Print this page
2619 asynchronous destruction of ZFS file systems
2747 SPA versioning with zfs feature flags
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <gwilson@delphix.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com>
Approved by: Dan McDonald <danmcd@nexenta.com>
| Split |
Close |
| Expand all |
| Collapse all |
--- old/usr/src/uts/common/fs/zfs/vdev.c
+++ new/usr/src/uts/common/fs/zfs/vdev.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 26 */
27 27
28 28 #include <sys/zfs_context.h>
29 29 #include <sys/fm/fs/zfs.h>
30 30 #include <sys/spa.h>
31 31 #include <sys/spa_impl.h>
32 32 #include <sys/dmu.h>
33 33 #include <sys/dmu_tx.h>
34 34 #include <sys/vdev_impl.h>
35 35 #include <sys/uberblock_impl.h>
36 36 #include <sys/metaslab.h>
37 37 #include <sys/metaslab_impl.h>
38 38 #include <sys/space_map.h>
39 39 #include <sys/zio.h>
40 40 #include <sys/zap.h>
41 41 #include <sys/fs/zfs.h>
42 42 #include <sys/arc.h>
43 43 #include <sys/zil.h>
44 44 #include <sys/dsl_scan.h>
45 45
46 46 /*
47 47 * Virtual device management.
48 48 */
49 49
50 50 static vdev_ops_t *vdev_ops_table[] = {
51 51 &vdev_root_ops,
52 52 &vdev_raidz_ops,
53 53 &vdev_mirror_ops,
54 54 &vdev_replacing_ops,
55 55 &vdev_spare_ops,
56 56 &vdev_disk_ops,
57 57 &vdev_file_ops,
58 58 &vdev_missing_ops,
59 59 &vdev_hole_ops,
60 60 NULL
61 61 };
62 62
63 63 /* maximum scrub/resilver I/O queue per leaf vdev */
64 64 int zfs_scrub_limit = 10;
65 65
66 66 /*
67 67 * Given a vdev type, return the appropriate ops vector.
68 68 */
69 69 static vdev_ops_t *
70 70 vdev_getops(const char *type)
71 71 {
72 72 vdev_ops_t *ops, **opspp;
73 73
74 74 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
75 75 if (strcmp(ops->vdev_op_type, type) == 0)
76 76 break;
77 77
78 78 return (ops);
79 79 }
80 80
81 81 /*
82 82 * Default asize function: return the MAX of psize with the asize of
83 83 * all children. This is what's used by anything other than RAID-Z.
84 84 */
85 85 uint64_t
86 86 vdev_default_asize(vdev_t *vd, uint64_t psize)
87 87 {
88 88 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
89 89 uint64_t csize;
90 90
91 91 for (int c = 0; c < vd->vdev_children; c++) {
92 92 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
93 93 asize = MAX(asize, csize);
94 94 }
95 95
96 96 return (asize);
97 97 }
98 98
99 99 /*
100 100 * Get the minimum allocatable size. We define the allocatable size as
101 101 * the vdev's asize rounded to the nearest metaslab. This allows us to
102 102 * replace or attach devices which don't have the same physical size but
103 103 * can still satisfy the same number of allocations.
104 104 */
105 105 uint64_t
106 106 vdev_get_min_asize(vdev_t *vd)
107 107 {
108 108 vdev_t *pvd = vd->vdev_parent;
109 109
110 110 /*
111 111 * If our parent is NULL (inactive spare or cache) or is the root,
112 112 * just return our own asize.
113 113 */
114 114 if (pvd == NULL)
115 115 return (vd->vdev_asize);
116 116
117 117 /*
118 118 * The top-level vdev just returns the allocatable size rounded
119 119 * to the nearest metaslab.
120 120 */
121 121 if (vd == vd->vdev_top)
122 122 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
123 123
124 124 /*
125 125 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
126 126 * so each child must provide at least 1/Nth of its asize.
127 127 */
128 128 if (pvd->vdev_ops == &vdev_raidz_ops)
129 129 return (pvd->vdev_min_asize / pvd->vdev_children);
130 130
131 131 return (pvd->vdev_min_asize);
132 132 }
133 133
134 134 void
135 135 vdev_set_min_asize(vdev_t *vd)
136 136 {
137 137 vd->vdev_min_asize = vdev_get_min_asize(vd);
138 138
139 139 for (int c = 0; c < vd->vdev_children; c++)
140 140 vdev_set_min_asize(vd->vdev_child[c]);
141 141 }
142 142
143 143 vdev_t *
144 144 vdev_lookup_top(spa_t *spa, uint64_t vdev)
145 145 {
146 146 vdev_t *rvd = spa->spa_root_vdev;
147 147
148 148 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
149 149
150 150 if (vdev < rvd->vdev_children) {
151 151 ASSERT(rvd->vdev_child[vdev] != NULL);
152 152 return (rvd->vdev_child[vdev]);
153 153 }
154 154
155 155 return (NULL);
156 156 }
157 157
158 158 vdev_t *
159 159 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
160 160 {
161 161 vdev_t *mvd;
162 162
163 163 if (vd->vdev_guid == guid)
164 164 return (vd);
165 165
166 166 for (int c = 0; c < vd->vdev_children; c++)
167 167 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
168 168 NULL)
169 169 return (mvd);
170 170
171 171 return (NULL);
172 172 }
173 173
174 174 void
175 175 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
176 176 {
177 177 size_t oldsize, newsize;
178 178 uint64_t id = cvd->vdev_id;
179 179 vdev_t **newchild;
180 180
181 181 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
182 182 ASSERT(cvd->vdev_parent == NULL);
183 183
184 184 cvd->vdev_parent = pvd;
185 185
186 186 if (pvd == NULL)
187 187 return;
188 188
189 189 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
190 190
191 191 oldsize = pvd->vdev_children * sizeof (vdev_t *);
192 192 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
193 193 newsize = pvd->vdev_children * sizeof (vdev_t *);
194 194
195 195 newchild = kmem_zalloc(newsize, KM_SLEEP);
196 196 if (pvd->vdev_child != NULL) {
197 197 bcopy(pvd->vdev_child, newchild, oldsize);
198 198 kmem_free(pvd->vdev_child, oldsize);
199 199 }
200 200
201 201 pvd->vdev_child = newchild;
202 202 pvd->vdev_child[id] = cvd;
203 203
204 204 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
205 205 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
206 206
207 207 /*
208 208 * Walk up all ancestors to update guid sum.
209 209 */
210 210 for (; pvd != NULL; pvd = pvd->vdev_parent)
211 211 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
212 212 }
213 213
214 214 void
215 215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
216 216 {
217 217 int c;
218 218 uint_t id = cvd->vdev_id;
219 219
220 220 ASSERT(cvd->vdev_parent == pvd);
221 221
222 222 if (pvd == NULL)
223 223 return;
224 224
225 225 ASSERT(id < pvd->vdev_children);
226 226 ASSERT(pvd->vdev_child[id] == cvd);
227 227
228 228 pvd->vdev_child[id] = NULL;
229 229 cvd->vdev_parent = NULL;
230 230
231 231 for (c = 0; c < pvd->vdev_children; c++)
232 232 if (pvd->vdev_child[c])
233 233 break;
234 234
235 235 if (c == pvd->vdev_children) {
236 236 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
237 237 pvd->vdev_child = NULL;
238 238 pvd->vdev_children = 0;
239 239 }
240 240
241 241 /*
242 242 * Walk up all ancestors to update guid sum.
243 243 */
244 244 for (; pvd != NULL; pvd = pvd->vdev_parent)
245 245 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
246 246 }
247 247
248 248 /*
249 249 * Remove any holes in the child array.
250 250 */
251 251 void
252 252 vdev_compact_children(vdev_t *pvd)
253 253 {
254 254 vdev_t **newchild, *cvd;
255 255 int oldc = pvd->vdev_children;
256 256 int newc;
257 257
258 258 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
259 259
260 260 for (int c = newc = 0; c < oldc; c++)
261 261 if (pvd->vdev_child[c])
262 262 newc++;
263 263
264 264 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
265 265
266 266 for (int c = newc = 0; c < oldc; c++) {
267 267 if ((cvd = pvd->vdev_child[c]) != NULL) {
268 268 newchild[newc] = cvd;
269 269 cvd->vdev_id = newc++;
270 270 }
271 271 }
272 272
273 273 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
274 274 pvd->vdev_child = newchild;
275 275 pvd->vdev_children = newc;
276 276 }
277 277
278 278 /*
279 279 * Allocate and minimally initialize a vdev_t.
280 280 */
281 281 vdev_t *
282 282 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
283 283 {
284 284 vdev_t *vd;
285 285
286 286 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
287 287
288 288 if (spa->spa_root_vdev == NULL) {
289 289 ASSERT(ops == &vdev_root_ops);
290 290 spa->spa_root_vdev = vd;
291 291 spa->spa_load_guid = spa_generate_guid(NULL);
292 292 }
293 293
294 294 if (guid == 0 && ops != &vdev_hole_ops) {
295 295 if (spa->spa_root_vdev == vd) {
296 296 /*
297 297 * The root vdev's guid will also be the pool guid,
298 298 * which must be unique among all pools.
299 299 */
300 300 guid = spa_generate_guid(NULL);
301 301 } else {
302 302 /*
303 303 * Any other vdev's guid must be unique within the pool.
304 304 */
305 305 guid = spa_generate_guid(spa);
306 306 }
307 307 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
308 308 }
309 309
310 310 vd->vdev_spa = spa;
311 311 vd->vdev_id = id;
312 312 vd->vdev_guid = guid;
313 313 vd->vdev_guid_sum = guid;
314 314 vd->vdev_ops = ops;
315 315 vd->vdev_state = VDEV_STATE_CLOSED;
316 316 vd->vdev_ishole = (ops == &vdev_hole_ops);
317 317
318 318 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
319 319 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
320 320 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
321 321 for (int t = 0; t < DTL_TYPES; t++) {
322 322 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
323 323 &vd->vdev_dtl_lock);
324 324 }
325 325 txg_list_create(&vd->vdev_ms_list,
326 326 offsetof(struct metaslab, ms_txg_node));
327 327 txg_list_create(&vd->vdev_dtl_list,
328 328 offsetof(struct vdev, vdev_dtl_node));
329 329 vd->vdev_stat.vs_timestamp = gethrtime();
330 330 vdev_queue_init(vd);
331 331 vdev_cache_init(vd);
332 332
333 333 return (vd);
334 334 }
335 335
336 336 /*
337 337 * Allocate a new vdev. The 'alloctype' is used to control whether we are
338 338 * creating a new vdev or loading an existing one - the behavior is slightly
339 339 * different for each case.
340 340 */
341 341 int
342 342 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
343 343 int alloctype)
344 344 {
345 345 vdev_ops_t *ops;
346 346 char *type;
347 347 uint64_t guid = 0, islog, nparity;
348 348 vdev_t *vd;
349 349
350 350 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
351 351
352 352 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
353 353 return (EINVAL);
354 354
355 355 if ((ops = vdev_getops(type)) == NULL)
356 356 return (EINVAL);
357 357
358 358 /*
359 359 * If this is a load, get the vdev guid from the nvlist.
360 360 * Otherwise, vdev_alloc_common() will generate one for us.
361 361 */
362 362 if (alloctype == VDEV_ALLOC_LOAD) {
363 363 uint64_t label_id;
364 364
365 365 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
366 366 label_id != id)
367 367 return (EINVAL);
368 368
369 369 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
370 370 return (EINVAL);
371 371 } else if (alloctype == VDEV_ALLOC_SPARE) {
372 372 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
373 373 return (EINVAL);
374 374 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
375 375 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376 376 return (EINVAL);
377 377 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
378 378 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
379 379 return (EINVAL);
380 380 }
381 381
382 382 /*
383 383 * The first allocated vdev must be of type 'root'.
384 384 */
385 385 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
386 386 return (EINVAL);
387 387
388 388 /*
389 389 * Determine whether we're a log vdev.
390 390 */
391 391 islog = 0;
392 392 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
393 393 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
394 394 return (ENOTSUP);
395 395
396 396 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
397 397 return (ENOTSUP);
398 398
399 399 /*
400 400 * Set the nparity property for RAID-Z vdevs.
401 401 */
402 402 nparity = -1ULL;
403 403 if (ops == &vdev_raidz_ops) {
404 404 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
405 405 &nparity) == 0) {
406 406 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
407 407 return (EINVAL);
408 408 /*
409 409 * Previous versions could only support 1 or 2 parity
410 410 * device.
411 411 */
412 412 if (nparity > 1 &&
413 413 spa_version(spa) < SPA_VERSION_RAIDZ2)
414 414 return (ENOTSUP);
415 415 if (nparity > 2 &&
416 416 spa_version(spa) < SPA_VERSION_RAIDZ3)
417 417 return (ENOTSUP);
418 418 } else {
419 419 /*
420 420 * We require the parity to be specified for SPAs that
421 421 * support multiple parity levels.
422 422 */
423 423 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
424 424 return (EINVAL);
425 425 /*
426 426 * Otherwise, we default to 1 parity device for RAID-Z.
427 427 */
428 428 nparity = 1;
429 429 }
430 430 } else {
431 431 nparity = 0;
432 432 }
433 433 ASSERT(nparity != -1ULL);
434 434
435 435 vd = vdev_alloc_common(spa, id, guid, ops);
436 436
437 437 vd->vdev_islog = islog;
438 438 vd->vdev_nparity = nparity;
439 439
440 440 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
441 441 vd->vdev_path = spa_strdup(vd->vdev_path);
442 442 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
443 443 vd->vdev_devid = spa_strdup(vd->vdev_devid);
444 444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
445 445 &vd->vdev_physpath) == 0)
446 446 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
447 447 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
448 448 vd->vdev_fru = spa_strdup(vd->vdev_fru);
449 449
450 450 /*
451 451 * Set the whole_disk property. If it's not specified, leave the value
452 452 * as -1.
453 453 */
454 454 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
455 455 &vd->vdev_wholedisk) != 0)
456 456 vd->vdev_wholedisk = -1ULL;
457 457
458 458 /*
459 459 * Look for the 'not present' flag. This will only be set if the device
460 460 * was not present at the time of import.
461 461 */
462 462 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
463 463 &vd->vdev_not_present);
464 464
465 465 /*
466 466 * Get the alignment requirement.
