Print this page
    
2619 asynchronous destruction of ZFS file systems
2747 SPA versioning with zfs feature flags
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <gwilson@delphix.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com>
Approved by: Dan McDonald <danmcd@nexenta.com>
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/fs/zfs/sys/zap.h
          +++ new/usr/src/uts/common/fs/zfs/sys/zap.h
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  
    | 
      ↓ open down ↓ | 
    12 lines elided | 
    
      ↑ open up ↑ | 
  
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  /*
  22   22   * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
       23 + * Copyright (c) 2012 by Delphix. All rights reserved.
  23   24   */
  24   25  
  25   26  #ifndef _SYS_ZAP_H
  26   27  #define _SYS_ZAP_H
  27   28  
  28   29  /*
  29   30   * ZAP - ZFS Attribute Processor
  30   31   *
  31   32   * The ZAP is a module which sits on top of the DMU (Data Management
  32   33   * Unit) and implements a higher-level storage primitive using DMU
  33   34   * objects.  Its primary consumer is the ZPL (ZFS Posix Layer).
  34   35   *
  35   36   * A "zapobj" is a DMU object which the ZAP uses to stores attributes.
  36   37   * Users should use only zap routines to access a zapobj - they should
  37   38   * not access the DMU object directly using DMU routines.
  38   39   *
  39   40   * The attributes stored in a zapobj are name-value pairs.  The name is
  40   41   * a zero-terminated string of up to ZAP_MAXNAMELEN bytes (including
  41   42   * terminating NULL).  The value is an array of integers, which may be
  42   43   * 1, 2, 4, or 8 bytes long.  The total space used by the array (number
  43   44   * of integers * integer length) can be up to ZAP_MAXVALUELEN bytes.
  44   45   * Note that an 8-byte integer value can be used to store the location
  45   46   * (object number) of another dmu object (which may be itself a zapobj).
  46   47   * Note that you can use a zero-length attribute to store a single bit
  47   48   * of information - the attribute is present or not.
  48   49   *
  49   50   * The ZAP routines are thread-safe.  However, you must observe the
  50   51   * DMU's restriction that a transaction may not be operated on
  51   52   * concurrently.
  52   53   *
  53   54   * Any of the routines that return an int may return an I/O error (EIO
  54   55   * or ECHECKSUM).
  55   56   *
  56   57   *
  57   58   * Implementation / Performance Notes:
  58   59   *
  59   60   * The ZAP is intended to operate most efficiently on attributes with
  60   61   * short (49 bytes or less) names and single 8-byte values, for which
  61   62   * the microzap will be used.  The ZAP should be efficient enough so
  62   63   * that the user does not need to cache these attributes.
  63   64   *
  64   65   * The ZAP's locking scheme makes its routines thread-safe.  Operations
  65   66   * on different zapobjs will be processed concurrently.  Operations on
  66   67   * the same zapobj which only read data will be processed concurrently.
  67   68   * Operations on the same zapobj which modify data will be processed
  68   69   * concurrently when there are many attributes in the zapobj (because
  69   70   * the ZAP uses per-block locking - more than 128 * (number of cpus)
  70   71   * small attributes will suffice).
  71   72   */
  72   73  
  73   74  /*
  74   75   * We're using zero-terminated byte strings (ie. ASCII or UTF-8 C
  75   76   * strings) for the names of attributes, rather than a byte string
  76   77   * bounded by an explicit length.  If some day we want to support names
  77   78   * in character sets which have embedded zeros (eg. UTF-16, UTF-32),
  78   79   * we'll have to add routines for using length-bounded strings.
  79   80   */
  80   81  
  81   82  #include <sys/dmu.h>
  82   83  
  83   84  #ifdef  __cplusplus
  84   85  extern "C" {
  85   86  #endif
  86   87  
  87   88  /*
  88   89   * The matchtype specifies which entry will be accessed.
  89   90   * MT_EXACT: only find an exact match (non-normalized)
  90   91   * MT_FIRST: find the "first" normalized (case and Unicode
  91   92   *     form) match; the designated "first" match will not change as long
  92   93   *     as the set of entries with this normalization doesn't change
  93   94   * MT_BEST: if there is an exact match, find that, otherwise find the
  94   95   *     first normalized match
  95   96   */
  96   97  typedef enum matchtype
  97   98  {
  98   99          MT_EXACT,
  99  100          MT_BEST,
 100  101          MT_FIRST
 101  102  } matchtype_t;
 102  103  
 103  104  typedef enum zap_flags {
 104  105          /* Use 64-bit hash value (serialized cursors will always use 64-bits) */
 105  106          ZAP_FLAG_HASH64 = 1 << 0,
 106  107          /* Key is binary, not string (zap_add_uint64() can be used) */
 107  108          ZAP_FLAG_UINT64_KEY = 1 << 1,
 108  109          /*
 109  110           * First word of key (which must be an array of uint64) is
 110  111           * already randomly distributed.
 111  112           */
 112  113          ZAP_FLAG_PRE_HASHED_KEY = 1 << 2,
 113  114  } zap_flags_t;
 114  115  
 115  116  /*
 116  117   * Create a new zapobj with no attributes and return its object number.
 117  118   * MT_EXACT will cause the zap object to only support MT_EXACT lookups,
 118  119   * otherwise any matchtype can be used for lookups.
 119  120   *
 120  121   * normflags specifies what normalization will be done.  values are:
 121  122   * 0: no normalization (legacy on-disk format, supports MT_EXACT matching
 122  123   *     only)
 123  124   * U8_TEXTPREP_TOLOWER: case normalization will be performed.
 124  125   *     MT_FIRST/MT_BEST matching will find entries that match without
  
