1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  25  * Copyright (c) 2012 by Delphix. All rights reserved.
  26  */
  27 
  28 /*
  29  * This file contains all the routines used when modifying on-disk SPA state.
  30  * This includes opening, importing, destroying, exporting a pool, and syncing a
  31  * pool.
  32  */
  33 
  34 #include <sys/zfs_context.h>
  35 #include <sys/fm/fs/zfs.h>
  36 #include <sys/spa_impl.h>
  37 #include <sys/zio.h>
  38 #include <sys/zio_checksum.h>
  39 #include <sys/dmu.h>
  40 #include <sys/dmu_tx.h>
  41 #include <sys/zap.h>
  42 #include <sys/zil.h>
  43 #include <sys/ddt.h>
  44 #include <sys/vdev_impl.h>
  45 #include <sys/metaslab.h>
  46 #include <sys/metaslab_impl.h>
  47 #include <sys/uberblock_impl.h>
  48 #include <sys/txg.h>
  49 #include <sys/avl.h>
  50 #include <sys/dmu_traverse.h>
  51 #include <sys/dmu_objset.h>
  52 #include <sys/unique.h>
  53 #include <sys/dsl_pool.h>
  54 #include <sys/dsl_dataset.h>
  55 #include <sys/dsl_dir.h>
  56 #include <sys/dsl_prop.h>
  57 #include <sys/dsl_synctask.h>
  58 #include <sys/fs/zfs.h>
  59 #include <sys/arc.h>
  60 #include <sys/callb.h>
  61 #include <sys/systeminfo.h>
  62 #include <sys/spa_boot.h>
  63 #include <sys/zfs_ioctl.h>
  64 #include <sys/dsl_scan.h>
  65 
  66 #ifdef  _KERNEL
  67 #include <sys/bootprops.h>
  68 #include <sys/callb.h>
  69 #include <sys/cpupart.h>
  70 #include <sys/pool.h>
  71 #include <sys/sysdc.h>
  72 #include <sys/zone.h>
  73 #endif  /* _KERNEL */
  74 
  75 #include "zfs_prop.h"
  76 #include "zfs_comutil.h"
  77 
  78 typedef enum zti_modes {
  79         zti_mode_fixed,                 /* value is # of threads (min 1) */
  80         zti_mode_online_percent,        /* value is % of online CPUs */
  81         zti_mode_batch,                 /* cpu-intensive; value is ignored */
  82         zti_mode_null,                  /* don't create a taskq */
  83         zti_nmodes
  84 } zti_modes_t;
  85 
  86 #define ZTI_FIX(n)      { zti_mode_fixed, (n) }
  87 #define ZTI_PCT(n)      { zti_mode_online_percent, (n) }
  88 #define ZTI_BATCH       { zti_mode_batch, 0 }
  89 #define ZTI_NULL        { zti_mode_null, 0 }
  90 
  91 #define ZTI_ONE         ZTI_FIX(1)
  92 
  93 typedef struct zio_taskq_info {
  94         enum zti_modes zti_mode;
  95         uint_t zti_value;
  96 } zio_taskq_info_t;
  97 
  98 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
  99         "issue", "issue_high", "intr", "intr_high"
 100 };
 101 
 102 /*
 103  * Define the taskq threads for the following I/O types:
 104  *      NULL, READ, WRITE, FREE, CLAIM, and IOCTL
 105  */
 106 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
 107         /* ISSUE        ISSUE_HIGH      INTR            INTR_HIGH */
 108         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL },
 109         { ZTI_FIX(8),   ZTI_NULL,       ZTI_BATCH,      ZTI_NULL },
 110         { ZTI_BATCH,    ZTI_FIX(5),     ZTI_FIX(8),     ZTI_FIX(5) },
 111         { ZTI_FIX(100), ZTI_NULL,       ZTI_ONE,        ZTI_NULL },
 112         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL },
 113         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL },
 114 };
 115 
 116 static dsl_syncfunc_t spa_sync_props;
 117 static boolean_t spa_has_active_shared_spare(spa_t *spa);
 118 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
 119     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
 120     char **ereport);
 121 static void spa_vdev_resilver_done(spa_t *spa);
 122 
 123 uint_t          zio_taskq_batch_pct = 100;      /* 1 thread per cpu in pset */
 124 id_t            zio_taskq_psrset_bind = PS_NONE;
 125 boolean_t       zio_taskq_sysdc = B_TRUE;       /* use SDC scheduling class */
 126 uint_t          zio_taskq_basedc = 80;          /* base duty cycle */
 127 
 128 boolean_t       spa_create_process = B_TRUE;    /* no process ==> no sysdc */
 129 
 130 /*
 131  * This (illegal) pool name is used when temporarily importing a spa_t in order
 132  * to get the vdev stats associated with the imported devices.
 133  */
 134 #define TRYIMPORT_NAME  "$import"
 135 
 136 /*
 137  * ==========================================================================
 138  * SPA properties routines
 139  * ==========================================================================
 140  */
 141 
 142 /*
 143  * Add a (source=src, propname=propval) list to an nvlist.
 144  */
 145 static void
 146 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
 147     uint64_t intval, zprop_source_t src)
 148 {
 149         const char *propname = zpool_prop_to_name(prop);
 150         nvlist_t *propval;
 151 
 152         VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 153         VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
 154 
 155         if (strval != NULL)
 156                 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
 157         else
 158                 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
 159 
 160         VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
 161         nvlist_free(propval);
 162 }
 163 
 164 /*
 165  * Get property values from the spa configuration.
 166  */
 167 static void
 168 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
 169 {
 170         vdev_t *rvd = spa->spa_root_vdev;
 171         uint64_t size;
 172         uint64_t alloc;
 173         uint64_t space;
 174         uint64_t cap, version;
 175         zprop_source_t src = ZPROP_SRC_NONE;
 176         spa_config_dirent_t *dp;
 177 
 178         ASSERT(MUTEX_HELD(&spa->spa_props_lock));
 179 
 180         if (rvd != NULL) {
 181                 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
 182                 size = metaslab_class_get_space(spa_normal_class(spa));
 183                 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
 184                 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
 185                 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
 186                 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
 187                     size - alloc, src);
 188 
 189                 space = 0;
 190                 for (int c = 0; c < rvd->vdev_children; c++) {
 191                         vdev_t *tvd = rvd->vdev_child[c];
 192                         space += tvd->vdev_max_asize - tvd->vdev_asize;
 193                 }
 194                 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
 195                     src);
 196 
 197                 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
 198                     (spa_mode(spa) == FREAD), src);
 199 
 200                 cap = (size == 0) ? 0 : (alloc * 100 / size);
 201                 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
 202 
 203                 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
 204                     ddt_get_pool_dedup_ratio(spa), src);
 205 
 206                 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
 207                     rvd->vdev_state, src);
 208 
 209                 version = spa_version(spa);
 210                 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
 211                         src = ZPROP_SRC_DEFAULT;
 212                 else
 213                         src = ZPROP_SRC_LOCAL;
 214                 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
 215         }
 216 
 217         spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
 218 
 219         if (spa->spa_comment != NULL) {
 220                 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
 221                     0, ZPROP_SRC_LOCAL);
 222         }
 223 
 224         if (spa->spa_root != NULL)
 225                 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
 226                     0, ZPROP_SRC_LOCAL);
 227 
 228         if ((dp = list_head(&spa->spa_config_list)) != NULL) {
 229                 if (dp->scd_path == NULL) {
 230                         spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 231                             "none", 0, ZPROP_SRC_LOCAL);
 232                 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
 233                         spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 234                             dp->scd_path, 0, ZPROP_SRC_LOCAL);
 235                 }
 236         }
 237 }
 238 
 239 /*
 240  * Get zpool property values.
 241  */
 242 int
 243 spa_prop_get(spa_t *spa, nvlist_t **nvp)
 244 {
 245         objset_t *mos = spa->spa_meta_objset;
 246         zap_cursor_t zc;
 247         zap_attribute_t za;
 248         int err;
 249 
 250         VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 251 
 252         mutex_enter(&spa->spa_props_lock);
 253 
 254         /*
 255          * Get properties from the spa config.
 256          */
 257         spa_prop_get_config(spa, nvp);
 258 
 259         /* If no pool property object, no more prop to get. */
 260         if (mos == NULL || spa->spa_pool_props_object == 0) {
 261                 mutex_exit(&spa->spa_props_lock);
 262                 return (0);
 263         }
 264 
 265         /*
 266          * Get properties from the MOS pool property object.
 267          */
 268         for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
 269             (err = zap_cursor_retrieve(&zc, &za)) == 0;
 270             zap_cursor_advance(&zc)) {
 271                 uint64_t intval = 0;
 272                 char *strval = NULL;
 273                 zprop_source_t src = ZPROP_SRC_DEFAULT;
 274                 zpool_prop_t prop;
 275 
 276                 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
 277                         continue;
 278 
 279                 switch (za.za_integer_length) {
 280                 case 8:
 281                         /* integer property */
 282                         if (za.za_first_integer !=
 283                             zpool_prop_default_numeric(prop))
 284                                 src = ZPROP_SRC_LOCAL;
 285 
 286                         if (prop == ZPOOL_PROP_BOOTFS) {
 287                                 dsl_pool_t *dp;
 288                                 dsl_dataset_t *ds = NULL;
 289 
 290                                 dp = spa_get_dsl(spa);
 291                                 rw_enter(&dp->dp_config_rwlock, RW_READER);
 292                                 if (err = dsl_dataset_hold_obj(dp,
 293                                     za.za_first_integer, FTAG, &ds)) {
 294                                         rw_exit(&dp->dp_config_rwlock);
 295                                         break;
 296                                 }
 297 
 298                                 strval = kmem_alloc(
 299                                     MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
 300                                     KM_SLEEP);
 301                                 dsl_dataset_name(ds, strval);
 302                                 dsl_dataset_rele(ds, FTAG);
 303                                 rw_exit(&dp->dp_config_rwlock);
 304                         } else {
 305                                 strval = NULL;
 306                                 intval = za.za_first_integer;
 307                         }
 308 
 309                         spa_prop_add_list(*nvp, prop, strval, intval, src);
 310 
 311                         if (strval != NULL)
 312                                 kmem_free(strval,
 313                                     MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
 314 
 315                         break;
 316 
 317                 case 1:
 318                         /* string property */
 319                         strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
 320                         err = zap_lookup(mos, spa->spa_pool_props_object,
 321                             za.za_name, 1, za.za_num_integers, strval);
 322                         if (err) {
 323                                 kmem_free(strval, za.za_num_integers);
 324                                 break;
 325                         }
 326                         spa_prop_add_list(*nvp, prop, strval, 0, src);
 327                         kmem_free(strval, za.za_num_integers);
 328                         break;
 329 
 330                 default:
 331                         break;
 332                 }
 333         }
 334         zap_cursor_fini(&zc);
 335         mutex_exit(&spa->spa_props_lock);
 336 out:
 337         if (err && err != ENOENT) {
 338                 nvlist_free(*nvp);
 339                 *nvp = NULL;
 340                 return (err);
 341         }
 342 
 343         return (0);
 344 }
 345 
 346 /*
 347  * Validate the given pool properties nvlist and modify the list
 348  * for the property values to be set.
 349  */
 350 static int
 351 spa_prop_validate(spa_t *spa, nvlist_t *props)
 352 {
 353         nvpair_t *elem;
 354         int error = 0, reset_bootfs = 0;
 355         uint64_t objnum;
 356 
 357         elem = NULL;
 358         while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
 359                 zpool_prop_t prop;
 360                 char *propname, *strval;
 361                 uint64_t intval;
 362                 objset_t *os;
 363                 char *slash, *check;
 364 
 365                 propname = nvpair_name(elem);
 366 
 367                 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
 368                         return (EINVAL);
 369 
 370                 switch (prop) {
 371                 case ZPOOL_PROP_VERSION:
 372                         error = nvpair_value_uint64(elem, &intval);
 373                         if (!error &&
 374                             (intval < spa_version(spa) || intval > SPA_VERSION))
 375                                 error = EINVAL;
 376                         break;
 377 
 378                 case ZPOOL_PROP_DELEGATION:
 379                 case ZPOOL_PROP_AUTOREPLACE:
 380                 case ZPOOL_PROP_LISTSNAPS:
 381                 case ZPOOL_PROP_AUTOEXPAND:
 382                         error = nvpair_value_uint64(elem, &intval);
 383                         if (!error && intval > 1)
 384                                 error = EINVAL;
 385                         break;
 386 
 387                 case ZPOOL_PROP_BOOTFS:
 388                         /*
 389                          * If the pool version is less than SPA_VERSION_BOOTFS,
 390                          * or the pool is still being created (version == 0),
 391                          * the bootfs property cannot be set.
 392                          */
 393                         if (spa_version(spa) < SPA_VERSION_BOOTFS) {
 394                                 error = ENOTSUP;
 395                                 break;
 396                         }
 397 
 398                         /*
 399                          * Make sure the vdev config is bootable
 400                          */
 401                         if (!vdev_is_bootable(spa->spa_root_vdev)) {
 402                                 error = ENOTSUP;
 403                                 break;
 404                         }
 405 
 406                         reset_bootfs = 1;
 407 
 408                         error = nvpair_value_string(elem, &strval);
 409 
 410                         if (!error) {
 411                                 uint64_t compress;
 412 
 413                                 if (strval == NULL || strval[0] == '\0') {
 414                                         objnum = zpool_prop_default_numeric(
 415                                             ZPOOL_PROP_BOOTFS);
 416                                         break;
 417                                 }
 418 
 419                                 if (error = dmu_objset_hold(strval, FTAG, &os))
 420                                         break;
 421 
 422                                 /* Must be ZPL and not gzip compressed. */
 423 
 424                                 if (dmu_objset_type(os) != DMU_OST_ZFS) {
 425                                         error = ENOTSUP;
 426                                 } else if ((error = dsl_prop_get_integer(strval,
 427                                     zfs_prop_to_name(ZFS_PROP_COMPRESSION),
 428                                     &compress, NULL)) == 0 &&
 429                                     !BOOTFS_COMPRESS_VALID(compress)) {
 430                                         error = ENOTSUP;
 431                                 } else {
 432                                         objnum = dmu_objset_id(os);
 433                                 }
 434                                 dmu_objset_rele(os, FTAG);
 435                         }
 436                         break;
 437 
 438                 case ZPOOL_PROP_FAILUREMODE:
 439                         error = nvpair_value_uint64(elem, &intval);
 440                         if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
 441                             intval > ZIO_FAILURE_MODE_PANIC))
 442                                 error = EINVAL;
 443 
 444                         /*
 445                          * This is a special case which only occurs when
 446                          * the pool has completely failed. This allows
 447                          * the user to change the in-core failmode property
 448                          * without syncing it out to disk (I/Os might
 449                          * currently be blocked). We do this by returning
 450                          * EIO to the caller (spa_prop_set) to trick it
 451                          * into thinking we encountered a property validation
 452                          * error.
 453                          */
 454                         if (!error && spa_suspended(spa)) {
 455                                 spa->spa_failmode = intval;
 456                                 error = EIO;
 457                         }
 458                         break;
 459 
 460                 case ZPOOL_PROP_CACHEFILE:
 461                         if ((error = nvpair_value_string(elem, &strval)) != 0)
 462                                 break;
 463 
 464                         if (strval[0] == '\0')
 465                                 break;
 466 
 467                         if (strcmp(strval, "none") == 0)
 468                                 break;
 469 
 470                         if (strval[0] != '/') {
 471                                 error = EINVAL;
 472                                 break;
 473                         }
 474 
 475                         slash = strrchr(strval, '/');
 476                         ASSERT(slash != NULL);
 477 
 478                         if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
 479                             strcmp(slash, "/..") == 0)
 480                                 error = EINVAL;
 481                         break;
 482 
 483                 case ZPOOL_PROP_COMMENT:
 484                         if ((error = nvpair_value_string(elem, &strval)) != 0)
 485                                 break;
 486                         for (check = strval; *check != '\0'; check++) {
 487                                 /*
 488                                  * The kernel doesn't have an easy isprint()
 489                                  * check.  For this kernel check, we merely
 490                                  * check ASCII apart from DEL.  Fix this if
 491                                  * there is an easy-to-use kernel isprint().
 492                                  */
 493                                 if (*check >= 0x7f) {
 494                                         error = EINVAL;
 495                                         break;
 496                                 }
 497                                 check++;
 498                         }
 499                         if (strlen(strval) > ZPROP_MAX_COMMENT)
 500                                 error = E2BIG;
 501                         break;
 502 
 503                 case ZPOOL_PROP_DEDUPDITTO:
 504                         if (spa_version(spa) < SPA_VERSION_DEDUP)
 505                                 error = ENOTSUP;
 506                         else
 507                                 error = nvpair_value_uint64(elem, &intval);
 508                         if (error == 0 &&
 509                             intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
 510                                 error = EINVAL;
 511                         break;
 512                 }
 513 
 514                 if (error)
 515                         break;
 516         }
 517 
 518         if (!error && reset_bootfs) {
 519                 error = nvlist_remove(props,
 520                     zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
 521 
 522                 if (!error) {
 523                         error = nvlist_add_uint64(props,
 524                             zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
 525                 }
 526         }
 527 
 528         return (error);
 529 }
 530 
 531 void
 532 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
 533 {
 534         char *cachefile;
 535         spa_config_dirent_t *dp;
 536 
 537         if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
 538             &cachefile) != 0)
 539                 return;
 540 
 541         dp = kmem_alloc(sizeof (spa_config_dirent_t),
 542             KM_SLEEP);
 543 
 544         if (cachefile[0] == '\0')
 545                 dp->scd_path = spa_strdup(spa_config_path);
 546         else if (strcmp(cachefile, "none") == 0)
 547                 dp->scd_path = NULL;
 548         else
 549                 dp->scd_path = spa_strdup(cachefile);
 550 
 551         list_insert_head(&spa->spa_config_list, dp);
 552         if (need_sync)
 553                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
 554 }
 555 
 556 int
 557 spa_prop_set(spa_t *spa, nvlist_t *nvp)
 558 {
 559         int error;
 560         nvpair_t *elem;
 561         boolean_t need_sync = B_FALSE;
 562         zpool_prop_t prop;
 563 
 564         if ((error = spa_prop_validate(spa, nvp)) != 0)
 565                 return (error);
 566 
 567         elem = NULL;
 568         while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
 569                 if ((prop = zpool_name_to_prop(
 570                     nvpair_name(elem))) == ZPROP_INVAL)
 571                         return (EINVAL);
 572 
 573                 if (prop == ZPOOL_PROP_CACHEFILE ||
 574                     prop == ZPOOL_PROP_ALTROOT ||
 575                     prop == ZPOOL_PROP_READONLY)
 576                         continue;
 577 
 578                 need_sync = B_TRUE;
 579                 break;
 580         }
 581 
 582         if (need_sync)
 583                 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
 584                     spa, nvp, 3));
 585         else
 586                 return (0);
 587 }
 588 
 589 /*
 590  * If the bootfs property value is dsobj, clear it.
 591  */
 592 void
 593 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
 594 {
 595         if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
 596                 VERIFY(zap_remove(spa->spa_meta_objset,
 597                     spa->spa_pool_props_object,
 598                     zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
 599                 spa->spa_bootfs = 0;
 600         }
 601 }
 602 
 603 /*
 604  * Change the GUID for the pool.  This is done so that we can later
 605  * re-import a pool built from a clone of our own vdevs.  We will modify
 606  * the root vdev's guid, our own pool guid, and then mark all of our
 607  * vdevs dirty.  Note that we must make sure that all our vdevs are
 608  * online when we do this, or else any vdevs that weren't present
 609  * would be orphaned from our pool.  We are also going to issue a
 610  * sysevent to update any watchers.
 611  */
 612 int
 613 spa_change_guid(spa_t *spa)
 614 {
 615         uint64_t        oldguid, newguid;
 616         uint64_t        txg;
 617 
 618         if (!(spa_mode_global & FWRITE))
 619                 return (EROFS);
 620 
 621         txg = spa_vdev_enter(spa);
 622 
 623         if (spa->spa_root_vdev->vdev_state != VDEV_STATE_HEALTHY)
 624                 return (spa_vdev_exit(spa, NULL, txg, ENXIO));
 625 
 626         oldguid = spa_guid(spa);
 627         newguid = spa_generate_guid(NULL);
 628         ASSERT3U(oldguid, !=, newguid);
 629 
 630         spa->spa_root_vdev->vdev_guid = newguid;
 631         spa->spa_root_vdev->vdev_guid_sum += (newguid - oldguid);
 632 
 633         vdev_config_dirty(spa->spa_root_vdev);
 634 
 635         spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
 636 
 637         return (spa_vdev_exit(spa, NULL, txg, 0));
 638 }
 639 
 640 /*
 641  * ==========================================================================
 642  * SPA state manipulation (open/create/destroy/import/export)
 643  * ==========================================================================
 644  */
 645 
 646 static int
 647 spa_error_entry_compare(const void *a, const void *b)
 648 {
 649         spa_error_entry_t *sa = (spa_error_entry_t *)a;
 650         spa_error_entry_t *sb = (spa_error_entry_t *)b;
 651         int ret;
 652 
 653         ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
 654             sizeof (zbookmark_t));
 655 
 656         if (ret < 0)
 657                 return (-1);
 658         else if (ret > 0)
 659                 return (1);
 660         else
 661                 return (0);
 662 }
 663 
 664 /*
 665  * Utility function which retrieves copies of the current logs and
 666  * re-initializes them in the process.
 667  */
 668 void
 669 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
 670 {
 671         ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
 672 
 673         bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
 674         bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
 675 
 676         avl_create(&spa->spa_errlist_scrub,
 677             spa_error_entry_compare, sizeof (spa_error_entry_t),
 678             offsetof(spa_error_entry_t, se_avl));
 679         avl_create(&spa->spa_errlist_last,
 680             spa_error_entry_compare, sizeof (spa_error_entry_t),
 681             offsetof(spa_error_entry_t, se_avl));
 682 }
 683 
 684 static taskq_t *
 685 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
 686     uint_t value)
 687 {
 688         uint_t flags = 0;
 689         boolean_t batch = B_FALSE;
 690 
 691         switch (mode) {
 692         case zti_mode_null:
 693                 return (NULL);          /* no taskq needed */
 694 
 695         case zti_mode_fixed:
 696                 ASSERT3U(value, >=, 1);
 697                 value = MAX(value, 1);
 698                 break;
 699 
 700         case zti_mode_batch:
 701                 batch = B_TRUE;
 702                 flags |= TASKQ_THREADS_CPU_PCT;
 703                 value = zio_taskq_batch_pct;
 704                 break;
 705 
 706         case zti_mode_online_percent:
 707                 flags |= TASKQ_THREADS_CPU_PCT;
 708                 break;
 709 
 710         default:
 711                 panic("unrecognized mode for %s taskq (%u:%u) in "
 712                     "spa_activate()",
 713                     name, mode, value);
 714                 break;
 715         }
 716 
 717         if (zio_taskq_sysdc && spa->spa_proc != &p0) {
 718                 if (batch)
 719                         flags |= TASKQ_DC_BATCH;
 720 
 721                 return (taskq_create_sysdc(name, value, 50, INT_MAX,
 722                     spa->spa_proc, zio_taskq_basedc, flags));
 723         }
 724         return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
 725             spa->spa_proc, flags));
 726 }
 727 
 728 static void
 729 spa_create_zio_taskqs(spa_t *spa)
 730 {
 731         for (int t = 0; t < ZIO_TYPES; t++) {
 732                 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
 733                         const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
 734                         enum zti_modes mode = ztip->zti_mode;
 735                         uint_t value = ztip->zti_value;
 736                         char name[32];
 737 
 738                         (void) snprintf(name, sizeof (name),
 739                             "%s_%s", zio_type_name[t], zio_taskq_types[q]);
 740 
 741                         spa->spa_zio_taskq[t][q] =
 742                             spa_taskq_create(spa, name, mode, value);
 743                 }
 744         }
 745 }
 746 
 747 #ifdef _KERNEL
 748 static void
 749 spa_thread(void *arg)
 750 {
 751         callb_cpr_t cprinfo;
 752 
 753         spa_t *spa = arg;
 754         user_t *pu = PTOU(curproc);
 755 
 756         CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
 757             spa->spa_name);
 758 
 759         ASSERT(curproc != &p0);
 760         (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
 761             "zpool-%s", spa->spa_name);
 762         (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
 763 
 764         /* bind this thread to the requested psrset */
 765         if (zio_taskq_psrset_bind != PS_NONE) {
 766                 pool_lock();
 767                 mutex_enter(&cpu_lock);
 768                 mutex_enter(&pidlock);
 769                 mutex_enter(&curproc->p_lock);
 770 
 771                 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
 772                     0, NULL, NULL) == 0)  {
 773                         curthread->t_bind_pset = zio_taskq_psrset_bind;
 774                 } else {
 775                         cmn_err(CE_WARN,
 776                             "Couldn't bind process for zfs pool \"%s\" to "
 777                             "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
 778                 }
 779 
 780                 mutex_exit(&curproc->p_lock);
 781                 mutex_exit(&pidlock);
 782                 mutex_exit(&cpu_lock);
 783                 pool_unlock();
 784         }
 785 
 786         if (zio_taskq_sysdc) {
 787                 sysdc_thread_enter(curthread, 100, 0);
 788         }
 789 
 790         spa->spa_proc = curproc;
 791         spa->spa_did = curthread->t_did;
 792 
 793         spa_create_zio_taskqs(spa);
 794 
 795         mutex_enter(&spa->spa_proc_lock);
 796         ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
 797 
 798         spa->spa_proc_state = SPA_PROC_ACTIVE;
 799         cv_broadcast(&spa->spa_proc_cv);
 800 
 801         CALLB_CPR_SAFE_BEGIN(&cprinfo);
 802         while (spa->spa_proc_state == SPA_PROC_ACTIVE)
 803                 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
 804         CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
 805 
 806         ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
 807         spa->spa_proc_state = SPA_PROC_GONE;
 808         spa->spa_proc = &p0;
 809         cv_broadcast(&spa->spa_proc_cv);
 810         CALLB_CPR_EXIT(&cprinfo);   /* drops spa_proc_lock */
 811 
 812         mutex_enter(&curproc->p_lock);
 813         lwp_exit();
 814 }
 815 #endif
 816 
 817 /*
 818  * Activate an uninitialized pool.
 819  */
 820 static void
 821 spa_activate(spa_t *spa, int mode)
 822 {
 823         ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
 824 
 825         spa->spa_state = POOL_STATE_ACTIVE;
 826         spa->spa_mode = mode;
 827 
 828         spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
 829         spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
 830 
 831         /* Try to create a covering process */
 832         mutex_enter(&spa->spa_proc_lock);
 833         ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
 834         ASSERT(spa->spa_proc == &p0);
 835         spa->spa_did = 0;
 836 
 837         /* Only create a process if we're going to be around a while. */
 838         if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
 839                 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
 840                     NULL, 0) == 0) {
 841                         spa->spa_proc_state = SPA_PROC_CREATED;
 842                         while (spa->spa_proc_state == SPA_PROC_CREATED) {
 843                                 cv_wait(&spa->spa_proc_cv,
 844                                     &spa->spa_proc_lock);
 845                         }
 846                         ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
 847                         ASSERT(spa->spa_proc != &p0);
 848                         ASSERT(spa->spa_did != 0);
 849                 } else {
 850 #ifdef _KERNEL
 851                         cmn_err(CE_WARN,
 852                             "Couldn't create process for zfs pool \"%s\"\n",
 853                             spa->spa_name);
 854 #endif
 855                 }
 856         }
 857         mutex_exit(&spa->spa_proc_lock);
 858 
 859         /* If we didn't create a process, we need to create our taskqs. */
 860         if (spa->spa_proc == &p0) {
 861                 spa_create_zio_taskqs(spa);
 862         }
 863 
 864         list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
 865             offsetof(vdev_t, vdev_config_dirty_node));
 866         list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
 867             offsetof(vdev_t, vdev_state_dirty_node));
 868 
 869         txg_list_create(&spa->spa_vdev_txg_list,
 870             offsetof(struct vdev, vdev_txg_node));
 871 
 872         avl_create(&spa->spa_errlist_scrub,
 873             spa_error_entry_compare, sizeof (spa_error_entry_t),
 874             offsetof(spa_error_entry_t, se_avl));
 875         avl_create(&spa->spa_errlist_last,
 876             spa_error_entry_compare, sizeof (spa_error_entry_t),
 877             offsetof(spa_error_entry_t, se_avl));
 878 }
 879 
 880 /*
 881  * Opposite of spa_activate().
 882  */
 883 static void
 884 spa_deactivate(spa_t *spa)
 885 {
 886         ASSERT(spa->spa_sync_on == B_FALSE);
 887         ASSERT(spa->spa_dsl_pool == NULL);
 888         ASSERT(spa->spa_root_vdev == NULL);
 889         ASSERT(spa->spa_async_zio_root == NULL);
 890         ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
 891 
 892         txg_list_destroy(&spa->spa_vdev_txg_list);
 893 
 894         list_destroy(&spa->spa_config_dirty_list);
 895         list_destroy(&spa->spa_state_dirty_list);
 896 
 897         for (int t = 0; t < ZIO_TYPES; t++) {
 898                 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
 899                         if (spa->spa_zio_taskq[t][q] != NULL)
 900                                 taskq_destroy(spa->spa_zio_taskq[t][q]);
 901                         spa->spa_zio_taskq[t][q] = NULL;
 902                 }
 903         }
 904 
 905         metaslab_class_destroy(spa->spa_normal_class);
 906         spa->spa_normal_class = NULL;
 907 
 908         metaslab_class_destroy(spa->spa_log_class);
 909         spa->spa_log_class = NULL;
 910 
 911         /*
 912          * If this was part of an import or the open otherwise failed, we may
 913          * still have errors left in the queues.  Empty them just in case.
 914          */
 915         spa_errlog_drain(spa);
 916 
 917         avl_destroy(&spa->spa_errlist_scrub);
 918         avl_destroy(&spa->spa_errlist_last);
 919 
 920         spa->spa_state = POOL_STATE_UNINITIALIZED;
 921 
 922         mutex_enter(&spa->spa_proc_lock);
 923         if (spa->spa_proc_state != SPA_PROC_NONE) {
 924                 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
 925                 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
 926                 cv_broadcast(&spa->spa_proc_cv);
 927                 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
 928                         ASSERT(spa->spa_proc != &p0);
 929                         cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
 930                 }
 931                 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
 932                 spa->spa_proc_state = SPA_PROC_NONE;
 933         }
 934         ASSERT(spa->spa_proc == &p0);
 935         mutex_exit(&spa->spa_proc_lock);
 936 
 937         /*
 938          * We want to make sure spa_thread() has actually exited the ZFS
 939          * module, so that the module can't be unloaded out from underneath
 940          * it.
 941          */
 942         if (spa->spa_did != 0) {
 943                 thread_join(spa->spa_did);
 944                 spa->spa_did = 0;
 945         }
 946 }
 947 
 948 /*
 949  * Verify a pool configuration, and construct the vdev tree appropriately.  This
 950  * will create all the necessary vdevs in the appropriate layout, with each vdev
 951  * in the CLOSED state.  This will prep the pool before open/creation/import.
 952  * All vdev validation is done by the vdev_alloc() routine.
 953  */
 954 static int
 955 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
 956     uint_t id, int atype)
 957 {
 958         nvlist_t **child;
 959         uint_t children;
 960         int error;
 961 
 962         if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
 963                 return (error);
 964 
 965         if ((*vdp)->vdev_ops->vdev_op_leaf)
 966                 return (0);
 967 
 968         error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
 969             &child, &children);
 970 
 971         if (error == ENOENT)
 972                 return (0);
 973 
 974         if (error) {
 975                 vdev_free(*vdp);
 976                 *vdp = NULL;
 977                 return (EINVAL);
 978         }
 979 
 980         for (int c = 0; c < children; c++) {
 981                 vdev_t *vd;
 982                 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
 983                     atype)) != 0) {
 984                         vdev_free(*vdp);
 985                         *vdp = NULL;
 986                         return (error);
 987                 }
 988         }
 989 
 990         ASSERT(*vdp != NULL);
 991 
 992         return (0);
 993 }
 994 
 995 /*
 996  * Opposite of spa_load().
 997  */
 998 static void
 999 spa_unload(spa_t *spa)
1000 {
1001         int i;
1002 
1003         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1004 
1005         /*
1006          * Stop async tasks.
1007          */
1008         spa_async_suspend(spa);
1009 
1010         /*
1011          * Stop syncing.
1012          */
1013         if (spa->spa_sync_on) {
1014                 txg_sync_stop(spa->spa_dsl_pool);
1015                 spa->spa_sync_on = B_FALSE;
1016         }
1017 
1018         /*
1019          * Wait for any outstanding async I/O to complete.
1020          */
1021         if (spa->spa_async_zio_root != NULL) {
1022                 (void) zio_wait(spa->spa_async_zio_root);
1023                 spa->spa_async_zio_root = NULL;
1024         }
1025 
1026         bpobj_close(&spa->spa_deferred_bpobj);
1027 
1028         /*
1029          * Close the dsl pool.
1030          */
1031         if (spa->spa_dsl_pool) {
1032                 dsl_pool_close(spa->spa_dsl_pool);
1033                 spa->spa_dsl_pool = NULL;
1034                 spa->spa_meta_objset = NULL;
1035         }
1036 
1037         ddt_unload(spa);
1038 
1039         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1040 
1041         /*
1042          * Drop and purge level 2 cache
1043          */
1044         spa_l2cache_drop(spa);
1045 
1046         /*
1047          * Close all vdevs.
1048          */
1049         if (spa->spa_root_vdev)
1050                 vdev_free(spa->spa_root_vdev);
1051         ASSERT(spa->spa_root_vdev == NULL);
1052 
1053         for (i = 0; i < spa->spa_spares.sav_count; i++)
1054                 vdev_free(spa->spa_spares.sav_vdevs[i]);
1055         if (spa->spa_spares.sav_vdevs) {
1056                 kmem_free(spa->spa_spares.sav_vdevs,
1057                     spa->spa_spares.sav_count * sizeof (void *));
1058                 spa->spa_spares.sav_vdevs = NULL;
1059         }
1060         if (spa->spa_spares.sav_config) {
1061                 nvlist_free(spa->spa_spares.sav_config);
1062                 spa->spa_spares.sav_config = NULL;
1063         }
1064         spa->spa_spares.sav_count = 0;
1065 
1066         for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1067                 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1068                 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1069         }
1070         if (spa->spa_l2cache.sav_vdevs) {
1071                 kmem_free(spa->spa_l2cache.sav_vdevs,
1072                     spa->spa_l2cache.sav_count * sizeof (void *));
1073                 spa->spa_l2cache.sav_vdevs = NULL;
1074         }
1075         if (spa->spa_l2cache.sav_config) {
1076                 nvlist_free(spa->spa_l2cache.sav_config);
1077                 spa->spa_l2cache.sav_config = NULL;
1078         }
1079         spa->spa_l2cache.sav_count = 0;
1080 
1081         spa->spa_async_suspended = 0;
1082 
1083         if (spa->spa_comment != NULL) {
1084                 spa_strfree(spa->spa_comment);
1085                 spa->spa_comment = NULL;
1086         }
1087 
1088         spa_config_exit(spa, SCL_ALL, FTAG);
1089 }
1090 
1091 /*
1092  * Load (or re-load) the current list of vdevs describing the active spares for
1093  * this pool.  When this is called, we have some form of basic information in
1094  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1095  * then re-generate a more complete list including status information.
1096  */
1097 static void
1098 spa_load_spares(spa_t *spa)
1099 {
1100         nvlist_t **spares;
1101         uint_t nspares;
1102         int i;
1103         vdev_t *vd, *tvd;
1104 
1105         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1106 
1107         /*
1108          * First, close and free any existing spare vdevs.
1109          */
1110         for (i = 0; i < spa->spa_spares.sav_count; i++) {
1111                 vd = spa->spa_spares.sav_vdevs[i];
1112 
1113                 /* Undo the call to spa_activate() below */
1114                 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1115                     B_FALSE)) != NULL && tvd->vdev_isspare)
1116                         spa_spare_remove(tvd);
1117                 vdev_close(vd);
1118                 vdev_free(vd);
1119         }
1120 
1121         if (spa->spa_spares.sav_vdevs)
1122                 kmem_free(spa->spa_spares.sav_vdevs,
1123                     spa->spa_spares.sav_count * sizeof (void *));
1124 
1125         if (spa->spa_spares.sav_config == NULL)
1126                 nspares = 0;
1127         else
1128                 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1129                     ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1130 
1131         spa->spa_spares.sav_count = (int)nspares;
1132         spa->spa_spares.sav_vdevs = NULL;
1133 
1134         if (nspares == 0)
1135                 return;
1136 
1137         /*
1138          * Construct the array of vdevs, opening them to get status in the
1139          * process.   For each spare, there is potentially two different vdev_t
1140          * structures associated with it: one in the list of spares (used only
1141          * for basic validation purposes) and one in the active vdev
1142          * configuration (if it's spared in).  During this phase we open and
1143          * validate each vdev on the spare list.  If the vdev also exists in the
1144          * active configuration, then we also mark this vdev as an active spare.
1145          */
1146         spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1147             KM_SLEEP);
1148         for (i = 0; i < spa->spa_spares.sav_count; i++) {
1149                 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1150                     VDEV_ALLOC_SPARE) == 0);
1151                 ASSERT(vd != NULL);
1152 
1153                 spa->spa_spares.sav_vdevs[i] = vd;
1154 
1155                 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1156                     B_FALSE)) != NULL) {
1157                         if (!tvd->vdev_isspare)
1158                                 spa_spare_add(tvd);
1159 
1160                         /*
1161                          * We only mark the spare active if we were successfully
1162                          * able to load the vdev.  Otherwise, importing a pool
1163                          * with a bad active spare would result in strange
1164                          * behavior, because multiple pool would think the spare
1165                          * is actively in use.
1166                          *
1167                          * There is a vulnerability here to an equally bizarre
1168                          * circumstance, where a dead active spare is later
1169                          * brought back to life (onlined or otherwise).  Given
1170                          * the rarity of this scenario, and the extra complexity
1171                          * it adds, we ignore the possibility.
1172                          */
1173                         if (!vdev_is_dead(tvd))
1174                                 spa_spare_activate(tvd);
1175                 }
1176 
1177                 vd->vdev_top = vd;
1178                 vd->vdev_aux = &spa->spa_spares;
1179 
1180                 if (vdev_open(vd) != 0)
1181                         continue;
1182 
1183                 if (vdev_validate_aux(vd) == 0)
1184                         spa_spare_add(vd);
1185         }
1186 
1187         /*
1188          * Recompute the stashed list of spares, with status information
1189          * this time.
1190          */
1191         VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1192             DATA_TYPE_NVLIST_ARRAY) == 0);
1193 
1194         spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1195             KM_SLEEP);
1196         for (i = 0; i < spa->spa_spares.sav_count; i++)
1197                 spares[i] = vdev_config_generate(spa,
1198                     spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1199         VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1200             ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1201         for (i = 0; i < spa->spa_spares.sav_count; i++)
1202                 nvlist_free(spares[i]);
1203         kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1204 }
1205 
1206 /*
1207  * Load (or re-load) the current list of vdevs describing the active l2cache for
1208  * this pool.  When this is called, we have some form of basic information in
1209  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1210  * then re-generate a more complete list including status information.
1211  * Devices which are already active have their details maintained, and are
1212  * not re-opened.
1213  */
1214 static void
1215 spa_load_l2cache(spa_t *spa)
1216 {
1217         nvlist_t **l2cache;
1218         uint_t nl2cache;
1219         int i, j, oldnvdevs;
1220         uint64_t guid;
1221         vdev_t *vd, **oldvdevs, **newvdevs;
1222         spa_aux_vdev_t *sav = &spa->spa_l2cache;
1223 
1224         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1225 
1226         if (sav->sav_config != NULL) {
1227                 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1228                     ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1229                 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1230         } else {
1231                 nl2cache = 0;
1232         }
1233 
1234         oldvdevs = sav->sav_vdevs;
1235         oldnvdevs = sav->sav_count;
1236         sav->sav_vdevs = NULL;
1237         sav->sav_count = 0;
1238 
1239         /*
1240          * Process new nvlist of vdevs.
1241          */
1242         for (i = 0; i < nl2cache; i++) {
1243                 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1244                     &guid) == 0);
1245 
1246                 newvdevs[i] = NULL;
1247                 for (j = 0; j < oldnvdevs; j++) {
1248                         vd = oldvdevs[j];
1249                         if (vd != NULL && guid == vd->vdev_guid) {
1250                                 /*
1251                                  * Retain previous vdev for add/remove ops.
1252                                  */
1253                                 newvdevs[i] = vd;
1254                                 oldvdevs[j] = NULL;
1255                                 break;
1256                         }
1257                 }
1258 
1259                 if (newvdevs[i] == NULL) {
1260                         /*
1261                          * Create new vdev
1262                          */
1263                         VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1264                             VDEV_ALLOC_L2CACHE) == 0);
1265                         ASSERT(vd != NULL);
1266                         newvdevs[i] = vd;
1267 
1268                         /*
1269                          * Commit this vdev as an l2cache device,
1270                          * even if it fails to open.
1271                          */
1272                         spa_l2cache_add(vd);
1273 
1274                         vd->vdev_top = vd;
1275                         vd->vdev_aux = sav;
1276 
1277                         spa_l2cache_activate(vd);
1278 
1279                         if (vdev_open(vd) != 0)
1280                                 continue;
1281 
1282                         (void) vdev_validate_aux(vd);
1283 
1284                         if (!vdev_is_dead(vd))
1285                                 l2arc_add_vdev(spa, vd);
1286                 }
1287         }
1288 
1289         /*
1290          * Purge vdevs that were dropped
1291          */
1292         for (i = 0; i < oldnvdevs; i++) {
1293                 uint64_t pool;
1294 
1295                 vd = oldvdevs[i];
1296                 if (vd != NULL) {
1297                         ASSERT(vd->vdev_isl2cache);
1298 
1299                         if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1300                             pool != 0ULL && l2arc_vdev_present(vd))
1301                                 l2arc_remove_vdev(vd);
1302                         vdev_clear_stats(vd);
1303                         vdev_free(vd);
1304                 }
1305         }
1306 
1307         if (oldvdevs)
1308                 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1309 
1310         if (sav->sav_config == NULL)
1311                 goto out;
1312 
1313         sav->sav_vdevs = newvdevs;
1314         sav->sav_count = (int)nl2cache;
1315 
1316         /*
1317          * Recompute the stashed list of l2cache devices, with status
1318          * information this time.
1319          */
1320         VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1321             DATA_TYPE_NVLIST_ARRAY) == 0);
1322 
1323         l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1324         for (i = 0; i < sav->sav_count; i++)
1325                 l2cache[i] = vdev_config_generate(spa,
1326                     sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1327         VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1328             ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1329 out:
1330         for (i = 0; i < sav->sav_count; i++)
1331                 nvlist_free(l2cache[i]);
1332         if (sav->sav_count)
1333                 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1334 }
1335 
1336 static int
1337 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1338 {
1339         dmu_buf_t *db;
1340         char *packed = NULL;
1341         size_t nvsize = 0;
1342         int error;
1343         *value = NULL;
1344 
1345         VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1346         nvsize = *(uint64_t *)db->db_data;
1347         dmu_buf_rele(db, FTAG);
1348 
1349         packed = kmem_alloc(nvsize, KM_SLEEP);
1350         error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1351             DMU_READ_PREFETCH);
1352         if (error == 0)
1353                 error = nvlist_unpack(packed, nvsize, value, 0);
1354         kmem_free(packed, nvsize);
1355 
1356         return (error);
1357 }
1358 
1359 /*
1360  * Checks to see if the given vdev could not be opened, in which case we post a
1361  * sysevent to notify the autoreplace code that the device has been removed.
1362  */
1363 static void
1364 spa_check_removed(vdev_t *vd)
1365 {
1366         for (int c = 0; c < vd->vdev_children; c++)
1367                 spa_check_removed(vd->vdev_child[c]);
1368 
1369         if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1370                 zfs_post_autoreplace(vd->vdev_spa, vd);
1371                 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1372         }
1373 }
1374 
1375 /*
1376  * Validate the current config against the MOS config
1377  */
1378 static boolean_t
1379 spa_config_valid(spa_t *spa, nvlist_t *config)
1380 {
1381         vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1382         nvlist_t *nv;
1383 
1384         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1385 
1386         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1387         VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1388 
1389         ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1390 
1391         /*
1392          * If we're doing a normal import, then build up any additional
1393          * diagnostic information about missing devices in this config.
1394          * We'll pass this up to the user for further processing.
1395          */
1396         if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1397                 nvlist_t **child, *nv;
1398                 uint64_t idx = 0;
1399 
1400                 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1401                     KM_SLEEP);
1402                 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1403 
1404                 for (int c = 0; c < rvd->vdev_children; c++) {
1405                         vdev_t *tvd = rvd->vdev_child[c];
1406                         vdev_t *mtvd  = mrvd->vdev_child[c];
1407 
1408                         if (tvd->vdev_ops == &vdev_missing_ops &&
1409                             mtvd->vdev_ops != &vdev_missing_ops &&
1410                             mtvd->vdev_islog)
1411                                 child[idx++] = vdev_config_generate(spa, mtvd,
1412                                     B_FALSE, 0);
1413                 }
1414 
1415                 if (idx) {
1416                         VERIFY(nvlist_add_nvlist_array(nv,
1417                             ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1418                         VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1419                             ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1420 
1421                         for (int i = 0; i < idx; i++)
1422                                 nvlist_free(child[i]);
1423                 }
1424                 nvlist_free(nv);
1425                 kmem_free(child, rvd->vdev_children * sizeof (char **));
1426         }
1427 
1428         /*
1429          * Compare the root vdev tree with the information we have
1430          * from the MOS config (mrvd). Check each top-level vdev
1431          * with the corresponding MOS config top-level (mtvd).
1432          */
1433         for (int c = 0; c < rvd->vdev_children; c++) {
1434                 vdev_t *tvd = rvd->vdev_child[c];
1435                 vdev_t *mtvd  = mrvd->vdev_child[c];
1436 
1437                 /*
1438                  * Resolve any "missing" vdevs in the current configuration.
1439                  * If we find that the MOS config has more accurate information
1440                  * about the top-level vdev then use that vdev instead.
1441                  */
1442                 if (tvd->vdev_ops == &vdev_missing_ops &&
1443                     mtvd->vdev_ops != &vdev_missing_ops) {
1444 
1445                         if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1446                                 continue;
1447 
1448                         /*
1449                          * Device specific actions.
1450                          */
1451                         if (mtvd->vdev_islog) {
1452                                 spa_set_log_state(spa, SPA_LOG_CLEAR);
1453                         } else {
1454                                 /*
1455                                  * XXX - once we have 'readonly' pool
1456                                  * support we should be able to handle
1457                                  * missing data devices by transitioning
1458                                  * the pool to readonly.
1459                                  */
1460                                 continue;
1461                         }
1462 
1463                         /*
1464                          * Swap the missing vdev with the data we were
1465                          * able to obtain from the MOS config.
1466                          */
1467                         vdev_remove_child(rvd, tvd);
1468                         vdev_remove_child(mrvd, mtvd);
1469 
1470                         vdev_add_child(rvd, mtvd);
1471                         vdev_add_child(mrvd, tvd);
1472 
1473                         spa_config_exit(spa, SCL_ALL, FTAG);
1474                         vdev_load(mtvd);
1475                         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1476 
1477                         vdev_reopen(rvd);
1478                 } else if (mtvd->vdev_islog) {
1479                         /*
1480                          * Load the slog device's state from the MOS config
1481                          * since it's possible that the label does not
1482                          * contain the most up-to-date information.
1483                          */
1484                         vdev_load_log_state(tvd, mtvd);
1485                         vdev_reopen(tvd);
1486                 }
1487         }
1488         vdev_free(mrvd);
1489         spa_config_exit(spa, SCL_ALL, FTAG);
1490 
1491         /*
1492          * Ensure we were able to validate the config.
1493          */
1494         return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1495 }
1496 
1497 /*
1498  * Check for missing log devices
1499  */
1500 static int
1501 spa_check_logs(spa_t *spa)
1502 {
1503         switch (spa->spa_log_state) {
1504         case SPA_LOG_MISSING:
1505                 /* need to recheck in case slog has been restored */
1506         case SPA_LOG_UNKNOWN:
1507                 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1508                     DS_FIND_CHILDREN)) {
1509                         spa_set_log_state(spa, SPA_LOG_MISSING);
1510                         return (1);
1511                 }
1512                 break;
1513         }
1514         return (0);
1515 }
1516 
1517 static boolean_t
1518 spa_passivate_log(spa_t *spa)
1519 {
1520         vdev_t *rvd = spa->spa_root_vdev;
1521         boolean_t slog_found = B_FALSE;
1522 
1523         ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1524 
1525         if (!spa_has_slogs(spa))
1526                 return (B_FALSE);
1527 
1528         for (int c = 0; c < rvd->vdev_children; c++) {
1529                 vdev_t *tvd = rvd->vdev_child[c];
1530                 metaslab_group_t *mg = tvd->vdev_mg;
1531 
1532                 if (tvd->vdev_islog) {
1533                         metaslab_group_passivate(mg);
1534                         slog_found = B_TRUE;
1535                 }
1536         }
1537 
1538         return (slog_found);
1539 }
1540 
1541 static void
1542 spa_activate_log(spa_t *spa)
1543 {
1544         vdev_t *rvd = spa->spa_root_vdev;
1545 
1546         ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1547 
1548         for (int c = 0; c < rvd->vdev_children; c++) {
1549                 vdev_t *tvd = rvd->vdev_child[c];
1550                 metaslab_group_t *mg = tvd->vdev_mg;
1551 
1552                 if (tvd->vdev_islog)
1553                         metaslab_group_activate(mg);
1554         }
1555 }
1556 
1557 int
1558 spa_offline_log(spa_t *spa)
1559 {
1560         int error = 0;
1561 
1562         if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1563             NULL, DS_FIND_CHILDREN)) == 0) {
1564 
1565                 /*
1566                  * We successfully offlined the log device, sync out the
1567                  * current txg so that the "stubby" block can be removed
1568                  * by zil_sync().
1569                  */
1570                 txg_wait_synced(spa->spa_dsl_pool, 0);
1571         }
1572         return (error);
1573 }
1574 
1575 static void
1576 spa_aux_check_removed(spa_aux_vdev_t *sav)
1577 {
1578         for (int i = 0; i < sav->sav_count; i++)
1579                 spa_check_removed(sav->sav_vdevs[i]);
1580 }
1581 
1582 void
1583 spa_claim_notify(zio_t *zio)
1584 {
1585         spa_t *spa = zio->io_spa;
1586 
1587         if (zio->io_error)
1588                 return;
1589 
1590         mutex_enter(&spa->spa_props_lock);       /* any mutex will do */
1591         if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1592                 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1593         mutex_exit(&spa->spa_props_lock);
1594 }
1595 
1596 typedef struct spa_load_error {
1597         uint64_t        sle_meta_count;
1598         uint64_t        sle_data_count;
1599 } spa_load_error_t;
1600 
1601 static void
1602 spa_load_verify_done(zio_t *zio)
1603 {
1604         blkptr_t *bp = zio->io_bp;
1605         spa_load_error_t *sle = zio->io_private;
1606         dmu_object_type_t type = BP_GET_TYPE(bp);
1607         int error = zio->io_error;
1608 
1609         if (error) {
1610                 if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) &&
1611                     type != DMU_OT_INTENT_LOG)
1612                         atomic_add_64(&sle->sle_meta_count, 1);
1613                 else
1614                         atomic_add_64(&sle->sle_data_count, 1);
1615         }
1616         zio_data_buf_free(zio->io_data, zio->io_size);
1617 }
1618 
1619 /*ARGSUSED*/
1620 static int
1621 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1622     arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1623 {
1624         if (bp != NULL) {
1625                 zio_t *rio = arg;
1626                 size_t size = BP_GET_PSIZE(bp);
1627                 void *data = zio_data_buf_alloc(size);
1628 
1629                 zio_nowait(zio_read(rio, spa, bp, data, size,
1630                     spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1631                     ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1632                     ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1633         }
1634         return (0);
1635 }
1636 
1637 static int
1638 spa_load_verify(spa_t *spa)
1639 {
1640         zio_t *rio;
1641         spa_load_error_t sle = { 0 };
1642         zpool_rewind_policy_t policy;
1643         boolean_t verify_ok = B_FALSE;
1644         int error;
1645 
1646         zpool_get_rewind_policy(spa->spa_config, &policy);
1647 
1648         if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1649                 return (0);
1650 
1651         rio = zio_root(spa, NULL, &sle,
1652             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1653 
1654         error = traverse_pool(spa, spa->spa_verify_min_txg,
1655             TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1656 
1657         (void) zio_wait(rio);
1658 
1659         spa->spa_load_meta_errors = sle.sle_meta_count;
1660         spa->spa_load_data_errors = sle.sle_data_count;
1661 
1662         if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1663             sle.sle_data_count <= policy.zrp_maxdata) {
1664                 int64_t loss = 0;
1665 
1666                 verify_ok = B_TRUE;
1667                 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1668                 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1669 
1670                 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1671                 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1672                     ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1673                 VERIFY(nvlist_add_int64(spa->spa_load_info,
1674                     ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1675                 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1676                     ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1677         } else {
1678                 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1679         }
1680 
1681         if (error) {
1682                 if (error != ENXIO && error != EIO)
1683                         error = EIO;
1684                 return (error);
1685         }
1686 
1687         return (verify_ok ? 0 : EIO);
1688 }
1689 
1690 /*
1691  * Find a value in the pool props object.
1692  */
1693 static void
1694 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1695 {
1696         (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1697             zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1698 }
1699 
1700 /*
1701  * Find a value in the pool directory object.
1702  */
1703 static int
1704 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1705 {
1706         return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1707             name, sizeof (uint64_t), 1, val));
1708 }
1709 
1710 static int
1711 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1712 {
1713         vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1714         return (err);
1715 }
1716 
1717 /*
1718  * Fix up config after a partly-completed split.  This is done with the
1719  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1720  * pool have that entry in their config, but only the splitting one contains
1721  * a list of all the guids of the vdevs that are being split off.
1722  *
1723  * This function determines what to do with that list: either rejoin
1724  * all the disks to the pool, or complete the splitting process.  To attempt
1725  * the rejoin, each disk that is offlined is marked online again, and
1726  * we do a reopen() call.  If the vdev label for every disk that was
1727  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1728  * then we call vdev_split() on each disk, and complete the split.
1729  *
1730  * Otherwise we leave the config alone, with all the vdevs in place in
1731  * the original pool.
1732  */
1733 static void
1734 spa_try_repair(spa_t *spa, nvlist_t *config)
1735 {
1736         uint_t extracted;
1737         uint64_t *glist;
1738         uint_t i, gcount;
1739         nvlist_t *nvl;
1740         vdev_t **vd;
1741         boolean_t attempt_reopen;
1742 
1743         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1744                 return;
1745 
1746         /* check that the config is complete */
1747         if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1748             &glist, &gcount) != 0)
1749                 return;
1750 
1751         vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1752 
1753         /* attempt to online all the vdevs & validate */
1754         attempt_reopen = B_TRUE;
1755         for (i = 0; i < gcount; i++) {
1756                 if (glist[i] == 0)      /* vdev is hole */
1757                         continue;
1758 
1759                 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1760                 if (vd[i] == NULL) {
1761                         /*
1762                          * Don't bother attempting to reopen the disks;
1763                          * just do the split.
1764                          */
1765                         attempt_reopen = B_FALSE;
1766                 } else {
1767                         /* attempt to re-online it */
1768                         vd[i]->vdev_offline = B_FALSE;
1769                 }
1770         }
1771 
1772         if (attempt_reopen) {
1773                 vdev_reopen(spa->spa_root_vdev);
1774 
1775                 /* check each device to see what state it's in */
1776                 for (extracted = 0, i = 0; i < gcount; i++) {
1777                         if (vd[i] != NULL &&
1778                             vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1779                                 break;
1780                         ++extracted;
1781                 }
1782         }
1783 
1784         /*
1785          * If every disk has been moved to the new pool, or if we never
1786          * even attempted to look at them, then we split them off for
1787          * good.
1788          */
1789         if (!attempt_reopen || gcount == extracted) {
1790                 for (i = 0; i < gcount; i++)
1791                         if (vd[i] != NULL)
1792                                 vdev_split(vd[i]);
1793                 vdev_reopen(spa->spa_root_vdev);
1794         }
1795 
1796         kmem_free(vd, gcount * sizeof (vdev_t *));
1797 }
1798 
1799 static int
1800 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1801     boolean_t mosconfig)
1802 {
1803         nvlist_t *config = spa->spa_config;
1804         char *ereport = FM_EREPORT_ZFS_POOL;
1805         char *comment;
1806         int error;
1807         uint64_t pool_guid;
1808         nvlist_t *nvl;
1809 
1810         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1811                 return (EINVAL);
1812 
1813         ASSERT(spa->spa_comment == NULL);
1814         if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
1815                 spa->spa_comment = spa_strdup(comment);
1816 
1817         /*
1818          * Versioning wasn't explicitly added to the label until later, so if
1819          * it's not present treat it as the initial version.
1820          */
1821         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1822             &spa->spa_ubsync.ub_version) != 0)
1823                 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1824 
1825         (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1826             &spa->spa_config_txg);
1827 
1828         if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1829             spa_guid_exists(pool_guid, 0)) {
1830                 error = EEXIST;
1831         } else {
1832                 spa->spa_config_guid = pool_guid;
1833 
1834                 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1835                     &nvl) == 0) {
1836                         VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1837                             KM_SLEEP) == 0);
1838                 }
1839 
1840                 gethrestime(&spa->spa_loaded_ts);
1841                 error = spa_load_impl(spa, pool_guid, config, state, type,
1842                     mosconfig, &ereport);
1843         }
1844 
1845         spa->spa_minref = refcount_count(&spa->spa_refcount);
1846         if (error) {
1847                 if (error != EEXIST) {
1848                         spa->spa_loaded_ts.tv_sec = 0;
1849                         spa->spa_loaded_ts.tv_nsec = 0;
1850                 }
1851                 if (error != EBADF) {
1852                         zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1853                 }
1854         }
1855         spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1856         spa->spa_ena = 0;
1857 
1858         return (error);
1859 }
1860 
1861 /*
1862  * Load an existing storage pool, using the pool's builtin spa_config as a
1863  * source of configuration information.
1864  */
1865 static int
1866 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1867     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1868     char **ereport)
1869 {
1870         int error = 0;
1871         nvlist_t *nvroot = NULL;
1872         vdev_t *rvd;
1873         uberblock_t *ub = &spa->spa_uberblock;
1874         uint64_t children, config_cache_txg = spa->spa_config_txg;
1875         int orig_mode = spa->spa_mode;
1876         int parse;
1877         uint64_t obj;
1878 
1879         /*
1880          * If this is an untrusted config, access the pool in read-only mode.
1881          * This prevents things like resilvering recently removed devices.
1882          */
1883         if (!mosconfig)
1884                 spa->spa_mode = FREAD;
1885 
1886         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1887 
1888         spa->spa_load_state = state;
1889 
1890         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
1891                 return (EINVAL);
1892 
1893         parse = (type == SPA_IMPORT_EXISTING ?
1894             VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
1895 
1896         /*
1897          * Create "The Godfather" zio to hold all async IOs
1898          */
1899         spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1900             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1901 
1902         /*
1903          * Parse the configuration into a vdev tree.  We explicitly set the
1904          * value that will be returned by spa_version() since parsing the
1905          * configuration requires knowing the version number.
1906          */
1907         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1908         error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
1909         spa_config_exit(spa, SCL_ALL, FTAG);
1910 
1911         if (error != 0)
1912                 return (error);
1913 
1914         ASSERT(spa->spa_root_vdev == rvd);
1915 
1916         if (type != SPA_IMPORT_ASSEMBLE) {
1917                 ASSERT(spa_guid(spa) == pool_guid);
1918         }
1919 
1920         /*
1921          * Try to open all vdevs, loading each label in the process.
1922          */
1923         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1924         error = vdev_open(rvd);
1925         spa_config_exit(spa, SCL_ALL, FTAG);
1926         if (error != 0)
1927                 return (error);
1928 
1929         /*
1930          * We need to validate the vdev labels against the configuration that
1931          * we have in hand, which is dependent on the setting of mosconfig. If
1932          * mosconfig is true then we're validating the vdev labels based on
1933          * that config.  Otherwise, we're validating against the cached config
1934          * (zpool.cache) that was read when we loaded the zfs module, and then
1935          * later we will recursively call spa_load() and validate against
1936          * the vdev config.
1937          *
1938          * If we're assembling a new pool that's been split off from an
1939          * existing pool, the labels haven't yet been updated so we skip
1940          * validation for now.
1941          */
1942         if (type != SPA_IMPORT_ASSEMBLE) {
1943                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1944                 error = vdev_validate(rvd, mosconfig);
1945                 spa_config_exit(spa, SCL_ALL, FTAG);
1946 
1947                 if (error != 0)
1948                         return (error);
1949 
1950                 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1951                         return (ENXIO);
1952         }
1953 
1954         /*
1955          * Find the best uberblock.
1956          */
1957         vdev_uberblock_load(NULL, rvd, ub);
1958 
1959         /*
1960          * If we weren't able to find a single valid uberblock, return failure.
1961          */
1962         if (ub->ub_txg == 0)
1963                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
1964 
1965         /*
1966          * If the pool is newer than the code, we can't open it.
1967          */
1968         if (ub->ub_version > SPA_VERSION)
1969                 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
1970 
1971         /*
1972          * If the vdev guid sum doesn't match the uberblock, we have an
1973          * incomplete configuration.  We first check to see if the pool
1974          * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
1975          * If it is, defer the vdev_guid_sum check till later so we
1976          * can handle missing vdevs.
1977          */
1978         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
1979             &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
1980             rvd->vdev_guid_sum != ub->ub_guid_sum)
1981                 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
1982 
1983         if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
1984                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1985                 spa_try_repair(spa, config);
1986                 spa_config_exit(spa, SCL_ALL, FTAG);
1987                 nvlist_free(spa->spa_config_splitting);
1988                 spa->spa_config_splitting = NULL;
1989         }
1990 
1991         /*
1992          * Initialize internal SPA structures.
1993          */
1994         spa->spa_state = POOL_STATE_ACTIVE;
1995         spa->spa_ubsync = spa->spa_uberblock;
1996         spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
1997             TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
1998         spa->spa_first_txg = spa->spa_last_ubsync_txg ?
1999             spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2000         spa->spa_claim_max_txg = spa->spa_first_txg;
2001         spa->spa_prev_software_version = ub->ub_software_version;
2002 
2003         error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2004         if (error)
2005                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2006         spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2007 
2008         if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2009                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2010 
2011         if (!mosconfig) {
2012                 uint64_t hostid;
2013                 nvlist_t *policy = NULL, *nvconfig;
2014 
2015                 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2016                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2017 
2018                 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2019                     ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2020                         char *hostname;
2021                         unsigned long myhostid = 0;
2022 
2023                         VERIFY(nvlist_lookup_string(nvconfig,
2024                             ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2025 
2026 #ifdef  _KERNEL
2027                         myhostid = zone_get_hostid(NULL);
2028 #else   /* _KERNEL */
2029                         /*
2030                          * We're emulating the system's hostid in userland, so
2031                          * we can't use zone_get_hostid().
2032                          */
2033                         (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2034 #endif  /* _KERNEL */
2035                         if (hostid != 0 && myhostid != 0 &&
2036                             hostid != myhostid) {
2037                                 nvlist_free(nvconfig);
2038                                 cmn_err(CE_WARN, "pool '%s' could not be "
2039                                     "loaded as it was last accessed by "
2040                                     "another system (host: %s hostid: 0x%lx). "
2041                                     "See: http://illumos.org/msg/ZFS-8000-EY",
2042                                     spa_name(spa), hostname,
2043                                     (unsigned long)hostid);
2044                                 return (EBADF);
2045                         }
2046                 }
2047                 if (nvlist_lookup_nvlist(spa->spa_config,
2048                     ZPOOL_REWIND_POLICY, &policy) == 0)
2049                         VERIFY(nvlist_add_nvlist(nvconfig,
2050                             ZPOOL_REWIND_POLICY, policy) == 0);
2051 
2052                 spa_config_set(spa, nvconfig);
2053                 spa_unload(spa);
2054                 spa_deactivate(spa);
2055                 spa_activate(spa, orig_mode);
2056 
2057                 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2058         }
2059 
2060         if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2061                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2062         error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2063         if (error != 0)
2064                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2065 
2066         /*
2067          * Load the bit that tells us to use the new accounting function
2068          * (raid-z deflation).  If we have an older pool, this will not
2069          * be present.
2070          */
2071         error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2072         if (error != 0 && error != ENOENT)
2073                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2074 
2075         error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2076             &spa->spa_creation_version);
2077         if (error != 0 && error != ENOENT)
2078                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2079 
2080         /*
2081          * Load the persistent error log.  If we have an older pool, this will
2082          * not be present.
2083          */
2084         error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2085         if (error != 0 && error != ENOENT)
2086                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2087 
2088         error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2089             &spa->spa_errlog_scrub);
2090         if (error != 0 && error != ENOENT)
2091                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2092 
2093         /*
2094          * Load the history object.  If we have an older pool, this
2095          * will not be present.
2096          */
2097         error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2098         if (error != 0 && error != ENOENT)
2099                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2100 
2101         /*
2102          * If we're assembling the pool from the split-off vdevs of
2103          * an existing pool, we don't want to attach the spares & cache
2104          * devices.
2105          */
2106 
2107         /*
2108          * Load any hot spares for this pool.
2109          */
2110         error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2111         if (error != 0 && error != ENOENT)
2112                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2113         if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2114                 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2115                 if (load_nvlist(spa, spa->spa_spares.sav_object,
2116                     &spa->spa_spares.sav_config) != 0)
2117                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2118 
2119                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2120                 spa_load_spares(spa);
2121                 spa_config_exit(spa, SCL_ALL, FTAG);
2122         } else if (error == 0) {
2123                 spa->spa_spares.sav_sync = B_TRUE;
2124         }
2125 
2126         /*
2127          * Load any level 2 ARC devices for this pool.
2128          */
2129         error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2130             &spa->spa_l2cache.sav_object);
2131         if (error != 0 && error != ENOENT)
2132                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2133         if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2134                 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2135                 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2136                     &spa->spa_l2cache.sav_config) != 0)
2137                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2138 
2139                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2140                 spa_load_l2cache(spa);
2141                 spa_config_exit(spa, SCL_ALL, FTAG);
2142         } else if (error == 0) {
2143                 spa->spa_l2cache.sav_sync = B_TRUE;
2144         }
2145 
2146         spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2147 
2148         error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2149         if (error && error != ENOENT)
2150                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2151 
2152         if (error == 0) {
2153                 uint64_t autoreplace;
2154 
2155                 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2156                 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2157                 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2158                 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2159                 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2160                 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2161                     &spa->spa_dedup_ditto);
2162 
2163                 spa->spa_autoreplace = (autoreplace != 0);
2164         }
2165 
2166         /*
2167          * If the 'autoreplace' property is set, then post a resource notifying
2168          * the ZFS DE that it should not issue any faults for unopenable
2169          * devices.  We also iterate over the vdevs, and post a sysevent for any
2170          * unopenable vdevs so that the normal autoreplace handler can take
2171          * over.
2172          */
2173         if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2174                 spa_check_removed(spa->spa_root_vdev);
2175                 /*
2176                  * For the import case, this is done in spa_import(), because
2177                  * at this point we're using the spare definitions from
2178                  * the MOS config, not necessarily from the userland config.
2179                  */
2180                 if (state != SPA_LOAD_IMPORT) {
2181                         spa_aux_check_removed(&spa->spa_spares);
2182                         spa_aux_check_removed(&spa->spa_l2cache);
2183                 }
2184         }
2185 
2186         /*
2187          * Load the vdev state for all toplevel vdevs.
2188          */
2189         vdev_load(rvd);
2190 
2191         /*
2192          * Propagate the leaf DTLs we just loaded all the way up the tree.
2193          */
2194         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2195         vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2196         spa_config_exit(spa, SCL_ALL, FTAG);
2197 
2198         /*
2199          * Load the DDTs (dedup tables).
2200          */
2201         error = ddt_load(spa);
2202         if (error != 0)
2203                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2204 
2205         spa_update_dspace(spa);
2206 
2207         /*
2208          * Validate the config, using the MOS config to fill in any
2209          * information which might be missing.  If we fail to validate
2210          * the config then declare the pool unfit for use. If we're
2211          * assembling a pool from a split, the log is not transferred
2212          * over.
2213          */
2214         if (type != SPA_IMPORT_ASSEMBLE) {
2215                 nvlist_t *nvconfig;
2216 
2217                 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2218                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2219 
2220                 if (!spa_config_valid(spa, nvconfig)) {
2221                         nvlist_free(nvconfig);
2222                         return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2223                             ENXIO));
2224                 }
2225                 nvlist_free(nvconfig);
2226 
2227                 /*
2228                  * Now that we've validate the config, check the state of the
2229                  * root vdev.  If it can't be opened, it indicates one or
2230                  * more toplevel vdevs are faulted.
2231                  */
2232                 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2233                         return (ENXIO);
2234 
2235                 if (spa_check_logs(spa)) {
2236                         *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2237                         return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2238                 }
2239         }
2240 
2241         /*
2242          * We've successfully opened the pool, verify that we're ready
2243          * to start pushing transactions.
2244          */
2245         if (state != SPA_LOAD_TRYIMPORT) {
2246                 if (error = spa_load_verify(spa))
2247                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2248                             error));
2249         }
2250 
2251         if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2252             spa->spa_load_max_txg == UINT64_MAX)) {
2253                 dmu_tx_t *tx;
2254                 int need_update = B_FALSE;
2255 
2256                 ASSERT(state != SPA_LOAD_TRYIMPORT);
2257 
2258                 /*
2259                  * Claim log blocks that haven't been committed yet.
2260                  * This must all happen in a single txg.
2261                  * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2262                  * invoked from zil_claim_log_block()'s i/o done callback.
2263                  * Price of rollback is that we abandon the log.
2264                  */
2265                 spa->spa_claiming = B_TRUE;
2266 
2267                 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2268                     spa_first_txg(spa));
2269                 (void) dmu_objset_find(spa_name(spa),
2270                     zil_claim, tx, DS_FIND_CHILDREN);
2271                 dmu_tx_commit(tx);
2272 
2273                 spa->spa_claiming = B_FALSE;
2274 
2275                 spa_set_log_state(spa, SPA_LOG_GOOD);
2276                 spa->spa_sync_on = B_TRUE;
2277                 txg_sync_start(spa->spa_dsl_pool);
2278 
2279                 /*
2280                  * Wait for all claims to sync.  We sync up to the highest
2281                  * claimed log block birth time so that claimed log blocks
2282                  * don't appear to be from the future.  spa_claim_max_txg
2283                  * will have been set for us by either zil_check_log_chain()
2284                  * (invoked from spa_check_logs()) or zil_claim() above.
2285                  */
2286                 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2287 
2288                 /*
2289                  * If the config cache is stale, or we have uninitialized
2290                  * metaslabs (see spa_vdev_add()), then update the config.
2291                  *
2292                  * If this is a verbatim import, trust the current
2293                  * in-core spa_config and update the disk labels.
2294                  */
2295                 if (config_cache_txg != spa->spa_config_txg ||
2296                     state == SPA_LOAD_IMPORT ||
2297                     state == SPA_LOAD_RECOVER ||
2298                     (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2299                         need_update = B_TRUE;
2300 
2301                 for (int c = 0; c < rvd->vdev_children; c++)
2302                         if (rvd->vdev_child[c]->vdev_ms_array == 0)
2303                                 need_update = B_TRUE;
2304 
2305                 /*
2306                  * Update the config cache asychronously in case we're the
2307                  * root pool, in which case the config cache isn't writable yet.
2308                  */
2309                 if (need_update)
2310                         spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2311 
2312                 /*
2313                  * Check all DTLs to see if anything needs resilvering.
2314                  */
2315                 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2316                     vdev_resilver_needed(rvd, NULL, NULL))
2317                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2318 
2319                 /*
2320                  * Delete any inconsistent datasets.
2321                  */
2322                 (void) dmu_objset_find(spa_name(spa),
2323                     dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2324 
2325                 /*
2326                  * Clean up any stale temporary dataset userrefs.
2327                  */
2328                 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2329         }
2330 
2331         return (0);
2332 }
2333 
2334 static int
2335 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2336 {
2337         int mode = spa->spa_mode;
2338 
2339         spa_unload(spa);
2340         spa_deactivate(spa);
2341 
2342         spa->spa_load_max_txg--;
2343 
2344         spa_activate(spa, mode);
2345         spa_async_suspend(spa);
2346 
2347         return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2348 }
2349 
2350 static int
2351 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2352     uint64_t max_request, int rewind_flags)
2353 {
2354         nvlist_t *config = NULL;
2355         int load_error, rewind_error;
2356         uint64_t safe_rewind_txg;
2357         uint64_t min_txg;
2358 
2359         if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2360                 spa->spa_load_max_txg = spa->spa_load_txg;
2361                 spa_set_log_state(spa, SPA_LOG_CLEAR);
2362         } else {
2363                 spa->spa_load_max_txg = max_request;
2364         }
2365 
2366         load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2367             mosconfig);
2368         if (load_error == 0)
2369                 return (0);
2370 
2371         if (spa->spa_root_vdev != NULL)
2372                 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2373 
2374         spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2375         spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2376 
2377         if (rewind_flags & ZPOOL_NEVER_REWIND) {
2378                 nvlist_free(config);
2379                 return (load_error);
2380         }
2381 
2382         /* Price of rolling back is discarding txgs, including log */
2383         if (state == SPA_LOAD_RECOVER)
2384                 spa_set_log_state(spa, SPA_LOG_CLEAR);
2385 
2386         spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2387         safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2388         min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2389             TXG_INITIAL : safe_rewind_txg;
2390 
2391         /*
2392          * Continue as long as we're finding errors, we're still within
2393          * the acceptable rewind range, and we're still finding uberblocks
2394          */
2395         while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2396             spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2397                 if (spa->spa_load_max_txg < safe_rewind_txg)
2398                         spa->spa_extreme_rewind = B_TRUE;
2399                 rewind_error = spa_load_retry(spa, state, mosconfig);
2400         }
2401 
2402         spa->spa_extreme_rewind = B_FALSE;
2403         spa->spa_load_max_txg = UINT64_MAX;
2404 
2405         if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2406                 spa_config_set(spa, config);
2407 
2408         return (state == SPA_LOAD_RECOVER ? rewind_error : load_error);
2409 }
2410 
2411 /*
2412  * Pool Open/Import
2413  *
2414  * The import case is identical to an open except that the configuration is sent
2415  * down from userland, instead of grabbed from the configuration cache.  For the
2416  * case of an open, the pool configuration will exist in the
2417  * POOL_STATE_UNINITIALIZED state.
2418  *
2419  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2420  * the same time open the pool, without having to keep around the spa_t in some
2421  * ambiguous state.
2422  */
2423 static int
2424 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2425     nvlist_t **config)
2426 {
2427         spa_t *spa;
2428         spa_load_state_t state = SPA_LOAD_OPEN;
2429         int error;
2430         int locked = B_FALSE;
2431 
2432         *spapp = NULL;
2433 
2434         /*
2435          * As disgusting as this is, we need to support recursive calls to this
2436          * function because dsl_dir_open() is called during spa_load(), and ends
2437          * up calling spa_open() again.  The real fix is to figure out how to
2438          * avoid dsl_dir_open() calling this in the first place.
2439          */
2440         if (mutex_owner(&spa_namespace_lock) != curthread) {
2441                 mutex_enter(&spa_namespace_lock);
2442                 locked = B_TRUE;
2443         }
2444 
2445         if ((spa = spa_lookup(pool)) == NULL) {
2446                 if (locked)
2447                         mutex_exit(&spa_namespace_lock);
2448                 return (ENOENT);
2449         }
2450 
2451         if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2452                 zpool_rewind_policy_t policy;
2453 
2454                 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2455                     &policy);
2456                 if (policy.zrp_request & ZPOOL_DO_REWIND)
2457                         state = SPA_LOAD_RECOVER;
2458 
2459                 spa_activate(spa, spa_mode_global);
2460 
2461                 if (state != SPA_LOAD_RECOVER)
2462                         spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2463 
2464                 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2465                     policy.zrp_request);
2466 
2467                 if (error == EBADF) {
2468                         /*
2469                          * If vdev_validate() returns failure (indicated by
2470                          * EBADF), it indicates that one of the vdevs indicates
2471                          * that the pool has been exported or destroyed.  If
2472                          * this is the case, the config cache is out of sync and
2473                          * we should remove the pool from the namespace.
2474                          */
2475                         spa_unload(spa);
2476                         spa_deactivate(spa);
2477                         spa_config_sync(spa, B_TRUE, B_TRUE);
2478                         spa_remove(spa);
2479                         if (locked)
2480                                 mutex_exit(&spa_namespace_lock);
2481                         return (ENOENT);
2482                 }
2483 
2484                 if (error) {
2485                         /*
2486                          * We can't open the pool, but we still have useful
2487                          * information: the state of each vdev after the
2488                          * attempted vdev_open().  Return this to the user.
2489                          */
2490                         if (config != NULL && spa->spa_config) {
2491                                 VERIFY(nvlist_dup(spa->spa_config, config,
2492                                     KM_SLEEP) == 0);
2493                                 VERIFY(nvlist_add_nvlist(*config,
2494                                     ZPOOL_CONFIG_LOAD_INFO,
2495                                     spa->spa_load_info) == 0);
2496                         }
2497                         spa_unload(spa);
2498                         spa_deactivate(spa);
2499                         spa->spa_last_open_failed = error;
2500                         if (locked)
2501                                 mutex_exit(&spa_namespace_lock);
2502                         *spapp = NULL;
2503                         return (error);
2504                 }
2505         }
2506 
2507         spa_open_ref(spa, tag);
2508 
2509         if (config != NULL)
2510                 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2511 
2512         /*
2513          * If we've recovered the pool, pass back any information we
2514          * gathered while doing the load.
2515          */
2516         if (state == SPA_LOAD_RECOVER) {
2517                 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2518                     spa->spa_load_info) == 0);
2519         }
2520 
2521         if (locked) {
2522                 spa->spa_last_open_failed = 0;
2523                 spa->spa_last_ubsync_txg = 0;
2524                 spa->spa_load_txg = 0;
2525                 mutex_exit(&spa_namespace_lock);
2526         }
2527 
2528         *spapp = spa;
2529 
2530         return (0);
2531 }
2532 
2533 int
2534 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2535     nvlist_t **config)
2536 {
2537         return (spa_open_common(name, spapp, tag, policy, config));
2538 }
2539 
2540 int
2541 spa_open(const char *name, spa_t **spapp, void *tag)
2542 {
2543         return (spa_open_common(name, spapp, tag, NULL, NULL));
2544 }
2545 
2546 /*
2547  * Lookup the given spa_t, incrementing the inject count in the process,
2548  * preventing it from being exported or destroyed.
2549  */
2550 spa_t *
2551 spa_inject_addref(char *name)
2552 {
2553         spa_t *spa;
2554 
2555         mutex_enter(&spa_namespace_lock);
2556         if ((spa = spa_lookup(name)) == NULL) {
2557                 mutex_exit(&spa_namespace_lock);
2558                 return (NULL);
2559         }
2560         spa->spa_inject_ref++;
2561         mutex_exit(&spa_namespace_lock);
2562 
2563         return (spa);
2564 }
2565 
2566 void
2567 spa_inject_delref(spa_t *spa)
2568 {
2569         mutex_enter(&spa_namespace_lock);
2570         spa->spa_inject_ref--;
2571         mutex_exit(&spa_namespace_lock);
2572 }
2573 
2574 /*
2575  * Add spares device information to the nvlist.
2576  */
2577 static void
2578 spa_add_spares(spa_t *spa, nvlist_t *config)
2579 {
2580         nvlist_t **spares;
2581         uint_t i, nspares;
2582         nvlist_t *nvroot;
2583         uint64_t guid;
2584         vdev_stat_t *vs;
2585         uint_t vsc;
2586         uint64_t pool;
2587 
2588         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2589 
2590         if (spa->spa_spares.sav_count == 0)
2591                 return;
2592 
2593         VERIFY(nvlist_lookup_nvlist(config,
2594             ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2595         VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2596             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2597         if (nspares != 0) {
2598                 VERIFY(nvlist_add_nvlist_array(nvroot,
2599                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2600                 VERIFY(nvlist_lookup_nvlist_array(nvroot,
2601                     ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2602 
2603                 /*
2604                  * Go through and find any spares which have since been
2605                  * repurposed as an active spare.  If this is the case, update
2606                  * their status appropriately.
2607                  */
2608                 for (i = 0; i < nspares; i++) {
2609                         VERIFY(nvlist_lookup_uint64(spares[i],
2610                             ZPOOL_CONFIG_GUID, &guid) == 0);
2611                         if (spa_spare_exists(guid, &pool, NULL) &&
2612                             pool != 0ULL) {
2613                                 VERIFY(nvlist_lookup_uint64_array(
2614                                     spares[i], ZPOOL_CONFIG_VDEV_STATS,
2615                                     (uint64_t **)&vs, &vsc) == 0);
2616                                 vs->vs_state = VDEV_STATE_CANT_OPEN;
2617                                 vs->vs_aux = VDEV_AUX_SPARED;
2618                         }
2619                 }
2620         }
2621 }
2622 
2623 /*
2624  * Add l2cache device information to the nvlist, including vdev stats.
2625  */
2626 static void
2627 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2628 {
2629         nvlist_t **l2cache;
2630         uint_t i, j, nl2cache;
2631         nvlist_t *nvroot;
2632         uint64_t guid;
2633         vdev_t *vd;
2634         vdev_stat_t *vs;
2635         uint_t vsc;
2636 
2637         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2638 
2639         if (spa->spa_l2cache.sav_count == 0)
2640                 return;
2641 
2642         VERIFY(nvlist_lookup_nvlist(config,
2643             ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2644         VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2645             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2646         if (nl2cache != 0) {
2647                 VERIFY(nvlist_add_nvlist_array(nvroot,
2648                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2649                 VERIFY(nvlist_lookup_nvlist_array(nvroot,
2650                     ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2651 
2652                 /*
2653                  * Update level 2 cache device stats.
2654                  */
2655 
2656                 for (i = 0; i < nl2cache; i++) {
2657                         VERIFY(nvlist_lookup_uint64(l2cache[i],
2658                             ZPOOL_CONFIG_GUID, &guid) == 0);
2659 
2660                         vd = NULL;
2661                         for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2662                                 if (guid ==
2663                                     spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2664                                         vd = spa->spa_l2cache.sav_vdevs[j];
2665                                         break;
2666                                 }
2667                         }
2668                         ASSERT(vd != NULL);
2669 
2670                         VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2671                             ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
2672                             == 0);
2673                         vdev_get_stats(vd, vs);
2674                 }
2675         }
2676 }
2677 
2678 int
2679 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
2680 {
2681         int error;
2682         spa_t *spa;
2683 
2684         *config = NULL;
2685         error = spa_open_common(name, &spa, FTAG, NULL, config);
2686 
2687         if (spa != NULL) {
2688                 /*
2689                  * This still leaves a window of inconsistency where the spares
2690                  * or l2cache devices could change and the config would be
2691                  * self-inconsistent.
2692                  */
2693                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2694 
2695                 if (*config != NULL) {
2696                         uint64_t loadtimes[2];
2697 
2698                         loadtimes[0] = spa->spa_loaded_ts.tv_sec;
2699                         loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
2700                         VERIFY(nvlist_add_uint64_array(*config,
2701                             ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
2702 
2703                         VERIFY(nvlist_add_uint64(*config,
2704                             ZPOOL_CONFIG_ERRCOUNT,
2705                             spa_get_errlog_size(spa)) == 0);
2706 
2707                         if (spa_suspended(spa))
2708                                 VERIFY(nvlist_add_uint64(*config,
2709                                     ZPOOL_CONFIG_SUSPENDED,
2710                                     spa->spa_failmode) == 0);
2711 
2712                         spa_add_spares(spa, *config);
2713                         spa_add_l2cache(spa, *config);
2714                 }
2715         }
2716 
2717         /*
2718          * We want to get the alternate root even for faulted pools, so we cheat
2719          * and call spa_lookup() directly.
2720          */
2721         if (altroot) {
2722                 if (spa == NULL) {
2723                         mutex_enter(&spa_namespace_lock);
2724                         spa = spa_lookup(name);
2725                         if (spa)
2726                                 spa_altroot(spa, altroot, buflen);
2727                         else
2728                                 altroot[0] = '\0';
2729                         spa = NULL;
2730                         mutex_exit(&spa_namespace_lock);
2731                 } else {
2732                         spa_altroot(spa, altroot, buflen);
2733                 }
2734         }
2735 
2736         if (spa != NULL) {
2737                 spa_config_exit(spa, SCL_CONFIG, FTAG);
2738                 spa_close(spa, FTAG);
2739         }
2740 
2741         return (error);
2742 }
2743 
2744 /*
2745  * Validate that the auxiliary device array is well formed.  We must have an
2746  * array of nvlists, each which describes a valid leaf vdev.  If this is an
2747  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
2748  * specified, as long as they are well-formed.
2749  */
2750 static int
2751 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
2752     spa_aux_vdev_t *sav, const char *config, uint64_t version,
2753     vdev_labeltype_t label)
2754 {
2755         nvlist_t **dev;
2756         uint_t i, ndev;
2757         vdev_t *vd;
2758         int error;
2759 
2760         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2761 
2762         /*
2763          * It's acceptable to have no devs specified.
2764          */
2765         if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
2766                 return (0);
2767 
2768         if (ndev == 0)
2769                 return (EINVAL);
2770 
2771         /*
2772          * Make sure the pool is formatted with a version that supports this
2773          * device type.
2774          */
2775         if (spa_version(spa) < version)
2776                 return (ENOTSUP);
2777 
2778         /*
2779          * Set the pending device list so we correctly handle device in-use
2780          * checking.
2781          */
2782         sav->sav_pending = dev;
2783         sav->sav_npending = ndev;
2784 
2785         for (i = 0; i < ndev; i++) {
2786                 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
2787                     mode)) != 0)
2788                         goto out;
2789 
2790                 if (!vd->vdev_ops->vdev_op_leaf) {
2791                         vdev_free(vd);
2792                         error = EINVAL;
2793                         goto out;
2794                 }
2795 
2796                 /*
2797                  * The L2ARC currently only supports disk devices in
2798                  * kernel context.  For user-level testing, we allow it.
2799                  */
2800 #ifdef _KERNEL
2801                 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
2802                     strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
2803                         error = ENOTBLK;
2804                         vdev_free(vd);
2805                         goto out;
2806                 }
2807 #endif
2808                 vd->vdev_top = vd;
2809 
2810                 if ((error = vdev_open(vd)) == 0 &&
2811                     (error = vdev_label_init(vd, crtxg, label)) == 0) {
2812                         VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
2813                             vd->vdev_guid) == 0);
2814                 }
2815 
2816                 vdev_free(vd);
2817 
2818                 if (error &&
2819                     (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
2820                         goto out;
2821                 else
2822                         error = 0;
2823         }
2824 
2825 out:
2826         sav->sav_pending = NULL;
2827         sav->sav_npending = 0;
2828         return (error);
2829 }
2830 
2831 static int
2832 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2833 {
2834         int error;
2835 
2836         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2837 
2838         if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2839             &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2840             VDEV_LABEL_SPARE)) != 0) {
2841                 return (error);
2842         }
2843 
2844         return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2845             &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2846             VDEV_LABEL_L2CACHE));
2847 }
2848 
2849 static void
2850 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2851     const char *config)
2852 {
2853         int i;
2854 
2855         if (sav->sav_config != NULL) {
2856                 nvlist_t **olddevs;
2857                 uint_t oldndevs;
2858                 nvlist_t **newdevs;
2859 
2860                 /*
2861                  * Generate new dev list by concatentating with the
2862                  * current dev list.
2863                  */
2864                 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2865                     &olddevs, &oldndevs) == 0);
2866 
2867                 newdevs = kmem_alloc(sizeof (void *) *
2868                     (ndevs + oldndevs), KM_SLEEP);
2869                 for (i = 0; i < oldndevs; i++)
2870                         VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2871                             KM_SLEEP) == 0);
2872                 for (i = 0; i < ndevs; i++)
2873                         VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2874                             KM_SLEEP) == 0);
2875 
2876                 VERIFY(nvlist_remove(sav->sav_config, config,
2877                     DATA_TYPE_NVLIST_ARRAY) == 0);
2878 
2879                 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2880                     config, newdevs, ndevs + oldndevs) == 0);
2881                 for (i = 0; i < oldndevs + ndevs; i++)
2882                         nvlist_free(newdevs[i]);
2883                 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2884         } else {
2885                 /*
2886                  * Generate a new dev list.
2887                  */
2888                 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2889                     KM_SLEEP) == 0);
2890                 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2891                     devs, ndevs) == 0);
2892         }
2893 }
2894 
2895 /*
2896  * Stop and drop level 2 ARC devices
2897  */
2898 void
2899 spa_l2cache_drop(spa_t *spa)
2900 {
2901         vdev_t *vd;
2902         int i;
2903         spa_aux_vdev_t *sav = &spa->spa_l2cache;
2904 
2905         for (i = 0; i < sav->sav_count; i++) {
2906                 uint64_t pool;
2907 
2908                 vd = sav->sav_vdevs[i];
2909                 ASSERT(vd != NULL);
2910 
2911                 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2912                     pool != 0ULL && l2arc_vdev_present(vd))
2913                         l2arc_remove_vdev(vd);
2914         }
2915 }
2916 
2917 /*
2918  * Pool Creation
2919  */
2920 int
2921 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2922     const char *history_str, nvlist_t *zplprops)
2923 {
2924         spa_t *spa;
2925         char *altroot = NULL;
2926         vdev_t *rvd;
2927         dsl_pool_t *dp;
2928         dmu_tx_t *tx;
2929         int error = 0;
2930         uint64_t txg = TXG_INITIAL;
2931         nvlist_t **spares, **l2cache;
2932         uint_t nspares, nl2cache;
2933         uint64_t version, obj;
2934 
2935         /*
2936          * If this pool already exists, return failure.
2937          */
2938         mutex_enter(&spa_namespace_lock);
2939         if (spa_lookup(pool) != NULL) {
2940                 mutex_exit(&spa_namespace_lock);
2941                 return (EEXIST);
2942         }
2943 
2944         /*
2945          * Allocate a new spa_t structure.
2946          */
2947         (void) nvlist_lookup_string(props,
2948             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2949         spa = spa_add(pool, NULL, altroot);
2950         spa_activate(spa, spa_mode_global);
2951 
2952         if (props && (error = spa_prop_validate(spa, props))) {
2953                 spa_deactivate(spa);
2954                 spa_remove(spa);
2955                 mutex_exit(&spa_namespace_lock);
2956                 return (error);
2957         }
2958 
2959         if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2960             &version) != 0)
2961                 version = SPA_VERSION;
2962         ASSERT(version <= SPA_VERSION);
2963 
2964         spa->spa_first_txg = txg;
2965         spa->spa_uberblock.ub_txg = txg - 1;
2966         spa->spa_uberblock.ub_version = version;
2967         spa->spa_ubsync = spa->spa_uberblock;
2968 
2969         /*
2970          * Create "The Godfather" zio to hold all async IOs
2971          */
2972         spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2973             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2974 
2975         /*
2976          * Create the root vdev.
2977          */
2978         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2979 
2980         error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2981 
2982         ASSERT(error != 0 || rvd != NULL);
2983         ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2984 
2985         if (error == 0 && !zfs_allocatable_devs(nvroot))
2986                 error = EINVAL;
2987 
2988         if (error == 0 &&
2989             (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2990             (error = spa_validate_aux(spa, nvroot, txg,
2991             VDEV_ALLOC_ADD)) == 0) {
2992                 for (int c = 0; c < rvd->vdev_children; c++) {
2993                         vdev_metaslab_set_size(rvd->vdev_child[c]);
2994                         vdev_expand(rvd->vdev_child[c], txg);
2995                 }
2996         }
2997 
2998         spa_config_exit(spa, SCL_ALL, FTAG);
2999 
3000         if (error != 0) {
3001                 spa_unload(spa);
3002                 spa_deactivate(spa);
3003                 spa_remove(spa);
3004                 mutex_exit(&spa_namespace_lock);
3005                 return (error);
3006         }
3007 
3008         /*
3009          * Get the list of spares, if specified.
3010          */
3011         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3012             &spares, &nspares) == 0) {
3013                 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3014                     KM_SLEEP) == 0);
3015                 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3016                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3017                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3018                 spa_load_spares(spa);
3019                 spa_config_exit(spa, SCL_ALL, FTAG);
3020                 spa->spa_spares.sav_sync = B_TRUE;
3021         }
3022 
3023         /*
3024          * Get the list of level 2 cache devices, if specified.
3025          */
3026         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3027             &l2cache, &nl2cache) == 0) {
3028                 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3029                     NV_UNIQUE_NAME, KM_SLEEP) == 0);
3030                 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3031                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3032                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3033                 spa_load_l2cache(spa);
3034                 spa_config_exit(spa, SCL_ALL, FTAG);
3035                 spa->spa_l2cache.sav_sync = B_TRUE;
3036         }
3037 
3038         spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3039         spa->spa_meta_objset = dp->dp_meta_objset;
3040 
3041         /*
3042          * Create DDTs (dedup tables).
3043          */
3044         ddt_create(spa);
3045 
3046         spa_update_dspace(spa);
3047 
3048         tx = dmu_tx_create_assigned(dp, txg);
3049 
3050         /*
3051          * Create the pool config object.
3052          */
3053         spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3054             DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3055             DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3056 
3057         if (zap_add(spa->spa_meta_objset,
3058             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3059             sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3060                 cmn_err(CE_PANIC, "failed to add pool config");
3061         }
3062 
3063         if (zap_add(spa->spa_meta_objset,
3064             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3065             sizeof (uint64_t), 1, &version, tx) != 0) {
3066                 cmn_err(CE_PANIC, "failed to add pool version");
3067         }
3068 
3069         /* Newly created pools with the right version are always deflated. */
3070         if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3071                 spa->spa_deflate = TRUE;
3072                 if (zap_add(spa->spa_meta_objset,
3073                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3074                     sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3075                         cmn_err(CE_PANIC, "failed to add deflate");
3076                 }
3077         }
3078 
3079         /*
3080          * Create the deferred-free bpobj.  Turn off compression
3081          * because sync-to-convergence takes longer if the blocksize
3082          * keeps changing.
3083          */
3084         obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3085         dmu_object_set_compress(spa->spa_meta_objset, obj,
3086             ZIO_COMPRESS_OFF, tx);
3087         if (zap_add(spa->spa_meta_objset,
3088             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3089             sizeof (uint64_t), 1, &obj, tx) != 0) {
3090                 cmn_err(CE_PANIC, "failed to add bpobj");
3091         }
3092         VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3093             spa->spa_meta_objset, obj));
3094 
3095         /*
3096          * Create the pool's history object.
3097          */
3098         if (version >= SPA_VERSION_ZPOOL_HISTORY)
3099                 spa_history_create_obj(spa, tx);
3100 
3101         /*
3102          * Set pool properties.
3103          */
3104         spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3105         spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3106         spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3107         spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3108 
3109         if (props != NULL) {
3110                 spa_configfile_set(spa, props, B_FALSE);
3111                 spa_sync_props(spa, props, tx);
3112         }
3113 
3114         dmu_tx_commit(tx);
3115 
3116         spa->spa_sync_on = B_TRUE;
3117         txg_sync_start(spa->spa_dsl_pool);
3118 
3119         /*
3120          * We explicitly wait for the first transaction to complete so that our
3121          * bean counters are appropriately updated.
3122          */
3123         txg_wait_synced(spa->spa_dsl_pool, txg);
3124 
3125         spa_config_sync(spa, B_FALSE, B_TRUE);
3126 
3127         if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
3128                 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
3129         spa_history_log_version(spa, LOG_POOL_CREATE);
3130 
3131         spa->spa_minref = refcount_count(&spa->spa_refcount);
3132 
3133         mutex_exit(&spa_namespace_lock);
3134 
3135         return (0);
3136 }
3137 
3138 #ifdef _KERNEL
3139 /*
3140  * Get the root pool information from the root disk, then import the root pool
3141  * during the system boot up time.
3142  */
3143 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3144 
3145 static nvlist_t *
3146 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3147 {
3148         nvlist_t *config;
3149         nvlist_t *nvtop, *nvroot;
3150         uint64_t pgid;
3151 
3152         if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3153                 return (NULL);
3154 
3155         /*
3156          * Add this top-level vdev to the child array.
3157          */
3158         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3159             &nvtop) == 0);
3160         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3161             &pgid) == 0);
3162         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3163 
3164         /*
3165          * Put this pool's top-level vdevs into a root vdev.
3166          */
3167         VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3168         VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3169             VDEV_TYPE_ROOT) == 0);
3170         VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3171         VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3172         VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3173             &nvtop, 1) == 0);
3174 
3175         /*
3176          * Replace the existing vdev_tree with the new root vdev in
3177          * this pool's configuration (remove the old, add the new).
3178          */
3179         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3180         nvlist_free(nvroot);
3181         return (config);
3182 }
3183 
3184 /*
3185  * Walk the vdev tree and see if we can find a device with "better"
3186  * configuration. A configuration is "better" if the label on that
3187  * device has a more recent txg.
3188  */
3189 static void
3190 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3191 {
3192         for (int c = 0; c < vd->vdev_children; c++)
3193                 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3194 
3195         if (vd->vdev_ops->vdev_op_leaf) {
3196                 nvlist_t *label;
3197                 uint64_t label_txg;
3198 
3199                 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3200                     &label) != 0)
3201                         return;
3202 
3203                 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3204                     &label_txg) == 0);
3205 
3206                 /*
3207                  * Do we have a better boot device?
3208                  */
3209                 if (label_txg > *txg) {
3210                         *txg = label_txg;
3211                         *avd = vd;
3212                 }
3213                 nvlist_free(label);
3214         }
3215 }
3216 
3217 /*
3218  * Import a root pool.
3219  *
3220  * For x86. devpath_list will consist of devid and/or physpath name of
3221  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3222  * The GRUB "findroot" command will return the vdev we should boot.
3223  *
3224  * For Sparc, devpath_list consists the physpath name of the booting device
3225  * no matter the rootpool is a single device pool or a mirrored pool.
3226  * e.g.
3227  *      "/pci@1f,0/ide@d/disk@0,0:a"
3228  */
3229 int
3230 spa_import_rootpool(char *devpath, char *devid)
3231 {
3232         spa_t *spa;
3233         vdev_t *rvd, *bvd, *avd = NULL;
3234         nvlist_t *config, *nvtop;
3235         uint64_t guid, txg;
3236         char *pname;
3237         int error;
3238 
3239         /*
3240          * Read the label from the boot device and generate a configuration.
3241          */
3242         config = spa_generate_rootconf(devpath, devid, &guid);
3243 #if defined(_OBP) && defined(_KERNEL)
3244         if (config == NULL) {
3245                 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3246                         /* iscsi boot */
3247                         get_iscsi_bootpath_phy(devpath);
3248                         config = spa_generate_rootconf(devpath, devid, &guid);
3249                 }
3250         }
3251 #endif
3252         if (config == NULL) {
3253                 cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
3254                     devpath);
3255                 return (EIO);
3256         }
3257 
3258         VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3259             &pname) == 0);
3260         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3261 
3262         mutex_enter(&spa_namespace_lock);
3263         if ((spa = spa_lookup(pname)) != NULL) {
3264                 /*
3265                  * Remove the existing root pool from the namespace so that we
3266                  * can replace it with the correct config we just read in.
3267                  */
3268                 spa_remove(spa);
3269         }
3270 
3271         spa = spa_add(pname, config, NULL);
3272         spa->spa_is_root = B_TRUE;
3273         spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3274 
3275         /*
3276          * Build up a vdev tree based on the boot device's label config.
3277          */
3278         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3279             &nvtop) == 0);
3280         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3281         error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3282             VDEV_ALLOC_ROOTPOOL);
3283         spa_config_exit(spa, SCL_ALL, FTAG);
3284         if (error) {
3285                 mutex_exit(&spa_namespace_lock);
3286                 nvlist_free(config);
3287                 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3288                     pname);
3289                 return (error);
3290         }
3291 
3292         /*
3293          * Get the boot vdev.
3294          */
3295         if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3296                 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3297                     (u_longlong_t)guid);
3298                 error = ENOENT;
3299                 goto out;
3300         }
3301 
3302         /*
3303          * Determine if there is a better boot device.
3304          */
3305         avd = bvd;
3306         spa_alt_rootvdev(rvd, &avd, &txg);
3307         if (avd != bvd) {
3308                 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3309                     "try booting from '%s'", avd->vdev_path);
3310                 error = EINVAL;
3311                 goto out;
3312         }
3313 
3314         /*
3315          * If the boot device is part of a spare vdev then ensure that
3316          * we're booting off the active spare.
3317          */
3318         if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3319             !bvd->vdev_isspare) {
3320                 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3321                     "try booting from '%s'",
3322                     bvd->vdev_parent->
3323                     vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3324                 error = EINVAL;
3325                 goto out;
3326         }
3327 
3328         error = 0;
3329         spa_history_log_version(spa, LOG_POOL_IMPORT);
3330 out:
3331         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3332         vdev_free(rvd);
3333         spa_config_exit(spa, SCL_ALL, FTAG);
3334         mutex_exit(&spa_namespace_lock);
3335 
3336         nvlist_free(config);
3337         return (error);
3338 }
3339 
3340 #endif
3341 
3342 /*
3343  * Import a non-root pool into the system.
3344  */
3345 int
3346 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3347 {
3348         spa_t *spa;
3349         char *altroot = NULL;
3350         spa_load_state_t state = SPA_LOAD_IMPORT;
3351         zpool_rewind_policy_t policy;
3352         uint64_t mode = spa_mode_global;
3353         uint64_t readonly = B_FALSE;
3354         int error;
3355         nvlist_t *nvroot;
3356         nvlist_t **spares, **l2cache;
3357         uint_t nspares, nl2cache;
3358 
3359         /*
3360          * If a pool with this name exists, return failure.
3361          */
3362         mutex_enter(&spa_namespace_lock);
3363         if (spa_lookup(pool) != NULL) {
3364                 mutex_exit(&spa_namespace_lock);
3365                 return (EEXIST);
3366         }
3367 
3368         /*
3369          * Create and initialize the spa structure.
3370          */
3371         (void) nvlist_lookup_string(props,
3372             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3373         (void) nvlist_lookup_uint64(props,
3374             zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3375         if (readonly)
3376                 mode = FREAD;
3377         spa = spa_add(pool, config, altroot);
3378         spa->spa_import_flags = flags;
3379 
3380         /*
3381          * Verbatim import - Take a pool and insert it into the namespace
3382          * as if it had been loaded at boot.
3383          */
3384         if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3385                 if (props != NULL)
3386                         spa_configfile_set(spa, props, B_FALSE);
3387 
3388                 spa_config_sync(spa, B_FALSE, B_TRUE);
3389 
3390                 mutex_exit(&spa_namespace_lock);
3391                 spa_history_log_version(spa, LOG_POOL_IMPORT);
3392 
3393                 return (0);
3394         }
3395 
3396         spa_activate(spa, mode);
3397 
3398         /*
3399          * Don't start async tasks until we know everything is healthy.
3400          */
3401         spa_async_suspend(spa);
3402 
3403         zpool_get_rewind_policy(config, &policy);
3404         if (policy.zrp_request & ZPOOL_DO_REWIND)
3405                 state = SPA_LOAD_RECOVER;
3406 
3407         /*
3408          * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3409          * because the user-supplied config is actually the one to trust when
3410          * doing an import.
3411          */
3412         if (state != SPA_LOAD_RECOVER)
3413                 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3414 
3415         error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3416             policy.zrp_request);
3417 
3418         /*
3419          * Propagate anything learned while loading the pool and pass it
3420          * back to caller (i.e. rewind info, missing devices, etc).
3421          */
3422         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3423             spa->spa_load_info) == 0);
3424 
3425         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3426         /*
3427          * Toss any existing sparelist, as it doesn't have any validity
3428          * anymore, and conflicts with spa_has_spare().
3429          */
3430         if (spa->spa_spares.sav_config) {
3431                 nvlist_free(spa->spa_spares.sav_config);
3432                 spa->spa_spares.sav_config = NULL;
3433                 spa_load_spares(spa);
3434         }
3435         if (spa->spa_l2cache.sav_config) {
3436                 nvlist_free(spa->spa_l2cache.sav_config);
3437                 spa->spa_l2cache.sav_config = NULL;
3438                 spa_load_l2cache(spa);
3439         }
3440 
3441         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3442             &nvroot) == 0);
3443         if (error == 0)
3444                 error = spa_validate_aux(spa, nvroot, -1ULL,
3445                     VDEV_ALLOC_SPARE);
3446         if (error == 0)
3447                 error = spa_validate_aux(spa, nvroot, -1ULL,
3448                     VDEV_ALLOC_L2CACHE);
3449         spa_config_exit(spa, SCL_ALL, FTAG);
3450 
3451         if (props != NULL)
3452                 spa_configfile_set(spa, props, B_FALSE);
3453 
3454         if (error != 0 || (props && spa_writeable(spa) &&
3455             (error = spa_prop_set(spa, props)))) {
3456                 spa_unload(spa);
3457                 spa_deactivate(spa);
3458                 spa_remove(spa);
3459                 mutex_exit(&spa_namespace_lock);
3460                 return (error);
3461         }
3462 
3463         spa_async_resume(spa);
3464 
3465         /*
3466          * Override any spares and level 2 cache devices as specified by
3467          * the user, as these may have correct device names/devids, etc.
3468          */
3469         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3470             &spares, &nspares) == 0) {
3471                 if (spa->spa_spares.sav_config)
3472                         VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3473                             ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3474                 else
3475                         VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3476                             NV_UNIQUE_NAME, KM_SLEEP) == 0);
3477                 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3478                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3479                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3480                 spa_load_spares(spa);
3481                 spa_config_exit(spa, SCL_ALL, FTAG);
3482                 spa->spa_spares.sav_sync = B_TRUE;
3483         }
3484         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3485             &l2cache, &nl2cache) == 0) {
3486                 if (spa->spa_l2cache.sav_config)
3487                         VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3488                             ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3489                 else
3490                         VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3491                             NV_UNIQUE_NAME, KM_SLEEP) == 0);
3492                 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3493                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3494                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3495                 spa_load_l2cache(spa);
3496                 spa_config_exit(spa, SCL_ALL, FTAG);
3497                 spa->spa_l2cache.sav_sync = B_TRUE;
3498         }
3499 
3500         /*
3501          * Check for any removed devices.
3502          */
3503         if (spa->spa_autoreplace) {
3504                 spa_aux_check_removed(&spa->spa_spares);
3505                 spa_aux_check_removed(&spa->spa_l2cache);
3506         }
3507 
3508         if (spa_writeable(spa)) {
3509                 /*
3510                  * Update the config cache to include the newly-imported pool.
3511                  */
3512                 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3513         }
3514 
3515         /*
3516          * It's possible that the pool was expanded while it was exported.
3517          * We kick off an async task to handle this for us.
3518          */
3519         spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3520 
3521         mutex_exit(&spa_namespace_lock);
3522         spa_history_log_version(spa, LOG_POOL_IMPORT);
3523 
3524         return (0);
3525 }
3526 
3527 nvlist_t *
3528 spa_tryimport(nvlist_t *tryconfig)
3529 {
3530         nvlist_t *config = NULL;
3531         char *poolname;
3532         spa_t *spa;
3533         uint64_t state;
3534         int error;
3535 
3536         if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3537                 return (NULL);
3538 
3539         if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3540                 return (NULL);
3541 
3542         /*
3543          * Create and initialize the spa structure.
3544          */
3545         mutex_enter(&spa_namespace_lock);
3546         spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3547         spa_activate(spa, FREAD);
3548 
3549         /*
3550          * Pass off the heavy lifting to spa_load().
3551          * Pass TRUE for mosconfig because the user-supplied config
3552          * is actually the one to trust when doing an import.
3553          */
3554         error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3555 
3556         /*
3557          * If 'tryconfig' was at least parsable, return the current config.
3558          */
3559         if (spa->spa_root_vdev != NULL) {
3560                 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3561                 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3562                     poolname) == 0);
3563                 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3564                     state) == 0);
3565                 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3566                     spa->spa_uberblock.ub_timestamp) == 0);
3567 
3568                 /*
3569                  * If the bootfs property exists on this pool then we
3570                  * copy it out so that external consumers can tell which
3571                  * pools are bootable.
3572                  */
3573                 if ((!error || error == EEXIST) && spa->spa_bootfs) {
3574                         char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3575 
3576                         /*
3577                          * We have to play games with the name since the
3578                          * pool was opened as TRYIMPORT_NAME.
3579                          */
3580                         if (dsl_dsobj_to_dsname(spa_name(spa),
3581                             spa->spa_bootfs, tmpname) == 0) {
3582                                 char *cp;
3583                                 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3584 
3585                                 cp = strchr(tmpname, '/');
3586                                 if (cp == NULL) {
3587                                         (void) strlcpy(dsname, tmpname,
3588                                             MAXPATHLEN);
3589                                 } else {
3590                                         (void) snprintf(dsname, MAXPATHLEN,
3591                                             "%s/%s", poolname, ++cp);
3592                                 }
3593                                 VERIFY(nvlist_add_string(config,
3594                                     ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3595                                 kmem_free(dsname, MAXPATHLEN);
3596                         }
3597                         kmem_free(tmpname, MAXPATHLEN);
3598                 }
3599 
3600                 /*
3601                  * Add the list of hot spares and level 2 cache devices.
3602                  */
3603                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3604                 spa_add_spares(spa, config);
3605                 spa_add_l2cache(spa, config);
3606                 spa_config_exit(spa, SCL_CONFIG, FTAG);
3607         }
3608 
3609         spa_unload(spa);
3610         spa_deactivate(spa);
3611         spa_remove(spa);
3612         mutex_exit(&spa_namespace_lock);
3613 
3614         return (config);
3615 }
3616 
3617 /*
3618  * Pool export/destroy
3619  *
3620  * The act of destroying or exporting a pool is very simple.  We make sure there
3621  * is no more pending I/O and any references to the pool are gone.  Then, we
3622  * update the pool state and sync all the labels to disk, removing the
3623  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3624  * we don't sync the labels or remove the configuration cache.
3625  */
3626 static int
3627 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3628     boolean_t force, boolean_t hardforce)
3629 {
3630         spa_t *spa;
3631 
3632         if (oldconfig)
3633                 *oldconfig = NULL;
3634 
3635         if (!(spa_mode_global & FWRITE))
3636                 return (EROFS);
3637 
3638         mutex_enter(&spa_namespace_lock);
3639         if ((spa = spa_lookup(pool)) == NULL) {
3640                 mutex_exit(&spa_namespace_lock);
3641                 return (ENOENT);
3642         }
3643 
3644         /*
3645          * Put a hold on the pool, drop the namespace lock, stop async tasks,
3646          * reacquire the namespace lock, and see if we can export.
3647          */
3648         spa_open_ref(spa, FTAG);
3649         mutex_exit(&spa_namespace_lock);
3650         spa_async_suspend(spa);
3651         mutex_enter(&spa_namespace_lock);
3652         spa_close(spa, FTAG);
3653 
3654         /*
3655          * The pool will be in core if it's openable,
3656          * in which case we can modify its state.
3657          */
3658         if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3659                 /*
3660                  * Objsets may be open only because they're dirty, so we
3661                  * have to force it to sync before checking spa_refcnt.
3662                  */
3663                 txg_wait_synced(spa->spa_dsl_pool, 0);
3664 
3665                 /*
3666                  * A pool cannot be exported or destroyed if there are active
3667                  * references.  If we are resetting a pool, allow references by
3668                  * fault injection handlers.
3669                  */
3670                 if (!spa_refcount_zero(spa) ||
3671                     (spa->spa_inject_ref != 0 &&
3672                     new_state != POOL_STATE_UNINITIALIZED)) {
3673                         spa_async_resume(spa);
3674                         mutex_exit(&spa_namespace_lock);
3675                         return (EBUSY);
3676                 }
3677 
3678                 /*
3679                  * A pool cannot be exported if it has an active shared spare.
3680                  * This is to prevent other pools stealing the active spare
3681                  * from an exported pool. At user's own will, such pool can
3682                  * be forcedly exported.
3683                  */
3684                 if (!force && new_state == POOL_STATE_EXPORTED &&
3685                     spa_has_active_shared_spare(spa)) {
3686                         spa_async_resume(spa);
3687                         mutex_exit(&spa_namespace_lock);
3688                         return (EXDEV);
3689                 }
3690 
3691                 /*
3692                  * We want this to be reflected on every label,
3693                  * so mark them all dirty.  spa_unload() will do the
3694                  * final sync that pushes these changes out.
3695                  */
3696                 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
3697                         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3698                         spa->spa_state = new_state;
3699                         spa->spa_final_txg = spa_last_synced_txg(spa) +
3700                             TXG_DEFER_SIZE + 1;
3701                         vdev_config_dirty(spa->spa_root_vdev);
3702                         spa_config_exit(spa, SCL_ALL, FTAG);
3703                 }
3704         }
3705 
3706         spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
3707 
3708         if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3709                 spa_unload(spa);
3710                 spa_deactivate(spa);
3711         }
3712 
3713         if (oldconfig && spa->spa_config)
3714                 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
3715 
3716         if (new_state != POOL_STATE_UNINITIALIZED) {
3717                 if (!hardforce)
3718                         spa_config_sync(spa, B_TRUE, B_TRUE);
3719                 spa_remove(spa);
3720         }
3721         mutex_exit(&spa_namespace_lock);
3722 
3723         return (0);
3724 }
3725 
3726 /*
3727  * Destroy a storage pool.
3728  */
3729 int
3730 spa_destroy(char *pool)
3731 {
3732         return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
3733             B_FALSE, B_FALSE));
3734 }
3735 
3736 /*
3737  * Export a storage pool.
3738  */
3739 int
3740 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
3741     boolean_t hardforce)
3742 {
3743         return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
3744             force, hardforce));
3745 }
3746 
3747 /*
3748  * Similar to spa_export(), this unloads the spa_t without actually removing it
3749  * from the namespace in any way.
3750  */
3751 int
3752 spa_reset(char *pool)
3753 {
3754         return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
3755             B_FALSE, B_FALSE));
3756 }
3757 
3758 /*
3759  * ==========================================================================
3760  * Device manipulation
3761  * ==========================================================================
3762  */
3763 
3764 /*
3765  * Add a device to a storage pool.
3766  */
3767 int
3768 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
3769 {
3770         uint64_t txg, id;
3771         int error;
3772         vdev_t *rvd = spa->spa_root_vdev;
3773         vdev_t *vd, *tvd;
3774         nvlist_t **spares, **l2cache;
3775         uint_t nspares, nl2cache;
3776 
3777         ASSERT(spa_writeable(spa));
3778 
3779         txg = spa_vdev_enter(spa);
3780 
3781         if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
3782             VDEV_ALLOC_ADD)) != 0)
3783                 return (spa_vdev_exit(spa, NULL, txg, error));
3784 
3785         spa->spa_pending_vdev = vd;  /* spa_vdev_exit() will clear this */
3786 
3787         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
3788             &nspares) != 0)
3789                 nspares = 0;
3790 
3791         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
3792             &nl2cache) != 0)
3793                 nl2cache = 0;
3794 
3795         if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
3796                 return (spa_vdev_exit(spa, vd, txg, EINVAL));
3797 
3798         if (vd->vdev_children != 0 &&
3799             (error = vdev_create(vd, txg, B_FALSE)) != 0)
3800                 return (spa_vdev_exit(spa, vd, txg, error));
3801 
3802         /*
3803          * We must validate the spares and l2cache devices after checking the
3804          * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
3805          */
3806         if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
3807                 return (spa_vdev_exit(spa, vd, txg, error));
3808 
3809         /*
3810          * Transfer each new top-level vdev from vd to rvd.
3811          */
3812         for (int c = 0; c < vd->vdev_children; c++) {
3813 
3814                 /*
3815                  * Set the vdev id to the first hole, if one exists.
3816                  */
3817                 for (id = 0; id < rvd->vdev_children; id++) {
3818                         if (rvd->vdev_child[id]->vdev_ishole) {
3819                                 vdev_free(rvd->vdev_child[id]);
3820                                 break;
3821                         }
3822                 }
3823                 tvd = vd->vdev_child[c];
3824                 vdev_remove_child(vd, tvd);
3825                 tvd->vdev_id = id;
3826                 vdev_add_child(rvd, tvd);
3827                 vdev_config_dirty(tvd);
3828         }
3829 
3830         if (nspares != 0) {
3831                 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
3832                     ZPOOL_CONFIG_SPARES);
3833                 spa_load_spares(spa);
3834                 spa->spa_spares.sav_sync = B_TRUE;
3835         }
3836 
3837         if (nl2cache != 0) {
3838                 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
3839                     ZPOOL_CONFIG_L2CACHE);
3840                 spa_load_l2cache(spa);
3841                 spa->spa_l2cache.sav_sync = B_TRUE;
3842         }
3843 
3844         /*
3845          * We have to be careful when adding new vdevs to an existing pool.
3846          * If other threads start allocating from these vdevs before we
3847          * sync the config cache, and we lose power, then upon reboot we may
3848          * fail to open the pool because there are DVAs that the config cache
3849          * can't translate.  Therefore, we first add the vdevs without
3850          * initializing metaslabs; sync the config cache (via spa_vdev_exit());
3851          * and then let spa_config_update() initialize the new metaslabs.
3852          *
3853          * spa_load() checks for added-but-not-initialized vdevs, so that
3854          * if we lose power at any point in this sequence, the remaining
3855          * steps will be completed the next time we load the pool.
3856          */
3857         (void) spa_vdev_exit(spa, vd, txg, 0);
3858 
3859         mutex_enter(&spa_namespace_lock);
3860         spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3861         mutex_exit(&spa_namespace_lock);
3862 
3863         return (0);
3864 }
3865 
3866 /*
3867  * Attach a device to a mirror.  The arguments are the path to any device
3868  * in the mirror, and the nvroot for the new device.  If the path specifies
3869  * a device that is not mirrored, we automatically insert the mirror vdev.
3870  *
3871  * If 'replacing' is specified, the new device is intended to replace the
3872  * existing device; in this case the two devices are made into their own
3873  * mirror using the 'replacing' vdev, which is functionally identical to
3874  * the mirror vdev (it actually reuses all the same ops) but has a few
3875  * extra rules: you can't attach to it after it's been created, and upon
3876  * completion of resilvering, the first disk (the one being replaced)
3877  * is automatically detached.
3878  */
3879 int
3880 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3881 {
3882         uint64_t txg, dtl_max_txg;
3883         vdev_t *rvd = spa->spa_root_vdev;
3884         vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3885         vdev_ops_t *pvops;
3886         char *oldvdpath, *newvdpath;
3887         int newvd_isspare;
3888         int error;
3889 
3890         ASSERT(spa_writeable(spa));
3891 
3892         txg = spa_vdev_enter(spa);
3893 
3894         oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3895 
3896         if (oldvd == NULL)
3897                 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3898 
3899         if (!oldvd->vdev_ops->vdev_op_leaf)
3900                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3901 
3902         pvd = oldvd->vdev_parent;
3903 
3904         if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3905             VDEV_ALLOC_ATTACH)) != 0)
3906                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3907 
3908         if (newrootvd->vdev_children != 1)
3909                 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3910 
3911         newvd = newrootvd->vdev_child[0];
3912 
3913         if (!newvd->vdev_ops->vdev_op_leaf)
3914                 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3915 
3916         if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3917                 return (spa_vdev_exit(spa, newrootvd, txg, error));
3918 
3919         /*
3920          * Spares can't replace logs
3921          */
3922         if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3923                 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3924 
3925         if (!replacing) {
3926                 /*
3927                  * For attach, the only allowable parent is a mirror or the root
3928                  * vdev.
3929                  */
3930                 if (pvd->vdev_ops != &vdev_mirror_ops &&
3931                     pvd->vdev_ops != &vdev_root_ops)
3932                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3933 
3934                 pvops = &vdev_mirror_ops;
3935         } else {
3936                 /*
3937                  * Active hot spares can only be replaced by inactive hot
3938                  * spares.
3939                  */
3940                 if (pvd->vdev_ops == &vdev_spare_ops &&
3941                     oldvd->vdev_isspare &&
3942                     !spa_has_spare(spa, newvd->vdev_guid))
3943                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3944 
3945                 /*
3946                  * If the source is a hot spare, and the parent isn't already a
3947                  * spare, then we want to create a new hot spare.  Otherwise, we
3948                  * want to create a replacing vdev.  The user is not allowed to
3949                  * attach to a spared vdev child unless the 'isspare' state is
3950                  * the same (spare replaces spare, non-spare replaces
3951                  * non-spare).
3952                  */
3953                 if (pvd->vdev_ops == &vdev_replacing_ops &&
3954                     spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
3955                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3956                 } else if (pvd->vdev_ops == &vdev_spare_ops &&
3957                     newvd->vdev_isspare != oldvd->vdev_isspare) {
3958                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3959                 }
3960 
3961                 if (newvd->vdev_isspare)
3962                         pvops = &vdev_spare_ops;
3963                 else
3964                         pvops = &vdev_replacing_ops;
3965         }
3966 
3967         /*
3968          * Make sure the new device is big enough.
3969          */
3970         if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3971                 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3972 
3973         /*
3974          * The new device cannot have a higher alignment requirement
3975          * than the top-level vdev.
3976          */
3977         if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3978                 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3979 
3980         /*
3981          * If this is an in-place replacement, update oldvd's path and devid
3982          * to make it distinguishable from newvd, and unopenable from now on.
3983          */
3984         if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3985                 spa_strfree(oldvd->vdev_path);
3986                 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3987                     KM_SLEEP);
3988                 (void) sprintf(oldvd->vdev_path, "%s/%s",
3989                     newvd->vdev_path, "old");
3990                 if (oldvd->vdev_devid != NULL) {
3991                         spa_strfree(oldvd->vdev_devid);
3992                         oldvd->vdev_devid = NULL;
3993                 }
3994         }
3995 
3996         /* mark the device being resilvered */
3997         newvd->vdev_resilvering = B_TRUE;
3998 
3999         /*
4000          * If the parent is not a mirror, or if we're replacing, insert the new
4001          * mirror/replacing/spare vdev above oldvd.
4002          */
4003         if (pvd->vdev_ops != pvops)
4004                 pvd = vdev_add_parent(oldvd, pvops);
4005 
4006         ASSERT(pvd->vdev_top->vdev_parent == rvd);
4007         ASSERT(pvd->vdev_ops == pvops);
4008         ASSERT(oldvd->vdev_parent == pvd);
4009 
4010         /*
4011          * Extract the new device from its root and add it to pvd.
4012          */
4013         vdev_remove_child(newrootvd, newvd);
4014         newvd->vdev_id = pvd->vdev_children;
4015         newvd->vdev_crtxg = oldvd->vdev_crtxg;
4016         vdev_add_child(pvd, newvd);
4017 
4018         tvd = newvd->vdev_top;
4019         ASSERT(pvd->vdev_top == tvd);
4020         ASSERT(tvd->vdev_parent == rvd);
4021 
4022         vdev_config_dirty(tvd);
4023 
4024         /*
4025          * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4026          * for any dmu_sync-ed blocks.  It will propagate upward when
4027          * spa_vdev_exit() calls vdev_dtl_reassess().
4028          */
4029         dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4030 
4031         vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4032             dtl_max_txg - TXG_INITIAL);
4033 
4034         if (newvd->vdev_isspare) {
4035                 spa_spare_activate(newvd);
4036                 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4037         }
4038 
4039         oldvdpath = spa_strdup(oldvd->vdev_path);
4040         newvdpath = spa_strdup(newvd->vdev_path);
4041         newvd_isspare = newvd->vdev_isspare;
4042 
4043         /*
4044          * Mark newvd's DTL dirty in this txg.
4045          */
4046         vdev_dirty(tvd, VDD_DTL, newvd, txg);
4047 
4048         /*
4049          * Restart the resilver
4050          */
4051         dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4052 
4053         /*
4054          * Commit the config
4055          */
4056         (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4057 
4058         spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
4059             "%s vdev=%s %s vdev=%s",
4060             replacing && newvd_isspare ? "spare in" :
4061             replacing ? "replace" : "attach", newvdpath,
4062             replacing ? "for" : "to", oldvdpath);
4063 
4064         spa_strfree(oldvdpath);
4065         spa_strfree(newvdpath);
4066 
4067         if (spa->spa_bootfs)
4068                 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4069 
4070         return (0);
4071 }
4072 
4073 /*
4074  * Detach a device from a mirror or replacing vdev.
4075  * If 'replace_done' is specified, only detach if the parent
4076  * is a replacing vdev.
4077  */
4078 int
4079 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4080 {
4081         uint64_t txg;
4082         int error;
4083         vdev_t *rvd = spa->spa_root_vdev;
4084         vdev_t *vd, *pvd, *cvd, *tvd;
4085         boolean_t unspare = B_FALSE;
4086         uint64_t unspare_guid;
4087         char *vdpath;
4088 
4089         ASSERT(spa_writeable(spa));
4090 
4091         txg = spa_vdev_enter(spa);
4092 
4093         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4094 
4095         if (vd == NULL)
4096                 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4097 
4098         if (!vd->vdev_ops->vdev_op_leaf)
4099                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4100 
4101         pvd = vd->vdev_parent;
4102 
4103         /*
4104          * If the parent/child relationship is not as expected, don't do it.
4105          * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4106          * vdev that's replacing B with C.  The user's intent in replacing
4107          * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4108          * the replace by detaching C, the expected behavior is to end up
4109          * M(A,B).  But suppose that right after deciding to detach C,
4110          * the replacement of B completes.  We would have M(A,C), and then
4111          * ask to detach C, which would leave us with just A -- not what
4112          * the user wanted.  To prevent this, we make sure that the
4113          * parent/child relationship hasn't changed -- in this example,
4114          * that C's parent is still the replacing vdev R.
4115          */
4116         if (pvd->vdev_guid != pguid && pguid != 0)
4117                 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4118 
4119         /*
4120          * Only 'replacing' or 'spare' vdevs can be replaced.
4121          */
4122         if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4123             pvd->vdev_ops != &vdev_spare_ops)
4124                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4125 
4126         ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4127             spa_version(spa) >= SPA_VERSION_SPARES);
4128 
4129         /*
4130          * Only mirror, replacing, and spare vdevs support detach.
4131          */
4132         if (pvd->vdev_ops != &vdev_replacing_ops &&
4133             pvd->vdev_ops != &vdev_mirror_ops &&
4134             pvd->vdev_ops != &vdev_spare_ops)
4135                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4136 
4137         /*
4138          * If this device has the only valid copy of some data,
4139          * we cannot safely detach it.
4140          */
4141         if (vdev_dtl_required(vd))
4142                 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4143 
4144         ASSERT(pvd->vdev_children >= 2);
4145 
4146         /*
4147          * If we are detaching the second disk from a replacing vdev, then
4148          * check to see if we changed the original vdev's path to have "/old"
4149          * at the end in spa_vdev_attach().  If so, undo that change now.
4150          */
4151         if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4152             vd->vdev_path != NULL) {
4153                 size_t len = strlen(vd->vdev_path);
4154 
4155                 for (int c = 0; c < pvd->vdev_children; c++) {
4156                         cvd = pvd->vdev_child[c];
4157 
4158                         if (cvd == vd || cvd->vdev_path == NULL)
4159                                 continue;
4160 
4161                         if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4162                             strcmp(cvd->vdev_path + len, "/old") == 0) {
4163                                 spa_strfree(cvd->vdev_path);
4164                                 cvd->vdev_path = spa_strdup(vd->vdev_path);
4165                                 break;
4166                         }
4167                 }
4168         }
4169 
4170         /*
4171          * If we are detaching the original disk from a spare, then it implies
4172          * that the spare should become a real disk, and be removed from the
4173          * active spare list for the pool.
4174          */
4175         if (pvd->vdev_ops == &vdev_spare_ops &&
4176             vd->vdev_id == 0 &&
4177             pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4178                 unspare = B_TRUE;
4179 
4180         /*
4181          * Erase the disk labels so the disk can be used for other things.
4182          * This must be done after all other error cases are handled,
4183          * but before we disembowel vd (so we can still do I/O to it).
4184          * But if we can't do it, don't treat the error as fatal --
4185          * it may be that the unwritability of the disk is the reason
4186          * it's being detached!
4187          */
4188         error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4189 
4190         /*
4191          * Remove vd from its parent and compact the parent's children.
4192          */
4193         vdev_remove_child(pvd, vd);
4194         vdev_compact_children(pvd);
4195 
4196         /*
4197          * Remember one of the remaining children so we can get tvd below.
4198          */
4199         cvd = pvd->vdev_child[pvd->vdev_children - 1];
4200 
4201         /*
4202          * If we need to remove the remaining child from the list of hot spares,
4203          * do it now, marking the vdev as no longer a spare in the process.
4204          * We must do this before vdev_remove_parent(), because that can
4205          * change the GUID if it creates a new toplevel GUID.  For a similar
4206          * reason, we must remove the spare now, in the same txg as the detach;
4207          * otherwise someone could attach a new sibling, change the GUID, and
4208          * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4209          */
4210         if (unspare) {
4211                 ASSERT(cvd->vdev_isspare);
4212                 spa_spare_remove(cvd);
4213                 unspare_guid = cvd->vdev_guid;
4214                 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4215                 cvd->vdev_unspare = B_TRUE;
4216         }
4217 
4218         /*
4219          * If the parent mirror/replacing vdev only has one child,
4220          * the parent is no longer needed.  Remove it from the tree.
4221          */
4222         if (pvd->vdev_children == 1) {
4223                 if (pvd->vdev_ops == &vdev_spare_ops)
4224                         cvd->vdev_unspare = B_FALSE;
4225                 vdev_remove_parent(cvd);
4226                 cvd->vdev_resilvering = B_FALSE;
4227         }
4228 
4229 
4230         /*
4231          * We don't set tvd until now because the parent we just removed
4232          * may have been the previous top-level vdev.
4233          */
4234         tvd = cvd->vdev_top;
4235         ASSERT(tvd->vdev_parent == rvd);
4236 
4237         /*
4238          * Reevaluate the parent vdev state.
4239          */
4240         vdev_propagate_state(cvd);
4241 
4242         /*
4243          * If the 'autoexpand' property is set on the pool then automatically
4244          * try to expand the size of the pool. For example if the device we
4245          * just detached was smaller than the others, it may be possible to
4246          * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4247          * first so that we can obtain the updated sizes of the leaf vdevs.
4248          */
4249         if (spa->spa_autoexpand) {
4250                 vdev_reopen(tvd);
4251                 vdev_expand(tvd, txg);
4252         }
4253 
4254         vdev_config_dirty(tvd);
4255 
4256         /*
4257          * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4258          * vd->vdev_detached is set and free vd's DTL object in syncing context.
4259          * But first make sure we're not on any *other* txg's DTL list, to
4260          * prevent vd from being accessed after it's freed.
4261          */
4262         vdpath = spa_strdup(vd->vdev_path);
4263         for (int t = 0; t < TXG_SIZE; t++)
4264                 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4265         vd->vdev_detached = B_TRUE;
4266         vdev_dirty(tvd, VDD_DTL, vd, txg);
4267 
4268         spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4269 
4270         /* hang on to the spa before we release the lock */
4271         spa_open_ref(spa, FTAG);
4272 
4273         error = spa_vdev_exit(spa, vd, txg, 0);
4274 
4275         spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
4276             "vdev=%s", vdpath);
4277         spa_strfree(vdpath);
4278 
4279         /*
4280          * If this was the removal of the original device in a hot spare vdev,
4281          * then we want to go through and remove the device from the hot spare
4282          * list of every other pool.
4283          */
4284         if (unspare) {
4285                 spa_t *altspa = NULL;
4286 
4287                 mutex_enter(&spa_namespace_lock);
4288                 while ((altspa = spa_next(altspa)) != NULL) {
4289                         if (altspa->spa_state != POOL_STATE_ACTIVE ||
4290                             altspa == spa)
4291                                 continue;
4292 
4293                         spa_open_ref(altspa, FTAG);
4294                         mutex_exit(&spa_namespace_lock);
4295                         (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4296                         mutex_enter(&spa_namespace_lock);
4297                         spa_close(altspa, FTAG);
4298                 }
4299                 mutex_exit(&spa_namespace_lock);
4300 
4301                 /* search the rest of the vdevs for spares to remove */
4302                 spa_vdev_resilver_done(spa);
4303         }
4304 
4305         /* all done with the spa; OK to release */
4306         mutex_enter(&spa_namespace_lock);
4307         spa_close(spa, FTAG);
4308         mutex_exit(&spa_namespace_lock);
4309 
4310         return (error);
4311 }
4312 
4313 /*
4314  * Split a set of devices from their mirrors, and create a new pool from them.
4315  */
4316 int
4317 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4318     nvlist_t *props, boolean_t exp)
4319 {
4320         int error = 0;
4321         uint64_t txg, *glist;
4322         spa_t *newspa;
4323         uint_t c, children, lastlog;
4324         nvlist_t **child, *nvl, *tmp;
4325         dmu_tx_t *tx;
4326         char *altroot = NULL;
4327         vdev_t *rvd, **vml = NULL;                      /* vdev modify list */
4328         boolean_t activate_slog;
4329 
4330         ASSERT(spa_writeable(spa));
4331 
4332         txg = spa_vdev_enter(spa);
4333 
4334         /* clear the log and flush everything up to now */
4335         activate_slog = spa_passivate_log(spa);
4336         (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4337         error = spa_offline_log(spa);
4338         txg = spa_vdev_config_enter(spa);
4339 
4340         if (activate_slog)
4341                 spa_activate_log(spa);
4342 
4343         if (error != 0)
4344                 return (spa_vdev_exit(spa, NULL, txg, error));
4345 
4346         /* check new spa name before going any further */
4347         if (spa_lookup(newname) != NULL)
4348                 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4349 
4350         /*
4351          * scan through all the children to ensure they're all mirrors
4352          */
4353         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4354             nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4355             &children) != 0)
4356                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4357 
4358         /* first, check to ensure we've got the right child count */
4359         rvd = spa->spa_root_vdev;
4360         lastlog = 0;
4361         for (c = 0; c < rvd->vdev_children; c++) {
4362                 vdev_t *vd = rvd->vdev_child[c];
4363 
4364                 /* don't count the holes & logs as children */
4365                 if (vd->vdev_islog || vd->vdev_ishole) {
4366                         if (lastlog == 0)
4367                                 lastlog = c;
4368                         continue;
4369                 }
4370 
4371                 lastlog = 0;
4372         }
4373         if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4374                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4375 
4376         /* next, ensure no spare or cache devices are part of the split */
4377         if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4378             nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4379                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4380 
4381         vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4382         glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4383 
4384         /* then, loop over each vdev and validate it */
4385         for (c = 0; c < children; c++) {
4386                 uint64_t is_hole = 0;
4387 
4388                 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4389                     &is_hole);
4390 
4391                 if (is_hole != 0) {
4392                         if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4393                             spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4394                                 continue;
4395                         } else {
4396                                 error = EINVAL;
4397                                 break;
4398                         }
4399                 }
4400 
4401                 /* which disk is going to be split? */
4402                 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4403                     &glist[c]) != 0) {
4404                         error = EINVAL;
4405                         break;
4406                 }
4407 
4408                 /* look it up in the spa */
4409                 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4410                 if (vml[c] == NULL) {
4411                         error = ENODEV;
4412                         break;
4413                 }
4414 
4415                 /* make sure there's nothing stopping the split */
4416                 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4417                     vml[c]->vdev_islog ||
4418                     vml[c]->vdev_ishole ||
4419                     vml[c]->vdev_isspare ||
4420                     vml[c]->vdev_isl2cache ||
4421                     !vdev_writeable(vml[c]) ||
4422                     vml[c]->vdev_children != 0 ||
4423                     vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4424                     c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4425                         error = EINVAL;
4426                         break;
4427                 }
4428 
4429                 if (vdev_dtl_required(vml[c])) {
4430                         error = EBUSY;
4431                         break;
4432                 }
4433 
4434                 /* we need certain info from the top level */
4435                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4436                     vml[c]->vdev_top->vdev_ms_array) == 0);
4437                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4438                     vml[c]->vdev_top->vdev_ms_shift) == 0);
4439                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4440                     vml[c]->vdev_top->vdev_asize) == 0);
4441                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4442                     vml[c]->vdev_top->vdev_ashift) == 0);
4443         }
4444 
4445         if (error != 0) {
4446                 kmem_free(vml, children * sizeof (vdev_t *));
4447                 kmem_free(glist, children * sizeof (uint64_t));
4448                 return (spa_vdev_exit(spa, NULL, txg, error));
4449         }
4450 
4451         /* stop writers from using the disks */
4452         for (c = 0; c < children; c++) {
4453                 if (vml[c] != NULL)
4454                         vml[c]->vdev_offline = B_TRUE;
4455         }
4456         vdev_reopen(spa->spa_root_vdev);
4457 
4458         /*
4459          * Temporarily record the splitting vdevs in the spa config.  This
4460          * will disappear once the config is regenerated.
4461          */
4462         VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4463         VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4464             glist, children) == 0);
4465         kmem_free(glist, children * sizeof (uint64_t));
4466 
4467         mutex_enter(&spa->spa_props_lock);
4468         VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4469             nvl) == 0);
4470         mutex_exit(&spa->spa_props_lock);
4471         spa->spa_config_splitting = nvl;
4472         vdev_config_dirty(spa->spa_root_vdev);
4473 
4474         /* configure and create the new pool */
4475         VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4476         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4477             exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4478         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4479             spa_version(spa)) == 0);
4480         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4481             spa->spa_config_txg) == 0);
4482         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4483             spa_generate_guid(NULL)) == 0);
4484         (void) nvlist_lookup_string(props,
4485             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4486 
4487         /* add the new pool to the namespace */
4488         newspa = spa_add(newname, config, altroot);
4489         newspa->spa_config_txg = spa->spa_config_txg;
4490         spa_set_log_state(newspa, SPA_LOG_CLEAR);
4491 
4492         /* release the spa config lock, retaining the namespace lock */
4493         spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4494 
4495         if (zio_injection_enabled)
4496                 zio_handle_panic_injection(spa, FTAG, 1);
4497 
4498         spa_activate(newspa, spa_mode_global);
4499         spa_async_suspend(newspa);
4500 
4501         /* create the new pool from the disks of the original pool */
4502         error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4503         if (error)
4504                 goto out;
4505 
4506         /* if that worked, generate a real config for the new pool */
4507         if (newspa->spa_root_vdev != NULL) {
4508                 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4509                     NV_UNIQUE_NAME, KM_SLEEP) == 0);
4510                 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4511                     ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4512                 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4513                     B_TRUE));
4514         }
4515 
4516         /* set the props */
4517         if (props != NULL) {
4518                 spa_configfile_set(newspa, props, B_FALSE);
4519                 error = spa_prop_set(newspa, props);
4520                 if (error)
4521                         goto out;
4522         }
4523 
4524         /* flush everything */
4525         txg = spa_vdev_config_enter(newspa);
4526         vdev_config_dirty(newspa->spa_root_vdev);
4527         (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4528 
4529         if (zio_injection_enabled)
4530                 zio_handle_panic_injection(spa, FTAG, 2);
4531 
4532         spa_async_resume(newspa);
4533 
4534         /* finally, update the original pool's config */
4535         txg = spa_vdev_config_enter(spa);
4536         tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4537         error = dmu_tx_assign(tx, TXG_WAIT);
4538         if (error != 0)
4539                 dmu_tx_abort(tx);
4540         for (c = 0; c < children; c++) {
4541                 if (vml[c] != NULL) {
4542                         vdev_split(vml[c]);
4543                         if (error == 0)
4544                                 spa_history_log_internal(LOG_POOL_VDEV_DETACH,
4545                                     spa, tx, "vdev=%s",
4546                                     vml[c]->vdev_path);
4547                         vdev_free(vml[c]);
4548                 }
4549         }
4550         vdev_config_dirty(spa->spa_root_vdev);
4551         spa->spa_config_splitting = NULL;
4552         nvlist_free(nvl);
4553         if (error == 0)
4554                 dmu_tx_commit(tx);
4555         (void) spa_vdev_exit(spa, NULL, txg, 0);
4556 
4557         if (zio_injection_enabled)
4558                 zio_handle_panic_injection(spa, FTAG, 3);
4559 
4560         /* split is complete; log a history record */
4561         spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
4562             "split new pool %s from pool %s", newname, spa_name(spa));
4563 
4564         kmem_free(vml, children * sizeof (vdev_t *));
4565 
4566         /* if we're not going to mount the filesystems in userland, export */
4567         if (exp)
4568                 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4569                     B_FALSE, B_FALSE);
4570 
4571         return (error);
4572 
4573 out:
4574         spa_unload(newspa);
4575         spa_deactivate(newspa);
4576         spa_remove(newspa);
4577 
4578         txg = spa_vdev_config_enter(spa);
4579 
4580         /* re-online all offlined disks */
4581         for (c = 0; c < children; c++) {
4582                 if (vml[c] != NULL)
4583                         vml[c]->vdev_offline = B_FALSE;
4584         }
4585         vdev_reopen(spa->spa_root_vdev);
4586 
4587         nvlist_free(spa->spa_config_splitting);
4588         spa->spa_config_splitting = NULL;
4589         (void) spa_vdev_exit(spa, NULL, txg, error);
4590 
4591         kmem_free(vml, children * sizeof (vdev_t *));
4592         return (error);
4593 }
4594 
4595 static nvlist_t *
4596 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4597 {
4598         for (int i = 0; i < count; i++) {
4599                 uint64_t guid;
4600 
4601                 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4602                     &guid) == 0);
4603 
4604                 if (guid == target_guid)
4605                         return (nvpp[i]);
4606         }
4607 
4608         return (NULL);
4609 }
4610 
4611 static void
4612 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4613         nvlist_t *dev_to_remove)
4614 {
4615         nvlist_t **newdev = NULL;
4616 
4617         if (count > 1)
4618                 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4619 
4620         for (int i = 0, j = 0; i < count; i++) {
4621                 if (dev[i] == dev_to_remove)
4622                         continue;
4623                 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4624         }
4625 
4626         VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4627         VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4628 
4629         for (int i = 0; i < count - 1; i++)
4630                 nvlist_free(newdev[i]);
4631 
4632         if (count > 1)
4633                 kmem_free(newdev, (count - 1) * sizeof (void *));
4634 }
4635 
4636 /*
4637  * Evacuate the device.
4638  */
4639 static int
4640 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
4641 {
4642         uint64_t txg;
4643         int error = 0;
4644 
4645         ASSERT(MUTEX_HELD(&spa_namespace_lock));
4646         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4647         ASSERT(vd == vd->vdev_top);
4648 
4649         /*
4650          * Evacuate the device.  We don't hold the config lock as writer
4651          * since we need to do I/O but we do keep the
4652          * spa_namespace_lock held.  Once this completes the device
4653          * should no longer have any blocks allocated on it.
4654          */
4655         if (vd->vdev_islog) {
4656                 if (vd->vdev_stat.vs_alloc != 0)
4657                         error = spa_offline_log(spa);
4658         } else {
4659                 error = ENOTSUP;
4660         }
4661 
4662         if (error)
4663                 return (error);
4664 
4665         /*
4666          * The evacuation succeeded.  Remove any remaining MOS metadata
4667          * associated with this vdev, and wait for these changes to sync.
4668          */
4669         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
4670         txg = spa_vdev_config_enter(spa);
4671         vd->vdev_removing = B_TRUE;
4672         vdev_dirty(vd, 0, NULL, txg);
4673         vdev_config_dirty(vd);
4674         spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4675 
4676         return (0);
4677 }
4678 
4679 /*
4680  * Complete the removal by cleaning up the namespace.
4681  */
4682 static void
4683 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
4684 {
4685         vdev_t *rvd = spa->spa_root_vdev;
4686         uint64_t id = vd->vdev_id;
4687         boolean_t last_vdev = (id == (rvd->vdev_children - 1));
4688 
4689         ASSERT(MUTEX_HELD(&spa_namespace_lock));
4690         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4691         ASSERT(vd == vd->vdev_top);
4692 
4693         /*
4694          * Only remove any devices which are empty.
4695          */
4696         if (vd->vdev_stat.vs_alloc != 0)
4697                 return;
4698 
4699         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4700 
4701         if (list_link_active(&vd->vdev_state_dirty_node))
4702                 vdev_state_clean(vd);
4703         if (list_link_active(&vd->vdev_config_dirty_node))
4704                 vdev_config_clean(vd);
4705 
4706         vdev_free(vd);
4707 
4708         if (last_vdev) {
4709                 vdev_compact_children(rvd);
4710         } else {
4711                 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
4712                 vdev_add_child(rvd, vd);
4713         }
4714         vdev_config_dirty(rvd);
4715 
4716         /*
4717          * Reassess the health of our root vdev.
4718          */
4719         vdev_reopen(rvd);
4720 }
4721 
4722 /*
4723  * Remove a device from the pool -
4724  *
4725  * Removing a device from the vdev namespace requires several steps
4726  * and can take a significant amount of time.  As a result we use
4727  * the spa_vdev_config_[enter/exit] functions which allow us to
4728  * grab and release the spa_config_lock while still holding the namespace
4729  * lock.  During each step the configuration is synced out.
4730  */
4731 
4732 /*
4733  * Remove a device from the pool.  Currently, this supports removing only hot
4734  * spares, slogs, and level 2 ARC devices.
4735  */
4736 int
4737 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
4738 {
4739         vdev_t *vd;
4740         metaslab_group_t *mg;
4741         nvlist_t **spares, **l2cache, *nv;
4742         uint64_t txg = 0;
4743         uint_t nspares, nl2cache;
4744         int error = 0;
4745         boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
4746 
4747         ASSERT(spa_writeable(spa));
4748 
4749         if (!locked)
4750                 txg = spa_vdev_enter(spa);
4751 
4752         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4753 
4754         if (spa->spa_spares.sav_vdevs != NULL &&
4755             nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4756             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
4757             (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
4758                 /*
4759                  * Only remove the hot spare if it's not currently in use
4760                  * in this pool.
4761                  */
4762                 if (vd == NULL || unspare) {
4763                         spa_vdev_remove_aux(spa->spa_spares.sav_config,
4764                             ZPOOL_CONFIG_SPARES, spares, nspares, nv);
4765                         spa_load_spares(spa);
4766                         spa->spa_spares.sav_sync = B_TRUE;
4767                 } else {
4768                         error = EBUSY;
4769                 }
4770         } else if (spa->spa_l2cache.sav_vdevs != NULL &&
4771             nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4772             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
4773             (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
4774                 /*
4775                  * Cache devices can always be removed.
4776                  */
4777                 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
4778                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
4779                 spa_load_l2cache(spa);
4780                 spa->spa_l2cache.sav_sync = B_TRUE;
4781         } else if (vd != NULL && vd->vdev_islog) {
4782                 ASSERT(!locked);
4783                 ASSERT(vd == vd->vdev_top);
4784 
4785                 /*
4786                  * XXX - Once we have bp-rewrite this should
4787                  * become the common case.
4788                  */
4789 
4790                 mg = vd->vdev_mg;
4791 
4792                 /*
4793                  * Stop allocating from this vdev.
4794                  */
4795                 metaslab_group_passivate(mg);
4796 
4797                 /*
4798                  * Wait for the youngest allocations and frees to sync,
4799                  * and then wait for the deferral of those frees to finish.
4800                  */
4801                 spa_vdev_config_exit(spa, NULL,
4802                     txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
4803 
4804                 /*
4805                  * Attempt to evacuate the vdev.
4806                  */
4807                 error = spa_vdev_remove_evacuate(spa, vd);
4808 
4809                 txg = spa_vdev_config_enter(spa);
4810 
4811                 /*
4812                  * If we couldn't evacuate the vdev, unwind.
4813                  */
4814                 if (error) {
4815                         metaslab_group_activate(mg);
4816                         return (spa_vdev_exit(spa, NULL, txg, error));
4817                 }
4818 
4819                 /*
4820                  * Clean up the vdev namespace.
4821                  */
4822                 spa_vdev_remove_from_namespace(spa, vd);
4823 
4824         } else if (vd != NULL) {
4825                 /*
4826                  * Normal vdevs cannot be removed (yet).
4827                  */
4828                 error = ENOTSUP;
4829         } else {
4830                 /*
4831                  * There is no vdev of any kind with the specified guid.
4832                  */
4833                 error = ENOENT;
4834         }
4835 
4836         if (!locked)
4837                 return (spa_vdev_exit(spa, NULL, txg, error));
4838 
4839         return (error);
4840 }
4841 
4842 /*
4843  * Find any device that's done replacing, or a vdev marked 'unspare' that's
4844  * current spared, so we can detach it.
4845  */
4846 static vdev_t *
4847 spa_vdev_resilver_done_hunt(vdev_t *vd)
4848 {
4849         vdev_t *newvd, *oldvd;
4850 
4851         for (int c = 0; c < vd->vdev_children; c++) {
4852                 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
4853                 if (oldvd != NULL)
4854                         return (oldvd);
4855         }
4856 
4857         /*
4858          * Check for a completed replacement.  We always consider the first
4859          * vdev in the list to be the oldest vdev, and the last one to be
4860          * the newest (see spa_vdev_attach() for how that works).  In
4861          * the case where the newest vdev is faulted, we will not automatically
4862          * remove it after a resilver completes.  This is OK as it will require
4863          * user intervention to determine which disk the admin wishes to keep.
4864          */
4865         if (vd->vdev_ops == &vdev_replacing_ops) {
4866                 ASSERT(vd->vdev_children > 1);
4867 
4868                 newvd = vd->vdev_child[vd->vdev_children - 1];
4869                 oldvd = vd->vdev_child[0];
4870 
4871                 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
4872                     vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4873                     !vdev_dtl_required(oldvd))
4874                         return (oldvd);
4875         }
4876 
4877         /*
4878          * Check for a completed resilver with the 'unspare' flag set.
4879          */
4880         if (vd->vdev_ops == &vdev_spare_ops) {
4881                 vdev_t *first = vd->vdev_child[0];
4882                 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
4883 
4884                 if (last->vdev_unspare) {
4885                         oldvd = first;
4886                         newvd = last;
4887                 } else if (first->vdev_unspare) {
4888                         oldvd = last;
4889                         newvd = first;
4890                 } else {
4891                         oldvd = NULL;
4892                 }
4893 
4894                 if (oldvd != NULL &&
4895                     vdev_dtl_empty(newvd, DTL_MISSING) &&
4896                     vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4897                     !vdev_dtl_required(oldvd))
4898                         return (oldvd);
4899 
4900                 /*
4901                  * If there are more than two spares attached to a disk,
4902                  * and those spares are not required, then we want to
4903                  * attempt to free them up now so that they can be used
4904                  * by other pools.  Once we're back down to a single
4905                  * disk+spare, we stop removing them.
4906                  */
4907                 if (vd->vdev_children > 2) {
4908                         newvd = vd->vdev_child[1];
4909 
4910                         if (newvd->vdev_isspare && last->vdev_isspare &&
4911                             vdev_dtl_empty(last, DTL_MISSING) &&
4912                             vdev_dtl_empty(last, DTL_OUTAGE) &&
4913                             !vdev_dtl_required(newvd))
4914                                 return (newvd);
4915                 }
4916         }
4917 
4918         return (NULL);
4919 }
4920 
4921 static void
4922 spa_vdev_resilver_done(spa_t *spa)
4923 {
4924         vdev_t *vd, *pvd, *ppvd;
4925         uint64_t guid, sguid, pguid, ppguid;
4926 
4927         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4928 
4929         while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
4930                 pvd = vd->vdev_parent;
4931                 ppvd = pvd->vdev_parent;
4932                 guid = vd->vdev_guid;
4933                 pguid = pvd->vdev_guid;
4934                 ppguid = ppvd->vdev_guid;
4935                 sguid = 0;
4936                 /*
4937                  * If we have just finished replacing a hot spared device, then
4938                  * we need to detach the parent's first child (the original hot
4939                  * spare) as well.
4940                  */
4941                 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
4942                     ppvd->vdev_children == 2) {
4943                         ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
4944                         sguid = ppvd->vdev_child[1]->vdev_guid;
4945                 }
4946                 spa_config_exit(spa, SCL_ALL, FTAG);
4947                 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
4948                         return;
4949                 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
4950                         return;
4951                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4952         }
4953 
4954         spa_config_exit(spa, SCL_ALL, FTAG);
4955 }
4956 
4957 /*
4958  * Update the stored path or FRU for this vdev.
4959  */
4960 int
4961 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
4962     boolean_t ispath)
4963 {
4964         vdev_t *vd;
4965         boolean_t sync = B_FALSE;
4966 
4967         ASSERT(spa_writeable(spa));
4968 
4969         spa_vdev_state_enter(spa, SCL_ALL);
4970 
4971         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4972                 return (spa_vdev_state_exit(spa, NULL, ENOENT));
4973 
4974         if (!vd->vdev_ops->vdev_op_leaf)
4975                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4976 
4977         if (ispath) {
4978                 if (strcmp(value, vd->vdev_path) != 0) {
4979                         spa_strfree(vd->vdev_path);
4980                         vd->vdev_path = spa_strdup(value);
4981                         sync = B_TRUE;
4982                 }
4983         } else {
4984                 if (vd->vdev_fru == NULL) {
4985                         vd->vdev_fru = spa_strdup(value);
4986                         sync = B_TRUE;
4987                 } else if (strcmp(value, vd->vdev_fru) != 0) {
4988                         spa_strfree(vd->vdev_fru);
4989                         vd->vdev_fru = spa_strdup(value);
4990                         sync = B_TRUE;
4991                 }
4992         }
4993 
4994         return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
4995 }
4996 
4997 int
4998 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
4999 {
5000         return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5001 }
5002 
5003 int
5004 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5005 {
5006         return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5007 }
5008 
5009 /*
5010  * ==========================================================================
5011  * SPA Scanning
5012  * ==========================================================================
5013  */
5014 
5015 int
5016 spa_scan_stop(spa_t *spa)
5017 {
5018         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5019         if (dsl_scan_resilvering(spa->spa_dsl_pool))
5020                 return (EBUSY);
5021         return (dsl_scan_cancel(spa->spa_dsl_pool));
5022 }
5023 
5024 int
5025 spa_scan(spa_t *spa, pool_scan_func_t func)
5026 {
5027         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5028 
5029         if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5030                 return (ENOTSUP);
5031 
5032         /*
5033          * If a resilver was requested, but there is no DTL on a
5034          * writeable leaf device, we have nothing to do.
5035          */
5036         if (func == POOL_SCAN_RESILVER &&
5037             !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5038                 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5039                 return (0);
5040         }
5041 
5042         return (dsl_scan(spa->spa_dsl_pool, func));
5043 }
5044 
5045 /*
5046  * ==========================================================================
5047  * SPA async task processing
5048  * ==========================================================================
5049  */
5050 
5051 static void
5052 spa_async_remove(spa_t *spa, vdev_t *vd)
5053 {
5054         if (vd->vdev_remove_wanted) {
5055                 vd->vdev_remove_wanted = B_FALSE;
5056                 vd->vdev_delayed_close = B_FALSE;
5057                 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5058 
5059                 /*
5060                  * We want to clear the stats, but we don't want to do a full
5061                  * vdev_clear() as that will cause us to throw away
5062                  * degraded/faulted state as well as attempt to reopen the
5063                  * device, all of which is a waste.
5064                  */
5065                 vd->vdev_stat.vs_read_errors = 0;
5066                 vd->vdev_stat.vs_write_errors = 0;
5067                 vd->vdev_stat.vs_checksum_errors = 0;
5068 
5069                 vdev_state_dirty(vd->vdev_top);
5070         }
5071 
5072         for (int c = 0; c < vd->vdev_children; c++)
5073                 spa_async_remove(spa, vd->vdev_child[c]);
5074 }
5075 
5076 static void
5077 spa_async_probe(spa_t *spa, vdev_t *vd)
5078 {
5079         if (vd->vdev_probe_wanted) {
5080                 vd->vdev_probe_wanted = B_FALSE;
5081                 vdev_reopen(vd);        /* vdev_open() does the actual probe */
5082         }
5083 
5084         for (int c = 0; c < vd->vdev_children; c++)
5085                 spa_async_probe(spa, vd->vdev_child[c]);
5086 }
5087 
5088 static void
5089 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5090 {
5091         sysevent_id_t eid;
5092         nvlist_t *attr;
5093         char *physpath;
5094 
5095         if (!spa->spa_autoexpand)
5096                 return;
5097 
5098         for (int c = 0; c < vd->vdev_children; c++) {
5099                 vdev_t *cvd = vd->vdev_child[c];
5100                 spa_async_autoexpand(spa, cvd);
5101         }
5102 
5103         if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5104                 return;
5105 
5106         physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5107         (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5108 
5109         VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5110         VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5111 
5112         (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5113             ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5114 
5115         nvlist_free(attr);
5116         kmem_free(physpath, MAXPATHLEN);
5117 }
5118 
5119 static void
5120 spa_async_thread(spa_t *spa)
5121 {
5122         int tasks;
5123 
5124         ASSERT(spa->spa_sync_on);
5125 
5126         mutex_enter(&spa->spa_async_lock);
5127         tasks = spa->spa_async_tasks;
5128         spa->spa_async_tasks = 0;
5129         mutex_exit(&spa->spa_async_lock);
5130 
5131         /*
5132          * See if the config needs to be updated.
5133          */
5134         if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5135                 uint64_t old_space, new_space;
5136 
5137                 mutex_enter(&spa_namespace_lock);
5138                 old_space = metaslab_class_get_space(spa_normal_class(spa));
5139                 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5140                 new_space = metaslab_class_get_space(spa_normal_class(spa));
5141                 mutex_exit(&spa_namespace_lock);
5142 
5143                 /*
5144                  * If the pool grew as a result of the config update,
5145                  * then log an internal history event.
5146                  */
5147                 if (new_space != old_space) {
5148                         spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
5149                             spa, NULL,
5150                             "pool '%s' size: %llu(+%llu)",
5151                             spa_name(spa), new_space, new_space - old_space);
5152                 }
5153         }
5154 
5155         /*
5156          * See if any devices need to be marked REMOVED.
5157          */
5158         if (tasks & SPA_ASYNC_REMOVE) {
5159                 spa_vdev_state_enter(spa, SCL_NONE);
5160                 spa_async_remove(spa, spa->spa_root_vdev);
5161                 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5162                         spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5163                 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5164                         spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5165                 (void) spa_vdev_state_exit(spa, NULL, 0);
5166         }
5167 
5168         if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5169                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5170                 spa_async_autoexpand(spa, spa->spa_root_vdev);
5171                 spa_config_exit(spa, SCL_CONFIG, FTAG);
5172         }
5173 
5174         /*
5175          * See if any devices need to be probed.
5176          */
5177         if (tasks & SPA_ASYNC_PROBE) {
5178                 spa_vdev_state_enter(spa, SCL_NONE);
5179                 spa_async_probe(spa, spa->spa_root_vdev);
5180                 (void) spa_vdev_state_exit(spa, NULL, 0);
5181         }
5182 
5183         /*
5184          * If any devices are done replacing, detach them.
5185          */
5186         if (tasks & SPA_ASYNC_RESILVER_DONE)
5187                 spa_vdev_resilver_done(spa);
5188 
5189         /*
5190          * Kick off a resilver.
5191          */
5192         if (tasks & SPA_ASYNC_RESILVER)
5193                 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5194 
5195         /*
5196          * Let the world know that we're done.
5197          */
5198         mutex_enter(&spa->spa_async_lock);
5199         spa->spa_async_thread = NULL;
5200         cv_broadcast(&spa->spa_async_cv);
5201         mutex_exit(&spa->spa_async_lock);
5202         thread_exit();
5203 }
5204 
5205 void
5206 spa_async_suspend(spa_t *spa)
5207 {
5208         mutex_enter(&spa->spa_async_lock);
5209         spa->spa_async_suspended++;
5210         while (spa->spa_async_thread != NULL)
5211                 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5212         mutex_exit(&spa->spa_async_lock);
5213 }
5214 
5215 void
5216 spa_async_resume(spa_t *spa)
5217 {
5218         mutex_enter(&spa->spa_async_lock);
5219         ASSERT(spa->spa_async_suspended != 0);
5220         spa->spa_async_suspended--;
5221         mutex_exit(&spa->spa_async_lock);
5222 }
5223 
5224 static void
5225 spa_async_dispatch(spa_t *spa)
5226 {
5227         mutex_enter(&spa->spa_async_lock);
5228         if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5229             spa->spa_async_thread == NULL &&
5230             rootdir != NULL && !vn_is_readonly(rootdir))
5231                 spa->spa_async_thread = thread_create(NULL, 0,
5232                     spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5233         mutex_exit(&spa->spa_async_lock);
5234 }
5235 
5236 void
5237 spa_async_request(spa_t *spa, int task)
5238 {
5239         zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5240         mutex_enter(&spa->spa_async_lock);
5241         spa->spa_async_tasks |= task;
5242         mutex_exit(&spa->spa_async_lock);
5243 }
5244 
5245 /*
5246  * ==========================================================================
5247  * SPA syncing routines
5248  * ==========================================================================
5249  */
5250 
5251 static int
5252 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5253 {
5254         bpobj_t *bpo = arg;
5255         bpobj_enqueue(bpo, bp, tx);
5256         return (0);
5257 }
5258 
5259 static int
5260 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5261 {
5262         zio_t *zio = arg;
5263 
5264         zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5265             zio->io_flags));
5266         return (0);
5267 }
5268 
5269 static void
5270 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5271 {
5272         char *packed = NULL;
5273         size_t bufsize;
5274         size_t nvsize = 0;
5275         dmu_buf_t *db;
5276 
5277         VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5278 
5279         /*
5280          * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5281          * information.  This avoids the dbuf_will_dirty() path and
5282          * saves us a pre-read to get data we don't actually care about.