467 467 */
468 468 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
469 469
470 470 /*
471 471 * Retrieve the vdev creation time.
472 472 */
473 473 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
474 474 &vd->vdev_crtxg);
475 475
476 476 /*
477 477 * If we're a top-level vdev, try to load the allocation parameters.
478 478 */
479 479 if (parent && !parent->vdev_parent &&
480 480 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
481 481 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
482 482 &vd->vdev_ms_array);
483 483 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
484 484 &vd->vdev_ms_shift);
485 485 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
486 486 &vd->vdev_asize);
487 487 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
488 488 &vd->vdev_removing);
489 489 }
490 490
491 491 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
492 492 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
493 493 alloctype == VDEV_ALLOC_ADD ||
494 494 alloctype == VDEV_ALLOC_SPLIT ||
495 495 alloctype == VDEV_ALLOC_ROOTPOOL);
496 496 vd->vdev_mg = metaslab_group_create(islog ?
497 497 spa_log_class(spa) : spa_normal_class(spa), vd);
498 498 }
499 499
500 500 /*
501 501 * If we're a leaf vdev, try to load the DTL object and other state.
502 502 */
503 503 if (vd->vdev_ops->vdev_op_leaf &&
504 504 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
505 505 alloctype == VDEV_ALLOC_ROOTPOOL)) {
506 506 if (alloctype == VDEV_ALLOC_LOAD) {
507 507 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
508 508 &vd->vdev_dtl_smo.smo_object);
509 509 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
510 510 &vd->vdev_unspare);
511 511 }
512 512
513 513 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
514 514 uint64_t spare = 0;
515 515
516 516 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
517 517 &spare) == 0 && spare)
518 518 spa_spare_add(vd);
519 519 }
520 520
521 521 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
522 522 &vd->vdev_offline);
523 523
524 524 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
525 525 &vd->vdev_resilvering);
526 526
527 527 /*
528 528 * When importing a pool, we want to ignore the persistent fault
529 529 * state, as the diagnosis made on another system may not be
530 530 * valid in the current context. Local vdevs will
531 531 * remain in the faulted state.
532 532 */
533 533 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
534 534 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
535 535 &vd->vdev_faulted);
536 536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
537 537 &vd->vdev_degraded);
538 538 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
539 539 &vd->vdev_removed);
540 540
541 541 if (vd->vdev_faulted || vd->vdev_degraded) {
542 542 char *aux;
543 543
544 544 vd->vdev_label_aux =
545 545 VDEV_AUX_ERR_EXCEEDED;
546 546 if (nvlist_lookup_string(nv,
547 547 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
548 548 strcmp(aux, "external") == 0)
549 549 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
550 550 }
551 551 }
552 552 }
553 553
554 554 /*
555 555 * Add ourselves to the parent's list of children.
556 556 */
557 557 vdev_add_child(parent, vd);
558 558
559 559 *vdp = vd;
560 560
561 561 return (0);
562 562 }
563 563
564 564 void
565 565 vdev_free(vdev_t *vd)
566 566 {
567 567 spa_t *spa = vd->vdev_spa;
568 568
569 569 /*
570 570 * vdev_free() implies closing the vdev first. This is simpler than
571 571 * trying to ensure complicated semantics for all callers.
572 572 */
573 573 vdev_close(vd);
574 574
575 575 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
576 576 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
577 577
578 578 /*
579 579 * Free all children.
580 580 */
581 581 for (int c = 0; c < vd->vdev_children; c++)
582 582 vdev_free(vd->vdev_child[c]);
583 583
584 584 ASSERT(vd->vdev_child == NULL);
585 585 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
586 586
587 587 /*
588 588 * Discard allocation state.
589 589 */
590 590 if (vd->vdev_mg != NULL) {
591 591 vdev_metaslab_fini(vd);
592 592 metaslab_group_destroy(vd->vdev_mg);
593 593 }
594 594
595 595 ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
596 596 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
597 597 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
598 598
599 599 /*
600 600 * Remove this vdev from its parent's child list.
601 601 */
602 602 vdev_remove_child(vd->vdev_parent, vd);
603 603
604 604 ASSERT(vd->vdev_parent == NULL);
605 605
606 606 /*
607 607 * Clean up vdev structure.
608 608 */
609 609 vdev_queue_fini(vd);
610 610 vdev_cache_fini(vd);
611 611
612 612 if (vd->vdev_path)
613 613 spa_strfree(vd->vdev_path);
614 614 if (vd->vdev_devid)
615 615 spa_strfree(vd->vdev_devid);
616 616 if (vd->vdev_physpath)
617 617 spa_strfree(vd->vdev_physpath);
618 618 if (vd->vdev_fru)
619 619 spa_strfree(vd->vdev_fru);
620 620
621 621 if (vd->vdev_isspare)
622 622 spa_spare_remove(vd);
623 623 if (vd->vdev_isl2cache)
624 624 spa_l2cache_remove(vd);
625 625
626 626 txg_list_destroy(&vd->vdev_ms_list);
627 627 txg_list_destroy(&vd->vdev_dtl_list);
628 628
629 629 mutex_enter(&vd->vdev_dtl_lock);
630 630 for (int t = 0; t < DTL_TYPES; t++) {
631 631 space_map_unload(&vd->vdev_dtl[t]);
632 632 space_map_destroy(&vd->vdev_dtl[t]);
633 633 }
634 634 mutex_exit(&vd->vdev_dtl_lock);
635 635
636 636 mutex_destroy(&vd->vdev_dtl_lock);
637 637 mutex_destroy(&vd->vdev_stat_lock);
638 638 mutex_destroy(&vd->vdev_probe_lock);
639 639
640 640 if (vd == spa->spa_root_vdev)
641 641 spa->spa_root_vdev = NULL;
642 642
643 643 kmem_free(vd, sizeof (vdev_t));
644 644 }
645 645
646 646 /*
647 647 * Transfer top-level vdev state from svd to tvd.
648 648 */
649 649 static void
650 650 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
651 651 {
652 652 spa_t *spa = svd->vdev_spa;
653 653 metaslab_t *msp;
654 654 vdev_t *vd;
655 655 int t;
656 656
657 657 ASSERT(tvd == tvd->vdev_top);
658 658
659 659 tvd->vdev_ms_array = svd->vdev_ms_array;
660 660 tvd->vdev_ms_shift = svd->vdev_ms_shift;
661 661 tvd->vdev_ms_count = svd->vdev_ms_count;
662 662
663 663 svd->vdev_ms_array = 0;
664 664 svd->vdev_ms_shift = 0;
665 665 svd->vdev_ms_count = 0;
666 666
667 667 if (tvd->vdev_mg)
668 668 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
669 669 tvd->vdev_mg = svd->vdev_mg;
670 670 tvd->vdev_ms = svd->vdev_ms;
671 671
672 672 svd->vdev_mg = NULL;
673 673 svd->vdev_ms = NULL;
674 674
675 675 if (tvd->vdev_mg != NULL)
676 676 tvd->vdev_mg->mg_vd = tvd;
677 677
678 678 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
679 679 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
680 680 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
681 681
682 682 svd->vdev_stat.vs_alloc = 0;
683 683 svd->vdev_stat.vs_space = 0;
684 684 svd->vdev_stat.vs_dspace = 0;
685 685
686 686 for (t = 0; t < TXG_SIZE; t++) {
687 687 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
688 688 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
689 689 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
690 690 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
691 691 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
692 692 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
693 693 }
694 694
695 695 if (list_link_active(&svd->vdev_config_dirty_node)) {
696 696 vdev_config_clean(svd);
697 697 vdev_config_dirty(tvd);
698 698 }
699 699
700 700 if (list_link_active(&svd->vdev_state_dirty_node)) {
701 701 vdev_state_clean(svd);
702 702 vdev_state_dirty(tvd);
703 703 }
704 704
705 705 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
706 706 svd->vdev_deflate_ratio = 0;
707 707
708 708 tvd->vdev_islog = svd->vdev_islog;
709 709 svd->vdev_islog = 0;
710 710 }
711 711
712 712 static void
713 713 vdev_top_update(vdev_t *tvd, vdev_t *vd)
714 714 {
715 715 if (vd == NULL)
716 716 return;
717 717
718 718 vd->vdev_top = tvd;
719 719
720 720 for (int c = 0; c < vd->vdev_children; c++)
721 721 vdev_top_update(tvd, vd->vdev_child[c]);
722 722 }
723 723
724 724 /*
725 725 * Add a mirror/replacing vdev above an existing vdev.
726 726 */
727 727 vdev_t *
728 728 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
729 729 {
730 730 spa_t *spa = cvd->vdev_spa;
731 731 vdev_t *pvd = cvd->vdev_parent;
732 732 vdev_t *mvd;
733 733
734 734 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
735 735
736 736 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
737 737
738 738 mvd->vdev_asize = cvd->vdev_asize;
739 739 mvd->vdev_min_asize = cvd->vdev_min_asize;
740 740 mvd->vdev_max_asize = cvd->vdev_max_asize;
741 741 mvd->vdev_ashift = cvd->vdev_ashift;
742 742 mvd->vdev_state = cvd->vdev_state;
743 743 mvd->vdev_crtxg = cvd->vdev_crtxg;
744 744
745 745 vdev_remove_child(pvd, cvd);
746 746 vdev_add_child(pvd, mvd);
747 747 cvd->vdev_id = mvd->vdev_children;
748 748 vdev_add_child(mvd, cvd);
749 749 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
750 750
751 751 if (mvd == mvd->vdev_top)
752 752 vdev_top_transfer(cvd, mvd);
753 753
754 754 return (mvd);
755 755 }
756 756
757 757 /*
758 758 * Remove a 1-way mirror/replacing vdev from the tree.
759 759 */
760 760 void
761 761 vdev_remove_parent(vdev_t *cvd)
762 762 {
763 763 vdev_t *mvd = cvd->vdev_parent;
764 764 vdev_t *pvd = mvd->vdev_parent;
765 765
766 766 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
767 767
768 768 ASSERT(mvd->vdev_children == 1);
769 769 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
770 770 mvd->vdev_ops == &vdev_replacing_ops ||
771 771 mvd->vdev_ops == &vdev_spare_ops);
772 772 cvd->vdev_ashift = mvd->vdev_ashift;
773 773
774 774 vdev_remove_child(mvd, cvd);
775 775 vdev_remove_child(pvd, mvd);
776 776
777 777 /*
778 778 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
779 779 * Otherwise, we could have detached an offline device, and when we
780 780 * go to import the pool we'll think we have two top-level vdevs,
781 781 * instead of a different version of the same top-level vdev.
782 782 */
783 783 if (mvd->vdev_top == mvd) {
784 784 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
785 785 cvd->vdev_orig_guid = cvd->vdev_guid;
786 786 cvd->vdev_guid += guid_delta;
787 787 cvd->vdev_guid_sum += guid_delta;
788 788 }
789 789 cvd->vdev_id = mvd->vdev_id;
790 790 vdev_add_child(pvd, cvd);
791 791 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
792 792
793 793 if (cvd == cvd->vdev_top)
794 794 vdev_top_transfer(mvd, cvd);
795 795
796 796 ASSERT(mvd->vdev_children == 0);
797 797 vdev_free(mvd);
798 798 }
799 799
800 800 int
801 801 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
802 802 {
803 803 spa_t *spa = vd->vdev_spa;
804 804 objset_t *mos = spa->spa_meta_objset;
805 805 uint64_t m;
806 806 uint64_t oldc = vd->vdev_ms_count;
807 807 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
808 808 metaslab_t **mspp;
809 809 int error;
810 810
811 811 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
812 812
813 813 /*
814 814 * This vdev is not being allocated from yet or is a hole.
815 815 */
816 816 if (vd->vdev_ms_shift == 0)
817 817 return (0);
818 818
819 819 ASSERT(!vd->vdev_ishole);
820 820
821 821 /*
822 822 * Compute the raidz-deflation ratio. Note, we hard-code
823 823 * in 128k (1 << 17) because it is the current "typical" blocksize.
824 824 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
825 825 * or we will inconsistently account for existing bp's.
826 826 */
827 827 vd->vdev_deflate_ratio = (1 << 17) /
828 828 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
829 829
830 830 ASSERT(oldc <= newc);
831 831
832 832 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
833 833
834 834 if (oldc != 0) {
835 835 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
836 836 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
837 837 }
838 838
839 839 vd->vdev_ms = mspp;
840 840 vd->vdev_ms_count = newc;
841 841
842 842 for (m = oldc; m < newc; m++) {
843 843 space_map_obj_t smo = { 0, 0, 0 };
844 844 if (txg == 0) {
845 845 uint64_t object = 0;
846 846 error = dmu_read(mos, vd->vdev_ms_array,
847 847 m * sizeof (uint64_t), sizeof (uint64_t), &object,
848 848 DMU_READ_PREFETCH);
849 849 if (error)
850 850 return (error);
851 851 if (object != 0) {
852 852 dmu_buf_t *db;
853 853 error = dmu_bonus_hold(mos, object, FTAG, &db);
854 854 if (error)
855 855 return (error);
856 856 ASSERT3U(db->db_size, >=, sizeof (smo));
857 857 bcopy(db->db_data, &smo, sizeof (smo));
858 858 ASSERT3U(smo.smo_object, ==, object);
859 859 dmu_buf_rele(db, FTAG);
860 860 }
861 861 }
862 862 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
863 863 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
864 864 }
865 865
866 866 if (txg == 0)
867 867 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
868 868
869 869 /*
870 870 * If the vdev is being removed we don't activate
871 871 * the metaslabs since we want to ensure that no new
872 872 * allocations are performed on this device.
