
new/usr/src/uts/common/fs/sockfs/sockcommon_subr.c 1

**
 61202 Wed Jul 23 20:11:14 2014
new/usr/src/uts/common/fs/sockfs/sockcommon_subr.c
5026 intra-node/inter-zone networking doesn’t always deliver SIGPOLL
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25 /*
26 * Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved.
27 */

29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/signal.h>
32 #include <sys/cmn_err.h>

34 #include <sys/stropts.h>
35 #include <sys/socket.h>
36 #include <sys/socketvar.h>
37 #include <sys/sockio.h>
38 #include <sys/strsubr.h>
39 #include <sys/strsun.h>
40 #include <sys/atomic.h>
41 #include <sys/tihdr.h>

43 #include <fs/sockfs/sockcommon.h>
44 #include <fs/sockfs/sockfilter_impl.h>
45 #include <fs/sockfs/socktpi.h>
46 #include <fs/sockfs/sodirect.h>
47 #include <sys/ddi.h>
48 #include <inet/ip.h>
49 #include <sys/time.h>
50 #include <sys/cmn_err.h>

52 #ifdef SOCK_TEST
53 extern int do_useracc;
54 extern clock_t sock_test_timelimit;
55 #endif /* SOCK_TEST */

57 #define MBLK_PULL_LEN 64
58 uint32_t so_mblk_pull_len = MBLK_PULL_LEN;

60 #ifdef DEBUG
61 boolean_t so_debug_length = B_FALSE;

new/usr/src/uts/common/fs/sockfs/sockcommon_subr.c 2

62 static boolean_t so_check_length(sonode_t *so);
63 #endif

65 static int
66 so_acceptq_dequeue_locked(struct sonode *so, boolean_t dontblock,
67 struct sonode **nsop)
68 {
69 struct sonode *nso = NULL;

71 *nsop = NULL;
72 ASSERT(MUTEX_HELD(&so->so_acceptq_lock));
73 while ((nso = list_remove_head(&so->so_acceptq_list)) == NULL) {
74 /*
75 * No need to check so_error here, because it is not
76 * possible for a listening socket to be reset or otherwise
77 * disconnected.
78 *
79 * So now we just need check if it’s ok to wait.
80 */
81 if (dontblock)
82 return (EWOULDBLOCK);
83 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING))
84 return (EINTR);

86 if (cv_wait_sig_swap(&so->so_acceptq_cv,
87 &so->so_acceptq_lock) == 0)
88 return (EINTR);
89 }

91 ASSERT(nso != NULL);
92 ASSERT(so->so_acceptq_len > 0);
93 so->so_acceptq_len--;
94 nso->so_listener = NULL;

96 *nsop = nso;

98 return (0);
99 }

______unchanged_portion_omitted_

381 void
382 socket_sendsig(struct sonode *so, int event)
383 {
384 proc_t *proc;

386 ASSERT(MUTEX_HELD(&so->so_lock));

388 if (so->so_pgrp == 0 || (!(so->so_state & SS_ASYNC) &&
389 event != SOCKETSIG_URG)) {
390 return;
391 }

393 dprint(3, ("sending sig %d to %d\n", event, so->so_pgrp));

395 if (so->so_pgrp > 0) {
396 /*
397 * XXX This unfortunately still generates
398 * a signal when a fd is closed but
399 * the proc is active.
400 */
401 mutex_enter(&pidlock);
402 /*
403 * Even if the thread started in another zone, we’re receiving
404 * on behalf of this socket’s zone, so find the proc using the
405 * socket’s zone ID.
406 */

new/usr/src/uts/common/fs/sockfs/sockcommon_subr.c 3

407 proc = prfind_zone(so->so_pgrp, so->so_zoneid);
399 proc = prfind(so->so_pgrp);
408 if (proc == NULL) {
409 mutex_exit(&pidlock);
410 return;
411 }
412 mutex_enter(&proc->p_lock);
413 mutex_exit(&pidlock);
414 socket_sigproc(proc, event);
415 mutex_exit(&proc->p_lock);
416 } else {
417 /*
418 * Send to process group. Hold pidlock across
419 * calls to socket_sigproc().
420 */
421 pid_t pgrp = -so->so_pgrp;

423 mutex_enter(&pidlock);
424 /*
425 * Even if the thread started in another zone, we’re receiving
426 * on behalf of this socket’s zone, so find the pgrp using the
427 * socket’s zone ID.
428 */
429 proc = pgfind_zone(pgrp, so->so_zoneid);
416 proc = pgfind(pgrp);
430 while (proc != NULL) {
431 mutex_enter(&proc->p_lock);
432 socket_sigproc(proc, event);
433 mutex_exit(&proc->p_lock);
434 proc = proc->p_pglink;
435 }
436 mutex_exit(&pidlock);
437 }
438 }

______unchanged_portion_omitted_

