Print this page
    
13389 After persistent L2ARC import, cache device has constant 8KB/sec load
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Dan McDonald <danmcd@joyent.com>
Reviewed by: Toomas Soome <tsoome@me.com>
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/fs/zfs/arc.c
          +++ new/usr/src/uts/common/fs/zfs/arc.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  /*
  22   22   * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23   23   * Copyright (c) 2019, Joyent, Inc.
  24   24   * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
  25   25   * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
  26   26   * Copyright 2017 Nexenta Systems, Inc.  All rights reserved.
  27   27   * Copyright (c) 2011, 2019, Delphix. All rights reserved.
  28   28   * Copyright (c) 2020, George Amanakis. All rights reserved.
  29   29   */
  30   30  
  31   31  /*
  32   32   * DVA-based Adjustable Replacement Cache
  33   33   *
  34   34   * While much of the theory of operation used here is
  35   35   * based on the self-tuning, low overhead replacement cache
  36   36   * presented by Megiddo and Modha at FAST 2003, there are some
  37   37   * significant differences:
  38   38   *
  39   39   * 1. The Megiddo and Modha model assumes any page is evictable.
  40   40   * Pages in its cache cannot be "locked" into memory.  This makes
  41   41   * the eviction algorithm simple: evict the last page in the list.
  42   42   * This also make the performance characteristics easy to reason
  43   43   * about.  Our cache is not so simple.  At any given moment, some
  44   44   * subset of the blocks in the cache are un-evictable because we
  45   45   * have handed out a reference to them.  Blocks are only evictable
  46   46   * when there are no external references active.  This makes
  47   47   * eviction far more problematic:  we choose to evict the evictable
  48   48   * blocks that are the "lowest" in the list.
  49   49   *
  50   50   * There are times when it is not possible to evict the requested
  51   51   * space.  In these circumstances we are unable to adjust the cache
  52   52   * size.  To prevent the cache growing unbounded at these times we
  53   53   * implement a "cache throttle" that slows the flow of new data
  54   54   * into the cache until we can make space available.
  55   55   *
  56   56   * 2. The Megiddo and Modha model assumes a fixed cache size.
  57   57   * Pages are evicted when the cache is full and there is a cache
  58   58   * miss.  Our model has a variable sized cache.  It grows with
  59   59   * high use, but also tries to react to memory pressure from the
  60   60   * operating system: decreasing its size when system memory is
  61   61   * tight.
  62   62   *
  63   63   * 3. The Megiddo and Modha model assumes a fixed page size. All
  64   64   * elements of the cache are therefore exactly the same size.  So
  65   65   * when adjusting the cache size following a cache miss, its simply
  66   66   * a matter of choosing a single page to evict.  In our model, we
  67   67   * have variable sized cache blocks (rangeing from 512 bytes to
  68   68   * 128K bytes).  We therefore choose a set of blocks to evict to make
  69   69   * space for a cache miss that approximates as closely as possible
  70   70   * the space used by the new block.
  71   71   *
  72   72   * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
  73   73   * by N. Megiddo & D. Modha, FAST 2003
  74   74   */
  75   75  
  76   76  /*
  77   77   * The locking model:
  78   78   *
  79   79   * A new reference to a cache buffer can be obtained in two
  80   80   * ways: 1) via a hash table lookup using the DVA as a key,
  81   81   * or 2) via one of the ARC lists.  The arc_read() interface
  82   82   * uses method 1, while the internal ARC algorithms for
  83   83   * adjusting the cache use method 2.  We therefore provide two
  84   84   * types of locks: 1) the hash table lock array, and 2) the
  85   85   * ARC list locks.
  86   86   *
  87   87   * Buffers do not have their own mutexes, rather they rely on the
  88   88   * hash table mutexes for the bulk of their protection (i.e. most
  89   89   * fields in the arc_buf_hdr_t are protected by these mutexes).
  90   90   *
  91   91   * buf_hash_find() returns the appropriate mutex (held) when it
  92   92   * locates the requested buffer in the hash table.  It returns
  93   93   * NULL for the mutex if the buffer was not in the table.
  94   94   *
  95   95   * buf_hash_remove() expects the appropriate hash mutex to be
  96   96   * already held before it is invoked.
  97   97   *
  98   98   * Each ARC state also has a mutex which is used to protect the
  99   99   * buffer list associated with the state.  When attempting to
 100  100   * obtain a hash table lock while holding an ARC list lock you
 101  101   * must use: mutex_tryenter() to avoid deadlock.  Also note that
 102  102   * the active state mutex must be held before the ghost state mutex.
 103  103   *
 104  104   * Note that the majority of the performance stats are manipulated
 105  105   * with atomic operations.
 106  106   *
 107  107   * The L2ARC uses the l2ad_mtx on each vdev for the following:
 108  108   *
 109  109   *      - L2ARC buflist creation
 110  110   *      - L2ARC buflist eviction
 111  111   *      - L2ARC write completion, which walks L2ARC buflists
 112  112   *      - ARC header destruction, as it removes from L2ARC buflists
 113  113   *      - ARC header release, as it removes from L2ARC buflists
 114  114   */
 115  115  
 116  116  /*
 117  117   * ARC operation:
 118  118   *
 119  119   * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
 120  120   * This structure can point either to a block that is still in the cache or to
 121  121   * one that is only accessible in an L2 ARC device, or it can provide
 122  122   * information about a block that was recently evicted. If a block is
 123  123   * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
 124  124   * information to retrieve it from the L2ARC device. This information is
 125  125   * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
 126  126   * that is in this state cannot access the data directly.
 127  127   *
 128  128   * Blocks that are actively being referenced or have not been evicted
 129  129   * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
 130  130   * the arc_buf_hdr_t that will point to the data block in memory. A block can
 131  131   * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
 132  132   * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
 133  133   * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
 134  134   *
 135  135   * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
 136  136   * ability to store the physical data (b_pabd) associated with the DVA of the
 137  137   * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
 138  138   * it will match its on-disk compression characteristics. This behavior can be
 139  139   * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
 140  140   * compressed ARC functionality is disabled, the b_pabd will point to an
 141  141   * uncompressed version of the on-disk data.
 142  142   *
 143  143   * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
 144  144   * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
 145  145   * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
 146  146   * consumer. The ARC will provide references to this data and will keep it
 147  147   * cached until it is no longer in use. The ARC caches only the L1ARC's physical
 148  148   * data block and will evict any arc_buf_t that is no longer referenced. The
 149  149   * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
 150  150   * "overhead_size" kstat.
 151  151   *
 152  152   * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
 153  153   * compressed form. The typical case is that consumers will want uncompressed
 154  154   * data, and when that happens a new data buffer is allocated where the data is
 155  155   * decompressed for them to use. Currently the only consumer who wants
 156  156   * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
 157  157   * exists on disk. When this happens, the arc_buf_t's data buffer is shared
 158  158   * with the arc_buf_hdr_t.
 159  159   *
 160  160   * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
 161  161   * first one is owned by a compressed send consumer (and therefore references
 162  162   * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
 163  163   * used by any other consumer (and has its own uncompressed copy of the data
 164  164   * buffer).
 165  165   *
 166  166   *   arc_buf_hdr_t
 167  167   *   +-----------+
 168  168   *   | fields    |
 169  169   *   | common to |
 170  170   *   | L1- and   |
 171  171   *   | L2ARC     |
 172  172   *   +-----------+
 173  173   *   | l2arc_buf_hdr_t
 174  174   *   |           |
 175  175   *   +-----------+
 176  176   *   | l1arc_buf_hdr_t
 177  177   *   |           |              arc_buf_t
 178  178   *   | b_buf     +------------>+-----------+      arc_buf_t
 179  179   *   | b_pabd    +-+           |b_next     +---->+-----------+
 180  180   *   +-----------+ |           |-----------|     |b_next     +-->NULL
 181  181   *                 |           |b_comp = T |     +-----------+
 182  182   *                 |           |b_data     +-+   |b_comp = F |
 183  183   *                 |           +-----------+ |   |b_data     +-+
 184  184   *                 +->+------+               |   +-----------+ |
 185  185   *        compressed  |      |               |                 |
 186  186   *           data     |      |<--------------+                 | uncompressed
 187  187   *                    +------+          compressed,            |     data
 188  188   *                                        shared               +-->+------+
 189  189   *                                         data                    |      |
 190  190   *                                                                 |      |
 191  191   *                                                                 +------+
 192  192   *
 193  193   * When a consumer reads a block, the ARC must first look to see if the
 194  194   * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
 195  195   * arc_buf_t and either copies uncompressed data into a new data buffer from an
 196  196   * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
 197  197   * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
 198  198   * hdr is compressed and the desired compression characteristics of the
 199  199   * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
 200  200   * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
 201  201   * the last buffer in the hdr's b_buf list, however a shared compressed buf can
 202  202   * be anywhere in the hdr's list.
 203  203   *
 204  204   * The diagram below shows an example of an uncompressed ARC hdr that is
 205  205   * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
 206  206   * the last element in the buf list):
 207  207   *
 208  208   *                arc_buf_hdr_t
 209  209   *                +-----------+
 210  210   *                |           |
 211  211   *                |           |
 212  212   *                |           |
 213  213   *                +-----------+
 214  214   * l2arc_buf_hdr_t|           |
 215  215   *                |           |
 216  216   *                +-----------+
 217  217   * l1arc_buf_hdr_t|           |
 218  218   *                |           |                 arc_buf_t    (shared)
 219  219   *                |    b_buf  +------------>+---------+      arc_buf_t
 220  220   *                |           |             |b_next   +---->+---------+
 221  221   *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
 222  222   *                +-----------+ |           |         |     +---------+
 223  223   *                              |           |b_data   +-+   |         |
 224  224   *                              |           +---------+ |   |b_data   +-+
 225  225   *                              +->+------+             |   +---------+ |
 226  226   *                                 |      |             |               |
 227  227   *                   uncompressed  |      |             |               |
 228  228   *                        data     +------+             |               |
 229  229   *                                    ^                 +->+------+     |
 230  230   *                                    |       uncompressed |      |     |
 231  231   *                                    |           data     |      |     |
 232  232   *                                    |                    +------+     |
 233  233   *                                    +---------------------------------+
 234  234   *
 235  235   * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
 236  236   * since the physical block is about to be rewritten. The new data contents
 237  237   * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
 238  238   * it may compress the data before writing it to disk. The ARC will be called
 239  239   * with the transformed data and will bcopy the transformed on-disk block into
 240  240   * a newly allocated b_pabd. Writes are always done into buffers which have
 241  241   * either been loaned (and hence are new and don't have other readers) or
 242  242   * buffers which have been released (and hence have their own hdr, if there
 243  243   * were originally other readers of the buf's original hdr). This ensures that
 244  244   * the ARC only needs to update a single buf and its hdr after a write occurs.
 245  245   *
 246  246   * When the L2ARC is in use, it will also take advantage of the b_pabd. The
 247  247   * L2ARC will always write the contents of b_pabd to the L2ARC. This means
 248  248   * that when compressed ARC is enabled that the L2ARC blocks are identical
 249  249   * to the on-disk block in the main data pool. This provides a significant
 250  250   * advantage since the ARC can leverage the bp's checksum when reading from the
 251  251   * L2ARC to determine if the contents are valid. However, if the compressed
 252  252   * ARC is disabled, then the L2ARC's block must be transformed to look
 253  253   * like the physical block in the main data pool before comparing the
 254  254   * checksum and determining its validity.
 255  255   *
 256  256   * The L1ARC has a slightly different system for storing encrypted data.
 257  257   * Raw (encrypted + possibly compressed) data has a few subtle differences from
 258  258   * data that is just compressed. The biggest difference is that it is not
 259  259   * possible to decrypt encrypted data (or visa versa) if the keys aren't loaded.
 260  260   * The other difference is that encryption cannot be treated as a suggestion.
 261  261   * If a caller would prefer compressed data, but they actually wind up with
 262  262   * uncompressed data the worst thing that could happen is there might be a
 263  263   * performance hit. If the caller requests encrypted data, however, we must be
 264  264   * sure they actually get it or else secret information could be leaked. Raw
 265  265   * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
 266  266   * may have both an encrypted version and a decrypted version of its data at
 267  267   * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
 268  268   * copied out of this header. To avoid complications with b_pabd, raw buffers
 269  269   * cannot be shared.
 270  270   */
 271  271  
 272  272  #include <sys/spa.h>
 273  273  #include <sys/zio.h>
 274  274  #include <sys/spa_impl.h>
 275  275  #include <sys/zio_compress.h>
 276  276  #include <sys/zio_checksum.h>
 277  277  #include <sys/zfs_context.h>
 278  278  #include <sys/arc.h>
 279  279  #include <sys/refcount.h>
 280  280  #include <sys/vdev.h>
 281  281  #include <sys/vdev_impl.h>
 282  282  #include <sys/dsl_pool.h>
 283  283  #include <sys/zio_checksum.h>
 284  284  #include <sys/multilist.h>
 285  285  #include <sys/abd.h>
 286  286  #include <sys/zil.h>
 287  287  #include <sys/fm/fs/zfs.h>
 288  288  #ifdef _KERNEL
 289  289  #include <sys/vmsystm.h>
 290  290  #include <vm/anon.h>
 291  291  #include <sys/fs/swapnode.h>
 292  292  #include <sys/dnlc.h>
 293  293  #endif
 294  294  #include <sys/callb.h>
 295  295  #include <sys/kstat.h>
 296  296  #include <sys/zthr.h>
 297  297  #include <zfs_fletcher.h>
 298  298  #include <sys/arc_impl.h>
 299  299  #include <sys/aggsum.h>
 300  300  #include <sys/cityhash.h>
 301  301  #include <sys/param.h>
 302  302  
 303  303  #ifndef _KERNEL
 304  304  /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
 305  305  boolean_t arc_watch = B_FALSE;
 306  306  int arc_procfd;
 307  307  #endif
 308  308  
 309  309  /*
 310  310   * This thread's job is to keep enough free memory in the system, by
 311  311   * calling arc_kmem_reap_now() plus arc_shrink(), which improves
 312  312   * arc_available_memory().
 313  313   */
 314  314  static zthr_t           *arc_reap_zthr;
 315  315  
 316  316  /*
 317  317   * This thread's job is to keep arc_size under arc_c, by calling
 318  318   * arc_adjust(), which improves arc_is_overflowing().
 319  319   */
 320  320  static zthr_t           *arc_adjust_zthr;
 321  321  
 322  322  static kmutex_t         arc_adjust_lock;
 323  323  static kcondvar_t       arc_adjust_waiters_cv;
 324  324  static boolean_t        arc_adjust_needed = B_FALSE;
 325  325  
 326  326  uint_t arc_reduce_dnlc_percent = 3;
 327  327  
 328  328  /*
 329  329   * The number of headers to evict in arc_evict_state_impl() before
 330  330   * dropping the sublist lock and evicting from another sublist. A lower
 331  331   * value means we're more likely to evict the "correct" header (i.e. the
 332  332   * oldest header in the arc state), but comes with higher overhead
 333  333   * (i.e. more invocations of arc_evict_state_impl()).
 334  334   */
 335  335  int zfs_arc_evict_batch_limit = 10;
 336  336  
 337  337  /* number of seconds before growing cache again */
 338  338  int arc_grow_retry = 60;
 339  339  
 340  340  /*
 341  341   * Minimum time between calls to arc_kmem_reap_soon().  Note that this will
 342  342   * be converted to ticks, so with the default hz=100, a setting of 15 ms
 343  343   * will actually wait 2 ticks, or 20ms.
 344  344   */
 345  345  int arc_kmem_cache_reap_retry_ms = 1000;
 346  346  
 347  347  /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
 348  348  int zfs_arc_overflow_shift = 8;
 349  349  
 350  350  /* shift of arc_c for calculating both min and max arc_p */
 351  351  int arc_p_min_shift = 4;
 352  352  
 353  353  /* log2(fraction of arc to reclaim) */
 354  354  int arc_shrink_shift = 7;
 355  355  
 356  356  /*
 357  357   * log2(fraction of ARC which must be free to allow growing).
 358  358   * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
 359  359   * when reading a new block into the ARC, we will evict an equal-sized block
 360  360   * from the ARC.
 361  361   *
 362  362   * This must be less than arc_shrink_shift, so that when we shrink the ARC,
 363  363   * we will still not allow it to grow.
 364  364   */
 365  365  int                     arc_no_grow_shift = 5;
 366  366  
 367  367  
 368  368  /*
 369  369   * minimum lifespan of a prefetch block in clock ticks
 370  370   * (initialized in arc_init())
 371  371   */
 372  372  static int              zfs_arc_min_prefetch_ms = 1;
 373  373  static int              zfs_arc_min_prescient_prefetch_ms = 6;
 374  374  
 375  375  /*
 376  376   * If this percent of memory is free, don't throttle.
 377  377   */
 378  378  int arc_lotsfree_percent = 10;
 379  379  
 380  380  static boolean_t arc_initialized;
 381  381  
 382  382  /*
 383  383   * The arc has filled available memory and has now warmed up.
 384  384   */
 385  385  static boolean_t arc_warm;
 386  386  
 387  387  /*
 388  388   * log2 fraction of the zio arena to keep free.
 389  389   */
 390  390  int arc_zio_arena_free_shift = 2;
 391  391  
 392  392  /*
 393  393   * These tunables are for performance analysis.
 394  394   */
 395  395  uint64_t zfs_arc_max;
 396  396  uint64_t zfs_arc_min;
 397  397  uint64_t zfs_arc_meta_limit = 0;
 398  398  uint64_t zfs_arc_meta_min = 0;
 399  399  int zfs_arc_grow_retry = 0;
 400  400  int zfs_arc_shrink_shift = 0;
 401  401  int zfs_arc_p_min_shift = 0;
 402  402  int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
 403  403  
 404  404  /*
 405  405   * ARC dirty data constraints for arc_tempreserve_space() throttle
 406  406   */
 407  407  uint_t zfs_arc_dirty_limit_percent = 50;        /* total dirty data limit */
 408  408  uint_t zfs_arc_anon_limit_percent = 25;         /* anon block dirty limit */
 409  409  uint_t zfs_arc_pool_dirty_percent = 20;         /* each pool's anon allowance */
 410  410  
 411  411  boolean_t zfs_compressed_arc_enabled = B_TRUE;
 412  412  
 413  413  /* The 6 states: */
 414  414  static arc_state_t ARC_anon;
 415  415  static arc_state_t ARC_mru;
 416  416  static arc_state_t ARC_mru_ghost;
 417  417  static arc_state_t ARC_mfu;
 418  418  static arc_state_t ARC_mfu_ghost;
 419  419  static arc_state_t ARC_l2c_only;
 420  420  
 421  421  arc_stats_t arc_stats = {
 422  422          { "hits",                       KSTAT_DATA_UINT64 },
 423  423          { "misses",                     KSTAT_DATA_UINT64 },
 424  424          { "demand_data_hits",           KSTAT_DATA_UINT64 },
 425  425          { "demand_data_misses",         KSTAT_DATA_UINT64 },
 426  426          { "demand_metadata_hits",       KSTAT_DATA_UINT64 },
 427  427          { "demand_metadata_misses",     KSTAT_DATA_UINT64 },
 428  428          { "prefetch_data_hits",         KSTAT_DATA_UINT64 },
 429  429          { "prefetch_data_misses",       KSTAT_DATA_UINT64 },
 430  430          { "prefetch_metadata_hits",     KSTAT_DATA_UINT64 },
 431  431          { "prefetch_metadata_misses",   KSTAT_DATA_UINT64 },
 432  432          { "mru_hits",                   KSTAT_DATA_UINT64 },
 433  433          { "mru_ghost_hits",             KSTAT_DATA_UINT64 },
 434  434          { "mfu_hits",                   KSTAT_DATA_UINT64 },
 435  435          { "mfu_ghost_hits",             KSTAT_DATA_UINT64 },
 436  436          { "deleted",                    KSTAT_DATA_UINT64 },
 437  437          { "mutex_miss",                 KSTAT_DATA_UINT64 },
 438  438          { "access_skip",                KSTAT_DATA_UINT64 },
 439  439          { "evict_skip",                 KSTAT_DATA_UINT64 },
 440  440          { "evict_not_enough",           KSTAT_DATA_UINT64 },
 441  441          { "evict_l2_cached",            KSTAT_DATA_UINT64 },
 442  442          { "evict_l2_eligible",          KSTAT_DATA_UINT64 },
 443  443          { "evict_l2_ineligible",        KSTAT_DATA_UINT64 },
 444  444          { "evict_l2_skip",              KSTAT_DATA_UINT64 },
 445  445          { "hash_elements",              KSTAT_DATA_UINT64 },
 446  446          { "hash_elements_max",          KSTAT_DATA_UINT64 },
 447  447          { "hash_collisions",            KSTAT_DATA_UINT64 },
 448  448          { "hash_chains",                KSTAT_DATA_UINT64 },
 449  449          { "hash_chain_max",             KSTAT_DATA_UINT64 },
 450  450          { "p",                          KSTAT_DATA_UINT64 },
 451  451          { "c",                          KSTAT_DATA_UINT64 },
 452  452          { "c_min",                      KSTAT_DATA_UINT64 },
 453  453          { "c_max",                      KSTAT_DATA_UINT64 },
 454  454          { "size",                       KSTAT_DATA_UINT64 },
 455  455          { "compressed_size",            KSTAT_DATA_UINT64 },
 456  456          { "uncompressed_size",          KSTAT_DATA_UINT64 },
 457  457          { "overhead_size",              KSTAT_DATA_UINT64 },
 458  458          { "hdr_size",                   KSTAT_DATA_UINT64 },
 459  459          { "data_size",                  KSTAT_DATA_UINT64 },
 460  460          { "metadata_size",              KSTAT_DATA_UINT64 },
 461  461          { "other_size",                 KSTAT_DATA_UINT64 },
 462  462          { "anon_size",                  KSTAT_DATA_UINT64 },
 463  463          { "anon_evictable_data",        KSTAT_DATA_UINT64 },
 464  464          { "anon_evictable_metadata",    KSTAT_DATA_UINT64 },
 465  465          { "mru_size",                   KSTAT_DATA_UINT64 },
 466  466          { "mru_evictable_data",         KSTAT_DATA_UINT64 },
 467  467          { "mru_evictable_metadata",     KSTAT_DATA_UINT64 },
 468  468          { "mru_ghost_size",             KSTAT_DATA_UINT64 },
 469  469          { "mru_ghost_evictable_data",   KSTAT_DATA_UINT64 },
 470  470          { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
 471  471          { "mfu_size",                   KSTAT_DATA_UINT64 },
 472  472          { "mfu_evictable_data",         KSTAT_DATA_UINT64 },
 473  473          { "mfu_evictable_metadata",     KSTAT_DATA_UINT64 },
 474  474          { "mfu_ghost_size",             KSTAT_DATA_UINT64 },
 475  475          { "mfu_ghost_evictable_data",   KSTAT_DATA_UINT64 },
 476  476          { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
 477  477          { "l2_hits",                    KSTAT_DATA_UINT64 },
 478  478          { "l2_misses",                  KSTAT_DATA_UINT64 },
 479  479          { "l2_feeds",                   KSTAT_DATA_UINT64 },
 480  480          { "l2_rw_clash",                KSTAT_DATA_UINT64 },
 481  481          { "l2_read_bytes",              KSTAT_DATA_UINT64 },
 482  482          { "l2_write_bytes",             KSTAT_DATA_UINT64 },
 483  483          { "l2_writes_sent",             KSTAT_DATA_UINT64 },
 484  484          { "l2_writes_done",             KSTAT_DATA_UINT64 },
 485  485          { "l2_writes_error",            KSTAT_DATA_UINT64 },
 486  486          { "l2_writes_lock_retry",       KSTAT_DATA_UINT64 },
 487  487          { "l2_evict_lock_retry",        KSTAT_DATA_UINT64 },
 488  488          { "l2_evict_reading",           KSTAT_DATA_UINT64 },
 489  489          { "l2_evict_l1cached",          KSTAT_DATA_UINT64 },
 490  490          { "l2_free_on_write",           KSTAT_DATA_UINT64 },
 491  491          { "l2_abort_lowmem",            KSTAT_DATA_UINT64 },
 492  492          { "l2_cksum_bad",               KSTAT_DATA_UINT64 },
 493  493          { "l2_io_error",                KSTAT_DATA_UINT64 },
 494  494          { "l2_size",                    KSTAT_DATA_UINT64 },
 495  495          { "l2_asize",                   KSTAT_DATA_UINT64 },
 496  496          { "l2_hdr_size",                KSTAT_DATA_UINT64 },
 497  497          { "l2_log_blk_writes",          KSTAT_DATA_UINT64 },
 498  498          { "l2_log_blk_avg_asize",       KSTAT_DATA_UINT64 },
 499  499          { "l2_log_blk_asize",           KSTAT_DATA_UINT64 },
 500  500          { "l2_log_blk_count",           KSTAT_DATA_UINT64 },
 501  501          { "l2_data_to_meta_ratio",      KSTAT_DATA_UINT64 },
 502  502          { "l2_rebuild_success",         KSTAT_DATA_UINT64 },
 503  503          { "l2_rebuild_unsupported",     KSTAT_DATA_UINT64 },
 504  504          { "l2_rebuild_io_errors",       KSTAT_DATA_UINT64 },
 505  505          { "l2_rebuild_dh_errors",       KSTAT_DATA_UINT64 },
 506  506          { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 },
 507  507          { "l2_rebuild_lowmem",          KSTAT_DATA_UINT64 },
 508  508          { "l2_rebuild_size",            KSTAT_DATA_UINT64 },
 509  509          { "l2_rebuild_asize",           KSTAT_DATA_UINT64 },
 510  510          { "l2_rebuild_bufs",            KSTAT_DATA_UINT64 },
 511  511          { "l2_rebuild_bufs_precached",  KSTAT_DATA_UINT64 },
 512  512          { "l2_rebuild_log_blks",        KSTAT_DATA_UINT64 },
 513  513          { "memory_throttle_count",      KSTAT_DATA_UINT64 },
 514  514          { "arc_meta_used",              KSTAT_DATA_UINT64 },
 515  515          { "arc_meta_limit",             KSTAT_DATA_UINT64 },
 516  516          { "arc_meta_max",               KSTAT_DATA_UINT64 },
 517  517          { "arc_meta_min",               KSTAT_DATA_UINT64 },
 518  518          { "async_upgrade_sync",         KSTAT_DATA_UINT64 },
 519  519          { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
 520  520          { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
 521  521  };
 522  522  
 523  523  #define ARCSTAT_MAX(stat, val) {                                        \
 524  524          uint64_t m;                                                     \
 525  525          while ((val) > (m = arc_stats.stat.value.ui64) &&               \
 526  526              (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
 527  527                  continue;                                               \
 528  528  }
 529  529  
 530  530  #define ARCSTAT_MAXSTAT(stat) \
 531  531          ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
 532  532  
 533  533  /*
 534  534   * We define a macro to allow ARC hits/misses to be easily broken down by
 535  535   * two separate conditions, giving a total of four different subtypes for
 536  536   * each of hits and misses (so eight statistics total).
 537  537   */
 538  538  #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
 539  539          if (cond1) {                                                    \
 540  540                  if (cond2) {                                            \
 541  541                          ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
 542  542                  } else {                                                \
 543  543                          ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
 544  544                  }                                                       \
 545  545          } else {                                                        \
 546  546                  if (cond2) {                                            \
 547  547                          ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
 548  548                  } else {                                                \
 549  549                          ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
 550  550                  }                                                       \
 551  551          }
 552  552  
 553  553  /*
 554  554   * This macro allows us to use kstats as floating averages. Each time we
 555  555   * update this kstat, we first factor it and the update value by
 556  556   * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
 557  557   * average. This macro assumes that integer loads and stores are atomic, but
 558  558   * is not safe for multiple writers updating the kstat in parallel (only the
 559  559   * last writer's update will remain).
 560  560   */
 561  561  #define ARCSTAT_F_AVG_FACTOR    3
 562  562  #define ARCSTAT_F_AVG(stat, value) \
 563  563          do { \
 564  564                  uint64_t x = ARCSTAT(stat); \
 565  565                  x = x - x / ARCSTAT_F_AVG_FACTOR + \
 566  566                      (value) / ARCSTAT_F_AVG_FACTOR; \
 567  567                  ARCSTAT(stat) = x; \
 568  568                  _NOTE(CONSTCOND) \
 569  569          } while (0)
 570  570  
 571  571  kstat_t                 *arc_ksp;
 572  572  static arc_state_t      *arc_anon;
 573  573  static arc_state_t      *arc_mru;
 574  574  static arc_state_t      *arc_mru_ghost;
 575  575  static arc_state_t      *arc_mfu;
 576  576  static arc_state_t      *arc_mfu_ghost;
 577  577  static arc_state_t      *arc_l2c_only;
 578  578  
 579  579  /*
 580  580   * There are also some ARC variables that we want to export, but that are
 581  581   * updated so often that having the canonical representation be the statistic
 582  582   * variable causes a performance bottleneck. We want to use aggsum_t's for these
 583  583   * instead, but still be able to export the kstat in the same way as before.
 584  584   * The solution is to always use the aggsum version, except in the kstat update
 585  585   * callback.
 586  586   */
 587  587  aggsum_t arc_size;
 588  588  aggsum_t arc_meta_used;
 589  589  aggsum_t astat_data_size;
 590  590  aggsum_t astat_metadata_size;
 591  591  aggsum_t astat_hdr_size;
 592  592  aggsum_t astat_other_size;
 593  593  aggsum_t astat_l2_hdr_size;
 594  594  
 595  595  static int              arc_no_grow;    /* Don't try to grow cache size */
 596  596  static hrtime_t         arc_growtime;
 597  597  static uint64_t         arc_tempreserve;
 598  598  static uint64_t         arc_loaned_bytes;
 599  599  
 600  600  #define GHOST_STATE(state)      \
 601  601          ((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||        \
 602  602          (state) == arc_l2c_only)
 603  603  
 604  604  #define HDR_IN_HASH_TABLE(hdr)  ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
 605  605  #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
 606  606  #define HDR_IO_ERROR(hdr)       ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
 607  607  #define HDR_PREFETCH(hdr)       ((hdr)->b_flags & ARC_FLAG_PREFETCH)
 608  608  #define HDR_PRESCIENT_PREFETCH(hdr)     \
 609  609          ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
 610  610  #define HDR_COMPRESSION_ENABLED(hdr)    \
 611  611          ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
 612  612  
 613  613  #define HDR_L2CACHE(hdr)        ((hdr)->b_flags & ARC_FLAG_L2CACHE)
 614  614  #define HDR_L2_READING(hdr)     \
 615  615          (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&  \
 616  616          ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
 617  617  #define HDR_L2_WRITING(hdr)     ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
 618  618  #define HDR_L2_EVICTED(hdr)     ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
 619  619  #define HDR_L2_WRITE_HEAD(hdr)  ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
 620  620  #define HDR_PROTECTED(hdr)      ((hdr)->b_flags & ARC_FLAG_PROTECTED)
 621  621  #define HDR_NOAUTH(hdr)         ((hdr)->b_flags & ARC_FLAG_NOAUTH)
 622  622  #define HDR_SHARED_DATA(hdr)    ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
 623  623  
 624  624  #define HDR_ISTYPE_METADATA(hdr)        \
 625  625          ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
 626  626  #define HDR_ISTYPE_DATA(hdr)    (!HDR_ISTYPE_METADATA(hdr))
 627  627  
 628  628  #define HDR_HAS_L1HDR(hdr)      ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
 629  629  #define HDR_HAS_L2HDR(hdr)      ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
 630  630  #define HDR_HAS_RABD(hdr)       \
 631  631          (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) &&    \
 632  632          (hdr)->b_crypt_hdr.b_rabd != NULL)
 633  633  #define HDR_ENCRYPTED(hdr)      \
 634  634          (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
 635  635  #define HDR_AUTHENTICATED(hdr)  \
 636  636          (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
 637  637  
 638  638  /* For storing compression mode in b_flags */
 639  639  #define HDR_COMPRESS_OFFSET     (highbit64(ARC_FLAG_COMPRESS_0) - 1)
 640  640  
 641  641  #define HDR_GET_COMPRESS(hdr)   ((enum zio_compress)BF32_GET((hdr)->b_flags, \
 642  642          HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
 643  643  #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
 644  644          HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
 645  645  
 646  646  #define ARC_BUF_LAST(buf)       ((buf)->b_next == NULL)
 647  647  #define ARC_BUF_SHARED(buf)     ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
 648  648  #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
 649  649  #define ARC_BUF_ENCRYPTED(buf)  ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
 650  650  
 651  651  /*
 652  652   * Other sizes
 653  653   */
 654  654  
 655  655  #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
 656  656  #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
 657  657  #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
 658  658  
 659  659  /*
 660  660   * Hash table routines
 661  661   */
 662  662  
 663  663  #define HT_LOCK_PAD     64
 664  664  
 665  665  struct ht_lock {
 666  666          kmutex_t        ht_lock;
 667  667  #ifdef _KERNEL
 668  668          unsigned char   pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
 669  669  #endif
 670  670  };
 671  671  
 672  672  #define BUF_LOCKS 256
 673  673  typedef struct buf_hash_table {
 674  674          uint64_t ht_mask;
 675  675          arc_buf_hdr_t **ht_table;
 676  676          struct ht_lock ht_locks[BUF_LOCKS];
 677  677  } buf_hash_table_t;
 678  678  
 679  679  static buf_hash_table_t buf_hash_table;
 680  680  
 681  681  #define BUF_HASH_INDEX(spa, dva, birth) \
 682  682          (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
 683  683  #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
 684  684  #define BUF_HASH_LOCK(idx)      (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
 685  685  #define HDR_LOCK(hdr) \
 686  686          (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
 687  687  
 688  688  uint64_t zfs_crc64_table[256];
 689  689  
 690  690  /*
 691  691   * Level 2 ARC
 692  692   */
 693  693  
 694  694  #define L2ARC_WRITE_SIZE        (8 * 1024 * 1024)       /* initial write max */
 695  695  #define L2ARC_HEADROOM          2                       /* num of writes */
 696  696  /*
 697  697   * If we discover during ARC scan any buffers to be compressed, we boost
 698  698   * our headroom for the next scanning cycle by this percentage multiple.
