1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 
  25 #ifndef _SYS_ZAP_H
  26 #define _SYS_ZAP_H
  27 
  28 /*
  29  * ZAP - ZFS Attribute Processor
  30  *
  31  * The ZAP is a module which sits on top of the DMU (Data Management
  32  * Unit) and implements a higher-level storage primitive using DMU
  33  * objects.  Its primary consumer is the ZPL (ZFS Posix Layer).
  34  *
  35  * A "zapobj" is a DMU object which the ZAP uses to stores attributes.
  36  * Users should use only zap routines to access a zapobj - they should
  37  * not access the DMU object directly using DMU routines.
  38  *
  39  * The attributes stored in a zapobj are name-value pairs.  The name is
  40  * a zero-terminated string of up to ZAP_MAXNAMELEN bytes (including
  41  * terminating NULL).  The value is an array of integers, which may be
  42  * 1, 2, 4, or 8 bytes long.  The total space used by the array (number
  43  * of integers * integer length) can be up to ZAP_MAXVALUELEN bytes.
  44  * Note that an 8-byte integer value can be used to store the location
  45  * (object number) of another dmu object (which may be itself a zapobj).
  46  * Note that you can use a zero-length attribute to store a single bit
  47  * of information - the attribute is present or not.
  48  *
  49  * The ZAP routines are thread-safe.  However, you must observe the
  50  * DMU's restriction that a transaction may not be operated on
  51  * concurrently.
  52  *
  53  * Any of the routines that return an int may return an I/O error (EIO
  54  * or ECHECKSUM).
  55  *
  56  *
  57  * Implementation / Performance Notes:
  58  *
  59  * The ZAP is intended to operate most efficiently on attributes with
  60  * short (49 bytes or less) names and single 8-byte values, for which
  61  * the microzap will be used.  The ZAP should be efficient enough so
  62  * that the user does not need to cache these attributes.
  63  *
  64  * The ZAP's locking scheme makes its routines thread-safe.  Operations
  65  * on different zapobjs will be processed concurrently.  Operations on
  66  * the same zapobj which only read data will be processed concurrently.
  67  * Operations on the same zapobj which modify data will be processed
  68  * concurrently when there are many attributes in the zapobj (because
  69  * the ZAP uses per-block locking - more than 128 * (number of cpus)
  70  * small attributes will suffice).
  71  */
  72 
  73 /*
  74  * We're using zero-terminated byte strings (ie. ASCII or UTF-8 C
  75  * strings) for the names of attributes, rather than a byte string
  76  * bounded by an explicit length.  If some day we want to support names
  77  * in character sets which have embedded zeros (eg. UTF-16, UTF-32),
  78  * we'll have to add routines for using length-bounded strings.
  79  */
  80 
  81 #include <sys/dmu.h>
  82 
  83 #ifdef  __cplusplus
  84 extern "C" {
  85 #endif
  86 
  87 /*
  88  * The matchtype specifies which entry will be accessed.
  89  * MT_EXACT: only find an exact match (non-normalized)
  90  * MT_FIRST: find the "first" normalized (case and Unicode
  91  *     form) match; the designated "first" match will not change as long
  92  *     as the set of entries with this normalization doesn't change
  93  * MT_BEST: if there is an exact match, find that, otherwise find the
  94  *     first normalized match
  95  */
  96 typedef enum matchtype
  97 {
  98         MT_EXACT,
  99         MT_BEST,
 100         MT_FIRST
 101 } matchtype_t;
 102 
 103 typedef enum zap_flags {
 104         /* Use 64-bit hash value (serialized cursors will always use 64-bits) */
 105         ZAP_FLAG_HASH64 = 1 << 0,
 106         /* Key is binary, not string (zap_add_uint64() can be used) */
 107         ZAP_FLAG_UINT64_KEY = 1 << 1,
 108         /*
 109          * First word of key (which must be an array of uint64) is
 110          * already randomly distributed.
