfo = NULL;
2828 nvlist_t *config = NULL;
2829 int load_error, rewind_error;
2830 uint64_t safe_rewind_txg;
2831 uint64_t min_txg;
2832
2833 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2834 spa->spa_load_max_txg = spa->spa_load_txg;
2835 spa_set_log_state(spa, SPA_LOG_CLEAR);
2836 } else {
2837 spa->spa_load_max_txg = max_request;
2838 if (max_request != UINT64_MAX)
2839 spa->spa_extreme_rewind = B_TRUE;
2840 }
2841
2842 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2843 mosconfig);
2844 if (load_error == 0)
2845 return (0);
2846
2847 if (spa->spa_root_vdev != NULL)
2848 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2849
2850 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2851 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2852
2853 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2854 nvlist_free(config);
2855 return (load_error);
2856 }
2857
2858 if (state == SPA_LOAD_RECOVER) {
2859 /* Price of rolling back is discarding txgs, including log */
2860 spa_set_log_state(spa, SPA_LOG_CLEAR);
2861 } else {
2862 /*
2863 * If we aren't rolling back save the load info from our first
2864 * import attempt so that we can restore it after attempting
2865 * to rewind.
2866 */
2867 loadinfo = spa->spa_load_info;
2868 spa->spa_load_info = fnvlist_alloc();
2869 }
2870
2871 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2872 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2873 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2874 TXG_INITIAL : safe_rewind_txg;
2875
2876 /*
2877 * Continue as long as we're finding errors, we're still within
2878 * the acceptable rewind range, and we're still finding uberblocks
2879 */
2880 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2881 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2882 if (spa->spa_load_max_txg < safe_rewind_txg)
2883 spa->spa_extreme_rewind = B_TRUE;
2884 rewind_error = spa_load_retry(spa, state, mosconfig);
2885 }
2886
2887 spa->spa_extreme_rewind = B_FALSE;
2888 spa->spa_load_max_txg = UINT64_MAX;
2889
2890 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2891 spa_config_set(spa, config);
2892
2893 if (state == SPA_LOAD_RECOVER) {
2894 ASSERT3P(loadinfo, ==, NULL);
2895 return (rewind_error);
2896 } else {
2897 /* Store the rewind info as part of the initial load info */
2898 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2899 spa->spa_load_info);
2900
2901 /* Restore the initial load info */
2902 fnvlist_free(spa->spa_load_info);
2903 spa->spa_load_info = loadinfo;
2904
2905 return (load_error);
2906 }
2907 }
2908
2909 /*
2910 * Pool Open/Import
2911 *
2912 * The import case is identical to an open except that the configuration is sent
2913 * down from userland, instead of grabbed from the configuration cache. For the
2914 * case of an open, the pool configuration will exist in the
2915 * POOL_STATE_UNINITIALIZED state.
2916 *
2917 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2918 * the same time open the pool, without having to keep around the spa_t in some
2919 * ambiguous state.
2920 */
2921 static int
2922 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2923 nvlist_t **config)
2924 {
2925 spa_t *spa;
2926 spa_load_state_t state = SPA_LOAD_OPEN;
2927 int error;
2928 int locked = B_FALSE;
2929
2930 *spapp = NULL;
2931
2932 /*
2933 * As disgusting as this is, we need to support recursive calls to this
2934 * function because dsl_dir_open() is called during spa_load(), and ends
2935 * up calling spa_open() again. The real fix is to figure out how to
2936 * avoid dsl_dir_open() calling this in the first place.
2937 */
2938 if (mutex_owner(&spa_namespace_lock) != curthread) {
2939 mutex_enter(&spa_namespace_lock);
2940 locked = B_TRUE;
2941 }
2942
2943 if ((spa = spa_lookup(pool)) == NULL) {
2944 if (locked)
2945 mutex_exit(&spa_namespace_lock);
2946 return (SET_ERROR(ENOENT));
2947 }
2948
2949 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2950 zpool_rewind_policy_t policy;
2951
2952 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2953 &policy);
2954 if (policy.zrp_request & ZPOOL_DO_REWIND)
2955 state = SPA_LOAD_RECOVER;
2956
2957 spa_activate(spa, spa_mode_global);
2958
2959 if (state != SPA_LOAD_RECOVER)
2960 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2961
2962 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2963 policy.zrp_request);
2964
2965 if (error == EBADF) {
2966 /*
2967 * If vdev_validate() returns failure (indicated by
2968 * EBADF), it indicates that one of the vdevs indicates
2969 * that the pool has been exported or destroyed. If
2970 * this is the case, the config cache is out of sync and
2971 * we should remove the pool from the namespace.
2972 */
2973 spa_unload(spa);
2974 spa_deactivate(spa);
2975 spa_config_sync(spa, B_TRUE, B_TRUE);
2976 spa_remove(spa);
2977 if (locked)
2978 mutex_exit(&spa_namespace_lock);
2979 return (SET_ERROR(ENOENT));
2980 }
2981
2982 if (error) {
2983 /*
2984 * We can't open the pool, but we still have useful
2985 * information: the state of each vdev after the
2986 * attempted vdev_open(). Return this to the user.
2987 */
2988 if (config != NULL && spa->spa_config) {
2989 VERIFY(nvlist_dup(spa->spa_config, config,
2990 KM_SLEEP) == 0);
2991 VERIFY(nvlist_add_nvlist(*config,
2992 ZPOOL_CONFIG_LOAD_INFO,
2993 spa->spa_load_info) == 0);
2994 }
2995 spa_unload(spa);
2996 spa_deactivate(spa);
2997 spa->spa_last_open_failed = error;
2998 if (locked)
2999 mutex_exit(&spa_namespace_lock);
3000 *spapp = NULL;
3001 return (error);
3002 }
3003 }
3004
3005 spa_open_ref(spa, tag);
3006
3007 if (config != NULL)
3008 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3009
3010 /*
3011 * If we've recovered the pool, pass back any information we
3012 * gathered while doing the load.
3013 */
3014 if (state == SPA_LOAD_RECOVER) {
3015 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3016 spa->spa_load_info) == 0);
3017 }
3018
3019 if (locked) {
3020 spa->spa_last_open_failed = 0;
3021 spa->spa_last_ubsync_txg = 0;
3022 spa->spa_load_txg = 0;
3023 mutex_exit(&spa_namespace_lock);
3024 }
3025
3026 *spapp = spa;
3027
3028 return (0);
3029 }
3030
3031 int
3032 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3033 nvlist_t **config)
3034 {
3035 return (spa_open_common(name, spapp, tag, policy, config));
3036 }
3037
3038 int
3039 spa_open(const char *name, spa_t **spapp, void *tag)
3040 {
3041 return (spa_open_common(name, spapp, tag, NULL, NULL));
3042 }
3043
3044 /*
3045 * Lookup the given spa_t, incrementing the inject count in the process,
3046 * preventing it from being exported or destroyed.
3047 */
3048 spa_t *
3049 spa_inject_addref(char *name)
3050 {
3051 spa_t *spa;
3052
3053 mutex_enter(&spa_namespace_lock);
3054 if ((spa = spa_lookup(name)) == NULL) {
3055 mutex_exit(&spa_namespace_lock);
3056 return (NULL);
3057 }
3058 spa->spa_inject_ref++;
3059 mutex_exit(&spa_namespace_lock);
3060
3061 return (spa);
3062 }
3063
3064 void
3065 spa_inject_delref(spa_t *spa)
3066 {
3067 mutex_enter(&spa_namespace_lock);
3068 spa->spa_inject_ref--;
3069 mutex_exit(&spa_namespace_lock);
3070 }
3071
3072 /*
3073 * Add spares device information to the nvlist.
3074 */
3075 static void
3076 spa_add_spares(spa_t *spa, nvlist_t *config)
3077 {
3078 nvlist_t **spares;
3079 uint_t i, nspares;
3080 nvlist_t *nvroot;
3081 uint64_t guid;
3082 vdev_stat_t *vs;
3083 uint_t vsc;
3084 uint64_t pool;
3085
3086 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3087
3088 if (spa->spa_spares.sav_count == 0)
3089 return;
3090
3091 VERIFY(nvlist_lookup_nvlist(config,
3092 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3093 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3094 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3095 if (nspares != 0) {
3096 VERIFY(nvlist_add_nvlist_array(nvroot,
3097 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3098 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3099 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3100
3101 /*
3102 * Go through and find any spares which have since been
3103 * repurposed as an active spare. If this is the case, update
3104 * their status appropriately.
3105 */
3106 for (i = 0; i < nspares; i++) {
3107 VERIFY(nvlist_lookup_uint64(spares[i],
3108 ZPOOL_CONFIG_GUID, &guid) == 0);
3109 if (spa_spare_exists(guid, &pool, NULL) &&
3110 pool != 0ULL) {
3111 VERIFY(nvlist_lookup_uint64_array(
3112 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3113 (uint64_t **)&vs, &vsc) == 0);
3114 vs->vs_state = VDEV_STATE_CANT_OPEN;
3115 vs->vs_aux = VDEV_AUX_SPARED;
3116 }
3117 }
3118 }
3119 }
3120
3121 /*
3122 * Add l2cache device information to the nvlist, including vdev stats.
3123 */
3124 static void
3125 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3126 {
3127 nvlist_t **l2cache;
3128 uint_t i, j, nl2cache;
3129 nvlist_t *nvroot;
3130 uint64_t guid;
3131 vdev_t *vd;
3132 vdev_stat_t *vs;
3133 uint_t vsc;
3134
3135 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3136
3137 if (spa->spa_l2cache.sav_count == 0)
3138 return;
3139
3140 VERIFY(nvlist_lookup_nvlist(config,
3141 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3142 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3143 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3144 if (nl2cache != 0) {
3145 VERIFY(nvlist_add_nvlist_array(nvroot,
3146 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3147 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3148 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3149
3150 /*
3151 * Update level 2 cache device stats.
3152 */
3153
3154 for (i = 0; i < nl2cache; i++) {
3155 VERIFY(nvlist_lookup_uint64(l2cache[i],
3156 ZPOOL_CONFIG_GUID, &guid) == 0);
3157
3158 vd = NULL;
3159 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3160 if (guid ==
3161 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3162 vd = spa->spa_l2cache.sav_vdevs[j];
3163 break;
3164 }
3165 }
3166 ASSERT(vd != NULL);
3167
3168 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3169 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3170 == 0);
3171 vdev_get_stats(vd, vs);
3172 }
3173 }
3174 }
3175
3176 static void
3177 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3178 {
3179 nvlist_t *features;
3180 zap_cursor_t zc;
3181 zap_attribute_t za;
3182
3183 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3184 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3185
3186 if (spa->spa_feat_for_read_obj != 0) {
3187 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3188 spa->spa_feat_for_read_obj);
3189 zap_cursor_retrieve(&zc, &za) == 0;
3190 zap_cursor_advance(&zc)) {
3191 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3192 za.za_num_integers == 1);
3193 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3194 za.za_first_integer));
3195 }
3196 zap_cursor_fini(&zc);
3197 }
3198
3199 if (spa->spa_feat_for_write_obj != 0) {
3200 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3201 spa->spa_feat_for_write_obj);
3202 zap_cursor_retrieve(&zc, &za) == 0;
3203 zap_cursor_advance(&zc)) {
3204 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3205 za.za_num_integers == 1);
3206 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3207 za.za_first_integer));
3208 }
3209 zap_cursor_fini(&zc);
3210 }
3211
3212 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3213 features) == 0);
3214 nvlist_free(features);
3215 }
3216
3217 int
3218 spa_get_stats(const char *name, nvlist_t **config,
3219 char *altroot, size_t buflen)
3220 {
3221 int error;
3222 spa_t *spa;
3223
3224 *config = NULL;
3225 error = spa_open_common(name, &spa, FTAG, NULL, config);
3226
3227 if (spa != NULL) {
3228 /*
3229 * This still leaves a window of inconsistency where the spares
3230 * or l2cache devices could change and the config would be
3231 * self-inconsistent.
3232 */
3233 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3234
3235 if (*config != NULL) {
3236 uint64_t loadtimes[2];
3237
3238 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3239 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3240 VERIFY(nvlist_add_uint64_array(*config,
3241 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3242
3243 VERIFY(nvlist_add_uint64(*config,
3244 ZPOOL_CONFIG_ERRCOUNT,
3245 spa_get_errlog_size(spa)) == 0);
3246
3247 if (spa_suspended(spa))
3248 VERIFY(nvlist_add_uint64(*config,
3249 ZPOOL_CONFIG_SUSPENDED,
3250 spa->spa_failmode) == 0);
3251
3252 spa_add_spares(spa, *config);
3253 spa_add_l2cache(spa, *config);
3254 spa_add_feature_stats(spa, *config);
3255 }
3256 }
3257
3258 /*
3259 * We want to get the alternate root even for faulted pools, so we cheat
3260 * and call spa_lookup() directly.
3261 */
3262 if (altroot) {
3263 if (spa == NULL) {
3264 mutex_enter(&spa_namespace_lock);
3265 spa = spa_lookup(name);
3266 if (spa)
3267 spa_altroot(spa, altroot, buflen);
3268 else
3269 altroot[0] = '\0';
3270 spa = NULL;
3271 mutex_exit(&spa_namespace_lock);
3272 } else {
3273 spa_altroot(spa, altroot, buflen);
3274 }
3275 }
3276
3277 if (spa != NULL) {
3278 spa_config_exit(spa, SCL_CONFIG, FTAG);
3279 spa_close(spa, FTAG);
3280 }
3281
3282 return (error);
3283 }
3284
3285 /*
3286 * Validate that the auxiliary device array is well formed. We must have an
3287 * array of nvlists, each which describes a valid leaf vdev. If this is an
3288 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3289 * specified, as long as they are well-formed.
3290 */
3291 static int
3292 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3293 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3294 vdev_labeltype_t label)
3295 {
3296 nvlist_t **dev;
3297 uint_t i, ndev;
3298 vdev_t *vd;
3299 int error;
3300
3301 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3302
3303 /*
3304 * It's acceptable to have no devs specified.
3305 */
3306 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3307 return (0);
3308
3309 if (ndev == 0)
3310 return (SET_ERROR(EINVAL));
3311
3312 /*
3313 * Make sure the pool is formatted with a version that supports this
3314 * device type.
3315 */
3316 if (spa_version(spa) < version)
3317 return (SET_ERROR(ENOTSUP));
3318
3319 /*
3320 * Set the pending device list so we correctly handle device in-use
3321 * checking.
3322 */
3323 sav->sav_pending = dev;
3324 sav->sav_npending = ndev;
3325
3326 for (i = 0; i < ndev; i++) {
3327 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3328 mode)) != 0)
3329 goto out;
3330
3331 if (!vd->vdev_ops->vdev_op_leaf) {
3332 vdev_free(vd);
3333 error = SET_ERROR(EINVAL);
3334 goto out;
3335 }
3336
3337 /*
3338 * The L2ARC currently only supports disk devices in
3339 * kernel context. For user-level testing, we allow it.
3340 */
3341 #ifdef _KERNEL
3342 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3343 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3344 error = SET_ERROR(ENOTBLK);
3345 vdev_free(vd);
3346 goto out;
3347 }
3348 #endif
3349 vd->vdev_top = vd;
3350
3351 if ((error = vdev_open(vd)) == 0 &&
3352 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3353 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3354 vd->vdev_guid) == 0);
3355 }
3356
3357 vdev_free(vd);
3358
3359 if (error &&
3360 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3361 goto out;
3362 else
3363 error = 0;
3364 }
3365
3366 out:
3367 sav->sav_pending = NULL;
3368 sav->sav_npending = 0;
3369 return (error);
3370 }
3371
3372 static int
3373 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3374 {
3375 int error;
3376
3377 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3378
3379 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3380 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3381 VDEV_LABEL_SPARE)) != 0) {
3382 return (error);
3383 }
3384
3385 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3386 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3387 VDEV_LABEL_L2CACHE));
3388 }
3389
3390 static void
3391 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3392 const char *config)
3393 {
3394 int i;
3395
3396 if (sav->sav_config != NULL) {
3397 nvlist_t **olddevs;
3398 uint_t oldndevs;
3399 nvlist_t **newdevs;
3400
3401 /*
3402 * Generate new dev list by concatentating with the
3403 * current dev list.
3404 */
3405 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3406 &olddevs, &oldndevs) == 0);
3407
3408 newdevs = kmem_alloc(sizeof (void *) *
3409 (ndevs + oldndevs), KM_SLEEP);
3410 for (i = 0; i < oldndevs; i++)
3411 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3412 KM_SLEEP) == 0);
3413 for (i = 0; i < ndevs; i++)
3414 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3415 KM_SLEEP) == 0);
3416
3417 VERIFY(nvlist_remove(sav->sav_config, config,
3418 DATA_TYPE_NVLIST_ARRAY) == 0);
3419
3420 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3421 config, newdevs, ndevs + oldndevs) == 0);
3422 for (i = 0; i < oldndevs + ndevs; i++)
3423 nvlist_free(newdevs[i]);
3424 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3425 } else {
3426 /*
3427 * Generate a new dev list.
3428 */
3429 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3430 KM_SLEEP) == 0);
3431 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3432 devs, ndevs) == 0);
3433 }
3434 }
3435
3436 /*
3437 * Stop and drop level 2 ARC devices
3438 */
3439 void
3440 spa_l2cache_drop(spa_t *spa)
3441 {
3442 vdev_t *vd;
3443 int i;
3444 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3445
3446 for (i = 0; i < sav->sav_count; i++) {
3447 uint64_t pool;
3448
3449 vd = sav->sav_vdevs[i];
3450 ASSERT(vd != NULL);
3451
3452 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3453 pool != 0ULL && l2arc_vdev_present(vd))
3454 l2arc_remove_vdev(vd);
3455 }
3456 }
3457
3458 /*
3459 * Pool Creation
3460 */
3461 int
3462 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3463 nvlist_t *zplprops)
3464 {
3465 spa_t *spa;
3466 char *altroot = NULL;
3467 vdev_t *rvd;
3468 dsl_pool_t *dp;
3469 dmu_tx_t *tx;
3470 int error = 0;
3471 uint64_t txg = TXG_INITIAL;
3472 nvlist_t **spares, **l2cache;
3473 uint_t nspares, nl2cache;
3474 uint64_t version, obj;
3475 boolean_t has_features;
3476
3477 /*
3478 * If this pool already exists, return failure.
3479 */
3480 mutex_enter(&spa_namespace_lock);
3481 if (spa_lookup(pool) != NULL) {
3482 mutex_exit(&spa_namespace_lock);
3483 return (SET_ERROR(EEXIST));
3484 }
3485
3486 /*
3487 * Allocate a new spa_t structure.
3488 */
3489 (void) nvlist_lookup_string(props,
3490 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3491 spa = spa_add(pool, NULL, altroot);
3492 spa_activate(spa, spa_mode_global);
3493
3494 if (props && (error = spa_prop_validate(spa, props))) {
3495 spa_deactivate(spa);
3496 spa_remove(spa);
3497 mutex_exit(&spa_namespace_lock);
3498 return (error);
3499 }
3500
3501 has_features = B_FALSE;
3502 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3503 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3504 if (zpool_prop_feature(nvpair_name(elem)))
3505 has_features = B_TRUE;
3506 }
3507
3508 if (has_features || nvlist_lookup_uint64(props,
3509 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3510 version = SPA_VERSION;
3511 }
3512 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3513
3514 spa->spa_first_txg = txg;
3515 spa->spa_uberblock.ub_txg = txg - 1;
3516 spa->spa_uberblock.ub_version = version;
3517 spa->spa_ubsync = spa->spa_uberblock;
3518
3519 /*
3520 * Create "The Godfather" zio to hold all async IOs
3521 */
3522 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3523 KM_SLEEP);
3524 for (int i = 0; i < max_ncpus; i++) {
3525 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3526 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3527 ZIO_FLAG_GODFATHER);
3528 }
3529
3530 /*
3531 * Create the root vdev.
3532 */
3533 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3534
3535 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3536
3537 ASSERT(error != 0 || rvd != NULL);
3538 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3539
3540 if (error == 0 && !zfs_allocatable_devs(nvroot))
3541 error = SET_ERROR(EINVAL);
3542
3543 if (error == 0 &&
3544 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3545 (error = spa_validate_aux(spa, nvroot, txg,
3546 VDEV_ALLOC_ADD)) == 0) {
3547 for (int c = 0; c < rvd->vdev_children; c++) {
3548 vdev_metaslab_set_size(rvd->vdev_child[c]);
3549 vdev_expand(rvd->vdev_child[c], txg);
3550 }
3551 }
3552
3553 spa_config_exit(spa, SCL_ALL, FTAG);
3554
3555 if (error != 0) {
3556 spa_unload(spa);
3557 spa_deactivate(spa);
3558 spa_remove(spa);
3559 mutex_exit(&spa_namespace_lock);
3560 return (error);
3561 }
3562
3563 /*
3564 * Get the list of spares, if specified.
3565 */
3566 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3567 &spares, &nspares) == 0) {
3568 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3569 KM_SLEEP) == 0);
3570 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3571 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3572 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3573 spa_load_spares(spa);
3574 spa_config_exit(spa, SCL_ALL, FTAG);
3575 spa->spa_spares.sav_sync = B_TRUE;
3576 }
3577
3578 /*
3579 * Get the list of level 2 cache devices, if specified.
3580 */
3581 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3582 &l2cache, &nl2cache) == 0) {
3583 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3584 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3585 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3586 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3587 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3588 spa_load_l2cache(spa);
3589 spa_config_exit(spa, SCL_ALL, FTAG);
3590 spa->spa_l2cache.sav_sync = B_TRUE;
3591 }
3592
3593 spa->spa_is_initializing = B_TRUE;
3594 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3595 spa->spa_meta_objset = dp->dp_meta_objset;
3596 spa->spa_is_initializing = B_FALSE;
3597
3598 /*
3599 * Create DDTs (dedup tables).
3600 */
3601 ddt_create(spa);
3602
3603 spa_update_dspace(spa);
3604
3605 tx = dmu_tx_create_assigned(dp, txg);
3606
3607 /*
3608 * Create the pool config object.
3609 */
3610 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3611 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3612 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3613
3614 if (zap_add(spa->spa_meta_objset,
3615 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3616 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3617 cmn_err(CE_PANIC, "failed to add pool config");
3618 }
3619
3620 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3621 spa_feature_create_zap_objects(spa, tx);
3622
3623 if (zap_add(spa->spa_meta_objset,
3624 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3625 sizeof (uint64_t), 1, &version, tx) != 0) {
3626 cmn_err(CE_PANIC, "failed to add pool version");
3627 }
3628
3629 /* Newly created pools with the right version are always deflated. */
3630 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3631 spa->spa_deflate = TRUE;
3632 if (zap_add(spa->spa_meta_objset,
3633 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3634 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3635 cmn_err(CE_PANIC, "failed to add deflate");
3636 }
3637 }
3638
3639 /*
3640 * Create the deferred-free bpobj. Turn off compression
3641 * because sync-to-convergence takes longer if the blocksize
3642 * keeps changing.
3643 */
3644 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3645 dmu_object_set_compress(spa->spa_meta_objset, obj,
3646 ZIO_COMPRESS_OFF, tx);
3647 if (zap_add(spa->spa_meta_objset,
3648 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3649 sizeof (uint64_t), 1, &obj, tx) != 0) {
3650 cmn_err(CE_PANIC, "failed to add bpobj");
3651 }
3652 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3653 spa->spa_meta_objset, obj));
3654
3655 /*
3656 * Create the pool's history object.
3657 */
3658 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3659 spa_history_create_obj(spa, tx);
3660
3661 /*
3662 * Set pool properties.
3663 */
3664 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3665 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3666 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3667 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3668
3669 if (props != NULL) {
3670 spa_configfile_set(spa, props, B_FALSE);
3671 spa_sync_props(props, tx);
3672 }
3673
3674 dmu_tx_commit(tx);
3675
3676 spa->spa_sync_on = B_TRUE;
3677 txg_sync_start(spa->spa_dsl_pool);
3678
3679 /*
3680 * We explicitly wait for the first transaction to complete so that our
3681 * bean counters are appropriately updated.
3682 */
3683 txg_wait_synced(spa->spa_dsl_pool, txg);
3684
3685 spa_config_sync(spa, B_FALSE, B_TRUE);
3686
3687 spa_history_log_version(spa, "create");
3688
3689 /*
3690 * Don't count references from objsets that are already closed
3691 * and are making their way through the eviction process.
3692 */
3693 spa_evicting_os_wait(spa);
3694 spa->spa_minref = refcount_count(&spa->spa_refcount);
3695
3696 mutex_exit(&spa_namespace_lock);
3697
3698 return (0);
3699 }
3700
3701 #ifdef _KERNEL
3702 /*
3703 * Get the root pool information from the root disk, then import the root pool
3704 * during the system boot up time.
3705 */
3706 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3707
3708 static nvlist_t *
3709 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3710 {
3711 nvlist_t *config;
3712 nvlist_t *nvtop, *nvroot;
3713 uint64_t pgid;
3714
3715 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3716 return (NULL);
3717
3718 /*
3719 * Add this top-level vdev to the child array.
3720 */
3721 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3722 &nvtop) == 0);
3723 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3724 &pgid) == 0);
3725 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3726
3727 /*
3728 * Put this pool's top-level vdevs into a root vdev.
3729 */
3730 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3731 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3732 VDEV_TYPE_ROOT) == 0);
3733 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3734 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3735 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3736 &nvtop, 1) == 0);
3737
3738 /*
3739 * Replace the existing vdev_tree with the new root vdev in
3740 * this pool's configuration (remove the old, add the new).
3741 */
3742 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3743 nvlist_free(nvroot);
3744 return (config);
3745 }
3746
3747 /*
3748 * Walk the vdev tree and see if we can find a device with "better"
3749 * configuration. A configuration is "better" if the label on that
3750 * device has a more recent txg.
3751 */
3752 static void
3753 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3754 {
3755 for (int c = 0; c < vd->vdev_children; c++)
3756 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3757
3758 if (vd->vdev_ops->vdev_op_leaf) {
3759 nvlist_t *label;
3760 uint64_t label_txg;
3761
3762 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3763 &label) != 0)
3764 return;
3765
3766 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3767 &label_txg) == 0);
3768
3769 /*
3770 * Do we have a better boot device?
3771 */
3772 if (label_txg > *txg) {
3773 *txg = label_txg;
3774 *avd = vd;
3775 }
3776 nvlist_free(label);
3777 }
3778 }
3779
3780 /*
3781 * Import a root pool.
3782 *
3783 * For x86. devpath_list will consist of devid and/or physpath name of
3784 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3785 * The GRUB "findroot" command will return the vdev we should boot.
3786 *
3787 * For Sparc, devpath_list consists the physpath name of the booting device
3788 * no matter the rootpool is a single device pool or a mirrored pool.
3789 * e.g.
3790 * "/pci@1f,0/ide@d/disk@0,0:a"
3791 */
3792 int
3793 spa_import_rootpool(char *devpath, char *devid)
3794 {
3795 spa_t *spa;
3796 vdev_t *rvd, *bvd, *avd = NULL;
3797 nvlist_t *config, *nvtop;
3798 uint64_t guid, txg;
3799 char *pname;
3800 int error;
3801
3802 /*
3803 * Read the label from the boot device and generate a configuration.
3804 */
3805 config = spa_generate_rootconf(devpath, devid, &guid);
3806 #if defined(_OBP) && defined(_KERNEL)
3807 if (config == NULL) {
3808 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3809 /* iscsi boot */
3810 get_iscsi_bootpath_phy(devpath);
3811 config = spa_generate_rootconf(devpath, devid, &guid);
3812 }
3813 }
3814 #endif
3815 if (config == NULL) {
3816 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3817 devpath);
3818 return (SET_ERROR(EIO));
3819 }
3820
3821 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3822 &pname) == 0);
3823 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3824
3825 mutex_enter(&spa_namespace_lock);
3826 if ((spa = spa_lookup(pname)) != NULL) {
3827 /*
3828 * Remove the existing root pool from the namespace so that we
3829 * can replace it with the correct config we just read in.