873 873 */
874 874 if (oldc == 0 && !vd->vdev_removing)
875 875 metaslab_group_activate(vd->vdev_mg);
876 876
877 877 if (txg == 0)
878 878 spa_config_exit(spa, SCL_ALLOC, FTAG);
879 879
880 880 return (0);
881 881 }
882 882
883 883 void
884 884 vdev_metaslab_fini(vdev_t *vd)
885 885 {
886 886 uint64_t m;
887 887 uint64_t count = vd->vdev_ms_count;
888 888
889 889 if (vd->vdev_ms != NULL) {
890 890 metaslab_group_passivate(vd->vdev_mg);
891 891 for (m = 0; m < count; m++)
892 892 if (vd->vdev_ms[m] != NULL)
893 893 metaslab_fini(vd->vdev_ms[m]);
894 894 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
895 895 vd->vdev_ms = NULL;
896 896 }
897 897 }
898 898
899 899 typedef struct vdev_probe_stats {
900 900 boolean_t vps_readable;
901 901 boolean_t vps_writeable;
902 902 int vps_flags;
903 903 } vdev_probe_stats_t;
904 904
905 905 static void
906 906 vdev_probe_done(zio_t *zio)
907 907 {
908 908 spa_t *spa = zio->io_spa;
909 909 vdev_t *vd = zio->io_vd;
910 910 vdev_probe_stats_t *vps = zio->io_private;
911 911
912 912 ASSERT(vd->vdev_probe_zio != NULL);
913 913
914 914 if (zio->io_type == ZIO_TYPE_READ) {
915 915 if (zio->io_error == 0)
916 916 vps->vps_readable = 1;
917 917 if (zio->io_error == 0 && spa_writeable(spa)) {
918 918 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
919 919 zio->io_offset, zio->io_size, zio->io_data,
920 920 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
921 921 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
922 922 } else {
923 923 zio_buf_free(zio->io_data, zio->io_size);
924 924 }
925 925 } else if (zio->io_type == ZIO_TYPE_WRITE) {
926 926 if (zio->io_error == 0)
927 927 vps->vps_writeable = 1;
928 928 zio_buf_free(zio->io_data, zio->io_size);
929 929 } else if (zio->io_type == ZIO_TYPE_NULL) {
930 930 zio_t *pio;
931 931
932 932 vd->vdev_cant_read |= !vps->vps_readable;
933 933 vd->vdev_cant_write |= !vps->vps_writeable;
934 934
935 935 if (vdev_readable(vd) &&
936 936 (vdev_writeable(vd) || !spa_writeable(spa))) {
937 937 zio->io_error = 0;
938 938 } else {
939 939 ASSERT(zio->io_error != 0);
940 940 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
941 941 spa, vd, NULL, 0, 0);
942 942 zio->io_error = ENXIO;
943 943 }
944 944
945 945 mutex_enter(&vd->vdev_probe_lock);
946 946 ASSERT(vd->vdev_probe_zio == zio);
947 947 vd->vdev_probe_zio = NULL;
948 948 mutex_exit(&vd->vdev_probe_lock);
949 949
950 950 while ((pio = zio_walk_parents(zio)) != NULL)
951 951 if (!vdev_accessible(vd, pio))
952 952 pio->io_error = ENXIO;
953 953
954 954 kmem_free(vps, sizeof (*vps));
955 955 }
956 956 }
957 957
958 958 /*
959 959 * Determine whether this device is accessible by reading and writing
960 960 * to several known locations: the pad regions of each vdev label
961 961 * but the first (which we leave alone in case it contains a VTOC).
962 962 */
963 963 zio_t *
964 964 vdev_probe(vdev_t *vd, zio_t *zio)
965 965 {
966 966 spa_t *spa = vd->vdev_spa;
967 967 vdev_probe_stats_t *vps = NULL;
968 968 zio_t *pio;
969 969
970 970 ASSERT(vd->vdev_ops->vdev_op_leaf);
971 971
972 972 /*
973 973 * Don't probe the probe.
974 974 */
975 975 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
976 976 return (NULL);
977 977
978 978 /*
979 979 * To prevent 'probe storms' when a device fails, we create
980 980 * just one probe i/o at a time. All zios that want to probe
981 981 * this vdev will become parents of the probe io.
982 982 */
983 983 mutex_enter(&vd->vdev_probe_lock);
984 984
985 985 if ((pio = vd->vdev_probe_zio) == NULL) {
986 986 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
987 987
988 988 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
989 989 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
990 990 ZIO_FLAG_TRYHARD;
991 991
992 992 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
993 993 /*
994 994 * vdev_cant_read and vdev_cant_write can only
995 995 * transition from TRUE to FALSE when we have the
996 996 * SCL_ZIO lock as writer; otherwise they can only
997 997 * transition from FALSE to TRUE. This ensures that
998 998 * any zio looking at these values can assume that
999 999 * failures persist for the life of the I/O. That's
1000 1000 * important because when a device has intermittent
1001 1001 * connectivity problems, we want to ensure that
1002 1002 * they're ascribed to the device (ENXIO) and not
1003 1003 * the zio (EIO).
1004 1004 *
1005 1005 * Since we hold SCL_ZIO as writer here, clear both
1006 1006 * values so the probe can reevaluate from first
1007 1007 * principles.
1008 1008 */
1009 1009 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1010 1010 vd->vdev_cant_read = B_FALSE;
1011 1011 vd->vdev_cant_write = B_FALSE;
1012 1012 }
1013 1013
1014 1014 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1015 1015 vdev_probe_done, vps,
1016 1016 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1017 1017
1018 1018 /*
1019 1019 * We can't change the vdev state in this context, so we
1020 1020 * kick off an async task to do it on our behalf.
1021 1021 */
1022 1022 if (zio != NULL) {
1023 1023 vd->vdev_probe_wanted = B_TRUE;
1024 1024 spa_async_request(spa, SPA_ASYNC_PROBE);
1025 1025 }
1026 1026 }
1027 1027
1028 1028 if (zio != NULL)
1029 1029 zio_add_child(zio, pio);
1030 1030
1031 1031 mutex_exit(&vd->vdev_probe_lock);
1032 1032
1033 1033 if (vps == NULL) {
1034 1034 ASSERT(zio != NULL);
1035 1035 return (NULL);
1036 1036 }
1037 1037
1038 1038 for (int l = 1; l < VDEV_LABELS; l++) {
1039 1039 zio_nowait(zio_read_phys(pio, vd,
1040 1040 vdev_label_offset(vd->vdev_psize, l,
1041 1041 offsetof(vdev_label_t, vl_pad2)),
1042 1042 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1043 1043 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1044 1044 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1045 1045 }
1046 1046
1047 1047 if (zio == NULL)
1048 1048 return (pio);
1049 1049
1050 1050 zio_nowait(pio);
1051 1051 return (NULL);
1052 1052 }
1053 1053
1054 1054 static void
1055 1055 vdev_open_child(void *arg)
1056 1056 {
1057 1057 vdev_t *vd = arg;
1058 1058
1059 1059 vd->vdev_open_thread = curthread;
1060 1060 vd->vdev_open_error = vdev_open(vd);
1061 1061 vd->vdev_open_thread = NULL;
1062 1062 }
1063 1063
1064 1064 boolean_t
1065 1065 vdev_uses_zvols(vdev_t *vd)
1066 1066 {
1067 1067 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1068 1068 strlen(ZVOL_DIR)) == 0)
1069 1069 return (B_TRUE);
1070 1070 for (int c = 0; c < vd->vdev_children; c++)
1071 1071 if (vdev_uses_zvols(vd->vdev_child[c]))
1072 1072 return (B_TRUE);
1073 1073 return (B_FALSE);
1074 1074 }
1075 1075
1076 1076 void
1077 1077 vdev_open_children(vdev_t *vd)
1078 1078 {
1079 1079 taskq_t *tq;
1080 1080 int children = vd->vdev_children;
1081 1081
1082 1082 /*
1083 1083 * in order to handle pools on top of zvols, do the opens
1084 1084 * in a single thread so that the same thread holds the
1085 1085 * spa_namespace_lock
1086 1086 */
1087 1087 if (vdev_uses_zvols(vd)) {
1088 1088 for (int c = 0; c < children; c++)
1089 1089 vd->vdev_child[c]->vdev_open_error =
1090 1090 vdev_open(vd->vdev_child[c]);
1091 1091 return;
1092 1092 }
1093 1093 tq = taskq_create("vdev_open", children, minclsyspri,
1094 1094 children, children, TASKQ_PREPOPULATE);
1095 1095
1096 1096 for (int c = 0; c < children; c++)
1097 1097 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1098 1098 TQ_SLEEP) != NULL);
1099 1099
1100 1100 taskq_destroy(tq);
1101 1101 }
1102 1102
1103 1103 /*
1104 1104 * Prepare a virtual device for access.
1105 1105 */
1106 1106 int
1107 1107 vdev_open(vdev_t *vd)
1108 1108 {
1109 1109 spa_t *spa = vd->vdev_spa;
1110 1110 int error;
1111 1111 uint64_t osize = 0;
1112 1112 uint64_t max_osize = 0;
1113 1113 uint64_t asize, max_asize, psize;
1114 1114 uint64_t ashift = 0;
1115 1115
1116 1116 ASSERT(vd->vdev_open_thread == curthread ||
1117 1117 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1118 1118 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1119 1119 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1120 1120 vd->vdev_state == VDEV_STATE_OFFLINE);
1121 1121
1122 1122 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1123 1123 vd->vdev_cant_read = B_FALSE;
1124 1124 vd->vdev_cant_write = B_FALSE;
1125 1125 vd->vdev_min_asize = vdev_get_min_asize(vd);
1126 1126
1127 1127 /*
1128 1128 * If this vdev is not removed, check its fault status. If it's
1129 1129 * faulted, bail out of the open.
1130 1130 */
1131 1131 if (!vd->vdev_removed && vd->vdev_faulted) {
1132 1132 ASSERT(vd->vdev_children == 0);
1133 1133 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1134 1134 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1135 1135 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1136 1136 vd->vdev_label_aux);
1137 1137 return (ENXIO);
1138 1138 } else if (vd->vdev_offline) {
1139 1139 ASSERT(vd->vdev_children == 0);
1140 1140 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1141 1141 return (ENXIO);
1142 1142 }
1143 1143
1144 1144 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1145 1145
1146 1146 /*
1147 1147 * Reset the vdev_reopening flag so that we actually close
1148 1148 * the vdev on error.
1149 1149 */
1150 1150 vd->vdev_reopening = B_FALSE;
1151 1151 if (zio_injection_enabled && error == 0)
1152 1152 error = zio_handle_device_injection(vd, NULL, ENXIO);
1153 1153
1154 1154 if (error) {
1155 1155 if (vd->vdev_removed &&
1156 1156 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1157 1157 vd->vdev_removed = B_FALSE;
1158 1158
1159 1159 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1160 1160 vd->vdev_stat.vs_aux);
1161 1161 return (error);
1162 1162 }
1163 1163
1164 1164 vd->vdev_removed = B_FALSE;
1165 1165
1166 1166 /*
1167 1167 * Recheck the faulted flag now that we have confirmed that
1168 1168 * the vdev is accessible. If we're faulted, bail.
1169 1169 */
1170 1170 if (vd->vdev_faulted) {
1171 1171 ASSERT(vd->vdev_children == 0);
1172 1172 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1173 1173 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1174 1174 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1175 1175 vd->vdev_label_aux);
1176 1176 return (ENXIO);
1177 1177 }
1178 1178
1179 1179 if (vd->vdev_degraded) {
1180 1180 ASSERT(vd->vdev_children == 0);
1181 1181 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1182 1182 VDEV_AUX_ERR_EXCEEDED);
1183 1183 } else {
1184 1184 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1185 1185 }
1186 1186
1187 1187 /*
1188 1188 * For hole or missing vdevs we just return success.
1189 1189 */
1190 1190 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1191 1191 return (0);
1192 1192
1193 1193 for (int c = 0; c < vd->vdev_children; c++) {
1194 1194 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1195 1195 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1196 1196 VDEV_AUX_NONE);
1197 1197 break;
1198 1198 }
1199 1199 }
1200 1200
1201 1201 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1202 1202 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1203 1203
1204 1204 if (vd->vdev_children == 0) {
1205 1205 if (osize < SPA_MINDEVSIZE) {
1206 1206 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1207 1207 VDEV_AUX_TOO_SMALL);
1208 1208 return (EOVERFLOW);
1209 1209 }
1210 1210 psize = osize;
1211 1211 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1212 1212 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1213 1213 VDEV_LABEL_END_SIZE);
1214 1214 } else {
1215 1215 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1216 1216 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1217 1217 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1218 1218 VDEV_AUX_TOO_SMALL);
1219 1219 return (EOVERFLOW);
1220 1220 }
1221 1221 psize = 0;
1222 1222 asize = osize;
1223 1223 max_asize = max_osize;
1224 1224 }
1225 1225
1226 1226 vd->vdev_psize = psize;
1227 1227
1228 1228 /*
1229 1229 * Make sure the allocatable size hasn't shrunk.
1230 1230 */
1231 1231 if (asize < vd->vdev_min_asize) {
1232 1232 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1233 1233 VDEV_AUX_BAD_LABEL);
1234 1234 return (EINVAL);
1235 1235 }
1236 1236
1237 1237 if (vd->vdev_asize == 0) {
1238 1238 /*
1239 1239 * This is the first-ever open, so use the computed values.
1240 1240 * For testing purposes, a higher ashift can be requested.
1241 1241 */
1242 1242 vd->vdev_asize = asize;
1243 1243 vd->vdev_max_asize = max_asize;
1244 1244 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1245 1245 } else {
1246 1246 /*
1247 1247 * Detect if the alignment requirement has increased.
1248 1248 * We don't want to make the pool unavailable, just
1249 1249 * issue a warning instead.
1250 1250 */
1251 1251 if (ashift > vd->vdev_top->vdev_ashift &&
1252 1252 vd->vdev_ops->vdev_op_leaf) {
1253 1253 cmn_err(CE_WARN,
1254 1254 "Disk, '%s', has a block alignment that is "
1255 1255 "larger than the pool's alignment\n",
1256 1256 vd->vdev_path);
1257 1257 }
1258 1258 vd->vdev_max_asize = max_asize;
1259 1259 }
1260 1260
1261 1261 /*
1262 1262 * If all children are healthy and the asize has increased,
1263 1263 * then we've experienced dynamic LUN growth. If automatic
1264 1264 * expansion is enabled then use the additional space.
1265 1265 */
1266 1266 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1267 1267 (vd->vdev_expanding || spa->spa_autoexpand))
1268 1268 vd->vdev_asize = asize;
1269 1269
1270 1270 vdev_set_min_asize(vd);
1271 1271
1272 1272 /*
1273 1273 * Ensure we can issue some IO before declaring the
1274 1274 * vdev open for business.
1275 1275 */
1276 1276 if (vd->vdev_ops->vdev_op_leaf &&
1277 1277 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1278 1278 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1279 1279 VDEV_AUX_ERR_EXCEEDED);
1280 1280 return (error);
1281 1281 }
1282 1282
1283 1283 /*
1284 1284 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1285 1285 * resilver. But don't do this if we are doing a reopen for a scrub,
1286 1286 * since this would just restart the scrub we are already doing.
1287 1287 */
1288 1288 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1289 1289 vdev_resilver_needed(vd, NULL, NULL))
1290 1290 spa_async_request(spa, SPA_ASYNC_RESILVER);
1291 1291
1292 1292 return (0);
1293 1293 }
1294 1294
1295 1295 /*
1296 1296 * Called once the vdevs are all opened, this routine validates the label
1297 1297 * contents. This needs to be done before vdev_load() so that we don't
1298 1298 * inadvertently do repair I/Os to the wrong device.
1299 1299 *
1300 1300 * If 'strict' is false ignore the spa guid check. This is necessary because
1301 1301 * if the machine crashed during a re-guid the new guid might have been written
1302 1302 * to all of the vdev labels, but not the cached config. The strict check
1303 1303 * will be performed when the pool is opened again using the mos config.
1304 1304 *
1305 1305 * This function will only return failure if one of the vdevs indicates that it
1306 1306 * has since been destroyed or exported. This is only possible if
1307 1307 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1308 1308 * will be updated but the function will return 0.
1309 1309 */
1310 1310 int
1311 1311 vdev_validate(vdev_t *vd, boolean_t strict)
1312 1312 {
1313 1313 spa_t *spa = vd->vdev_spa;
1314 1314 nvlist_t *label;
1315 1315 uint64_t guid = 0, top_guid;
1316 1316 uint64_t state;
1317 1317
1318 1318 for (int c = 0; c < vd->vdev_children; c++)
1319 1319 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1320 1320 return (EBADF);
|
↓ open down ↓ |
1320 lines elided |
↑ open up ↑ |
1321 1321
1322 1322 /*
1323 1323 * If the device has already failed, or was marked offline, don't do
1324 1324 * any further validation. Otherwise, label I/O will fail and we will
1325 1325 * overwrite the previous state.
1326 1326 */
1327 1327 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1328 1328 uint64_t aux_guid = 0;
1329 1329 nvlist_t *nvl;
1330 1330
1331 - if ((label = vdev_label_read_config(vd)) == NULL) {
1331 + if ((label = vdev_label_read_config(vd, VDEV_BEST_LABEL)) ==
1332 + NULL) {
1332 1333 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1333 1334 VDEV_AUX_BAD_LABEL);
1334 1335 return (0);
1335 1336 }
1336 1337
1337 1338 /*
1338 1339 * Determine if this vdev has been split off into another
1339 1340 * pool. If so, then refuse to open it.
1340 1341 */
1341 1342 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1342 1343 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1343 1344 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1344 1345 VDEV_AUX_SPLIT_POOL);
1345 1346 nvlist_free(label);
1346 1347 return (0);
1347 1348 }
1348 1349
1349 1350 if (strict && (nvlist_lookup_uint64(label,
1350 1351 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1351 1352 guid != spa_guid(spa))) {
1352 1353 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1353 1354 VDEV_AUX_CORRUPT_DATA);
1354 1355 nvlist_free(label);
1355 1356 return (0);
1356 1357 }
1357 1358
1358 1359 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1359 1360 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1360 1361 &aux_guid) != 0)
1361 1362 aux_guid = 0;
1362 1363
1363 1364 /*
1364 1365 * If this vdev just became a top-level vdev because its
1365 1366 * sibling was detached, it will have adopted the parent's
1366 1367 * vdev guid -- but the label may or may not be on disk yet.
1367 1368 * Fortunately, either version of the label will have the
1368 1369 * same top guid, so if we're a top-level vdev, we can
1369 1370 * safely compare to that instead.
1370 1371 *
1371 1372 * If we split this vdev off instead, then we also check the
1372 1373 * original pool's guid. We don't want to consider the vdev
1373 1374 * corrupt if it is partway through a split operation.
1374 1375 */
1375 1376 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1376 1377 &guid) != 0 ||
1377 1378 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1378 1379 &top_guid) != 0 ||
1379 1380 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1380 1381 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1381 1382 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1382 1383 VDEV_AUX_CORRUPT_DATA);
1383 1384 nvlist_free(label);
1384 1385 return (0);
1385 1386 }
1386 1387
1387 1388 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1388 1389 &state) != 0) {
1389 1390 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1390 1391 VDEV_AUX_CORRUPT_DATA);
1391 1392 nvlist_free(label);
1392 1393 return (0);
1393 1394 }
1394 1395
1395 1396 nvlist_free(label);
1396 1397
1397 1398 /*
1398 1399 * If this is a verbatim import, no need to check the
1399 1400 * state of the pool.
1400 1401 */
1401 1402 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1402 1403 spa_load_state(spa) == SPA_LOAD_OPEN &&
1403 1404 state != POOL_STATE_ACTIVE)
1404 1405 return (EBADF);
1405 1406
1406 1407 /*
1407 1408 * If we were able to open and validate a vdev that was
1408 1409 * previously marked permanently unavailable, clear that state
1409 1410 * now.
1410 1411 */
1411 1412 if (vd->vdev_not_present)
1412 1413 vd->vdev_not_present = 0;
1413 1414 }
1414 1415
1415 1416 return (0);
1416 1417 }
1417 1418
1418 1419 /*
1419 1420 * Close a virtual device.
1420 1421 */
1421 1422 void
1422 1423 vdev_close(vdev_t *vd)
1423 1424 {
1424 1425 spa_t *spa = vd->vdev_spa;
1425 1426 vdev_t *pvd = vd->vdev_parent;
1426 1427
1427 1428 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1428 1429
1429 1430 /*
1430 1431 * If our parent is reopening, then we are as well, unless we are
1431 1432 * going offline.
1432 1433 */
1433 1434 if (pvd != NULL && pvd->vdev_reopening)
1434 1435 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1435 1436
1436 1437 vd->vdev_ops->vdev_op_close(vd);
1437 1438
1438 1439 vdev_cache_purge(vd);
1439 1440
1440 1441 /*
1441 1442 * We record the previous state before we close it, so that if we are
1442 1443 * doing a reopen(), we don't generate FMA ereports if we notice that
1443 1444 * it's still faulted.
1444 1445 */
1445 1446 vd->vdev_prevstate = vd->vdev_state;
1446 1447
1447 1448 if (vd->vdev_offline)
1448 1449 vd->vdev_state = VDEV_STATE_OFFLINE;
1449 1450 else
1450 1451 vd->vdev_state = VDEV_STATE_CLOSED;
1451 1452 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1452 1453 }
1453 1454
1454 1455 void
1455 1456 vdev_hold(vdev_t *vd)
1456 1457 {
1457 1458 spa_t *spa = vd->vdev_spa;
1458 1459
1459 1460 ASSERT(spa_is_root(spa));
1460 1461 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1461 1462 return;
1462 1463
1463 1464 for (int c = 0; c < vd->vdev_children; c++)
1464 1465 vdev_hold(vd->vdev_child[c]);
1465 1466
1466 1467 if (vd->vdev_ops->vdev_op_leaf)
1467 1468 vd->vdev_ops->vdev_op_hold(vd);
1468 1469 }
1469 1470
1470 1471 void
1471 1472 vdev_rele(vdev_t *vd)
1472 1473 {
1473 1474 spa_t *spa = vd->vdev_spa;
1474 1475
1475 1476 ASSERT(spa_is_root(spa));
1476 1477 for (int c = 0; c < vd->vdev_children; c++)
1477 1478 vdev_rele(vd->vdev_child[c]);
1478 1479
1479 1480 if (vd->vdev_ops->vdev_op_leaf)
1480 1481 vd->vdev_ops->vdev_op_rele(vd);
1481 1482 }
1482 1483
1483 1484 /*
1484 1485 * Reopen all interior vdevs and any unopened leaves. We don't actually
1485 1486 * reopen leaf vdevs which had previously been opened as they might deadlock
1486 1487 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1487 1488 * If the leaf has never been opened then open it, as usual.
1488 1489 */
1489 1490 void
1490 1491 vdev_reopen(vdev_t *vd)
1491 1492 {
1492 1493 spa_t *spa = vd->vdev_spa;
1493 1494
1494 1495 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1495 1496
1496 1497 /* set the reopening flag unless we're taking the vdev offline */
1497 1498 vd->vdev_reopening = !vd->vdev_offline;
1498 1499 vdev_close(vd);
1499 1500 (void) vdev_open(vd);
1500 1501
1501 1502 /*
1502 1503 * Call vdev_validate() here to make sure we have the same device.
1503 1504 * Otherwise, a device with an invalid label could be successfully
1504 1505 * opened in response to vdev_reopen().
1505 1506 */
1506 1507 if (vd->vdev_aux) {
1507 1508 (void) vdev_validate_aux(vd);
1508 1509 if (vdev_readable(vd) && vdev_writeable(vd) &&
1509 1510 vd->vdev_aux == &spa->spa_l2cache &&
1510 1511 !l2arc_vdev_present(vd))
1511 1512 l2arc_add_vdev(spa, vd);
1512 1513 } else {
1513 1514 (void) vdev_validate(vd, B_TRUE);
1514 1515 }
1515 1516
1516 1517 /*
1517 1518 * Reassess parent vdev's health.
1518 1519 */
1519 1520 vdev_propagate_state(vd);
1520 1521 }
1521 1522
1522 1523 int
1523 1524 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1524 1525 {
1525 1526 int error;
1526 1527
1527 1528 /*
1528 1529 * Normally, partial opens (e.g. of a mirror) are allowed.
1529 1530 * For a create, however, we want to fail the request if
1530 1531 * there are any components we can't open.
1531 1532 */
1532 1533 error = vdev_open(vd);
1533 1534
1534 1535 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1535 1536 vdev_close(vd);
1536 1537 return (error ? error : ENXIO);
1537 1538 }
1538 1539
1539 1540 /*
1540 1541 * Recursively initialize all labels.
1541 1542 */
1542 1543 if ((error = vdev_label_init(vd, txg, isreplacing ?
1543 1544 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1544 1545 vdev_close(vd);
1545 1546 return (error);
1546 1547 }
1547 1548
1548 1549 return (0);
1549 1550 }
1550 1551
1551 1552 void
1552 1553 vdev_metaslab_set_size(vdev_t *vd)
1553 1554 {
1554 1555 /*
1555 1556 * Aim for roughly 200 metaslabs per vdev.
1556 1557 */
1557 1558 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1558 1559 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1559 1560 }
1560 1561
1561 1562 void
1562 1563 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1563 1564 {
1564 1565 ASSERT(vd == vd->vdev_top);
1565 1566 ASSERT(!vd->vdev_ishole);
1566 1567 ASSERT(ISP2(flags));
1567 1568 ASSERT(spa_writeable(vd->vdev_spa));
1568 1569
1569 1570 if (flags & VDD_METASLAB)
1570 1571 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1571 1572
1572 1573 if (flags & VDD_DTL)
1573 1574 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1574 1575
1575 1576 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1576 1577 }
1577 1578
1578 1579 /*
1579 1580 * DTLs.
1580 1581 *
1581 1582 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1582 1583 * the vdev has less than perfect replication. There are four kinds of DTL:
1583 1584 *
1584 1585 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1585 1586 *
1586 1587 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1587 1588 *
1588 1589 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1589 1590 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1590 1591 * txgs that was scrubbed.
1591 1592 *
1592 1593 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1593 1594 * persistent errors or just some device being offline.
1594 1595 * Unlike the other three, the DTL_OUTAGE map is not generally
1595 1596 * maintained; it's only computed when needed, typically to
1596 1597 * determine whether a device can be detached.
1597 1598 *
1598 1599 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1599 1600 * either has the data or it doesn't.
1600 1601 *
1601 1602 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1602 1603 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1603 1604 * if any child is less than fully replicated, then so is its parent.
1604 1605 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1605 1606 * comprising only those txgs which appear in 'maxfaults' or more children;
1606 1607 * those are the txgs we don't have enough replication to read. For example,
1607 1608 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1608 1609 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1609 1610 * two child DTL_MISSING maps.
1610 1611 *
1611 1612 * It should be clear from the above that to compute the DTLs and outage maps
1612 1613 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1613 1614 * Therefore, that is all we keep on disk. When loading the pool, or after
1614 1615 * a configuration change, we generate all other DTLs from first principles.
1615 1616 */
1616 1617 void
1617 1618 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1618 1619 {
1619 1620 space_map_t *sm = &vd->vdev_dtl[t];
1620 1621
1621 1622 ASSERT(t < DTL_TYPES);
1622 1623 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1623 1624 ASSERT(spa_writeable(vd->vdev_spa));
1624 1625
1625 1626 mutex_enter(sm->sm_lock);
1626 1627 if (!space_map_contains(sm, txg, size))
1627 1628 space_map_add(sm, txg, size);
1628 1629 mutex_exit(sm->sm_lock);
1629 1630 }
1630 1631
1631 1632 boolean_t
1632 1633 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1633 1634 {
1634 1635 space_map_t *sm = &vd->vdev_dtl[t];
1635 1636 boolean_t dirty = B_FALSE;
1636 1637
1637 1638 ASSERT(t < DTL_TYPES);
1638 1639 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1639 1640
1640 1641 mutex_enter(sm->sm_lock);
1641 1642 if (sm->sm_space != 0)
1642 1643 dirty = space_map_contains(sm, txg, size);
1643 1644 mutex_exit(sm->sm_lock);
1644 1645
1645 1646 return (dirty);
1646 1647 }
1647 1648
1648 1649 boolean_t
1649 1650 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1650 1651 {
1651 1652 space_map_t *sm = &vd->vdev_dtl[t];
1652 1653 boolean_t empty;
1653 1654
1654 1655 mutex_enter(sm->sm_lock);
1655 1656 empty = (sm->sm_space == 0);
1656 1657 mutex_exit(sm->sm_lock);
1657 1658
1658 1659 return (empty);
1659 1660 }
1660 1661
1661 1662 /*
1662 1663 * Reassess DTLs after a config change or scrub completion.
1663 1664 */
1664 1665 void
1665 1666 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1666 1667 {
1667 1668 spa_t *spa = vd->vdev_spa;
1668 1669 avl_tree_t reftree;
1669 1670 int minref;
1670 1671
1671 1672 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1672 1673
1673 1674 for (int c = 0; c < vd->vdev_children; c++)
1674 1675 vdev_dtl_reassess(vd->vdev_child[c], txg,
1675 1676 scrub_txg, scrub_done);
1676 1677
1677 1678 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1678 1679 return;
1679 1680
1680 1681 if (vd->vdev_ops->vdev_op_leaf) {
1681 1682 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1682 1683
1683 1684 mutex_enter(&vd->vdev_dtl_lock);
1684 1685 if (scrub_txg != 0 &&
1685 1686 (spa->spa_scrub_started ||
1686 1687 (scn && scn->scn_phys.scn_errors == 0))) {
1687 1688 /*
1688 1689 * We completed a scrub up to scrub_txg. If we
1689 1690 * did it without rebooting, then the scrub dtl
1690 1691 * will be valid, so excise the old region and
1691 1692 * fold in the scrub dtl. Otherwise, leave the
1692 1693 * dtl as-is if there was an error.
1693 1694 *
1694 1695 * There's little trick here: to excise the beginning
1695 1696 * of the DTL_MISSING map, we put it into a reference
1696 1697 * tree and then add a segment with refcnt -1 that
1697 1698 * covers the range [0, scrub_txg). This means
1698 1699 * that each txg in that range has refcnt -1 or 0.
1699 1700 * We then add DTL_SCRUB with a refcnt of 2, so that
1700 1701 * entries in the range [0, scrub_txg) will have a
1701 1702 * positive refcnt -- either 1 or 2. We then convert
1702 1703 * the reference tree into the new DTL_MISSING map.
1703 1704 */
1704 1705 space_map_ref_create(&reftree);
1705 1706 space_map_ref_add_map(&reftree,
1706 1707 &vd->vdev_dtl[DTL_MISSING], 1);
1707 1708 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1708 1709 space_map_ref_add_map(&reftree,
1709 1710 &vd->vdev_dtl[DTL_SCRUB], 2);
1710 1711 space_map_ref_generate_map(&reftree,
1711 1712 &vd->vdev_dtl[DTL_MISSING], 1);
1712 1713 space_map_ref_destroy(&reftree);
1713 1714 }
1714 1715 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1715 1716 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1716 1717 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1717 1718 if (scrub_done)
1718 1719 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1719 1720 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1720 1721 if (!vdev_readable(vd))
1721 1722 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1722 1723 else
1723 1724 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1724 1725 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1725 1726 mutex_exit(&vd->vdev_dtl_lock);
1726 1727
1727 1728 if (txg != 0)
1728 1729 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1729 1730 return;
1730 1731 }
1731 1732
1732 1733 mutex_enter(&vd->vdev_dtl_lock);
1733 1734 for (int t = 0; t < DTL_TYPES; t++) {
1734 1735 /* account for child's outage in parent's missing map */
1735 1736 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1736 1737 if (t == DTL_SCRUB)
1737 1738 continue; /* leaf vdevs only */
1738 1739 if (t == DTL_PARTIAL)
1739 1740 minref = 1; /* i.e. non-zero */
1740 1741 else if (vd->vdev_nparity != 0)
1741 1742 minref = vd->vdev_nparity + 1; /* RAID-Z */
1742 1743 else
1743 1744 minref = vd->vdev_children; /* any kind of mirror */
1744 1745 space_map_ref_create(&reftree);
1745 1746 for (int c = 0; c < vd->vdev_children; c++) {
1746 1747 vdev_t *cvd = vd->vdev_child[c];
1747 1748 mutex_enter(&cvd->vdev_dtl_lock);
1748 1749 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1749 1750 mutex_exit(&cvd->vdev_dtl_lock);
1750 1751 }
1751 1752 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1752 1753 space_map_ref_destroy(&reftree);
1753 1754 }
1754 1755 mutex_exit(&vd->vdev_dtl_lock);
1755 1756 }
1756 1757
1757 1758 static int
1758 1759 vdev_dtl_load(vdev_t *vd)
1759 1760 {
1760 1761 spa_t *spa = vd->vdev_spa;
1761 1762 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1762 1763 objset_t *mos = spa->spa_meta_objset;
1763 1764 dmu_buf_t *db;
1764 1765 int error;
1765 1766
1766 1767 ASSERT(vd->vdev_children == 0);
1767 1768
1768 1769 if (smo->smo_object == 0)
1769 1770 return (0);
1770 1771
1771 1772 ASSERT(!vd->vdev_ishole);
1772 1773
1773 1774 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1774 1775 return (error);
1775 1776
1776 1777 ASSERT3U(db->db_size, >=, sizeof (*smo));
1777 1778 bcopy(db->db_data, smo, sizeof (*smo));
1778 1779 dmu_buf_rele(db, FTAG);
1779 1780
1780 1781 mutex_enter(&vd->vdev_dtl_lock);
1781 1782 error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1782 1783 NULL, SM_ALLOC, smo, mos);
1783 1784 mutex_exit(&vd->vdev_dtl_lock);
1784 1785
1785 1786 return (error);
1786 1787 }
1787 1788
1788 1789 void
1789 1790 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1790 1791 {
1791 1792 spa_t *spa = vd->vdev_spa;
1792 1793 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1793 1794 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1794 1795 objset_t *mos = spa->spa_meta_objset;
1795 1796 space_map_t smsync;
1796 1797 kmutex_t smlock;
1797 1798 dmu_buf_t *db;
1798 1799 dmu_tx_t *tx;
1799 1800
1800 1801 ASSERT(!vd->vdev_ishole);
1801 1802
1802 1803 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1803 1804
1804 1805 if (vd->vdev_detached) {
1805 1806 if (smo->smo_object != 0) {
1806 1807 int err = dmu_object_free(mos, smo->smo_object, tx);
1807 1808 ASSERT3U(err, ==, 0);
1808 1809 smo->smo_object = 0;
1809 1810 }
1810 1811 dmu_tx_commit(tx);
1811 1812 return;
1812 1813 }
1813 1814
1814 1815 if (smo->smo_object == 0) {
1815 1816 ASSERT(smo->smo_objsize == 0);
1816 1817 ASSERT(smo->smo_alloc == 0);
1817 1818 smo->smo_object = dmu_object_alloc(mos,
1818 1819 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1819 1820 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1820 1821 ASSERT(smo->smo_object != 0);
1821 1822 vdev_config_dirty(vd->vdev_top);
1822 1823 }
1823 1824
1824 1825 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1825 1826
1826 1827 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1827 1828 &smlock);
1828 1829
1829 1830 mutex_enter(&smlock);
1830 1831
1831 1832 mutex_enter(&vd->vdev_dtl_lock);
1832 1833 space_map_walk(sm, space_map_add, &smsync);
1833 1834 mutex_exit(&vd->vdev_dtl_lock);
1834 1835
1835 1836 space_map_truncate(smo, mos, tx);
1836 1837 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1837 1838
1838 1839 space_map_destroy(&smsync);
1839 1840
1840 1841 mutex_exit(&smlock);
1841 1842 mutex_destroy(&smlock);
1842 1843
1843 1844 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1844 1845 dmu_buf_will_dirty(db, tx);
1845 1846 ASSERT3U(db->db_size, >=, sizeof (*smo));
1846 1847 bcopy(smo, db->db_data, sizeof (*smo));
1847 1848 dmu_buf_rele(db, FTAG);
1848 1849
1849 1850 dmu_tx_commit(tx);
1850 1851 }
1851 1852
1852 1853 /*
1853 1854 * Determine whether the specified vdev can be offlined/detached/removed
1854 1855 * without losing data.
1855 1856 */
1856 1857 boolean_t
1857 1858 vdev_dtl_required(vdev_t *vd)
1858 1859 {
1859 1860 spa_t *spa = vd->vdev_spa;
1860 1861 vdev_t *tvd = vd->vdev_top;
1861 1862 uint8_t cant_read = vd->vdev_cant_read;
1862 1863 boolean_t required;
1863 1864
1864 1865 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1865 1866
1866 1867 if (vd == spa->spa_root_vdev || vd == tvd)
1867 1868 return (B_TRUE);
1868 1869
1869 1870 /*
1870 1871 * Temporarily mark the device as unreadable, and then determine
1871 1872 * whether this results in any DTL outages in the top-level vdev.
1872 1873 * If not, we can safely offline/detach/remove the device.
1873 1874 */
1874 1875 vd->vdev_cant_read = B_TRUE;
1875 1876 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1876 1877 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1877 1878 vd->vdev_cant_read = cant_read;
1878 1879 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1879 1880
1880 1881 if (!required && zio_injection_enabled)
1881 1882 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1882 1883
1883 1884 return (required);
1884 1885 }
1885 1886
1886 1887 /*
1887 1888 * Determine if resilver is needed, and if so the txg range.
1888 1889 */
1889 1890 boolean_t
1890 1891 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1891 1892 {
1892 1893 boolean_t needed = B_FALSE;
1893 1894 uint64_t thismin = UINT64_MAX;
1894 1895 uint64_t thismax = 0;
1895 1896
1896 1897 if (vd->vdev_children == 0) {
1897 1898 mutex_enter(&vd->vdev_dtl_lock);
1898 1899 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1899 1900 vdev_writeable(vd)) {
1900 1901 space_seg_t *ss;
1901 1902
1902 1903 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1903 1904 thismin = ss->ss_start - 1;
1904 1905 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1905 1906 thismax = ss->ss_end;
1906 1907 needed = B_TRUE;
1907 1908 }
1908 1909 mutex_exit(&vd->vdev_dtl_lock);
1909 1910 } else {
1910 1911 for (int c = 0; c < vd->vdev_children; c++) {
1911 1912 vdev_t *cvd = vd->vdev_child[c];
1912 1913 uint64_t cmin, cmax;
1913 1914
1914 1915 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1915 1916 thismin = MIN(thismin, cmin);
1916 1917 thismax = MAX(thismax, cmax);
1917 1918 needed = B_TRUE;
1918 1919 }
1919 1920 }
1920 1921 }
1921 1922
1922 1923 if (needed && minp) {
1923 1924 *minp = thismin;
1924 1925 *maxp = thismax;
1925 1926 }
1926 1927 return (needed);
1927 1928 }
1928 1929
1929 1930 void
1930 1931 vdev_load(vdev_t *vd)
1931 1932 {
1932 1933 /*
1933 1934 * Recursively load all children.
1934 1935 */
1935 1936 for (int c = 0; c < vd->vdev_children; c++)
1936 1937 vdev_load(vd->vdev_child[c]);
1937 1938
1938 1939 /*
1939 1940 * If this is a top-level vdev, initialize its metaslabs.
1940 1941 */
1941 1942 if (vd == vd->vdev_top && !vd->vdev_ishole &&
1942 1943 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1943 1944 vdev_metaslab_init(vd, 0) != 0))
1944 1945 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1945 1946 VDEV_AUX_CORRUPT_DATA);
1946 1947
1947 1948 /*
1948 1949 * If this is a leaf vdev, load its DTL.
1949 1950 */
1950 1951 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1951 1952 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1952 1953 VDEV_AUX_CORRUPT_DATA);
1953 1954 }
1954 1955
1955 1956 /*
1956 1957 * The special vdev case is used for hot spares and l2cache devices. Its
1957 1958 * sole purpose it to set the vdev state for the associated vdev. To do this,
1958 1959 * we make sure that we can open the underlying device, then try to read the
1959 1960 * label, and make sure that the label is sane and that it hasn't been
1960 1961 * repurposed to another pool.
1961 1962 */
|
↓ open down ↓ |
620 lines elided |
↑ open up ↑ |
1962 1963 int
1963 1964 vdev_validate_aux(vdev_t *vd)
1964 1965 {
1965 1966 nvlist_t *label;
1966 1967 uint64_t guid, version;
1967 1968 uint64_t state;
1968 1969
1969 1970 if (!vdev_readable(vd))
1970 1971 return (0);
1971 1972
1972 - if ((label = vdev_label_read_config(vd)) == NULL) {
1973 + if ((label = vdev_label_read_config(vd, VDEV_BEST_LABEL)) == NULL) {
1973 1974 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1974 1975 VDEV_AUX_CORRUPT_DATA);
1975 1976 return (-1);
1976 1977 }
1977 1978
1978 1979 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1979 - version > SPA_VERSION ||
1980 + !SPA_VERSION_IS_SUPPORTED(version) ||
1980 1981 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1981 1982 guid != vd->vdev_guid ||
1982 1983 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1983 1984 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1984 1985 VDEV_AUX_CORRUPT_DATA);
1985 1986 nvlist_free(label);
1986 1987 return (-1);
1987 1988 }
1988 1989
1989 1990 /*
1990 1991 * We don't actually check the pool state here. If it's in fact in
1991 1992 * use by another pool, we update this fact on the fly when requested.
1992 1993 */
1993 1994 nvlist_free(label);
1994 1995 return (0);
1995 1996 }
1996 1997
1997 1998 void
1998 1999 vdev_remove(vdev_t *vd, uint64_t txg)
1999 2000 {
2000 2001 spa_t *spa = vd->vdev_spa;
2001 2002 objset_t *mos = spa->spa_meta_objset;
2002 2003 dmu_tx_t *tx;
2003 2004
2004 2005 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2005 2006
2006 2007 if (vd->vdev_dtl_smo.smo_object) {
2007 2008 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
2008 2009 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2009 2010 vd->vdev_dtl_smo.smo_object = 0;
2010 2011 }
2011 2012
2012 2013 if (vd->vdev_ms != NULL) {
2013 2014 for (int m = 0; m < vd->vdev_ms_count; m++) {
2014 2015 metaslab_t *msp = vd->vdev_ms[m];
2015 2016
2016 2017 if (msp == NULL || msp->ms_smo.smo_object == 0)
2017 2018 continue;
2018 2019
2019 2020 ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2020 2021 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2021 2022 msp->ms_smo.smo_object = 0;
2022 2023 }
2023 2024 }
2024 2025
2025 2026 if (vd->vdev_ms_array) {
2026 2027 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2027 2028 vd->vdev_ms_array = 0;
2028 2029 vd->vdev_ms_shift = 0;
2029 2030 }
2030 2031 dmu_tx_commit(tx);
2031 2032 }
2032 2033
2033 2034 void
2034 2035 vdev_sync_done(vdev_t *vd, uint64_t txg)
2035 2036 {
2036 2037 metaslab_t *msp;
2037 2038 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2038 2039
2039 2040 ASSERT(!vd->vdev_ishole);
2040 2041
2041 2042 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2042 2043 metaslab_sync_done(msp, txg);
2043 2044
2044 2045 if (reassess)
2045 2046 metaslab_sync_reassess(vd->vdev_mg);
2046 2047 }
2047 2048
2048 2049 void
2049 2050 vdev_sync(vdev_t *vd, uint64_t txg)
2050 2051 {
2051 2052 spa_t *spa = vd->vdev_spa;
2052 2053 vdev_t *lvd;
2053 2054 metaslab_t *msp;
2054 2055 dmu_tx_t *tx;
2055 2056
2056 2057 ASSERT(!vd->vdev_ishole);
2057 2058
2058 2059 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2059 2060 ASSERT(vd == vd->vdev_top);
2060 2061 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2061 2062 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2062 2063 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2063 2064 ASSERT(vd->vdev_ms_array != 0);
2064 2065 vdev_config_dirty(vd);
2065 2066 dmu_tx_commit(tx);
2066 2067 }
2067 2068
2068 2069 /*
2069 2070 * Remove the metadata associated with this vdev once it's empty.
2070 2071 */
2071 2072 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2072 2073 vdev_remove(vd, txg);
2073 2074
2074 2075 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2075 2076 metaslab_sync(msp, txg);
2076 2077 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2077 2078 }
2078 2079
2079 2080 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2080 2081 vdev_dtl_sync(lvd, txg);
2081 2082
2082 2083 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2083 2084 }
2084 2085
2085 2086 uint64_t
2086 2087 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2087 2088 {
2088 2089 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2089 2090 }
2090 2091
2091 2092 /*
2092 2093 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2093 2094 * not be opened, and no I/O is attempted.
2094 2095 */
2095 2096 int
2096 2097 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2097 2098 {
2098 2099 vdev_t *vd, *tvd;
2099 2100
2100 2101 spa_vdev_state_enter(spa, SCL_NONE);
2101 2102
2102 2103 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2103 2104 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2104 2105
2105 2106 if (!vd->vdev_ops->vdev_op_leaf)
2106 2107 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2107 2108
2108 2109 tvd = vd->vdev_top;
2109 2110
2110 2111 /*
2111 2112 * We don't directly use the aux state here, but if we do a
2112 2113 * vdev_reopen(), we need this value to be present to remember why we
2113 2114 * were faulted.
2114 2115 */
2115 2116 vd->vdev_label_aux = aux;
2116 2117
2117 2118 /*
2118 2119 * Faulted state takes precedence over degraded.
2119 2120 */
2120 2121 vd->vdev_delayed_close = B_FALSE;
2121 2122 vd->vdev_faulted = 1ULL;
2122 2123 vd->vdev_degraded = 0ULL;
2123 2124 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2124 2125
2125 2126 /*
2126 2127 * If this device has the only valid copy of the data, then
2127 2128 * back off and simply mark the vdev as degraded instead.
2128 2129 */
2129 2130 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2130 2131 vd->vdev_degraded = 1ULL;
2131 2132 vd->vdev_faulted = 0ULL;
2132 2133
2133 2134 /*
2134 2135 * If we reopen the device and it's not dead, only then do we
2135 2136 * mark it degraded.
2136 2137 */
2137 2138 vdev_reopen(tvd);
2138 2139
2139 2140 if (vdev_readable(vd))
2140 2141 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2141 2142 }
2142 2143
2143 2144 return (spa_vdev_state_exit(spa, vd, 0));
2144 2145 }
2145 2146
2146 2147 /*
2147 2148 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2148 2149 * user that something is wrong. The vdev continues to operate as normal as far
2149 2150 * as I/O is concerned.
2150 2151 */
2151 2152 int
2152 2153 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2153 2154 {
2154 2155 vdev_t *vd;
2155 2156
2156 2157 spa_vdev_state_enter(spa, SCL_NONE);
2157 2158
2158 2159 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2159 2160 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2160 2161
2161 2162 if (!vd->vdev_ops->vdev_op_leaf)
2162 2163 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2163 2164
2164 2165 /*
2165 2166 * If the vdev is already faulted, then don't do anything.
2166 2167 */
2167 2168 if (vd->vdev_faulted || vd->vdev_degraded)
2168 2169 return (spa_vdev_state_exit(spa, NULL, 0));
2169 2170
2170 2171 vd->vdev_degraded = 1ULL;
2171 2172 if (!vdev_is_dead(vd))
2172 2173 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2173 2174 aux);
2174 2175
2175 2176 return (spa_vdev_state_exit(spa, vd, 0));
2176 2177 }
2177 2178
2178 2179 /*
2179 2180 * Online the given vdev. If 'unspare' is set, it implies two things. First,
2180 2181 * any attached spare device should be detached when the device finishes
2181 2182 * resilvering. Second, the online should be treated like a 'test' online case,
2182 2183 * so no FMA events are generated if the device fails to open.
2183 2184 */
2184 2185 int
2185 2186 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2186 2187 {
2187 2188 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2188 2189
2189 2190 spa_vdev_state_enter(spa, SCL_NONE);
2190 2191
2191 2192 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2192 2193 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2193 2194
2194 2195 if (!vd->vdev_ops->vdev_op_leaf)
2195 2196 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2196 2197
2197 2198 tvd = vd->vdev_top;
2198 2199 vd->vdev_offline = B_FALSE;
2199 2200 vd->vdev_tmpoffline = B_FALSE;
2200 2201 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2201 2202 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2202 2203
2203 2204 /* XXX - L2ARC 1.0 does not support expansion */
2204 2205 if (!vd->vdev_aux) {
2205 2206 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2206 2207 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2207 2208 }
2208 2209
2209 2210 vdev_reopen(tvd);
2210 2211 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2211 2212
2212 2213 if (!vd->vdev_aux) {
2213 2214 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2214 2215 pvd->vdev_expanding = B_FALSE;
2215 2216 }
2216 2217
2217 2218 if (newstate)
2218 2219 *newstate = vd->vdev_state;
2219 2220 if ((flags & ZFS_ONLINE_UNSPARE) &&
2220 2221 !vdev_is_dead(vd) && vd->vdev_parent &&
2221 2222 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2222 2223 vd->vdev_parent->vdev_child[0] == vd)
2223 2224 vd->vdev_unspare = B_TRUE;
2224 2225
2225 2226 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2226 2227
2227 2228 /* XXX - L2ARC 1.0 does not support expansion */
2228 2229 if (vd->vdev_aux)
2229 2230 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2230 2231 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2231 2232 }
2232 2233 return (spa_vdev_state_exit(spa, vd, 0));
2233 2234 }
2234 2235
2235 2236 static int
2236 2237 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2237 2238 {
2238 2239 vdev_t *vd, *tvd;
2239 2240 int error = 0;
2240 2241 uint64_t generation;
2241 2242 metaslab_group_t *mg;
2242 2243
2243 2244 top:
2244 2245 spa_vdev_state_enter(spa, SCL_ALLOC);
2245 2246
2246 2247 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2247 2248 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2248 2249
2249 2250 if (!vd->vdev_ops->vdev_op_leaf)
2250 2251 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2251 2252
2252 2253 tvd = vd->vdev_top;
2253 2254 mg = tvd->vdev_mg;
2254 2255 generation = spa->spa_config_generation + 1;
2255 2256
2256 2257 /*
2257 2258 * If the device isn't already offline, try to offline it.
2258 2259 */
2259 2260 if (!vd->vdev_offline) {
2260 2261 /*
2261 2262 * If this device has the only valid copy of some data,
2262 2263 * don't allow it to be offlined. Log devices are always
2263 2264 * expendable.
2264 2265 */
2265 2266 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2266 2267 vdev_dtl_required(vd))
2267 2268 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2268 2269
2269 2270 /*
2270 2271 * If the top-level is a slog and it has had allocations
2271 2272 * then proceed. We check that the vdev's metaslab group
2272 2273 * is not NULL since it's possible that we may have just
2273 2274 * added this vdev but not yet initialized its metaslabs.
2274 2275 */
2275 2276 if (tvd->vdev_islog && mg != NULL) {
2276 2277 /*
2277 2278 * Prevent any future allocations.
2278 2279 */
2279 2280 metaslab_group_passivate(mg);
2280 2281 (void) spa_vdev_state_exit(spa, vd, 0);
2281 2282
2282 2283 error = spa_offline_log(spa);
2283 2284
2284 2285 spa_vdev_state_enter(spa, SCL_ALLOC);
2285 2286
2286 2287 /*
2287 2288 * Check to see if the config has changed.
2288 2289 */
2289 2290 if (error || generation != spa->spa_config_generation) {
2290 2291 metaslab_group_activate(mg);
2291 2292 if (error)
2292 2293 return (spa_vdev_state_exit(spa,
2293 2294 vd, error));
2294 2295 (void) spa_vdev_state_exit(spa, vd, 0);
2295 2296 goto top;
2296 2297 }
2297 2298 ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2298 2299 }
2299 2300
2300 2301 /*
2301 2302 * Offline this device and reopen its top-level vdev.
2302 2303 * If the top-level vdev is a log device then just offline
2303 2304 * it. Otherwise, if this action results in the top-level
2304 2305 * vdev becoming unusable, undo it and fail the request.
2305 2306 */
2306 2307 vd->vdev_offline = B_TRUE;
2307 2308 vdev_reopen(tvd);
2308 2309
2309 2310 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2310 2311 vdev_is_dead(tvd)) {
2311 2312 vd->vdev_offline = B_FALSE;
2312 2313 vdev_reopen(tvd);
2313 2314 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2314 2315 }
2315 2316
2316 2317 /*
2317 2318 * Add the device back into the metaslab rotor so that
2318 2319 * once we online the device it's open for business.
2319 2320 */
2320 2321 if (tvd->vdev_islog && mg != NULL)
2321 2322 metaslab_group_activate(mg);
2322 2323 }
2323 2324
2324 2325 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2325 2326
2326 2327 return (spa_vdev_state_exit(spa, vd, 0));
2327 2328 }
2328 2329
2329 2330 int
2330 2331 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2331 2332 {
2332 2333 int error;
2333 2334
2334 2335 mutex_enter(&spa->spa_vdev_top_lock);
2335 2336 error = vdev_offline_locked(spa, guid, flags);
2336 2337 mutex_exit(&spa->spa_vdev_top_lock);
2337 2338
2338 2339 return (error);
2339 2340 }
2340 2341
2341 2342 /*
2342 2343 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2343 2344 * vdev_offline(), we assume the spa config is locked. We also clear all
2344 2345 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2345 2346 */
2346 2347 void
2347 2348 vdev_clear(spa_t *spa, vdev_t *vd)
2348 2349 {
2349 2350 vdev_t *rvd = spa->spa_root_vdev;
2350 2351
2351 2352 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2352 2353
2353 2354 if (vd == NULL)
2354 2355 vd = rvd;
2355 2356
2356 2357 vd->vdev_stat.vs_read_errors = 0;
2357 2358 vd->vdev_stat.vs_write_errors = 0;
2358 2359 vd->vdev_stat.vs_checksum_errors = 0;
2359 2360
2360 2361 for (int c = 0; c < vd->vdev_children; c++)
2361 2362 vdev_clear(spa, vd->vdev_child[c]);
2362 2363
2363 2364 /*
2364 2365 * If we're in the FAULTED state or have experienced failed I/O, then
2365 2366 * clear the persistent state and attempt to reopen the device. We
2366 2367 * also mark the vdev config dirty, so that the new faulted state is
2367 2368 * written out to disk.
2368 2369 */
2369 2370 if (vd->vdev_faulted || vd->vdev_degraded ||
2370 2371 !vdev_readable(vd) || !vdev_writeable(vd)) {
2371 2372
2372 2373 /*
2373 2374 * When reopening in reponse to a clear event, it may be due to
2374 2375 * a fmadm repair request. In this case, if the device is
2375 2376 * still broken, we want to still post the ereport again.
2376 2377 */
2377 2378 vd->vdev_forcefault = B_TRUE;
2378 2379
2379 2380 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2380 2381 vd->vdev_cant_read = B_FALSE;
2381 2382 vd->vdev_cant_write = B_FALSE;
2382 2383
2383 2384 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2384 2385
2385 2386 vd->vdev_forcefault = B_FALSE;
2386 2387
2387 2388 if (vd != rvd && vdev_writeable(vd->vdev_top))
2388 2389 vdev_state_dirty(vd->vdev_top);
2389 2390
2390 2391 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2391 2392 spa_async_request(spa, SPA_ASYNC_RESILVER);
2392 2393
2393 2394 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2394 2395 }
2395 2396
2396 2397 /*
2397 2398 * When clearing a FMA-diagnosed fault, we always want to
2398 2399 * unspare the device, as we assume that the original spare was
2399 2400 * done in response to the FMA fault.
2400 2401 */
2401 2402 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2402 2403 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2403 2404 vd->vdev_parent->vdev_child[0] == vd)
2404 2405 vd->vdev_unspare = B_TRUE;
2405 2406 }
2406 2407
2407 2408 boolean_t
2408 2409 vdev_is_dead(vdev_t *vd)
2409 2410 {
2410 2411 /*
2411 2412 * Holes and missing devices are always considered "dead".
2412 2413 * This simplifies the code since we don't have to check for
2413 2414 * these types of devices in the various code paths.
2414 2415 * Instead we rely on the fact that we skip over dead devices
2415 2416 * before issuing I/O to them.
2416 2417 */
2417 2418 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2418 2419 vd->vdev_ops == &vdev_missing_ops);
2419 2420 }
2420 2421
2421 2422 boolean_t
2422 2423 vdev_readable(vdev_t *vd)
2423 2424 {
2424 2425 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2425 2426 }
2426 2427
2427 2428 boolean_t
2428 2429 vdev_writeable(vdev_t *vd)
2429 2430 {
2430 2431 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2431 2432 }
2432 2433
2433 2434 boolean_t
2434 2435 vdev_allocatable(vdev_t *vd)
2435 2436 {
2436 2437 uint64_t state = vd->vdev_state;
2437 2438
2438 2439 /*
2439 2440 * We currently allow allocations from vdevs which may be in the
2440 2441 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2441 2442 * fails to reopen then we'll catch it later when we're holding
2442 2443 * the proper locks. Note that we have to get the vdev state
2443 2444 * in a local variable because although it changes atomically,
2444 2445 * we're asking two separate questions about it.
2445 2446 */
2446 2447 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2447 2448 !vd->vdev_cant_write && !vd->vdev_ishole);
2448 2449 }
2449 2450
2450 2451 boolean_t
2451 2452 vdev_accessible(vdev_t *vd, zio_t *zio)
2452 2453 {
2453 2454 ASSERT(zio->io_vd == vd);
2454 2455
2455 2456 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2456 2457 return (B_FALSE);
2457 2458
2458 2459 if (zio->io_type == ZIO_TYPE_READ)
2459 2460 return (!vd->vdev_cant_read);
2460 2461
2461 2462 if (zio->io_type == ZIO_TYPE_WRITE)
2462 2463 return (!vd->vdev_cant_write);
2463 2464
2464 2465 return (B_TRUE);
2465 2466 }
2466 2467
2467 2468 /*
2468 2469 * Get statistics for the given vdev.
2469 2470 */
2470 2471 void
2471 2472 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2472 2473 {
2473 2474 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2474 2475
2475 2476 mutex_enter(&vd->vdev_stat_lock);
2476 2477 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2477 2478 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2478 2479 vs->vs_state = vd->vdev_state;
2479 2480 vs->vs_rsize = vdev_get_min_asize(vd);
2480 2481 if (vd->vdev_ops->vdev_op_leaf)
2481 2482 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2482 2483 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2483 2484 mutex_exit(&vd->vdev_stat_lock);
2484 2485
2485 2486 /*
2486 2487 * If we're getting stats on the root vdev, aggregate the I/O counts
2487 2488 * over all top-level vdevs (i.e. the direct children of the root).
2488 2489 */
2489 2490 if (vd == rvd) {
2490 2491 for (int c = 0; c < rvd->vdev_children; c++) {
2491 2492 vdev_t *cvd = rvd->vdev_child[c];
2492 2493 vdev_stat_t *cvs = &cvd->vdev_stat;
2493 2494
2494 2495 mutex_enter(&vd->vdev_stat_lock);
2495 2496 for (int t = 0; t < ZIO_TYPES; t++) {
2496 2497 vs->vs_ops[t] += cvs->vs_ops[t];
2497 2498 vs->vs_bytes[t] += cvs->vs_bytes[t];
2498 2499 }
2499 2500 cvs->vs_scan_removing = cvd->vdev_removing;
2500 2501 mutex_exit(&vd->vdev_stat_lock);
2501 2502 }
2502 2503 }
2503 2504 }
2504 2505
2505 2506 void
2506 2507 vdev_clear_stats(vdev_t *vd)
2507 2508 {
2508 2509 mutex_enter(&vd->vdev_stat_lock);
2509 2510 vd->vdev_stat.vs_space = 0;
2510 2511 vd->vdev_stat.vs_dspace = 0;
2511 2512 vd->vdev_stat.vs_alloc = 0;
2512 2513 mutex_exit(&vd->vdev_stat_lock);
2513 2514 }
2514 2515
2515 2516 void
2516 2517 vdev_scan_stat_init(vdev_t *vd)
2517 2518 {
2518 2519 vdev_stat_t *vs = &vd->vdev_stat;
2519 2520
2520 2521 for (int c = 0; c < vd->vdev_children; c++)
2521 2522 vdev_scan_stat_init(vd->vdev_child[c]);
2522 2523
2523 2524 mutex_enter(&vd->vdev_stat_lock);
2524 2525 vs->vs_scan_processed = 0;
2525 2526 mutex_exit(&vd->vdev_stat_lock);
2526 2527 }
2527 2528
2528 2529 void
2529 2530 vdev_stat_update(zio_t *zio, uint64_t psize)
2530 2531 {
2531 2532 spa_t *spa = zio->io_spa;
2532 2533 vdev_t *rvd = spa->spa_root_vdev;
2533 2534 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2534 2535 vdev_t *pvd;
2535 2536 uint64_t txg = zio->io_txg;
2536 2537 vdev_stat_t *vs = &vd->vdev_stat;
2537 2538 zio_type_t type = zio->io_type;
2538 2539 int flags = zio->io_flags;
2539 2540
2540 2541 /*
2541 2542 * If this i/o is a gang leader, it didn't do any actual work.
2542 2543 */
2543 2544 if (zio->io_gang_tree)
2544 2545 return;
2545 2546
2546 2547 if (zio->io_error == 0) {
2547 2548 /*
2548 2549 * If this is a root i/o, don't count it -- we've already
2549 2550 * counted the top-level vdevs, and vdev_get_stats() will
2550 2551 * aggregate them when asked. This reduces contention on
2551 2552 * the root vdev_stat_lock and implicitly handles blocks
2552 2553 * that compress away to holes, for which there is no i/o.
2553 2554 * (Holes never create vdev children, so all the counters
2554 2555 * remain zero, which is what we want.)
2555 2556 *
2556 2557 * Note: this only applies to successful i/o (io_error == 0)
2557 2558 * because unlike i/o counts, errors are not additive.
2558 2559 * When reading a ditto block, for example, failure of
2559 2560 * one top-level vdev does not imply a root-level error.
2560 2561 */
2561 2562 if (vd == rvd)
2562 2563 return;
2563 2564
2564 2565 ASSERT(vd == zio->io_vd);
2565 2566
2566 2567 if (flags & ZIO_FLAG_IO_BYPASS)
2567 2568 return;
2568 2569
2569 2570 mutex_enter(&vd->vdev_stat_lock);
2570 2571
2571 2572 if (flags & ZIO_FLAG_IO_REPAIR) {
2572 2573 if (flags & ZIO_FLAG_SCAN_THREAD) {
2573 2574 dsl_scan_phys_t *scn_phys =
2574 2575 &spa->spa_dsl_pool->dp_scan->scn_phys;
2575 2576 uint64_t *processed = &scn_phys->scn_processed;
2576 2577
2577 2578 /* XXX cleanup? */
2578 2579 if (vd->vdev_ops->vdev_op_leaf)
2579 2580 atomic_add_64(processed, psize);
2580 2581 vs->vs_scan_processed += psize;
2581 2582 }
2582 2583
2583 2584 if (flags & ZIO_FLAG_SELF_HEAL)
2584 2585 vs->vs_self_healed += psize;
2585 2586 }
2586 2587
2587 2588 vs->vs_ops[type]++;
2588 2589 vs->vs_bytes[type] += psize;
2589 2590
2590 2591 mutex_exit(&vd->vdev_stat_lock);
2591 2592 return;
2592 2593 }
2593 2594
2594 2595 if (flags & ZIO_FLAG_SPECULATIVE)
2595 2596 return;
2596 2597
2597 2598 /*
2598 2599 * If this is an I/O error that is going to be retried, then ignore the
2599 2600 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2600 2601 * hard errors, when in reality they can happen for any number of
2601 2602 * innocuous reasons (bus resets, MPxIO link failure, etc).
2602 2603 */
2603 2604 if (zio->io_error == EIO &&
2604 2605 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2605 2606 return;
2606 2607
2607 2608 /*
2608 2609 * Intent logs writes won't propagate their error to the root
2609 2610 * I/O so don't mark these types of failures as pool-level
2610 2611 * errors.
2611 2612 */
2612 2613 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2613 2614 return;
2614 2615
2615 2616 mutex_enter(&vd->vdev_stat_lock);
2616 2617 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2617 2618 if (zio->io_error == ECKSUM)
2618 2619 vs->vs_checksum_errors++;
2619 2620 else
2620 2621 vs->vs_read_errors++;
2621 2622 }
2622 2623 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2623 2624 vs->vs_write_errors++;
2624 2625 mutex_exit(&vd->vdev_stat_lock);
2625 2626
2626 2627 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2627 2628 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2628 2629 (flags & ZIO_FLAG_SCAN_THREAD) ||
2629 2630 spa->spa_claiming)) {
2630 2631 /*
2631 2632 * This is either a normal write (not a repair), or it's
2632 2633 * a repair induced by the scrub thread, or it's a repair
2633 2634 * made by zil_claim() during spa_load() in the first txg.
2634 2635 * In the normal case, we commit the DTL change in the same
2635 2636 * txg as the block was born. In the scrub-induced repair
2636 2637 * case, we know that scrubs run in first-pass syncing context,
2637 2638 * so we commit the DTL change in spa_syncing_txg(spa).
2638 2639 * In the zil_claim() case, we commit in spa_first_txg(spa).
2639 2640 *
2640 2641 * We currently do not make DTL entries for failed spontaneous
2641 2642 * self-healing writes triggered by normal (non-scrubbing)
2642 2643 * reads, because we have no transactional context in which to
2643 2644 * do so -- and it's not clear that it'd be desirable anyway.
2644 2645 */
2645 2646 if (vd->vdev_ops->vdev_op_leaf) {
2646 2647 uint64_t commit_txg = txg;
2647 2648 if (flags & ZIO_FLAG_SCAN_THREAD) {
2648 2649 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2649 2650 ASSERT(spa_sync_pass(spa) == 1);
2650 2651 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2651 2652 commit_txg = spa_syncing_txg(spa);
2652 2653 } else if (spa->spa_claiming) {
2653 2654 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2654 2655 commit_txg = spa_first_txg(spa);
2655 2656 }
2656 2657 ASSERT(commit_txg >= spa_syncing_txg(spa));
2657 2658 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2658 2659 return;
2659 2660 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2660 2661 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2661 2662 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2662 2663 }
2663 2664 if (vd != rvd)
2664 2665 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2665 2666 }
2666 2667 }
2667 2668
2668 2669 /*
2669 2670 * Update the in-core space usage stats for this vdev, its metaslab class,
2670 2671 * and the root vdev.
2671 2672 */
2672 2673 void
2673 2674 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2674 2675 int64_t space_delta)
2675 2676 {
2676 2677 int64_t dspace_delta = space_delta;
2677 2678 spa_t *spa = vd->vdev_spa;
2678 2679 vdev_t *rvd = spa->spa_root_vdev;
2679 2680 metaslab_group_t *mg = vd->vdev_mg;
2680 2681 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2681 2682
2682 2683 ASSERT(vd == vd->vdev_top);
2683 2684
2684 2685 /*
2685 2686 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2686 2687 * factor. We must calculate this here and not at the root vdev
2687 2688 * because the root vdev's psize-to-asize is simply the max of its
2688 2689 * childrens', thus not accurate enough for us.
2689 2690 */
2690 2691 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2691 2692 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2692 2693 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2693 2694 vd->vdev_deflate_ratio;
2694 2695
2695 2696 mutex_enter(&vd->vdev_stat_lock);
2696 2697 vd->vdev_stat.vs_alloc += alloc_delta;
2697 2698 vd->vdev_stat.vs_space += space_delta;
2698 2699 vd->vdev_stat.vs_dspace += dspace_delta;
2699 2700 mutex_exit(&vd->vdev_stat_lock);
2700 2701
2701 2702 if (mc == spa_normal_class(spa)) {
2702 2703 mutex_enter(&rvd->vdev_stat_lock);
2703 2704 rvd->vdev_stat.vs_alloc += alloc_delta;
2704 2705 rvd->vdev_stat.vs_space += space_delta;
2705 2706 rvd->vdev_stat.vs_dspace += dspace_delta;
2706 2707 mutex_exit(&rvd->vdev_stat_lock);
2707 2708 }
2708 2709
2709 2710 if (mc != NULL) {
2710 2711 ASSERT(rvd == vd->vdev_parent);
2711 2712 ASSERT(vd->vdev_ms_count != 0);
2712 2713
2713 2714 metaslab_class_space_update(mc,
2714 2715 alloc_delta, defer_delta, space_delta, dspace_delta);
2715 2716 }
2716 2717 }
2717 2718
2718 2719 /*
2719 2720 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2720 2721 * so that it will be written out next time the vdev configuration is synced.
2721 2722 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2722 2723 */
2723 2724 void
2724 2725 vdev_config_dirty(vdev_t *vd)
2725 2726 {
2726 2727 spa_t *spa = vd->vdev_spa;
2727 2728 vdev_t *rvd = spa->spa_root_vdev;
2728 2729 int c;
2729 2730
2730 2731 ASSERT(spa_writeable(spa));
2731 2732
2732 2733 /*
2733 2734 * If this is an aux vdev (as with l2cache and spare devices), then we
2734 2735 * update the vdev config manually and set the sync flag.
2735 2736 */
2736 2737 if (vd->vdev_aux != NULL) {
2737 2738 spa_aux_vdev_t *sav = vd->vdev_aux;
2738 2739 nvlist_t **aux;
2739 2740 uint_t naux;
2740 2741
2741 2742 for (c = 0; c < sav->sav_count; c++) {
2742 2743 if (sav->sav_vdevs[c] == vd)
2743 2744 break;
2744 2745 }
2745 2746
2746 2747 if (c == sav->sav_count) {
2747 2748 /*
2748 2749 * We're being removed. There's nothing more to do.
2749 2750 */
2750 2751 ASSERT(sav->sav_sync == B_TRUE);
2751 2752 return;
2752 2753 }
2753 2754
2754 2755 sav->sav_sync = B_TRUE;
2755 2756
2756 2757 if (nvlist_lookup_nvlist_array(sav->sav_config,
2757 2758 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2758 2759 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2759 2760 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2760 2761 }
2761 2762
2762 2763 ASSERT(c < naux);
2763 2764
2764 2765 /*
2765 2766 * Setting the nvlist in the middle if the array is a little
2766 2767 * sketchy, but it will work.
2767 2768 */
2768 2769 nvlist_free(aux[c]);
2769 2770 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2770 2771
2771 2772 return;
2772 2773 }
2773 2774
2774 2775 /*
2775 2776 * The dirty list is protected by the SCL_CONFIG lock. The caller
2776 2777 * must either hold SCL_CONFIG as writer, or must be the sync thread
2777 2778 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2778 2779 * so this is sufficient to ensure mutual exclusion.
2779 2780 */
2780 2781 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2781 2782 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2782 2783 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2783 2784
2784 2785 if (vd == rvd) {
2785 2786 for (c = 0; c < rvd->vdev_children; c++)
2786 2787 vdev_config_dirty(rvd->vdev_child[c]);
2787 2788 } else {
2788 2789 ASSERT(vd == vd->vdev_top);
2789 2790
2790 2791 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2791 2792 !vd->vdev_ishole)
2792 2793 list_insert_head(&spa->spa_config_dirty_list, vd);
2793 2794 }
2794 2795 }
2795 2796
2796 2797 void
2797 2798 vdev_config_clean(vdev_t *vd)
2798 2799 {
2799 2800 spa_t *spa = vd->vdev_spa;
2800 2801
2801 2802 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2802 2803 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2803 2804 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2804 2805
2805 2806 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2806 2807 list_remove(&spa->spa_config_dirty_list, vd);
2807 2808 }
2808 2809
2809 2810 /*
2810 2811 * Mark a top-level vdev's state as dirty, so that the next pass of
2811 2812 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2812 2813 * the state changes from larger config changes because they require
2813 2814 * much less locking, and are often needed for administrative actions.
2814 2815 */
2815 2816 void
2816 2817 vdev_state_dirty(vdev_t *vd)
2817 2818 {
2818 2819 spa_t *spa = vd->vdev_spa;
2819 2820
2820 2821 ASSERT(spa_writeable(spa));
2821 2822 ASSERT(vd == vd->vdev_top);
2822 2823
2823 2824 /*
2824 2825 * The state list is protected by the SCL_STATE lock. The caller
2825 2826 * must either hold SCL_STATE as writer, or must be the sync thread
2826 2827 * (which holds SCL_STATE as reader). There's only one sync thread,
2827 2828 * so this is sufficient to ensure mutual exclusion.
2828 2829 */
2829 2830 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2830 2831 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2831 2832 spa_config_held(spa, SCL_STATE, RW_READER)));
2832 2833
2833 2834 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2834 2835 list_insert_head(&spa->spa_state_dirty_list, vd);
2835 2836 }
2836 2837
2837 2838 void
2838 2839 vdev_state_clean(vdev_t *vd)
2839 2840 {
2840 2841 spa_t *spa = vd->vdev_spa;
2841 2842
2842 2843 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2843 2844 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2844 2845 spa_config_held(spa, SCL_STATE, RW_READER)));
2845 2846
2846 2847 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2847 2848 list_remove(&spa->spa_state_dirty_list, vd);
2848 2849 }
2849 2850
2850 2851 /*
2851 2852 * Propagate vdev state up from children to parent.
2852 2853 */
2853 2854 void
2854 2855 vdev_propagate_state(vdev_t *vd)
2855 2856 {
2856 2857 spa_t *spa = vd->vdev_spa;
2857 2858 vdev_t *rvd = spa->spa_root_vdev;
2858 2859 int degraded = 0, faulted = 0;
2859 2860 int corrupted = 0;
2860 2861 vdev_t *child;
2861 2862
2862 2863 if (vd->vdev_children > 0) {
2863 2864 for (int c = 0; c < vd->vdev_children; c++) {
2864 2865 child = vd->vdev_child[c];
2865 2866
2866 2867 /*
2867 2868 * Don't factor holes into the decision.
2868 2869 */
2869 2870 if (child->vdev_ishole)
2870 2871 continue;
2871 2872
2872 2873 if (!vdev_readable(child) ||
2873 2874 (!vdev_writeable(child) && spa_writeable(spa))) {
2874 2875 /*
2875 2876 * Root special: if there is a top-level log
2876 2877 * device, treat the root vdev as if it were
2877 2878 * degraded.
2878 2879 */
2879 2880 if (child->vdev_islog && vd == rvd)
2880 2881 degraded++;
2881 2882 else
2882 2883 faulted++;
2883 2884 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2884 2885 degraded++;
2885 2886 }
2886 2887
2887 2888 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2888 2889 corrupted++;
2889 2890 }
2890 2891
2891 2892 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2892 2893
2893 2894 /*
2894 2895 * Root special: if there is a top-level vdev that cannot be
2895 2896 * opened due to corrupted metadata, then propagate the root
2896 2897 * vdev's aux state as 'corrupt' rather than 'insufficient
2897 2898 * replicas'.
2898 2899 */
2899 2900 if (corrupted && vd == rvd &&
2900 2901 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2901 2902 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2902 2903 VDEV_AUX_CORRUPT_DATA);
2903 2904 }
2904 2905
2905 2906 if (vd->vdev_parent)
2906 2907 vdev_propagate_state(vd->vdev_parent);
2907 2908 }
2908 2909
2909 2910 /*
2910 2911 * Set a vdev's state. If this is during an open, we don't update the parent
2911 2912 * state, because we're in the process of opening children depth-first.
2912 2913 * Otherwise, we propagate the change to the parent.
2913 2914 *
2914 2915 * If this routine places a device in a faulted state, an appropriate ereport is
2915 2916 * generated.
2916 2917 */
2917 2918 void
2918 2919 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2919 2920 {
2920 2921 uint64_t save_state;
2921 2922 spa_t *spa = vd->vdev_spa;
2922 2923
2923 2924 if (state == vd->vdev_state) {
2924 2925 vd->vdev_stat.vs_aux = aux;
2925 2926 return;
2926 2927 }
2927 2928
2928 2929 save_state = vd->vdev_state;
2929 2930
2930 2931 vd->vdev_state = state;
2931 2932 vd->vdev_stat.vs_aux = aux;
2932 2933
2933 2934 /*
2934 2935 * If we are setting the vdev state to anything but an open state, then
2935 2936 * always close the underlying device unless the device has requested
2936 2937 * a delayed close (i.e. we're about to remove or fault the device).
2937 2938 * Otherwise, we keep accessible but invalid devices open forever.
2938 2939 * We don't call vdev_close() itself, because that implies some extra
2939 2940 * checks (offline, etc) that we don't want here. This is limited to
2940 2941 * leaf devices, because otherwise closing the device will affect other
2941 2942 * children.
2942 2943 */
2943 2944 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2944 2945 vd->vdev_ops->vdev_op_leaf)
2945 2946 vd->vdev_ops->vdev_op_close(vd);
2946 2947
2947 2948 /*
2948 2949 * If we have brought this vdev back into service, we need
2949 2950 * to notify fmd so that it can gracefully repair any outstanding
2950 2951 * cases due to a missing device. We do this in all cases, even those
2951 2952 * that probably don't correlate to a repaired fault. This is sure to
2952 2953 * catch all cases, and we let the zfs-retire agent sort it out. If
2953 2954 * this is a transient state it's OK, as the retire agent will
2954 2955 * double-check the state of the vdev before repairing it.
2955 2956 */
2956 2957 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2957 2958 vd->vdev_prevstate != state)
2958 2959 zfs_post_state_change(spa, vd);
2959 2960
2960 2961 if (vd->vdev_removed &&
2961 2962 state == VDEV_STATE_CANT_OPEN &&
2962 2963 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2963 2964 /*
2964 2965 * If the previous state is set to VDEV_STATE_REMOVED, then this
2965 2966 * device was previously marked removed and someone attempted to
2966 2967 * reopen it. If this failed due to a nonexistent device, then
2967 2968 * keep the device in the REMOVED state. We also let this be if
2968 2969 * it is one of our special test online cases, which is only
2969 2970 * attempting to online the device and shouldn't generate an FMA
2970 2971 * fault.
2971 2972 */
2972 2973 vd->vdev_state = VDEV_STATE_REMOVED;
2973 2974 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2974 2975 } else if (state == VDEV_STATE_REMOVED) {
2975 2976 vd->vdev_removed = B_TRUE;
2976 2977 } else if (state == VDEV_STATE_CANT_OPEN) {
2977 2978 /*
2978 2979 * If we fail to open a vdev during an import or recovery, we
2979 2980 * mark it as "not available", which signifies that it was
2980 2981 * never there to begin with. Failure to open such a device
2981 2982 * is not considered an error.
2982 2983 */
2983 2984 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2984 2985 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2985 2986 vd->vdev_ops->vdev_op_leaf)
2986 2987 vd->vdev_not_present = 1;
2987 2988
2988 2989 /*
2989 2990 * Post the appropriate ereport. If the 'prevstate' field is
2990 2991 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2991 2992 * that this is part of a vdev_reopen(). In this case, we don't
2992 2993 * want to post the ereport if the device was already in the
2993 2994 * CANT_OPEN state beforehand.
2994 2995 *
2995 2996 * If the 'checkremove' flag is set, then this is an attempt to
2996 2997 * online the device in response to an insertion event. If we
2997 2998 * hit this case, then we have detected an insertion event for a
2998 2999 * faulted or offline device that wasn't in the removed state.
2999 3000 * In this scenario, we don't post an ereport because we are
3000 3001 * about to replace the device, or attempt an online with
3001 3002 * vdev_forcefault, which will generate the fault for us.
3002 3003 */
3003 3004 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3004 3005 !vd->vdev_not_present && !vd->vdev_checkremove &&
3005 3006 vd != spa->spa_root_vdev) {
3006 3007 const char *class;
3007 3008
3008 3009 switch (aux) {
3009 3010 case VDEV_AUX_OPEN_FAILED:
3010 3011 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3011 3012 break;
3012 3013 case VDEV_AUX_CORRUPT_DATA:
3013 3014 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3014 3015 break;
3015 3016 case VDEV_AUX_NO_REPLICAS:
3016 3017 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3017 3018 break;
3018 3019 case VDEV_AUX_BAD_GUID_SUM:
3019 3020 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3020 3021 break;
3021 3022 case VDEV_AUX_TOO_SMALL:
3022 3023 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3023 3024 break;
3024 3025 case VDEV_AUX_BAD_LABEL:
3025 3026 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3026 3027 break;
3027 3028 default:
3028 3029 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3029 3030 }
3030 3031
3031 3032 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3032 3033 }
3033 3034
3034 3035 /* Erase any notion of persistent removed state */
3035 3036 vd->vdev_removed = B_FALSE;
3036 3037 } else {
3037 3038 vd->vdev_removed = B_FALSE;
3038 3039 }
3039 3040
3040 3041 if (!isopen && vd->vdev_parent)
3041 3042 vdev_propagate_state(vd->vdev_parent);
3042 3043 }
3043 3044
3044 3045 /*
3045 3046 * Check the vdev configuration to ensure that it's capable of supporting
3046 3047 * a root pool. Currently, we do not support RAID-Z or partial configuration.
3047 3048 * In addition, only a single top-level vdev is allowed and none of the leaves
3048 3049 * can be wholedisks.
3049 3050 */
3050 3051 boolean_t
3051 3052 vdev_is_bootable(vdev_t *vd)
3052 3053 {
3053 3054 if (!vd->vdev_ops->vdev_op_leaf) {
3054 3055 char *vdev_type = vd->vdev_ops->vdev_op_type;
3055 3056
3056 3057 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3057 3058 vd->vdev_children > 1) {
3058 3059 return (B_FALSE);
3059 3060 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3060 3061 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3061 3062 return (B_FALSE);
3062 3063 }
3063 3064 } else if (vd->vdev_wholedisk == 1) {
3064 3065 return (B_FALSE);
3065 3066 }
3066 3067
3067 3068 for (int c = 0; c < vd->vdev_children; c++) {
3068 3069 if (!vdev_is_bootable(vd->vdev_child[c]))
3069 3070 return (B_FALSE);
3070 3071 }
3071 3072 return (B_TRUE);
3072 3073 }
3073 3074
3074 3075 /*
3075 3076 * Load the state from the original vdev tree (ovd) which
3076 3077 * we've retrieved from the MOS config object. If the original
3077 3078 * vdev was offline or faulted then we transfer that state to the
3078 3079 * device in the current vdev tree (nvd).
3079 3080 */
3080 3081 void
3081 3082 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3082 3083 {
3083 3084 spa_t *spa = nvd->vdev_spa;
3084 3085
3085 3086 ASSERT(nvd->vdev_top->vdev_islog);
3086 3087 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3087 3088 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3088 3089
3089 3090 for (int c = 0; c < nvd->vdev_children; c++)
3090 3091 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3091 3092
3092 3093 if (nvd->vdev_ops->vdev_op_leaf) {
3093 3094 /*
3094 3095 * Restore the persistent vdev state
3095 3096 */
3096 3097 nvd->vdev_offline = ovd->vdev_offline;
3097 3098 nvd->vdev_faulted = ovd->vdev_faulted;
3098 3099 nvd->vdev_degraded = ovd->vdev_degraded;
3099 3100 nvd->vdev_removed = ovd->vdev_removed;
3100 3101 }
3101 3102 }
3102 3103
3103 3104 /*
3104 3105 * Determine if a log device has valid content. If the vdev was
3105 3106 * removed or faulted in the MOS config then we know that
3106 3107 * the content on the log device has already been written to the pool.
3107 3108 */
3108 3109 boolean_t
3109 3110 vdev_log_state_valid(vdev_t *vd)
3110 3111 {
3111 3112 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3112 3113 !vd->vdev_removed)
3113 3114 return (B_TRUE);
3114 3115
3115 3116 for (int c = 0; c < vd->vdev_children; c++)
3116 3117 if (vdev_log_state_valid(vd->vdev_child[c]))
3117 3118 return (B_TRUE);
3118 3119
3119 3120 return (B_FALSE);
3120 3121 }
3121 3122
3122 3123 /*
3123 3124 * Expand a vdev if possible.
3124 3125 */
3125 3126 void
3126 3127 vdev_expand(vdev_t *vd, uint64_t txg)
3127 3128 {
3128 3129 ASSERT(vd->vdev_top == vd);
3129 3130 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3130 3131
3131 3132 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3132 3133 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3133 3134 vdev_config_dirty(vd);
3134 3135 }
3135 3136 }
3136 3137
3137 3138 /*
3138 3139 * Split a vdev.
3139 3140 */
3140 3141 void
3141 3142 vdev_split(vdev_t *vd)
3142 3143 {
3143 3144 vdev_t *cvd, *pvd = vd->vdev_parent;
3144 3145
3145 3146 vdev_remove_child(pvd, vd);
3146 3147 vdev_compact_children(pvd);
3147 3148
3148 3149 cvd = pvd->vdev_child[0];
3149 3150 if (pvd->vdev_children == 1) {
3150 3151 vdev_remove_parent(cvd);
3151 3152 cvd->vdev_splitting = B_TRUE;
3152 3153 }
3153 3154 vdev_propagate_state(cvd);
3154 3155 }
|
↓ open down ↓ |
1165 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX