1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 
  25 #include <sys/zfs_context.h>
  26 #include <sys/dbuf.h>
  27 #include <sys/dnode.h>
  28 #include <sys/dmu.h>
  29 #include <sys/dmu_impl.h>
  30 #include <sys/dmu_tx.h>
  31 #include <sys/dmu_objset.h>
  32 #include <sys/dsl_dir.h>
  33 #include <sys/dsl_dataset.h>
  34 #include <sys/spa.h>
  35 #include <sys/zio.h>
  36 #include <sys/dmu_zfetch.h>
  37 
  38 static int free_range_compar(const void *node1, const void *node2);
  39 
  40 static kmem_cache_t *dnode_cache;
  41 /*
  42  * Define DNODE_STATS to turn on statistic gathering. By default, it is only
  43  * turned on when DEBUG is also defined.
  44  */
  45 #ifdef  DEBUG
  46 #define DNODE_STATS
  47 #endif  /* DEBUG */
  48 
  49 #ifdef  DNODE_STATS
  50 #define DNODE_STAT_ADD(stat)                    ((stat)++)
  51 #else
  52 #define DNODE_STAT_ADD(stat)                    /* nothing */
  53 #endif  /* DNODE_STATS */
  54 
  55 static dnode_phys_t dnode_phys_zero;
  56 
  57 int zfs_default_bs = SPA_MINBLOCKSHIFT;
  58 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
  59 
  60 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
  61 
  62 /* ARGSUSED */
  63 static int
  64 dnode_cons(void *arg, void *unused, int kmflag)
  65 {
  66         dnode_t *dn = arg;
  67         int i;
  68 
  69         rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL);
  70         mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
  71         mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
  72         cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
  73 
  74         refcount_create(&dn->dn_holds);
  75         refcount_create(&dn->dn_tx_holds);
  76         list_link_init(&dn->dn_link);
  77 
  78         bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
  79         bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
  80         bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
  81         bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
  82         bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
  83         bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
  84         bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
  85 
  86         for (i = 0; i < TXG_SIZE; i++) {
  87                 list_link_init(&dn->dn_dirty_link[i]);
  88                 avl_create(&dn->dn_ranges[i], free_range_compar,
  89                     sizeof (free_range_t),
  90                     offsetof(struct free_range, fr_node));
  91                 list_create(&dn->dn_dirty_records[i],
  92                     sizeof (dbuf_dirty_record_t),
  93                     offsetof(dbuf_dirty_record_t, dr_dirty_node));
  94         }
  95 
  96         dn->dn_allocated_txg = 0;
  97         dn->dn_free_txg = 0;
  98         dn->dn_assigned_txg = 0;
  99         dn->dn_dirtyctx = 0;
 100         dn->dn_dirtyctx_firstset = NULL;
 101         dn->dn_bonus = NULL;
 102         dn->dn_have_spill = B_FALSE;
 103         dn->dn_zio = NULL;
 104         dn->dn_oldused = 0;
 105         dn->dn_oldflags = 0;
 106         dn->dn_olduid = 0;
 107         dn->dn_oldgid = 0;
 108         dn->dn_newuid = 0;
 109         dn->dn_newgid = 0;
 110         dn->dn_id_flags = 0;
 111 
 112         dn->dn_dbufs_count = 0;
 113         list_create(&dn->dn_dbufs, sizeof (dmu_buf_impl_t),
 114             offsetof(dmu_buf_impl_t, db_link));
 115 
 116         dn->dn_moved = 0;
 117         return (0);
 118 }
 119 
 120 /* ARGSUSED */
 121 static void
 122 dnode_dest(void *arg, void *unused)
 123 {
 124         int i;
 125         dnode_t *dn = arg;
 126 
 127         rw_destroy(&dn->dn_struct_rwlock);
 128         mutex_destroy(&dn->dn_mtx);
 129         mutex_destroy(&dn->dn_dbufs_mtx);
 130         cv_destroy(&dn->dn_notxholds);
 131         refcount_destroy(&dn->dn_holds);
 132         refcount_destroy(&dn->dn_tx_holds);
 133         ASSERT(!list_link_active(&dn->dn_link));
 134 
 135         for (i = 0; i < TXG_SIZE; i++) {
 136                 ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
 137                 avl_destroy(&dn->dn_ranges[i]);
 138                 list_destroy(&dn->dn_dirty_records[i]);
 139                 ASSERT3U(dn->dn_next_nblkptr[i], ==, 0);
 140                 ASSERT3U(dn->dn_next_nlevels[i], ==, 0);
 141                 ASSERT3U(dn->dn_next_indblkshift[i], ==, 0);
 142                 ASSERT3U(dn->dn_next_bonustype[i], ==, 0);
 143                 ASSERT3U(dn->dn_rm_spillblk[i], ==, 0);
 144                 ASSERT3U(dn->dn_next_bonuslen[i], ==, 0);
 145                 ASSERT3U(dn->dn_next_blksz[i], ==, 0);
 146         }
 147 
 148         ASSERT3U(dn->dn_allocated_txg, ==, 0);
 149         ASSERT3U(dn->dn_free_txg, ==, 0);
 150         ASSERT3U(dn->dn_assigned_txg, ==, 0);
 151         ASSERT3U(dn->dn_dirtyctx, ==, 0);
 152         ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
 153         ASSERT3P(dn->dn_bonus, ==, NULL);
 154         ASSERT(!dn->dn_have_spill);
 155         ASSERT3P(dn->dn_zio, ==, NULL);
 156         ASSERT3U(dn->dn_oldused, ==, 0);
 157         ASSERT3U(dn->dn_oldflags, ==, 0);
 158         ASSERT3U(dn->dn_olduid, ==, 0);
 159         ASSERT3U(dn->dn_oldgid, ==, 0);
 160         ASSERT3U(dn->dn_newuid, ==, 0);
 161         ASSERT3U(dn->dn_newgid, ==, 0);
 162         ASSERT3U(dn->dn_id_flags, ==, 0);
 163 
 164         ASSERT3U(dn->dn_dbufs_count, ==, 0);
 165         list_destroy(&dn->dn_dbufs);
 166 }
 167 
 168 void
 169 dnode_init(void)
 170 {
 171         ASSERT(dnode_cache == NULL);
 172         dnode_cache = kmem_cache_create("dnode_t",
 173             sizeof (dnode_t),
 174             0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
 175         kmem_cache_set_move(dnode_cache, dnode_move);
 176 }
 177 
 178 void
 179 dnode_fini(void)
 180 {
 181         kmem_cache_destroy(dnode_cache);
 182         dnode_cache = NULL;
 183 }
 184 
 185 
 186 #ifdef ZFS_DEBUG
 187 void
 188 dnode_verify(dnode_t *dn)
 189 {
 190         int drop_struct_lock = FALSE;
 191 
 192         ASSERT(dn->dn_phys);
 193         ASSERT(dn->dn_objset);
 194         ASSERT(dn->dn_handle->dnh_dnode == dn);
 195 
 196         ASSERT(dn->dn_phys->dn_type < DMU_OT_NUMTYPES);
 197 
 198         if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
 199                 return;
 200 
 201         if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
 202                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
 203                 drop_struct_lock = TRUE;
 204         }
 205         if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
 206                 int i;
 207                 ASSERT3U(dn->dn_indblkshift, >=, 0);
 208                 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
 209                 if (dn->dn_datablkshift) {
 210                         ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
 211                         ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
 212                         ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
 213                 }
 214                 ASSERT3U(dn->dn_nlevels, <=, 30);
 215                 ASSERT3U(dn->dn_type, <=, DMU_OT_NUMTYPES);
 216                 ASSERT3U(dn->dn_nblkptr, >=, 1);
 217                 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
 218                 ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
 219                 ASSERT3U(dn->dn_datablksz, ==,
 220                     dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
 221                 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
 222                 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
 223                     dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
 224                 for (i = 0; i < TXG_SIZE; i++) {
 225                         ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
 226                 }
 227         }
 228         if (dn->dn_phys->dn_type != DMU_OT_NONE)
 229                 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
 230         ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
 231         if (dn->dn_dbuf != NULL) {
 232                 ASSERT3P(dn->dn_phys, ==,
 233                     (dnode_phys_t *)dn->dn_dbuf->db.db_data +
 234                     (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
 235         }
 236         if (drop_struct_lock)
 237                 rw_exit(&dn->dn_struct_rwlock);
 238 }
 239 #endif
 240 
 241 void
 242 dnode_byteswap(dnode_phys_t *dnp)
 243 {
 244         uint64_t *buf64 = (void*)&dnp->dn_blkptr;
 245         int i;
 246 
 247         if (dnp->dn_type == DMU_OT_NONE) {
 248                 bzero(dnp, sizeof (dnode_phys_t));
 249                 return;
 250         }
 251 
 252         dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
 253         dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
 254         dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
 255         dnp->dn_used = BSWAP_64(dnp->dn_used);
 256 
 257         /*
 258          * dn_nblkptr is only one byte, so it's OK to read it in either
 259          * byte order.  We can't read dn_bouslen.
 260          */
 261         ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
 262         ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
 263         for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
 264                 buf64[i] = BSWAP_64(buf64[i]);
 265 
 266         /*
 267          * OK to check dn_bonuslen for zero, because it won't matter if
 268          * we have the wrong byte order.  This is necessary because the
 269          * dnode dnode is smaller than a regular dnode.
 270          */
 271         if (dnp->dn_bonuslen != 0) {
 272                 /*
 273                  * Note that the bonus length calculated here may be
 274                  * longer than the actual bonus buffer.  This is because
 275                  * we always put the bonus buffer after the last block
 276                  * pointer (instead of packing it against the end of the
 277                  * dnode buffer).
 278                  */
 279                 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
 280                 size_t len = DN_MAX_BONUSLEN - off;
 281                 ASSERT3U(dnp->dn_bonustype, <, DMU_OT_NUMTYPES);
 282                 dmu_ot[dnp->dn_bonustype].ot_byteswap(dnp->dn_bonus + off, len);
 283         }
 284 
 285         /* Swap SPILL block if we have one */
 286         if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
 287                 byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t));
 288 
 289 }
 290 
 291 void
 292 dnode_buf_byteswap(void *vbuf, size_t size)
 293 {
 294         dnode_phys_t *buf = vbuf;
 295         int i;
 296 
 297         ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
 298         ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
 299 
 300         size >>= DNODE_SHIFT;
 301         for (i = 0; i < size; i++) {
 302                 dnode_byteswap(buf);
 303                 buf++;
 304         }
 305 }
 306 
 307 static int
 308 free_range_compar(const void *node1, const void *node2)
 309 {
 310         const free_range_t *rp1 = node1;
 311         const free_range_t *rp2 = node2;
 312 
 313         if (rp1->fr_blkid < rp2->fr_blkid)
 314                 return (-1);
 315         else if (rp1->fr_blkid > rp2->fr_blkid)
 316                 return (1);
 317         else return (0);
 318 }
 319 
 320 void
 321 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
 322 {
 323         ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
 324 
 325         dnode_setdirty(dn, tx);
 326         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 327         ASSERT3U(newsize, <=, DN_MAX_BONUSLEN -
 328             (dn->dn_nblkptr-1) * sizeof (blkptr_t));
 329         dn->dn_bonuslen = newsize;
 330         if (newsize == 0)
 331                 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
 332         else
 333                 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
 334         rw_exit(&dn->dn_struct_rwlock);
 335 }
 336 
 337 void
 338 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
 339 {
 340         ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
 341         dnode_setdirty(dn, tx);
 342         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 343         dn->dn_bonustype = newtype;
 344         dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
 345         rw_exit(&dn->dn_struct_rwlock);
 346 }
 347 
 348 void
 349 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
 350 {
 351         ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
 352         ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
 353         dnode_setdirty(dn, tx);
 354         dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
 355         dn->dn_have_spill = B_FALSE;
 356 }
 357 
 358 static void
 359 dnode_setdblksz(dnode_t *dn, int size)
 360 {
 361         ASSERT3U(P2PHASE(size, SPA_MINBLOCKSIZE), ==, 0);
 362         ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
 363         ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
 364         ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
 365             1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
 366         dn->dn_datablksz = size;
 367         dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
 368         dn->dn_datablkshift = ISP2(size) ? highbit(size - 1) : 0;
 369 }
 370 
 371 static dnode_t *
 372 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
 373     uint64_t object, dnode_handle_t *dnh)
 374 {
 375         dnode_t *dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
 376 
 377         ASSERT(!POINTER_IS_VALID(dn->dn_objset));
 378         dn->dn_moved = 0;
 379 
 380         /*
 381          * Defer setting dn_objset until the dnode is ready to be a candidate
 382          * for the dnode_move() callback.
 383          */
 384         dn->dn_object = object;
 385         dn->dn_dbuf = db;
 386         dn->dn_handle = dnh;
 387         dn->dn_phys = dnp;
 388 
 389         if (dnp->dn_datablkszsec) {
 390                 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
 391         } else {
 392                 dn->dn_datablksz = 0;
 393                 dn->dn_datablkszsec = 0;
 394                 dn->dn_datablkshift = 0;
 395         }
 396         dn->dn_indblkshift = dnp->dn_indblkshift;
 397         dn->dn_nlevels = dnp->dn_nlevels;
 398         dn->dn_type = dnp->dn_type;
 399         dn->dn_nblkptr = dnp->dn_nblkptr;
 400         dn->dn_checksum = dnp->dn_checksum;
 401         dn->dn_compress = dnp->dn_compress;
 402         dn->dn_bonustype = dnp->dn_bonustype;
 403         dn->dn_bonuslen = dnp->dn_bonuslen;
 404         dn->dn_maxblkid = dnp->dn_maxblkid;
 405         dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
 406         dn->dn_id_flags = 0;
 407 
 408         dmu_zfetch_init(&dn->dn_zfetch, dn);
 409 
 410         ASSERT(dn->dn_phys->dn_type < DMU_OT_NUMTYPES);
 411 
 412         mutex_enter(&os->os_lock);
 413         list_insert_head(&os->os_dnodes, dn);
 414         membar_producer();
 415         /*
 416          * Everything else must be valid before assigning dn_objset makes the
 417          * dnode eligible for dnode_move().
 418          */
 419         dn->dn_objset = os;
 420         mutex_exit(&os->os_lock);
 421 
 422         arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER);
 423         return (dn);
 424 }
 425 
 426 /*
 427  * Caller must be holding the dnode handle, which is released upon return.
 428  */
 429 static void
 430 dnode_destroy(dnode_t *dn)
 431 {
 432         objset_t *os = dn->dn_objset;
 433 
 434         ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
 435 
 436         mutex_enter(&os->os_lock);
 437         POINTER_INVALIDATE(&dn->dn_objset);
 438         list_remove(&os->os_dnodes, dn);
 439         mutex_exit(&os->os_lock);
 440 
 441         /* the dnode can no longer move, so we can release the handle */
 442         zrl_remove(&dn->dn_handle->dnh_zrlock);
 443 
 444         dn->dn_allocated_txg = 0;
 445         dn->dn_free_txg = 0;
 446         dn->dn_assigned_txg = 0;
 447 
 448         dn->dn_dirtyctx = 0;
 449         if (dn->dn_dirtyctx_firstset != NULL) {
 450                 kmem_free(dn->dn_dirtyctx_firstset, 1);
 451                 dn->dn_dirtyctx_firstset = NULL;
 452         }
 453         if (dn->dn_bonus != NULL) {
 454                 mutex_enter(&dn->dn_bonus->db_mtx);
 455                 dbuf_evict(dn->dn_bonus);
 456                 dn->dn_bonus = NULL;
 457         }
 458         dn->dn_zio = NULL;
 459 
 460         dn->dn_have_spill = B_FALSE;
 461         dn->dn_oldused = 0;
 462         dn->dn_oldflags = 0;
 463         dn->dn_olduid = 0;
 464         dn->dn_oldgid = 0;
 465         dn->dn_newuid = 0;
 466         dn->dn_newgid = 0;
 467         dn->dn_id_flags = 0;
 468 
 469         dmu_zfetch_rele(&dn->dn_zfetch);
 470         kmem_cache_free(dnode_cache, dn);
 471         arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
 472 }
 473 
 474 void
 475 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
 476     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
 477 {
 478         int i;
 479 
 480         if (blocksize == 0)
 481                 blocksize = 1 << zfs_default_bs;
 482         else if (blocksize > SPA_MAXBLOCKSIZE)
 483                 blocksize = SPA_MAXBLOCKSIZE;
 484         else
 485                 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
 486 
 487         if (ibs == 0)
 488                 ibs = zfs_default_ibs;
 489 
 490         ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
 491 
 492         dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset,
 493             dn->dn_object, tx->tx_txg, blocksize, ibs);
 494 
 495         ASSERT(dn->dn_type == DMU_OT_NONE);
 496         ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
 497         ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
 498         ASSERT(ot != DMU_OT_NONE);
 499         ASSERT3U(ot, <, DMU_OT_NUMTYPES);
 500         ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
 501             (bonustype == DMU_OT_SA && bonuslen == 0) ||
 502             (bonustype != DMU_OT_NONE && bonuslen != 0));
 503         ASSERT3U(bonustype, <, DMU_OT_NUMTYPES);
 504         ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
 505         ASSERT(dn->dn_type == DMU_OT_NONE);
 506         ASSERT3U(dn->dn_maxblkid, ==, 0);
 507         ASSERT3U(dn->dn_allocated_txg, ==, 0);
 508         ASSERT3U(dn->dn_assigned_txg, ==, 0);
 509         ASSERT(refcount_is_zero(&dn->dn_tx_holds));
 510         ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
 511         ASSERT3P(list_head(&dn->dn_dbufs), ==, NULL);
 512 
 513         for (i = 0; i < TXG_SIZE; i++) {
 514                 ASSERT3U(dn->dn_next_nblkptr[i], ==, 0);
 515                 ASSERT3U(dn->dn_next_nlevels[i], ==, 0);
 516                 ASSERT3U(dn->dn_next_indblkshift[i], ==, 0);
 517                 ASSERT3U(dn->dn_next_bonuslen[i], ==, 0);
 518                 ASSERT3U(dn->dn_next_bonustype[i], ==, 0);
 519                 ASSERT3U(dn->dn_rm_spillblk[i], ==, 0);
 520                 ASSERT3U(dn->dn_next_blksz[i], ==, 0);
 521                 ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
 522                 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
 523                 ASSERT3U(avl_numnodes(&dn->dn_ranges[i]), ==, 0);
 524         }
 525 
 526         dn->dn_type = ot;
 527         dnode_setdblksz(dn, blocksize);
 528         dn->dn_indblkshift = ibs;
 529         dn->dn_nlevels = 1;
 530         if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
 531                 dn->dn_nblkptr = 1;
 532         else
 533                 dn->dn_nblkptr = 1 +
 534                     ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
 535         dn->dn_bonustype = bonustype;
 536         dn->dn_bonuslen = bonuslen;
 537         dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
 538         dn->dn_compress = ZIO_COMPRESS_INHERIT;
 539         dn->dn_dirtyctx = 0;
 540 
 541         dn->dn_free_txg = 0;
 542         if (dn->dn_dirtyctx_firstset) {
 543                 kmem_free(dn->dn_dirtyctx_firstset, 1);
 544                 dn->dn_dirtyctx_firstset = NULL;
 545         }
 546 
 547         dn->dn_allocated_txg = tx->tx_txg;
 548         dn->dn_id_flags = 0;
 549 
 550         dnode_setdirty(dn, tx);
 551         dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
 552         dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
 553         dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
 554         dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
 555 }
 556 
 557 void
 558 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
 559     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
 560 {
 561         int nblkptr;
 562 
 563         ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
 564         ASSERT3U(blocksize, <=, SPA_MAXBLOCKSIZE);
 565         ASSERT3U(blocksize % SPA_MINBLOCKSIZE, ==, 0);
 566         ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
 567         ASSERT(tx->tx_txg != 0);
 568         ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
 569             (bonustype != DMU_OT_NONE && bonuslen != 0) ||
 570             (bonustype == DMU_OT_SA && bonuslen == 0));
 571         ASSERT3U(bonustype, <, DMU_OT_NUMTYPES);
 572         ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
 573 
 574         /* clean up any unreferenced dbufs */
 575         dnode_evict_dbufs(dn);
 576 
 577         dn->dn_id_flags = 0;
 578 
 579         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 580         dnode_setdirty(dn, tx);
 581         if (dn->dn_datablksz != blocksize) {
 582                 /* change blocksize */
 583                 ASSERT(dn->dn_maxblkid == 0 &&
 584                     (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
 585                     dnode_block_freed(dn, 0)));
 586                 dnode_setdblksz(dn, blocksize);
 587                 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
 588         }
 589         if (dn->dn_bonuslen != bonuslen)
 590                 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
 591 
 592         if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
 593                 nblkptr = 1;
 594         else
 595                 nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
 596         if (dn->dn_bonustype != bonustype)
 597                 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
 598         if (dn->dn_nblkptr != nblkptr)
 599                 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
 600         if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
 601                 dbuf_rm_spill(dn, tx);
 602                 dnode_rm_spill(dn, tx);
 603         }
 604         rw_exit(&dn->dn_struct_rwlock);
 605 
 606         /* change type */
 607         dn->dn_type = ot;
 608 
 609         /* change bonus size and type */
 610         mutex_enter(&dn->dn_mtx);
 611         dn->dn_bonustype = bonustype;
 612         dn->dn_bonuslen = bonuslen;
 613         dn->dn_nblkptr = nblkptr;
 614         dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
 615         dn->dn_compress = ZIO_COMPRESS_INHERIT;
 616         ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
 617 
 618         /* fix up the bonus db_size */
 619         if (dn->dn_bonus) {
 620                 dn->dn_bonus->db.db_size =
 621                     DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t);
 622                 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
 623         }
 624 
 625         dn->dn_allocated_txg = tx->tx_txg;
 626         mutex_exit(&dn->dn_mtx);
 627 }
 628 
 629 #ifdef  DNODE_STATS
 630 static struct {
 631         uint64_t dms_dnode_invalid;
 632         uint64_t dms_dnode_recheck1;
 633         uint64_t dms_dnode_recheck2;
 634         uint64_t dms_dnode_special;
 635         uint64_t dms_dnode_handle;
 636         uint64_t dms_dnode_rwlock;
 637         uint64_t dms_dnode_active;
 638 } dnode_move_stats;
 639 #endif  /* DNODE_STATS */
 640 
 641 static void
 642 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
 643 {
 644         int i;
 645 
 646         ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
 647         ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
 648         ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
 649         ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
 650 
 651         /* Copy fields. */
 652         ndn->dn_objset = odn->dn_objset;
 653         ndn->dn_object = odn->dn_object;
 654         ndn->dn_dbuf = odn->dn_dbuf;
 655         ndn->dn_handle = odn->dn_handle;
 656         ndn->dn_phys = odn->dn_phys;
 657         ndn->dn_type = odn->dn_type;
 658         ndn->dn_bonuslen = odn->dn_bonuslen;
 659         ndn->dn_bonustype = odn->dn_bonustype;
 660         ndn->dn_nblkptr = odn->dn_nblkptr;
 661         ndn->dn_checksum = odn->dn_checksum;
 662         ndn->dn_compress = odn->dn_compress;
 663         ndn->dn_nlevels = odn->dn_nlevels;
 664         ndn->dn_indblkshift = odn->dn_indblkshift;
 665         ndn->dn_datablkshift = odn->dn_datablkshift;
 666         ndn->dn_datablkszsec = odn->dn_datablkszsec;
 667         ndn->dn_datablksz = odn->dn_datablksz;
 668         ndn->dn_maxblkid = odn->dn_maxblkid;
 669         bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
 670             sizeof (odn->dn_next_nblkptr));
 671         bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
 672             sizeof (odn->dn_next_nlevels));
 673         bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
 674             sizeof (odn->dn_next_indblkshift));
 675         bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
 676             sizeof (odn->dn_next_bonustype));
 677         bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
 678             sizeof (odn->dn_rm_spillblk));
 679         bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
 680             sizeof (odn->dn_next_bonuslen));
 681         bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
 682             sizeof (odn->dn_next_blksz));
 683         for (i = 0; i < TXG_SIZE; i++) {
 684                 list_move_tail(&ndn->dn_dirty_records[i],
 685                     &odn->dn_dirty_records[i]);
 686         }
 687         bcopy(&odn->dn_ranges[0], &ndn->dn_ranges[0], sizeof (odn->dn_ranges));
 688         ndn->dn_allocated_txg = odn->dn_allocated_txg;
 689         ndn->dn_free_txg = odn->dn_free_txg;
 690         ndn->dn_assigned_txg = odn->dn_assigned_txg;
 691         ndn->dn_dirtyctx = odn->dn_dirtyctx;
 692         ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
 693         ASSERT(refcount_count(&odn->dn_tx_holds) == 0);
 694         refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
 695         ASSERT(list_is_empty(&ndn->dn_dbufs));
 696         list_move_tail(&ndn->dn_dbufs, &odn->dn_dbufs);
 697         ndn->dn_dbufs_count = odn->dn_dbufs_count;
 698         ndn->dn_bonus = odn->dn_bonus;
 699         ndn->dn_have_spill = odn->dn_have_spill;
 700         ndn->dn_zio = odn->dn_zio;
 701         ndn->dn_oldused = odn->dn_oldused;
 702         ndn->dn_oldflags = odn->dn_oldflags;
 703         ndn->dn_olduid = odn->dn_olduid;
 704         ndn->dn_oldgid = odn->dn_oldgid;
 705         ndn->dn_newuid = odn->dn_newuid;
 706         ndn->dn_newgid = odn->dn_newgid;
 707         ndn->dn_id_flags = odn->dn_id_flags;
 708         dmu_zfetch_init(&ndn->dn_zfetch, NULL);
 709         list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
 710         ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
 711         ndn->dn_zfetch.zf_stream_cnt = odn->dn_zfetch.zf_stream_cnt;
 712         ndn->dn_zfetch.zf_alloc_fail = odn->dn_zfetch.zf_alloc_fail;
 713 
 714         /*
 715          * Update back pointers. Updating the handle fixes the back pointer of
 716          * every descendant dbuf as well as the bonus dbuf.
 717          */
 718         ASSERT(ndn->dn_handle->dnh_dnode == odn);
 719         ndn->dn_handle->dnh_dnode = ndn;
 720         if (ndn->dn_zfetch.zf_dnode == odn) {
 721                 ndn->dn_zfetch.zf_dnode = ndn;
 722         }
 723 
 724         /*
 725          * Invalidate the original dnode by clearing all of its back pointers.
 726          */
 727         odn->dn_dbuf = NULL;
 728         odn->dn_handle = NULL;
 729         list_create(&odn->dn_dbufs, sizeof (dmu_buf_impl_t),
 730             offsetof(dmu_buf_impl_t, db_link));
 731         odn->dn_dbufs_count = 0;
 732         odn->dn_bonus = NULL;
 733         odn->dn_zfetch.zf_dnode = NULL;
 734 
 735         /*
 736          * Set the low bit of the objset pointer to ensure that dnode_move()
 737          * recognizes the dnode as invalid in any subsequent callback.
 738          */
 739         POINTER_INVALIDATE(&odn->dn_objset);
 740 
 741         /*
 742          * Satisfy the destructor.
 743          */
 744         for (i = 0; i < TXG_SIZE; i++) {
 745                 list_create(&odn->dn_dirty_records[i],
 746                     sizeof (dbuf_dirty_record_t),
 747                     offsetof(dbuf_dirty_record_t, dr_dirty_node));
 748                 odn->dn_ranges[i].avl_root = NULL;
 749                 odn->dn_ranges[i].avl_numnodes = 0;
 750                 odn->dn_next_nlevels[i] = 0;
 751                 odn->dn_next_indblkshift[i] = 0;
 752                 odn->dn_next_bonustype[i] = 0;
 753                 odn->dn_rm_spillblk[i] = 0;
 754                 odn->dn_next_bonuslen[i] = 0;
 755                 odn->dn_next_blksz[i] = 0;
 756         }
 757         odn->dn_allocated_txg = 0;
 758         odn->dn_free_txg = 0;
 759         odn->dn_assigned_txg = 0;
 760         odn->dn_dirtyctx = 0;
 761         odn->dn_dirtyctx_firstset = NULL;
 762         odn->dn_have_spill = B_FALSE;
 763         odn->dn_zio = NULL;
 764         odn->dn_oldused = 0;
 765         odn->dn_oldflags = 0;
 766         odn->dn_olduid = 0;
 767         odn->dn_oldgid = 0;
 768         odn->dn_newuid = 0;
 769         odn->dn_newgid = 0;
 770         odn->dn_id_flags = 0;
 771 
 772         /*
 773          * Mark the dnode.
 774          */
 775         ndn->dn_moved = 1;
 776         odn->dn_moved = (uint8_t)-1;
 777 }
 778 
 779 #ifdef  _KERNEL
 780 /*ARGSUSED*/
 781 static kmem_cbrc_t
 782 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
 783 {
 784         dnode_t *odn = buf, *ndn = newbuf;
 785         objset_t *os;
 786         int64_t refcount;
 787         uint32_t dbufs;
 788 
 789         /*
 790          * The dnode is on the objset's list of known dnodes if the objset
 791          * pointer is valid. We set the low bit of the objset pointer when
 792          * freeing the dnode to invalidate it, and the memory patterns written
 793          * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
 794          * A newly created dnode sets the objset pointer last of all to indicate
 795          * that the dnode is known and in a valid state to be moved by this
 796          * function.
 797          */
 798         os = odn->dn_objset;
 799         if (!POINTER_IS_VALID(os)) {
 800                 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid);
 801                 return (KMEM_CBRC_DONT_KNOW);
 802         }
 803 
 804         /*
 805          * Ensure that the objset does not go away during the move.
 806          */
 807         rw_enter(&os_lock, RW_WRITER);
 808         if (os != odn->dn_objset) {
 809                 rw_exit(&os_lock);
 810                 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1);
 811                 return (KMEM_CBRC_DONT_KNOW);
 812         }
 813 
 814         /*
 815          * If the dnode is still valid, then so is the objset. We know that no
 816          * valid objset can be freed while we hold os_lock, so we can safely
 817          * ensure that the objset remains in use.
 818          */
 819         mutex_enter(&os->os_lock);
 820 
 821         /*
 822          * Recheck the objset pointer in case the dnode was removed just before
 823          * acquiring the lock.
 824          */
 825         if (os != odn->dn_objset) {
 826                 mutex_exit(&os->os_lock);
 827                 rw_exit(&os_lock);
 828                 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2);
 829                 return (KMEM_CBRC_DONT_KNOW);
 830         }
 831 
 832         /*
 833          * At this point we know that as long as we hold os->os_lock, the dnode
 834          * cannot be freed and fields within the dnode can be safely accessed.
 835          * The objset listing this dnode cannot go away as long as this dnode is
 836          * on its list.
 837          */
 838         rw_exit(&os_lock);
 839         if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
 840                 mutex_exit(&os->os_lock);
 841                 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special);
 842                 return (KMEM_CBRC_NO);
 843         }
 844         ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
 845 
 846         /*
 847          * Lock the dnode handle to prevent the dnode from obtaining any new
 848          * holds. This also prevents the descendant dbufs and the bonus dbuf
 849          * from accessing the dnode, so that we can discount their holds. The
 850          * handle is safe to access because we know that while the dnode cannot
 851          * go away, neither can its handle. Once we hold dnh_zrlock, we can
 852          * safely move any dnode referenced only by dbufs.
 853          */
 854         if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
 855                 mutex_exit(&os->os_lock);
 856                 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle);
 857                 return (KMEM_CBRC_LATER);
 858         }
 859 
 860         /*
 861          * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
 862          * We need to guarantee that there is a hold for every dbuf in order to
 863          * determine whether the dnode is actively referenced. Falsely matching
 864          * a dbuf to an active hold would lead to an unsafe move. It's possible
 865          * that a thread already having an active dnode hold is about to add a
 866          * dbuf, and we can't compare hold and dbuf counts while the add is in
 867          * progress.
 868          */
 869         if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
 870                 zrl_exit(&odn->dn_handle->dnh_zrlock);
 871                 mutex_exit(&os->os_lock);
 872                 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock);
 873                 return (KMEM_CBRC_LATER);
 874         }
 875 
 876         /*
 877          * A dbuf may be removed (evicted) without an active dnode hold. In that
 878          * case, the dbuf count is decremented under the handle lock before the
 879          * dbuf's hold is released. This order ensures that if we count the hold
 880          * after the dbuf is removed but before its hold is released, we will
 881          * treat the unmatched hold as active and exit safely. If we count the
 882          * hold before the dbuf is removed, the hold is discounted, and the
 883          * removal is blocked until the move completes.
 884          */
 885         refcount = refcount_count(&odn->dn_holds);
 886         ASSERT(refcount >= 0);
 887         dbufs = odn->dn_dbufs_count;
 888 
 889         /* We can't have more dbufs than dnode holds. */
 890         ASSERT3U(dbufs, <=, refcount);
 891         DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
 892             uint32_t, dbufs);
 893 
 894         if (refcount > dbufs) {
 895                 rw_exit(&odn->dn_struct_rwlock);
 896                 zrl_exit(&odn->dn_handle->dnh_zrlock);
 897                 mutex_exit(&os->os_lock);
 898                 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active);
 899                 return (KMEM_CBRC_LATER);
 900         }
 901 
 902         rw_exit(&odn->dn_struct_rwlock);
 903 
 904         /*
 905          * At this point we know that anyone with a hold on the dnode is not
 906          * actively referencing it. The dnode is known and in a valid state to
 907          * move. We're holding the locks needed to execute the critical section.
 908          */
 909         dnode_move_impl(odn, ndn);
 910 
 911         list_link_replace(&odn->dn_link, &ndn->dn_link);
 912         /* If the dnode was safe to move, the refcount cannot have changed. */
 913         ASSERT(refcount == refcount_count(&ndn->dn_holds));
 914         ASSERT(dbufs == ndn->dn_dbufs_count);
 915         zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
 916         mutex_exit(&os->os_lock);
 917 
 918         return (KMEM_CBRC_YES);
 919 }
 920 #endif  /* _KERNEL */
 921 
 922 void
 923 dnode_special_close(dnode_handle_t *dnh)
 924 {
 925         dnode_t *dn = dnh->dnh_dnode;
 926 
 927         /*
 928          * Wait for final references to the dnode to clear.  This can
 929          * only happen if the arc is asyncronously evicting state that
 930          * has a hold on this dnode while we are trying to evict this
 931          * dnode.
 932          */
 933         while (refcount_count(&dn->dn_holds) > 0)
 934                 delay(1);
 935         zrl_add(&dnh->dnh_zrlock);
 936         dnode_destroy(dn); /* implicit zrl_remove() */
 937         zrl_destroy(&dnh->dnh_zrlock);
 938         dnh->dnh_dnode = NULL;
 939 }
 940 
 941 dnode_t *
 942 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
 943     dnode_handle_t *dnh)
 944 {
 945         dnode_t *dn = dnode_create(os, dnp, NULL, object, dnh);
 946         dnh->dnh_dnode = dn;
 947         zrl_init(&dnh->dnh_zrlock);
 948         DNODE_VERIFY(dn);
 949         return (dn);
 950 }
 951 
 952 static void
 953 dnode_buf_pageout(dmu_buf_t *db, void *arg)
 954 {
 955         dnode_children_t *children_dnodes = arg;
 956         int i;
 957         int epb = db->db_size >> DNODE_SHIFT;
 958 
 959         ASSERT(epb == children_dnodes->dnc_count);
 960 
 961         for (i = 0; i < epb; i++) {
 962                 dnode_handle_t *dnh = &children_dnodes->dnc_children[i];
 963                 dnode_t *dn;
 964 
 965                 /*
 966                  * The dnode handle lock guards against the dnode moving to
 967                  * another valid address, so there is no need here to guard
 968                  * against changes to or from NULL.
 969                  */
 970                 if (dnh->dnh_dnode == NULL) {
 971                         zrl_destroy(&dnh->dnh_zrlock);
 972                         continue;
 973                 }
 974 
 975                 zrl_add(&dnh->dnh_zrlock);
 976                 dn = dnh->dnh_dnode;
 977                 /*
 978                  * If there are holds on this dnode, then there should
 979                  * be holds on the dnode's containing dbuf as well; thus
 980                  * it wouldn't be eligible for eviction and this function
 981                  * would not have been called.
 982                  */
 983                 ASSERT(refcount_is_zero(&dn->dn_holds));
 984                 ASSERT(refcount_is_zero(&dn->dn_tx_holds));
 985 
 986                 dnode_destroy(dn); /* implicit zrl_remove() */
 987                 zrl_destroy(&dnh->dnh_zrlock);
 988                 dnh->dnh_dnode = NULL;
 989         }
 990         kmem_free(children_dnodes, sizeof (dnode_children_t) +
 991             (epb - 1) * sizeof (dnode_handle_t));
 992 }
 993 
 994 /*
 995  * errors:
 996  * EINVAL - invalid object number.
 997  * EIO - i/o error.
 998  * succeeds even for free dnodes.
 999  */
1000 int
1001 dnode_hold_impl(objset_t *os, uint64_t object, int flag,
1002     void *tag, dnode_t **dnp)
1003 {
1004         int epb, idx, err;
1005         int drop_struct_lock = FALSE;
1006         int type;
1007         uint64_t blk;
1008         dnode_t *mdn, *dn;
1009         dmu_buf_impl_t *db;
1010         dnode_children_t *children_dnodes;
1011         dnode_handle_t *dnh;
1012 
1013         /*
1014          * If you are holding the spa config lock as writer, you shouldn't
1015          * be asking the DMU to do *anything* unless it's the root pool
1016          * which may require us to read from the root filesystem while
1017          * holding some (not all) of the locks as writer.
1018          */
1019         ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1020             (spa_is_root(os->os_spa) &&
1021             spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1022 
1023         if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
1024                 dn = (object == DMU_USERUSED_OBJECT) ?
1025                     DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os);
1026                 if (dn == NULL)
1027                         return (ENOENT);
1028                 type = dn->dn_type;
1029                 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1030                         return (ENOENT);
1031                 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1032                         return (EEXIST);
1033                 DNODE_VERIFY(dn);
1034                 (void) refcount_add(&dn->dn_holds, tag);
1035                 *dnp = dn;
1036                 return (0);
1037         }
1038 
1039         if (object == 0 || object >= DN_MAX_OBJECT)
1040                 return (EINVAL);
1041 
1042         mdn = DMU_META_DNODE(os);
1043         ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1044 
1045         DNODE_VERIFY(mdn);
1046 
1047         if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1048                 rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1049                 drop_struct_lock = TRUE;
1050         }
1051 
1052         blk = dbuf_whichblock(mdn, object * sizeof (dnode_phys_t));
1053 
1054         db = dbuf_hold(mdn, blk, FTAG);
1055         if (drop_struct_lock)
1056                 rw_exit(&mdn->dn_struct_rwlock);
1057         if (db == NULL)
1058                 return (EIO);
1059         err = dbuf_read(db, NULL, DB_RF_CANFAIL);
1060         if (err) {
1061                 dbuf_rele(db, FTAG);
1062                 return (err);
1063         }
1064 
1065         ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1066         epb = db->db.db_size >> DNODE_SHIFT;
1067 
1068         idx = object & (epb-1);
1069 
1070         ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1071         children_dnodes = dmu_buf_get_user(&db->db);
1072         if (children_dnodes == NULL) {
1073                 int i;
1074                 dnode_children_t *winner;
1075                 children_dnodes = kmem_alloc(sizeof (dnode_children_t) +
1076                     (epb - 1) * sizeof (dnode_handle_t), KM_SLEEP);
1077                 children_dnodes->dnc_count = epb;
1078                 dnh = &children_dnodes->dnc_children[0];
1079                 for (i = 0; i < epb; i++) {
1080                         zrl_init(&dnh[i].dnh_zrlock);
1081                         dnh[i].dnh_dnode = NULL;
1082                 }
1083                 if (winner = dmu_buf_set_user(&db->db, children_dnodes, NULL,
1084                     dnode_buf_pageout)) {
1085                         kmem_free(children_dnodes, sizeof (dnode_children_t) +
1086                             (epb - 1) * sizeof (dnode_handle_t));
1087                         children_dnodes = winner;
1088                 }
1089         }
1090         ASSERT(children_dnodes->dnc_count == epb);
1091 
1092         dnh = &children_dnodes->dnc_children[idx];
1093         zrl_add(&dnh->dnh_zrlock);
1094         if ((dn = dnh->dnh_dnode) == NULL) {
1095                 dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx;
1096                 dnode_t *winner;
1097 
1098                 dn = dnode_create(os, phys, db, object, dnh);
1099                 winner = atomic_cas_ptr(&dnh->dnh_dnode, NULL, dn);
1100                 if (winner != NULL) {
1101                         zrl_add(&dnh->dnh_zrlock);
1102                         dnode_destroy(dn); /* implicit zrl_remove() */
1103                         dn = winner;
1104                 }
1105         }
1106 
1107         mutex_enter(&dn->dn_mtx);
1108         type = dn->dn_type;
1109         if (dn->dn_free_txg ||
1110             ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) ||
1111             ((flag & DNODE_MUST_BE_FREE) &&
1112             (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) {
1113                 mutex_exit(&dn->dn_mtx);
1114                 zrl_remove(&dnh->dnh_zrlock);
1115                 dbuf_rele(db, FTAG);
1116                 return (type == DMU_OT_NONE ? ENOENT : EEXIST);
1117         }
1118         mutex_exit(&dn->dn_mtx);
1119 
1120         if (refcount_add(&dn->dn_holds, tag) == 1)
1121                 dbuf_add_ref(db, dnh);
1122         /* Now we can rely on the hold to prevent the dnode from moving. */
1123         zrl_remove(&dnh->dnh_zrlock);
1124 
1125         DNODE_VERIFY(dn);
1126         ASSERT3P(dn->dn_dbuf, ==, db);
1127         ASSERT3U(dn->dn_object, ==, object);
1128         dbuf_rele(db, FTAG);
1129 
1130         *dnp = dn;
1131         return (0);
1132 }
1133 
1134 /*
1135  * Return held dnode if the object is allocated, NULL if not.
1136  */
1137 int
1138 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1139 {
1140         return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp));
1141 }
1142 
1143 /*
1144  * Can only add a reference if there is already at least one
1145  * reference on the dnode.  Returns FALSE if unable to add a
1146  * new reference.
1147  */
1148 boolean_t
1149 dnode_add_ref(dnode_t *dn, void *tag)
1150 {
1151         mutex_enter(&dn->dn_mtx);
1152         if (refcount_is_zero(&dn->dn_holds)) {
1153                 mutex_exit(&dn->dn_mtx);
1154                 return (FALSE);
1155         }
1156         VERIFY(1 < refcount_add(&dn->dn_holds, tag));
1157         mutex_exit(&dn->dn_mtx);
1158         return (TRUE);
1159 }
1160 
1161 void
1162 dnode_rele(dnode_t *dn, void *tag)
1163 {
1164         uint64_t refs;
1165         /* Get while the hold prevents the dnode from moving. */
1166         dmu_buf_impl_t *db = dn->dn_dbuf;
1167         dnode_handle_t *dnh = dn->dn_handle;
1168 
1169         mutex_enter(&dn->dn_mtx);
1170         refs = refcount_remove(&dn->dn_holds, tag);
1171         mutex_exit(&dn->dn_mtx);
1172 
1173         /*
1174          * It's unsafe to release the last hold on a dnode by dnode_rele() or
1175          * indirectly by dbuf_rele() while relying on the dnode handle to
1176          * prevent the dnode from moving, since releasing the last hold could
1177          * result in the dnode's parent dbuf evicting its dnode handles. For
1178          * that reason anyone calling dnode_rele() or dbuf_rele() without some
1179          * other direct or indirect hold on the dnode must first drop the dnode
1180          * handle.
1181          */
1182         ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1183 
1184         /* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1185         if (refs == 0 && db != NULL) {
1186                 /*
1187                  * Another thread could add a hold to the dnode handle in
1188                  * dnode_hold_impl() while holding the parent dbuf. Since the
1189                  * hold on the parent dbuf prevents the handle from being
1190                  * destroyed, the hold on the handle is OK. We can't yet assert
1191                  * that the handle has zero references, but that will be
1192                  * asserted anyway when the handle gets destroyed.
1193                  */
1194                 dbuf_rele(db, dnh);
1195         }
1196 }
1197 
1198 void
1199 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1200 {
1201         objset_t *os = dn->dn_objset;
1202         uint64_t txg = tx->tx_txg;
1203 
1204         if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1205                 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1206                 return;
1207         }
1208 
1209         DNODE_VERIFY(dn);
1210 
1211 #ifdef ZFS_DEBUG
1212         mutex_enter(&dn->dn_mtx);
1213         ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1214         ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1215         mutex_exit(&dn->dn_mtx);
1216 #endif
1217 
1218         /*
1219          * Determine old uid/gid when necessary
1220          */
1221         dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1222 
1223         mutex_enter(&os->os_lock);
1224 
1225         /*
1226          * If we are already marked dirty, we're done.
1227          */
1228         if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1229                 mutex_exit(&os->os_lock);
1230                 return;
1231         }
1232 
1233         ASSERT(!refcount_is_zero(&dn->dn_holds) || list_head(&dn->dn_dbufs));
1234         ASSERT(dn->dn_datablksz != 0);
1235         ASSERT3U(dn->dn_next_bonuslen[txg&TXG_MASK], ==, 0);
1236         ASSERT3U(dn->dn_next_blksz[txg&TXG_MASK], ==, 0);
1237         ASSERT3U(dn->dn_next_bonustype[txg&TXG_MASK], ==, 0);
1238 
1239         dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1240             dn->dn_object, txg);
1241 
1242         if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) {
1243                 list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn);
1244         } else {
1245                 list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn);
1246         }
1247 
1248         mutex_exit(&os->os_lock);
1249 
1250         /*
1251          * The dnode maintains a hold on its containing dbuf as
1252          * long as there are holds on it.  Each instantiated child
1253          * dbuf maintains a hold on the dnode.  When the last child
1254          * drops its hold, the dnode will drop its hold on the
1255          * containing dbuf. We add a "dirty hold" here so that the
1256          * dnode will hang around after we finish processing its
1257          * children.
1258          */
1259         VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1260 
1261         (void) dbuf_dirty(dn->dn_dbuf, tx);
1262 
1263         dsl_dataset_dirty(os->os_dsl_dataset, tx);
1264 }
1265 
1266 void
1267 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1268 {
1269         int txgoff = tx->tx_txg & TXG_MASK;
1270 
1271         dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg);
1272 
1273         /* we should be the only holder... hopefully */
1274         /* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */
1275 
1276         mutex_enter(&dn->dn_mtx);
1277         if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1278                 mutex_exit(&dn->dn_mtx);
1279                 return;
1280         }
1281         dn->dn_free_txg = tx->tx_txg;
1282         mutex_exit(&dn->dn_mtx);
1283 
1284         /*
1285          * If the dnode is already dirty, it needs to be moved from
1286          * the dirty list to the free list.
1287          */
1288         mutex_enter(&dn->dn_objset->os_lock);
1289         if (list_link_active(&dn->dn_dirty_link[txgoff])) {
1290                 list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn);
1291                 list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn);
1292                 mutex_exit(&dn->dn_objset->os_lock);
1293         } else {
1294                 mutex_exit(&dn->dn_objset->os_lock);
1295                 dnode_setdirty(dn, tx);
1296         }
1297 }
1298 
1299 /*
1300  * Try to change the block size for the indicated dnode.  This can only
1301  * succeed if there are no blocks allocated or dirty beyond first block
1302  */
1303 int
1304 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1305 {
1306         dmu_buf_impl_t *db, *db_next;
1307         int err;
1308 
1309         if (size == 0)
1310                 size = SPA_MINBLOCKSIZE;
1311         if (size > SPA_MAXBLOCKSIZE)
1312                 size = SPA_MAXBLOCKSIZE;
1313         else
1314                 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1315 
1316         if (ibs == dn->dn_indblkshift)
1317                 ibs = 0;
1318 
1319         if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1320                 return (0);
1321 
1322         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1323 
1324         /* Check for any allocated blocks beyond the first */
1325         if (dn->dn_phys->dn_maxblkid != 0)
1326                 goto fail;
1327 
1328         mutex_enter(&dn->dn_dbufs_mtx);
1329         for (db = list_head(&dn->dn_dbufs); db; db = db_next) {
1330                 db_next = list_next(&dn->dn_dbufs, db);
1331 
1332                 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1333                     db->db_blkid != DMU_SPILL_BLKID) {
1334                         mutex_exit(&dn->dn_dbufs_mtx);
1335                         goto fail;
1336                 }
1337         }
1338         mutex_exit(&dn->dn_dbufs_mtx);
1339 
1340         if (ibs && dn->dn_nlevels != 1)
1341                 goto fail;
1342 
1343         /* resize the old block */
1344         err = dbuf_hold_impl(dn, 0, 0, TRUE, FTAG, &db);
1345         if (err == 0)
1346                 dbuf_new_size(db, size, tx);
1347         else if (err != ENOENT)
1348                 goto fail;
1349 
1350         dnode_setdblksz(dn, size);
1351         dnode_setdirty(dn, tx);
1352         dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1353         if (ibs) {
1354                 dn->dn_indblkshift = ibs;
1355                 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1356         }
1357         /* rele after we have fixed the blocksize in the dnode */
1358         if (db)
1359                 dbuf_rele(db, FTAG);
1360 
1361         rw_exit(&dn->dn_struct_rwlock);
1362         return (0);
1363 
1364 fail:
1365         rw_exit(&dn->dn_struct_rwlock);
1366         return (ENOTSUP);
1367 }
1368 
1369 /* read-holding callers must not rely on the lock being continuously held */
1370 void
1371 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
1372 {
1373         uint64_t txgoff = tx->tx_txg & TXG_MASK;
1374         int epbs, new_nlevels;
1375         uint64_t sz;
1376 
1377         ASSERT(blkid != DMU_BONUS_BLKID);
1378 
1379         ASSERT(have_read ?
1380             RW_READ_HELD(&dn->dn_struct_rwlock) :
1381             RW_WRITE_HELD(&dn->dn_struct_rwlock));
1382 
1383         /*
1384          * if we have a read-lock, check to see if we need to do any work
1385          * before upgrading to a write-lock.
1386          */
1387         if (have_read) {
1388                 if (blkid <= dn->dn_maxblkid)
1389                         return;
1390 
1391                 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1392                         rw_exit(&dn->dn_struct_rwlock);
1393                         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1394                 }
1395         }
1396 
1397         if (blkid <= dn->dn_maxblkid)
1398                 goto out;
1399 
1400         dn->dn_maxblkid = blkid;
1401 
1402         /*
1403          * Compute the number of levels necessary to support the new maxblkid.
1404          */
1405         new_nlevels = 1;
1406         epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1407         for (sz = dn->dn_nblkptr;
1408             sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1409                 new_nlevels++;
1410 
1411         if (new_nlevels > dn->dn_nlevels) {
1412                 int old_nlevels = dn->dn_nlevels;
1413                 dmu_buf_impl_t *db;
1414                 list_t *list;
1415                 dbuf_dirty_record_t *new, *dr, *dr_next;
1416 
1417                 dn->dn_nlevels = new_nlevels;
1418 
1419                 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1420                 dn->dn_next_nlevels[txgoff] = new_nlevels;
1421 
1422                 /* dirty the left indirects */
1423                 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1424                 ASSERT(db != NULL);
1425                 new = dbuf_dirty(db, tx);
1426                 dbuf_rele(db, FTAG);
1427 
1428                 /* transfer the dirty records to the new indirect */
1429                 mutex_enter(&dn->dn_mtx);
1430                 mutex_enter(&new->dt.di.dr_mtx);
1431                 list = &dn->dn_dirty_records[txgoff];
1432                 for (dr = list_head(list); dr; dr = dr_next) {
1433                         dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1434                         if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1435                             dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1436                             dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1437                                 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1438                                 list_remove(&dn->dn_dirty_records[txgoff], dr);
1439                                 list_insert_tail(&new->dt.di.dr_children, dr);
1440                                 dr->dr_parent = new;
1441                         }
1442                 }
1443                 mutex_exit(&new->dt.di.dr_mtx);
1444                 mutex_exit(&dn->dn_mtx);
1445         }
1446 
1447 out:
1448         if (have_read)
1449                 rw_downgrade(&dn->dn_struct_rwlock);
1450 }
1451 
1452 void
1453 dnode_clear_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx)
1454 {
1455         avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK];
1456         avl_index_t where;
1457         free_range_t *rp;
1458         free_range_t rp_tofind;
1459         uint64_t endblk = blkid + nblks;
1460 
1461         ASSERT(MUTEX_HELD(&dn->dn_mtx));
1462         ASSERT(nblks <= UINT64_MAX - blkid); /* no overflow */
1463 
1464         dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1465             blkid, nblks, tx->tx_txg);
1466         rp_tofind.fr_blkid = blkid;
1467         rp = avl_find(tree, &rp_tofind, &where);
1468         if (rp == NULL)
1469                 rp = avl_nearest(tree, where, AVL_BEFORE);
1470         if (rp == NULL)
1471                 rp = avl_nearest(tree, where, AVL_AFTER);
1472 
1473         while (rp && (rp->fr_blkid <= blkid + nblks)) {
1474                 uint64_t fr_endblk = rp->fr_blkid + rp->fr_nblks;
1475                 free_range_t *nrp = AVL_NEXT(tree, rp);
1476 
1477                 if (blkid <= rp->fr_blkid && endblk >= fr_endblk) {
1478                         /* clear this entire range */
1479                         avl_remove(tree, rp);
1480                         kmem_free(rp, sizeof (free_range_t));
1481                 } else if (blkid <= rp->fr_blkid &&
1482                     endblk > rp->fr_blkid && endblk < fr_endblk) {
1483                         /* clear the beginning of this range */
1484                         rp->fr_blkid = endblk;
1485                         rp->fr_nblks = fr_endblk - endblk;
1486                 } else if (blkid > rp->fr_blkid && blkid < fr_endblk &&
1487                     endblk >= fr_endblk) {
1488                         /* clear the end of this range */
1489                         rp->fr_nblks = blkid - rp->fr_blkid;
1490                 } else if (blkid > rp->fr_blkid && endblk < fr_endblk) {
1491                         /* clear a chunk out of this range */
1492                         free_range_t *new_rp =
1493                             kmem_alloc(sizeof (free_range_t), KM_SLEEP);
1494 
1495                         new_rp->fr_blkid = endblk;
1496                         new_rp->fr_nblks = fr_endblk - endblk;
1497                         avl_insert_here(tree, new_rp, rp, AVL_AFTER);
1498                         rp->fr_nblks = blkid - rp->fr_blkid;
1499                 }
1500                 /* there may be no overlap */
1501                 rp = nrp;
1502         }
1503 }
1504 
1505 void
1506 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1507 {
1508         dmu_buf_impl_t *db;
1509         uint64_t blkoff, blkid, nblks;
1510         int blksz, blkshift, head, tail;
1511         int trunc = FALSE;
1512         int epbs;
1513 
1514         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1515         blksz = dn->dn_datablksz;
1516         blkshift = dn->dn_datablkshift;
1517         epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1518 
1519         if (len == -1ULL) {
1520                 len = UINT64_MAX - off;
1521                 trunc = TRUE;
1522         }
1523 
1524         /*
1525          * First, block align the region to free:
1526          */
1527         if (ISP2(blksz)) {
1528                 head = P2NPHASE(off, blksz);
1529                 blkoff = P2PHASE(off, blksz);
1530                 if ((off >> blkshift) > dn->dn_maxblkid)
1531                         goto out;
1532         } else {
1533                 ASSERT(dn->dn_maxblkid == 0);
1534                 if (off == 0 && len >= blksz) {
1535                         /* Freeing the whole block; fast-track this request */
1536                         blkid = 0;
1537                         nblks = 1;
1538                         goto done;
1539                 } else if (off >= blksz) {
1540                         /* Freeing past end-of-data */
1541                         goto out;
1542                 } else {
1543                         /* Freeing part of the block. */
1544                         head = blksz - off;
1545                         ASSERT3U(head, >, 0);
1546                 }
1547                 blkoff = off;
1548         }
1549         /* zero out any partial block data at the start of the range */
1550         if (head) {
1551                 ASSERT3U(blkoff + head, ==, blksz);
1552                 if (len < head)
1553                         head = len;
1554                 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off), TRUE,
1555                     FTAG, &db) == 0) {
1556                         caddr_t data;
1557 
1558                         /* don't dirty if it isn't on disk and isn't dirty */
1559                         if (db->db_last_dirty ||
1560                             (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1561                                 rw_exit(&dn->dn_struct_rwlock);
1562                                 dbuf_will_dirty(db, tx);
1563                                 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1564                                 data = db->db.db_data;
1565                                 bzero(data + blkoff, head);
1566                         }
1567                         dbuf_rele(db, FTAG);
1568                 }
1569                 off += head;
1570                 len -= head;
1571         }
1572 
1573         /* If the range was less than one block, we're done */
1574         if (len == 0)
1575                 goto out;
1576 
1577         /* If the remaining range is past end of file, we're done */
1578         if ((off >> blkshift) > dn->dn_maxblkid)
1579                 goto out;
1580 
1581         ASSERT(ISP2(blksz));
1582         if (trunc)
1583                 tail = 0;
1584         else
1585                 tail = P2PHASE(len, blksz);
1586 
1587         ASSERT3U(P2PHASE(off, blksz), ==, 0);
1588         /* zero out any partial block data at the end of the range */
1589         if (tail) {
1590                 if (len < tail)
1591                         tail = len;
1592                 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off+len),
1593                     TRUE, FTAG, &db) == 0) {
1594                         /* don't dirty if not on disk and not dirty */
1595                         if (db->db_last_dirty ||
1596                             (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1597                                 rw_exit(&dn->dn_struct_rwlock);
1598                                 dbuf_will_dirty(db, tx);
1599                                 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1600                                 bzero(db->db.db_data, tail);
1601                         }
1602                         dbuf_rele(db, FTAG);
1603                 }
1604                 len -= tail;
1605         }
1606 
1607         /* If the range did not include a full block, we are done */
1608         if (len == 0)
1609                 goto out;
1610 
1611         ASSERT(IS_P2ALIGNED(off, blksz));
1612         ASSERT(trunc || IS_P2ALIGNED(len, blksz));
1613         blkid = off >> blkshift;
1614         nblks = len >> blkshift;
1615         if (trunc)
1616                 nblks += 1;
1617 
1618         /*
1619          * Read in and mark all the level-1 indirects dirty,
1620          * so that they will stay in memory until syncing phase.
1621          * Always dirty the first and last indirect to make sure
1622          * we dirty all the partial indirects.
1623          */
1624         if (dn->dn_nlevels > 1) {
1625                 uint64_t i, first, last;
1626                 int shift = epbs + dn->dn_datablkshift;
1627 
1628                 first = blkid >> epbs;
1629                 if (db = dbuf_hold_level(dn, 1, first, FTAG)) {
1630                         dbuf_will_dirty(db, tx);
1631                         dbuf_rele(db, FTAG);
1632                 }
1633                 if (trunc)
1634                         last = dn->dn_maxblkid >> epbs;
1635                 else
1636                         last = (blkid + nblks - 1) >> epbs;
1637                 if (last > first && (db = dbuf_hold_level(dn, 1, last, FTAG))) {
1638                         dbuf_will_dirty(db, tx);
1639                         dbuf_rele(db, FTAG);
1640                 }
1641                 for (i = first + 1; i < last; i++) {
1642                         uint64_t ibyte = i << shift;
1643                         int err;
1644 
1645                         err = dnode_next_offset(dn,
1646                             DNODE_FIND_HAVELOCK, &ibyte, 1, 1, 0);
1647                         i = ibyte >> shift;
1648                         if (err == ESRCH || i >= last)
1649                                 break;
1650                         ASSERT(err == 0);
1651                         db = dbuf_hold_level(dn, 1, i, FTAG);
1652                         if (db) {
1653                                 dbuf_will_dirty(db, tx);
1654                                 dbuf_rele(db, FTAG);
1655                         }
1656                 }
1657         }
1658 done:
1659         /*
1660          * Add this range to the dnode range list.
1661          * We will finish up this free operation in the syncing phase.
1662          */
1663         mutex_enter(&dn->dn_mtx);
1664         dnode_clear_range(dn, blkid, nblks, tx);
1665         {
1666                 free_range_t *rp, *found;
1667                 avl_index_t where;
1668                 avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK];
1669 
1670                 /* Add new range to dn_ranges */
1671                 rp = kmem_alloc(sizeof (free_range_t), KM_SLEEP);
1672                 rp->fr_blkid = blkid;
1673                 rp->fr_nblks = nblks;
1674                 found = avl_find(tree, rp, &where);
1675                 ASSERT(found == NULL);
1676                 avl_insert(tree, rp, where);
1677                 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1678                     blkid, nblks, tx->tx_txg);
1679         }
1680         mutex_exit(&dn->dn_mtx);
1681 
1682         dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
1683         dnode_setdirty(dn, tx);
1684 out:
1685         if (trunc && dn->dn_maxblkid >= (off >> blkshift))
1686                 dn->dn_maxblkid = (off >> blkshift ? (off >> blkshift) - 1 : 0);
1687 
1688         rw_exit(&dn->dn_struct_rwlock);
1689 }
1690 
1691 static boolean_t
1692 dnode_spill_freed(dnode_t *dn)
1693 {
1694         int i;
1695 
1696         mutex_enter(&dn->dn_mtx);
1697         for (i = 0; i < TXG_SIZE; i++) {
1698                 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
1699                         break;
1700         }
1701         mutex_exit(&dn->dn_mtx);
1702         return (i < TXG_SIZE);
1703 }
1704 
1705 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
1706 uint64_t
1707 dnode_block_freed(dnode_t *dn, uint64_t blkid)
1708 {
1709         free_range_t range_tofind;
1710         void *dp = spa_get_dsl(dn->dn_objset->os_spa);
1711         int i;
1712 
1713         if (blkid == DMU_BONUS_BLKID)
1714                 return (FALSE);
1715 
1716         /*
1717          * If we're in the process of opening the pool, dp will not be
1718          * set yet, but there shouldn't be anything dirty.
1719          */
1720         if (dp == NULL)
1721                 return (FALSE);
1722 
1723         if (dn->dn_free_txg)
1724                 return (TRUE);
1725 
1726         if (blkid == DMU_SPILL_BLKID)
1727                 return (dnode_spill_freed(dn));
1728 
1729         range_tofind.fr_blkid = blkid;
1730         mutex_enter(&dn->dn_mtx);
1731         for (i = 0; i < TXG_SIZE; i++) {
1732                 free_range_t *range_found;
1733                 avl_index_t idx;
1734 
1735                 range_found = avl_find(&dn->dn_ranges[i], &range_tofind, &idx);
1736                 if (range_found) {
1737                         ASSERT(range_found->fr_nblks > 0);
1738                         break;
1739                 }
1740                 range_found = avl_nearest(&dn->dn_ranges[i], idx, AVL_BEFORE);
1741                 if (range_found &&
1742                     range_found->fr_blkid + range_found->fr_nblks > blkid)
1743                         break;
1744         }
1745         mutex_exit(&dn->dn_mtx);
1746         return (i < TXG_SIZE);
1747 }
1748 
1749 /* call from syncing context when we actually write/free space for this dnode */
1750 void
1751 dnode_diduse_space(dnode_t *dn, int64_t delta)
1752 {
1753         uint64_t space;
1754         dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
1755             dn, dn->dn_phys,
1756             (u_longlong_t)dn->dn_phys->dn_used,
1757             (longlong_t)delta);
1758 
1759         mutex_enter(&dn->dn_mtx);
1760         space = DN_USED_BYTES(dn->dn_phys);
1761         if (delta > 0) {
1762                 ASSERT3U(space + delta, >=, space); /* no overflow */
1763         } else {
1764                 ASSERT3U(space, >=, -delta); /* no underflow */
1765         }
1766         space += delta;
1767         if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
1768                 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
1769                 ASSERT3U(P2PHASE(space, 1<<DEV_BSHIFT), ==, 0);
1770                 dn->dn_phys->dn_used = space >> DEV_BSHIFT;
1771         } else {
1772                 dn->dn_phys->dn_used = space;
1773                 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
1774         }
1775         mutex_exit(&dn->dn_mtx);
1776 }
1777 
1778 /*
1779  * Call when we think we're going to write/free space in open context.
1780  * Be conservative (ie. OK to write less than this or free more than
1781  * this, but don't write more or free less).
1782  */
1783 void
1784 dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx)
1785 {
1786         objset_t *os = dn->dn_objset;
1787         dsl_dataset_t *ds = os->os_dsl_dataset;
1788 
1789         if (space > 0)
1790                 space = spa_get_asize(os->os_spa, space);
1791 
1792         if (ds)
1793                 dsl_dir_willuse_space(ds->ds_dir, space, tx);
1794 
1795         dmu_tx_willuse_space(tx, space);
1796 }
1797 
1798 /*
1799  * This function scans a block at the indicated "level" looking for
1800  * a hole or data (depending on 'flags').  If level > 0, then we are
1801  * scanning an indirect block looking at its pointers.  If level == 0,
1802  * then we are looking at a block of dnodes.  If we don't find what we
1803  * are looking for in the block, we return ESRCH.  Otherwise, return
1804  * with *offset pointing to the beginning (if searching forwards) or
1805  * end (if searching backwards) of the range covered by the block
1806  * pointer we matched on (or dnode).
1807  *
1808  * The basic search algorithm used below by dnode_next_offset() is to
1809  * use this function to search up the block tree (widen the search) until
1810  * we find something (i.e., we don't return ESRCH) and then search back
1811  * down the tree (narrow the search) until we reach our original search
1812  * level.
1813  */
1814 static int
1815 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
1816         int lvl, uint64_t blkfill, uint64_t txg)
1817 {
1818         dmu_buf_impl_t *db = NULL;
1819         void *data = NULL;
1820         uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
1821         uint64_t epb = 1ULL << epbs;
1822         uint64_t minfill, maxfill;
1823         boolean_t hole;
1824         int i, inc, error, span;
1825 
1826         dprintf("probing object %llu offset %llx level %d of %u\n",
1827             dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
1828 
1829         hole = ((flags & DNODE_FIND_HOLE) != 0);
1830         inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
1831         ASSERT(txg == 0 || !hole);
1832 
1833         if (lvl == dn->dn_phys->dn_nlevels) {
1834                 error = 0;
1835                 epb = dn->dn_phys->dn_nblkptr;
1836                 data = dn->dn_phys->dn_blkptr;
1837         } else {
1838                 uint64_t blkid = dbuf_whichblock(dn, *offset) >> (epbs * lvl);
1839                 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FTAG, &db);
1840                 if (error) {
1841                         if (error != ENOENT)
1842                                 return (error);
1843                         if (hole)
1844                                 return (0);
1845                         /*
1846                          * This can only happen when we are searching up
1847                          * the block tree for data.  We don't really need to
1848                          * adjust the offset, as we will just end up looking
1849                          * at the pointer to this block in its parent, and its
1850                          * going to be unallocated, so we will skip over it.
1851                          */
1852                         return (ESRCH);
1853                 }
1854                 error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
1855                 if (error) {
1856                         dbuf_rele(db, FTAG);
1857                         return (error);
1858                 }
1859                 data = db->db.db_data;
1860         }
1861 
1862         if (db && txg &&
1863             (db->db_blkptr == NULL || db->db_blkptr->blk_birth <= txg)) {
1864                 /*
1865                  * This can only happen when we are searching up the tree
1866                  * and these conditions mean that we need to keep climbing.
1867                  */
1868                 error = ESRCH;
1869         } else if (lvl == 0) {
1870                 dnode_phys_t *dnp = data;
1871                 span = DNODE_SHIFT;
1872                 ASSERT(dn->dn_type == DMU_OT_DNODE);
1873 
1874                 for (i = (*offset >> span) & (blkfill - 1);
1875                     i >= 0 && i < blkfill; i += inc) {
1876                         if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
1877                                 break;
1878                         *offset += (1ULL << span) * inc;
1879                 }
1880                 if (i < 0 || i == blkfill)
1881                         error = ESRCH;
1882         } else {
1883                 blkptr_t *bp = data;
1884                 uint64_t start = *offset;
1885                 span = (lvl - 1) * epbs + dn->dn_datablkshift;
1886                 minfill = 0;
1887                 maxfill = blkfill << ((lvl - 1) * epbs);
1888 
1889                 if (hole)
1890                         maxfill--;
1891                 else
1892                         minfill++;
1893 
1894                 *offset = *offset >> span;
1895                 for (i = BF64_GET(*offset, 0, epbs);
1896                     i >= 0 && i < epb; i += inc) {
1897                         if (bp[i].blk_fill >= minfill &&
1898                             bp[i].blk_fill <= maxfill &&
1899                             (hole || bp[i].blk_birth > txg))
1900                                 break;
1901                         if (inc > 0 || *offset > 0)
1902                                 *offset += inc;
1903                 }
1904                 *offset = *offset << span;
1905                 if (inc < 0) {
1906                         /* traversing backwards; position offset at the end */
1907                         ASSERT3U(*offset, <=, start);
1908                         *offset = MIN(*offset + (1ULL << span) - 1, start);
1909                 } else if (*offset < start) {
1910                         *offset = start;
1911                 }
1912                 if (i < 0 || i >= epb)
1913                         error = ESRCH;
1914         }
1915 
1916         if (db)
1917                 dbuf_rele(db, FTAG);
1918 
1919         return (error);
1920 }
1921 
1922 /*
1923  * Find the next hole, data, or sparse region at or after *offset.
1924  * The value 'blkfill' tells us how many items we expect to find
1925  * in an L0 data block; this value is 1 for normal objects,
1926  * DNODES_PER_BLOCK for the meta dnode, and some fraction of
1927  * DNODES_PER_BLOCK when searching for sparse regions thereof.
1928  *
1929  * Examples:
1930  *
1931  * dnode_next_offset(dn, flags, offset, 1, 1, 0);
1932  *      Finds the next/previous hole/data in a file.
1933  *      Used in dmu_offset_next().
1934  *
1935  * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
1936  *      Finds the next free/allocated dnode an objset's meta-dnode.
1937  *      Only finds objects that have new contents since txg (ie.
1938  *      bonus buffer changes and content removal are ignored).
1939  *      Used in dmu_object_next().
1940  *
1941  * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
1942  *      Finds the next L2 meta-dnode bp that's at most 1/4 full.
1943  *      Used in dmu_object_alloc().
1944  */
1945 int
1946 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
1947     int minlvl, uint64_t blkfill, uint64_t txg)
1948 {
1949         uint64_t initial_offset = *offset;
1950         int lvl, maxlvl;
1951         int error = 0;
1952 
1953         if (!(flags & DNODE_FIND_HAVELOCK))
1954                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1955 
1956         if (dn->dn_phys->dn_nlevels == 0) {
1957                 error = ESRCH;
1958                 goto out;
1959         }
1960 
1961         if (dn->dn_datablkshift == 0) {
1962                 if (*offset < dn->dn_datablksz) {
1963                         if (flags & DNODE_FIND_HOLE)
1964                                 *offset = dn->dn_datablksz;
1965                 } else {
1966                         error = ESRCH;
1967                 }
1968                 goto out;
1969         }
1970 
1971         maxlvl = dn->dn_phys->dn_nlevels;
1972 
1973         for (lvl = minlvl; lvl <= maxlvl; lvl++) {
1974                 error = dnode_next_offset_level(dn,
1975                     flags, offset, lvl, blkfill, txg);
1976                 if (error != ESRCH)
1977                         break;
1978         }
1979 
1980         while (error == 0 && --lvl >= minlvl) {
1981                 error = dnode_next_offset_level(dn,
1982                     flags, offset, lvl, blkfill, txg);
1983         }
1984 
1985         if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
1986             initial_offset < *offset : initial_offset > *offset))
1987                 error = ESRCH;
1988 out:
1989         if (!(flags & DNODE_FIND_HAVELOCK))
1990                 rw_exit(&dn->dn_struct_rwlock);
1991 
1992         return (error);
1993 }