1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 
  25 /*
  26  * Virtual Device Labels
  27  * ---------------------
  28  *
  29  * The vdev label serves several distinct purposes:
  30  *
  31  *      1. Uniquely identify this device as part of a ZFS pool and confirm its
  32  *         identity within the pool.
  33  *
  34  *      2. Verify that all the devices given in a configuration are present
  35  *         within the pool.
  36  *
  37  *      3. Determine the uberblock for the pool.
  38  *
  39  *      4. In case of an import operation, determine the configuration of the
  40  *         toplevel vdev of which it is a part.
  41  *
  42  *      5. If an import operation cannot find all the devices in the pool,
  43  *         provide enough information to the administrator to determine which
  44  *         devices are missing.
  45  *
  46  * It is important to note that while the kernel is responsible for writing the
  47  * label, it only consumes the information in the first three cases.  The
  48  * latter information is only consumed in userland when determining the
  49  * configuration to import a pool.
  50  *
  51  *
  52  * Label Organization
  53  * ------------------
  54  *
  55  * Before describing the contents of the label, it's important to understand how
  56  * the labels are written and updated with respect to the uberblock.
  57  *
  58  * When the pool configuration is altered, either because it was newly created
  59  * or a device was added, we want to update all the labels such that we can deal
  60  * with fatal failure at any point.  To this end, each disk has two labels which
  61  * are updated before and after the uberblock is synced.  Assuming we have
  62  * labels and an uberblock with the following transaction groups:
  63  *
  64  *              L1          UB          L2
  65  *           +------+    +------+    +------+
  66  *           |      |    |      |    |      |
  67  *           | t10  |    | t10  |    | t10  |
  68  *           |      |    |      |    |      |
  69  *           +------+    +------+    +------+
  70  *
  71  * In this stable state, the labels and the uberblock were all updated within
  72  * the same transaction group (10).  Each label is mirrored and checksummed, so
  73  * that we can detect when we fail partway through writing the label.
  74  *
  75  * In order to identify which labels are valid, the labels are written in the
  76  * following manner:
  77  *
  78  *      1. For each vdev, update 'L1' to the new label
  79  *      2. Update the uberblock
  80  *      3. For each vdev, update 'L2' to the new label
  81  *
  82  * Given arbitrary failure, we can determine the correct label to use based on
  83  * the transaction group.  If we fail after updating L1 but before updating the
  84  * UB, we will notice that L1's transaction group is greater than the uberblock,
  85  * so L2 must be valid.  If we fail after writing the uberblock but before
  86  * writing L2, we will notice that L2's transaction group is less than L1, and
  87  * therefore L1 is valid.
  88  *
  89  * Another added complexity is that not every label is updated when the config
  90  * is synced.  If we add a single device, we do not want to have to re-write
  91  * every label for every device in the pool.  This means that both L1 and L2 may
  92  * be older than the pool uberblock, because the necessary information is stored
  93  * on another vdev.
  94  *
  95  *
  96  * On-disk Format
  97  * --------------
  98  *
  99  * The vdev label consists of two distinct parts, and is wrapped within the
 100  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
 101  * VTOC disk labels, but is otherwise ignored.
 102  *
 103  * The first half of the label is a packed nvlist which contains pool wide
 104  * properties, per-vdev properties, and configuration information.  It is
 105  * described in more detail below.
 106  *
 107  * The latter half of the label consists of a redundant array of uberblocks.
 108  * These uberblocks are updated whenever a transaction group is committed,
 109  * or when the configuration is updated.  When a pool is loaded, we scan each
 110  * vdev for the 'best' uberblock.
 111  *
 112  *
 113  * Configuration Information
 114  * -------------------------
 115  *
 116  * The nvlist describing the pool and vdev contains the following elements:
 117  *
 118  *      version         ZFS on-disk version
 119  *      name            Pool name
 120  *      state           Pool state
 121  *      txg             Transaction group in which this label was written
 122  *      pool_guid       Unique identifier for this pool
 123  *      vdev_tree       An nvlist describing vdev tree.
 124  *
 125  * Each leaf device label also contains the following:
 126  *
 127  *      top_guid        Unique ID for top-level vdev in which this is contained
 128  *      guid            Unique ID for the leaf vdev
 129  *
 130  * The 'vs' configuration follows the format described in 'spa_config.c'.
 131  */
 132 
 133 #include <sys/zfs_context.h>
 134 #include <sys/spa.h>
 135 #include <sys/spa_impl.h>
 136 #include <sys/dmu.h>
 137 #include <sys/zap.h>
 138 #include <sys/vdev.h>
 139 #include <sys/vdev_impl.h>
 140 #include <sys/uberblock_impl.h>
 141 #include <sys/metaslab.h>
 142 #include <sys/zio.h>
 143 #include <sys/dsl_scan.h>
 144 #include <sys/fs/zfs.h>
 145 
 146 /*
 147  * Basic routines to read and write from a vdev label.
 148  * Used throughout the rest of this file.
 149  */
 150 uint64_t
 151 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
 152 {
 153         ASSERT(offset < sizeof (vdev_label_t));
 154         ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
 155 
 156         return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
 157             0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
 158 }
 159 
 160 /*
 161  * Returns back the vdev label associated with the passed in offset.
 162  */
 163 int
 164 vdev_label_number(uint64_t psize, uint64_t offset)
 165 {
 166         int l;
 167 
 168         if (offset >= psize - VDEV_LABEL_END_SIZE) {
 169                 offset -= psize - VDEV_LABEL_END_SIZE;
 170                 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
 171         }
 172         l = offset / sizeof (vdev_label_t);
 173         return (l < VDEV_LABELS ? l : -1);
 174 }
 175 
 176 static void
 177 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
 178         uint64_t size, zio_done_func_t *done, void *private, int flags)
 179 {
 180         ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
 181             SCL_STATE_ALL);
 182         ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
 183 
 184         zio_nowait(zio_read_phys(zio, vd,
 185             vdev_label_offset(vd->vdev_psize, l, offset),
 186             size, buf, ZIO_CHECKSUM_LABEL, done, private,
 187             ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
 188 }
 189 
 190 static void
 191 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
 192         uint64_t size, zio_done_func_t *done, void *private, int flags)
 193 {
 194         ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
 195             (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
 196             (SCL_CONFIG | SCL_STATE) &&
 197             dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
 198         ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
 199 
 200         zio_nowait(zio_write_phys(zio, vd,
 201             vdev_label_offset(vd->vdev_psize, l, offset),
 202             size, buf, ZIO_CHECKSUM_LABEL, done, private,
 203             ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
 204 }
 205 
 206 /*
 207  * Generate the nvlist representing this vdev's config.
 208  */
 209 nvlist_t *
 210 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
 211     vdev_config_flag_t flags)
 212 {
 213         nvlist_t *nv = NULL;
 214 
 215         VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 216 
 217         VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
 218             vd->vdev_ops->vdev_op_type) == 0);
 219         if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
 220                 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
 221                     == 0);
 222         VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
 223 
 224         if (vd->vdev_path != NULL)
 225                 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
 226                     vd->vdev_path) == 0);
 227 
 228         if (vd->vdev_devid != NULL)
 229                 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
 230                     vd->vdev_devid) == 0);
 231 
 232         if (vd->vdev_physpath != NULL)
 233                 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
 234                     vd->vdev_physpath) == 0);
 235 
 236         if (vd->vdev_fru != NULL)
 237                 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU,
 238                     vd->vdev_fru) == 0);
 239 
 240         if (vd->vdev_nparity != 0) {
 241                 ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
 242                     VDEV_TYPE_RAIDZ) == 0);
 243 
 244                 /*
 245                  * Make sure someone hasn't managed to sneak a fancy new vdev
 246                  * into a crufty old storage pool.
 247                  */
 248                 ASSERT(vd->vdev_nparity == 1 ||
 249                     (vd->vdev_nparity <= 2 &&
 250                     spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
 251                     (vd->vdev_nparity <= 3 &&
 252                     spa_version(spa) >= SPA_VERSION_RAIDZ3));
 253 
 254                 /*
 255                  * Note that we'll add the nparity tag even on storage pools
 256                  * that only support a single parity device -- older software
 257                  * will just ignore it.
 258                  */
 259                 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
 260                     vd->vdev_nparity) == 0);
 261         }
 262 
 263         if (vd->vdev_wholedisk != -1ULL)
 264                 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
 265                     vd->vdev_wholedisk) == 0);
 266 
 267         if (vd->vdev_not_present)
 268                 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
 269 
 270         if (vd->vdev_isspare)
 271                 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
 272 
 273         if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
 274             vd == vd->vdev_top) {
 275                 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
 276                     vd->vdev_ms_array) == 0);
 277                 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
 278                     vd->vdev_ms_shift) == 0);
 279                 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
 280                     vd->vdev_ashift) == 0);
 281                 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
 282                     vd->vdev_asize) == 0);
 283                 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG,
 284                     vd->vdev_islog) == 0);
 285                 if (vd->vdev_removing)
 286                         VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
 287                             vd->vdev_removing) == 0);
 288         }
 289 
 290         if (vd->vdev_dtl_smo.smo_object != 0)
 291                 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
 292                     vd->vdev_dtl_smo.smo_object) == 0);
 293 
 294         if (vd->vdev_crtxg)
 295                 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
 296                     vd->vdev_crtxg) == 0);
 297 
 298         if (getstats) {
 299                 vdev_stat_t vs;
 300                 pool_scan_stat_t ps;
 301 
 302                 vdev_get_stats(vd, &vs);
 303                 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
 304                     (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
 305 
 306                 /* provide either current or previous scan information */
 307                 if (spa_scan_get_stats(spa, &ps) == 0) {
 308                         VERIFY(nvlist_add_uint64_array(nv,
 309                             ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
 310                             sizeof (pool_scan_stat_t) / sizeof (uint64_t))
 311                             == 0);
 312                 }
 313         }
 314 
 315         if (!vd->vdev_ops->vdev_op_leaf) {
 316                 nvlist_t **child;
 317                 int c, idx;
 318 
 319                 ASSERT(!vd->vdev_ishole);
 320 
 321                 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
 322                     KM_SLEEP);
 323 
 324                 for (c = 0, idx = 0; c < vd->vdev_children; c++) {
 325                         vdev_t *cvd = vd->vdev_child[c];
 326 
 327                         /*
 328                          * If we're generating an nvlist of removing
 329                          * vdevs then skip over any device which is
 330                          * not being removed.