    | 
      ↓ open down ↓ | 
    92 lines elided | 
    
      ↑ open up ↑ | 
  
 125  126   *     regard to case (eg. looking for "foo" can find an entry "Foo").
 126  127   * Eventually, other flags will permit unicode normalization as well.
 127  128   */
 128  129  uint64_t zap_create(objset_t *ds, dmu_object_type_t ot,
 129  130      dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
 130  131  uint64_t zap_create_norm(objset_t *ds, int normflags, dmu_object_type_t ot,
 131  132      dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
 132  133  uint64_t zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
 133  134      dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
 134  135      dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
      136 +uint64_t zap_create_link(objset_t *os, dmu_object_type_t ot,
      137 +    uint64_t parent_obj, const char *name, dmu_tx_t *tx);
 135  138  
 136  139  /*
 137  140   * Create a new zapobj with no attributes from the given (unallocated)
 138  141   * object number.
 139  142   */
 140  143  int zap_create_claim(objset_t *ds, uint64_t obj, dmu_object_type_t ot,
 141  144      dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
 142  145  int zap_create_claim_norm(objset_t *ds, uint64_t obj,
 143  146      int normflags, dmu_object_type_t ot,
 144  147      dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
 145  148  
 146  149  /*
 147  150   * The zapobj passed in must be a valid ZAP object for all of the
 148  151   * following routines.
 149  152   */
 150  153  
 151  154  /*
 152  155   * Destroy this zapobj and all its attributes.
 153  156   *
 154  157   * Frees the object number using dmu_object_free.
 155  158   */
 156  159  int zap_destroy(objset_t *ds, uint64_t zapobj, dmu_tx_t *tx);
 157  160  
 158  161  /*
 159  162   * Manipulate attributes.
 160  163   *
 161  164   * 'integer_size' is in bytes, and must be 1, 2, 4, or 8.
 162  165   */
 163  166  
 164  167  /*
 165  168   * Retrieve the contents of the attribute with the given name.
 166  169   *
 167  170   * If the requested attribute does not exist, the call will fail and
 168  171   * return ENOENT.
 169  172   *
 170  173   * If 'integer_size' is smaller than the attribute's integer size, the
 171  174   * call will fail and return EINVAL.
 172  175   *
 173  176   * If 'integer_size' is equal to or larger than the attribute's integer
 174  177   * size, the call will succeed and return 0.  * When converting to a
 175  178   * larger integer size, the integers will be treated as unsigned (ie. no
 176  179   * sign-extension will be performed).
 177  180   *
 178  181   * 'num_integers' is the length (in integers) of 'buf'.
 179  182   *
 180  183   * If the attribute is longer than the buffer, as many integers as will
 181  184   * fit will be transferred to 'buf'.  If the entire attribute was not
 182  185   * transferred, the call will return EOVERFLOW.
 183  186   *
 184  187   * If rn_len is nonzero, realname will be set to the name of the found
 185  188   * entry (which may be different from the requested name if matchtype is
 186  189   * not MT_EXACT).
 187  190   *
 188  191   * If normalization_conflictp is not NULL, it will be set if there is
 189  192   * another name with the same case/unicode normalized form.
 190  193   */
 191  194  int zap_lookup(objset_t *ds, uint64_t zapobj, const char *name,
 192  195      uint64_t integer_size, uint64_t num_integers, void *buf);
 193  196  int zap_lookup_norm(objset_t *ds, uint64_t zapobj, const char *name,
 194  197      uint64_t integer_size, uint64_t num_integers, void *buf,
 195  198      matchtype_t mt, char *realname, int rn_len,
 196  199      boolean_t *normalization_conflictp);
 197  200  int zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 198  201      int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf);
 199  202  int zap_contains(objset_t *ds, uint64_t zapobj, const char *name);
 200  203  int zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 201  204      int key_numints);
 202  205  
 203  206  int zap_count_write(objset_t *os, uint64_t zapobj, const char *name,
 204  207      int add, uint64_t *towrite, uint64_t *tooverwrite);
 205  208  
 206  209  /*
 207  210   * Create an attribute with the given name and value.
 208  211   *
 209  212   * If an attribute with the given name already exists, the call will
 210  213   * fail and return EEXIST.
 211  214   */
 212  215  int zap_add(objset_t *ds, uint64_t zapobj, const char *key,
 213  216      int integer_size, uint64_t num_integers,
 214  217      const void *val, dmu_tx_t *tx);
 215  218  int zap_add_uint64(objset_t *ds, uint64_t zapobj, const uint64_t *key,
 216  219      int key_numints, int integer_size, uint64_t num_integers,
 217  220      const void *val, dmu_tx_t *tx);
 218  221  
 219  222  /*
 220  223   * Set the attribute with the given name to the given value.  If an
 221  224   * attribute with the given name does not exist, it will be created.  If
 222  225   * an attribute with the given name already exists, the previous value
 223  226   * will be overwritten.  The integer_size may be different from the
 224  227   * existing attribute's integer size, in which case the attribute's
 225  228   * integer size will be updated to the new value.
 226  229   */
 227  230  int zap_update(objset_t *ds, uint64_t zapobj, const char *name,
 228  231      int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
 229  232  int zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 230  233      int key_numints,
 231  234      int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
 232  235  
 233  236  /*
 234  237   * Get the length (in integers) and the integer size of the specified
 235  238   * attribute.
 236  239   *
 237  240   * If the requested attribute does not exist, the call will fail and
 238  241   * return ENOENT.
 239  242   */
 240  243  int zap_length(objset_t *ds, uint64_t zapobj, const char *name,
 241  244      uint64_t *integer_size, uint64_t *num_integers);
 242  245  int zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 243  246      int key_numints, uint64_t *integer_size, uint64_t *num_integers);
 244  247  
 245  248  /*
 246  249   * Remove the specified attribute.
 247  250   *
 248  251   * If the specified attribute does not exist, the call will fail and
 249  252   * return ENOENT.
 250  253   */
 251  254  int zap_remove(objset_t *ds, uint64_t zapobj, const char *name, dmu_tx_t *tx);
 252  255  int zap_remove_norm(objset_t *ds, uint64_t zapobj, const char *name,
 253  256      matchtype_t mt, dmu_tx_t *tx);
 254  257  int zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 255  258      int key_numints, dmu_tx_t *tx);
 256  259  
 257  260  /*
 258  261   * Returns (in *count) the number of attributes in the specified zap
 259  262   * object.
 260  263   */
 261  264  int zap_count(objset_t *ds, uint64_t zapobj, uint64_t *count);
 262  265  
 263  266  /*
 264  267   * Returns (in name) the name of the entry whose (value & mask)
 265  268   * (za_first_integer) is value, or ENOENT if not found.  The string
 266  269   * pointed to by name must be at least 256 bytes long.  If mask==0, the
 267  270   * match must be exact (ie, same as mask=-1ULL).
 268  271   */
 269  272  int zap_value_search(objset_t *os, uint64_t zapobj,
 270  273      uint64_t value, uint64_t mask, char *name);
 271  274  
 272  275  /*
 273  276   * Transfer all the entries from fromobj into intoobj.  Only works on
 274  277   * int_size=8 num_integers=1 values.  Fails if there are any duplicated
 275  278   * entries.
 276  279   */
 277  280  int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx);
 278  281  
 279  282  /* Same as zap_join, but set the values to 'value'. */
 280  283  int zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
 281  284      uint64_t value, dmu_tx_t *tx);
 282  285  
 283  286  /* Same as zap_join, but add together any duplicated entries. */
 284  287  int zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
 285  288      dmu_tx_t *tx);
 286  289  
 287  290  /*
 288  291   * Manipulate entries where the name + value are the "same" (the name is
 289  292   * a stringified version of the value).
 290  293   */
 291  294  int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
 292  295  int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
  
    | 
      ↓ open down ↓ | 
    148 lines elided | 
    
      ↑ open up ↑ | 
  
 293  296  int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value);
 294  297  int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
 295  298      dmu_tx_t *tx);
 296  299  
 297  300  /* Here the key is an int and the value is a different int. */
 298  301  int zap_add_int_key(objset_t *os, uint64_t obj,
 299  302      uint64_t key, uint64_t value, dmu_tx_t *tx);
 300  303  int zap_lookup_int_key(objset_t *os, uint64_t obj,
 301  304      uint64_t key, uint64_t *valuep);
 302  305  
 303      -/*
 304      - * They name is a stringified version of key; increment its value by
 305      - * delta.  Zero values will be zap_remove()-ed.
 306      - */
 307      -int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
 308      -    dmu_tx_t *tx);
 309  306  int zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
 310  307      dmu_tx_t *tx);
 311  308  
 312  309  struct zap;
 313  310  struct zap_leaf;
 314  311  typedef struct zap_cursor {
 315  312          /* This structure is opaque! */
 316  313          objset_t *zc_objset;
 317  314          struct zap *zc_zap;
 318  315          struct zap_leaf *zc_leaf;
 319  316          uint64_t zc_zapobj;
 320  317          uint64_t zc_serialized;
 321  318          uint64_t zc_hash;
 322  319          uint32_t zc_cd;
 323  320  } zap_cursor_t;
 324  321  
 325  322  typedef struct {
 326  323          int za_integer_length;
 327  324          /*
 328  325           * za_normalization_conflict will be set if there are additional
 329  326           * entries with this normalized form (eg, "foo" and "Foo").
 330  327           */
 331  328          boolean_t za_normalization_conflict;
 332  329          uint64_t za_num_integers;
 333  330          uint64_t za_first_integer;      /* no sign extension for <8byte ints */
 334  331          char za_name[MAXNAMELEN];
 335  332  } zap_attribute_t;
 336  333  
 337  334  /*
 338  335   * The interface for listing all the attributes of a zapobj can be
 339  336   * thought of as cursor moving down a list of the attributes one by
 340  337   * one.  The cookie returned by the zap_cursor_serialize routine is
 341  338   * persistent across system calls (and across reboot, even).
 342  339   */
 343  340  
 344  341  /*
 345  342   * Initialize a zap cursor, pointing to the "first" attribute of the
 346  343   * zapobj.  You must _fini the cursor when you are done with it.
 347  344   */
 348  345  void zap_cursor_init(zap_cursor_t *zc, objset_t *ds, uint64_t zapobj);
 349  346  void zap_cursor_fini(zap_cursor_t *zc);
 350  347  
 351  348  /*
 352  349   * Get the attribute currently pointed to by the cursor.  Returns
 353  350   * ENOENT if at the end of the attributes.
 354  351   */
 355  352  int zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za);
 356  353  
 357  354  /*
 358  355   * Advance the cursor to the next attribute.
 359  356   */
 360  357  void zap_cursor_advance(zap_cursor_t *zc);
 361  358  
 362  359  /*
 363  360   * Get a persistent cookie pointing to the current position of the zap
 364  361   * cursor.  The low 4 bits in the cookie are always zero, and thus can
 365  362   * be used as to differentiate a serialized cookie from a different type
 366  363   * of value.  The cookie will be less than 2^32 as long as there are
 367  364   * fewer than 2^22 (4.2 million) entries in the zap object.
 368  365   */
 369  366  uint64_t zap_cursor_serialize(zap_cursor_t *zc);
 370  367  
 371  368  /*
 372  369   * Advance the cursor to the attribute having the given key.
 373  370   */
 374  371  int zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt);
 375  372  
 376  373  /*
 377  374   * Initialize a zap cursor pointing to the position recorded by
 378  375   * zap_cursor_serialize (in the "serialized" argument).  You can also
 379  376   * use a "serialized" argument of 0 to start at the beginning of the
 380  377   * zapobj (ie.  zap_cursor_init_serialized(..., 0) is equivalent to
 381  378   * zap_cursor_init(...).)
 382  379   */
 383  380  void zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *ds,
 384  381      uint64_t zapobj, uint64_t serialized);
 385  382  
 386  383  
 387  384  #define ZAP_HISTOGRAM_SIZE 10
 388  385  
 389  386  typedef struct zap_stats {
 390  387          /*
 391  388           * Size of the pointer table (in number of entries).
 392  389           * This is always a power of 2, or zero if it's a microzap.