3830 */
3831 spa_remove(spa);
3832 }
3833
3834 spa = spa_add(pname, config, NULL);
3835 spa->spa_is_root = B_TRUE;
3836 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3837
3838 /*
3839 * Build up a vdev tree based on the boot device's label config.
3840 */
3841 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3842 &nvtop) == 0);
3843 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3844 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3845 VDEV_ALLOC_ROOTPOOL);
3846 spa_config_exit(spa, SCL_ALL, FTAG);
3847 if (error) {
3848 mutex_exit(&spa_namespace_lock);
3849 nvlist_free(config);
3850 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3851 pname);
3852 return (error);
3853 }
3854
3855 /*
3856 * Get the boot vdev.
3857 */
3858 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3859 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3860 (u_longlong_t)guid);
3861 error = SET_ERROR(ENOENT);
3862 goto out;
3863 }
3864
3865 /*
3866 * Determine if there is a better boot device.
3867 */
3868 avd = bvd;
3869 spa_alt_rootvdev(rvd, &avd, &txg);
3870 if (avd != bvd) {
3871 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3872 "try booting from '%s'", avd->vdev_path);
3873 error = SET_ERROR(EINVAL);
3874 goto out;
3875 }
3876
3877 /*
3878 * If the boot device is part of a spare vdev then ensure that
3879 * we're booting off the active spare.
3880 */
3881 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3882 !bvd->vdev_isspare) {
3883 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3884 "try booting from '%s'",
3885 bvd->vdev_parent->
3886 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3887 error = SET_ERROR(EINVAL);
3888 goto out;
3889 }
3890
3891 error = 0;
3892 out:
3893 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3894 vdev_free(rvd);
3895 spa_config_exit(spa, SCL_ALL, FTAG);
3896 mutex_exit(&spa_namespace_lock);
3897
3898 nvlist_free(config);
3899 return (error);
3900 }
3901
3902 #endif
3903
3904 /*
3905 * Import a non-root pool into the system.
3906 */
3907 int
3908 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3909 {
3910 spa_t *spa;
3911 char *altroot = NULL;
3912 spa_load_state_t state = SPA_LOAD_IMPORT;
3913 zpool_rewind_policy_t policy;
3914 uint64_t mode = spa_mode_global;
3915 uint64_t readonly = B_FALSE;
3916 int error;
3917 nvlist_t *nvroot;
3918 nvlist_t **spares, **l2cache;
3919 uint_t nspares, nl2cache;
3920
3921 /*
3922 * If a pool with this name exists, return failure.
3923 */
3924 mutex_enter(&spa_namespace_lock);
3925 if (spa_lookup(pool) != NULL) {
3926 mutex_exit(&spa_namespace_lock);
3927 return (SET_ERROR(EEXIST));
3928 }
3929
3930 /*
3931 * Create and initialize the spa structure.
3932 */
3933 (void) nvlist_lookup_string(props,
3934 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3935 (void) nvlist_lookup_uint64(props,
3936 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3937 if (readonly)
3938 mode = FREAD;
3939 spa = spa_add(pool, config, altroot);
3940 spa->spa_import_flags = flags;
3941
3942 /*
3943 * Verbatim import - Take a pool and insert it into the namespace
3944 * as if it had been loaded at boot.
3945 */
3946 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3947 if (props != NULL)
3948 spa_configfile_set(spa, props, B_FALSE);
3949
3950 spa_config_sync(spa, B_FALSE, B_TRUE);
3951
3952 mutex_exit(&spa_namespace_lock);
3953 return (0);
3954 }
3955
3956 spa_activate(spa, mode);
3957
3958 /*
3959 * Don't start async tasks until we know everything is healthy.
3960 */
3961 spa_async_suspend(spa);
3962
3963 zpool_get_rewind_policy(config, &policy);
3964 if (policy.zrp_request & ZPOOL_DO_REWIND)
3965 state = SPA_LOAD_RECOVER;
3966
3967 /*
3968 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3969 * because the user-supplied config is actually the one to trust when
3970 * doing an import.
3971 */
3972 if (state != SPA_LOAD_RECOVER)
3973 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3974
3975 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3976 policy.zrp_request);
3977
3978 /*
3979 * Propagate anything learned while loading the pool and pass it
3980 * back to caller (i.e. rewind info, missing devices, etc).
3981 */
3982 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3983 spa->spa_load_info) == 0);
3984
3985 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3986 /*
3987 * Toss any existing sparelist, as it doesn't have any validity
3988 * anymore, and conflicts with spa_has_spare().
3989 */
3990 if (spa->spa_spares.sav_config) {
3991 nvlist_free(spa->spa_spares.sav_config);
3992 spa->spa_spares.sav_config = NULL;
3993 spa_load_spares(spa);
3994 }
3995 if (spa->spa_l2cache.sav_config) {
3996 nvlist_free(spa->spa_l2cache.sav_config);
3997 spa->spa_l2cache.sav_config = NULL;
3998 spa_load_l2cache(spa);
3999 }
4000
4001 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4002 &nvroot) == 0);
4003 if (error == 0)
4004 error = spa_validate_aux(spa, nvroot, -1ULL,
4005 VDEV_ALLOC_SPARE);
4006 if (error == 0)
4007 error = spa_validate_aux(spa, nvroot, -1ULL,
4008 VDEV_ALLOC_L2CACHE);
4009 spa_config_exit(spa, SCL_ALL, FTAG);
4010
4011 if (props != NULL)
4012 spa_configfile_set(spa, props, B_FALSE);
4013
4014 if (error != 0 || (props && spa_writeable(spa) &&
4015 (error = spa_prop_set(spa, props)))) {
4016 spa_unload(spa);
4017 spa_deactivate(spa);
4018 spa_remove(spa);
4019 mutex_exit(&spa_namespace_lock);
4020 return (error);
4021 }
4022
4023 spa_async_resume(spa);
4024
4025 /*
4026 * Override any spares and level 2 cache devices as specified by
4027 * the user, as these may have correct device names/devids, etc.
4028 */
4029 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4030 &spares, &nspares) == 0) {
4031 if (spa->spa_spares.sav_config)
4032 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4033 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4034 else
4035 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4036 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4037 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4038 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4039 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4040 spa_load_spares(spa);
4041 spa_config_exit(spa, SCL_ALL, FTAG);
4042 spa->spa_spares.sav_sync = B_TRUE;
4043 }
4044 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4045 &l2cache, &nl2cache) == 0) {
4046 if (spa->spa_l2cache.sav_config)
4047 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4048 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4049 else
4050 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4051 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4052 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4053 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4054 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4055 spa_load_l2cache(spa);
4056 spa_config_exit(spa, SCL_ALL, FTAG);
4057 spa->spa_l2cache.sav_sync = B_TRUE;
4058 }
4059
4060 /*
4061 * Check for any removed devices.
4062 */
4063 if (spa->spa_autoreplace) {
4064 spa_aux_check_removed(&spa->spa_spares);
4065 spa_aux_check_removed(&spa->spa_l2cache);
4066 }
4067
4068 if (spa_writeable(spa)) {
4069 /*
4070 * Update the config cache to include the newly-imported pool.
4071 */
4072 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4073 }
4074
4075 /*
4076 * It's possible that the pool was expanded while it was exported.
4077 * We kick off an async task to handle this for us.
4078 */
4079 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4080
4081 mutex_exit(&spa_namespace_lock);
4082 spa_history_log_version(spa, "import");
4083
4084 return (0);
4085 }
4086
4087 nvlist_t *
4088 spa_tryimport(nvlist_t *tryconfig)
4089 {
4090 nvlist_t *config = NULL;
4091 char *poolname;
4092 spa_t *spa;
4093 uint64_t state;
4094 int error;
4095
4096 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4097 return (NULL);
4098
4099 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4100 return (NULL);
4101
4102 /*
4103 * Create and initialize the spa structure.
4104 */
4105 mutex_enter(&spa_namespace_lock);
4106 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4107 spa_activate(spa, FREAD);
4108
4109 /*
4110 * Pass off the heavy lifting to spa_load().
4111 * Pass TRUE for mosconfig because the user-supplied config
4112 * is actually the one to trust when doing an import.
4113 */
4114 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4115
4116 /*
4117 * If 'tryconfig' was at least parsable, return the current config.
4118 */
4119 if (spa->spa_root_vdev != NULL) {
4120 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4121 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4122 poolname) == 0);
4123 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4124 state) == 0);
4125 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4126 spa->spa_uberblock.ub_timestamp) == 0);
4127 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4128 spa->spa_load_info) == 0);
4129
4130 /*
4131 * If the bootfs property exists on this pool then we
4132 * copy it out so that external consumers can tell which
4133 * pools are bootable.
4134 */
4135 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4136 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4137
4138 /*
4139 * We have to play games with the name since the
4140 * pool was opened as TRYIMPORT_NAME.
4141 */
4142 if (dsl_dsobj_to_dsname(spa_name(spa),
4143 spa->spa_bootfs, tmpname) == 0) {
4144 char *cp;
4145 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4146
4147 cp = strchr(tmpname, '/');
4148 if (cp == NULL) {
4149 (void) strlcpy(dsname, tmpname,
4150 MAXPATHLEN);
4151 } else {
4152 (void) snprintf(dsname, MAXPATHLEN,
4153 "%s/%s", poolname, ++cp);
4154 }
4155 VERIFY(nvlist_add_string(config,
4156 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4157 kmem_free(dsname, MAXPATHLEN);
4158 }
4159 kmem_free(tmpname, MAXPATHLEN);
4160 }
4161
4162 /*
4163 * Add the list of hot spares and level 2 cache devices.
4164 */
4165 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4166 spa_add_spares(spa, config);
4167 spa_add_l2cache(spa, config);
4168 spa_config_exit(spa, SCL_CONFIG, FTAG);
4169 }
4170
4171 spa_unload(spa);
4172 spa_deactivate(spa);
4173 spa_remove(spa);
4174 mutex_exit(&spa_namespace_lock);
4175
4176 return (config);
4177 }
4178
4179 /*
4180 * Pool export/destroy
4181 *
4182 * The act of destroying or exporting a pool is very simple. We make sure there
4183 * is no more pending I/O and any references to the pool are gone. Then, we
4184 * update the pool state and sync all the labels to disk, removing the
4185 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4186 * we don't sync the labels or remove the configuration cache.
4187 */
4188 static int
4189 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4190 boolean_t force, boolean_t hardforce)
4191 {
4192 spa_t *spa;
4193
4194 if (oldconfig)
4195 *oldconfig = NULL;
4196
4197 if (!(spa_mode_global & FWRITE))
4198 return (SET_ERROR(EROFS));
4199
4200 mutex_enter(&spa_namespace_lock);
4201 if ((spa = spa_lookup(pool)) == NULL) {
4202 mutex_exit(&spa_namespace_lock);
4203 return (SET_ERROR(ENOENT));
4204 }
4205
4206 /*
4207 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4208 * reacquire the namespace lock, and see if we can export.
4209 */
4210 spa_open_ref(spa, FTAG);
4211 mutex_exit(&spa_namespace_lock);
4212 spa_async_suspend(spa);
4213 mutex_enter(&spa_namespace_lock);
4214 spa_close(spa, FTAG);
4215
4216 /*
4217 * The pool will be in core if it's openable,
4218 * in which case we can modify its state.
4219 */
4220 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4221 /*
4222 * Objsets may be open only because they're dirty, so we
4223 * have to force it to sync before checking spa_refcnt.
4224 */
4225 txg_wait_synced(spa->spa_dsl_pool, 0);
4226 spa_evicting_os_wait(spa);
4227
4228 /*
4229 * A pool cannot be exported or destroyed if there are active
4230 * references. If we are resetting a pool, allow references by
4231 * fault injection handlers.
4232 */
4233 if (!spa_refcount_zero(spa) ||
4234 (spa->spa_inject_ref != 0 &&
4235 new_state != POOL_STATE_UNINITIALIZED)) {
4236 spa_async_resume(spa);
4237 mutex_exit(&spa_namespace_lock);
4238 return (SET_ERROR(EBUSY));
4239 }
4240
4241 /*
4242 * A pool cannot be exported if it has an active shared spare.
4243 * This is to prevent other pools stealing the active spare
4244 * from an exported pool. At user's own will, such pool can
4245 * be forcedly exported.
4246 */
4247 if (!force && new_state == POOL_STATE_EXPORTED &&
4248 spa_has_active_shared_spare(spa)) {
4249 spa_async_resume(spa);
4250 mutex_exit(&spa_namespace_lock);
4251 return (SET_ERROR(EXDEV));
4252 }
4253
4254 /*
4255 * We want this to be reflected on every label,
4256 * so mark them all dirty. spa_unload() will do the
4257 * final sync that pushes these changes out.
4258 */
4259 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4260 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4261 spa->spa_state = new_state;
4262 spa->spa_final_txg = spa_last_synced_txg(spa) +
4263 TXG_DEFER_SIZE + 1;
4264 vdev_config_dirty(spa->spa_root_vdev);
4265 spa_config_exit(spa, SCL_ALL, FTAG);
4266 }
4267 }
4268
4269 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4270
4271 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4272 spa_unload(spa);
4273 spa_deactivate(spa);
4274 }
4275
4276 if (oldconfig && spa->spa_config)
4277 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4278
4279 if (new_state != POOL_STATE_UNINITIALIZED) {
4280 if (!hardforce)
4281 spa_config_sync(spa, B_TRUE, B_TRUE);
4282 spa_remove(spa);
4283 }
4284 mutex_exit(&spa_namespace_lock);
4285
4286 return (0);
4287 }
4288
4289 /*
4290 * Destroy a storage pool.
4291 */
4292 int
4293 spa_destroy(char *pool)
4294 {
4295 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4296 B_FALSE, B_FALSE));
4297 }
4298
4299 /*
4300 * Export a storage pool.