 331                          */
 332                         if ((flags & VDEV_CONFIG_REMOVING) &&
 333                             !cvd->vdev_removing)
 334                                 continue;
 335 
 336                         child[idx++] = vdev_config_generate(spa, cvd,
 337                             getstats, flags);
 338                 }
 339 
 340                 if (idx) {
 341                         VERIFY(nvlist_add_nvlist_array(nv,
 342                             ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
 343                 }
 344 
 345                 for (c = 0; c < idx; c++)
 346                         nvlist_free(child[c]);
 347 
 348                 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
 349 
 350         } else {
 351                 const char *aux = NULL;
 352 
 353                 if (vd->vdev_offline && !vd->vdev_tmpoffline)
 354                         VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
 355                             B_TRUE) == 0);
 356                 if (vd->vdev_resilvering)
 357                         VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVERING,
 358                             B_TRUE) == 0);
 359                 if (vd->vdev_faulted)
 360                         VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
 361                             B_TRUE) == 0);
 362                 if (vd->vdev_degraded)
 363                         VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
 364                             B_TRUE) == 0);
 365                 if (vd->vdev_removed)
 366                         VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
 367                             B_TRUE) == 0);
 368                 if (vd->vdev_unspare)
 369                         VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
 370                             B_TRUE) == 0);
 371                 if (vd->vdev_ishole)
 372                         VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE,
 373                             B_TRUE) == 0);
 374 
 375                 switch (vd->vdev_stat.vs_aux) {
 376                 case VDEV_AUX_ERR_EXCEEDED:
 377                         aux = "err_exceeded";
 378                         break;
 379 
 380                 case VDEV_AUX_EXTERNAL:
 381                         aux = "external";
 382                         break;
 383                 }
 384 
 385                 if (aux != NULL)
 386                         VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE,
 387                             aux) == 0);
 388 
 389                 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
 390                         VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
 391                             vd->vdev_orig_guid) == 0);
 392                 }
 393         }
 394 
 395         return (nv);
 396 }
 397 
 398 /*
 399  * Generate a view of the top-level vdevs.  If we currently have holes
 400  * in the namespace, then generate an array which contains a list of holey
 401  * vdevs.  Additionally, add the number of top-level children that currently
 402  * exist.
 403  */
 404 void
 405 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
 406 {
 407         vdev_t *rvd = spa->spa_root_vdev;
 408         uint64_t *array;
 409         uint_t c, idx;
 410 
 411         array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
 412 
 413         for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
 414                 vdev_t *tvd = rvd->vdev_child[c];
 415 
 416                 if (tvd->vdev_ishole)
 417                         array[idx++] = c;
 418         }
 419 
 420         if (idx) {
 421                 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
 422                     array, idx) == 0);
 423         }
 424 
 425         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
 426             rvd->vdev_children) == 0);
 427 
 428         kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
 429 }
 430 
 431 nvlist_t *
 432 vdev_label_read_config(vdev_t *vd)
 433 {
 434         spa_t *spa = vd->vdev_spa;
 435         nvlist_t *config = NULL;
 436         vdev_phys_t *vp;
 437         zio_t *zio;
 438         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
 439             ZIO_FLAG_SPECULATIVE;
 440 
 441         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
 442 
 443         if (!vdev_readable(vd))
 444                 return (NULL);
 445 
 446         vp = zio_buf_alloc(sizeof (vdev_phys_t));
 447 
 448 retry:
 449         for (int l = 0; l < VDEV_LABELS; l++) {
 450 
 451                 zio = zio_root(spa, NULL, NULL, flags);
 452 
 453                 vdev_label_read(zio, vd, l, vp,
 454                     offsetof(vdev_label_t, vl_vdev_phys),
 455                     sizeof (vdev_phys_t), NULL, NULL, flags);
 456 
 457                 if (zio_wait(zio) == 0 &&
 458                     nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
 459                     &config, 0) == 0)
 460                         break;
 461 
 462                 if (config != NULL) {
 463                         nvlist_free(config);
 464                         config = NULL;
 465                 }
 466         }
 467 
 468         if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
 469                 flags |= ZIO_FLAG_TRYHARD;
 470                 goto retry;
 471         }
 472 
 473         zio_buf_free(vp, sizeof (vdev_phys_t));
 474 
 475         return (config);
 476 }
 477 
 478 /*
 479  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
 480  * in with the device guid if this spare is active elsewhere on the system.
 481  */
 482 static boolean_t
 483 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
 484     uint64_t *spare_guid, uint64_t *l2cache_guid)
 485 {
 486         spa_t *spa = vd->vdev_spa;
 487         uint64_t state, pool_guid, device_guid, txg, spare_pool;
 488         uint64_t vdtxg = 0;
 489         nvlist_t *label;
 490 
 491         if (spare_guid)
 492                 *spare_guid = 0ULL;
 493         if (l2cache_guid)
 494                 *l2cache_guid = 0ULL;
 495 
 496         /*
 497          * Read the label, if any, and perform some basic sanity checks.
 498          */
 499         if ((label = vdev_label_read_config(vd)) == NULL)
 500                 return (B_FALSE);
 501 
 502         (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
 503             &vdtxg);
 504 
 505         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
 506             &state) != 0 ||
 507             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
 508             &device_guid) != 0) {
 509                 nvlist_free(label);
 510                 return (B_FALSE);
 511         }
 512 
 513         if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
 514             (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
 515             &pool_guid) != 0 ||
 516             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
 517             &txg) != 0)) {
 518                 nvlist_free(label);
 519                 return (B_FALSE);
 520         }
 521 
 522         nvlist_free(label);
 523 
 524         /*
 525          * Check to see if this device indeed belongs to the pool it claims to
 526          * be a part of.  The only way this is allowed is if the device is a hot
 527          * spare (which we check for later on).
 528          */
 529         if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
 530             !spa_guid_exists(pool_guid, device_guid) &&
 531             !spa_spare_exists(device_guid, NULL, NULL) &&
 532             !spa_l2cache_exists(device_guid, NULL))
 533                 return (B_FALSE);
 534 
 535         /*
 536          * If the transaction group is zero, then this an initialized (but
 537          * unused) label.  This is only an error if the create transaction
 538          * on-disk is the same as the one we're using now, in which case the
 539          * user has attempted to add the same vdev multiple times in the same
 540          * transaction.
 541          */
 542         if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
 543             txg == 0 && vdtxg == crtxg)
 544                 return (B_TRUE);
 545 
 546         /*
 547          * Check to see if this is a spare device.  We do an explicit check for
 548          * spa_has_spare() here because it may be on our pending list of spares
 549          * to add.  We also check if it is an l2cache device.
 550          */
 551         if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
 552             spa_has_spare(spa, device_guid)) {
 553                 if (spare_guid)
 554                         *spare_guid = device_guid;
 555 
 556                 switch (reason) {
 557                 case VDEV_LABEL_CREATE:
 558                 case VDEV_LABEL_L2CACHE:
 559                         return (B_TRUE);
 560 
 561                 case VDEV_LABEL_REPLACE:
 562                         return (!spa_has_spare(spa, device_guid) ||
 563                             spare_pool != 0ULL);
 564 
 565                 case VDEV_LABEL_SPARE:
 566                         return (spa_has_spare(spa, device_guid));
 567                 }
 568         }
 569 
 570         /*
 571          * Check to see if this is an l2cache device.
 572          */
 573         if (spa_l2cache_exists(device_guid, NULL))
 574                 return (B_TRUE);
 575 
 576         /*
 577          * We can't rely on a pool's state if it's been imported
 578          * read-only.  Instead we look to see if the pools is marked
 579          * read-only in the namespace and set the state to active.
 580          */
 581         if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
 582             spa_mode(spa) == FREAD)
 583                 state = POOL_STATE_ACTIVE;
 584 
 585         /*
 586          * If the device is marked ACTIVE, then this device is in use by another
 587          * pool on the system.
 588          */
 589         return (state == POOL_STATE_ACTIVE);
 590 }
 591 
 592 /*
 593  * Initialize a vdev label.  We check to make sure each leaf device is not in
 594  * use, and writable.  We put down an initial label which we will later
 595  * overwrite with a complete label.  Note that it's important to do this
 596  * sequentially, not in parallel, so that we catch cases of multiple use of the
 597  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
 598  * itself.
 599  */
 600 int
 601 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
 602 {
 603         spa_t *spa = vd->vdev_spa;
 604         nvlist_t *label;
 605         vdev_phys_t *vp;
 606         char *pad2;
 607         uberblock_t *ub;
 608         zio_t *zio;
 609         char *buf;
 610         size_t buflen;
 611         int error;
 612         uint64_t spare_guid, l2cache_guid;
 613         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
 614 
 615         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 616 
 617         for (int c = 0; c < vd->vdev_children; c++)
 618                 if ((error = vdev_label_init(vd->vdev_child[c],
 619                     crtxg, reason)) != 0)
 620                         return (error);
 621 
 622         /* Track the creation time for this vdev */
 623         vd->vdev_crtxg = crtxg;
 624 
 625         if (!vd->vdev_ops->vdev_op_leaf)
 626                 return (0);
 627 
 628         /*
 629          * Dead vdevs cannot be initialized.
 630          */
 631         if (vdev_is_dead(vd))
 632                 return (EIO);
 633 
 634         /*
 635          * Determine if the vdev is in use.
 636          */
 637         if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
 638             vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
 639                 return (EBUSY);
 640 
 641         /*
 642          * If this is a request to add or replace a spare or l2cache device
 643          * that is in use elsewhere on the system, then we must update the
 644          * guid (which was initialized to a random value) to reflect the
 645          * actual GUID (which is shared between multiple pools).
 646          */
 647         if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
 648             spare_guid != 0ULL) {
 649                 uint64_t guid_delta = spare_guid - vd->vdev_guid;
 650 
 651                 vd->vdev_guid += guid_delta;
 652 
 653                 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
 654                         pvd->vdev_guid_sum += guid_delta;
 655 
 656                 /*
 657                  * If this is a replacement, then we want to fallthrough to the
 658                  * rest of the code.  If we're adding a spare, then it's already
 659                  * labeled appropriately and we can just return.
 660                  */
 661                 if (reason == VDEV_LABEL_SPARE)
 662                         return (0);
 663                 ASSERT(reason == VDEV_LABEL_REPLACE ||
 664                     reason == VDEV_LABEL_SPLIT);
 665         }
 666 
 667         if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
 668             l2cache_guid != 0ULL) {
 669                 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
 670 
 671                 vd->vdev_guid += guid_delta;
 672 
 673                 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
 674                         pvd->vdev_guid_sum += guid_delta;
 675 
 676                 /*
 677                  * If this is a replacement, then we want to fallthrough to the
 678                  * rest of the code.  If we're adding an l2cache, then it's
 679                  * already labeled appropriately and we can just return.
 680                  */
 681                 if (reason == VDEV_LABEL_L2CACHE)
 682                         return (0);
 683                 ASSERT(reason == VDEV_LABEL_REPLACE);
 684         }
 685 
 686         /*
 687          * Initialize its label.
 688          */
 689         vp = zio_buf_alloc(sizeof (vdev_phys_t));
 690         bzero(vp, sizeof (vdev_phys_t));
 691 
 692         /*
 693          * Generate a label describing the pool and our top-level vdev.
 694          * We mark it as being from txg 0 to indicate that it's not
 695          * really part of an active pool just yet.  The labels will
 696          * be written again with a meaningful txg by spa_sync().
 697          */
 698         if (reason == VDEV_LABEL_SPARE ||
 699             (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
 700                 /*
 701                  * For inactive hot spares, we generate a special label that
 702                  * identifies as a mutually shared hot spare.  We write the
 703                  * label if we are adding a hot spare, or if we are removing an
 704                  * active hot spare (in which case we want to revert the
 705                  * labels).
 706                  */
 707                 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 708 
 709                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
 710                     spa_version(spa)) == 0);
 711                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
 712                     POOL_STATE_SPARE) == 0);
 713                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
 714                     vd->vdev_guid) == 0);
 715         } else if (reason == VDEV_LABEL_L2CACHE ||
 716             (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
 717                 /*
 718                  * For level 2 ARC devices, add a special label.
 719                  */
 720                 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 721 
 722                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
 723                     spa_version(spa)) == 0);
 724                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
 725                     POOL_STATE_L2CACHE) == 0);
 726                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
 727                     vd->vdev_guid) == 0);
 728         } else {
 729                 uint64_t txg = 0ULL;
 730 
 731                 if (reason == VDEV_LABEL_SPLIT)
 732                         txg = spa->spa_uberblock.ub_txg;
 733                 label = spa_config_generate(spa, vd, txg, B_FALSE);
 734 
 735                 /*
 736                  * Add our creation time.  This allows us to detect multiple
 737                  * vdev uses as described above, and automatically expires if we
 738                  * fail.
 739                  */
 740                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
 741                     crtxg) == 0);
 742         }
 743 
 744         buf = vp->vp_nvlist;
 745         buflen = sizeof (vp->vp_nvlist);
 746 
 747         error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
 748         if (error != 0) {
 749                 nvlist_free(label);
 750                 zio_buf_free(vp, sizeof (vdev_phys_t));
 751                 /* EFAULT means nvlist_pack ran out of room */
 752                 return (error == EFAULT ? ENAMETOOLONG : EINVAL);
 753         }
 754 
 755         /*
 756          * Initialize uberblock template.
 757          */
 758         ub = zio_buf_alloc(VDEV_UBERBLOCK_RING);
 759         bzero(ub, VDEV_UBERBLOCK_RING);
 760         *ub = spa->spa_uberblock;
 761         ub->ub_txg = 0;
 762 
 763         /* Initialize the 2nd padding area. */
 764         pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
 765         bzero(pad2, VDEV_PAD_SIZE);
 766 
 767         /*
 768          * Write everything in parallel.
 769          */
 770 retry:
 771         zio = zio_root(spa, NULL, NULL, flags);
 772 
 773         for (int l = 0; l < VDEV_LABELS; l++) {
 774 
 775                 vdev_label_write(zio, vd, l, vp,
 776                     offsetof(vdev_label_t, vl_vdev_phys),
 777                     sizeof (vdev_phys_t), NULL, NULL, flags);
 778 
 779                 /*
 780                  * Skip the 1st padding area.
 781                  * Zero out the 2nd padding area where it might have
 782                  * left over data from previous filesystem format.
 783                  */
 784                 vdev_label_write(zio, vd, l, pad2,
 785                     offsetof(vdev_label_t, vl_pad2),
 786                     VDEV_PAD_SIZE, NULL, NULL, flags);
 787 
 788                 vdev_label_write(zio, vd, l, ub,
 789                     offsetof(vdev_label_t, vl_uberblock),
 790                     VDEV_UBERBLOCK_RING, NULL, NULL, flags);
 791         }
 792 
 793         error = zio_wait(zio);
 794 
 795         if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
 796                 flags |= ZIO_FLAG_TRYHARD;
 797                 goto retry;
 798         }
 799 
 800         nvlist_free(label);
 801         zio_buf_free(pad2, VDEV_PAD_SIZE);
 802         zio_buf_free(ub, VDEV_UBERBLOCK_RING);
 803         zio_buf_free(vp, sizeof (vdev_phys_t));
 804 
 805         /*
 806          * If this vdev hasn't been previously identified as a spare, then we
 807          * mark it as such only if a) we are labeling it as a spare, or b) it
 808          * exists as a spare elsewhere in the system.  Do the same for
 809          * level 2 ARC devices.
 810          */
 811         if (error == 0 && !vd->vdev_isspare &&
 812             (reason == VDEV_LABEL_SPARE ||
 813             spa_spare_exists(vd->vdev_guid, NULL, NULL)))
 814                 spa_spare_add(vd);
 815 
 816         if (error == 0 && !vd->vdev_isl2cache &&
 817             (reason == VDEV_LABEL_L2CACHE ||
 818             spa_l2cache_exists(vd->vdev_guid, NULL)))
 819                 spa_l2cache_add(vd);
 820 
 821         return (error);
 822 }
 823 
 824 /*
 825  * ==========================================================================
 826  * uberblock load/sync
 827  * ==========================================================================
 828  */
 829 
 830 /*
 831  * Consider the following situation: txg is safely synced to disk.  We've
 832  * written the first uberblock for txg + 1, and then we lose power.  When we
 833  * come back up, we fail to see the uberblock for txg + 1 because, say,
 834  * it was on a mirrored device and the replica to which we wrote txg + 1
 835  * is now offline.  If we then make some changes and sync txg + 1, and then
 836  * the missing replica comes back, then for a new seconds we'll have two
 837  * conflicting uberblocks on disk with the same txg.  The solution is simple:
 838  * among uberblocks with equal txg, choose the one with the latest timestamp.
 839  */
 840 static int
 841 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
 842 {
 843         if (ub1->ub_txg < ub2->ub_txg)
 844                 return (-1);
 845         if (ub1->ub_txg > ub2->ub_txg)
 846                 return (1);
 847 
 848         if (ub1->ub_timestamp < ub2->ub_timestamp)
 849                 return (-1);
 850         if (ub1->ub_timestamp > ub2->ub_timestamp)
 851                 return (1);
 852 
 853         return (0);
 854 }
 855 
 856 static void
 857 vdev_uberblock_load_done(zio_t *zio)
 858 {
 859         spa_t *spa = zio->io_spa;
 860         zio_t *rio = zio->io_private;
 861         uberblock_t *ub = zio->io_data;
 862         uberblock_t *ubbest = rio->io_private;
 863 
 864         ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd));
 865 
 866         if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
 867                 mutex_enter(&rio->io_lock);
 868                 if (ub->ub_txg <= spa->spa_load_max_txg &&
 869                     vdev_uberblock_compare(ub, ubbest) > 0)
 870                         *ubbest = *ub;
 871                 mutex_exit(&rio->io_lock);
 872         }
 873 
 874         zio_buf_free(zio->io_data, zio->io_size);
 875 }
 876 
 877 void
 878 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest)
 879 {
 880         spa_t *spa = vd->vdev_spa;
 881         vdev_t *rvd = spa->spa_root_vdev;
 882         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
 883             ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
 884 
 885         if (vd == rvd) {
 886                 ASSERT(zio == NULL);
 887                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 888                 zio = zio_root(spa, NULL, ubbest, flags);
 889                 bzero(ubbest, sizeof (uberblock_t));
 890         }
 891 
 892         ASSERT(zio != NULL);
 893 
 894         for (int c = 0; c < vd->vdev_children; c++)
 895                 vdev_uberblock_load(zio, vd->vdev_child[c], ubbest);
 896 
 897         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
 898                 for (int l = 0; l < VDEV_LABELS; l++) {
 899                         for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
 900                                 vdev_label_read(zio, vd, l,
 901                                     zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
 902                                     VDEV_UBERBLOCK_OFFSET(vd, n),
 903                                     VDEV_UBERBLOCK_SIZE(vd),
 904                                     vdev_uberblock_load_done, zio, flags);
 905                         }
 906                 }
 907         }
 908 
 909         if (vd == rvd) {
 910                 (void) zio_wait(zio);
 911                 spa_config_exit(spa, SCL_ALL, FTAG);
 912         }
 913 }
 914 
 915 /*
 916  * On success, increment root zio's count of good writes.
 917  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
 918  */
 919 static void
 920 vdev_uberblock_sync_done(zio_t *zio)
 921 {
 922         uint64_t *good_writes = zio->io_private;
 923 
 924         if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
 925                 atomic_add_64(good_writes, 1);
 926 }
 927 
 928 /*
 929  * Write the uberblock to all labels of all leaves of the specified vdev.
 930  */
 931 static void
 932 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
 933 {
 934         uberblock_t *ubbuf;
 935         int n;
 936 
 937         for (int c = 0; c < vd->vdev_children; c++)
 938                 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
 939 
 940         if (!vd->vdev_ops->vdev_op_leaf)
 941                 return;
 942 
 943         if (!vdev_writeable(vd))
 944                 return;
 945 
 946         n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
 947 
 948         ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
 949         bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
 950         *ubbuf = *ub;
 951 
 952         for (int l = 0; l < VDEV_LABELS; l++)
 953                 vdev_label_write(zio, vd, l, ubbuf,
 954                     VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
 955                     vdev_uberblock_sync_done, zio->io_private,
 956                     flags | ZIO_FLAG_DONT_PROPAGATE);
 957 
 958         zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
 959 }
 960 
 961 int
 962 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
 963 {
 964         spa_t *spa = svd[0]->vdev_spa;
 965         zio_t *zio;
 966         uint64_t good_writes = 0;
 967 
 968         zio = zio_root(spa, NULL, &good_writes, flags);
 969 
 970         for (int v = 0; v < svdcount; v++)
 971                 vdev_uberblock_sync(zio, ub, svd[v], flags);
 972 
 973         (void) zio_wait(zio);
 974 
 975         /*
 976          * Flush the uberblocks to disk.  This ensures that the odd labels
 977          * are no longer needed (because the new uberblocks and the even
 978          * labels are safely on disk), so it is safe to overwrite them.
 979          */
 980         zio = zio_root(spa, NULL, NULL, flags);
 981 
 982         for (int v = 0; v < svdcount; v++)
 983                 zio_flush(zio, svd[v]);
 984 
 985         (void) zio_wait(zio);
 986 
 987         return (good_writes >= 1 ? 0 : EIO);
 988 }
 989 
 990 /*
 991  * On success, increment the count of good writes for our top-level vdev.
 992  */
 993 static void
 994 vdev_label_sync_done(zio_t *zio)
 995 {
 996         uint64_t *good_writes = zio->io_private;
 997 
 998         if (zio->io_error == 0)
 999                 atomic_add_64(good_writes, 1);
1000 }
1001 
1002 /*
1003  * If there weren't enough good writes, indicate failure to the parent.
1004  */
1005 static void
1006 vdev_label_sync_top_done(zio_t *zio)
1007 {
1008         uint64_t *good_writes = zio->io_private;
1009 
1010         if (*good_writes == 0)
1011                 zio->io_error = EIO;
1012 
1013         kmem_free(good_writes, sizeof (uint64_t));
1014 }
1015 
1016 /*
1017  * We ignore errors for log and cache devices, simply free the private data.
1018  */
1019 static void
1020 vdev_label_sync_ignore_done(zio_t *zio)
1021 {
1022         kmem_free(zio->io_private, sizeof (uint64_t));
1023 }
1024 
1025 /*
1026  * Write all even or odd labels to all leaves of the specified vdev.
1027  */
1028 static void
1029 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
1030 {
1031         nvlist_t *label;
1032         vdev_phys_t *vp;
1033         char *buf;
1034         size_t buflen;
1035 
1036         for (int c = 0; c < vd->vdev_children; c++)
1037                 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
1038 
1039         if (!vd->vdev_ops->vdev_op_leaf)
1040                 return;
1041 
1042         if (!vdev_writeable(vd))
1043                 return;
1044 
1045         /*
1046          * Generate a label describing the top-level config to which we belong.
1047          */
1048         label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1049 
1050         vp = zio_buf_alloc(sizeof (vdev_phys_t));
1051         bzero(vp, sizeof (vdev_phys_t));
1052 
1053         buf = vp->vp_nvlist;
1054         buflen = sizeof (vp->vp_nvlist);
1055 
1056         if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1057                 for (; l < VDEV_LABELS; l += 2) {
1058                         vdev_label_write(zio, vd, l, vp,
1059                             offsetof(vdev_label_t, vl_vdev_phys),
1060                             sizeof (vdev_phys_t),
1061                             vdev_label_sync_done, zio->io_private,
1062                             flags | ZIO_FLAG_DONT_PROPAGATE);
1063                 }
1064         }
1065 
1066         zio_buf_free(vp, sizeof (vdev_phys_t));
1067         nvlist_free(label);
1068 }
1069 
1070 int
1071 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1072 {
1073         list_t *dl = &spa->spa_config_dirty_list;
1074         vdev_t *vd;
1075         zio_t *zio;
1076         int error;
1077 
1078         /*
1079          * Write the new labels to disk.