 393  390           * In general, it should be considerably greater than zs_num_leafs.
 394  391           */
 395  392          uint64_t zs_ptrtbl_len;
 396  393  
 397  394          uint64_t zs_blocksize;          /* size of zap blocks */
 398  395  
 399  396          /*
 400  397           * The number of blocks used.  Note that some blocks may be
 401  398           * wasted because old ptrtbl's and large name/value blocks are
 402  399           * not reused.  (Although their space is reclaimed, we don't
 403  400           * reuse those offsets in the object.)
 404  401           */
 405  402          uint64_t zs_num_blocks;
 406  403  
 407  404          /*
 408  405           * Pointer table values from zap_ptrtbl in the zap_phys_t
 409  406           */
 410  407          uint64_t zs_ptrtbl_nextblk;       /* next (larger) copy start block */
 411  408          uint64_t zs_ptrtbl_blks_copied;   /* number source blocks copied */
 412  409          uint64_t zs_ptrtbl_zt_blk;        /* starting block number */
 413  410          uint64_t zs_ptrtbl_zt_numblks;    /* number of blocks */
 414  411          uint64_t zs_ptrtbl_zt_shift;      /* bits to index it */
 415  412  
 416  413          /*
 417  414           * Values of the other members of the zap_phys_t
 418  415           */
 419  416          uint64_t zs_block_type;         /* ZBT_HEADER */
 420  417          uint64_t zs_magic;              /* ZAP_MAGIC */
 421  418          uint64_t zs_num_leafs;          /* The number of leaf blocks */
 422  419          uint64_t zs_num_entries;        /* The number of zap entries */
 423  420          uint64_t zs_salt;               /* salt to stir into hash function */
 424  421  
 425  422          /*
 426  423           * Histograms.  For all histograms, the last index
 427  424           * (ZAP_HISTOGRAM_SIZE-1) includes any values which are greater
 428  425           * than what can be represented.  For example
 429  426           * zs_leafs_with_n5_entries[ZAP_HISTOGRAM_SIZE-1] is the number
 430  427           * of leafs with more than 45 entries.
 431  428           */
 432  429  
 433  430          /*
 434  431           * zs_leafs_with_n_pointers[n] is the number of leafs with
 435  432           * 2^n pointers to it.
 436  433           */
 437  434          uint64_t zs_leafs_with_2n_pointers[ZAP_HISTOGRAM_SIZE];
 438  435  
 439  436          /*
 440  437           * zs_leafs_with_n_entries[n] is the number of leafs with
 441  438           * [n*5, (n+1)*5) entries.  In the current implementation, there
 442  439           * can be at most 55 entries in any block, but there may be
 443  440           * fewer if the name or value is large, or the block is not
 444  441           * completely full.
 445  442           */
 446  443          uint64_t zs_blocks_with_n5_entries[ZAP_HISTOGRAM_SIZE];
 447  444  
 448  445          /*
 449  446           * zs_leafs_n_tenths_full[n] is the number of leafs whose
 450  447           * fullness is in the range [n/10, (n+1)/10).
 451  448           */
 452  449          uint64_t zs_blocks_n_tenths_full[ZAP_HISTOGRAM_SIZE];
 453  450  
 454  451          /*
 455  452           * zs_entries_using_n_chunks[n] is the number of entries which
 456  453           * consume n 24-byte chunks.  (Note, large names/values only use
 457  454           * one chunk, but contribute to zs_num_blocks_large.)
 458  455           */
 459  456          uint64_t zs_entries_using_n_chunks[ZAP_HISTOGRAM_SIZE];
 460  457  
 461  458          /*
 462  459           * zs_buckets_with_n_entries[n] is the number of buckets (each
 463  460           * leaf has 64 buckets) with n entries.
 464  461           * zs_buckets_with_n_entries[1] should be very close to
 465  462           * zs_num_entries.
 466  463           */
 467  464          uint64_t zs_buckets_with_n_entries[ZAP_HISTOGRAM_SIZE];
 468  465  } zap_stats_t;
 469  466  
 470  467  /*
 471  468   * Get statistics about a ZAP object.  Note: you need to be aware of the
 472  469   * internal implementation of the ZAP to correctly interpret some of the
 473  470   * statistics.  This interface shouldn't be relied on unless you really
 474  471   * know what you're doing.
 475  472   */
 476  473  int zap_get_stats(objset_t *ds, uint64_t zapobj, zap_stats_t *zs);
 477  474  
 478  475  #ifdef  __cplusplus
 479  476  }
 480  477  #endif
 481  478  
 482  479  #endif  /* _SYS_ZAP_H */
  
    | 
      ↓ open down ↓ | 
    164 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX