
new/usr/src/uts/common/inet/ip/sadb.c 1

**
 219319 Tue May 6 16:13:01 2014
new/usr/src/uts/common/inet/ip/sadb.c
4851 IPsec should use NANOSEC & friends from time.h
**
______unchanged_portion_omitted_

4214 /*
4215 * Figure out when to reschedule the ager.
4216 */
4217 timeout_id_t
4218 sadb_retimeout(hrtime_t begin, queue_t *pfkey_q, void (*ager)(void *),
4219 void *agerarg, uint_t *intp, uint_t intmax, short mid)
4220 {
4221 hrtime_t end = gethrtime();
4222 uint_t interval = *intp; /* "interval" is in ms. */
4222 uint_t interval = *intp;

4224 /*
4225 * See how long this took. If it took too long, increase the
4226 * aging interval.
4227 */
4228 if ((end - begin) > MSEC2NSEC(interval)) {
4228 if ((end - begin) > (hrtime_t)interval * (hrtime_t)1000000) {
4229 if (interval >= intmax) {
4230 /* XXX Rate limit this? Or recommend flush? */
4231 (void) strlog(mid, 0, 0, SL_ERROR | SL_WARN,
4232 "Too many SA’s to age out in %d msec.\n",
4233 intmax);
4234 } else {
4235 /* Double by shifting by one bit. */
4236 interval <<= 1;
4237 interval = min(interval, intmax);
4238 }
4239 } else if ((end - begin) <= (MSEC2NSEC(interval) / 2) &&
4239 } else if ((end - begin) <= (hrtime_t)interval * (hrtime_t)500000 &&
4240 interval > SADB_AGE_INTERVAL_DEFAULT) {
4241 /*
4242 * If I took less than half of the interval, then I should
4243 * ratchet the interval back down. Never automatically
4244 * shift below the default aging interval.
4245 *
4246 * NOTE:This even overrides manual setting of the age
4247 * interval using NDD to lower the setting past the
4248 * default. In other words, if you set the interval
4249 * lower than the default, and your SADB gets too big,
4250 * the interval will only self-lower back to the default.
4251 */
4252 /* Halve by shifting one bit. */
4253 interval >>= 1;
4254 interval = max(interval, SADB_AGE_INTERVAL_DEFAULT);
4255 }
4256 *intp = interval;
4257 return (qtimeout(pfkey_q, ager, agerarg,
4258 drv_usectohz(interval * (MICROSEC / MILLISEC))));
4258 drv_usectohz(interval * 1000)));
4259 }
______unchanged_portion_omitted_

new/usr/src/uts/common/inet/ip/spd.c 1

**
 190741 Tue May 6 16:13:01 2014
new/usr/src/uts/common/inet/ip/spd.c
4851 IPsec should use NANOSEC & friends from time.h
**
______unchanged_portion_omitted_

1052 /*
1053 * Rate-limiting front-end to strlog() for AH and ESP. Uses the ndd variables
1054 * in /dev/ip and the same rate-limiting clock so that there’s a single
1055 * knob to turn to throttle the rate of messages.
1056 */
1057 void
1058 ipsec_rl_strlog(netstack_t *ns, short mid, short sid, char level, ushort_t sl,
1059 char *fmt, ...)
1060 {
1061 va_list adx;
1062 hrtime_t current = gethrtime();
1063 ip_stack_t *ipst = ns->netstack_ip;
1064 ipsec_stack_t *ipss = ns->netstack_ipsec;

1066 sl |= SL_CONSOLE;
1067 /*
1068 * Throttle logging to stop syslog from being swamped. If variable
1069 * ’ipsec_policy_log_interval’ is zero, don’t log any messages at
1070 * all, otherwise log only one message every ’ipsec_policy_log_interval’
1071 * msec. Convert interval (in msec) to hrtime (in nsec).
1072 */

1074 if (ipst->ips_ipsec_policy_log_interval) {
1075 if (ipss->ipsec_policy_failure_last +
1076 MSEC2NSEC(ipst->ips_ipsec_policy_log_interval) <= current) {
1076 ((hrtime_t)ipst->ips_ipsec_policy_log_interval *
1077 (hrtime_t)1000000) <= current) {
1077 va_start(adx, fmt);
1078 (void) vstrlog(mid, sid, level, sl, fmt, adx);
1079 va_end(adx);
1080 ipss->ipsec_policy_failure_last = current;
1081 }
1082 }
1083 }
______unchanged_portion_omitted_