1080          */
1081         zio = zio_root(spa, NULL, NULL, flags);
1082 
1083         for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1084                 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1085                     KM_SLEEP);
1086 
1087                 ASSERT(!vd->vdev_ishole);
1088 
1089                 zio_t *vio = zio_null(zio, spa, NULL,
1090                     (vd->vdev_islog || vd->vdev_aux != NULL) ?
1091                     vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1092                     good_writes, flags);
1093                 vdev_label_sync(vio, vd, l, txg, flags);
1094                 zio_nowait(vio);
1095         }
1096 
1097         error = zio_wait(zio);
1098 
1099         /*
1100          * Flush the new labels to disk.
1101          */
1102         zio = zio_root(spa, NULL, NULL, flags);
1103 
1104         for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1105                 zio_flush(zio, vd);
1106 
1107         (void) zio_wait(zio);
1108 
1109         return (error);
1110 }
1111 
1112 /*
1113  * Sync the uberblock and any changes to the vdev configuration.
1114  *
1115  * The order of operations is carefully crafted to ensure that
1116  * if the system panics or loses power at any time, the state on disk
1117  * is still transactionally consistent.  The in-line comments below
1118  * describe the failure semantics at each stage.
1119  *
1120  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1121  * at any time, you can just call it again, and it will resume its work.
1122  */
1123 int
1124 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
1125 {
1126         spa_t *spa = svd[0]->vdev_spa;
1127         uberblock_t *ub = &spa->spa_uberblock;
1128         vdev_t *vd;
1129         zio_t *zio;
1130         int error;
1131         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1132 
1133         /*
1134          * Normally, we don't want to try too hard to write every label and
1135          * uberblock.  If there is a flaky disk, we don't want the rest of the
1136          * sync process to block while we retry.  But if we can't write a
1137          * single label out, we should retry with ZIO_FLAG_TRYHARD before
1138          * bailing out and declaring the pool faulted.
1139          */
1140         if (tryhard)
1141                 flags |= ZIO_FLAG_TRYHARD;
1142 
1143         ASSERT(ub->ub_txg <= txg);
1144 
1145         /*
1146          * If this isn't a resync due to I/O errors,
1147          * and nothing changed in this transaction group,
1148          * and the vdev configuration hasn't changed,
1149          * then there's nothing to do.
1150          */
1151         if (ub->ub_txg < txg &&
1152             uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1153             list_is_empty(&spa->spa_config_dirty_list))
1154                 return (0);
1155 
1156         if (txg > spa_freeze_txg(spa))
1157                 return (0);
1158 
1159         ASSERT(txg <= spa->spa_final_txg);
1160 
1161         /*
1162          * Flush the write cache of every disk that's been written to
1163          * in this transaction group.  This ensures that all blocks
1164          * written in this txg will be committed to stable storage
1165          * before any uberblock that references them.
1166          */
1167         zio = zio_root(spa, NULL, NULL, flags);
1168 
1169         for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1170             vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1171                 zio_flush(zio, vd);
1172 
1173         (void) zio_wait(zio);
1174 
1175         /*
1176          * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1177          * system dies in the middle of this process, that's OK: all of the
1178          * even labels that made it to disk will be newer than any uberblock,
1179          * and will therefore be considered invalid.  The odd labels (L1, L3),
1180          * which have not yet been touched, will still be valid.  We flush
1181          * the new labels to disk to ensure that all even-label updates
1182          * are committed to stable storage before the uberblock update.
1183          */
1184         if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1185                 return (error);
1186 
1187         /*
1188          * Sync the uberblocks to all vdevs in svd[].
1189          * If the system dies in the middle of this step, there are two cases
1190          * to consider, and the on-disk state is consistent either way:
1191          *
1192          * (1)  If none of the new uberblocks made it to disk, then the
1193          *      previous uberblock will be the newest, and the odd labels
1194          *      (which had not yet been touched) will be valid with respect
1195          *      to that uberblock.
1196          *
1197          * (2)  If one or more new uberblocks made it to disk, then they
1198          *      will be the newest, and the even labels (which had all
1199          *      been successfully committed) will be valid with respect
1200          *      to the new uberblocks.
1201          */
1202         if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1203                 return (error);
1204 
1205         /*
1206          * Sync out odd labels for every dirty vdev.  If the system dies
1207          * in the middle of this process, the even labels and the new
1208          * uberblocks will suffice to open the pool.  The next time
1209          * the pool is opened, the first thing we'll do -- before any
1210          * user data is modified -- is mark every vdev dirty so that
1211          * all labels will be brought up to date.  We flush the new labels
1212          * to disk to ensure that all odd-label updates are committed to
1213          * stable storage before the next transaction group begins.
1214          */
1215         return (vdev_label_sync_list(spa, 1, txg, flags));
1216 }