5283          */
5284         bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
5285         packed = kmem_alloc(bufsize, KM_SLEEP);
5286 
5287         VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5288             KM_SLEEP) == 0);
5289         bzero(packed + nvsize, bufsize - nvsize);
5290 
5291         dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5292 
5293         kmem_free(packed, bufsize);
5294 
5295         VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5296         dmu_buf_will_dirty(db, tx);
5297         *(uint64_t *)db->db_data = nvsize;
5298         dmu_buf_rele(db, FTAG);
5299 }
5300 
5301 static void
5302 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5303     const char *config, const char *entry)
5304 {
5305         nvlist_t *nvroot;
5306         nvlist_t **list;
5307         int i;
5308 
5309         if (!sav->sav_sync)
5310                 return;
5311 
5312         /*
5313          * Update the MOS nvlist describing the list of available devices.
5314          * spa_validate_aux() will have already made sure this nvlist is
5315          * valid and the vdevs are labeled appropriately.
5316          */
5317         if (sav->sav_object == 0) {
5318                 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5319                     DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5320                     sizeof (uint64_t), tx);
5321                 VERIFY(zap_update(spa->spa_meta_objset,
5322                     DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5323                     &sav->sav_object, tx) == 0);
5324         }
5325 
5326         VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5327         if (sav->sav_count == 0) {
5328                 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5329         } else {
5330                 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5331                 for (i = 0; i < sav->sav_count; i++)
5332                         list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5333                             B_FALSE, VDEV_CONFIG_L2CACHE);
5334                 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5335                     sav->sav_count) == 0);
5336                 for (i = 0; i < sav->sav_count; i++)
5337                         nvlist_free(list[i]);
5338                 kmem_free(list, sav->sav_count * sizeof (void *));
5339         }
5340 
5341         spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5342         nvlist_free(nvroot);
5343 
5344         sav->sav_sync = B_FALSE;
5345 }
5346 
5347 static void
5348 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5349 {
5350         nvlist_t *config;
5351 
5352         if (list_is_empty(&spa->spa_config_dirty_list))
5353                 return;
5354 
5355         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5356 
5357         config = spa_config_generate(spa, spa->spa_root_vdev,
5358             dmu_tx_get_txg(tx), B_FALSE);
5359 
5360         spa_config_exit(spa, SCL_STATE, FTAG);
5361 
5362         if (spa->spa_config_syncing)
5363                 nvlist_free(spa->spa_config_syncing);
5364         spa->spa_config_syncing = config;
5365 
5366         spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5367 }
5368 
5369 /*
5370  * Set zpool properties.
5371  */
5372 static void
5373 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5374 {
5375         spa_t *spa = arg1;
5376         objset_t *mos = spa->spa_meta_objset;
5377         nvlist_t *nvp = arg2;
5378         nvpair_t *elem;
5379         uint64_t intval;
5380         char *strval;
5381         zpool_prop_t prop;
5382         const char *propname;
5383         zprop_type_t proptype;
5384 
5385         mutex_enter(&spa->spa_props_lock);
5386 
5387         elem = NULL;
5388         while ((elem = nvlist_next_nvpair(nvp, elem))) {
5389                 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5390                 case ZPOOL_PROP_VERSION:
5391                         /*
5392                          * Only set version for non-zpool-creation cases
5393                          * (set/import). spa_create() needs special care
5394                          * for version setting.
5395                          */
5396                         if (tx->tx_txg != TXG_INITIAL) {
5397                                 VERIFY(nvpair_value_uint64(elem,
5398                                     &intval) == 0);
5399                                 ASSERT(intval <= SPA_VERSION);
5400                                 ASSERT(intval >= spa_version(spa));
5401                                 spa->spa_uberblock.ub_version = intval;
5402                                 vdev_config_dirty(spa->spa_root_vdev);
5403                         }
5404                         break;
5405 
5406                 case ZPOOL_PROP_ALTROOT:
5407                         /*
5408                          * 'altroot' is a non-persistent property. It should
5409                          * have been set temporarily at creation or import time.
5410                          */
5411                         ASSERT(spa->spa_root != NULL);
5412                         break;
5413 
5414                 case ZPOOL_PROP_READONLY:
5415                 case ZPOOL_PROP_CACHEFILE:
5416                         /*
5417                          * 'readonly' and 'cachefile' are also non-persisitent
5418                          * properties.
5419                          */
5420                         break;
5421                 case ZPOOL_PROP_COMMENT:
5422                         VERIFY(nvpair_value_string(elem, &strval) == 0);
5423                         if (spa->spa_comment != NULL)
5424                                 spa_strfree(spa->spa_comment);
5425                         spa->spa_comment = spa_strdup(strval);
5426                         /*
5427                          * We need to dirty the configuration on all the vdevs
5428                          * so that their labels get updated.  It's unnecessary
5429                          * to do this for pool creation since the vdev's
5430                          * configuratoin has already been dirtied.
5431                          */
5432                         if (tx->tx_txg != TXG_INITIAL)
5433                                 vdev_config_dirty(spa->spa_root_vdev);
5434                         break;
5435                 default:
5436                         /*
5437                          * Set pool property values in the poolprops mos object.
5438                          */
5439                         if (spa->spa_pool_props_object == 0) {
5440                                 VERIFY((spa->spa_pool_props_object =
5441                                     zap_create(mos, DMU_OT_POOL_PROPS,
5442                                     DMU_OT_NONE, 0, tx)) > 0);
5443 
5444                                 VERIFY(zap_update(mos,
5445                                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5446                                     8, 1, &spa->spa_pool_props_object, tx)
5447                                     == 0);
5448                         }
5449 
5450                         /* normalize the property name */
5451                         propname = zpool_prop_to_name(prop);
5452                         proptype = zpool_prop_get_type(prop);
5453 
5454                         if (nvpair_type(elem) == DATA_TYPE_STRING) {
5455                                 ASSERT(proptype == PROP_TYPE_STRING);
5456                                 VERIFY(nvpair_value_string(elem, &strval) == 0);
5457                                 VERIFY(zap_update(mos,
5458                                     spa->spa_pool_props_object, propname,
5459                                     1, strlen(strval) + 1, strval, tx) == 0);
5460 
5461                         } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5462                                 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5463 
5464                                 if (proptype == PROP_TYPE_INDEX) {
5465                                         const char *unused;
5466                                         VERIFY(zpool_prop_index_to_string(
5467                                             prop, intval, &unused) == 0);
5468                                 }
5469                                 VERIFY(zap_update(mos,
5470                                     spa->spa_pool_props_object, propname,
5471                                     8, 1, &intval, tx) == 0);
5472                         } else {
5473                                 ASSERT(0); /* not allowed */
5474                         }
5475 
5476                         switch (prop) {
5477                         case ZPOOL_PROP_DELEGATION:
5478                                 spa->spa_delegation = intval;
5479                                 break;
5480                         case ZPOOL_PROP_BOOTFS:
5481                                 spa->spa_bootfs = intval;
5482                                 break;
5483                         case ZPOOL_PROP_FAILUREMODE:
5484                                 spa->spa_failmode = intval;
5485                                 break;
5486                         case ZPOOL_PROP_AUTOEXPAND:
5487                                 spa->spa_autoexpand = intval;
5488                                 if (tx->tx_txg != TXG_INITIAL)
5489                                         spa_async_request(spa,
5490                                             SPA_ASYNC_AUTOEXPAND);
5491                                 break;
5492                         case ZPOOL_PROP_DEDUPDITTO:
5493                                 spa->spa_dedup_ditto = intval;
5494                                 break;
5495                         default:
5496                                 break;
5497                         }
5498                 }
5499 
5500                 /* log internal history if this is not a zpool create */
5501                 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
5502                     tx->tx_txg != TXG_INITIAL) {
5503                         spa_history_log_internal(LOG_POOL_PROPSET,
5504                             spa, tx, "%s %lld %s",
5505                             nvpair_name(elem), intval, spa_name(spa));
5506                 }
5507         }
5508 
5509         mutex_exit(&spa->spa_props_lock);
5510 }
5511 
5512 /*
5513  * Perform one-time upgrade on-disk changes.  spa_version() does not
5514  * reflect the new version this txg, so there must be no changes this
5515  * txg to anything that the upgrade code depends on after it executes.
5516  * Therefore this must be called after dsl_pool_sync() does the sync
5517  * tasks.
5518  */
5519 static void
5520 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5521 {
5522         dsl_pool_t *dp = spa->spa_dsl_pool;
5523 
5524         ASSERT(spa->spa_sync_pass == 1);
5525 
5526         if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5527             spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5528                 dsl_pool_create_origin(dp, tx);
5529 
5530                 /* Keeping the origin open increases spa_minref */
5531                 spa->spa_minref += 3;
5532         }
5533 
5534         if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5535             spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5536                 dsl_pool_upgrade_clones(dp, tx);
5537         }
5538 
5539         if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
5540             spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
5541                 dsl_pool_upgrade_dir_clones(dp, tx);
5542 
5543                 /* Keeping the freedir open increases spa_minref */
5544                 spa->spa_minref += 3;
5545         }
5546 }
5547 
5548 /*
5549  * Sync the specified transaction group.  New blocks may be dirtied as
5550  * part of the process, so we iterate until it converges.
5551  */
5552 void
5553 spa_sync(spa_t *spa, uint64_t txg)
5554 {
5555         dsl_pool_t *dp = spa->spa_dsl_pool;
5556         objset_t *mos = spa->spa_meta_objset;
5557         bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
5558         bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5559         vdev_t *rvd = spa->spa_root_vdev;
5560         vdev_t *vd;
5561         dmu_tx_t *tx;
5562         int error;
5563 
5564         VERIFY(spa_writeable(spa));
5565 
5566         /*
5567          * Lock out configuration changes.
5568          */
5569         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5570 
5571         spa->spa_syncing_txg = txg;
5572         spa->spa_sync_pass = 0;
5573 
5574         /*
5575          * If there are any pending vdev state changes, convert them
5576          * into config changes that go out with this transaction group.
5577          */
5578         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5579         while (list_head(&spa->spa_state_dirty_list) != NULL) {
5580                 /*
5581                  * We need the write lock here because, for aux vdevs,
5582                  * calling vdev_config_dirty() modifies sav_config.
5583                  * This is ugly and will become unnecessary when we
5584                  * eliminate the aux vdev wart by integrating all vdevs
5585                  * into the root vdev tree.
5586                  */
5587                 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5588                 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5589                 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5590                         vdev_state_clean(vd);
5591                         vdev_config_dirty(vd);
5592                 }
5593                 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5594                 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5595         }
5596         spa_config_exit(spa, SCL_STATE, FTAG);
5597 
5598         tx = dmu_tx_create_assigned(dp, txg);
5599 
5600         /*
5601          * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
5602          * set spa_deflate if we have no raid-z vdevs.
5603          */
5604         if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
5605             spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
5606                 int i;
5607 
5608                 for (i = 0; i < rvd->vdev_children; i++) {
5609                         vd = rvd->vdev_child[i];
5610                         if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
5611                                 break;
5612                 }
5613                 if (i == rvd->vdev_children) {
5614                         spa->spa_deflate = TRUE;
5615                         VERIFY(0 == zap_add(spa->spa_meta_objset,
5616                             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5617                             sizeof (uint64_t), 1, &spa->spa_deflate, tx));
5618                 }
5619         }
5620 
5621         /*
5622          * If anything has changed in this txg, or if someone is waiting
5623          * for this txg to sync (eg, spa_vdev_remove()), push the
5624          * deferred frees from the previous txg.  If not, leave them
5625          * alone so that we don't generate work on an otherwise idle
5626          * system.
5627          */
5628         if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
5629             !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
5630             !txg_list_empty(&dp->dp_sync_tasks, txg) ||
5631             ((dsl_scan_active(dp->dp_scan) ||
5632             txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
5633                 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5634                 VERIFY3U(bpobj_iterate(defer_bpo,
5635                     spa_free_sync_cb, zio, tx), ==, 0);
5636                 VERIFY3U(zio_wait(zio), ==, 0);
5637         }
5638 
5639         /*
5640          * Iterate to convergence.
5641          */
5642         do {
5643                 int pass = ++spa->spa_sync_pass;
5644 
5645                 spa_sync_config_object(spa, tx);
5646                 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
5647                     ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
5648                 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
5649                     ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
5650                 spa_errlog_sync(spa, txg);
5651                 dsl_pool_sync(dp, txg);
5652 
5653                 if (pass <= SYNC_PASS_DEFERRED_FREE) {
5654                         zio_t *zio = zio_root(spa, NULL, NULL, 0);
5655                         bplist_iterate(free_bpl, spa_free_sync_cb,
5656                             zio, tx);
5657                         VERIFY(zio_wait(zio) == 0);
5658                 } else {
5659                         bplist_iterate(free_bpl, bpobj_enqueue_cb,
5660                             defer_bpo, tx);
5661                 }
5662 
5663                 ddt_sync(spa, txg);
5664                 dsl_scan_sync(dp, tx);
5665 
5666                 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
5667                         vdev_sync(vd, txg);
5668 
5669                 if (pass == 1)
5670                         spa_sync_upgrades(spa, tx);
5671 
5672         } while (dmu_objset_is_dirty(mos, txg));
5673 
5674         /*
5675          * Rewrite the vdev configuration (which includes the uberblock)
5676          * to commit the transaction group.
5677          *
5678          * If there are no dirty vdevs, we sync the uberblock to a few
5679          * random top-level vdevs that are known to be visible in the
5680          * config cache (see spa_vdev_add() for a complete description).
5681          * If there *are* dirty vdevs, sync the uberblock to all vdevs.
5682          */
5683         for (;;) {
5684                 /*
5685                  * We hold SCL_STATE to prevent vdev open/close/etc.
5686                  * while we're attempting to write the vdev labels.
5687                  */
5688                 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5689 
5690                 if (list_is_empty(&spa->spa_config_dirty_list)) {
5691                         vdev_t *svd[SPA_DVAS_PER_BP];
5692                         int svdcount = 0;
5693                         int children = rvd->vdev_children;
5694                         int c0 = spa_get_random(children);
5695 
5696                         for (int c = 0; c < children; c++) {
5697                                 vd = rvd->vdev_child[(c0 + c) % children];
5698                                 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
5699                                         continue;
5700                                 svd[svdcount++] = vd;
5701                                 if (svdcount == SPA_DVAS_PER_BP)
5702                                         break;
5703                         }
5704                         error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
5705                         if (error != 0)
5706                                 error = vdev_config_sync(svd, svdcount, txg,
5707                                     B_TRUE);
5708                 } else {
5709                         error = vdev_config_sync(rvd->vdev_child,
5710                             rvd->vdev_children, txg, B_FALSE);
5711                         if (error != 0)
5712                                 error = vdev_config_sync(rvd->vdev_child,
5713                                     rvd->vdev_children, txg, B_TRUE);
5714                 }
5715 
5716                 spa_config_exit(spa, SCL_STATE, FTAG);
5717 
5718                 if (error == 0)
5719                         break;
5720                 zio_suspend(spa, NULL);
5721                 zio_resume_wait(spa);
5722         }
5723         dmu_tx_commit(tx);
5724 
5725         /*
5726          * Clear the dirty config list.
5727          */
5728         while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
5729                 vdev_config_clean(vd);
5730 
5731         /*
5732          * Now that the new config has synced transactionally,
5733          * let it become visible to the config cache.
5734          */
5735         if (spa->spa_config_syncing != NULL) {
5736                 spa_config_set(spa, spa->spa_config_syncing);
5737                 spa->spa_config_txg = txg;
5738                 spa->spa_config_syncing = NULL;
5739         }
5740 
5741         spa->spa_ubsync = spa->spa_uberblock;
5742 
5743         dsl_pool_sync_done(dp, txg);
5744 
5745         /*
5746          * Update usable space statistics.
5747          */
5748         while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
5749                 vdev_sync_done(vd, txg);
5750 
5751         spa_update_dspace(spa);
5752 
5753         /*
5754          * It had better be the case that we didn't dirty anything
5755          * since vdev_config_sync().
5756          */
5757         ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
5758         ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
5759         ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
5760 
5761         spa->spa_sync_pass = 0;
5762 
5763         spa_config_exit(spa, SCL_CONFIG, FTAG);
5764 
5765         spa_handle_ignored_writes(spa);
5766 
5767         /*
5768          * If any async tasks have been requested, kick them off.
5769          */
5770         spa_async_dispatch(spa);
5771 }
5772 
5773 /*
5774  * Sync all pools.  We don't want to hold the namespace lock across these
5775  * operations, so we take a reference on the spa_t and drop the lock during the
5776  * sync.
5777  */
5778 void
5779 spa_sync_allpools(void)
5780 {
5781         spa_t *spa = NULL;
5782         mutex_enter(&spa_namespace_lock);
5783         while ((spa = spa_next(spa)) != NULL) {
5784                 if (spa_state(spa) != POOL_STATE_ACTIVE ||
5785                     !spa_writeable(spa) || spa_suspended(spa))
5786                         continue;
5787                 spa_open_ref(spa, FTAG);
5788                 mutex_exit(&spa_namespace_lock);
5789                 txg_wait_synced(spa_get_dsl(spa), 0);
5790                 mutex_enter(&spa_namespace_lock);
5791                 spa_close(spa, FTAG);
5792         }
5793         mutex_exit(&spa_namespace_lock);
5794 }
5795 
5796 /*
5797  * ==========================================================================
5798  * Miscellaneous routines
5799  * ==========================================================================
5800  */
5801 
5802 /*
5803  * Remove all pools in the system.
5804  */
5805 void
5806 spa_evict_all(void)
5807 {
5808         spa_t *spa;
5809 
5810         /*
5811          * Remove all cached state.  All pools should be closed now,
5812          * so every spa in the AVL tree should be unreferenced.
5813          */
5814         mutex_enter(&spa_namespace_lock);
5815         while ((spa = spa_next(NULL)) != NULL) {
5816                 /*
5817                  * Stop async tasks.  The async thread may need to detach
5818                  * a device that's been replaced, which requires grabbing
5819                  * spa_namespace_lock, so we must drop it here.
5820                  */
5821                 spa_open_ref(spa, FTAG);
5822                 mutex_exit(&spa_namespace_lock);
5823                 spa_async_suspend(spa);
5824                 mutex_enter(&spa_namespace_lock);
5825                 spa_close(spa, FTAG);
5826 
5827                 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5828                         spa_unload(spa);
5829                         spa_deactivate(spa);
5830                 }
5831                 spa_remove(spa);
5832         }
5833         mutex_exit(&spa_namespace_lock);
5834 }
5835 
5836 vdev_t *
5837 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
5838 {
5839         vdev_t *vd;
5840         int i;
5841 
5842         if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
5843                 return (vd);
5844 
5845         if (aux) {
5846                 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
5847                         vd = spa->spa_l2cache.sav_vdevs[i];
5848                         if (vd->vdev_guid == guid)
5849                                 return (vd);
5850                 }
5851 
5852                 for (i = 0; i < spa->spa_spares.sav_count; i++) {
5853                         vd = spa->spa_spares.sav_vdevs[i];
5854                         if (vd->vdev_guid == guid)
5855                                 return (vd);
5856                 }
5857         }
5858 
5859         return (NULL);
5860 }
5861 
5862 void
5863 spa_upgrade(spa_t *spa, uint64_t version)
5864 {
5865         ASSERT(spa_writeable(spa));
5866 
5867         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5868 
5869         /*
5870          * This should only be called for a non-faulted pool, and since a
5871          * future version would result in an unopenable pool, this shouldn't be
5872          * possible.
5873          */
5874         ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
5875         ASSERT(version >= spa->spa_uberblock.ub_version);
5876 
5877         spa->spa_uberblock.ub_version = version;
5878         vdev_config_dirty(spa->spa_root_vdev);
5879 
5880         spa_config_exit(spa, SCL_ALL, FTAG);
5881 
5882         txg_wait_synced(spa_get_dsl(spa), 0);
5883 }
5884 
5885 boolean_t
5886 spa_has_spare(spa_t *spa, uint64_t guid)
5887 {
5888         int i;
5889         uint64_t spareguid;
5890         spa_aux_vdev_t *sav = &spa->spa_spares;
5891 
5892         for (i = 0; i < sav->sav_count; i++)
5893                 if (sav->sav_vdevs[i]->vdev_guid == guid)
5894                         return (B_TRUE);
5895 
5896         for (i = 0; i < sav->sav_npending; i++) {
5897                 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
5898                     &spareguid) == 0 && spareguid == guid)
5899                         return (B_TRUE);
5900         }
5901 
5902         return (B_FALSE);
5903 }
5904 
5905 /*
5906  * Check if a pool has an active shared spare device.
5907  * Note: reference count of an active spare is 2, as a spare and as a replace
5908  */
5909 static boolean_t
5910 spa_has_active_shared_spare(spa_t *spa)
5911 {
5912         int i, refcnt;
5913         uint64_t pool;
5914         spa_aux_vdev_t *sav = &spa->spa_spares;
5915 
5916         for (i = 0; i < sav->sav_count; i++) {
5917                 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
5918                     &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
5919                     refcnt > 2)
5920                         return (B_TRUE);
5921         }
5922 
5923         return (B_FALSE);
5924 }
5925 
5926 /*
5927  * Post a sysevent corresponding to the given event.  The 'name' must be one of
5928  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
5929  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
5930  * in the userland libzpool, as we don't want consumers to misinterpret ztest
5931  * or zdb as real changes.
5932  */
5933 void
5934 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
5935 {
5936 #ifdef _KERNEL
5937         sysevent_t              *ev;
5938         sysevent_attr_list_t    *attr = NULL;
5939         sysevent_value_t        value;
5940         sysevent_id_t           eid;
5941 
5942         ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
5943             SE_SLEEP);
5944 
5945         value.value_type = SE_DATA_TYPE_STRING;
5946         value.value.sv_string = spa_name(spa);
5947         if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
5948                 goto done;
5949 
5950         value.value_type = SE_DATA_TYPE_UINT64;
5951         value.value.sv_uint64 = spa_guid(spa);
5952         if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
5953                 goto done;
5954 
5955         if (vd) {
5956                 value.value_type = SE_DATA_TYPE_UINT64;
5957                 value.value.sv_uint64 = vd->vdev_guid;
5958                 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
5959                     SE_SLEEP) != 0)
5960                         goto done;
5961 
5962                 if (vd->vdev_path) {
5963                         value.value_type = SE_DATA_TYPE_STRING;
5964                         value.value.sv_string = vd->vdev_path;
5965                         if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
5966                             &value, SE_SLEEP) != 0)
5967                                 goto done;
5968                 }
5969         }
5970 
5971         if (sysevent_attach_attributes(ev, attr) != 0)
5972                 goto done;
5973         attr = NULL;
5974 
5975         (void) log_sysevent(ev, SE_SLEEP, &eid);
5976 
5977 done:
5978         if (attr)
5979                 sysevent_free_attr(attr);
5980         sysevent_free(ev);
5981 #endif
5982 }