1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 
  25 #include <sys/dmu.h>
  26 #include <sys/dmu_impl.h>
  27 #include <sys/dmu_tx.h>
  28 #include <sys/dbuf.h>
  29 #include <sys/dnode.h>
  30 #include <sys/zfs_context.h>
  31 #include <sys/dmu_objset.h>
  32 #include <sys/dmu_traverse.h>
  33 #include <sys/dsl_dataset.h>
  34 #include <sys/dsl_dir.h>
  35 #include <sys/dsl_pool.h>
  36 #include <sys/dsl_synctask.h>
  37 #include <sys/dsl_prop.h>
  38 #include <sys/dmu_zfetch.h>
  39 #include <sys/zfs_ioctl.h>
  40 #include <sys/zap.h>
  41 #include <sys/zio_checksum.h>
  42 #include <sys/sa.h>
  43 #ifdef _KERNEL
  44 #include <sys/vmsystm.h>
  45 #include <sys/zfs_znode.h>
  46 #endif
  47 
  48 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
  49         {       byteswap_uint8_array,   TRUE,   "unallocated"           },
  50         {       zap_byteswap,           TRUE,   "object directory"      },
  51         {       byteswap_uint64_array,  TRUE,   "object array"          },
  52         {       byteswap_uint8_array,   TRUE,   "packed nvlist"         },
  53         {       byteswap_uint64_array,  TRUE,   "packed nvlist size"    },
  54         {       byteswap_uint64_array,  TRUE,   "bpobj"                 },
  55         {       byteswap_uint64_array,  TRUE,   "bpobj header"          },
  56         {       byteswap_uint64_array,  TRUE,   "SPA space map header"  },
  57         {       byteswap_uint64_array,  TRUE,   "SPA space map"         },
  58         {       byteswap_uint64_array,  TRUE,   "ZIL intent log"        },
  59         {       dnode_buf_byteswap,     TRUE,   "DMU dnode"             },
  60         {       dmu_objset_byteswap,    TRUE,   "DMU objset"            },
  61         {       byteswap_uint64_array,  TRUE,   "DSL directory"         },
  62         {       zap_byteswap,           TRUE,   "DSL directory child map"},
  63         {       zap_byteswap,           TRUE,   "DSL dataset snap map"  },
  64         {       zap_byteswap,           TRUE,   "DSL props"             },
  65         {       byteswap_uint64_array,  TRUE,   "DSL dataset"           },
  66         {       zfs_znode_byteswap,     TRUE,   "ZFS znode"             },
  67         {       zfs_oldacl_byteswap,    TRUE,   "ZFS V0 ACL"            },
  68         {       byteswap_uint8_array,   FALSE,  "ZFS plain file"        },
  69         {       zap_byteswap,           TRUE,   "ZFS directory"         },
  70         {       zap_byteswap,           TRUE,   "ZFS master node"       },
  71         {       zap_byteswap,           TRUE,   "ZFS delete queue"      },
  72         {       byteswap_uint8_array,   FALSE,  "zvol object"           },
  73         {       zap_byteswap,           TRUE,   "zvol prop"             },
  74         {       byteswap_uint8_array,   FALSE,  "other uint8[]"         },
  75         {       byteswap_uint64_array,  FALSE,  "other uint64[]"        },
  76         {       zap_byteswap,           TRUE,   "other ZAP"             },
  77         {       zap_byteswap,           TRUE,   "persistent error log"  },
  78         {       byteswap_uint8_array,   TRUE,   "SPA history"           },
  79         {       byteswap_uint64_array,  TRUE,   "SPA history offsets"   },
  80         {       zap_byteswap,           TRUE,   "Pool properties"       },
  81         {       zap_byteswap,           TRUE,   "DSL permissions"       },
  82         {       zfs_acl_byteswap,       TRUE,   "ZFS ACL"               },
  83         {       byteswap_uint8_array,   TRUE,   "ZFS SYSACL"            },
  84         {       byteswap_uint8_array,   TRUE,   "FUID table"            },
  85         {       byteswap_uint64_array,  TRUE,   "FUID table size"       },
  86         {       zap_byteswap,           TRUE,   "DSL dataset next clones"},
  87         {       zap_byteswap,           TRUE,   "scan work queue"       },
  88         {       zap_byteswap,           TRUE,   "ZFS user/group used"   },
  89         {       zap_byteswap,           TRUE,   "ZFS user/group quota"  },
  90         {       zap_byteswap,           TRUE,   "snapshot refcount tags"},
  91         {       zap_byteswap,           TRUE,   "DDT ZAP algorithm"     },
  92         {       zap_byteswap,           TRUE,   "DDT statistics"        },
  93         {       byteswap_uint8_array,   TRUE,   "System attributes"     },
  94         {       zap_byteswap,           TRUE,   "SA master node"        },
  95         {       zap_byteswap,           TRUE,   "SA attr registration"  },
  96         {       zap_byteswap,           TRUE,   "SA attr layouts"       },
  97         {       zap_byteswap,           TRUE,   "scan translations"     },
  98         {       byteswap_uint8_array,   FALSE,  "deduplicated block"    },
  99         {       zap_byteswap,           TRUE,   "DSL deadlist map"      },
 100         {       byteswap_uint64_array,  TRUE,   "DSL deadlist map hdr"  },
 101         {       zap_byteswap,           TRUE,   "DSL dir clones"        },
 102         {       byteswap_uint64_array,  TRUE,   "bpobj subobj"          },
 103 };
 104 
 105 int
 106 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
 107     void *tag, dmu_buf_t **dbp, int flags)
 108 {
 109         dnode_t *dn;
 110         uint64_t blkid;
 111         dmu_buf_impl_t *db;
 112         int err;
 113         int db_flags = DB_RF_CANFAIL;
 114 
 115         if (flags & DMU_READ_NO_PREFETCH)
 116                 db_flags |= DB_RF_NOPREFETCH;
 117 
 118         err = dnode_hold(os, object, FTAG, &dn);
 119         if (err)
 120                 return (err);
 121         blkid = dbuf_whichblock(dn, offset);
 122         rw_enter(&dn->dn_struct_rwlock, RW_READER);
 123         db = dbuf_hold(dn, blkid, tag);
 124         rw_exit(&dn->dn_struct_rwlock);
 125         if (db == NULL) {
 126                 err = EIO;
 127         } else {
 128                 err = dbuf_read(db, NULL, db_flags);
 129                 if (err) {
 130                         dbuf_rele(db, tag);
 131                         db = NULL;
 132                 }
 133         }
 134 
 135         dnode_rele(dn, FTAG);
 136         *dbp = &db->db; /* NULL db plus first field offset is NULL */
 137         return (err);
 138 }
 139 
 140 int
 141 dmu_bonus_max(void)
 142 {
 143         return (DN_MAX_BONUSLEN);
 144 }
 145 
 146 int
 147 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
 148 {
 149         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 150         dnode_t *dn;
 151         int error;
 152 
 153         DB_DNODE_ENTER(db);
 154         dn = DB_DNODE(db);
 155 
 156         if (dn->dn_bonus != db) {
 157                 error = EINVAL;
 158         } else if (newsize < 0 || newsize > db_fake->db_size) {
 159                 error = EINVAL;
 160         } else {
 161                 dnode_setbonuslen(dn, newsize, tx);
 162                 error = 0;
 163         }
 164 
 165         DB_DNODE_EXIT(db);
 166         return (error);
 167 }
 168 
 169 int
 170 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
 171 {
 172         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 173         dnode_t *dn;
 174         int error;
 175 
 176         DB_DNODE_ENTER(db);
 177         dn = DB_DNODE(db);
 178 
 179         if (type > DMU_OT_NUMTYPES) {
 180                 error = EINVAL;
 181         } else if (dn->dn_bonus != db) {
 182                 error = EINVAL;
 183         } else {
 184                 dnode_setbonus_type(dn, type, tx);
 185                 error = 0;
 186         }
 187 
 188         DB_DNODE_EXIT(db);
 189         return (error);
 190 }
 191 
 192 dmu_object_type_t
 193 dmu_get_bonustype(dmu_buf_t *db_fake)
 194 {
 195         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 196         dnode_t *dn;
 197         dmu_object_type_t type;
 198 
 199         DB_DNODE_ENTER(db);
 200         dn = DB_DNODE(db);
 201         type = dn->dn_bonustype;
 202         DB_DNODE_EXIT(db);
 203 
 204         return (type);
 205 }
 206 
 207 int
 208 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
 209 {
 210         dnode_t *dn;
 211         int error;
 212 
 213         error = dnode_hold(os, object, FTAG, &dn);
 214         dbuf_rm_spill(dn, tx);
 215         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 216         dnode_rm_spill(dn, tx);
 217         rw_exit(&dn->dn_struct_rwlock);
 218         dnode_rele(dn, FTAG);
 219         return (error);
 220 }
 221 
 222 /*
 223  * returns ENOENT, EIO, or 0.
 224  */
 225 int
 226 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
 227 {
 228         dnode_t *dn;
 229         dmu_buf_impl_t *db;
 230         int error;
 231 
 232         error = dnode_hold(os, object, FTAG, &dn);
 233         if (error)
 234                 return (error);
 235 
 236         rw_enter(&dn->dn_struct_rwlock, RW_READER);
 237         if (dn->dn_bonus == NULL) {
 238                 rw_exit(&dn->dn_struct_rwlock);
 239                 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 240                 if (dn->dn_bonus == NULL)
 241                         dbuf_create_bonus(dn);
 242         }
 243         db = dn->dn_bonus;
 244 
 245         /* as long as the bonus buf is held, the dnode will be held */
 246         if (refcount_add(&db->db_holds, tag) == 1) {
 247                 VERIFY(dnode_add_ref(dn, db));
 248                 (void) atomic_inc_32_nv(&dn->dn_dbufs_count);
 249         }
 250 
 251         /*
 252          * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
 253          * hold and incrementing the dbuf count to ensure that dnode_move() sees
 254          * a dnode hold for every dbuf.
 255          */
 256         rw_exit(&dn->dn_struct_rwlock);
 257 
 258         dnode_rele(dn, FTAG);
 259 
 260         VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
 261 
 262         *dbp = &db->db;
 263         return (0);
 264 }
 265 
 266 /*
 267  * returns ENOENT, EIO, or 0.
 268  *
 269  * This interface will allocate a blank spill dbuf when a spill blk
 270  * doesn't already exist on the dnode.
 271  *
 272  * if you only want to find an already existing spill db, then
 273  * dmu_spill_hold_existing() should be used.
 274  */
 275 int
 276 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
 277 {
 278         dmu_buf_impl_t *db = NULL;
 279         int err;
 280 
 281         if ((flags & DB_RF_HAVESTRUCT) == 0)
 282                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
 283 
 284         db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
 285 
 286         if ((flags & DB_RF_HAVESTRUCT) == 0)
 287                 rw_exit(&dn->dn_struct_rwlock);
 288 
 289         ASSERT(db != NULL);
 290         err = dbuf_read(db, NULL, flags);
 291         if (err == 0)
 292                 *dbp = &db->db;
 293         else
 294                 dbuf_rele(db, tag);
 295         return (err);
 296 }
 297 
 298 int
 299 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
 300 {
 301         dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
 302         dnode_t *dn;
 303         int err;
 304 
 305         DB_DNODE_ENTER(db);
 306         dn = DB_DNODE(db);
 307 
 308         if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
 309                 err = EINVAL;
 310         } else {
 311                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
 312 
 313                 if (!dn->dn_have_spill) {
 314                         err = ENOENT;
 315                 } else {
 316                         err = dmu_spill_hold_by_dnode(dn,
 317                             DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
 318                 }
 319 
 320                 rw_exit(&dn->dn_struct_rwlock);
 321         }
 322 
 323         DB_DNODE_EXIT(db);
 324         return (err);
 325 }
 326 
 327 int
 328 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
 329 {
 330         dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
 331         dnode_t *dn;
 332         int err;
 333 
 334         DB_DNODE_ENTER(db);
 335         dn = DB_DNODE(db);
 336         err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
 337         DB_DNODE_EXIT(db);
 338 
 339         return (err);
 340 }
 341 
 342 /*
 343  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
 344  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
 345  * and can induce severe lock contention when writing to several files
 346  * whose dnodes are in the same block.
 347  */
 348 static int
 349 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
 350     int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
 351 {
 352         dsl_pool_t *dp = NULL;
 353         dmu_buf_t **dbp;
 354         uint64_t blkid, nblks, i;
 355         uint32_t dbuf_flags;
 356         int err;
 357         zio_t *zio;
 358         hrtime_t start;
 359 
 360         ASSERT(length <= DMU_MAX_ACCESS);
 361 
 362         dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
 363         if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
 364                 dbuf_flags |= DB_RF_NOPREFETCH;
 365 
 366         rw_enter(&dn->dn_struct_rwlock, RW_READER);
 367         if (dn->dn_datablkshift) {
 368                 int blkshift = dn->dn_datablkshift;
 369                 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
 370                     P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
 371         } else {
 372                 if (offset + length > dn->dn_datablksz) {
 373                         zfs_panic_recover("zfs: accessing past end of object "
 374                             "%llx/%llx (size=%u access=%llu+%llu)",
 375                             (longlong_t)dn->dn_objset->
 376                             os_dsl_dataset->ds_object,
 377                             (longlong_t)dn->dn_object, dn->dn_datablksz,
 378                             (longlong_t)offset, (longlong_t)length);
 379                         rw_exit(&dn->dn_struct_rwlock);
 380                         return (EIO);
 381                 }
 382                 nblks = 1;
 383         }
 384         dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
 385 
 386         if (dn->dn_objset->os_dsl_dataset)
 387                 dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool;
 388         if (dp && dsl_pool_sync_context(dp))
 389                 start = gethrtime();
 390         zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
 391         blkid = dbuf_whichblock(dn, offset);
 392         for (i = 0; i < nblks; i++) {
 393                 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
 394                 if (db == NULL) {
 395                         rw_exit(&dn->dn_struct_rwlock);
 396                         dmu_buf_rele_array(dbp, nblks, tag);
 397                         zio_nowait(zio);
 398                         return (EIO);
 399                 }
 400                 /* initiate async i/o */
 401                 if (read) {
 402                         (void) dbuf_read(db, zio, dbuf_flags);
 403                 }
 404                 dbp[i] = &db->db;
 405         }
 406         rw_exit(&dn->dn_struct_rwlock);
 407 
 408         /* wait for async i/o */
 409         err = zio_wait(zio);
 410         /* track read overhead when we are in sync context */
 411         if (dp && dsl_pool_sync_context(dp))
 412                 dp->dp_read_overhead += gethrtime() - start;
 413         if (err) {
 414                 dmu_buf_rele_array(dbp, nblks, tag);
 415                 return (err);
 416         }
 417 
 418         /* wait for other io to complete */
 419         if (read) {
 420                 for (i = 0; i < nblks; i++) {
 421                         dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
 422                         mutex_enter(&db->db_mtx);
 423                         while (db->db_state == DB_READ ||
 424                             db->db_state == DB_FILL)
 425                                 cv_wait(&db->db_changed, &db->db_mtx);
 426                         if (db->db_state == DB_UNCACHED)
 427                                 err = EIO;
 428                         mutex_exit(&db->db_mtx);
 429                         if (err) {
 430                                 dmu_buf_rele_array(dbp, nblks, tag);
 431                                 return (err);
 432                         }
 433                 }
 434         }
 435 
 436         *numbufsp = nblks;
 437         *dbpp = dbp;
 438         return (0);
 439 }
 440 
 441 static int
 442 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
 443     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
 444 {
 445         dnode_t *dn;
 446         int err;
 447 
 448         err = dnode_hold(os, object, FTAG, &dn);
 449         if (err)
 450                 return (err);
 451 
 452         err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
 453             numbufsp, dbpp, DMU_READ_PREFETCH);
 454 
 455         dnode_rele(dn, FTAG);
 456 
 457         return (err);
 458 }
 459 
 460 int
 461 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
 462     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
 463 {
 464         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 465         dnode_t *dn;
 466         int err;
 467 
 468         DB_DNODE_ENTER(db);
 469         dn = DB_DNODE(db);
 470         err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
 471             numbufsp, dbpp, DMU_READ_PREFETCH);
 472         DB_DNODE_EXIT(db);
 473 
 474         return (err);
 475 }
 476 
 477 void
 478 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
 479 {
 480         int i;
 481         dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
 482 
 483         if (numbufs == 0)
 484                 return;
 485 
 486         for (i = 0; i < numbufs; i++) {
 487                 if (dbp[i])
 488                         dbuf_rele(dbp[i], tag);
 489         }
 490 
 491         kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
 492 }
 493 
 494 void
 495 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
 496 {
 497         dnode_t *dn;
 498         uint64_t blkid;
 499         int nblks, i, err;
 500 
 501         if (zfs_prefetch_disable)
 502                 return;
 503 
 504         if (len == 0) {  /* they're interested in the bonus buffer */
 505                 dn = DMU_META_DNODE(os);
 506 
 507                 if (object == 0 || object >= DN_MAX_OBJECT)
 508                         return;
 509 
 510                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
 511                 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
 512                 dbuf_prefetch(dn, blkid);
 513                 rw_exit(&dn->dn_struct_rwlock);
 514                 return;
 515         }
 516 
 517         /*
 518          * XXX - Note, if the dnode for the requested object is not
 519          * already cached, we will do a *synchronous* read in the
 520          * dnode_hold() call.  The same is true for any indirects.
 521          */
 522         err = dnode_hold(os, object, FTAG, &dn);
 523         if (err != 0)
 524                 return;
 525 
 526         rw_enter(&dn->dn_struct_rwlock, RW_READER);
 527         if (dn->dn_datablkshift) {
 528                 int blkshift = dn->dn_datablkshift;
 529                 nblks = (P2ROUNDUP(offset+len, 1<<blkshift) -
 530                     P2ALIGN(offset, 1<<blkshift)) >> blkshift;
 531         } else {
 532                 nblks = (offset < dn->dn_datablksz);
 533         }
 534 
 535         if (nblks != 0) {
 536                 blkid = dbuf_whichblock(dn, offset);
 537                 for (i = 0; i < nblks; i++)
 538                         dbuf_prefetch(dn, blkid+i);
 539         }
 540 
 541         rw_exit(&dn->dn_struct_rwlock);
 542 
 543         dnode_rele(dn, FTAG);
 544 }
 545 
 546 /*
 547  * Get the next "chunk" of file data to free.  We traverse the file from
 548  * the end so that the file gets shorter over time (if we crashes in the
 549  * middle, this will leave us in a better state).  We find allocated file
 550  * data by simply searching the allocated level 1 indirects.
 551  */
 552 static int
 553 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t limit)
 554 {
 555         uint64_t len = *start - limit;
 556         uint64_t blkcnt = 0;
 557         uint64_t maxblks = DMU_MAX_ACCESS / (1ULL << (dn->dn_indblkshift + 1));
 558         uint64_t iblkrange =
 559             dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
 560 
 561         ASSERT(limit <= *start);
 562 
 563         if (len <= iblkrange * maxblks) {
 564                 *start = limit;
 565                 return (0);
 566         }
 567         ASSERT(ISP2(iblkrange));
 568 
 569         while (*start > limit && blkcnt < maxblks) {
 570                 int err;
 571 
 572                 /* find next allocated L1 indirect */
 573                 err = dnode_next_offset(dn,
 574                     DNODE_FIND_BACKWARDS, start, 2, 1, 0);
 575 
 576                 /* if there are no more, then we are done */
 577                 if (err == ESRCH) {
 578                         *start = limit;
 579                         return (0);
 580                 } else if (err) {
 581                         return (err);
 582                 }
 583                 blkcnt += 1;
 584 
 585                 /* reset offset to end of "next" block back */
 586                 *start = P2ALIGN(*start, iblkrange);
 587                 if (*start <= limit)
 588                         *start = limit;
 589                 else
 590                         *start -= 1;
 591         }
 592         return (0);
 593 }
 594 
 595 static int
 596 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
 597     uint64_t length, boolean_t free_dnode)
 598 {
 599         dmu_tx_t *tx;
 600         uint64_t object_size, start, end, len;
 601         boolean_t trunc = (length == DMU_OBJECT_END);
 602         int align, err;
 603 
 604         align = 1 << dn->dn_datablkshift;
 605         ASSERT(align > 0);
 606         object_size = align == 1 ? dn->dn_datablksz :
 607             (dn->dn_maxblkid + 1) << dn->dn_datablkshift;
 608 
 609         end = offset + length;
 610         if (trunc || end > object_size)
 611                 end = object_size;
 612         if (end <= offset)
 613                 return (0);
 614         length = end - offset;
 615 
 616         while (length) {
 617                 start = end;
 618                 /* assert(offset <= start) */
 619                 err = get_next_chunk(dn, &start, offset);
 620                 if (err)
 621                         return (err);
 622                 len = trunc ? DMU_OBJECT_END : end - start;
 623 
 624                 tx = dmu_tx_create(os);
 625                 dmu_tx_hold_free(tx, dn->dn_object, start, len);
 626                 err = dmu_tx_assign(tx, TXG_WAIT);
 627                 if (err) {
 628                         dmu_tx_abort(tx);
 629                         return (err);
 630                 }
 631 
 632                 dnode_free_range(dn, start, trunc ? -1 : len, tx);
 633 
 634                 if (start == 0 && free_dnode) {
 635                         ASSERT(trunc);
 636                         dnode_free(dn, tx);
 637                 }
 638 
 639                 length -= end - start;
 640 
 641                 dmu_tx_commit(tx);
 642                 end = start;
 643         }
 644         return (0);
 645 }
 646 
 647 int
 648 dmu_free_long_range(objset_t *os, uint64_t object,
 649     uint64_t offset, uint64_t length)
 650 {
 651         dnode_t *dn;
 652         int err;
 653 
 654         err = dnode_hold(os, object, FTAG, &dn);
 655         if (err != 0)
 656                 return (err);
 657         err = dmu_free_long_range_impl(os, dn, offset, length, FALSE);
 658         dnode_rele(dn, FTAG);
 659         return (err);
 660 }
 661 
 662 int
 663 dmu_free_object(objset_t *os, uint64_t object)
 664 {
 665         dnode_t *dn;
 666         dmu_tx_t *tx;
 667         int err;
 668 
 669         err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED,
 670             FTAG, &dn);
 671         if (err != 0)
 672                 return (err);
 673         if (dn->dn_nlevels == 1) {
 674                 tx = dmu_tx_create(os);
 675                 dmu_tx_hold_bonus(tx, object);
 676                 dmu_tx_hold_free(tx, dn->dn_object, 0, DMU_OBJECT_END);
 677                 err = dmu_tx_assign(tx, TXG_WAIT);
 678                 if (err == 0) {
 679                         dnode_free_range(dn, 0, DMU_OBJECT_END, tx);
 680                         dnode_free(dn, tx);
 681                         dmu_tx_commit(tx);
 682                 } else {
 683                         dmu_tx_abort(tx);
 684                 }
 685         } else {
 686                 err = dmu_free_long_range_impl(os, dn, 0, DMU_OBJECT_END, TRUE);
 687         }
 688         dnode_rele(dn, FTAG);
 689         return (err);
 690 }
 691 
 692 int
 693 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
 694     uint64_t size, dmu_tx_t *tx)
 695 {
 696         dnode_t *dn;
 697         int err = dnode_hold(os, object, FTAG, &dn);
 698         if (err)
 699                 return (err);
 700         ASSERT(offset < UINT64_MAX);
 701         ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
 702         dnode_free_range(dn, offset, size, tx);
 703         dnode_rele(dn, FTAG);
 704         return (0);
 705 }
 706 
 707 int
 708 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
 709     void *buf, uint32_t flags)
 710 {
 711         dnode_t *dn;
 712         dmu_buf_t **dbp;
 713         int numbufs, err;
 714 
 715         err = dnode_hold(os, object, FTAG, &dn);
 716         if (err)
 717                 return (err);
 718 
 719         /*
 720          * Deal with odd block sizes, where there can't be data past the first
 721          * block.  If we ever do the tail block optimization, we will need to
 722          * handle that here as well.
 723          */
 724         if (dn->dn_maxblkid == 0) {
 725                 int newsz = offset > dn->dn_datablksz ? 0 :
 726                     MIN(size, dn->dn_datablksz - offset);
 727                 bzero((char *)buf + newsz, size - newsz);
 728                 size = newsz;
 729         }
 730 
 731         while (size > 0) {
 732                 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
 733                 int i;
 734 
 735                 /*
 736                  * NB: we could do this block-at-a-time, but it's nice
 737                  * to be reading in parallel.
 738                  */
 739                 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
 740                     TRUE, FTAG, &numbufs, &dbp, flags);
 741                 if (err)
 742                         break;
 743 
 744                 for (i = 0; i < numbufs; i++) {
 745                         int tocpy;
 746                         int bufoff;
 747                         dmu_buf_t *db = dbp[i];
 748 
 749                         ASSERT(size > 0);
 750 
 751                         bufoff = offset - db->db_offset;
 752                         tocpy = (int)MIN(db->db_size - bufoff, size);
 753 
 754                         bcopy((char *)db->db_data + bufoff, buf, tocpy);
 755 
 756                         offset += tocpy;
 757                         size -= tocpy;
 758                         buf = (char *)buf + tocpy;
 759                 }
 760                 dmu_buf_rele_array(dbp, numbufs, FTAG);
 761         }
 762         dnode_rele(dn, FTAG);
 763         return (err);
 764 }
 765 
 766 void
 767 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
 768     const void *buf, dmu_tx_t *tx)
 769 {
 770         dmu_buf_t **dbp;
 771         int numbufs, i;
 772 
 773         if (size == 0)
 774                 return;
 775 
 776         VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
 777             FALSE, FTAG, &numbufs, &dbp));
 778 
 779         for (i = 0; i < numbufs; i++) {
 780                 int tocpy;
 781                 int bufoff;
 782                 dmu_buf_t *db = dbp[i];
 783 
 784                 ASSERT(size > 0);
 785 
 786                 bufoff = offset - db->db_offset;
 787                 tocpy = (int)MIN(db->db_size - bufoff, size);
 788 
 789                 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
 790 
 791                 if (tocpy == db->db_size)
 792                         dmu_buf_will_fill(db, tx);
 793                 else
 794                         dmu_buf_will_dirty(db, tx);
 795 
 796                 bcopy(buf, (char *)db->db_data + bufoff, tocpy);
 797 
 798                 if (tocpy == db->db_size)
 799                         dmu_buf_fill_done(db, tx);
 800 
 801                 offset += tocpy;
 802                 size -= tocpy;
 803                 buf = (char *)buf + tocpy;
 804         }
 805         dmu_buf_rele_array(dbp, numbufs, FTAG);
 806 }
 807 
 808 void
 809 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
 810     dmu_tx_t *tx)
 811 {
 812         dmu_buf_t **dbp;
 813         int numbufs, i;
 814 
 815         if (size == 0)
 816                 return;
 817 
 818         VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
 819             FALSE, FTAG, &numbufs, &dbp));
 820 
 821         for (i = 0; i < numbufs; i++) {
 822                 dmu_buf_t *db = dbp[i];
 823 
 824                 dmu_buf_will_not_fill(db, tx);
 825         }
 826         dmu_buf_rele_array(dbp, numbufs, FTAG);
 827 }
 828 
 829 /*
 830  * DMU support for xuio
 831  */
 832 kstat_t *xuio_ksp = NULL;
 833 
 834 int
 835 dmu_xuio_init(xuio_t *xuio, int nblk)
 836 {
 837         dmu_xuio_t *priv;
 838         uio_t *uio = &xuio->xu_uio;
 839 
 840         uio->uio_iovcnt = nblk;
 841         uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
 842 
 843         priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
 844         priv->cnt = nblk;
 845         priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
 846         priv->iovp = uio->uio_iov;
 847         XUIO_XUZC_PRIV(xuio) = priv;
 848 
 849         if (XUIO_XUZC_RW(xuio) == UIO_READ)
 850                 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
 851         else
 852                 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
 853 
 854         return (0);
 855 }
 856 
 857 void
 858 dmu_xuio_fini(xuio_t *xuio)
 859 {
 860         dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
 861         int nblk = priv->cnt;
 862 
 863         kmem_free(priv->iovp, nblk * sizeof (iovec_t));
 864         kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
 865         kmem_free(priv, sizeof (dmu_xuio_t));
 866 
 867         if (XUIO_XUZC_RW(xuio) == UIO_READ)
 868                 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
 869         else
 870                 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
 871 }
 872 
 873 /*
 874  * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
 875  * and increase priv->next by 1.
 876  */
 877 int
 878 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
 879 {
 880         struct iovec *iov;
 881         uio_t *uio = &xuio->xu_uio;
 882         dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
 883         int i = priv->next++;
 884 
 885         ASSERT(i < priv->cnt);
 886         ASSERT(off + n <= arc_buf_size(abuf));
 887         iov = uio->uio_iov + i;
 888         iov->iov_base = (char *)abuf->b_data + off;
 889         iov->iov_len = n;
 890         priv->bufs[i] = abuf;
 891         return (0);
 892 }
 893 
 894 int
 895 dmu_xuio_cnt(xuio_t *xuio)
 896 {
 897         dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
 898         return (priv->cnt);
 899 }
 900 
 901 arc_buf_t *
 902 dmu_xuio_arcbuf(xuio_t *xuio, int i)
 903 {
 904         dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
 905 
 906         ASSERT(i < priv->cnt);
 907         return (priv->bufs[i]);
 908 }
 909 
 910 void
 911 dmu_xuio_clear(xuio_t *xuio, int i)
 912 {
 913         dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
 914 
 915         ASSERT(i < priv->cnt);
 916         priv->bufs[i] = NULL;
 917 }
 918 
 919 static void
 920 xuio_stat_init(void)
 921 {
 922         xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
 923             KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
 924             KSTAT_FLAG_VIRTUAL);
 925         if (xuio_ksp != NULL) {
 926                 xuio_ksp->ks_data = &xuio_stats;
 927                 kstat_install(xuio_ksp);
 928         }
 929 }
 930 
 931 static void
 932 xuio_stat_fini(void)
 933 {
 934         if (xuio_ksp != NULL) {
 935                 kstat_delete(xuio_ksp);
 936                 xuio_ksp = NULL;
 937         }
 938 }
 939 
 940 void
 941 xuio_stat_wbuf_copied()
 942 {
 943         XUIOSTAT_BUMP(xuiostat_wbuf_copied);
 944 }
 945 
 946 void
 947 xuio_stat_wbuf_nocopy()
 948 {
 949         XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
 950 }
 951 
 952 #ifdef _KERNEL
 953 int
 954 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
 955 {
 956         dmu_buf_t **dbp;
 957         int numbufs, i, err;
 958         xuio_t *xuio = NULL;
 959 
 960         /*
 961          * NB: we could do this block-at-a-time, but it's nice
 962          * to be reading in parallel.
 963          */
 964         err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
 965             &numbufs, &dbp);
 966         if (err)
 967                 return (err);
 968 
 969         if (uio->uio_extflg == UIO_XUIO)
 970                 xuio = (xuio_t *)uio;
 971 
 972         for (i = 0; i < numbufs; i++) {
 973                 int tocpy;
 974                 int bufoff;
 975                 dmu_buf_t *db = dbp[i];
 976 
 977                 ASSERT(size > 0);
 978 
 979                 bufoff = uio->uio_loffset - db->db_offset;
 980                 tocpy = (int)MIN(db->db_size - bufoff, size);
 981 
 982                 if (xuio) {
 983                         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
 984                         arc_buf_t *dbuf_abuf = dbi->db_buf;
 985                         arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
 986                         err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
 987                         if (!err) {
 988                                 uio->uio_resid -= tocpy;
 989                                 uio->uio_loffset += tocpy;
 990                         }
 991 
 992                         if (abuf == dbuf_abuf)
 993                                 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
 994                         else
 995                                 XUIOSTAT_BUMP(xuiostat_rbuf_copied);
 996                 } else {
 997                         err = uiomove((char *)db->db_data + bufoff, tocpy,
 998                             UIO_READ, uio);
 999                 }
1000                 if (err)
1001                         break;
1002 
1003                 size -= tocpy;
1004         }
1005         dmu_buf_rele_array(dbp, numbufs, FTAG);
1006 
1007         return (err);
1008 }
1009 
1010 static int
1011 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1012 {
1013         dmu_buf_t **dbp;
1014         int numbufs;
1015         int err = 0;
1016         int i;
1017 
1018         err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1019             FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1020         if (err)
1021                 return (err);
1022 
1023         for (i = 0; i < numbufs; i++) {
1024                 int tocpy;
1025                 int bufoff;
1026                 dmu_buf_t *db = dbp[i];
1027 
1028                 ASSERT(size > 0);
1029 
1030                 bufoff = uio->uio_loffset - db->db_offset;
1031                 tocpy = (int)MIN(db->db_size - bufoff, size);
1032 
1033                 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1034 
1035                 if (tocpy == db->db_size)
1036                         dmu_buf_will_fill(db, tx);
1037                 else
1038                         dmu_buf_will_dirty(db, tx);
1039 
1040                 /*
1041                  * XXX uiomove could block forever (eg. nfs-backed
1042                  * pages).  There needs to be a uiolockdown() function
1043                  * to lock the pages in memory, so that uiomove won't
1044                  * block.
1045                  */
1046                 err = uiomove((char *)db->db_data + bufoff, tocpy,
1047                     UIO_WRITE, uio);
1048 
1049                 if (tocpy == db->db_size)
1050                         dmu_buf_fill_done(db, tx);
1051 
1052                 if (err)
1053                         break;
1054 
1055                 size -= tocpy;
1056         }
1057 
1058         dmu_buf_rele_array(dbp, numbufs, FTAG);
1059         return (err);
1060 }
1061 
1062 int
1063 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1064     dmu_tx_t *tx)
1065 {
1066         dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1067         dnode_t *dn;
1068         int err;
1069 
1070         if (size == 0)
1071                 return (0);
1072 
1073         DB_DNODE_ENTER(db);
1074         dn = DB_DNODE(db);
1075         err = dmu_write_uio_dnode(dn, uio, size, tx);
1076         DB_DNODE_EXIT(db);
1077 
1078         return (err);
1079 }
1080 
1081 int
1082 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1083     dmu_tx_t *tx)
1084 {
1085         dnode_t *dn;
1086         int err;
1087 
1088         if (size == 0)
1089                 return (0);
1090 
1091         err = dnode_hold(os, object, FTAG, &dn);
1092         if (err)
1093                 return (err);
1094 
1095         err = dmu_write_uio_dnode(dn, uio, size, tx);
1096 
1097         dnode_rele(dn, FTAG);
1098 
1099         return (err);
1100 }
1101 
1102 int
1103 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1104     page_t *pp, dmu_tx_t *tx)
1105 {
1106         dmu_buf_t **dbp;
1107         int numbufs, i;
1108         int err;
1109 
1110         if (size == 0)
1111                 return (0);
1112 
1113         err = dmu_buf_hold_array(os, object, offset, size,
1114             FALSE, FTAG, &numbufs, &dbp);
1115         if (err)
1116                 return (err);
1117 
1118         for (i = 0; i < numbufs; i++) {
1119                 int tocpy, copied, thiscpy;
1120                 int bufoff;
1121                 dmu_buf_t *db = dbp[i];
1122                 caddr_t va;
1123 
1124                 ASSERT(size > 0);
1125                 ASSERT3U(db->db_size, >=, PAGESIZE);
1126 
1127                 bufoff = offset - db->db_offset;
1128                 tocpy = (int)MIN(db->db_size - bufoff, size);
1129 
1130                 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1131 
1132                 if (tocpy == db->db_size)
1133                         dmu_buf_will_fill(db, tx);
1134                 else
1135                         dmu_buf_will_dirty(db, tx);
1136 
1137                 for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1138                         ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1139                         thiscpy = MIN(PAGESIZE, tocpy - copied);
1140                         va = zfs_map_page(pp, S_READ);
1141                         bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1142                         zfs_unmap_page(pp, va);
1143                         pp = pp->p_next;
1144                         bufoff += PAGESIZE;
1145                 }
1146 
1147                 if (tocpy == db->db_size)
1148                         dmu_buf_fill_done(db, tx);
1149 
1150                 offset += tocpy;
1151                 size -= tocpy;
1152         }
1153         dmu_buf_rele_array(dbp, numbufs, FTAG);
1154         return (err);
1155 }
1156 #endif
1157 
1158 /*
1159  * Allocate a loaned anonymous arc buffer.
1160  */
1161 arc_buf_t *
1162 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1163 {
1164         dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1165         spa_t *spa;
1166 
1167         DB_GET_SPA(&spa, db);
1168         return (arc_loan_buf(spa, size));
1169 }
1170 
1171 /*
1172  * Free a loaned arc buffer.
1173  */
1174 void
1175 dmu_return_arcbuf(arc_buf_t *buf)
1176 {
1177         arc_return_buf(buf, FTAG);
1178         VERIFY(arc_buf_remove_ref(buf, FTAG) == 1);
1179 }
1180 
1181 /*
1182  * When possible directly assign passed loaned arc buffer to a dbuf.
1183  * If this is not possible copy the contents of passed arc buf via
1184  * dmu_write().
1185  */
1186 void
1187 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1188     dmu_tx_t *tx)
1189 {
1190         dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1191         dnode_t *dn;
1192         dmu_buf_impl_t *db;
1193         uint32_t blksz = (uint32_t)arc_buf_size(buf);
1194         uint64_t blkid;
1195 
1196         DB_DNODE_ENTER(dbuf);
1197         dn = DB_DNODE(dbuf);
1198         rw_enter(&dn->dn_struct_rwlock, RW_READER);
1199         blkid = dbuf_whichblock(dn, offset);
1200         VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1201         rw_exit(&dn->dn_struct_rwlock);
1202         DB_DNODE_EXIT(dbuf);
1203 
1204         if (offset == db->db.db_offset && blksz == db->db.db_size) {
1205                 dbuf_assign_arcbuf(db, buf, tx);
1206                 dbuf_rele(db, FTAG);
1207         } else {
1208                 objset_t *os;
1209                 uint64_t object;
1210 
1211                 DB_DNODE_ENTER(dbuf);
1212                 dn = DB_DNODE(dbuf);
1213                 os = dn->dn_objset;
1214                 object = dn->dn_object;
1215                 DB_DNODE_EXIT(dbuf);
1216 
1217                 dbuf_rele(db, FTAG);
1218                 dmu_write(os, object, offset, blksz, buf->b_data, tx);
1219                 dmu_return_arcbuf(buf);
1220                 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1221         }
1222 }
1223 
1224 typedef struct {
1225         dbuf_dirty_record_t     *dsa_dr;
1226         dmu_sync_cb_t           *dsa_done;
1227         zgd_t                   *dsa_zgd;
1228         dmu_tx_t                *dsa_tx;
1229 } dmu_sync_arg_t;
1230 
1231 /* ARGSUSED */
1232 static void
1233 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1234 {
1235         dmu_sync_arg_t *dsa = varg;
1236         dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1237         blkptr_t *bp = zio->io_bp;
1238 
1239         if (zio->io_error == 0) {
1240                 if (BP_IS_HOLE(bp)) {
1241                         /*
1242                          * A block of zeros may compress to a hole, but the
1243                          * block size still needs to be known for replay.
1244                          */
1245                         BP_SET_LSIZE(bp, db->db_size);
1246                 } else {
1247                         ASSERT(BP_GET_LEVEL(bp) == 0);
1248                         bp->blk_fill = 1;
1249                 }
1250         }
1251 }
1252 
1253 static void
1254 dmu_sync_late_arrival_ready(zio_t *zio)
1255 {
1256         dmu_sync_ready(zio, NULL, zio->io_private);
1257 }
1258 
1259 /* ARGSUSED */
1260 static void
1261 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1262 {
1263         dmu_sync_arg_t *dsa = varg;
1264         dbuf_dirty_record_t *dr = dsa->dsa_dr;
1265         dmu_buf_impl_t *db = dr->dr_dbuf;
1266 
1267         mutex_enter(&db->db_mtx);
1268         ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1269         if (zio->io_error == 0) {
1270                 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1271                 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1272                 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1273                 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1274                         BP_ZERO(&dr->dt.dl.dr_overridden_by);
1275         } else {
1276                 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1277         }
1278         cv_broadcast(&db->db_changed);
1279         mutex_exit(&db->db_mtx);
1280 
1281         dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1282 
1283         kmem_free(dsa, sizeof (*dsa));
1284 }
1285 
1286 static void
1287 dmu_sync_late_arrival_done(zio_t *zio)
1288 {
1289         blkptr_t *bp = zio->io_bp;
1290         dmu_sync_arg_t *dsa = zio->io_private;
1291 
1292         if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1293                 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1294                 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1295                 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1296         }
1297 
1298         dmu_tx_commit(dsa->dsa_tx);
1299 
1300         dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1301 
1302         kmem_free(dsa, sizeof (*dsa));
1303 }
1304 
1305 static int
1306 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1307     zio_prop_t *zp, zbookmark_t *zb)
1308 {
1309         dmu_sync_arg_t *dsa;
1310         dmu_tx_t *tx;
1311 
1312         tx = dmu_tx_create(os);
1313         dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1314         if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1315                 dmu_tx_abort(tx);
1316                 return (EIO);   /* Make zl_get_data do txg_waited_synced() */
1317         }
1318 
1319         dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1320         dsa->dsa_dr = NULL;
1321         dsa->dsa_done = done;
1322         dsa->dsa_zgd = zgd;
1323         dsa->dsa_tx = tx;
1324 
1325         zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1326             zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1327             dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa,
1328             ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1329 
1330         return (0);
1331 }
1332 
1333 /*
1334  * Intent log support: sync the block associated with db to disk.
1335  * N.B. and XXX: the caller is responsible for making sure that the
1336  * data isn't changing while dmu_sync() is writing it.
1337  *
1338  * Return values:
1339  *
1340  *      EEXIST: this txg has already been synced, so there's nothing to to.
1341  *              The caller should not log the write.
1342  *
1343  *      ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1344  *              The caller should not log the write.
1345  *
1346  *      EALREADY: this block is already in the process of being synced.
1347  *              The caller should track its progress (somehow).
1348  *
1349  *      EIO: could not do the I/O.
1350  *              The caller should do a txg_wait_synced().
1351  *
1352  *      0: the I/O has been initiated.
1353  *              The caller should log this blkptr in the done callback.
1354  *              It is possible that the I/O will fail, in which case
1355  *              the error will be reported to the done callback and
1356  *              propagated to pio from zio_done().
1357  */
1358 int
1359 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1360 {
1361         blkptr_t *bp = zgd->zgd_bp;
1362         dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1363         objset_t *os = db->db_objset;
1364         dsl_dataset_t *ds = os->os_dsl_dataset;
1365         dbuf_dirty_record_t *dr;
1366         dmu_sync_arg_t *dsa;
1367         zbookmark_t zb;
1368         zio_prop_t zp;
1369         dnode_t *dn;
1370 
1371         ASSERT(pio != NULL);
1372         ASSERT(BP_IS_HOLE(bp));
1373         ASSERT(txg != 0);
1374 
1375         SET_BOOKMARK(&zb, ds->ds_object,
1376             db->db.db_object, db->db_level, db->db_blkid);
1377 
1378         DB_DNODE_ENTER(db);
1379         dn = DB_DNODE(db);
1380         dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1381         DB_DNODE_EXIT(db);
1382 
1383         /*
1384          * If we're frozen (running ziltest), we always need to generate a bp.
1385          */
1386         if (txg > spa_freeze_txg(os->os_spa))
1387                 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1388 
1389         /*
1390          * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1391          * and us.  If we determine that this txg is not yet syncing,
1392          * but it begins to sync a moment later, that's OK because the
1393          * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1394          */
1395         mutex_enter(&db->db_mtx);
1396 
1397         if (txg <= spa_last_synced_txg(os->os_spa)) {
1398                 /*
1399                  * This txg has already synced.  There's nothing to do.
1400                  */
1401                 mutex_exit(&db->db_mtx);
1402                 return (EEXIST);
1403         }
1404 
1405         if (txg <= spa_syncing_txg(os->os_spa)) {
1406                 /*
1407                  * This txg is currently syncing, so we can't mess with
1408                  * the dirty record anymore; just write a new log block.
1409                  */
1410                 mutex_exit(&db->db_mtx);
1411                 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1412         }
1413 
1414         dr = db->db_last_dirty;
1415         while (dr && dr->dr_txg != txg)
1416                 dr = dr->dr_next;
1417 
1418         if (dr == NULL) {
1419                 /*
1420                  * There's no dr for this dbuf, so it must have been freed.
1421                  * There's no need to log writes to freed blocks, so we're done.
1422                  */
1423                 mutex_exit(&db->db_mtx);
1424                 return (ENOENT);
1425         }
1426 
1427         ASSERT(dr->dr_txg == txg);
1428         if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1429             dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1430                 /*
1431                  * We have already issued a sync write for this buffer,
1432                  * or this buffer has already been synced.  It could not
1433                  * have been dirtied since, or we would have cleared the state.
1434                  */
1435                 mutex_exit(&db->db_mtx);
1436                 return (EALREADY);
1437         }
1438 
1439         ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1440         dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1441         mutex_exit(&db->db_mtx);
1442 
1443         dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1444         dsa->dsa_dr = dr;
1445         dsa->dsa_done = done;
1446         dsa->dsa_zgd = zgd;
1447         dsa->dsa_tx = NULL;
1448 
1449         zio_nowait(arc_write(pio, os->os_spa, txg,
1450             bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), &zp,
1451             dmu_sync_ready, dmu_sync_done, dsa,
1452             ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1453 
1454         return (0);
1455 }
1456 
1457 int
1458 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1459         dmu_tx_t *tx)
1460 {
1461         dnode_t *dn;
1462         int err;
1463 
1464         err = dnode_hold(os, object, FTAG, &dn);
1465         if (err)
1466                 return (err);
1467         err = dnode_set_blksz(dn, size, ibs, tx);
1468         dnode_rele(dn, FTAG);
1469         return (err);
1470 }
1471 
1472 void
1473 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1474         dmu_tx_t *tx)
1475 {
1476         dnode_t *dn;
1477 
1478         /* XXX assumes dnode_hold will not get an i/o error */
1479         (void) dnode_hold(os, object, FTAG, &dn);
1480         ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS);
1481         dn->dn_checksum = checksum;
1482         dnode_setdirty(dn, tx);
1483         dnode_rele(dn, FTAG);
1484 }
1485 
1486 void
1487 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1488         dmu_tx_t *tx)
1489 {
1490         dnode_t *dn;
1491 
1492         /* XXX assumes dnode_hold will not get an i/o error */
1493         (void) dnode_hold(os, object, FTAG, &dn);
1494         ASSERT(compress < ZIO_COMPRESS_FUNCTIONS);
1495         dn->dn_compress = compress;
1496         dnode_setdirty(dn, tx);
1497         dnode_rele(dn, FTAG);
1498 }
1499 
1500 int zfs_mdcomp_disable = 0;
1501 
1502 void
1503 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1504 {
1505         dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1506         boolean_t ismd = (level > 0 || dmu_ot[type].ot_metadata ||
1507             (wp & WP_SPILL));
1508         enum zio_checksum checksum = os->os_checksum;
1509         enum zio_compress compress = os->os_compress;
1510         enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1511         boolean_t dedup;
1512         boolean_t dedup_verify = os->os_dedup_verify;
1513         int copies = os->os_copies;
1514 
1515         /*
1516          * Determine checksum setting.
1517          */
1518         if (ismd) {
1519                 /*
1520                  * Metadata always gets checksummed.  If the data
1521                  * checksum is multi-bit correctable, and it's not a
1522                  * ZBT-style checksum, then it's suitable for metadata
1523                  * as well.  Otherwise, the metadata checksum defaults
1524                  * to fletcher4.
1525                  */
1526                 if (zio_checksum_table[checksum].ci_correctable < 1 ||
1527                     zio_checksum_table[checksum].ci_eck)
1528                         checksum = ZIO_CHECKSUM_FLETCHER_4;
1529         } else {
1530                 checksum = zio_checksum_select(dn->dn_checksum, checksum);
1531         }
1532 
1533         /*
1534          * Determine compression setting.
1535          */
1536         if (ismd) {
1537                 /*
1538                  * XXX -- we should design a compression algorithm
1539                  * that specializes in arrays of bps.
1540                  */
1541                 compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
1542                     ZIO_COMPRESS_LZJB;
1543         } else {
1544                 compress = zio_compress_select(dn->dn_compress, compress);
1545         }
1546 
1547         /*
1548          * Determine dedup setting.  If we are in dmu_sync(), we won't
1549          * actually dedup now because that's all done in syncing context;
1550          * but we do want to use the dedup checkum.  If the checksum is not
1551          * strong enough to ensure unique signatures, force dedup_verify.
1552          */
1553         dedup = (!ismd && dedup_checksum != ZIO_CHECKSUM_OFF);
1554         if (dedup) {
1555                 checksum = dedup_checksum;
1556                 if (!zio_checksum_table[checksum].ci_dedup)
1557                         dedup_verify = 1;
1558         }
1559 
1560         if (wp & WP_DMU_SYNC)
1561                 dedup = 0;
1562 
1563         if (wp & WP_NOFILL) {
1564                 ASSERT(!ismd && level == 0);
1565                 checksum = ZIO_CHECKSUM_OFF;
1566                 compress = ZIO_COMPRESS_OFF;
1567                 dedup = B_FALSE;
1568         }
1569 
1570         zp->zp_checksum = checksum;
1571         zp->zp_compress = compress;
1572         zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1573         zp->zp_level = level;
1574         zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa));
1575         zp->zp_dedup = dedup;
1576         zp->zp_dedup_verify = dedup && dedup_verify;
1577 }
1578 
1579 int
1580 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1581 {
1582         dnode_t *dn;
1583         int i, err;
1584 
1585         err = dnode_hold(os, object, FTAG, &dn);
1586         if (err)
1587                 return (err);
1588         /*
1589          * Sync any current changes before
1590          * we go trundling through the block pointers.
1591          */
1592         for (i = 0; i < TXG_SIZE; i++) {
1593                 if (list_link_active(&dn->dn_dirty_link[i]))
1594                         break;
1595         }
1596         if (i != TXG_SIZE) {
1597                 dnode_rele(dn, FTAG);
1598                 txg_wait_synced(dmu_objset_pool(os), 0);
1599                 err = dnode_hold(os, object, FTAG, &dn);
1600                 if (err)
1601                         return (err);
1602         }
1603 
1604         err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1605         dnode_rele(dn, FTAG);
1606 
1607         return (err);
1608 }
1609 
1610 void
1611 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1612 {
1613         dnode_phys_t *dnp;
1614 
1615         rw_enter(&dn->dn_struct_rwlock, RW_READER);
1616         mutex_enter(&dn->dn_mtx);
1617 
1618         dnp = dn->dn_phys;
1619 
1620         doi->doi_data_block_size = dn->dn_datablksz;
1621         doi->doi_metadata_block_size = dn->dn_indblkshift ?
1622             1ULL << dn->dn_indblkshift : 0;
1623         doi->doi_type = dn->dn_type;
1624         doi->doi_bonus_type = dn->dn_bonustype;
1625         doi->doi_bonus_size = dn->dn_bonuslen;
1626         doi->doi_indirection = dn->dn_nlevels;
1627         doi->doi_checksum = dn->dn_checksum;
1628         doi->doi_compress = dn->dn_compress;
1629         doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1630         doi->doi_max_offset = (dnp->dn_maxblkid + 1) * dn->dn_datablksz;
1631         doi->doi_fill_count = 0;
1632         for (int i = 0; i < dnp->dn_nblkptr; i++)
1633                 doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill;
1634 
1635         mutex_exit(&dn->dn_mtx);
1636         rw_exit(&dn->dn_struct_rwlock);
1637 }
1638 
1639 /*
1640  * Get information on a DMU object.
1641  * If doi is NULL, just indicates whether the object exists.
1642  */
1643 int
1644 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1645 {
1646         dnode_t *dn;
1647         int err = dnode_hold(os, object, FTAG, &dn);
1648 
1649         if (err)
1650                 return (err);
1651 
1652         if (doi != NULL)
1653                 dmu_object_info_from_dnode(dn, doi);
1654 
1655         dnode_rele(dn, FTAG);
1656         return (0);
1657 }
1658 
1659 /*
1660  * As above, but faster; can be used when you have a held dbuf in hand.
1661  */
1662 void
1663 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1664 {
1665         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1666 
1667         DB_DNODE_ENTER(db);
1668         dmu_object_info_from_dnode(DB_DNODE(db), doi);
1669         DB_DNODE_EXIT(db);
1670 }
1671 
1672 /*
1673  * Faster still when you only care about the size.
1674  * This is specifically optimized for zfs_getattr().
1675  */
1676 void
1677 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1678     u_longlong_t *nblk512)
1679 {
1680         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1681         dnode_t *dn;
1682 
1683         DB_DNODE_ENTER(db);
1684         dn = DB_DNODE(db);
1685 
1686         *blksize = dn->dn_datablksz;
1687         /* add 1 for dnode space */
1688         *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1689             SPA_MINBLOCKSHIFT) + 1;
1690         DB_DNODE_EXIT(db);
1691 }
1692 
1693 void
1694 byteswap_uint64_array(void *vbuf, size_t size)
1695 {
1696         uint64_t *buf = vbuf;
1697         size_t count = size >> 3;
1698         int i;
1699 
1700         ASSERT((size & 7) == 0);
1701 
1702         for (i = 0; i < count; i++)
1703                 buf[i] = BSWAP_64(buf[i]);
1704 }
1705 
1706 void
1707 byteswap_uint32_array(void *vbuf, size_t size)
1708 {
1709         uint32_t *buf = vbuf;
1710         size_t count = size >> 2;
1711         int i;
1712 
1713         ASSERT((size & 3) == 0);
1714 
1715         for (i = 0; i < count; i++)
1716                 buf[i] = BSWAP_32(buf[i]);
1717 }
1718 
1719 void
1720 byteswap_uint16_array(void *vbuf, size_t size)
1721 {
1722         uint16_t *buf = vbuf;
1723         size_t count = size >> 1;
1724         int i;
1725 
1726         ASSERT((size & 1) == 0);
1727 
1728         for (i = 0; i < count; i++)
1729                 buf[i] = BSWAP_16(buf[i]);
1730 }
1731 
1732 /* ARGSUSED */
1733 void
1734 byteswap_uint8_array(void *vbuf, size_t size)
1735 {
1736 }
1737 
1738 void
1739 dmu_init(void)
1740 {
1741         zfs_dbgmsg_init();
1742         sa_cache_init();
1743         xuio_stat_init();
1744         dmu_objset_init();
1745         dnode_init();
1746         dbuf_init();
1747         zfetch_init();
1748         arc_init();
1749         l2arc_init();
1750 }
1751 
1752 void
1753 dmu_fini(void)
1754 {
1755         l2arc_fini();
1756         arc_fini();
1757         zfetch_fini();
1758         dbuf_fini();
1759         dnode_fini();
1760         dmu_objset_fini();
1761         xuio_stat_fini();
1762         sa_cache_fini();
1763         zfs_dbgmsg_fini();
1764 }