4301 */
4302 int
4303 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4304 boolean_t hardforce)
4305 {
4306 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4307 force, hardforce));
4308 }
4309
4310 /*
4311 * Similar to spa_export(), this unloads the spa_t without actually removing it
4312 * from the namespace in any way.
4313 */
4314 int
4315 spa_reset(char *pool)
4316 {
4317 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4318 B_FALSE, B_FALSE));
4319 }
4320
4321 /*
4322 * ==========================================================================
4323 * Device manipulation
4324 * ==========================================================================
4325 */
4326
4327 /*
4328 * Add a device to a storage pool.
4329 */
4330 int
4331 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4332 {
4333 uint64_t txg, id;
4334 int error;
4335 vdev_t *rvd = spa->spa_root_vdev;
4336 vdev_t *vd, *tvd;
4337 nvlist_t **spares, **l2cache;
4338 uint_t nspares, nl2cache;
4339
4340 ASSERT(spa_writeable(spa));
4341
4342 txg = spa_vdev_enter(spa);
4343
4344 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4345 VDEV_ALLOC_ADD)) != 0)
4346 return (spa_vdev_exit(spa, NULL, txg, error));
4347
4348 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4349
4350 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4351 &nspares) != 0)
4352 nspares = 0;
4353
4354 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4355 &nl2cache) != 0)
4356 nl2cache = 0;
4357
4358 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4359 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4360
4361 if (vd->vdev_children != 0 &&
4362 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4363 return (spa_vdev_exit(spa, vd, txg, error));
4364
4365 /*
4366 * We must validate the spares and l2cache devices after checking the
4367 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4368 */
4369 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4370 return (spa_vdev_exit(spa, vd, txg, error));
4371
4372 /*
4373 * Transfer each new top-level vdev from vd to rvd.
4374 */
4375 for (int c = 0; c < vd->vdev_children; c++) {
4376
4377 /*
4378 * Set the vdev id to the first hole, if one exists.
4379 */
4380 for (id = 0; id < rvd->vdev_children; id++) {
4381 if (rvd->vdev_child[id]->vdev_ishole) {
4382 vdev_free(rvd->vdev_child[id]);
4383 break;
4384 }
4385 }
4386 tvd = vd->vdev_child[c];
4387 vdev_remove_child(vd, tvd);
4388 tvd->vdev_id = id;
4389 vdev_add_child(rvd, tvd);
4390 vdev_config_dirty(tvd);
4391 }
4392
4393 if (nspares != 0) {
4394 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4395 ZPOOL_CONFIG_SPARES);
4396 spa_load_spares(spa);
4397 spa->spa_spares.sav_sync = B_TRUE;
4398 }
4399
4400 if (nl2cache != 0) {
4401 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4402 ZPOOL_CONFIG_L2CACHE);
4403 spa_load_l2cache(spa);
4404 spa->spa_l2cache.sav_sync = B_TRUE;
4405 }
4406
4407 /*
4408 * We have to be careful when adding new vdevs to an existing pool.
4409 * If other threads start allocating from these vdevs before we
4410 * sync the config cache, and we lose power, then upon reboot we may
4411 * fail to open the pool because there are DVAs that the config cache
4412 * can't translate. Therefore, we first add the vdevs without
4413 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4414 * and then let spa_config_update() initialize the new metaslabs.
4415 *
4416 * spa_load() checks for added-but-not-initialized vdevs, so that
4417 * if we lose power at any point in this sequence, the remaining
4418 * steps will be completed the next time we load the pool.
4419 */
4420 (void) spa_vdev_exit(spa, vd, txg, 0);
4421
4422 mutex_enter(&spa_namespace_lock);
4423 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4424 mutex_exit(&spa_namespace_lock);
4425
4426 return (0);
4427 }
4428
4429 /*
4430 * Attach a device to a mirror. The arguments are the path to any device
4431 * in the mirror, and the nvroot for the new device. If the path specifies
4432 * a device that is not mirrored, we automatically insert the mirror vdev.
4433 *
4434 * If 'replacing' is specified, the new device is intended to replace the
4435 * existing device; in this case the two devices are made into their own
4436 * mirror using the 'replacing' vdev, which is functionally identical to
4437 * the mirror vdev (it actually reuses all the same ops) but has a few
4438 * extra rules: you can't attach to it after it's been created, and upon
4439 * completion of resilvering, the first disk (the one being replaced)
4440 * is automatically detached.
4441 */
4442 int
4443 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4444 {
4445 uint64_t txg, dtl_max_txg;
4446 vdev_t *rvd = spa->spa_root_vdev;
4447 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4448 vdev_ops_t *pvops;
4449 char *oldvdpath, *newvdpath;
4450 int newvd_isspare;
4451 int error;
4452
4453 ASSERT(spa_writeable(spa));
4454
4455 txg = spa_vdev_enter(spa);
4456
4457 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4458
4459 if (oldvd == NULL)
4460 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4461
4462 if (!oldvd->vdev_ops->vdev_op_leaf)
4463 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4464
4465 pvd = oldvd->vdev_parent;
4466
4467 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4468 VDEV_ALLOC_ATTACH)) != 0)
4469 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4470
4471 if (newrootvd->vdev_children != 1)
4472 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4473
4474 newvd = newrootvd->vdev_child[0];
4475
4476 if (!newvd->vdev_ops->vdev_op_leaf)
4477 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4478
4479 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4480 return (spa_vdev_exit(spa, newrootvd, txg, error));
4481
4482 /*
4483 * Spares can't replace logs
4484 */
4485 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4486 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4487
4488 if (!replacing) {
4489 /*
4490 * For attach, the only allowable parent is a mirror or the root
4491 * vdev.
4492 */
4493 if (pvd->vdev_ops != &vdev_mirror_ops &&
4494 pvd->vdev_ops != &vdev_root_ops)
4495 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4496
4497 pvops = &vdev_mirror_ops;
4498 } else {
4499 /*
4500 * Active hot spares can only be replaced by inactive hot
4501 * spares.
4502 */
4503 if (pvd->vdev_ops == &vdev_spare_ops &&
4504 oldvd->vdev_isspare &&
4505 !spa_has_spare(spa, newvd->vdev_guid))
4506 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4507
4508 /*
4509 * If the source is a hot spare, and the parent isn't already a
4510 * spare, then we want to create a new hot spare. Otherwise, we
4511 * want to create a replacing vdev. The user is not allowed to
4512 * attach to a spared vdev child unless the 'isspare' state is
4513 * the same (spare replaces spare, non-spare replaces
4514 * non-spare).
4515 */
4516 if (pvd->vdev_ops == &vdev_replacing_ops &&
4517 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4518 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4519 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4520 newvd->vdev_isspare != oldvd->vdev_isspare) {
4521 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4522 }
4523
4524 if (newvd->vdev_isspare)
4525 pvops = &vdev_spare_ops;
4526 else
4527 pvops = &vdev_replacing_ops;
4528 }
4529
4530 /*
4531 * Make sure the new device is big enough.
4532 */
4533 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4534 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4535
4536 /*
4537 * The new device cannot have a higher alignment requirement
4538 * than the top-level vdev.
4539 */
4540 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4541 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4542
4543 /*
4544 * If this is an in-place replacement, update oldvd's path and devid
4545 * to make it distinguishable from newvd, and unopenable from now on.
4546 */
4547 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4548 spa_strfree(oldvd->vdev_path);
4549 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4550 KM_SLEEP);
4551 (void) sprintf(oldvd->vdev_path, "%s/%s",
4552 newvd->vdev_path, "old");
4553 if (oldvd->vdev_devid != NULL) {
4554 spa_strfree(oldvd->vdev_devid);
4555 oldvd->vdev_devid = NULL;
4556 }
4557 }
4558
4559 /* mark the device being resilvered */
4560 newvd->vdev_resilver_txg = txg;
4561
4562 /*
4563 * If the parent is not a mirror, or if we're replacing, insert the new
4564 * mirror/replacing/spare vdev above oldvd.
4565 */
4566 if (pvd->vdev_ops != pvops)
4567 pvd = vdev_add_parent(oldvd, pvops);
4568
4569 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4570 ASSERT(pvd->vdev_ops == pvops);
4571 ASSERT(oldvd->vdev_parent == pvd);
4572
4573 /*
4574 * Extract the new device from its root and add it to pvd.
4575 */
4576 vdev_remove_child(newrootvd, newvd);
4577 newvd->vdev_id = pvd->vdev_children;
4578 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4579 vdev_add_child(pvd, newvd);
4580
4581 tvd = newvd->vdev_top;
4582 ASSERT(pvd->vdev_top == tvd);
4583 ASSERT(tvd->vdev_parent == rvd);
4584
4585 vdev_config_dirty(tvd);
4586
4587 /*
4588 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4589 * for any dmu_sync-ed blocks. It will propagate upward when
4590 * spa_vdev_exit() calls vdev_dtl_reassess().
4591 */
4592 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4593
4594 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4595 dtl_max_txg - TXG_INITIAL);
4596
4597 if (newvd->vdev_isspare) {
4598 spa_spare_activate(newvd);
4599 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4600 }
4601
4602 oldvdpath = spa_strdup(oldvd->vdev_path);
4603 newvdpath = spa_strdup(newvd->vdev_path);
4604 newvd_isspare = newvd->vdev_isspare;
4605
4606 /*
4607 * Mark newvd's DTL dirty in this txg.
4608 */
4609 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4610
4611 /*
4612 * Schedule the resilver to restart in the future. We do this to
4613 * ensure that dmu_sync-ed blocks have been stitched into the
4614 * respective datasets.
4615 */
4616 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4617
4618 /*
4619 * Commit the config
4620 */
4621 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4622
4623 spa_history_log_internal(spa, "vdev attach", NULL,
4624 "%s vdev=%s %s vdev=%s",
4625 replacing && newvd_isspare ? "spare in" :
4626 replacing ? "replace" : "attach", newvdpath,
4627 replacing ? "for" : "to", oldvdpath);
4628
4629 spa_strfree(oldvdpath);
4630 spa_strfree(newvdpath);
4631
4632 if (spa->spa_bootfs)
4633 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4634
4635 return (0);
4636 }
4637
4638 /*
4639 * Detach a device from a mirror or replacing vdev.
4640 *
4641 * If 'replace_done' is specified, only detach if the parent
4642 * is a replacing vdev.
4643 */
4644 int
4645 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4646 {
4647 uint64_t txg;
4648 int error;
4649 vdev_t *rvd = spa->spa_root_vdev;
4650 vdev_t *vd, *pvd, *cvd, *tvd;
4651 boolean_t unspare = B_FALSE;
4652 uint64_t unspare_guid = 0;
4653 char *vdpath;
4654
4655 ASSERT(spa_writeable(spa));
4656
4657 txg = spa_vdev_enter(spa);
4658
4659 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4660
4661 if (vd == NULL)
4662 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4663
4664 if (!vd->vdev_ops->vdev_op_leaf)
4665 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4666
4667 pvd = vd->vdev_parent;
4668
4669 /*
4670 * If the parent/child relationship is not as expected, don't do it.
4671 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4672 * vdev that's replacing B with C. The user's intent in replacing
4673 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4674 * the replace by detaching C, the expected behavior is to end up
4675 * M(A,B). But suppose that right after deciding to detach C,
4676 * the replacement of B completes. We would have M(A,C), and then
4677 * ask to detach C, which would leave us with just A -- not what
4678 * the user wanted. To prevent this, we make sure that the
4679 * parent/child relationship hasn't changed -- in this example,
4680 * that C's parent is still the replacing vdev R.
4681 */
4682 if (pvd->vdev_guid != pguid && pguid != 0)
4683 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4684
4685 /*
4686 * Only 'replacing' or 'spare' vdevs can be replaced.
4687 */
4688 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4689 pvd->vdev_ops != &vdev_spare_ops)
4690 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4691
4692 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4693 spa_version(spa) >= SPA_VERSION_SPARES);
4694
4695 /*
4696 * Only mirror, replacing, and spare vdevs support detach.
4697 */
4698 if (pvd->vdev_ops != &vdev_replacing_ops &&
4699 pvd->vdev_ops != &vdev_mirror_ops &&
4700 pvd->vdev_ops != &vdev_spare_ops)
4701 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4702
4703 /*
4704 * If this device has the only valid copy of some data,
4705 * we cannot safely detach it.
4706 */
4707 if (vdev_dtl_required(vd))
4708 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4709
4710 ASSERT(pvd->vdev_children >= 2);
4711
4712 /*
4713 * If we are detaching the second disk from a replacing vdev, then
4714 * check to see if we changed the original vdev's path to have "/old"
4715 * at the end in spa_vdev_attach(). If so, undo that change now.
4716 */
4717 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4718 vd->vdev_path != NULL) {
4719 size_t len = strlen(vd->vdev_path);
4720
4721 for (int c = 0; c < pvd->vdev_children; c++) {
4722 cvd = pvd->vdev_child[c];
4723
4724 if (cvd == vd || cvd->vdev_path == NULL)
4725 continue;
4726
4727 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4728 strcmp(cvd->vdev_path + len, "/old") == 0) {
4729 spa_strfree(cvd->vdev_path);
4730 cvd->vdev_path = spa_strdup(vd->vdev_path);
4731 break;
4732 }
4733 }
4734 }
4735
4736 /*
4737 * If we are detaching the original disk from a spare, then it implies
4738 * that the spare should become a real disk, and be removed from the
4739 * active spare list for the pool.
4740 */
4741 if (pvd->vdev_ops == &vdev_spare_ops &&
4742 vd->vdev_id == 0 &&
4743 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4744 unspare = B_TRUE;
4745
4746 /*
4747 * Erase the disk labels so the disk can be used for other things.
4748 * This must be done after all other error cases are handled,
4749 * but before we disembowel vd (so we can still do I/O to it).
4750 * But if we can't do it, don't treat the error as fatal --
4751 * it may be that the unwritability of the disk is the reason
4752 * it's being detached!
4753 */
4754 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4755
4756 /*
4757 * Remove vd from its parent and compact the parent's children.
4758 */
4759 vdev_remove_child(pvd, vd);
4760 vdev_compact_children(pvd);
4761
4762 /*
4763 * Remember one of the remaining children so we can get tvd below.
4764 */
4765 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4766
4767 /*
4768 * If we need to remove the remaining child from the list of hot spares,
4769 * do it now, marking the vdev as no longer a spare in the process.
4770 * We must do this before vdev_remove_parent(), because that can
4771 * change the GUID if it creates a new toplevel GUID. For a similar
4772 * reason, we must remove the spare now, in the same txg as the detach;
4773 * otherwise someone could attach a new sibling, change the GUID, and
4774 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4775 */
4776 if (unspare) {
4777 ASSERT(cvd->vdev_isspare);
4778 spa_spare_remove(cvd);
4779 unspare_guid = cvd->vdev_guid;
4780 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4781 cvd->vdev_unspare = B_TRUE;
4782 }
4783
4784 /*
4785 * If the parent mirror/replacing vdev only has one child,
4786 * the parent is no longer needed. Remove it from the tree.
4787 */
4788 if (pvd->vdev_children == 1) {
4789 if (pvd->vdev_ops == &vdev_spare_ops)
4790 cvd->vdev_unspare = B_FALSE;
4791 vdev_remove_parent(cvd);
4792 }
4793
4794
4795 /*
4796 * We don't set tvd until now because the parent we just removed
4797 * may have been the previous top-level vdev.
4798 */
4799 tvd = cvd->vdev_top;
4800 ASSERT(tvd->vdev_parent == rvd);
4801
4802 /*
4803 * Reevaluate the parent vdev state.
4804 */
4805 vdev_propagate_state(cvd);
4806
4807 /*
4808 * If the 'autoexpand' property is set on the pool then automatically
4809 * try to expand the size of the pool. For example if the device we
4810 * just detached was smaller than the others, it may be possible to
4811 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4812 * first so that we can obtain the updated sizes of the leaf vdevs.
4813 */
4814 if (spa->spa_autoexpand) {
4815 vdev_reopen(tvd);
4816 vdev_expand(tvd, txg);
4817 }
4818
4819 vdev_config_dirty(tvd);
4820
4821 /*
4822 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4823 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4824 * But first make sure we're not on any *other* txg's DTL list, to
4825 * prevent vd from being accessed after it's freed.
4826 */
4827 vdpath = spa_strdup(vd->vdev_path);
4828 for (int t = 0; t < TXG_SIZE; t++)
4829 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4830 vd->vdev_detached = B_TRUE;
4831 vdev_dirty(tvd, VDD_DTL, vd, txg);
4832
4833 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4834
4835 /* hang on to the spa before we release the lock */
4836 spa_open_ref(spa, FTAG);
4837
4838 error = spa_vdev_exit(spa, vd, txg, 0);
4839
4840 spa_history_log_internal(spa, "detach", NULL,
4841 "vdev=%s", vdpath);
4842 spa_strfree(vdpath);
4843
4844 /*
4845 * If this was the removal of the original device in a hot spare vdev,
4846 * then we want to go through and remove the device from the hot spare
4847 * list of every other pool.
4848 */
4849 if (unspare) {
4850 spa_t *altspa = NULL;
4851
4852 mutex_enter(&spa_namespace_lock);
4853 while ((altspa = spa_next(altspa)) != NULL) {
4854 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4855 altspa == spa)
4856 continue;
4857
4858 spa_open_ref(altspa, FTAG);
4859 mutex_exit(&spa_namespace_lock);
4860 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4861 mutex_enter(&spa_namespace_lock);
4862 spa_close(altspa, FTAG);
4863 }
4864 mutex_exit(&spa_namespace_lock);
4865
4866 /* search the rest of the vdevs for spares to remove */
4867 spa_vdev_resilver_done(spa);
4868 }
4869
4870 /* all done with the spa; OK to release */
4871 mutex_enter(&spa_namespace_lock);
4872 spa_close(spa, FTAG);
4873 mutex_exit(&spa_namespace_lock);
4874
4875 return (error);
4876 }
4877
4878 /*
4879 * Split a set of devices from their mirrors, and create a new pool from them.
4880 */
4881 int
4882 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4883 nvlist_t *props, boolean_t exp)
4884 {
4885 int error = 0;
4886 uint64_t txg, *glist;
4887 spa_t *newspa;
4888 uint_t c, children, lastlog;
4889 nvlist_t **child, *nvl, *tmp;
4890 dmu_tx_t *tx;
4891 char *altroot = NULL;
4892 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4893 boolean_t activate_slog;
4894
4895 ASSERT(spa_writeable(spa));
4896
4897 txg = spa_vdev_enter(spa);
4898
4899 /* clear the log and flush everything up to now */
4900 activate_slog = spa_passivate_log(spa);
4901 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4902 error = spa_offline_log(spa);
4903 txg = spa_vdev_config_enter(spa);
4904
4905 if (activate_slog)
4906 spa_activate_log(spa);
4907
4908 if (error != 0)
4909 return (spa_vdev_exit(spa, NULL, txg, error));
4910
4911 /* check new spa name before going any further */
4912 if (spa_lookup(newname) != NULL)
4913 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4914
4915 /*
4916 * scan through all the children to ensure they're all mirrors
4917 */
4918 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4919 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4920 &children) != 0)
4921 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4922
4923 /* first, check to ensure we've got the right child count */
4924 rvd = spa->spa_root_vdev;
4925 lastlog = 0;
4926 for (c = 0; c < rvd->vdev_children; c++) {
4927 vdev_t *vd = rvd->vdev_child[c];
4928
4929 /* don't count the holes & logs as children */
4930 if (vd->vdev_islog || vd->vdev_ishole) {
4931 if (lastlog == 0)
4932 lastlog = c;
4933 continue;
4934 }
4935
4936 lastlog = 0;
4937 }
4938 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4939 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4940
4941 /* next, ensure no spare or cache devices are part of the split */
4942 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4943 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4944 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4945
4946 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4947 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4948
4949 /* then, loop over each vdev and validate it */
4950 for (c = 0; c < children; c++) {
4951 uint64_t is_hole = 0;
4952
4953 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4954 &is_hole);
4955
4956 if (is_hole != 0) {
4957 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4958 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4959 continue;
4960 } else {
4961 error = SET_ERROR(EINVAL);
4962 break;
4963 }
4964 }
4965
4966 /* which disk is going to be split? */
4967 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4968 &glist[c]) != 0) {
4969 error = SET_ERROR(EINVAL);
4970 break;
4971 }
4972
4973 /* look it up in the spa */
4974 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4975 if (vml[c] == NULL) {
4976 error = SET_ERROR(ENODEV);
4977 break;
4978 }
4979
4980 /* make sure there's nothing stopping the split */
4981 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4982 vml[c]->vdev_islog ||
4983 vml[c]->vdev_ishole ||
4984 vml[c]->vdev_isspare ||
4985 vml[c]->vdev_isl2cache ||
4986 !vdev_writeable(vml[c]) ||
4987 vml[c]->vdev_children != 0 ||
4988 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4989 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4990 error = SET_ERROR(EINVAL);
4991 break;
4992 }
4993
4994 if (vdev_dtl_required(vml[c])) {
4995 error = SET_ERROR(EBUSY);
4996 break;
4997 }
4998
4999 /* we need certain info from the top level */
5000 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5001 vml[c]->vdev_top->vdev_ms_array) == 0);
5002 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5003 vml[c]->vdev_top->vdev_ms_shift) == 0);
5004 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5005 vml[c]->vdev_top->vdev_asize) == 0);
5006 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5007 vml[c]->vdev_top->vdev_ashift) == 0);
5008 }
5009
5010 if (error != 0) {
5011 kmem_free(vml, children * sizeof (vdev_t *));
5012 kmem_free(glist, children * sizeof (uint64_t));
5013 return (spa_vdev_exit(spa, NULL, txg, error));
5014 }
5015
5016 /* stop writers from using the disks */
5017 for (c = 0; c < children; c++) {
5018 if (vml[c] != NULL)
5019 vml[c]->vdev_offline = B_TRUE;
5020 }
5021 vdev_reopen(spa->spa_root_vdev);
5022
5023 /*
5024 * Temporarily record the splitting vdevs in the spa config. This
5025 * will disappear once the config is regenerated.
5026 */
5027 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5028 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5029 glist, children) == 0);
5030 kmem_free(glist, children * sizeof (uint64_t));
5031
5032 mutex_enter(&spa->spa_props_lock);
5033 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5034 nvl) == 0);
5035 mutex_exit(&spa->spa_props_lock);
5036 spa->spa_config_splitting = nvl;
5037 vdev_config_dirty(spa->spa_root_vdev);
5038
5039 /* configure and create the new pool */
5040 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5041 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5042 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5043 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5044 spa_version(spa)) == 0);
5045 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5046 spa->spa_config_txg) == 0);
5047 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5048 spa_generate_guid(NULL)) == 0);
5049 (void) nvlist_lookup_string(props,
5050 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5051
5052 /* add the new pool to the namespace */
5053 newspa = spa_add(newname, config, altroot);
5054 newspa->spa_config_txg = spa->spa_config_txg;
5055 spa_set_log_state(newspa, SPA_LOG_CLEAR);
5056
5057 /* release the spa config lock, retaining the namespace lock */
5058 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5059
5060 if (zio_injection_enabled)
5061 zio_handle_panic_injection(spa, FTAG, 1);
5062
5063 spa_activate(newspa, spa_mode_global);
5064 spa_async_suspend(newspa);
5065
5066 /* create the new pool from the disks of the original pool */
5067 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5068 if (error)
5069 goto out;
5070
5071 /* if that worked, generate a real config for the new pool */
5072 if (newspa->spa_root_vdev != NULL) {
5073 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5074 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5075 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5076 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5077 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5078 B_TRUE));
5079 }
5080
5081 /* set the props */
5082 if (props != NULL) {
5083 spa_configfile_set(newspa, props, B_FALSE);
5084 error = spa_prop_set(newspa, props);
5085 if (error)
5086 goto out;
5087 }
5088
5089 /* flush everything */
5090 txg = spa_vdev_config_enter(newspa);
5091 vdev_config_dirty(newspa->spa_root_vdev);
5092 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5093
5094 if (zio_injection_enabled)
5095 zio_handle_panic_injection(spa, FTAG, 2);
5096
5097 spa_async_resume(newspa);
5098
5099 /* finally, update the original pool's config */
5100 txg = spa_vdev_config_enter(spa);
5101 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5102 error = dmu_tx_assign(tx, TXG_WAIT);
5103 if (error != 0)
5104 dmu_tx_abort(tx);
5105 for (c = 0; c < children; c++) {
5106 if (vml[c] != NULL) {
5107 vdev_split(vml[c]);
5108 if (error == 0)
5109 spa_history_log_internal(spa, "detach", tx,
5110 "vdev=%s", vml[c]->vdev_path);
5111 vdev_free(vml[c]);
5112 }
5113 }
5114 vdev_config_dirty(spa->spa_root_vdev);
5115 spa->spa_config_splitting = NULL;
5116 nvlist_free(nvl);
5117 if (error == 0)
5118 dmu_tx_commit(tx);
5119 (void) spa_vdev_exit(spa, NULL, txg, 0);
5120
5121 if (zio_injection_enabled)
5122 zio_handle_panic_injection(spa, FTAG, 3);
5123
5124 /* split is complete; log a history record */
5125 spa_history_log_internal(newspa, "split", NULL,
5126 "from pool %s", spa_name(spa));
5127
5128 kmem_free(vml, children * sizeof (vdev_t *));
5129
5130 /* if we're not going to mount the filesystems in userland, export */
5131 if (exp)
5132 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5133 B_FALSE, B_FALSE);
5134
5135 return (error);
5136
5137 out:
5138 spa_unload(newspa);
5139 spa_deactivate(newspa);
5140 spa_remove(newspa);
5141
5142 txg = spa_vdev_config_enter(spa);
5143
5144 /* re-online all offlined disks */
5145 for (c = 0; c < children; c++) {
5146 if (vml[c] != NULL)
5147 vml[c]->vdev_offline = B_FALSE;
5148 }
5149 vdev_reopen(spa->spa_root_vdev);
5150
5151 nvlist_free(spa->spa_config_splitting);
5152 spa->spa_config_splitting = NULL;
5153 (void) spa_vdev_exit(spa, NULL, txg, error);
5154
5155 kmem_free(vml, children * sizeof (vdev_t *));
5156 return (error);
5157 }
5158
5159 static nvlist_t *
5160 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5161 {
5162 for (int i = 0; i < count; i++) {
5163 uint64_t guid;
5164
5165 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5166 &guid) == 0);
5167
5168 if (guid == target_guid)
5169 return (nvpp[i]);
5170 }
5171
5172 return (NULL);
5173 }
5174
5175 static void
5176 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5177 nvlist_t *dev_to_remove)
5178 {
5179 nvlist_t **newdev = NULL;
5180
5181 if (count > 1)
5182 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5183
5184 for (int i = 0, j = 0; i < count; i++) {
5185 if (dev[i] == dev_to_remove)
5186 continue;
5187 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5188 }
5189
5190 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5191 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5192
5193 for (int i = 0; i < count - 1; i++)
5194 nvlist_free(newdev[i]);
5195
5196 if (count > 1)
5197 kmem_free(newdev, (count - 1) * sizeof (void *));
5198 }
5199
5200 /*
5201 * Evacuate the device.
5202 */
5203 static int
5204 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5205 {
5206 uint64_t txg;
5207 int error = 0;
5208
5209 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5210 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5211 ASSERT(vd == vd->vdev_top);
5212
5213 /*
5214 * Evacuate the device. We don't hold the config lock as writer
5215 * since we need to do I/O but we do keep the
5216 * spa_namespace_lock held. Once this completes the device
5217 * should no longer have any blocks allocated on it.
5218 */
5219 if (vd->vdev_islog) {
5220 if (vd->vdev_stat.vs_alloc != 0)
5221 error = spa_offline_log(spa);
5222 } else {
5223 error = SET_ERROR(ENOTSUP);
5224 }
5225
5226 if (error)
5227 return (error);
5228
5229 /*
5230 * The evacuation succeeded. Remove any remaining MOS metadata
5231 * associated with this vdev, and wait for these changes to sync.
5232 */
5233 ASSERT0(vd->vdev_stat.vs_alloc);
5234 txg = spa_vdev_config_enter(spa);
5235 vd->vdev_removing = B_TRUE;
5236 vdev_dirty_leaves(vd, VDD_DTL, txg);
5237 vdev_config_dirty(vd);
5238 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5239
5240 return (0);
5241 }
5242
5243 /*
5244 * Complete the removal by cleaning up the namespace.
5245 */
5246 static void
5247 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5248 {
5249 vdev_t *rvd = spa->spa_root_vdev;
5250 uint64_t id = vd->vdev_id;
5251 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5252
5253 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5254 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5255 ASSERT(vd == vd->vdev_top);
5256
5257 /*
5258 * Only remove any devices which are empty.
5259 */
5260 if (vd->vdev_stat.vs_alloc != 0)
5261 return;
5262
5263 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5264
5265 if (list_link_active(&vd->vdev_state_dirty_node))
5266 vdev_state_clean(vd);
5267 if (list_link_active(&vd->vdev_config_dirty_node))
5268 vdev_config_clean(vd);
5269
5270 vdev_free(vd);
5271
5272 if (last_vdev) {
5273 vdev_compact_children(rvd);
5274 } else {
5275 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5276 vdev_add_child(rvd, vd);
5277 }
5278 vdev_config_dirty(rvd);
5279
5280 /*
5281 * Reassess the health of our root vdev.
5282 */
5283 vdev_reopen(rvd);
5284 }
5285
5286 /*
5287 * Remove a device from the pool -
5288 *
5289 * Removing a device from the vdev namespace requires several steps
5290 * and can take a significant amount of time. As a result we use
5291 * the spa_vdev_config_[enter/exit] functions which allow us to
5292 * grab and release the spa_config_lock while still holding the namespace
5293 * lock. During each step the configuration is synced out.
5294 *
5295 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5296 * devices.
5297 */
5298 int
5299 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5300 {
5301 vdev_t *vd;
5302 metaslab_group_t *mg;
5303 nvlist_t **spares, **l2cache, *nv;
5304 uint64_t txg = 0;
5305 uint_t nspares, nl2cache;
5306 int error = 0;
5307 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5308
5309 ASSERT(spa_writeable(spa));
5310
5311 if (!locked)
5312 txg = spa_vdev_enter(spa);
5313
5314 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5315
5316 if (spa->spa_spares.sav_vdevs != NULL &&
5317 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5318 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5319 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5320 /*
5321 * Only remove the hot spare if it's not currently in use
5322 * in this pool.
5323 */
5324 if (vd == NULL || unspare) {
5325 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5326 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5327 spa_load_spares(spa);
5328 spa->spa_spares.sav_sync = B_TRUE;
5329 } else {
5330 error = SET_ERROR(EBUSY);
5331 }
5332 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5333 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5334 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5335 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5336 /*
5337 * Cache devices can always be removed.
5338 */
5339 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5340 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5341 spa_load_l2cache(spa);
5342 spa->spa_l2cache.sav_sync = B_TRUE;
5343 } else if (vd != NULL && vd->vdev_islog) {
5344 ASSERT(!locked);
5345 ASSERT(vd == vd->vdev_top);
5346
5347 mg = vd->vdev_mg;
5348
5349 /*
5350 * Stop allocating from this vdev.
5351 */
5352 metaslab_group_passivate(mg);
5353
5354 /*
5355 * Wait for the youngest allocations and frees to sync,
5356 * and then wait for the deferral of those frees to finish.
5357 */
5358 spa_vdev_config_exit(spa, NULL,
5359 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5360
5361 /*
5362 * Attempt to evacuate the vdev.
5363 */
5364 error = spa_vdev_remove_evacuate(spa, vd);
5365
5366 txg = spa_vdev_config_enter(spa);
5367
5368 /*
5369 * If we couldn't evacuate the vdev, unwind.
5370 */
5371 if (error) {
5372 metaslab_group_activate(mg);
5373 return (spa_vdev_exit(spa, NULL, txg, error));
5374 }
5375
5376 /*
5377 * Clean up the vdev namespace.
5378 */
5379 spa_vdev_remove_from_namespace(spa, vd);
5380
5381 } else if (vd != NULL) {
5382 /*
5383 * Normal vdevs cannot be removed (yet).
5384 */
5385 error = SET_ERROR(ENOTSUP);
5386 } else {
5387 /*
5388 * There is no vdev of any kind with the specified guid.
5389 */
5390 error = SET_ERROR(ENOENT);
5391 }
5392
5393 if (!locked)
5394 return (spa_vdev_exit(spa, NULL, txg, error));
5395
5396 return (error);
5397 }
5398
5399 /*
5400 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5401 * currently spared, so we can detach it.
5402 */
5403 static vdev_t *
5404 spa_vdev_resilver_done_hunt(vdev_t *vd)
5405 {
5406 vdev_t *newvd, *oldvd;
5407
5408 for (int c = 0; c < vd->vdev_children; c++) {
5409 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5410 if (oldvd != NULL)
5411 return (oldvd);
5412 }
5413
5414 /*
5415 * Check for a completed replacement. We always consider the first
5416 * vdev in the list to be the oldest vdev, and the last one to be
5417 * the newest (see spa_vdev_attach() for how that works). In
5418 * the case where the newest vdev is faulted, we will not automatically
5419 * remove it after a resilver completes. This is OK as it will require
5420 * user intervention to determine which disk the admin wishes to keep.
5421 */
5422 if (vd->vdev_ops == &vdev_replacing_ops) {
5423 ASSERT(vd->vdev_children > 1);
5424
5425 newvd = vd->vdev_child[vd->vdev_children - 1];
5426 oldvd = vd->vdev_child[0];
5427
5428 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5429 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5430 !vdev_dtl_required(oldvd))
5431 return (oldvd);
5432 }
5433
5434 /*
5435 * Check for a completed resilver with the 'unspare' flag set.
5436 */
5437 if (vd->vdev_ops == &vdev_spare_ops) {
5438 vdev_t *first = vd->vdev_child[0];
5439 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5440
5441 if (last->vdev_unspare) {
5442 oldvd = first;
5443 newvd = last;
5444 } else if (first->vdev_unspare) {
5445 oldvd = last;
5446 newvd = first;
5447 } else {
5448 oldvd = NULL;
5449 }
5450
5451 if (oldvd != NULL &&
5452 vdev_dtl_empty(newvd, DTL_MISSING) &&
5453 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5454 !vdev_dtl_required(oldvd))
5455 return (oldvd);
5456
5457 /*
5458 * If there are more than two spares attached to a disk,
5459 * and those spares are not required, then we want to
5460 * attempt to free them up now so that they can be used
5461 * by other pools. Once we're back down to a single
5462 * disk+spare, we stop removing them.
5463 */
5464 if (vd->vdev_children > 2) {
5465 newvd = vd->vdev_child[1];
5466
5467 if (newvd->vdev_isspare && last->vdev_isspare &&
5468 vdev_dtl_empty(last, DTL_MISSING) &&
5469 vdev_dtl_empty(last, DTL_OUTAGE) &&
5470 !vdev_dtl_required(newvd))
5471 return (newvd);
5472 }
5473 }
5474
5475 return (NULL);
5476 }
5477
5478 static void
5479 spa_vdev_resilver_done(spa_t *spa)
5480 {
5481 vdev_t *vd, *pvd, *ppvd;
5482 uint64_t guid, sguid, pguid, ppguid;
5483
5484 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5485
5486 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5487 pvd = vd->vdev_parent;
5488 ppvd = pvd->vdev_parent;
5489 guid = vd->vdev_guid;
5490 pguid = pvd->vdev_guid;
5491 ppguid = ppvd->vdev_guid;
5492 sguid = 0;
5493 /*
5494 * If we have just finished replacing a hot spared device, then
5495 * we need to detach the parent's first child (the original hot
5496 * spare) as well.
5497 */
5498 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5499 ppvd->vdev_children == 2) {
5500 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5501 sguid = ppvd->vdev_child[1]->vdev_guid;
5502 }
5503 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5504
5505 spa_config_exit(spa, SCL_ALL, FTAG);
5506 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5507 return;
5508 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5509 return;
5510 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5511 }
5512
5513 spa_config_exit(spa, SCL_ALL, FTAG);
5514 }
5515
5516 /*
5517 * Update the stored path or FRU for this vdev.
5518 */
5519 int
5520 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5521 boolean_t ispath)
5522 {
5523 vdev_t *vd;
5524 boolean_t sync = B_FALSE;
5525
5526 ASSERT(spa_writeable(spa));
5527
5528 spa_vdev_state_enter(spa, SCL_ALL);
5529
5530 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5531 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5532
5533 if (!vd->vdev_ops->vdev_op_leaf)
5534 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5535
5536 if (ispath) {
5537 if (strcmp(value, vd->vdev_path) != 0) {
5538 spa_strfree(vd->vdev_path);
5539 vd->vdev_path = spa_strdup(value);
5540 sync = B_TRUE;
5541 }
5542 } else {
5543 if (vd->vdev_fru == NULL) {
5544 vd->vdev_fru = spa_strdup(value);
5545 sync = B_TRUE;
5546 } else if (strcmp(value, vd->vdev_fru) != 0) {
5547 spa_strfree(vd->vdev_fru);
5548 vd->vdev_fru = spa_strdup(value);
5549 sync = B_TRUE;
5550 }
5551 }
5552
5553 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5554 }
5555
5556 int
5557 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5558 {
5559 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5560 }
5561
5562 int
5563 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5564 {
5565 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5566 }
5567
5568 /*
5569 * ==========================================================================
5570 * SPA Scanning
5571 * ==========================================================================
5572 */
5573
5574 int
5575 spa_scan_stop(spa_t *spa)
5576 {
5577 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5578 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5579 return (SET_ERROR(EBUSY));
5580 return (dsl_scan_cancel(spa->spa_dsl_pool));
5581 }
5582
5583 int
5584 spa_scan(spa_t *spa, pool_scan_func_t func)
5585 {
5586 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5587
5588 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5589 return (SET_ERROR(ENOTSUP));
5590
5591 /*
5592 * If a resilver was requested, but there is no DTL on a
5593 * writeable leaf device, we have nothing to do.
5594 */
5595 if (func == POOL_SCAN_RESILVER &&
5596 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5597 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5598 return (0);
5599 }
5600
5601 return (dsl_scan(spa->spa_dsl_pool, func));
5602 }
5603
5604 /*
5605 * ==========================================================================
5606 * SPA async task processing
5607 * ==========================================================================
5608 */
5609
5610 static void
5611 spa_async_remove(spa_t *spa, vdev_t *vd)
5612 {
5613 if (vd->vdev_remove_wanted) {
5614 vd->vdev_remove_wanted = B_FALSE;
5615 vd->vdev_delayed_close = B_FALSE;
5616 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5617
5618 /*
5619 * We want to clear the stats, but we don't want to do a full
5620 * vdev_clear() as that will cause us to throw away
5621 * degraded/faulted state as well as attempt to reopen the
5622 * device, all of which is a waste.
5623 */
5624 vd->vdev_stat.vs_read_errors = 0;
5625 vd->vdev_stat.vs_write_errors = 0;
5626 vd->vdev_stat.vs_checksum_errors = 0;
5627
5628 vdev_state_dirty(vd->vdev_top);
5629 }
5630
5631 for (int c = 0; c < vd->vdev_children; c++)
5632 spa_async_remove(spa, vd->vdev_child[c]);
5633 }
5634
5635 static void
5636 spa_async_probe(spa_t *spa, vdev_t *vd)
5637 {
5638 if (vd->vdev_probe_wanted) {
5639 vd->vdev_probe_wanted = B_FALSE;
5640 vdev_reopen(vd); /* vdev_open() does the actual probe */
5641 }
5642
5643 for (int c = 0; c < vd->vdev_children; c++)
5644 spa_async_probe(spa, vd->vdev_child[c]);
5645 }
5646
5647 static void
5648 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5649 {
5650 sysevent_id_t eid;
5651 nvlist_t *attr;
5652 char *physpath;
5653
5654 if (!spa->spa_autoexpand)
5655 return;
5656
5657 for (int c = 0; c < vd->vdev_children; c++) {
5658 vdev_t *cvd = vd->vdev_child[c];
5659 spa_async_autoexpand(spa, cvd);
5660 }
5661
5662 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5663 return;
5664
5665 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5666 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5667
5668 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5669 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5670
5671 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5672 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5673
5674 nvlist_free(attr);
5675 kmem_free(physpath, MAXPATHLEN);
5676 }
5677
5678 static void
5679 spa_async_thread(spa_t *spa)
5680 {
5681 int tasks;
5682
5683 ASSERT(spa->spa_sync_on);
5684
5685 mutex_enter(&spa->spa_async_lock);
5686 tasks = spa->spa_async_tasks;
5687 spa->spa_async_tasks = 0;
5688 mutex_exit(&spa->spa_async_lock);
5689
5690 /*
5691 * See if the config needs to be updated.
5692 */
5693 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5694 uint64_t old_space, new_space;
5695
5696 mutex_enter(&spa_namespace_lock);
5697 old_space = metaslab_class_get_space(spa_normal_class(spa));
5698 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5699 new_space = metaslab_class_get_space(spa_normal_class(spa));
5700 mutex_exit(&spa_namespace_lock);
5701
5702 /*
5703 * If the pool grew as a result of the config update,
5704 * then log an internal history event.
5705 */
5706 if (new_space != old_space) {
5707 spa_history_log_internal(spa, "vdev online", NULL,
5708 "pool '%s' size: %llu(+%llu)",
5709 spa_name(spa), new_space, new_space - old_space);
5710 }
5711 }
5712
5713 /*
5714 * See if any devices need to be marked REMOVED.
5715 */
5716 if (tasks & SPA_ASYNC_REMOVE) {
5717 spa_vdev_state_enter(spa, SCL_NONE);
5718 spa_async_remove(spa, spa->spa_root_vdev);
5719 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5720 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5721 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5722 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5723 (void) spa_vdev_state_exit(spa, NULL, 0);
5724 }
5725
5726 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5727 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5728 spa_async_autoexpand(spa, spa->spa_root_vdev);
5729 spa_config_exit(spa, SCL_CONFIG, FTAG);
5730 }
5731
5732 /*
5733 * See if any devices need to be probed.
5734 */
5735 if (tasks & SPA_ASYNC_PROBE) {
5736 spa_vdev_state_enter(spa, SCL_NONE);
5737 spa_async_probe(spa, spa->spa_root_vdev);
5738 (void) spa_vdev_state_exit(spa, NULL, 0);
5739 }
5740
5741 /*
5742 * If any devices are done replacing, detach them.
5743 */
5744 if (tasks & SPA_ASYNC_RESILVER_DONE)
5745 spa_vdev_resilver_done(spa);
5746
5747 /*
5748 * Kick off a resilver.
5749 */
5750 if (tasks & SPA_ASYNC_RESILVER)
5751 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5752
5753 /*
5754 * Let the world know that we're done.
5755 */
5756 mutex_enter(&spa->spa_async_lock);
5757 spa->spa_async_thread = NULL;
5758 cv_broadcast(&spa->spa_async_cv);
5759 mutex_exit(&spa->spa_async_lock);
5760 thread_exit();
5761 }
5762
5763 void
5764 spa_async_suspend(spa_t *spa)
5765 {
5766 mutex_enter(&spa->spa_async_lock);
5767 spa->spa_async_suspended++;
5768 while (spa->spa_async_thread != NULL)
5769 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5770 mutex_exit(&spa->spa_async_lock);
5771 }
5772
5773 void
5774 spa_async_resume(spa_t *spa)
5775 {
5776 mutex_enter(&spa->spa_async_lock);
5777 ASSERT(spa->spa_async_suspended != 0);
5778 spa->spa_async_suspended--;
5779 mutex_exit(&spa->spa_async_lock);
5780 }
5781
5782 static boolean_t
5783 spa_async_tasks_pending(spa_t *spa)
5784 {
5785 uint_t non_config_tasks;
5786 uint_t config_task;
5787 boolean_t config_task_suspended;
5788
5789 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5790 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5791 if (spa->spa_ccw_fail_time == 0) {
5792 config_task_suspended = B_FALSE;
5793 } else {
5794 config_task_suspended =
5795 (gethrtime() - spa->spa_ccw_fail_time) <
5796 (zfs_ccw_retry_interval * NANOSEC);
5797 }
5798
5799 return (non_config_tasks || (config_task && !config_task_suspended));
5800 }
5801
5802 static void
5803 spa_async_dispatch(spa_t *spa)
5804 {
5805 mutex_enter(&spa->spa_async_lock);
5806 if (spa_async_tasks_pending(spa) &&
5807 !spa->spa_async_suspended &&
5808 spa->spa_async_thread == NULL &&
5809 rootdir != NULL)
5810 spa->spa_async_thread = thread_create(NULL, 0,
5811 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5812 mutex_exit(&spa->spa_async_lock);
5813 }
5814
5815 void
5816 spa_async_request(spa_t *spa, int task)
5817 {
5818 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5819 mutex_enter(&spa->spa_async_lock);
5820 spa->spa_async_tasks |= task;
5821 mutex_exit(&spa->spa_async_lock);
5822 }
5823
5824 /*
5825 * ==========================================================================
5826 * SPA syncing routines
5827 * ==========================================================================
5828 */
5829
5830 static int
5831 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5832 {
5833 bpobj_t *bpo = arg;
5834 bpobj_enqueue(bpo, bp, tx);
5835 return (0);
5836 }
5837
5838 static int
5839 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5840 {
5841 zio_t *zio = arg;
5842
5843 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5844 zio->io_flags));
5845 return (0);
5846 }
5847
5848 /*
5849 * Note: this simple function is not inlined to make it easier to dtrace the
5850 * amount of time spent syncing frees.
5851 */
5852 static void
5853 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5854 {
5855 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5856 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5857 VERIFY(zio_wait(zio) == 0);
5858 }
5859
5860 /*
5861 * Note: this simple function is not inlined to make it easier to dtrace the
5862 * amount of time spent syncing deferred frees.
5863 */
5864 static void
5865 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5866 {
5867 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5868 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5869 spa_free_sync_cb, zio, tx), ==, 0);
5870 VERIFY0(zio_wait(zio));
5871 }
5872
5873
5874 static void
5875 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5876 {
5877 char *packed = NULL;
5878 size_t bufsize;
5879 size_t nvsize = 0;
5880 dmu_buf_t *db;
5881
5882 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5883
5884 /*
5885 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5886 * information. This avoids the dmu_buf_will_dirty() path and
5887 * saves us a pre-read to get data we don't actually care about.
5888 */
5889 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5890 packed = kmem_alloc(bufsize, KM_SLEEP);
5891
5892 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5893 KM_SLEEP) == 0);
5894 bzero(packed + nvsize, bufsize - nvsize);
5895
5896 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5897
5898 kmem_free(packed, bufsize);
5899
5900 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5901 dmu_buf_will_dirty(db, tx);
5902 *(uint64_t *)db->db_data = nvsize;
5903 dmu_buf_rele(db, FTAG);
5904 }
5905
5906 static void
5907 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5908 const char *config, const char *entry)
5909 {
5910 nvlist_t *nvroot;
5911 nvlist_t **list;
5912 int i;
5913
5914 if (!sav->sav_sync)
5915 return;
5916
5917 /*
5918 * Update the MOS nvlist describing the list of available devices.
5919 * spa_validate_aux() will have already made sure this nvlist is
5920 * valid and the vdevs are labeled appropriately.
5921 */
5922 if (sav->sav_object == 0) {
5923 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5924 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5925 sizeof (uint64_t), tx);
5926 VERIFY(zap_update(spa->spa_meta_objset,
5927 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5928 &sav->sav_object, tx) == 0);
5929 }
5930
5931 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5932 if (sav->sav_count == 0) {
5933 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5934 } else {
5935 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5936 for (i = 0; i < sav->sav_count; i++)
5937 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5938 B_FALSE, VDEV_CONFIG_L2CACHE);
5939 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5940 sav->sav_count) == 0);
5941 for (i = 0; i < sav->sav_count; i++)
5942 nvlist_free(list[i]);
5943 kmem_free(list, sav->sav_count * sizeof (void *));
5944 }
5945
5946 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5947 nvlist_free(nvroot);
5948
5949 sav->sav_sync = B_FALSE;
5950 }
5951
5952 static void
5953 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5954 {
5955 nvlist_t *config;
5956
5957 if (list_is_empty(&spa->spa_config_dirty_list))
5958 return;
5959
5960 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5961
5962 config = spa_config_generate(spa, spa->spa_root_vdev,
5963 dmu_tx_get_txg(tx), B_FALSE);
5964
5965 /*
5966 * If we're upgrading the spa version then make sure that
5967 * the config object gets updated with the correct version.
5968 */
5969 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5970 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5971 spa->spa_uberblock.ub_version);
5972
5973 spa_config_exit(spa, SCL_STATE, FTAG);
5974
5975 if (spa->spa_config_syncing)
5976 nvlist_free(spa->spa_config_syncing);
5977 spa->spa_config_syncing = config;
5978
5979 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5980 }
5981
5982 static void
5983 spa_sync_version(void *arg, dmu_tx_t *tx)
5984 {
5985 uint64_t *versionp = arg;
5986 uint64_t version = *versionp;
5987 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5988
5989 /*
5990 * Setting the version is special cased when first creating the pool.
5991 */
5992 ASSERT(tx->tx_txg != TXG_INITIAL);
5993
5994 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5995 ASSERT(version >= spa_version(spa));
5996
5997 spa->spa_uberblock.ub_version = version;
5998 vdev_config_dirty(spa->spa_root_vdev);
5999 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6000 }
6001
6002 /*
6003 * Set zpool properties.
6004 */
6005 static void
6006 spa_sync_props(void *arg, dmu_tx_t *tx)
6007 {
6008 nvlist_t *nvp = arg;
6009 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6010 objset_t *mos = spa->spa_meta_objset;
6011 nvpair_t *elem = NULL;
6012
6013 mutex_enter(&spa->spa_props_lock);
6014
6015 while ((elem = nvlist_next_nvpair(nvp, elem))) {
6016 uint64_t intval;
6017 char *strval, *fname;
6018 zpool_prop_t prop;
6019 const char *propname;
6020 zprop_type_t proptype;
6021 spa_feature_t fid;
6022
6023 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6024 case ZPROP_INVAL:
6025 /*
6026 * We checked this earlier in spa_prop_validate().
6027 */
6028 ASSERT(zpool_prop_feature(nvpair_name(elem)));
6029
6030 fname = strchr(nvpair_name(elem), '@') + 1;
6031 VERIFY0(zfeature_lookup_name(fname, &fid));
6032
6033 spa_feature_enable(spa, fid, tx);
6034 spa_history_log_internal(spa, "set", tx,
6035 "%s=enabled", nvpair_name(elem));
6036 break;
6037
6038 case ZPOOL_PROP_VERSION:
6039 intval = fnvpair_value_uint64(elem);
6040 /*
6041 * The version is synced seperatly before other
6042 * properties and should be correct by now.
6043 */
6044 ASSERT3U(spa_version(spa), >=, intval);
6045 break;
6046
6047 case ZPOOL_PROP_ALTROOT:
6048 /*
6049 * 'altroot' is a non-persistent property. It should
6050 * have been set temporarily at creation or import time.
6051 */
6052 ASSERT(spa->spa_root != NULL);
6053 break;
6054
6055 case ZPOOL_PROP_READONLY:
6056 case ZPOOL_PROP_CACHEFILE:
6057 /*
6058 * 'readonly' and 'cachefile' are also non-persisitent
6059 * properties.
6060 */
6061 break;
6062 case ZPOOL_PROP_COMMENT:
6063 strval = fnvpair_value_string(elem);
6064 if (spa->spa_comment != NULL)
6065 spa_strfree(spa->spa_comment);
6066 spa->spa_comment = spa_strdup(strval);
6067 /*
6068 * We need to dirty the configuration on all the vdevs
6069 * so that their labels get updated. It's unnecessary
6070 * to do this for pool creation since the vdev's
6071 * configuratoin has already been dirtied.
6072 */
6073 if (tx->tx_txg != TXG_INITIAL)
6074 vdev_config_dirty(spa->spa_root_vdev);
6075 spa_history_log_internal(spa, "set", tx,
6076 "%s=%s", nvpair_name(elem), strval);
6077 break;
6078 default:
6079 /*
6080 * Set pool property values in the poolprops mos object.
6081 */
6082 if (spa->spa_pool_props_object == 0) {
6083 spa->spa_pool_props_object =
6084 zap_create_link(mos, DMU_OT_POOL_PROPS,
6085 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6086 tx);
6087 }
6088
6089 /* normalize the property name */
6090 propname = zpool_prop_to_name(prop);
6091 proptype = zpool_prop_get_type(prop);
6092
6093 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6094 ASSERT(proptype == PROP_TYPE_STRING);
6095 strval = fnvpair_value_string(elem);
6096 VERIFY0(zap_update(mos,
6097 spa->spa_pool_props_object, propname,
6098 1, strlen(strval) + 1, strval, tx));
6099 spa_history_log_internal(spa, "set", tx,
6100 "%s=%s", nvpair_name(elem), strval);
6101 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6102 intval = fnvpair_value_uint64(elem);
6103
6104 if (proptype == PROP_TYPE_INDEX) {
6105 const char *unused;
6106 VERIFY0(zpool_prop_index_to_string(
6107 prop, intval, &unused));
6108 }
6109 VERIFY0(zap_update(mos,
6110 spa->spa_pool_props_object, propname,
6111 8, 1, &intval, tx));
6112 spa_history_log_internal(spa, "set", tx,
6113 "%s=%lld", nvpair_name(elem), intval);
6114 } else {
6115 ASSERT(0); /* not allowed */
6116 }
6117
6118 switch (prop) {
6119 case ZPOOL_PROP_DELEGATION:
6120 spa->spa_delegation = intval;
6121 break;
6122 case ZPOOL_PROP_BOOTFS:
6123 spa->spa_bootfs = intval;
6124 break;
6125 case ZPOOL_PROP_FAILUREMODE:
6126 spa->spa_failmode = intval;
6127 break;
6128 case ZPOOL_PROP_AUTOEXPAND:
6129 spa->spa_autoexpand = intval;
6130 if (tx->tx_txg != TXG_INITIAL)
6131 spa_async_request(spa,
6132 SPA_ASYNC_AUTOEXPAND);
6133 break;
6134 case ZPOOL_PROP_DEDUPDITTO:
6135 spa->spa_dedup_ditto = intval;
6136 break;
6137 default:
6138 break;
6139 }
6140 }
6141
6142 }
6143
6144 mutex_exit(&spa->spa_props_lock);
6145 }
6146
6147 /*
6148 * Perform one-time upgrade on-disk changes. spa_version() does not
6149 * reflect the new version this txg, so there must be no changes this
6150 * txg to anything that the upgrade code depends on after it executes.
6151 * Therefore this must be called after dsl_pool_sync() does the sync
6152 * tasks.
6153 */
6154 static void
6155 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6156 {
6157 dsl_pool_t *dp = spa->spa_dsl_pool;
6158
6159 ASSERT(spa->spa_sync_pass == 1);
6160
6161 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6162
6163 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6164 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6165 dsl_pool_create_origin(dp, tx);
6166
6167 /* Keeping the origin open increases spa_minref */
6168 spa->spa_minref += 3;
6169 }
6170
6171 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6172 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6173 dsl_pool_upgrade_clones(dp, tx);
6174 }
6175
6176 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6177 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6178 dsl_pool_upgrade_dir_clones(dp, tx);
6179
6180 /* Keeping the freedir open increases spa_minref */
6181 spa->spa_minref += 3;
6182 }
6183
6184 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6185 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6186 spa_feature_create_zap_objects(spa, tx);
6187 }
6188
6189 /*
6190 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6191 * when possibility to use lz4 compression for metadata was added
6192 * Old pools that have this feature enabled must be upgraded to have
6193 * this feature active
6194 */
6195 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6196 boolean_t lz4_en = spa_feature_is_enabled(spa,
6197 SPA_FEATURE_LZ4_COMPRESS);
6198 boolean_t lz4_ac = spa_feature_is_active(spa,
6199 SPA_FEATURE_LZ4_COMPRESS);
6200
6201 if (lz4_en && !lz4_ac)
6202 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6203 }
6204 rrw_exit(&dp->dp_config_rwlock, FTAG);
6205 }
6206
6207 /*
6208 * Sync the specified transaction group. New blocks may be dirtied as
6209 * part of the process, so we iterate until it converges.
6210 */
6211 void
6212 spa_sync(spa_t *spa, uint64_t txg)
6213 {
6214 dsl_pool_t *dp = spa->spa_dsl_pool;
6215 objset_t *mos = spa->spa_meta_objset;
6216 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6217 vdev_t *rvd = spa->spa_root_vdev;
6218 vdev_t *vd;
6219 dmu_tx_t *tx;
6220 int error;
6221
6222 VERIFY(spa_writeable(spa));
6223
6224 /*
6225 * Lock out configuration changes.
6226 */
6227 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6228
6229 spa->spa_syncing_txg = txg;
6230 spa->spa_sync_pass = 0;
6231
6232 /*
6233 * If there are any pending vdev state changes, convert them
6234 * into config changes that go out with this transaction group.
6235 */
6236 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6237 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6238 /*
6239 * We need the write lock here because, for aux vdevs,
6240 * calling vdev_config_dirty() modifies sav_config.
6241 * This is ugly and will become unnecessary when we
6242 * eliminate the aux vdev wart by integrating all vdevs
6243 * into the root vdev tree.
6244 */
6245 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6246 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6247 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6248 vdev_state_clean(vd);
6249 vdev_config_dirty(vd);
6250 }
6251 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6252 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6253 }
6254 spa_config_exit(spa, SCL_STATE, FTAG);
6255
6256 tx = dmu_tx_create_assigned(dp, txg);
6257
6258 spa->spa_sync_starttime = gethrtime();
6259 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6260 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6261
6262 /*
6263 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6264 * set spa_deflate if we have no raid-z vdevs.
6265 */
6266 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6267 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6268 int i;
6269
6270 for (i = 0; i < rvd->vdev_children; i++) {
6271 vd = rvd->vdev_child[i];
6272 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6273 break;
6274 }
6275 if (i == rvd->vdev_children) {
6276 spa->spa_deflate = TRUE;
6277 VERIFY(0 == zap_add(spa->spa_meta_objset,
6278 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6279 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6280 }
6281 }
6282
6283 /*
6284 * Iterate to convergence.
6285 */
6286 do {
6287 int pass = ++spa->spa_sync_pass;
6288
6289 spa_sync_config_object(spa, tx);
6290 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6291 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6292 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6293 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6294 spa_errlog_sync(spa, txg);
6295 dsl_pool_sync(dp, txg);
6296
6297 if (pass < zfs_sync_pass_deferred_free) {
6298 spa_sync_frees(spa, free_bpl, tx);
6299 } else {
6300 /*
6301 * We can not defer frees in pass 1, because
6302 * we sync the deferred frees later in pass 1.
6303 */
6304 ASSERT3U(pass, >, 1);
6305 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6306 &spa->spa_deferred_bpobj, tx);
6307 }
6308
6309 ddt_sync(spa, txg);
6310 dsl_scan_sync(dp, tx);
6311
6312 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6313 vdev_sync(vd, txg);
6314
6315 if (pass == 1) {
6316 spa_sync_upgrades(spa, tx);
6317 ASSERT3U(txg, >=,
6318 spa->spa_uberblock.ub_rootbp.blk_birth);
6319 /*
6320 * Note: We need to check if the MOS is dirty
6321 * because we could have marked the MOS dirty
6322 * without updating the uberblock (e.g. if we
6323 * have sync tasks but no dirty user data). We
6324 * need to check the uberblock's rootbp because
6325 * it is updated if we have synced out dirty
6326 * data (though in this case the MOS will most
6327 * likely also be dirty due to second order
6328 * effects, we don't want to rely on that here).
6329 */
6330 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6331 !dmu_objset_is_dirty(mos, txg)) {
6332 /*
6333 * Nothing changed on the first pass,
6334 * therefore this TXG is a no-op. Avoid
6335 * syncing deferred frees, so that we
6336 * can keep this TXG as a no-op.
6337 */
6338 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6339 txg));
6340 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6341 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6342 break;
6343 }
6344 spa_sync_deferred_frees(spa, tx);
6345 }
6346
6347 } while (dmu_objset_is_dirty(mos, txg));
6348
6349 /*
6350 * Rewrite the vdev configuration (which includes the uberblock)
6351 * to commit the transaction group.
6352 *
6353 * If there are no dirty vdevs, we sync the uberblock to a few
6354 * random top-level vdevs that are known to be visible in the
6355 * config cache (see spa_vdev_add() for a complete description).
6356 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6357 */
6358 for (;;) {
6359 /*
6360 * We hold SCL_STATE to prevent vdev open/close/etc.
6361 * while we're attempting to write the vdev labels.
6362 */
6363 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6364
6365 if (list_is_empty(&spa->spa_config_dirty_list)) {
6366 vdev_t *svd[SPA_DVAS_PER_BP];
6367 int svdcount = 0;
6368 int children = rvd->vdev_children;
6369 int c0 = spa_get_random(children);
6370
6371 for (int c = 0; c < children; c++) {
6372 vd = rvd->vdev_child[(c0 + c) % children];
6373 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6374 continue;
6375 svd[svdcount++] = vd;
6376 if (svdcount == SPA_DVAS_PER_BP)
6377 break;
6378 }
6379 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6380 if (error != 0)
6381 error = vdev_config_sync(svd, svdcount, txg,
6382 B_TRUE);
6383 } else {
6384 error = vdev_config_sync(rvd->vdev_child,
6385 rvd->vdev_children, txg, B_FALSE);
6386 if (error != 0)
6387 error = vdev_config_sync(rvd->vdev_child,
6388 rvd->vdev_children, txg, B_TRUE);
6389 }
6390
6391 if (error == 0)
6392 spa->spa_last_synced_guid = rvd->vdev_guid;
6393
6394 spa_config_exit(spa, SCL_STATE, FTAG);
6395
6396 if (error == 0)
6397 break;
6398 zio_suspend(spa, NULL);
6399 zio_resume_wait(spa);
6400 }
6401 dmu_tx_commit(tx);
6402
6403 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6404
6405 /*
6406 * Clear the dirty config list.
6407 */
6408 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6409 vdev_config_clean(vd);
6410
6411 /*
6412 * Now that the new config has synced transactionally,
6413 * let it become visible to the config cache.
6414 */
6415 if (spa->spa_config_syncing != NULL) {
6416 spa_config_set(spa, spa->spa_config_syncing);
6417 spa->spa_config_txg = txg;
6418 spa->spa_config_syncing = NULL;
6419 }
6420
6421 spa->spa_ubsync = spa->spa_uberblock;
6422
6423 dsl_pool_sync_done(dp, txg);
6424
6425 /*
6426 * Update usable space statistics.
6427 */
6428 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6429 vdev_sync_done(vd, txg);
6430
6431 spa_update_dspace(spa);
6432
6433 /*
6434 * It had better be the case that we didn't dirty anything
6435 * since vdev_config_sync().
6436 */
6437 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6438 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6439 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6440
6441 spa->spa_sync_pass = 0;
6442
6443 spa_config_exit(spa, SCL_CONFIG, FTAG);
6444
6445 spa_handle_ignored_writes(spa);
6446
6447 /*
6448 * If any async tasks have been requested, kick them off.
6449 */
6450 spa_async_dispatch(spa);
6451 }
6452
6453 /*
6454 * Sync all pools. We don't want to hold the namespace lock across these
6455 * operations, so we take a reference on the spa_t and drop the lock during the
6456 * sync.
6457 */
6458 void
6459 spa_sync_allpools(void)
6460 {
6461 spa_t *spa = NULL;
6462 mutex_enter(&spa_namespace_lock);
6463 while ((spa = spa_next(spa)) != NULL) {
6464 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6465 !spa_writeable(spa) || spa_suspended(spa))
6466 continue;
6467 spa_open_ref(spa, FTAG);
6468 mutex_exit(&spa_namespace_lock);
6469 txg_wait_synced(spa_get_dsl(spa), 0);
6470 mutex_enter(&spa_namespace_lock);
6471 spa_close(spa, FTAG);
6472 }
6473 mutex_exit(&spa_namespace_lock);
6474 }
6475
6476 /*
6477 * ==========================================================================
6478 * Miscellaneous routines
6479 * ==========================================================================
6480 */
6481
6482 /*
6483 * Remove all pools in the system.
6484 */
6485 void
6486 spa_evict_all(void)
6487 {
6488 spa_t *spa;
6489
6490 /*
6491 * Remove all cached state. All pools should be closed now,
6492 * so every spa in the AVL tree should be unreferenced.
6493 */
6494 mutex_enter(&spa_namespace_lock);
6495 while ((spa = spa_next(NULL)) != NULL) {
6496 /*
6497 * Stop async tasks. The async thread may need to detach
6498 * a device that's been replaced, which requires grabbing
6499 * spa_namespace_lock, so we must drop it here.
6500 */
6501 spa_open_ref(spa, FTAG);
6502 mutex_exit(&spa_namespace_lock);
6503 spa_async_suspend(spa);
6504 mutex_enter(&spa_namespace_lock);
6505 spa_close(spa, FTAG);
6506
6507 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6508 spa_unload(spa);
6509 spa_deactivate(spa);
6510 }
6511 spa_remove(spa);
6512 }
6513 mutex_exit(&spa_namespace_lock);
6514 }
6515
6516 vdev_t *
6517 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6518 {
6519 vdev_t *vd;
6520 int i;
6521
6522 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6523 return (vd);
6524
6525 if (aux) {
6526 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6527 vd = spa->spa_l2cache.sav_vdevs[i];
6528 if (vd->vdev_guid == guid)
6529 return (vd);
6530 }
6531
6532 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6533 vd = spa->spa_spares.sav_vdevs[i];
6534 if (vd->vdev_guid == guid)
6535 return (vd);
6536 }
6537 }
6538
6539 return (NULL);
6540 }
6541
6542 void
6543 spa_upgrade(spa_t *spa, uint64_t version)
6544 {
6545 ASSERT(spa_writeable(spa));
6546
6547 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6548
6549 /*
6550 * This should only be called for a non-faulted pool, and since a
6551 * future version would result in an unopenable pool, this shouldn't be
6552 * possible.
6553 */
6554 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6555 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6556
6557 spa->spa_uberblock.ub_version = version;
6558 vdev_config_dirty(spa->spa_root_vdev);
6559
6560 spa_config_exit(spa, SCL_ALL, FTAG);
6561
6562 txg_wait_synced(spa_get_dsl(spa), 0);
6563 }
6564
6565 boolean_t
6566 spa_has_spare(spa_t *spa, uint64_t guid)
6567 {
6568 int i;
6569 uint64_t spareguid;
6570 spa_aux_vdev_t *sav = &spa->spa_spares;
6571
6572 for (i = 0; i < sav->sav_count; i++)
6573 if (sav->sav_vdevs[i]->vdev_guid == guid)
6574 return (B_TRUE);
6575
6576 for (i = 0; i < sav->sav_npending; i++) {
6577 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6578 &spareguid) == 0 && spareguid == guid)
6579 return (B_TRUE);
6580 }
6581
6582 return (B_FALSE);
6583 }
6584
6585 /*
6586 * Check if a pool has an active shared spare device.
6587 * Note: reference count of an active spare is 2, as a spare and as a replace
6588 */
6589 static boolean_t
6590 spa_has_active_shared_spare(spa_t *spa)
6591 {
6592 int i, refcnt;
6593 uint64_t pool;
6594 spa_aux_vdev_t *sav = &spa->spa_spares;
6595
6596 for (i = 0; i < sav->sav_count; i++) {
6597 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6598 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6599 refcnt > 2)
6600 return (B_TRUE);
6601 }
6602
6603 return (B_FALSE);
6604 }
6605
6606 /*
6607 * Post a sysevent corresponding to the given event. The 'name' must be one of
6608 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6609 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6610 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6611 * or zdb as real changes.
6612 */
6613 void
6614 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6615 {
6616 #ifdef _KERNEL
6617 sysevent_t *ev;
6618 sysevent_attr_list_t *attr = NULL;
6619 sysevent_value_t value;
6620 sysevent_id_t eid;
6621
6622 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6623 SE_SLEEP);
6624
6625 value.value_type = SE_DATA_TYPE_STRING;
6626 value.value.sv_string = spa_name(spa);
6627 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6628 goto done;
6629
6630 value.value_type = SE_DATA_TYPE_UINT64;
6631 value.value.sv_uint64 = spa_guid(spa);
6632 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6633 goto done;
6634
6635 if (vd) {
6636 value.value_type = SE_DATA_TYPE_UINT64;
6637 value.value.sv_uint64 = vd->vdev_guid;
6638 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6639 SE_SLEEP) != 0)
6640 goto done;
6641
6642 if (vd->vdev_path) {
6643 value.value_type = SE_DATA_TYPE_STRING;
6644 value.value.sv_string = vd->vdev_path;
6645 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6646 &value, SE_SLEEP) != 0)
6647 goto done;
6648 }
6649 }
6650
6651 if (sysevent_attach_attributes(ev, attr) != 0)
6652 goto done;
6653 attr = NULL;
6654
6655 (void) log_sysevent(ev, SE_SLEEP, &eid);
6656
6657 done:
6658 if (attr)
6659 sysevent_free_attr(attr);
6660 sysevent_free(ev);
6661 #endif
6662 }