 111          */
 112         ZAP_FLAG_PRE_HASHED_KEY = 1 << 2,
 113 } zap_flags_t;
 114 
 115 /*
 116  * Create a new zapobj with no attributes and return its object number.
 117  * MT_EXACT will cause the zap object to only support MT_EXACT lookups,
 118  * otherwise any matchtype can be used for lookups.
 119  *
 120  * normflags specifies what normalization will be done.  values are:
 121  * 0: no normalization (legacy on-disk format, supports MT_EXACT matching
 122  *     only)
 123  * U8_TEXTPREP_TOLOWER: case normalization will be performed.
 124  *     MT_FIRST/MT_BEST matching will find entries that match without
 125  *     regard to case (eg. looking for "foo" can find an entry "Foo").
 126  * Eventually, other flags will permit unicode normalization as well.
 127  */
 128 uint64_t zap_create(objset_t *ds, dmu_object_type_t ot,
 129     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
 130 uint64_t zap_create_norm(objset_t *ds, int normflags, dmu_object_type_t ot,
 131     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
 132 uint64_t zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
 133     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
 134     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
 135 
 136 /*
 137  * Create a new zapobj with no attributes from the given (unallocated)
 138  * object number.
 139  */
 140 int zap_create_claim(objset_t *ds, uint64_t obj, dmu_object_type_t ot,
 141     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
 142 int zap_create_claim_norm(objset_t *ds, uint64_t obj,
 143     int normflags, dmu_object_type_t ot,
 144     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
 145 
 146 /*
 147  * The zapobj passed in must be a valid ZAP object for all of the
 148  * following routines.
 149  */
 150 
 151 /*
 152  * Destroy this zapobj and all its attributes.
 153  *
 154  * Frees the object number using dmu_object_free.
 155  */
 156 int zap_destroy(objset_t *ds, uint64_t zapobj, dmu_tx_t *tx);
 157 
 158 /*
 159  * Manipulate attributes.
 160  *
 161  * 'integer_size' is in bytes, and must be 1, 2, 4, or 8.
 162  */
 163 
 164 /*
 165  * Retrieve the contents of the attribute with the given name.
 166  *
 167  * If the requested attribute does not exist, the call will fail and
 168  * return ENOENT.
 169  *
 170  * If 'integer_size' is smaller than the attribute's integer size, the
 171  * call will fail and return EINVAL.
 172  *
 173  * If 'integer_size' is equal to or larger than the attribute's integer
 174  * size, the call will succeed and return 0.  * When converting to a
 175  * larger integer size, the integers will be treated as unsigned (ie. no
 176  * sign-extension will be performed).
 177  *
 178  * 'num_integers' is the length (in integers) of 'buf'.
 179  *
 180  * If the attribute is longer than the buffer, as many integers as will
 181  * fit will be transferred to 'buf'.  If the entire attribute was not
 182  * transferred, the call will return EOVERFLOW.
 183  *
 184  * If rn_len is nonzero, realname will be set to the name of the found
 185  * entry (which may be different from the requested name if matchtype is
 186  * not MT_EXACT).
 187  *
 188  * If normalization_conflictp is not NULL, it will be set if there is
 189  * another name with the same case/unicode normalized form.
 190  */
 191 int zap_lookup(objset_t *ds, uint64_t zapobj, const char *name,
 192     uint64_t integer_size, uint64_t num_integers, void *buf);
 193 int zap_lookup_norm(objset_t *ds, uint64_t zapobj, const char *name,
 194     uint64_t integer_size, uint64_t num_integers, void *buf,
 195     matchtype_t mt, char *realname, int rn_len,
 196     boolean_t *normalization_conflictp);
 197 int zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 198     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf);
 199 int zap_contains(objset_t *ds, uint64_t zapobj, const char *name);
 200 int zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 201     int key_numints);
 202 
 203 int zap_count_write(objset_t *os, uint64_t zapobj, const char *name,
 204     int add, uint64_t *towrite, uint64_t *tooverwrite);
 205 
 206 /*
 207  * Create an attribute with the given name and value.
