new usr/src/uts/comon/ fs/sockfs/sockcormon_subr. c

R R R R

61202 Wed Jul 23 20:11:14 2014
new usr/src/uts/comon/ fs/sockfs/sockcormpn_subr. c
5026 intra-node/inter-zone networking doesn’t always deliver SIGPOLL

R R R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END

*/

22 /| *

23 * Copyright (c) 2008, 2010, O acle and/or its affiliates. Al rights reserved.
*
/

25 /*

26 * Copyright 2014, Omi Tl Conputer Consulting, Inc. Al rights reserved.
*
/

29 #include <sys/types. h>
30 #include <sys/param h>
31 #include <sys/signal.h>
32 #include <sys/cm_err. h>

34 #include <sys/stropts. h>
35 #include <sys/socket. h>

36 #include <sys/socketvar. h>
37 #include <sys/sockio. h>

38 #include <sys/strsubr.h>
39 #include <sys/strsun. h>

40 #include <sys/atom c. h>

41 #include <sys/tihdr. h>

43 #incl ude <fs/sockfs/sockcommon. h>

44 #incl ude <fs/sockfs/sockfilter_inpl.h>
45 #incl ude <fs/sockfs/socktpi.h>

46 #include <fs/sockfs/sodirect.h>

47 #include <sys/ddi.h>

48 #include <inet/ip.h>

49 #include <sys/time. h>

50 #include <sys/cm_err. h>

52 #ifdef SOCK_TEST

53 extern int do_useracc;

54 extern clock_t sock test tinelinmt;
55 #endi f /* SOCK_TEST */

57 #define MBLK_PULL_LEN 64
58 uint32_t so_nblk_pull _len = MBLK_PULL_LEN,

60 #ifdef DEBUG
61 bool ean_t so_debug_l ength = B_FALSE;

new usr/src/uts/comon/ fs/sockfs/sockcormon_subr. c

62 static boolean_t so_check_| ength(sonode_t *so);

63 #end
65 st at

66 so_accept g_dequeue_| ocked(struct sonode *so,

if

icint

bool ean_t dont bl ock,

67 struct sonode **nsop)
68 {
69 struct sonode *nso = NULL;
71 *nsop = NULL;
72 ASSERT(MUTEX_HELD(&so0- >so_accept gq_| ock)) ;
73 while ((nso = list_remve_head(&so0->so0_acceptq_list)) == NULL) {
74 /*
75 * No need to check so_error here, because it is not
76 * possible for a listening socket to be reset or otherw se
77 * di sconnect ed.
78 *
79 * So now we just need check if it’s ok to wait.
80 */
81 if (dontbl ock)
82 return (EWOULDBLOCK) ;
83 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDI NG))
84 return (EINTR);
86 if (cv_wait_sig_swap(&so->so_acceptq_cv,
87 &so->so_acceptg_| ock) == 0)
88 return (EINTR);
89 }
91 ASSERT(nso !'= NULL);
92 ASSERT(so- >so_acceptqg_len > 0);
93 so->so_acceptq_l en--;
94 nso- >so_l i stener = NULL;
96 *nsop = nso;
98 return (0);
99 }
__unchanged_portion_onitted_
381 void
382 socket _sendsi g(struct sonode *so, int event)
383 {
384 proc_t *proc;
386 ASSERT(MUTEX_HELD(&o0- >so_| ock)) ;
388 if (so->so_pgrp == 0 || (!(so->so_state & SS_ASYNC) &&
389 event = SOCKETSI G URG)) {
390 return;
391 }
393 dprint(3, ("sending sig % to %\ n", event, so->so_pgrp));
395 if (so->so_pgrp > 0) {
396 /*
397 * XXX This unfortunately still generates
398 * a signal when a fd is closed but
399 * the proc is active.
400 */
401 mut ex_ent er (&pi dl ock) ;
402 *
403 * Even if the thread started in another zone, we're receiving
404 * on behalf of this socket’s zone, so find the proc using the
405 * socket’s zone |ID.
406 */

new usr/src/uts/comon/ fs/sockfs/sockcormon_subr. c

407 proc = prfind_zone(so->so_pgrp, so->so_zoneid);
399 proc = prfind(so->so_pgrp);

408 1f (proc == NULL)

409 nut ex_exi t (&pi dl ock);

410 return;

411 }

412 mut ex_ent er (&proc- >p_| ock) ;

413 mut ex_exi t (&pi dl ock) ;

414 socket _si gproc(proc, event);

415 mut ex_exi t (&proc->p_I ock);

416 } else {

417 /*

418 * Send to process group. Hold pidlock across
419 * calls to socket_sigproc().

420 */

421 pid_t pgrp = -so->so_pgrp;

423 mut ex_ent er (&pi dl ock) ;

424 /*

425 * Even if the thread started in another zone, we’'re receiving
426 * on behal f of this socket’s zone, so find the pgrp using the
427 * socket’s zone |ID.

428 */

429 proc = pgfind_zone(pgrp, so->so_zoneid);

416 proc = pgfind(pgrp);

430 while (proc !'= NULL) {

431 mut ex_ent er (&proc- >p_|l ock) ;

432 socket _si gproc(proc, event);

433 nut ex_exi t (&proc->p_| ock) ;

434 proc = proc->p_pglink;

435 }

436 mut ex_exi t (&pi dl ock);

437 }

438 }

____unchanged_portion_onitted_

