new usr/src/uts/comon/inet/ip/sadb.c

R R R R

219319 Tue May 6 16:13:01 2014
new usr/src/uts/comon/inet/ip/sadb.c
4851 | Psec should use NANCSEC & friends fromtime. h
*

P R R s

__unchanged_portion_onitted_

Kok kkkKkKk

4214 | *

4215 * Figure out when to reschedul e the ager.

4216 */

4217 timeout _id_t

4218 sadb_retimeout (hrtine_t begin, queue_t *pfkey_q, void (fg;_;]er)(voi d*),

4219 void *agerarg, uint_t *intp, uint_t intmax, short m

4220 {

4221 hrtime_t end = gethrtinme();

4222 uint_t interval = *intp; /* "interval" is in ms. */

4222 uint_t interval = *intp;

4224 /*

4225 * See how long this took. |If it took too long, increase the
4226 * aging interval.

4227 */

4228 if ((end - begin) > MSEC2NSEC(interval)) {

4228 if ((end - begin) > (hrtime_t)interval * (hrtinme_t)1000000) {
4229 if (interval >= intmax)

4230 /* XXX Rate limt this? O recommend flush? */
4231 (void) strlog(md, 0, 0, SL_ERROR | SL_WARN,
4232 "Too many SA's to age out in % nsec.\n",
4233 i nt max);

4234 } else {

4235 /* Doubl e by shifting by one bit. */

4236 interval <<= 1;

4237 interval = min(interval, intnex);

4238 }

4239 } else if ((end - begin) <= (MSEC2NSEC(interval) / 2) &&

4239 } else if ((end - begin) <= (hrtime_t)interval * (hrtinme_t)500000 &&
4240 interval > SADB AGE | NTERVAL_DEFAULT) {

4241 *

4242 * |f | took less than half of the interval, then | should
4243 * ratchet the interval back down. Never automatically
4244 * shift below the default aging interval.

4245 *

4246 * NOTE: This even overrides nmanual setting of the age
4247 * interval using NDD to | ower the setting past the
4248 * default. In other words, if you set the interval
4249 * | ower than the default, and your SADB gets too big,
4250 * the interval will only self-lower back to the default.
4251 */

4252 /* Halve by shifting one bit. */

4253 interval >>= 1;

4254 interval = max(interval, SADB_AGE | NTERVAL_DEFAULT);

4255 }

4256 *intp = interval;

4257 return (qtimeout (pfkey_q, ager, agerarg,

4258 drv_usectohz(interval * (MCROSEC / MLLISEQ))));

4258 drv_usectohz(interval * 1000)));

4259 }

__unchanged_portion_omtted_

new usr/src/uts/ comon/inet/ip/spd.c 1

R R R R

190741 Tue May 6 16:13:01 2014
new usr/src/uts/comon/inet/ip/spd.c
4851 | Psec should use NANCSEC & friends fromtime. h
*

P R R s

__unchanged_portion_onitted_

Kok kkkKkKk

1052 /*

1053 * Rate-limting front-end to strlog() for AH and ESP. Uses the ndd vari abl es
1054 * in /dev/ip and the same rate-limting clock so that there’s a single

1055 * knob to turn to throttle the rate of nessages.

1056 */

1057 void

1058 ipsec_rl_strlog(netstack_t *ns, short md, short sid, char |evel, ushort_t sl,
1059 char *fnt, J)

1060 {

1061 va_list adx;

1062 hrtime_t current = gethrtime();

1063 i p_stack_t *ipst = ns->netstack_ip;

1064 i psec_stack_t *i pss = ns->netstack_i psec;

1066 sl | = SL_CONSOLE;

1067 I*

1068 * Throttle logging to stop syslog from being swanped. If variable
1069 * 'ipsec_policy_log_interval’ is zero, don't |og any nessages at

1070 * all, otherwise |log only one nessage every 'ipsec_policy_log_interval’
1071 * msec. Convert interval (in msec) to hrtime (In nsec).

1072 */

1074 if (ipst->ips_ipsec_policy_log_interval) {

1075 if (ipss->ipsec_policy_failure_last +

1076 MSEC2NSEC(i pst - >i ps_i psec_policy_log_interval) <= current) {
1076 ((hrtime_t)ipst->ips_ipsec_policy_log_interval *

1077 (hrtime_t)1000000) <= current) {

1077 va_start (adx, fnt);

1078 (void) vstrlog(md, sid, level, sl, fnt, adx);

1079 va_end(adx) ;

1080 i pss->i psec_policy_failure_last = current;

1081 }

1082 1

1083 }

__unchanged_portion_omtted_