 208  *
 209  * If an attribute with the given name already exists, the call will
 210  * fail and return EEXIST.
 211  */
 212 int zap_add(objset_t *ds, uint64_t zapobj, const char *key,
 213     int integer_size, uint64_t num_integers,
 214     const void *val, dmu_tx_t *tx);
 215 int zap_add_uint64(objset_t *ds, uint64_t zapobj, const uint64_t *key,
 216     int key_numints, int integer_size, uint64_t num_integers,
 217     const void *val, dmu_tx_t *tx);
 218 
 219 /*
 220  * Set the attribute with the given name to the given value.  If an
 221  * attribute with the given name does not exist, it will be created.  If
 222  * an attribute with the given name already exists, the previous value
 223  * will be overwritten.  The integer_size may be different from the
 224  * existing attribute's integer size, in which case the attribute's
 225  * integer size will be updated to the new value.
 226  */
 227 int zap_update(objset_t *ds, uint64_t zapobj, const char *name,
 228     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
 229 int zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 230     int key_numints,
 231     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
 232 
 233 /*
 234  * Get the length (in integers) and the integer size of the specified
 235  * attribute.
 236  *
 237  * If the requested attribute does not exist, the call will fail and
 238  * return ENOENT.
 239  */
 240 int zap_length(objset_t *ds, uint64_t zapobj, const char *name,
 241     uint64_t *integer_size, uint64_t *num_integers);
 242 int zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 243     int key_numints, uint64_t *integer_size, uint64_t *num_integers);
 244 
 245 /*
 246  * Remove the specified attribute.
 247  *
 248  * If the specified attribute does not exist, the call will fail and
 249  * return ENOENT.
 250  */
 251 int zap_remove(objset_t *ds, uint64_t zapobj, const char *name, dmu_tx_t *tx);
 252 int zap_remove_norm(objset_t *ds, uint64_t zapobj, const char *name,
 253     matchtype_t mt, dmu_tx_t *tx);
 254 int zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 255     int key_numints, dmu_tx_t *tx);
 256 
 257 /*
 258  * Returns (in *count) the number of attributes in the specified zap
 259  * object.
 260  */
 261 int zap_count(objset_t *ds, uint64_t zapobj, uint64_t *count);
 262 
 263 /*
 264  * Returns (in name) the name of the entry whose (value & mask)
 265  * (za_first_integer) is value, or ENOENT if not found.  The string
 266  * pointed to by name must be at least 256 bytes long.  If mask==0, the
 267  * match must be exact (ie, same as mask=-1ULL).
 268  */
 269 int zap_value_search(objset_t *os, uint64_t zapobj,
 270     uint64_t value, uint64_t mask, char *name);
 271 
 272 /*
 273  * Transfer all the entries from fromobj into intoobj.  Only works on
 274  * int_size=8 num_integers=1 values.  Fails if there are any duplicated
 275  * entries.
 276  */
 277 int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx);
 278 
 279 /* Same as zap_join, but set the values to 'value'. */
 280 int zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
 281     uint64_t value, dmu_tx_t *tx);
 282 
 283 /* Same as zap_join, but add together any duplicated entries. */
 284 int zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
 285     dmu_tx_t *tx);
 286 
 287 /*
 288  * Manipulate entries where the name + value are the "same" (the name is
 289  * a stringified version of the value).
 290  */
 291 int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
 292 int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
 293 int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value);
 294 int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
 295     dmu_tx_t *tx);
 296 
 297 /* Here the key is an int and the value is a different int. */
 298 int zap_add_int_key(objset_t *os, uint64_t obj,
 299     uint64_t key, uint64_t value, dmu_tx_t *tx);
 300 int zap_lookup_int_key(objset_t *os, uint64_t obj,
 301     uint64_t key, uint64_t *valuep);
 302 
 303 /*
 304  * They name is a stringified version of key; increment its value by
 305  * delta.  Zero values will be zap_remove()-ed.
 306  */
 307 int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
 308     dmu_tx_t *tx);
 309 int zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
 310     dmu_tx_t *tx);
 311 
 312 struct zap;
 313 struct zap_leaf;
 314 typedef struct zap_cursor {
 315         /* This structure is opaque! */
 316         objset_t *zc_objset;
 317         struct zap *zc_zap;
 318         struct zap_leaf *zc_leaf;
 319         uint64_t zc_zapobj;
 320         uint64_t zc_serialized;
 321         uint64_t zc_hash;
 322         uint32_t zc_cd;
 323 } zap_cursor_t;
 324 
 325 typedef struct {
 326         int za_integer_length;
 327         /*
 328          * za_normalization_conflict will be set if there are additional
 329          * entries with this normalized form (eg, "foo" and "Foo").
 330          */
 331         boolean_t za_normalization_conflict;
 332         uint64_t za_num_integers;
 333         uint64_t za_first_integer;      /* no sign extension for <8byte ints */
 334         char za_name[MAXNAMELEN];
 335 } zap_attribute_t;
 336 
 337 /*
 338  * The interface for listing all the attributes of a zapobj can be
 339  * thought of as cursor moving down a list of the attributes one by
 340  * one.  The cookie returned by the zap_cursor_serialize routine is
 341  * persistent across system calls (and across reboot, even).
 342  */
 343 
 344 /*
 345  * Initialize a zap cursor, pointing to the "first" attribute of the
 346  * zapobj.  You must _fini the cursor when you are done with it.
 347  */
 348 void zap_cursor_init(zap_cursor_t *zc, objset_t *ds, uint64_t zapobj);
 349 void zap_cursor_fini(zap_cursor_t *zc);
 350 
 351 /*
 352  * Get the attribute currently pointed to by the cursor.  Returns
 353  * ENOENT if at the end of the attributes.
 354  */
 355 int zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za);
 356 
 357 /*
 358  * Advance the cursor to the next attribute.
 359  */
 360 void zap_cursor_advance(zap_cursor_t *zc);
 361 
 362 /*
 363  * Get a persistent cookie pointing to the current position of the zap
 364  * cursor.  The low 4 bits in the cookie are always zero, and thus can
 365  * be used as to differentiate a serialized cookie from a different type
 366  * of value.  The cookie will be less than 2^32 as long as there are
 367  * fewer than 2^22 (4.2 million) entries in the zap object.
 368  */
 369 uint64_t zap_cursor_serialize(zap_cursor_t *zc);
 370 
 371 /*
 372  * Advance the cursor to the attribute having the given key.
 373  */
 374 int zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt);
 375 
 376 /*
 377  * Initialize a zap cursor pointing to the position recorded by
 378  * zap_cursor_serialize (in the "serialized" argument).  You can also
 379  * use a "serialized" argument of 0 to start at the beginning of the
 380  * zapobj (ie.  zap_cursor_init_serialized(..., 0) is equivalent to
 381  * zap_cursor_init(...).)
 382  */
 383 void zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *ds,
 384     uint64_t zapobj, uint64_t serialized);
 385 
 386 
 387 #define ZAP_HISTOGRAM_SIZE 10
 388 
 389 typedef struct zap_stats {
 390         /*
 391          * Size of the pointer table (in number of entries).
 392          * This is always a power of 2, or zero if it's a microzap.
 393          * In general, it should be considerably greater than zs_num_leafs.
 394          */
 395         uint64_t zs_ptrtbl_len;
 396 
 397         uint64_t zs_blocksize;          /* size of zap blocks */
 398 
 399         /*
 400          * The number of blocks used.  Note that some blocks may be
 401          * wasted because old ptrtbl's and large name/value blocks are
 402          * not reused.  (Although their space is reclaimed, we don't
 403          * reuse those offsets in the object.)
 404          */
 405         uint64_t zs_num_blocks;
 406 
 407         /*
 408          * Pointer table values from zap_ptrtbl in the zap_phys_t
 409          */
 410         uint64_t zs_ptrtbl_nextblk;       /* next (larger) copy start block */
 411         uint64_t zs_ptrtbl_blks_copied;   /* number source blocks copied */
 412         uint64_t zs_ptrtbl_zt_blk;        /* starting block number */
 413         uint64_t zs_ptrtbl_zt_numblks;    /* number of blocks */
 414         uint64_t zs_ptrtbl_zt_shift;      /* bits to index it */
 415 
 416         /*
 417          * Values of the other members of the zap_phys_t
 418          */
 419         uint64_t zs_block_type;         /* ZBT_HEADER */
 420         uint64_t zs_magic;              /* ZAP_MAGIC */
 421         uint64_t zs_num_leafs;          /* The number of leaf blocks */
 422         uint64_t zs_num_entries;        /* The number of zap entries */
 423         uint64_t zs_salt;               /* salt to stir into hash function */
 424 
 425         /*
 426          * Histograms.  For all histograms, the last index
 427          * (ZAP_HISTOGRAM_SIZE-1) includes any values which are greater
 428          * than what can be represented.  For example
 429          * zs_leafs_with_n5_entries[ZAP_HISTOGRAM_SIZE-1] is the number
 430          * of leafs with more than 45 entries.
 431          */
 432 
 433         /*
 434          * zs_leafs_with_n_pointers[n] is the number of leafs with
 435          * 2^n pointers to it.
 436          */
 437         uint64_t zs_leafs_with_2n_pointers[ZAP_HISTOGRAM_SIZE];
 438 
 439         /*
 440          * zs_leafs_with_n_entries[n] is the number of leafs with
 441          * [n*5, (n+1)*5) entries.  In the current implementation, there
 442          * can be at most 55 entries in any block, but there may be
 443          * fewer if the name or value is large, or the block is not
 444          * completely full.
 445          */
 446         uint64_t zs_blocks_with_n5_entries[ZAP_HISTOGRAM_SIZE];
 447 
 448         /*
 449          * zs_leafs_n_tenths_full[n] is the number of leafs whose
 450          * fullness is in the range [n/10, (n+1)/10).
 451          */
 452         uint64_t zs_blocks_n_tenths_full[ZAP_HISTOGRAM_SIZE];
 453 
 454         /*
 455          * zs_entries_using_n_chunks[n] is the number of entries which
 456          * consume n 24-byte chunks.  (Note, large names/values only use
 457          * one chunk, but contribute to zs_num_blocks_large.)
 458          */
 459         uint64_t zs_entries_using_n_chunks[ZAP_HISTOGRAM_SIZE];
 460 
 461         /*
 462          * zs_buckets_with_n_entries[n] is the number of buckets (each
 463          * leaf has 64 buckets) with n entries.
 464          * zs_buckets_with_n_entries[1] should be very close to
 465          * zs_num_entries.
 466          */
 467         uint64_t zs_buckets_with_n_entries[ZAP_HISTOGRAM_SIZE];
 468 } zap_stats_t;
 469 
 470 /*
 471  * Get statistics about a ZAP object.  Note: you need to be aware of the
 472  * internal implementation of the ZAP to correctly interpret some of the
 473  * statistics.  This interface shouldn't be relied on unless you really
 474  * know what you're doing.
 475  */
 476 int zap_get_stats(objset_t *ds, uint64_t zapobj, zap_stats_t *zs);
 477 
 478 #ifdef  __cplusplus
 479 }
 480 #endif
 481 
 482 #endif  /* _SYS_ZAP_H */