 699  699   */
 700  700  #define L2ARC_HEADROOM_BOOST    200
 701  701  #define L2ARC_FEED_SECS         1               /* caching interval secs */
 702  702  #define L2ARC_FEED_MIN_MS       200             /* min caching interval ms */
 703  703  
 704  704  #define l2arc_writes_sent       ARCSTAT(arcstat_l2_writes_sent)
 705  705  #define l2arc_writes_done       ARCSTAT(arcstat_l2_writes_done)
 706  706  
 707  707  /* L2ARC Performance Tunables */
 708  708  uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;    /* default max write size */
 709  709  uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;  /* extra write during warmup */
 710  710  uint64_t l2arc_headroom = L2ARC_HEADROOM;       /* number of dev writes */
 711  711  uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
 712  712  uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;     /* interval seconds */
 713  713  uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
 714  714  boolean_t l2arc_noprefetch = B_TRUE;            /* don't cache prefetch bufs */
 715  715  boolean_t l2arc_feed_again = B_TRUE;            /* turbo warmup */
 716  716  boolean_t l2arc_norw = B_TRUE;                  /* no reads during writes */
 717  717  
 718  718  /*
 719  719   * L2ARC Internals
 720  720   */
 721  721  static list_t L2ARC_dev_list;                   /* device list */
 722  722  static list_t *l2arc_dev_list;                  /* device list pointer */
 723  723  static kmutex_t l2arc_dev_mtx;                  /* device list mutex */
 724  724  static l2arc_dev_t *l2arc_dev_last;             /* last device used */
 725  725  static list_t L2ARC_free_on_write;              /* free after write buf list */
 726  726  static list_t *l2arc_free_on_write;             /* free after write list ptr */
 727  727  static kmutex_t l2arc_free_on_write_mtx;        /* mutex for list */
 728  728  static uint64_t l2arc_ndev;                     /* number of devices */
 729  729  
 730  730  typedef struct l2arc_read_callback {
 731  731          arc_buf_hdr_t           *l2rcb_hdr;             /* read header */
 732  732          blkptr_t                l2rcb_bp;               /* original blkptr */
 733  733          zbookmark_phys_t        l2rcb_zb;               /* original bookmark */
 734  734          int                     l2rcb_flags;            /* original flags */
 735  735          abd_t                   *l2rcb_abd;             /* temporary buffer */
 736  736  } l2arc_read_callback_t;
 737  737  
 738  738  typedef struct l2arc_data_free {
 739  739          /* protected by l2arc_free_on_write_mtx */
 740  740          abd_t           *l2df_abd;
 741  741          size_t          l2df_size;
 742  742          arc_buf_contents_t l2df_type;
 743  743          list_node_t     l2df_list_node;
 744  744  } l2arc_data_free_t;
 745  745  
 746  746  static kmutex_t l2arc_feed_thr_lock;
 747  747  static kcondvar_t l2arc_feed_thr_cv;
 748  748  static uint8_t l2arc_thread_exit;
 749  749  
 750  750  static kmutex_t l2arc_rebuild_thr_lock;
 751  751  static kcondvar_t l2arc_rebuild_thr_cv;
 752  752  
 753  753  static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
 754  754  typedef enum arc_fill_flags {
 755  755          ARC_FILL_LOCKED         = 1 << 0, /* hdr lock is held */
 756  756          ARC_FILL_COMPRESSED     = 1 << 1, /* fill with compressed data */
 757  757          ARC_FILL_ENCRYPTED      = 1 << 2, /* fill with encrypted data */
 758  758          ARC_FILL_NOAUTH         = 1 << 3, /* don't attempt to authenticate */
 759  759          ARC_FILL_IN_PLACE       = 1 << 4  /* fill in place (special case) */
 760  760  } arc_fill_flags_t;
 761  761  
 762  762  static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
 763  763  static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
 764  764  static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
 765  765  static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
 766  766  static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
 767  767  static void arc_hdr_free_pabd(arc_buf_hdr_t *, boolean_t);
 768  768  static void arc_hdr_alloc_pabd(arc_buf_hdr_t *, boolean_t);
 769  769  static void arc_access(arc_buf_hdr_t *, kmutex_t *);
 770  770  static boolean_t arc_is_overflowing();
 771  771  static void arc_buf_watch(arc_buf_t *);
 772  772  static l2arc_dev_t *l2arc_vdev_get(vdev_t *vd);
 773  773  
 774  774  static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
 775  775  static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
 776  776  static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
 777  777  static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
 778  778  
 779  779  static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
 780  780  static void l2arc_read_done(zio_t *);
 781  781  
 782  782  /*
 783  783   * The arc_all_memory function is a ZoL enhancement that lives in their OSL
 784  784   * code. In user-space code, which is used primarily for testing, we return
 785  785   * half of all memory.
 786  786   */
 787  787  uint64_t
 788  788  arc_all_memory(void)
 789  789  {
 790  790  #ifdef _KERNEL
 791  791          return (ptob(physmem));
 792  792  #else
 793  793          return ((sysconf(_SC_PAGESIZE) * sysconf(_SC_PHYS_PAGES)) / 2);
 794  794  #endif
 795  795  }
 796  796  
 797  797  /*
 798  798   * We use Cityhash for this. It's fast, and has good hash properties without
 799  799   * requiring any large static buffers.
 800  800   */
 801  801  static uint64_t
 802  802  buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
 803  803  {
 804  804          return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
 805  805  }
 806  806  
 807  807  #define HDR_EMPTY(hdr)                                          \
 808  808          ((hdr)->b_dva.dva_word[0] == 0 &&                       \
 809  809          (hdr)->b_dva.dva_word[1] == 0)
 810  810  
 811  811  #define HDR_EMPTY_OR_LOCKED(hdr)                                \
 812  812          (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
 813  813  
 814  814  #define HDR_EQUAL(spa, dva, birth, hdr)                         \
 815  815          ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&     \
 816  816          ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&     \
 817  817          ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
 818  818  
 819  819  static void
 820  820  buf_discard_identity(arc_buf_hdr_t *hdr)
 821  821  {
 822  822          hdr->b_dva.dva_word[0] = 0;
 823  823          hdr->b_dva.dva_word[1] = 0;
 824  824          hdr->b_birth = 0;
 825  825  }
 826  826  
 827  827  static arc_buf_hdr_t *
 828  828  buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
 829  829  {
 830  830          const dva_t *dva = BP_IDENTITY(bp);
 831  831          uint64_t birth = BP_PHYSICAL_BIRTH(bp);
 832  832          uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
 833  833          kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
 834  834          arc_buf_hdr_t *hdr;
 835  835  
 836  836          mutex_enter(hash_lock);
 837  837          for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
 838  838              hdr = hdr->b_hash_next) {
 839  839                  if (HDR_EQUAL(spa, dva, birth, hdr)) {
 840  840                          *lockp = hash_lock;
 841  841                          return (hdr);
 842  842                  }
 843  843          }
 844  844          mutex_exit(hash_lock);
 845  845          *lockp = NULL;
 846  846          return (NULL);
 847  847  }
 848  848  
 849  849  /*
 850  850   * Insert an entry into the hash table.  If there is already an element
 851  851   * equal to elem in the hash table, then the already existing element
 852  852   * will be returned and the new element will not be inserted.
 853  853   * Otherwise returns NULL.
 854  854   * If lockp == NULL, the caller is assumed to already hold the hash lock.
 855  855   */
 856  856  static arc_buf_hdr_t *
 857  857  buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
 858  858  {
 859  859          uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
 860  860          kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
 861  861          arc_buf_hdr_t *fhdr;
 862  862          uint32_t i;
 863  863  
 864  864          ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
 865  865          ASSERT(hdr->b_birth != 0);
 866  866          ASSERT(!HDR_IN_HASH_TABLE(hdr));
 867  867  
 868  868          if (lockp != NULL) {
 869  869                  *lockp = hash_lock;
 870  870                  mutex_enter(hash_lock);
 871  871          } else {
 872  872                  ASSERT(MUTEX_HELD(hash_lock));
 873  873          }
 874  874  
 875  875          for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
 876  876              fhdr = fhdr->b_hash_next, i++) {
 877  877                  if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
 878  878                          return (fhdr);
 879  879          }
 880  880  
 881  881          hdr->b_hash_next = buf_hash_table.ht_table[idx];
 882  882          buf_hash_table.ht_table[idx] = hdr;
 883  883          arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
 884  884  
 885  885          /* collect some hash table performance data */
 886  886          if (i > 0) {
 887  887                  ARCSTAT_BUMP(arcstat_hash_collisions);
 888  888                  if (i == 1)
 889  889                          ARCSTAT_BUMP(arcstat_hash_chains);
 890  890  
 891  891                  ARCSTAT_MAX(arcstat_hash_chain_max, i);
 892  892          }
 893  893  
 894  894          ARCSTAT_BUMP(arcstat_hash_elements);
 895  895          ARCSTAT_MAXSTAT(arcstat_hash_elements);
 896  896  
 897  897          return (NULL);
 898  898  }
 899  899  
 900  900  static void
 901  901  buf_hash_remove(arc_buf_hdr_t *hdr)
 902  902  {
 903  903          arc_buf_hdr_t *fhdr, **hdrp;
 904  904          uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
 905  905  
 906  906          ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
 907  907          ASSERT(HDR_IN_HASH_TABLE(hdr));
 908  908  
 909  909          hdrp = &buf_hash_table.ht_table[idx];
 910  910          while ((fhdr = *hdrp) != hdr) {
 911  911                  ASSERT3P(fhdr, !=, NULL);
 912  912                  hdrp = &fhdr->b_hash_next;
 913  913          }
 914  914          *hdrp = hdr->b_hash_next;
 915  915          hdr->b_hash_next = NULL;
 916  916          arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
 917  917  
 918  918          /* collect some hash table performance data */
 919  919          ARCSTAT_BUMPDOWN(arcstat_hash_elements);
 920  920  
 921  921          if (buf_hash_table.ht_table[idx] &&
 922  922              buf_hash_table.ht_table[idx]->b_hash_next == NULL)
 923  923                  ARCSTAT_BUMPDOWN(arcstat_hash_chains);
 924  924  }
 925  925  
 926  926  /*
 927  927   * Global data structures and functions for the buf kmem cache.
 928  928   */
 929  929  
 930  930  static kmem_cache_t *hdr_full_cache;
 931  931  static kmem_cache_t *hdr_full_crypt_cache;
 932  932  static kmem_cache_t *hdr_l2only_cache;
 933  933  static kmem_cache_t *buf_cache;
 934  934  
 935  935  static void
 936  936  buf_fini(void)
 937  937  {
 938  938          int i;
 939  939  
 940  940          kmem_free(buf_hash_table.ht_table,
 941  941              (buf_hash_table.ht_mask + 1) * sizeof (void *));
 942  942          for (i = 0; i < BUF_LOCKS; i++)
 943  943                  mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
 944  944          kmem_cache_destroy(hdr_full_cache);
 945  945          kmem_cache_destroy(hdr_full_crypt_cache);
 946  946          kmem_cache_destroy(hdr_l2only_cache);
 947  947          kmem_cache_destroy(buf_cache);
 948  948  }
 949  949  
 950  950  /*
 951  951   * Constructor callback - called when the cache is empty
 952  952   * and a new buf is requested.
 953  953   */
 954  954  /* ARGSUSED */
 955  955  static int
 956  956  hdr_full_cons(void *vbuf, void *unused, int kmflag)
 957  957  {
 958  958          arc_buf_hdr_t *hdr = vbuf;
 959  959  
 960  960          bzero(hdr, HDR_FULL_SIZE);
 961  961          hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
 962  962          cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
 963  963          zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
 964  964          mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
 965  965          multilist_link_init(&hdr->b_l1hdr.b_arc_node);
 966  966          arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
 967  967  
 968  968          return (0);
 969  969  }
 970  970  
 971  971  /* ARGSUSED */
 972  972  static int
 973  973  hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag)
 974  974  {
 975  975          arc_buf_hdr_t *hdr = vbuf;
 976  976  
 977  977          (void) hdr_full_cons(vbuf, unused, kmflag);
 978  978          bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr));
 979  979          arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
 980  980  
 981  981          return (0);
 982  982  }
 983  983  
 984  984  /* ARGSUSED */
 985  985  static int
 986  986  hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
 987  987  {
 988  988          arc_buf_hdr_t *hdr = vbuf;
 989  989  
 990  990          bzero(hdr, HDR_L2ONLY_SIZE);
 991  991          arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
 992  992  
 993  993          return (0);
 994  994  }
 995  995  
 996  996  /* ARGSUSED */
 997  997  static int
 998  998  buf_cons(void *vbuf, void *unused, int kmflag)
 999  999  {
1000 1000          arc_buf_t *buf = vbuf;
1001 1001  
1002 1002          bzero(buf, sizeof (arc_buf_t));
1003 1003          mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1004 1004          arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1005 1005  
1006 1006          return (0);
1007 1007  }
1008 1008  
1009 1009  /*
1010 1010   * Destructor callback - called when a cached buf is
1011 1011   * no longer required.
1012 1012   */
1013 1013  /* ARGSUSED */
1014 1014  static void
1015 1015  hdr_full_dest(void *vbuf, void *unused)
1016 1016  {
1017 1017          arc_buf_hdr_t *hdr = vbuf;
1018 1018  
1019 1019          ASSERT(HDR_EMPTY(hdr));
1020 1020          cv_destroy(&hdr->b_l1hdr.b_cv);
1021 1021          zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1022 1022          mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1023 1023          ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1024 1024          arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1025 1025  }
1026 1026  
1027 1027  /* ARGSUSED */
1028 1028  static void
1029 1029  hdr_full_crypt_dest(void *vbuf, void *unused)
1030 1030  {
1031 1031          arc_buf_hdr_t *hdr = vbuf;
1032 1032  
1033 1033          hdr_full_dest(hdr, unused);
1034 1034          arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1035 1035  }
1036 1036  
1037 1037  /* ARGSUSED */
1038 1038  static void
1039 1039  hdr_l2only_dest(void *vbuf, void *unused)
1040 1040  {
1041 1041          arc_buf_hdr_t *hdr = vbuf;
1042 1042  
1043 1043          ASSERT(HDR_EMPTY(hdr));
1044 1044          arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1045 1045  }
1046 1046  
1047 1047  /* ARGSUSED */
1048 1048  static void
1049 1049  buf_dest(void *vbuf, void *unused)
1050 1050  {
1051 1051          arc_buf_t *buf = vbuf;
1052 1052  
1053 1053          mutex_destroy(&buf->b_evict_lock);
1054 1054          arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1055 1055  }
1056 1056  
1057 1057  /*
1058 1058   * Reclaim callback -- invoked when memory is low.
1059 1059   */
1060 1060  /* ARGSUSED */
1061 1061  static void
1062 1062  hdr_recl(void *unused)
1063 1063  {
1064 1064          dprintf("hdr_recl called\n");
1065 1065          /*
1066 1066           * umem calls the reclaim func when we destroy the buf cache,
1067 1067           * which is after we do arc_fini().
1068 1068           */
1069 1069          if (arc_initialized)
1070 1070                  zthr_wakeup(arc_reap_zthr);
1071 1071  }
1072 1072  
1073 1073  static void
1074 1074  buf_init(void)
1075 1075  {
1076 1076          uint64_t *ct;
1077 1077          uint64_t hsize = 1ULL << 12;
1078 1078          int i, j;
1079 1079  
1080 1080          /*
1081 1081           * The hash table is big enough to fill all of physical memory
1082 1082           * with an average block size of zfs_arc_average_blocksize (default 8K).
1083 1083           * By default, the table will take up
1084 1084           * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1085 1085           */
1086 1086          while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
1087 1087                  hsize <<= 1;
1088 1088  retry:
1089 1089          buf_hash_table.ht_mask = hsize - 1;
1090 1090          buf_hash_table.ht_table =
1091 1091              kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1092 1092          if (buf_hash_table.ht_table == NULL) {
1093 1093                  ASSERT(hsize > (1ULL << 8));
1094 1094                  hsize >>= 1;
1095 1095                  goto retry;
1096 1096          }
1097 1097  
1098 1098          hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1099 1099              0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1100 1100          hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt",
1101 1101              HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest,
1102 1102              hdr_recl, NULL, NULL, 0);
1103 1103          hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1104 1104              HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1105 1105              NULL, NULL, 0);
1106 1106          buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1107 1107              0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1108 1108  
1109 1109          for (i = 0; i < 256; i++)
1110 1110                  for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1111 1111                          *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1112 1112  
1113 1113          for (i = 0; i < BUF_LOCKS; i++) {
1114 1114                  mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1115 1115                      NULL, MUTEX_DEFAULT, NULL);
1116 1116          }
1117 1117  }
1118 1118  
1119 1119  /*
1120 1120   * This is the size that the buf occupies in memory. If the buf is compressed,
1121 1121   * it will correspond to the compressed size. You should use this method of
1122 1122   * getting the buf size unless you explicitly need the logical size.
1123 1123   */
1124 1124  int32_t
1125 1125  arc_buf_size(arc_buf_t *buf)
1126 1126  {
1127 1127          return (ARC_BUF_COMPRESSED(buf) ?
1128 1128              HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1129 1129  }
1130 1130  
1131 1131  int32_t
1132 1132  arc_buf_lsize(arc_buf_t *buf)
1133 1133  {
1134 1134          return (HDR_GET_LSIZE(buf->b_hdr));
1135 1135  }
1136 1136  
1137 1137  /*
1138 1138   * This function will return B_TRUE if the buffer is encrypted in memory.
1139 1139   * This buffer can be decrypted by calling arc_untransform().
1140 1140   */
1141 1141  boolean_t
1142 1142  arc_is_encrypted(arc_buf_t *buf)
1143 1143  {
1144 1144          return (ARC_BUF_ENCRYPTED(buf) != 0);
1145 1145  }
1146 1146  
1147 1147  /*
1148 1148   * Returns B_TRUE if the buffer represents data that has not had its MAC
1149 1149   * verified yet.
1150 1150   */
1151 1151  boolean_t
1152 1152  arc_is_unauthenticated(arc_buf_t *buf)
1153 1153  {
1154 1154          return (HDR_NOAUTH(buf->b_hdr) != 0);
1155 1155  }
1156 1156  
1157 1157  void
1158 1158  arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1159 1159      uint8_t *iv, uint8_t *mac)
1160 1160  {
1161 1161          arc_buf_hdr_t *hdr = buf->b_hdr;
1162 1162  
1163 1163          ASSERT(HDR_PROTECTED(hdr));
1164 1164  
1165 1165          bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
1166 1166          bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
1167 1167          bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
1168 1168          *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1169 1169              /* CONSTCOND */
1170 1170              ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1171 1171  }
1172 1172  
1173 1173  /*
1174 1174   * Indicates how this buffer is compressed in memory. If it is not compressed
1175 1175   * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1176 1176   * arc_untransform() as long as it is also unencrypted.
1177 1177   */
1178 1178  enum zio_compress
1179 1179  arc_get_compression(arc_buf_t *buf)
1180 1180  {
1181 1181          return (ARC_BUF_COMPRESSED(buf) ?
1182 1182              HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1183 1183  }
1184 1184  
1185 1185  #define ARC_MINTIME     (hz>>4) /* 62 ms */
1186 1186  
1187 1187  /*
1188 1188   * Return the compression algorithm used to store this data in the ARC. If ARC
1189 1189   * compression is enabled or this is an encrypted block, this will be the same
1190 1190   * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1191 1191   */
1192 1192  static inline enum zio_compress
1193 1193  arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1194 1194  {
1195 1195          return (HDR_COMPRESSION_ENABLED(hdr) ?
1196 1196              HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1197 1197  }
1198 1198  
1199 1199  static inline boolean_t
1200 1200  arc_buf_is_shared(arc_buf_t *buf)
1201 1201  {
1202 1202          boolean_t shared = (buf->b_data != NULL &&
1203 1203              buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1204 1204              abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1205 1205              buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1206 1206          IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1207 1207          IMPLY(shared, ARC_BUF_SHARED(buf));
1208 1208          IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1209 1209  
1210 1210          /*
1211 1211           * It would be nice to assert arc_can_share() too, but the "hdr isn't
1212 1212           * already being shared" requirement prevents us from doing that.
1213 1213           */
1214 1214  
1215 1215          return (shared);
1216 1216  }
1217 1217  
1218 1218  /*
1219 1219   * Free the checksum associated with this header. If there is no checksum, this
1220 1220   * is a no-op.
1221 1221   */
1222 1222  static inline void
1223 1223  arc_cksum_free(arc_buf_hdr_t *hdr)
1224 1224  {
1225 1225          ASSERT(HDR_HAS_L1HDR(hdr));
1226 1226  
1227 1227          mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1228 1228          if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1229 1229                  kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1230 1230                  hdr->b_l1hdr.b_freeze_cksum = NULL;
1231 1231          }
1232 1232          mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1233 1233  }
1234 1234  
1235 1235  /*
1236 1236   * Return true iff at least one of the bufs on hdr is not compressed.
1237 1237   * Encrypted buffers count as compressed.
1238 1238   */
1239 1239  static boolean_t
1240 1240  arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1241 1241  {
1242 1242          ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
1243 1243  
1244 1244          for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1245 1245                  if (!ARC_BUF_COMPRESSED(b)) {
1246 1246                          return (B_TRUE);
1247 1247                  }
1248 1248          }
1249 1249          return (B_FALSE);
1250 1250  }
1251 1251  
1252 1252  /*
1253 1253   * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1254 1254   * matches the checksum that is stored in the hdr. If there is no checksum,
1255 1255   * or if the buf is compressed, this is a no-op.
1256 1256   */
1257 1257  static void
1258 1258  arc_cksum_verify(arc_buf_t *buf)
1259 1259  {
1260 1260          arc_buf_hdr_t *hdr = buf->b_hdr;
1261 1261          zio_cksum_t zc;
1262 1262  
1263 1263          if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1264 1264                  return;
1265 1265  
1266 1266          if (ARC_BUF_COMPRESSED(buf))
1267 1267                  return;
1268 1268  
1269 1269          ASSERT(HDR_HAS_L1HDR(hdr));
1270 1270  
1271 1271          mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1272 1272  
1273 1273          if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1274 1274                  mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1275 1275                  return;
1276 1276          }
1277 1277  
1278 1278          fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1279 1279          if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1280 1280                  panic("buffer modified while frozen!");
1281 1281          mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1282 1282  }
1283 1283  
1284 1284  /*
1285 1285   * This function makes the assumption that data stored in the L2ARC
1286 1286   * will be transformed exactly as it is in the main pool. Because of
1287 1287   * this we can verify the checksum against the reading process's bp.
1288 1288   */
1289 1289  static boolean_t
1290 1290  arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1291 1291  {
1292 1292          enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1293 1293          boolean_t valid_cksum;
1294 1294  
1295 1295          ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1296 1296          VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1297 1297  
1298 1298          /*
1299 1299           * We rely on the blkptr's checksum to determine if the block
1300 1300           * is valid or not. When compressed arc is enabled, the l2arc
1301 1301           * writes the block to the l2arc just as it appears in the pool.
1302 1302           * This allows us to use the blkptr's checksum to validate the
1303 1303           * data that we just read off of the l2arc without having to store
1304 1304           * a separate checksum in the arc_buf_hdr_t. However, if compressed
1305 1305           * arc is disabled, then the data written to the l2arc is always
1306 1306           * uncompressed and won't match the block as it exists in the main
1307 1307           * pool. When this is the case, we must first compress it if it is
1308 1308           * compressed on the main pool before we can validate the checksum.
1309 1309           */
1310 1310          if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1311 1311                  ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1312 1312                  uint64_t lsize = HDR_GET_LSIZE(hdr);
1313 1313                  uint64_t csize;
1314 1314  
1315 1315                  abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE);
1316 1316                  csize = zio_compress_data(compress, zio->io_abd,
1317 1317                      abd_to_buf(cdata), lsize);
1318 1318  
1319 1319                  ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1320 1320                  if (csize < HDR_GET_PSIZE(hdr)) {
1321 1321                          /*
1322 1322                           * Compressed blocks are always a multiple of the
1323 1323                           * smallest ashift in the pool. Ideally, we would
1324 1324                           * like to round up the csize to the next
1325 1325                           * spa_min_ashift but that value may have changed
1326 1326                           * since the block was last written. Instead,
1327 1327                           * we rely on the fact that the hdr's psize
1328 1328                           * was set to the psize of the block when it was
1329 1329                           * last written. We set the csize to that value
1330 1330                           * and zero out any part that should not contain
1331 1331                           * data.
1332 1332                           */
1333 1333                          abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize);
1334 1334                          csize = HDR_GET_PSIZE(hdr);
1335 1335                  }
1336 1336                  zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL);
1337 1337          }
1338 1338  
1339 1339          /*
1340 1340           * Block pointers always store the checksum for the logical data.
1341 1341           * If the block pointer has the gang bit set, then the checksum
1342 1342           * it represents is for the reconstituted data and not for an
1343 1343           * individual gang member. The zio pipeline, however, must be able to
1344 1344           * determine the checksum of each of the gang constituents so it
1345 1345           * treats the checksum comparison differently than what we need
1346 1346           * for l2arc blocks. This prevents us from using the
1347 1347           * zio_checksum_error() interface directly. Instead we must call the
1348 1348           * zio_checksum_error_impl() so that we can ensure the checksum is
1349 1349           * generated using the correct checksum algorithm and accounts for the
1350 1350           * logical I/O size and not just a gang fragment.
1351 1351           */
1352 1352          valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1353 1353              BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1354 1354              zio->io_offset, NULL) == 0);
1355 1355          zio_pop_transforms(zio);
1356 1356          return (valid_cksum);
1357 1357  }
1358 1358  
1359 1359  /*
1360 1360   * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1361 1361   * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1362 1362   * isn't modified later on. If buf is compressed or there is already a checksum
1363 1363   * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1364 1364   */
1365 1365  static void
1366 1366  arc_cksum_compute(arc_buf_t *buf)
1367 1367  {
1368 1368          arc_buf_hdr_t *hdr = buf->b_hdr;
1369 1369  
1370 1370          if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1371 1371                  return;
1372 1372  
1373 1373          ASSERT(HDR_HAS_L1HDR(hdr));
1374 1374  
1375 1375          mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1376 1376          if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1377 1377                  mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1378 1378                  return;
1379 1379          }
1380 1380  
1381 1381          ASSERT(!ARC_BUF_ENCRYPTED(buf));
1382 1382          ASSERT(!ARC_BUF_COMPRESSED(buf));
1383 1383          hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1384 1384              KM_SLEEP);
1385 1385          fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1386 1386              hdr->b_l1hdr.b_freeze_cksum);
1387 1387          mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1388 1388          arc_buf_watch(buf);
1389 1389  }
1390 1390  
1391 1391  #ifndef _KERNEL
1392 1392  typedef struct procctl {
1393 1393          long cmd;
1394 1394          prwatch_t prwatch;
1395 1395  } procctl_t;
1396 1396  #endif
1397 1397  
1398 1398  /* ARGSUSED */
1399 1399  static void
1400 1400  arc_buf_unwatch(arc_buf_t *buf)
1401 1401  {
1402 1402  #ifndef _KERNEL
1403 1403          if (arc_watch) {
1404 1404                  int result;
1405 1405                  procctl_t ctl;
1406 1406                  ctl.cmd = PCWATCH;
1407 1407                  ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1408 1408                  ctl.prwatch.pr_size = 0;
1409 1409                  ctl.prwatch.pr_wflags = 0;
1410 1410                  result = write(arc_procfd, &ctl, sizeof (ctl));
1411 1411                  ASSERT3U(result, ==, sizeof (ctl));
1412 1412          }
1413 1413  #endif
1414 1414  }
1415 1415  
1416 1416  /* ARGSUSED */
1417 1417  static void
1418 1418  arc_buf_watch(arc_buf_t *buf)
1419 1419  {
1420 1420  #ifndef _KERNEL
1421 1421          if (arc_watch) {
1422 1422                  int result;
1423 1423                  procctl_t ctl;
1424 1424                  ctl.cmd = PCWATCH;
1425 1425                  ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1426 1426                  ctl.prwatch.pr_size = arc_buf_size(buf);
1427 1427                  ctl.prwatch.pr_wflags = WA_WRITE;
1428 1428                  result = write(arc_procfd, &ctl, sizeof (ctl));
1429 1429                  ASSERT3U(result, ==, sizeof (ctl));
1430 1430          }
1431 1431  #endif
1432 1432  }
1433 1433  
1434 1434  static arc_buf_contents_t
1435 1435  arc_buf_type(arc_buf_hdr_t *hdr)
1436 1436  {
1437 1437          arc_buf_contents_t type;
1438 1438          if (HDR_ISTYPE_METADATA(hdr)) {
1439 1439                  type = ARC_BUFC_METADATA;
1440 1440          } else {
1441 1441                  type = ARC_BUFC_DATA;
1442 1442          }
1443 1443          VERIFY3U(hdr->b_type, ==, type);
1444 1444          return (type);
1445 1445  }
1446 1446  
1447 1447  boolean_t
1448 1448  arc_is_metadata(arc_buf_t *buf)
1449 1449  {
1450 1450          return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1451 1451  }
1452 1452  
1453 1453  static uint32_t
1454 1454  arc_bufc_to_flags(arc_buf_contents_t type)
1455 1455  {
1456 1456          switch (type) {
1457 1457          case ARC_BUFC_DATA:
1458 1458                  /* metadata field is 0 if buffer contains normal data */
1459 1459                  return (0);
1460 1460          case ARC_BUFC_METADATA:
1461 1461                  return (ARC_FLAG_BUFC_METADATA);
1462 1462          default:
1463 1463                  break;
1464 1464          }
1465 1465          panic("undefined ARC buffer type!");
1466 1466          return ((uint32_t)-1);
1467 1467  }
1468 1468  
1469 1469  void
1470 1470  arc_buf_thaw(arc_buf_t *buf)
1471 1471  {
1472 1472          arc_buf_hdr_t *hdr = buf->b_hdr;
1473 1473  
1474 1474          ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1475 1475          ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1476 1476  
1477 1477          arc_cksum_verify(buf);
1478 1478  
1479 1479          /*
1480 1480           * Compressed buffers do not manipulate the b_freeze_cksum.
1481 1481           */
1482 1482          if (ARC_BUF_COMPRESSED(buf))
1483 1483                  return;
1484 1484  
1485 1485          ASSERT(HDR_HAS_L1HDR(hdr));
1486 1486          arc_cksum_free(hdr);
1487 1487  
1488 1488          mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1489 1489  #ifdef ZFS_DEBUG
1490 1490          if (zfs_flags & ZFS_DEBUG_MODIFY) {
1491 1491                  if (hdr->b_l1hdr.b_thawed != NULL)
1492 1492                          kmem_free(hdr->b_l1hdr.b_thawed, 1);
1493 1493                  hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1494 1494          }
1495 1495  #endif
1496 1496  
1497 1497          mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1498 1498  
1499 1499          arc_buf_unwatch(buf);
1500 1500  }
1501 1501  
1502 1502  void
1503 1503  arc_buf_freeze(arc_buf_t *buf)
1504 1504  {
1505 1505          if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1506 1506                  return;
1507 1507  
1508 1508          if (ARC_BUF_COMPRESSED(buf))
1509 1509                  return;
1510 1510  
1511 1511          ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1512 1512          arc_cksum_compute(buf);
1513 1513  }
1514 1514  
1515 1515  /*
1516 1516   * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1517 1517   * the following functions should be used to ensure that the flags are
1518 1518   * updated in a thread-safe way. When manipulating the flags either
1519 1519   * the hash_lock must be held or the hdr must be undiscoverable. This
1520 1520   * ensures that we're not racing with any other threads when updating
1521 1521   * the flags.
1522 1522   */
1523 1523  static inline void
1524 1524  arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1525 1525  {
1526 1526          ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1527 1527          hdr->b_flags |= flags;
1528 1528  }
1529 1529  
1530 1530  static inline void
1531 1531  arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1532 1532  {
1533 1533          ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1534 1534          hdr->b_flags &= ~flags;
1535 1535  }
1536 1536  
1537 1537  /*
1538 1538   * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1539 1539   * done in a special way since we have to clear and set bits
1540 1540   * at the same time. Consumers that wish to set the compression bits
1541 1541   * must use this function to ensure that the flags are updated in
1542 1542   * thread-safe manner.
1543 1543   */
1544 1544  static void
1545 1545  arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1546 1546  {
1547 1547          ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1548 1548  
1549 1549          /*
1550 1550           * Holes and embedded blocks will always have a psize = 0 so
1551 1551           * we ignore the compression of the blkptr and set the
1552 1552           * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
1553 1553           * Holes and embedded blocks remain anonymous so we don't
1554 1554           * want to uncompress them. Mark them as uncompressed.
1555 1555           */
1556 1556          if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1557 1557                  arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1558 1558                  ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1559 1559          } else {
1560 1560                  arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1561 1561                  ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1562 1562          }
1563 1563  
1564 1564          HDR_SET_COMPRESS(hdr, cmp);
1565 1565          ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1566 1566  }
1567 1567  
1568 1568  /*
1569 1569   * Looks for another buf on the same hdr which has the data decompressed, copies
1570 1570   * from it, and returns true. If no such buf exists, returns false.
1571 1571   */
1572 1572  static boolean_t
1573 1573  arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1574 1574  {
1575 1575          arc_buf_hdr_t *hdr = buf->b_hdr;
1576 1576          boolean_t copied = B_FALSE;
1577 1577  
1578 1578          ASSERT(HDR_HAS_L1HDR(hdr));
1579 1579          ASSERT3P(buf->b_data, !=, NULL);
1580 1580          ASSERT(!ARC_BUF_COMPRESSED(buf));
1581 1581  
1582 1582          for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1583 1583              from = from->b_next) {
1584 1584                  /* can't use our own data buffer */
1585 1585                  if (from == buf) {
1586 1586                          continue;
1587 1587                  }
1588 1588  
1589 1589                  if (!ARC_BUF_COMPRESSED(from)) {
1590 1590                          bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1591 1591                          copied = B_TRUE;
1592 1592                          break;
1593 1593                  }
1594 1594          }
1595 1595  
1596 1596          /*
1597 1597           * Note: With encryption support, the following assertion is no longer
1598 1598           * necessarily valid. If we receive two back to back raw snapshots
1599 1599           * (send -w), the second receive can use a hdr with a cksum already
1600 1600           * calculated. This happens via:
1601 1601           *    dmu_recv_stream() -> receive_read_record() -> arc_loan_raw_buf()
1602 1602           * The rsend/send_mixed_raw test case exercises this code path.
1603 1603           *
1604 1604           * There were no decompressed bufs, so there should not be a
1605 1605           * checksum on the hdr either.
1606 1606           * EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1607 1607           */
1608 1608  
1609 1609          return (copied);
1610 1610  }
1611 1611  
1612 1612  /*
1613 1613   * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1614 1614   */
1615 1615  static uint64_t
1616 1616  arc_hdr_size(arc_buf_hdr_t *hdr)
1617 1617  {
1618 1618          uint64_t size;
1619 1619  
1620 1620          if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1621 1621              HDR_GET_PSIZE(hdr) > 0) {
1622 1622                  size = HDR_GET_PSIZE(hdr);
1623 1623          } else {
1624 1624                  ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1625 1625                  size = HDR_GET_LSIZE(hdr);
1626 1626          }
1627 1627          return (size);
1628 1628  }
1629 1629  
1630 1630  static int
1631 1631  arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1632 1632  {
1633 1633          int ret;
1634 1634          uint64_t csize;
1635 1635          uint64_t lsize = HDR_GET_LSIZE(hdr);
1636 1636          uint64_t psize = HDR_GET_PSIZE(hdr);
1637 1637          void *tmpbuf = NULL;
1638 1638          abd_t *abd = hdr->b_l1hdr.b_pabd;
1639 1639  
1640 1640          ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1641 1641          ASSERT(HDR_AUTHENTICATED(hdr));
1642 1642          ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1643 1643  
1644 1644          /*
1645 1645           * The MAC is calculated on the compressed data that is stored on disk.
1646 1646           * However, if compressed arc is disabled we will only have the
1647 1647           * decompressed data available to us now. Compress it into a temporary
1648 1648           * abd so we can verify the MAC. The performance overhead of this will
1649 1649           * be relatively low, since most objects in an encrypted objset will
1650 1650           * be encrypted (instead of authenticated) anyway.
1651 1651           */
1652 1652          if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1653 1653              !HDR_COMPRESSION_ENABLED(hdr)) {
1654 1654                  tmpbuf = zio_buf_alloc(lsize);
1655 1655                  abd = abd_get_from_buf(tmpbuf, lsize);
1656 1656                  abd_take_ownership_of_buf(abd, B_TRUE);
1657 1657  
1658 1658                  csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1659 1659                      hdr->b_l1hdr.b_pabd, tmpbuf, lsize);
1660 1660                  ASSERT3U(csize, <=, psize);
1661 1661                  abd_zero_off(abd, csize, psize - csize);
1662 1662          }
1663 1663  
1664 1664          /*
1665 1665           * Authentication is best effort. We authenticate whenever the key is
1666 1666           * available. If we succeed we clear ARC_FLAG_NOAUTH.
1667 1667           */
1668 1668          if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1669 1669                  ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1670 1670                  ASSERT3U(lsize, ==, psize);
1671 1671                  ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1672 1672                      psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1673 1673          } else {
1674 1674                  ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1675 1675                      hdr->b_crypt_hdr.b_mac);
1676 1676          }
1677 1677  
1678 1678          if (ret == 0)
1679 1679                  arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1680 1680          else if (ret != ENOENT)
1681 1681                  goto error;
1682 1682  
1683 1683          if (tmpbuf != NULL)
1684 1684                  abd_free(abd);
1685 1685  
1686 1686          return (0);
1687 1687  
1688 1688  error:
1689 1689          if (tmpbuf != NULL)
1690 1690                  abd_free(abd);
1691 1691  
1692 1692          return (ret);
1693 1693  }
1694 1694  
1695 1695  /*
1696 1696   * This function will take a header that only has raw encrypted data in
1697 1697   * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1698 1698   * b_l1hdr.b_pabd. If designated in the header flags, this function will
1699 1699   * also decompress the data.
1700 1700   */
1701 1701  static int
1702 1702  arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1703 1703  {
1704 1704          int ret;
1705 1705          abd_t *cabd = NULL;
1706 1706          void *tmp = NULL;
1707 1707          boolean_t no_crypt = B_FALSE;
1708 1708          boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1709 1709  
1710 1710          ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1711 1711          ASSERT(HDR_ENCRYPTED(hdr));
1712 1712  
1713 1713          arc_hdr_alloc_pabd(hdr, B_FALSE);
1714 1714  
1715 1715          ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1716 1716              B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1717 1717              hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1718 1718              hdr->b_crypt_hdr.b_rabd, &no_crypt);
1719 1719          if (ret != 0)
1720 1720                  goto error;
1721 1721  
1722 1722          if (no_crypt) {
1723 1723                  abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1724 1724                      HDR_GET_PSIZE(hdr));
1725 1725          }
1726 1726  
1727 1727          /*
1728 1728           * If this header has disabled arc compression but the b_pabd is
1729 1729           * compressed after decrypting it, we need to decompress the newly
1730 1730           * decrypted data.
1731 1731           */
1732 1732          if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1733 1733              !HDR_COMPRESSION_ENABLED(hdr)) {
1734 1734                  /*
1735 1735                   * We want to make sure that we are correctly honoring the
1736 1736                   * zfs_abd_scatter_enabled setting, so we allocate an abd here
1737 1737                   * and then loan a buffer from it, rather than allocating a
1738 1738                   * linear buffer and wrapping it in an abd later.
1739 1739                   */
1740 1740                  cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
1741 1741                  tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
1742 1742  
1743 1743                  ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1744 1744                      hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
1745 1745                      HDR_GET_LSIZE(hdr));
1746 1746                  if (ret != 0) {
1747 1747                          abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
1748 1748                          goto error;
1749 1749                  }
1750 1750  
1751 1751                  abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
1752 1752                  arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1753 1753                      arc_hdr_size(hdr), hdr);
1754 1754                  hdr->b_l1hdr.b_pabd = cabd;
1755 1755          }
1756 1756  
1757 1757          return (0);
1758 1758  
1759 1759  error:
1760 1760          arc_hdr_free_pabd(hdr, B_FALSE);
1761 1761          if (cabd != NULL)
1762 1762                  arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
1763 1763  
1764 1764          return (ret);
1765 1765  }
1766 1766  
1767 1767  /*
1768 1768   * This function is called during arc_buf_fill() to prepare the header's
1769 1769   * abd plaintext pointer for use. This involves authenticated protected
1770 1770   * data and decrypting encrypted data into the plaintext abd.
1771 1771   */
1772 1772  static int
1773 1773  arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1774 1774      const zbookmark_phys_t *zb, boolean_t noauth)
1775 1775  {
1776 1776          int ret;
1777 1777  
1778 1778          ASSERT(HDR_PROTECTED(hdr));
1779 1779  
1780 1780          if (hash_lock != NULL)
1781 1781                  mutex_enter(hash_lock);
1782 1782  
1783 1783          if (HDR_NOAUTH(hdr) && !noauth) {
1784 1784                  /*
1785 1785                   * The caller requested authenticated data but our data has
1786 1786                   * not been authenticated yet. Verify the MAC now if we can.
1787 1787                   */
1788 1788                  ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
1789 1789                  if (ret != 0)
1790 1790                          goto error;
1791 1791          } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1792 1792                  /*
1793 1793                   * If we only have the encrypted version of the data, but the
1794 1794                   * unencrypted version was requested we take this opportunity
1795 1795                   * to store the decrypted version in the header for future use.
1796 1796                   */
1797 1797                  ret = arc_hdr_decrypt(hdr, spa, zb);
1798 1798                  if (ret != 0)
1799 1799                          goto error;
1800 1800          }
1801 1801  
1802 1802          ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1803 1803  
1804 1804          if (hash_lock != NULL)
1805 1805                  mutex_exit(hash_lock);
1806 1806  
1807 1807          return (0);
1808 1808  
1809 1809  error:
1810 1810          if (hash_lock != NULL)
1811 1811                  mutex_exit(hash_lock);
1812 1812  
1813 1813          return (ret);
1814 1814  }
1815 1815  
1816 1816  /*
1817 1817   * This function is used by the dbuf code to decrypt bonus buffers in place.
1818 1818   * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1819 1819   * block, so we use the hash lock here to protect against concurrent calls to
1820 1820   * arc_buf_fill().
1821 1821   */
1822 1822  /* ARGSUSED */
1823 1823  static void
1824 1824  arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock)
1825 1825  {
1826 1826          arc_buf_hdr_t *hdr = buf->b_hdr;
1827 1827  
1828 1828          ASSERT(HDR_ENCRYPTED(hdr));
1829 1829          ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1830 1830          ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1831 1831          ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1832 1832  
1833 1833          zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
1834 1834              arc_buf_size(buf));
1835 1835          buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
1836 1836          buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1837 1837          hdr->b_crypt_hdr.b_ebufcnt -= 1;
1838 1838  }
1839 1839  
1840 1840  /*
1841 1841   * Given a buf that has a data buffer attached to it, this function will
1842 1842   * efficiently fill the buf with data of the specified compression setting from
1843 1843   * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1844 1844   * are already sharing a data buf, no copy is performed.
1845 1845   *
1846 1846   * If the buf is marked as compressed but uncompressed data was requested, this
1847 1847   * will allocate a new data buffer for the buf, remove that flag, and fill the
1848 1848   * buf with uncompressed data. You can't request a compressed buf on a hdr with
1849 1849   * uncompressed data, and (since we haven't added support for it yet) if you
1850 1850   * want compressed data your buf must already be marked as compressed and have
1851 1851   * the correct-sized data buffer.
1852 1852   */
1853 1853  static int
1854 1854  arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
1855 1855      arc_fill_flags_t flags)
1856 1856  {
1857 1857          int error = 0;
1858 1858          arc_buf_hdr_t *hdr = buf->b_hdr;
1859 1859          boolean_t hdr_compressed =
1860 1860              (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
1861 1861          boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
1862 1862          boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
1863 1863          dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1864 1864          kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
1865 1865  
1866 1866          ASSERT3P(buf->b_data, !=, NULL);
1867 1867          IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
1868 1868          IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1869 1869          IMPLY(encrypted, HDR_ENCRYPTED(hdr));
1870 1870          IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
1871 1871          IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
1872 1872          IMPLY(encrypted, !ARC_BUF_SHARED(buf));
1873 1873  
1874 1874          /*
1875 1875           * If the caller wanted encrypted data we just need to copy it from
1876 1876           * b_rabd and potentially byteswap it. We won't be able to do any
1877 1877           * further transforms on it.
1878 1878           */
1879 1879          if (encrypted) {
1880 1880                  ASSERT(HDR_HAS_RABD(hdr));
1881 1881                  abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
1882 1882                      HDR_GET_PSIZE(hdr));
1883 1883                  goto byteswap;
1884 1884          }
1885 1885  
1886 1886          /*
1887 1887           * Adjust encrypted and authenticated headers to accomodate
1888 1888           * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
1889 1889           * allowed to fail decryption due to keys not being loaded
1890 1890           * without being marked as an IO error.
1891 1891           */
1892 1892          if (HDR_PROTECTED(hdr)) {
1893 1893                  error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
1894 1894                      zb, !!(flags & ARC_FILL_NOAUTH));
1895 1895                  if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
1896 1896                          return (error);
1897 1897                  } else if (error != 0) {
1898 1898                          if (hash_lock != NULL)
1899 1899                                  mutex_enter(hash_lock);
1900 1900                          arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
1901 1901                          if (hash_lock != NULL)
1902 1902                                  mutex_exit(hash_lock);
1903 1903                          return (error);
1904 1904                  }
1905 1905          }
1906 1906  
1907 1907          /*
1908 1908           * There is a special case here for dnode blocks which are
1909 1909           * decrypting their bonus buffers. These blocks may request to
1910 1910           * be decrypted in-place. This is necessary because there may
1911 1911           * be many dnodes pointing into this buffer and there is
1912 1912           * currently no method to synchronize replacing the backing
1913 1913           * b_data buffer and updating all of the pointers. Here we use
1914 1914           * the hash lock to ensure there are no races. If the need
1915 1915           * arises for other types to be decrypted in-place, they must
1916 1916           * add handling here as well.
1917 1917           */
1918 1918          if ((flags & ARC_FILL_IN_PLACE) != 0) {
1919 1919                  ASSERT(!hdr_compressed);
1920 1920                  ASSERT(!compressed);
1921 1921                  ASSERT(!encrypted);
1922 1922  
1923 1923                  if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
1924 1924                          ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1925 1925  
1926 1926                          if (hash_lock != NULL)
1927 1927                                  mutex_enter(hash_lock);
1928 1928                          arc_buf_untransform_in_place(buf, hash_lock);
1929 1929                          if (hash_lock != NULL)
1930 1930                                  mutex_exit(hash_lock);
1931 1931  
1932 1932                          /* Compute the hdr's checksum if necessary */
1933 1933                          arc_cksum_compute(buf);
1934 1934                  }
1935 1935  
1936 1936                  return (0);
1937 1937          }
1938 1938  
1939 1939          if (hdr_compressed == compressed) {
1940 1940                  if (!arc_buf_is_shared(buf)) {
1941 1941                          abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
1942 1942                              arc_buf_size(buf));
1943 1943                  }
1944 1944          } else {
1945 1945                  ASSERT(hdr_compressed);
1946 1946                  ASSERT(!compressed);
1947 1947                  ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
1948 1948  
1949 1949                  /*
1950 1950                   * If the buf is sharing its data with the hdr, unlink it and
1951 1951                   * allocate a new data buffer for the buf.
1952 1952                   */
1953 1953                  if (arc_buf_is_shared(buf)) {
1954 1954                          ASSERT(ARC_BUF_COMPRESSED(buf));
1955 1955  
1956 1956                          /* We need to give the buf its own b_data */
1957 1957                          buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
1958 1958                          buf->b_data =
1959 1959                              arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1960 1960                          arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
1961 1961  
1962 1962                          /* Previously overhead was 0; just add new overhead */
1963 1963                          ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
1964 1964                  } else if (ARC_BUF_COMPRESSED(buf)) {
1965 1965                          /* We need to reallocate the buf's b_data */
1966 1966                          arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
1967 1967                              buf);
1968 1968                          buf->b_data =
1969 1969                              arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1970 1970  
1971 1971                          /* We increased the size of b_data; update overhead */
1972 1972                          ARCSTAT_INCR(arcstat_overhead_size,
1973 1973                              HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
1974 1974                  }
1975 1975  
1976 1976                  /*
1977 1977                   * Regardless of the buf's previous compression settings, it
1978 1978                   * should not be compressed at the end of this function.
1979 1979                   */
1980 1980                  buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1981 1981  
1982 1982                  /*
1983 1983                   * Try copying the data from another buf which already has a
1984 1984                   * decompressed version. If that's not possible, it's time to
1985 1985                   * bite the bullet and decompress the data from the hdr.
1986 1986                   */
1987 1987                  if (arc_buf_try_copy_decompressed_data(buf)) {
1988 1988                          /* Skip byteswapping and checksumming (already done) */
1989 1989                          ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
1990 1990                          return (0);
1991 1991                  } else {
1992 1992                          error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1993 1993                              hdr->b_l1hdr.b_pabd, buf->b_data,
1994 1994                              HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1995 1995  
1996 1996                          /*
1997 1997                           * Absent hardware errors or software bugs, this should
1998 1998                           * be impossible, but log it anyway so we can debug it.
1999 1999                           */
2000 2000                          if (error != 0) {
2001 2001                                  zfs_dbgmsg(
2002 2002                                      "hdr %p, compress %d, psize %d, lsize %d",
2003 2003                                      hdr, arc_hdr_get_compress(hdr),
2004 2004                                      HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2005 2005                                  if (hash_lock != NULL)
2006 2006                                          mutex_enter(hash_lock);
2007 2007                                  arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2008 2008                                  if (hash_lock != NULL)
2009 2009                                          mutex_exit(hash_lock);
2010 2010                                  return (SET_ERROR(EIO));
2011 2011                          }
2012 2012                  }
2013 2013          }
2014 2014  
2015 2015  byteswap:
2016 2016          /* Byteswap the buf's data if necessary */
2017 2017          if (bswap != DMU_BSWAP_NUMFUNCS) {
2018 2018                  ASSERT(!HDR_SHARED_DATA(hdr));
2019 2019                  ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2020 2020                  dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2021 2021          }
2022 2022  
2023 2023          /* Compute the hdr's checksum if necessary */
2024 2024          arc_cksum_compute(buf);
2025 2025  
2026 2026          return (0);
2027 2027  }
2028 2028  
2029 2029  /*
2030 2030   * If this function is being called to decrypt an encrypted buffer or verify an
2031 2031   * authenticated one, the key must be loaded and a mapping must be made
2032 2032   * available in the keystore via spa_keystore_create_mapping() or one of its
2033 2033   * callers.
2034 2034   */
2035 2035  int
2036 2036  arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2037 2037      boolean_t in_place)
2038 2038  {
2039 2039          int ret;
2040 2040          arc_fill_flags_t flags = 0;
2041 2041  
2042 2042          if (in_place)
2043 2043                  flags |= ARC_FILL_IN_PLACE;
2044 2044  
2045 2045          ret = arc_buf_fill(buf, spa, zb, flags);
2046 2046          if (ret == ECKSUM) {
2047 2047                  /*
2048 2048                   * Convert authentication and decryption errors to EIO
2049 2049                   * (and generate an ereport) before leaving the ARC.
2050 2050                   */
2051 2051                  ret = SET_ERROR(EIO);
2052 2052                  spa_log_error(spa, zb);
2053 2053                  (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2054 2054                      spa, NULL, zb, NULL, 0, 0);
2055 2055          }
2056 2056  
2057 2057          return (ret);
2058 2058  }
2059 2059  
2060 2060  /*
2061 2061   * Increment the amount of evictable space in the arc_state_t's refcount.
2062 2062   * We account for the space used by the hdr and the arc buf individually
2063 2063   * so that we can add and remove them from the refcount individually.
2064 2064   */
2065 2065  static void
2066 2066  arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2067 2067  {
2068 2068          arc_buf_contents_t type = arc_buf_type(hdr);
2069 2069  
2070 2070          ASSERT(HDR_HAS_L1HDR(hdr));
2071 2071  
2072 2072          if (GHOST_STATE(state)) {
2073 2073                  ASSERT0(hdr->b_l1hdr.b_bufcnt);
2074 2074                  ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2075 2075                  ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2076 2076                  ASSERT(!HDR_HAS_RABD(hdr));
2077 2077                  (void) zfs_refcount_add_many(&state->arcs_esize[type],
2078 2078                      HDR_GET_LSIZE(hdr), hdr);
2079 2079                  return;
2080 2080          }
2081 2081  
2082 2082          ASSERT(!GHOST_STATE(state));
2083 2083          if (hdr->b_l1hdr.b_pabd != NULL) {
2084 2084                  (void) zfs_refcount_add_many(&state->arcs_esize[type],
2085 2085                      arc_hdr_size(hdr), hdr);
2086 2086          }
2087 2087          if (HDR_HAS_RABD(hdr)) {
2088 2088                  (void) zfs_refcount_add_many(&state->arcs_esize[type],
2089 2089                      HDR_GET_PSIZE(hdr), hdr);
2090 2090          }
2091 2091          for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2092 2092              buf = buf->b_next) {
2093 2093                  if (arc_buf_is_shared(buf))
2094 2094                          continue;
2095 2095                  (void) zfs_refcount_add_many(&state->arcs_esize[type],
2096 2096                      arc_buf_size(buf), buf);
2097 2097          }
2098 2098  }
2099 2099  
2100 2100  /*
2101 2101   * Decrement the amount of evictable space in the arc_state_t's refcount.
2102 2102   * We account for the space used by the hdr and the arc buf individually
2103 2103   * so that we can add and remove them from the refcount individually.
2104 2104   */
2105 2105  static void
2106 2106  arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2107 2107  {
2108 2108          arc_buf_contents_t type = arc_buf_type(hdr);
2109 2109  
2110 2110          ASSERT(HDR_HAS_L1HDR(hdr));
2111 2111  
2112 2112          if (GHOST_STATE(state)) {
2113 2113                  ASSERT0(hdr->b_l1hdr.b_bufcnt);
2114 2114                  ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2115 2115                  ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2116 2116                  ASSERT(!HDR_HAS_RABD(hdr));
2117 2117                  (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2118 2118                      HDR_GET_LSIZE(hdr), hdr);
2119 2119                  return;
2120 2120          }
2121 2121  
2122 2122          ASSERT(!GHOST_STATE(state));
2123 2123          if (hdr->b_l1hdr.b_pabd != NULL) {
2124 2124                  (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2125 2125                      arc_hdr_size(hdr), hdr);
2126 2126          }
2127 2127          if (HDR_HAS_RABD(hdr)) {
2128 2128                  (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2129 2129                      HDR_GET_PSIZE(hdr), hdr);
2130 2130          }
2131 2131          for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2132 2132              buf = buf->b_next) {
2133 2133                  if (arc_buf_is_shared(buf))
2134 2134                          continue;
2135 2135                  (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2136 2136                      arc_buf_size(buf), buf);
2137 2137          }
2138 2138  }
2139 2139  
2140 2140  /*
2141 2141   * Add a reference to this hdr indicating that someone is actively
2142 2142   * referencing that memory. When the refcount transitions from 0 to 1,
2143 2143   * we remove it from the respective arc_state_t list to indicate that
2144 2144   * it is not evictable.
2145 2145   */
2146 2146  static void
2147 2147  add_reference(arc_buf_hdr_t *hdr, void *tag)
2148 2148  {
2149 2149          ASSERT(HDR_HAS_L1HDR(hdr));
2150 2150          if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
2151 2151                  ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2152 2152                  ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2153 2153                  ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2154 2154          }
2155 2155  
2156 2156          arc_state_t *state = hdr->b_l1hdr.b_state;
2157 2157  
2158 2158          if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2159 2159              (state != arc_anon)) {
2160 2160                  /* We don't use the L2-only state list. */
2161 2161                  if (state != arc_l2c_only) {
2162 2162                          multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2163 2163                              hdr);
2164 2164                          arc_evictable_space_decrement(hdr, state);
2165 2165                  }
2166 2166                  /* remove the prefetch flag if we get a reference */
2167 2167                  arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2168 2168          }
2169 2169  }
2170 2170  
2171 2171  /*
2172 2172   * Remove a reference from this hdr. When the reference transitions from
2173 2173   * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2174 2174   * list making it eligible for eviction.
2175 2175   */
2176 2176  static int
2177 2177  remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2178 2178  {
2179 2179          int cnt;
2180 2180          arc_state_t *state = hdr->b_l1hdr.b_state;
2181 2181  
2182 2182          ASSERT(HDR_HAS_L1HDR(hdr));
2183 2183          ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2184 2184          ASSERT(!GHOST_STATE(state));
2185 2185  
2186 2186          /*
2187 2187           * arc_l2c_only counts as a ghost state so we don't need to explicitly
2188 2188           * check to prevent usage of the arc_l2c_only list.
2189 2189           */
2190 2190          if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2191 2191              (state != arc_anon)) {
2192 2192                  multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2193 2193                  ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2194 2194                  arc_evictable_space_increment(hdr, state);
2195 2195          }
2196 2196          return (cnt);
2197 2197  }
2198 2198  
2199 2199  /*
2200 2200   * Move the supplied buffer to the indicated state. The hash lock
2201 2201   * for the buffer must be held by the caller.
2202 2202   */
2203 2203  static void
2204 2204  arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2205 2205      kmutex_t *hash_lock)
2206 2206  {
2207 2207          arc_state_t *old_state;
2208 2208          int64_t refcnt;
2209 2209          uint32_t bufcnt;
2210 2210          boolean_t update_old, update_new;
2211 2211          arc_buf_contents_t buftype = arc_buf_type(hdr);
2212 2212  
2213 2213          /*
2214 2214           * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2215 2215           * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2216 2216           * L1 hdr doesn't always exist when we change state to arc_anon before
2217 2217           * destroying a header, in which case reallocating to add the L1 hdr is
2218 2218           * pointless.
2219 2219           */
2220 2220          if (HDR_HAS_L1HDR(hdr)) {
2221 2221                  old_state = hdr->b_l1hdr.b_state;
2222 2222                  refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2223 2223                  bufcnt = hdr->b_l1hdr.b_bufcnt;
2224 2224  
2225 2225                  update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL ||
2226 2226                      HDR_HAS_RABD(hdr));
2227 2227          } else {
2228 2228                  old_state = arc_l2c_only;
2229 2229                  refcnt = 0;
2230 2230                  bufcnt = 0;
2231 2231                  update_old = B_FALSE;
2232 2232          }
2233 2233          update_new = update_old;
2234 2234  
2235 2235          ASSERT(MUTEX_HELD(hash_lock));
2236 2236          ASSERT3P(new_state, !=, old_state);
2237 2237          ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2238 2238          ASSERT(old_state != arc_anon || bufcnt <= 1);
2239 2239  
2240 2240          /*
2241 2241           * If this buffer is evictable, transfer it from the
2242 2242           * old state list to the new state list.
2243 2243           */
2244 2244          if (refcnt == 0) {
2245 2245                  if (old_state != arc_anon && old_state != arc_l2c_only) {
2246 2246                          ASSERT(HDR_HAS_L1HDR(hdr));
2247 2247                          multilist_remove(old_state->arcs_list[buftype], hdr);
2248 2248  
2249 2249                          if (GHOST_STATE(old_state)) {
2250 2250                                  ASSERT0(bufcnt);
2251 2251                                  ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2252 2252                                  update_old = B_TRUE;
2253 2253                          }
2254 2254                          arc_evictable_space_decrement(hdr, old_state);
2255 2255                  }
2256 2256                  if (new_state != arc_anon && new_state != arc_l2c_only) {
2257 2257  
2258 2258                          /*
2259 2259                           * An L1 header always exists here, since if we're
2260 2260                           * moving to some L1-cached state (i.e. not l2c_only or
2261 2261                           * anonymous), we realloc the header to add an L1hdr
2262 2262                           * beforehand.
2263 2263                           */
2264 2264                          ASSERT(HDR_HAS_L1HDR(hdr));
2265 2265                          multilist_insert(new_state->arcs_list[buftype], hdr);
2266 2266  
2267 2267                          if (GHOST_STATE(new_state)) {
2268 2268                                  ASSERT0(bufcnt);
2269 2269                                  ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2270 2270                                  update_new = B_TRUE;
2271 2271                          }
2272 2272                          arc_evictable_space_increment(hdr, new_state);
2273 2273                  }
2274 2274          }
2275 2275  
2276 2276          ASSERT(!HDR_EMPTY(hdr));
2277 2277          if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2278 2278                  buf_hash_remove(hdr);
2279 2279  
2280 2280          /* adjust state sizes (ignore arc_l2c_only) */
2281 2281  
2282 2282          if (update_new && new_state != arc_l2c_only) {
2283 2283                  ASSERT(HDR_HAS_L1HDR(hdr));
2284 2284                  if (GHOST_STATE(new_state)) {
2285 2285                          ASSERT0(bufcnt);
2286 2286  
2287 2287                          /*
2288 2288                           * When moving a header to a ghost state, we first
2289 2289                           * remove all arc buffers. Thus, we'll have a
2290 2290                           * bufcnt of zero, and no arc buffer to use for
2291 2291                           * the reference. As a result, we use the arc
2292 2292                           * header pointer for the reference.
2293 2293                           */
2294 2294                          (void) zfs_refcount_add_many(&new_state->arcs_size,
2295 2295                              HDR_GET_LSIZE(hdr), hdr);
2296 2296                          ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2297 2297                          ASSERT(!HDR_HAS_RABD(hdr));
2298 2298                  } else {
2299 2299                          uint32_t buffers = 0;
2300 2300  
2301 2301                          /*
2302 2302                           * Each individual buffer holds a unique reference,
2303 2303                           * thus we must remove each of these references one
2304 2304                           * at a time.
2305 2305                           */
2306 2306                          for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2307 2307                              buf = buf->b_next) {
2308 2308                                  ASSERT3U(bufcnt, !=, 0);
2309 2309                                  buffers++;
2310 2310  
2311 2311                                  /*
2312 2312                                   * When the arc_buf_t is sharing the data
2313 2313                                   * block with the hdr, the owner of the
2314 2314                                   * reference belongs to the hdr. Only
2315 2315                                   * add to the refcount if the arc_buf_t is
2316 2316                                   * not shared.
2317 2317                                   */
2318 2318                                  if (arc_buf_is_shared(buf))
2319 2319                                          continue;
2320 2320  
2321 2321                                  (void) zfs_refcount_add_many(
2322 2322                                      &new_state->arcs_size,
2323 2323                                      arc_buf_size(buf), buf);
2324 2324                          }
2325 2325                          ASSERT3U(bufcnt, ==, buffers);
2326 2326  
2327 2327                          if (hdr->b_l1hdr.b_pabd != NULL) {
2328 2328                                  (void) zfs_refcount_add_many(
2329 2329                                      &new_state->arcs_size,
2330 2330                                      arc_hdr_size(hdr), hdr);
2331 2331                          }
2332 2332  
2333 2333                          if (HDR_HAS_RABD(hdr)) {
2334 2334                                  (void) zfs_refcount_add_many(
2335 2335                                      &new_state->arcs_size,
2336 2336                                      HDR_GET_PSIZE(hdr), hdr);
2337 2337                          }
2338 2338                  }
2339 2339          }
2340 2340  
2341 2341          if (update_old && old_state != arc_l2c_only) {
2342 2342                  ASSERT(HDR_HAS_L1HDR(hdr));
2343 2343                  if (GHOST_STATE(old_state)) {
2344 2344                          ASSERT0(bufcnt);
2345 2345                          ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2346 2346                          ASSERT(!HDR_HAS_RABD(hdr));
2347 2347  
2348 2348                          /*
2349 2349                           * When moving a header off of a ghost state,
2350 2350                           * the header will not contain any arc buffers.
2351 2351                           * We use the arc header pointer for the reference
2352 2352                           * which is exactly what we did when we put the
2353 2353                           * header on the ghost state.
2354 2354                           */
2355 2355  
2356 2356                          (void) zfs_refcount_remove_many(&old_state->arcs_size,
2357 2357                              HDR_GET_LSIZE(hdr), hdr);
2358 2358                  } else {
2359 2359                          uint32_t buffers = 0;
2360 2360  
2361 2361                          /*
2362 2362                           * Each individual buffer holds a unique reference,
2363 2363                           * thus we must remove each of these references one
2364 2364                           * at a time.
2365 2365                           */
2366 2366                          for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2367 2367                              buf = buf->b_next) {
2368 2368                                  ASSERT3U(bufcnt, !=, 0);
2369 2369                                  buffers++;
2370 2370  
2371 2371                                  /*
2372 2372                                   * When the arc_buf_t is sharing the data
2373 2373                                   * block with the hdr, the owner of the
2374 2374                                   * reference belongs to the hdr. Only
2375 2375                                   * add to the refcount if the arc_buf_t is
2376 2376                                   * not shared.
2377 2377                                   */
2378 2378                                  if (arc_buf_is_shared(buf))
2379 2379                                          continue;
2380 2380  
2381 2381                                  (void) zfs_refcount_remove_many(
2382 2382                                      &old_state->arcs_size, arc_buf_size(buf),
2383 2383                                      buf);
2384 2384                          }
2385 2385                          ASSERT3U(bufcnt, ==, buffers);
2386 2386                          ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2387 2387                              HDR_HAS_RABD(hdr));
2388 2388  
2389 2389                          if (hdr->b_l1hdr.b_pabd != NULL) {
2390 2390                                  (void) zfs_refcount_remove_many(
2391 2391                                      &old_state->arcs_size, arc_hdr_size(hdr),
2392 2392                                      hdr);
2393 2393                          }
2394 2394  
2395 2395                          if (HDR_HAS_RABD(hdr)) {
2396 2396                                  (void) zfs_refcount_remove_many(
2397 2397                                      &old_state->arcs_size, HDR_GET_PSIZE(hdr),
2398 2398                                      hdr);
2399 2399                          }
2400 2400                  }
2401 2401          }
2402 2402  
2403 2403          if (HDR_HAS_L1HDR(hdr))
2404 2404                  hdr->b_l1hdr.b_state = new_state;
2405 2405  
2406 2406          /*
2407 2407           * L2 headers should never be on the L2 state list since they don't
2408 2408           * have L1 headers allocated.
2409 2409           */
2410 2410          ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2411 2411              multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2412 2412  }
2413 2413  
2414 2414  void
2415 2415  arc_space_consume(uint64_t space, arc_space_type_t type)
2416 2416  {
2417 2417          ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2418 2418  
2419 2419          switch (type) {
2420 2420          case ARC_SPACE_DATA:
2421 2421                  aggsum_add(&astat_data_size, space);
2422 2422                  break;
2423 2423          case ARC_SPACE_META:
2424 2424                  aggsum_add(&astat_metadata_size, space);
2425 2425                  break;
2426 2426          case ARC_SPACE_OTHER:
2427 2427                  aggsum_add(&astat_other_size, space);
2428 2428                  break;
2429 2429          case ARC_SPACE_HDRS:
2430 2430                  aggsum_add(&astat_hdr_size, space);
2431 2431                  break;
2432 2432          case ARC_SPACE_L2HDRS:
2433 2433                  aggsum_add(&astat_l2_hdr_size, space);
2434 2434                  break;
2435 2435          }
2436 2436  
2437 2437          if (type != ARC_SPACE_DATA)
2438 2438                  aggsum_add(&arc_meta_used, space);
2439 2439  
2440 2440          aggsum_add(&arc_size, space);
2441 2441  }
2442 2442  
2443 2443  void
2444 2444  arc_space_return(uint64_t space, arc_space_type_t type)
2445 2445  {
2446 2446          ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2447 2447  
2448 2448          switch (type) {
2449 2449          case ARC_SPACE_DATA:
2450 2450                  aggsum_add(&astat_data_size, -space);
2451 2451                  break;
2452 2452          case ARC_SPACE_META:
2453 2453                  aggsum_add(&astat_metadata_size, -space);
2454 2454                  break;
2455 2455          case ARC_SPACE_OTHER:
2456 2456                  aggsum_add(&astat_other_size, -space);
2457 2457                  break;
2458 2458          case ARC_SPACE_HDRS:
2459 2459                  aggsum_add(&astat_hdr_size, -space);
2460 2460                  break;
2461 2461          case ARC_SPACE_L2HDRS:
2462 2462                  aggsum_add(&astat_l2_hdr_size, -space);
2463 2463                  break;
2464 2464          }
2465 2465  
2466 2466          if (type != ARC_SPACE_DATA) {
2467 2467                  ASSERT(aggsum_compare(&arc_meta_used, space) >= 0);
2468 2468                  /*
2469 2469                   * We use the upper bound here rather than the precise value
2470 2470                   * because the arc_meta_max value doesn't need to be
2471 2471                   * precise. It's only consumed by humans via arcstats.
2472 2472                   */
2473 2473                  if (arc_meta_max < aggsum_upper_bound(&arc_meta_used))
2474 2474                          arc_meta_max = aggsum_upper_bound(&arc_meta_used);
2475 2475                  aggsum_add(&arc_meta_used, -space);
2476 2476          }
2477 2477  
2478 2478          ASSERT(aggsum_compare(&arc_size, space) >= 0);
2479 2479          aggsum_add(&arc_size, -space);
2480 2480  }
2481 2481  
2482 2482  /*
2483 2483   * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2484 2484   * with the hdr's b_pabd.
2485 2485   */
2486 2486  static boolean_t
2487 2487  arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2488 2488  {
2489 2489          /*
2490 2490           * The criteria for sharing a hdr's data are:
2491 2491           * 1. the buffer is not encrypted
2492 2492           * 2. the hdr's compression matches the buf's compression
2493 2493           * 3. the hdr doesn't need to be byteswapped
2494 2494           * 4. the hdr isn't already being shared
2495 2495           * 5. the buf is either compressed or it is the last buf in the hdr list
2496 2496           *
2497 2497           * Criterion #5 maintains the invariant that shared uncompressed
2498 2498           * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2499 2499           * might ask, "if a compressed buf is allocated first, won't that be the
2500 2500           * last thing in the list?", but in that case it's impossible to create
2501 2501           * a shared uncompressed buf anyway (because the hdr must be compressed
2502 2502           * to have the compressed buf). You might also think that #3 is
2503 2503           * sufficient to make this guarantee, however it's possible
2504 2504           * (specifically in the rare L2ARC write race mentioned in
2505 2505           * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2506 2506           * is sharable, but wasn't at the time of its allocation. Rather than
2507 2507           * allow a new shared uncompressed buf to be created and then shuffle
2508 2508           * the list around to make it the last element, this simply disallows
2509 2509           * sharing if the new buf isn't the first to be added.
2510 2510           */
2511 2511          ASSERT3P(buf->b_hdr, ==, hdr);
2512 2512          boolean_t hdr_compressed = arc_hdr_get_compress(hdr) !=
2513 2513              ZIO_COMPRESS_OFF;
2514 2514          boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2515 2515          return (!ARC_BUF_ENCRYPTED(buf) &&
2516 2516              buf_compressed == hdr_compressed &&
2517 2517              hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2518 2518              !HDR_SHARED_DATA(hdr) &&
2519 2519              (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2520 2520  }
2521 2521  
2522 2522  /*
2523 2523   * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2524 2524   * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2525 2525   * copy was made successfully, or an error code otherwise.
2526 2526   */
2527 2527  static int
2528 2528  arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2529 2529      void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth,
2530 2530      boolean_t fill, arc_buf_t **ret)
2531 2531  {
2532 2532          arc_buf_t *buf;
2533 2533          arc_fill_flags_t flags = ARC_FILL_LOCKED;
2534 2534  
2535 2535          ASSERT(HDR_HAS_L1HDR(hdr));
2536 2536          ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2537 2537          VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2538 2538              hdr->b_type == ARC_BUFC_METADATA);
2539 2539          ASSERT3P(ret, !=, NULL);
2540 2540          ASSERT3P(*ret, ==, NULL);
2541 2541          IMPLY(encrypted, compressed);
2542 2542  
2543 2543          buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2544 2544          buf->b_hdr = hdr;
2545 2545          buf->b_data = NULL;
2546 2546          buf->b_next = hdr->b_l1hdr.b_buf;
2547 2547          buf->b_flags = 0;
2548 2548  
2549 2549          add_reference(hdr, tag);
2550 2550  
2551 2551          /*
2552 2552           * We're about to change the hdr's b_flags. We must either
2553 2553           * hold the hash_lock or be undiscoverable.
2554 2554           */
2555 2555          ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2556 2556  
2557 2557          /*
2558 2558           * Only honor requests for compressed bufs if the hdr is actually
2559 2559           * compressed. This must be overriden if the buffer is encrypted since
2560 2560           * encrypted buffers cannot be decompressed.
2561 2561           */
2562 2562          if (encrypted) {
2563 2563                  buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2564 2564                  buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2565 2565                  flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2566 2566          } else if (compressed &&
2567 2567              arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2568 2568                  buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2569 2569                  flags |= ARC_FILL_COMPRESSED;
2570 2570          }
2571 2571  
2572 2572          if (noauth) {
2573 2573                  ASSERT0(encrypted);
2574 2574                  flags |= ARC_FILL_NOAUTH;
2575 2575          }
2576 2576  
2577 2577          /*
2578 2578           * If the hdr's data can be shared then we share the data buffer and
2579 2579           * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2580 2580           * allocate a new buffer to store the buf's data.
2581 2581           *
2582 2582           * There are two additional restrictions here because we're sharing
2583 2583           * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2584 2584           * actively involved in an L2ARC write, because if this buf is used by
2585 2585           * an arc_write() then the hdr's data buffer will be released when the
2586 2586           * write completes, even though the L2ARC write might still be using it.
2587 2587           * Second, the hdr's ABD must be linear so that the buf's user doesn't
2588 2588           * need to be ABD-aware.
2589 2589           */
2590 2590          boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2591 2591              hdr->b_l1hdr.b_pabd != NULL && abd_is_linear(hdr->b_l1hdr.b_pabd);
2592 2592  
2593 2593          /* Set up b_data and sharing */
2594 2594          if (can_share) {
2595 2595                  buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2596 2596                  buf->b_flags |= ARC_BUF_FLAG_SHARED;
2597 2597                  arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2598 2598          } else {
2599 2599                  buf->b_data =
2600 2600                      arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2601 2601                  ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2602 2602          }
2603 2603          VERIFY3P(buf->b_data, !=, NULL);
2604 2604  
2605 2605          hdr->b_l1hdr.b_buf = buf;
2606 2606          hdr->b_l1hdr.b_bufcnt += 1;
2607 2607          if (encrypted)
2608 2608                  hdr->b_crypt_hdr.b_ebufcnt += 1;
2609 2609  
2610 2610          /*
2611 2611           * If the user wants the data from the hdr, we need to either copy or
2612 2612           * decompress the data.
2613 2613           */
2614 2614          if (fill) {
2615 2615                  ASSERT3P(zb, !=, NULL);
2616 2616                  return (arc_buf_fill(buf, spa, zb, flags));
2617 2617          }
2618 2618  
2619 2619          return (0);
2620 2620  }
2621 2621  
2622 2622  static char *arc_onloan_tag = "onloan";
2623 2623  
2624 2624  static inline void
2625 2625  arc_loaned_bytes_update(int64_t delta)
2626 2626  {
2627 2627          atomic_add_64(&arc_loaned_bytes, delta);
2628 2628  
2629 2629          /* assert that it did not wrap around */
2630 2630          ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2631 2631  }
2632 2632  
2633 2633  /*
2634 2634   * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2635 2635   * flight data by arc_tempreserve_space() until they are "returned". Loaned
2636 2636   * buffers must be returned to the arc before they can be used by the DMU or
2637 2637   * freed.
2638 2638   */
2639 2639  arc_buf_t *
2640 2640  arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2641 2641  {
2642 2642          arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2643 2643              is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2644 2644  
2645 2645          arc_loaned_bytes_update(arc_buf_size(buf));
2646 2646  
2647 2647          return (buf);
2648 2648  }
2649 2649  
2650 2650  arc_buf_t *
2651 2651  arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2652 2652      enum zio_compress compression_type)
2653 2653  {
2654 2654          arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2655 2655              psize, lsize, compression_type);
2656 2656  
2657 2657          arc_loaned_bytes_update(arc_buf_size(buf));
2658 2658  
2659 2659          return (buf);
2660 2660  }
2661 2661  
2662 2662  arc_buf_t *
2663 2663  arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2664 2664      const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2665 2665      dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2666 2666      enum zio_compress compression_type)
2667 2667  {
2668 2668          arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2669 2669              byteorder, salt, iv, mac, ot, psize, lsize, compression_type);
2670 2670  
2671 2671          atomic_add_64(&arc_loaned_bytes, psize);
2672 2672          return (buf);
2673 2673  }
2674 2674  
2675 2675  /*
2676 2676   * Performance tuning of L2ARC persistence:
2677 2677   *
2678 2678   * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
2679 2679   *              an L2ARC device (either at pool import or later) will attempt
2680 2680   *              to rebuild L2ARC buffer contents.
2681 2681   * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
2682 2682   *              whether log blocks are written to the L2ARC device. If the L2ARC
2683 2683   *              device is less than 1GB, the amount of data l2arc_evict()
2684 2684   *              evicts is significant compared to the amount of restored L2ARC
2685 2685   *              data. In this case do not write log blocks in L2ARC in order
2686 2686   *              not to waste space.
2687 2687   */
2688 2688  int l2arc_rebuild_enabled = B_TRUE;
2689 2689  unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
2690 2690  
2691 2691  /* L2ARC persistence rebuild control routines. */
2692 2692  void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
2693 2693  static void l2arc_dev_rebuild_start(l2arc_dev_t *dev);
2694 2694  static int l2arc_rebuild(l2arc_dev_t *dev);
2695 2695  
2696 2696  /* L2ARC persistence read I/O routines. */
2697 2697  static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
2698 2698  static int l2arc_log_blk_read(l2arc_dev_t *dev,
2699 2699      const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
2700 2700      l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
2701 2701      zio_t *this_io, zio_t **next_io);
2702 2702  static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
2703 2703      const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
2704 2704  static void l2arc_log_blk_fetch_abort(zio_t *zio);
2705 2705  
2706 2706  /* L2ARC persistence block restoration routines. */
2707 2707  static void l2arc_log_blk_restore(l2arc_dev_t *dev,
2708 2708      const l2arc_log_blk_phys_t *lb, uint64_t lb_asize, uint64_t lb_daddr);
2709 2709  static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
2710 2710      l2arc_dev_t *dev);
2711 2711  
2712 2712  /* L2ARC persistence write I/O routines. */
2713 2713  static void l2arc_dev_hdr_update(l2arc_dev_t *dev);
2714 2714  static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
2715 2715      l2arc_write_callback_t *cb);
2716 2716  
2717 2717  /* L2ARC persistence auxilliary routines. */
2718 2718  boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
2719 2719      const l2arc_log_blkptr_t *lbp);
2720 2720  static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
2721 2721      const arc_buf_hdr_t *ab);
2722 2722  boolean_t l2arc_range_check_overlap(uint64_t bottom,
2723 2723      uint64_t top, uint64_t check);
2724 2724  static void l2arc_blk_fetch_done(zio_t *zio);
2725 2725  static inline uint64_t
2726 2726      l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
2727 2727  
2728 2728  /*
2729 2729   * Return a loaned arc buffer to the arc.
2730 2730   */
2731 2731  void
2732 2732  arc_return_buf(arc_buf_t *buf, void *tag)
2733 2733  {
2734 2734          arc_buf_hdr_t *hdr = buf->b_hdr;
2735 2735  
2736 2736          ASSERT3P(buf->b_data, !=, NULL);
2737 2737          ASSERT(HDR_HAS_L1HDR(hdr));
2738 2738          (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2739 2739          (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2740 2740  
2741 2741          arc_loaned_bytes_update(-arc_buf_size(buf));
2742 2742  }
2743 2743  
2744 2744  /* Detach an arc_buf from a dbuf (tag) */
2745 2745  void
2746 2746  arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2747 2747  {
2748 2748          arc_buf_hdr_t *hdr = buf->b_hdr;
2749 2749  
2750 2750          ASSERT3P(buf->b_data, !=, NULL);
2751 2751          ASSERT(HDR_HAS_L1HDR(hdr));
2752 2752          (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2753 2753          (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2754 2754  
2755 2755          arc_loaned_bytes_update(arc_buf_size(buf));
2756 2756  }
2757 2757  
2758 2758  static void
2759 2759  l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2760 2760  {
2761 2761          l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2762 2762  
2763 2763          df->l2df_abd = abd;
2764 2764          df->l2df_size = size;
2765 2765          df->l2df_type = type;
2766 2766          mutex_enter(&l2arc_free_on_write_mtx);
2767 2767          list_insert_head(l2arc_free_on_write, df);
2768 2768          mutex_exit(&l2arc_free_on_write_mtx);
2769 2769  }
2770 2770  
2771 2771  static void
2772 2772  arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2773 2773  {
2774 2774          arc_state_t *state = hdr->b_l1hdr.b_state;
2775 2775          arc_buf_contents_t type = arc_buf_type(hdr);
2776 2776          uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2777 2777  
2778 2778          /* protected by hash lock, if in the hash table */
2779 2779          if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2780 2780                  ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2781 2781                  ASSERT(state != arc_anon && state != arc_l2c_only);
2782 2782  
2783 2783                  (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2784 2784                      size, hdr);
2785 2785          }
2786 2786          (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr);
2787 2787          if (type == ARC_BUFC_METADATA) {
2788 2788                  arc_space_return(size, ARC_SPACE_META);
2789 2789          } else {
2790 2790                  ASSERT(type == ARC_BUFC_DATA);
2791 2791                  arc_space_return(size, ARC_SPACE_DATA);
2792 2792          }
2793 2793  
2794 2794          if (free_rdata) {
2795 2795                  l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2796 2796          } else {
2797 2797                  l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2798 2798          }
2799 2799  }
2800 2800  
2801 2801  /*
2802 2802   * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2803 2803   * data buffer, we transfer the refcount ownership to the hdr and update
2804 2804   * the appropriate kstats.
2805 2805   */
2806 2806  static void
2807 2807  arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2808 2808  {
2809 2809          /* LINTED */
2810 2810          arc_state_t *state = hdr->b_l1hdr.b_state;
2811 2811  
2812 2812          ASSERT(arc_can_share(hdr, buf));
2813 2813          ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2814 2814          ASSERT(!ARC_BUF_ENCRYPTED(buf));
2815 2815          ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2816 2816  
2817 2817          /*
2818 2818           * Start sharing the data buffer. We transfer the
2819 2819           * refcount ownership to the hdr since it always owns
2820 2820           * the refcount whenever an arc_buf_t is shared.
2821 2821           */
2822 2822          zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
2823 2823              arc_hdr_size(hdr), buf, hdr);
2824 2824          hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2825 2825          abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2826 2826              HDR_ISTYPE_METADATA(hdr));
2827 2827          arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2828 2828          buf->b_flags |= ARC_BUF_FLAG_SHARED;
2829 2829  
2830 2830          /*
2831 2831           * Since we've transferred ownership to the hdr we need
2832 2832           * to increment its compressed and uncompressed kstats and
2833 2833           * decrement the overhead size.
2834 2834           */
2835 2835          ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2836 2836          ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2837 2837          ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2838 2838  }
2839 2839  
2840 2840  static void
2841 2841  arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2842 2842  {
2843 2843          /* LINTED */
2844 2844          arc_state_t *state = hdr->b_l1hdr.b_state;
2845 2845  
2846 2846          ASSERT(arc_buf_is_shared(buf));
2847 2847          ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2848 2848          ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2849 2849  
2850 2850          /*
2851 2851           * We are no longer sharing this buffer so we need
2852 2852           * to transfer its ownership to the rightful owner.
2853 2853           */
2854 2854          zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
2855 2855              arc_hdr_size(hdr), hdr, buf);
2856 2856          arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2857 2857          abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2858 2858          abd_put(hdr->b_l1hdr.b_pabd);
2859 2859          hdr->b_l1hdr.b_pabd = NULL;
2860 2860          buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2861 2861  
2862 2862          /*
2863 2863           * Since the buffer is no longer shared between
2864 2864           * the arc buf and the hdr, count it as overhead.
2865 2865           */
2866 2866          ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2867 2867          ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2868 2868          ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2869 2869  }
2870 2870  
2871 2871  /*
2872 2872   * Remove an arc_buf_t from the hdr's buf list and return the last
2873 2873   * arc_buf_t on the list. If no buffers remain on the list then return
2874 2874   * NULL.
2875 2875   */
2876 2876  static arc_buf_t *
2877 2877  arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2878 2878  {
2879 2879          arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
2880 2880          arc_buf_t *lastbuf = NULL;
2881 2881  
2882 2882          ASSERT(HDR_HAS_L1HDR(hdr));
2883 2883          ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2884 2884  
2885 2885          /*
2886 2886           * Remove the buf from the hdr list and locate the last
2887 2887           * remaining buffer on the list.
2888 2888           */
2889 2889          while (*bufp != NULL) {
2890 2890                  if (*bufp == buf)
2891 2891                          *bufp = buf->b_next;
2892 2892  
2893 2893                  /*
2894 2894                   * If we've removed a buffer in the middle of
2895 2895                   * the list then update the lastbuf and update
2896 2896                   * bufp.
2897 2897                   */
2898 2898                  if (*bufp != NULL) {
2899 2899                          lastbuf = *bufp;
2900 2900                          bufp = &(*bufp)->b_next;
2901 2901                  }
2902 2902          }
2903 2903          buf->b_next = NULL;
2904 2904          ASSERT3P(lastbuf, !=, buf);
2905 2905          IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
2906 2906          IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
2907 2907          IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
2908 2908  
2909 2909          return (lastbuf);
2910 2910  }
2911 2911  
2912 2912  /*
2913 2913   * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
2914 2914   * list and free it.
2915 2915   */
2916 2916  static void
2917 2917  arc_buf_destroy_impl(arc_buf_t *buf)
2918 2918  {
2919 2919          arc_buf_hdr_t *hdr = buf->b_hdr;
2920 2920  
2921 2921          /*
2922 2922           * Free up the data associated with the buf but only if we're not
2923 2923           * sharing this with the hdr. If we are sharing it with the hdr, the
2924 2924           * hdr is responsible for doing the free.
2925 2925           */
2926 2926          if (buf->b_data != NULL) {
2927 2927                  /*
2928 2928                   * We're about to change the hdr's b_flags. We must either
2929 2929                   * hold the hash_lock or be undiscoverable.
2930 2930                   */
2931 2931                  ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2932 2932  
2933 2933                  arc_cksum_verify(buf);
2934 2934                  arc_buf_unwatch(buf);
2935 2935  
2936 2936                  if (arc_buf_is_shared(buf)) {
2937 2937                          arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2938 2938                  } else {
2939 2939                          uint64_t size = arc_buf_size(buf);
2940 2940                          arc_free_data_buf(hdr, buf->b_data, size, buf);
2941 2941                          ARCSTAT_INCR(arcstat_overhead_size, -size);
2942 2942                  }
2943 2943                  buf->b_data = NULL;
2944 2944  
2945 2945                  ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2946 2946                  hdr->b_l1hdr.b_bufcnt -= 1;
2947 2947  
2948 2948                  if (ARC_BUF_ENCRYPTED(buf)) {
2949 2949                          hdr->b_crypt_hdr.b_ebufcnt -= 1;
2950 2950  
2951 2951                          /*
2952 2952                           * If we have no more encrypted buffers and we've
2953 2953                           * already gotten a copy of the decrypted data we can
2954 2954                           * free b_rabd to save some space.
2955 2955                           */
2956 2956                          if (hdr->b_crypt_hdr.b_ebufcnt == 0 &&
2957 2957                              HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL &&
2958 2958                              !HDR_IO_IN_PROGRESS(hdr)) {
2959 2959                                  arc_hdr_free_pabd(hdr, B_TRUE);
2960 2960                          }
2961 2961                  }
2962 2962          }
2963 2963  
2964 2964          arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
2965 2965  
2966 2966          if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2967 2967                  /*
2968 2968                   * If the current arc_buf_t is sharing its data buffer with the
2969 2969                   * hdr, then reassign the hdr's b_pabd to share it with the new
2970 2970                   * buffer at the end of the list. The shared buffer is always
2971 2971                   * the last one on the hdr's buffer list.
2972 2972                   *
2973 2973                   * There is an equivalent case for compressed bufs, but since
2974 2974                   * they aren't guaranteed to be the last buf in the list and
2975 2975                   * that is an exceedingly rare case, we just allow that space be
2976 2976                   * wasted temporarily. We must also be careful not to share
2977 2977                   * encrypted buffers, since they cannot be shared.
2978 2978                   */
2979 2979                  if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
2980 2980                          /* Only one buf can be shared at once */
2981 2981                          VERIFY(!arc_buf_is_shared(lastbuf));
2982 2982                          /* hdr is uncompressed so can't have compressed buf */
2983 2983                          VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
2984 2984  
2985 2985                          ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2986 2986                          arc_hdr_free_pabd(hdr, B_FALSE);
2987 2987  
2988 2988                          /*
2989 2989                           * We must setup a new shared block between the
2990 2990                           * last buffer and the hdr. The data would have
2991 2991                           * been allocated by the arc buf so we need to transfer
2992 2992                           * ownership to the hdr since it's now being shared.
2993 2993                           */
2994 2994                          arc_share_buf(hdr, lastbuf);
2995 2995                  }
2996 2996          } else if (HDR_SHARED_DATA(hdr)) {
2997 2997                  /*
2998 2998                   * Uncompressed shared buffers are always at the end
2999 2999                   * of the list. Compressed buffers don't have the
3000 3000                   * same requirements. This makes it hard to
3001 3001                   * simply assert that the lastbuf is shared so
3002 3002                   * we rely on the hdr's compression flags to determine
3003 3003                   * if we have a compressed, shared buffer.
3004 3004                   */
3005 3005                  ASSERT3P(lastbuf, !=, NULL);
3006 3006                  ASSERT(arc_buf_is_shared(lastbuf) ||
3007 3007                      arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3008 3008          }
3009 3009  
3010 3010          /*
3011 3011           * Free the checksum if we're removing the last uncompressed buf from
3012 3012           * this hdr.
3013 3013           */
3014 3014          if (!arc_hdr_has_uncompressed_buf(hdr)) {
3015 3015                  arc_cksum_free(hdr);
3016 3016          }
3017 3017  
3018 3018          /* clean up the buf */
3019 3019          buf->b_hdr = NULL;
3020 3020          kmem_cache_free(buf_cache, buf);
3021 3021  }
3022 3022  
3023 3023  static void
3024 3024  arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr, boolean_t alloc_rdata)
3025 3025  {
3026 3026          uint64_t size;
3027 3027  
3028 3028          ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3029 3029          ASSERT(HDR_HAS_L1HDR(hdr));
3030 3030          ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3031 3031          IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3032 3032  
3033 3033          if (alloc_rdata) {
3034 3034                  size = HDR_GET_PSIZE(hdr);
3035 3035                  ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3036 3036                  hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr);
3037 3037                  ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3038 3038          } else {
3039 3039                  size = arc_hdr_size(hdr);
3040 3040                  ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3041 3041                  hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr);
3042 3042                  ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3043 3043          }
3044 3044  
3045 3045          ARCSTAT_INCR(arcstat_compressed_size, size);
3046 3046          ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3047 3047  }
3048 3048  
3049 3049  static void
3050 3050  arc_hdr_free_pabd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3051 3051  {
3052 3052          uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3053 3053  
3054 3054          ASSERT(HDR_HAS_L1HDR(hdr));
3055 3055          ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3056 3056          IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3057 3057  
3058 3058  
3059 3059          /*
3060 3060           * If the hdr is currently being written to the l2arc then
3061 3061           * we defer freeing the data by adding it to the l2arc_free_on_write
3062 3062           * list. The l2arc will free the data once it's finished
3063 3063           * writing it to the l2arc device.
3064 3064           */
3065 3065          if (HDR_L2_WRITING(hdr)) {
3066 3066                  arc_hdr_free_on_write(hdr, free_rdata);
3067 3067                  ARCSTAT_BUMP(arcstat_l2_free_on_write);
3068 3068          } else if (free_rdata) {
3069 3069                  arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3070 3070          } else {
3071 3071                  arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
3072 3072                      size, hdr);
3073 3073          }
3074 3074  
3075 3075          if (free_rdata) {
3076 3076                  hdr->b_crypt_hdr.b_rabd = NULL;
3077 3077          } else {
3078 3078                  hdr->b_l1hdr.b_pabd = NULL;
3079 3079          }
3080 3080  
3081 3081          if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3082 3082                  hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3083 3083  
3084 3084          ARCSTAT_INCR(arcstat_compressed_size, -size);
3085 3085          ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3086 3086  }
3087 3087  
3088 3088  static arc_buf_hdr_t *
3089 3089  arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3090 3090      boolean_t protected, enum zio_compress compression_type,
3091 3091      arc_buf_contents_t type, boolean_t alloc_rdata)
3092 3092  {
3093 3093          arc_buf_hdr_t *hdr;
3094 3094  
3095 3095          VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3096 3096          if (protected) {
3097 3097                  hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE);
3098 3098          } else {
3099 3099                  hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3100 3100          }
3101 3101          ASSERT(HDR_EMPTY(hdr));
3102 3102          ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3103 3103          ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
3104 3104          HDR_SET_PSIZE(hdr, psize);
3105 3105          HDR_SET_LSIZE(hdr, lsize);
3106 3106          hdr->b_spa = spa;
3107 3107          hdr->b_type = type;
3108 3108          hdr->b_flags = 0;
3109 3109          arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3110 3110          arc_hdr_set_compress(hdr, compression_type);
3111 3111          if (protected)
3112 3112                  arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3113 3113  
3114 3114          hdr->b_l1hdr.b_state = arc_anon;
3115 3115          hdr->b_l1hdr.b_arc_access = 0;
3116 3116          hdr->b_l1hdr.b_bufcnt = 0;
3117 3117          hdr->b_l1hdr.b_buf = NULL;
3118 3118  
3119 3119          /*
3120 3120           * Allocate the hdr's buffer. This will contain either
3121 3121           * the compressed or uncompressed data depending on the block
3122 3122           * it references and compressed arc enablement.
3123 3123           */
3124 3124          arc_hdr_alloc_pabd(hdr, alloc_rdata);
3125 3125          ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3126 3126  
3127 3127          return (hdr);
3128 3128  }
3129 3129  
3130 3130  /*
3131 3131   * Transition between the two allocation states for the arc_buf_hdr struct.
3132 3132   * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3133 3133   * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3134 3134   * version is used when a cache buffer is only in the L2ARC in order to reduce
3135 3135   * memory usage.
3136 3136   */
3137 3137  static arc_buf_hdr_t *
3138 3138  arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3139 3139  {
3140 3140          ASSERT(HDR_HAS_L2HDR(hdr));
3141 3141  
3142 3142          arc_buf_hdr_t *nhdr;
3143 3143          l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3144 3144  
3145 3145          ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3146 3146              (old == hdr_l2only_cache && new == hdr_full_cache));
3147 3147  
3148 3148          /*
3149 3149           * if the caller wanted a new full header and the header is to be
3150 3150           * encrypted we will actually allocate the header from the full crypt
3151 3151           * cache instead. The same applies to freeing from the old cache.
3152 3152           */
3153 3153          if (HDR_PROTECTED(hdr) && new == hdr_full_cache)
3154 3154                  new = hdr_full_crypt_cache;
3155 3155          if (HDR_PROTECTED(hdr) && old == hdr_full_cache)
3156 3156                  old = hdr_full_crypt_cache;
3157 3157  
3158 3158          nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3159 3159  
3160 3160          ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3161 3161          buf_hash_remove(hdr);
3162 3162  
3163 3163          bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
3164 3164  
3165 3165          if (new == hdr_full_cache || new == hdr_full_crypt_cache) {
3166 3166                  arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3167 3167                  /*
3168 3168                   * arc_access and arc_change_state need to be aware that a
3169 3169                   * header has just come out of L2ARC, so we set its state to
3170 3170                   * l2c_only even though it's about to change.
3171 3171                   */
3172 3172                  nhdr->b_l1hdr.b_state = arc_l2c_only;
3173 3173  
3174 3174                  /* Verify previous threads set to NULL before freeing */
3175 3175                  ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3176 3176                  ASSERT(!HDR_HAS_RABD(hdr));
3177 3177          } else {
3178 3178                  ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3179 3179                  ASSERT0(hdr->b_l1hdr.b_bufcnt);
3180 3180                  ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3181 3181  
3182 3182                  /*
3183 3183                   * If we've reached here, We must have been called from
3184 3184                   * arc_evict_hdr(), as such we should have already been
3185 3185                   * removed from any ghost list we were previously on
3186 3186                   * (which protects us from racing with arc_evict_state),
3187 3187                   * thus no locking is needed during this check.
3188 3188                   */
3189 3189                  ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3190 3190  
3191 3191                  /*
3192 3192                   * A buffer must not be moved into the arc_l2c_only
3193 3193                   * state if it's not finished being written out to the
3194 3194                   * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3195 3195                   * might try to be accessed, even though it was removed.
3196 3196                   */
3197 3197                  VERIFY(!HDR_L2_WRITING(hdr));
3198 3198                  VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3199 3199                  ASSERT(!HDR_HAS_RABD(hdr));
3200 3200  
3201 3201  #ifdef ZFS_DEBUG
3202 3202                  if (hdr->b_l1hdr.b_thawed != NULL) {
3203 3203                          kmem_free(hdr->b_l1hdr.b_thawed, 1);
3204 3204                          hdr->b_l1hdr.b_thawed = NULL;
3205 3205                  }
3206 3206  #endif
3207 3207  
3208 3208                  arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3209 3209          }
3210 3210          /*
3211 3211           * The header has been reallocated so we need to re-insert it into any
3212 3212           * lists it was on.
3213 3213           */
3214 3214          (void) buf_hash_insert(nhdr, NULL);
3215 3215  
3216 3216          ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3217 3217  
3218 3218          mutex_enter(&dev->l2ad_mtx);
3219 3219  
3220 3220          /*
3221 3221           * We must place the realloc'ed header back into the list at
3222 3222           * the same spot. Otherwise, if it's placed earlier in the list,
3223 3223           * l2arc_write_buffers() could find it during the function's
3224 3224           * write phase, and try to write it out to the l2arc.
3225 3225           */
3226 3226          list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3227 3227          list_remove(&dev->l2ad_buflist, hdr);
3228 3228  
3229 3229          mutex_exit(&dev->l2ad_mtx);
3230 3230  
3231 3231          /*
3232 3232           * Since we're using the pointer address as the tag when
3233 3233           * incrementing and decrementing the l2ad_alloc refcount, we
3234 3234           * must remove the old pointer (that we're about to destroy) and
3235 3235           * add the new pointer to the refcount. Otherwise we'd remove
3236 3236           * the wrong pointer address when calling arc_hdr_destroy() later.
3237 3237           */
3238 3238  
3239 3239          (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3240 3240              hdr);
3241 3241          (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr),
3242 3242              nhdr);
3243 3243  
3244 3244          buf_discard_identity(hdr);
3245 3245          kmem_cache_free(old, hdr);
3246 3246  
3247 3247          return (nhdr);
3248 3248  }
3249 3249  
3250 3250  /*
3251 3251   * This function allows an L1 header to be reallocated as a crypt
3252 3252   * header and vice versa. If we are going to a crypt header, the
3253 3253   * new fields will be zeroed out.
3254 3254   */
3255 3255  static arc_buf_hdr_t *
3256 3256  arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt)
3257 3257  {
3258 3258          arc_buf_hdr_t *nhdr;
3259 3259          arc_buf_t *buf;
3260 3260          kmem_cache_t *ncache, *ocache;
3261 3261  
3262 3262          ASSERT(HDR_HAS_L1HDR(hdr));
3263 3263          ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt);
3264 3264          ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3265 3265          ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3266 3266          ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node));
3267 3267          ASSERT3P(hdr->b_hash_next, ==, NULL);
3268 3268  
3269 3269          if (need_crypt) {
3270 3270                  ncache = hdr_full_crypt_cache;
3271 3271                  ocache = hdr_full_cache;
3272 3272          } else {
3273 3273                  ncache = hdr_full_cache;
3274 3274                  ocache = hdr_full_crypt_cache;
3275 3275          }
3276 3276  
3277 3277          nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE);
3278 3278  
3279 3279          /*
3280 3280           * Copy all members that aren't locks or condvars to the new header.
3281 3281           * No lists are pointing to us (as we asserted above), so we don't
3282 3282           * need to worry about the list nodes.
3283 3283           */
3284 3284          nhdr->b_dva = hdr->b_dva;
3285 3285          nhdr->b_birth = hdr->b_birth;
3286 3286          nhdr->b_type = hdr->b_type;
3287 3287          nhdr->b_flags = hdr->b_flags;
3288 3288          nhdr->b_psize = hdr->b_psize;
3289 3289          nhdr->b_lsize = hdr->b_lsize;
3290 3290          nhdr->b_spa = hdr->b_spa;
3291 3291          nhdr->b_l2hdr.b_dev = hdr->b_l2hdr.b_dev;
3292 3292          nhdr->b_l2hdr.b_daddr = hdr->b_l2hdr.b_daddr;
3293 3293          nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum;
3294 3294          nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt;
3295 3295          nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap;
3296 3296          nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state;
3297 3297          nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access;
3298 3298          nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb;
3299 3299          nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd;
3300 3300  #ifdef ZFS_DEBUG
3301 3301          if (hdr->b_l1hdr.b_thawed != NULL) {
3302 3302                  nhdr->b_l1hdr.b_thawed = hdr->b_l1hdr.b_thawed;
3303 3303                  hdr->b_l1hdr.b_thawed = NULL;
3304 3304          }
3305 3305  #endif
3306 3306  
3307 3307          /*
3308 3308           * This refcount_add() exists only to ensure that the individual
3309 3309           * arc buffers always point to a header that is referenced, avoiding
3310 3310           * a small race condition that could trigger ASSERTs.
3311 3311           */
3312 3312          (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG);
3313 3313          nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf;
3314 3314          for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
3315 3315                  mutex_enter(&buf->b_evict_lock);
3316 3316                  buf->b_hdr = nhdr;
3317 3317                  mutex_exit(&buf->b_evict_lock);
3318 3318          }
3319 3319          zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt);
3320 3320          (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG);
3321 3321          ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3322 3322  
3323 3323          if (need_crypt) {
3324 3324                  arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED);
3325 3325          } else {
3326 3326                  arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED);
3327 3327          }
3328 3328  
3329 3329          /* unset all members of the original hdr */
3330 3330          bzero(&hdr->b_dva, sizeof (dva_t));
3331 3331          hdr->b_birth = 0;
3332 3332          hdr->b_type = ARC_BUFC_INVALID;
3333 3333          hdr->b_flags = 0;
3334 3334          hdr->b_psize = 0;
3335 3335          hdr->b_lsize = 0;
3336 3336          hdr->b_spa = 0;
3337 3337          hdr->b_l2hdr.b_dev = NULL;
3338 3338          hdr->b_l2hdr.b_daddr = 0;
3339 3339          hdr->b_l1hdr.b_freeze_cksum = NULL;
3340 3340          hdr->b_l1hdr.b_buf = NULL;
3341 3341          hdr->b_l1hdr.b_bufcnt = 0;
3342 3342          hdr->b_l1hdr.b_byteswap = 0;
3343 3343          hdr->b_l1hdr.b_state = NULL;
3344 3344          hdr->b_l1hdr.b_arc_access = 0;
3345 3345          hdr->b_l1hdr.b_acb = NULL;
3346 3346          hdr->b_l1hdr.b_pabd = NULL;
3347 3347  
3348 3348          if (ocache == hdr_full_crypt_cache) {
3349 3349                  ASSERT(!HDR_HAS_RABD(hdr));
3350 3350                  hdr->b_crypt_hdr.b_ot = DMU_OT_NONE;
3351 3351                  hdr->b_crypt_hdr.b_ebufcnt = 0;
3352 3352                  hdr->b_crypt_hdr.b_dsobj = 0;
3353 3353                  bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3354 3354                  bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3355 3355                  bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3356 3356          }
3357 3357  
3358 3358          buf_discard_identity(hdr);
3359 3359          kmem_cache_free(ocache, hdr);
3360 3360  
3361 3361          return (nhdr);
3362 3362  }
3363 3363  
3364 3364  /*
3365 3365   * This function is used by the send / receive code to convert a newly
3366 3366   * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3367 3367   * is also used to allow the root objset block to be uupdated without altering
3368 3368   * its embedded MACs. Both block types will always be uncompressed so we do not
3369 3369   * have to worry about compression type or psize.
3370 3370   */
3371 3371  void
3372 3372  arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3373 3373      dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3374 3374      const uint8_t *mac)
3375 3375  {
3376 3376          arc_buf_hdr_t *hdr = buf->b_hdr;
3377 3377  
3378 3378          ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3379 3379          ASSERT(HDR_HAS_L1HDR(hdr));
3380 3380          ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3381 3381  
3382 3382          buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3383 3383          if (!HDR_PROTECTED(hdr))
3384 3384                  hdr = arc_hdr_realloc_crypt(hdr, B_TRUE);
3385 3385          hdr->b_crypt_hdr.b_dsobj = dsobj;
3386 3386          hdr->b_crypt_hdr.b_ot = ot;
3387 3387          hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3388 3388              DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3389 3389          if (!arc_hdr_has_uncompressed_buf(hdr))
3390 3390                  arc_cksum_free(hdr);
3391 3391  
3392 3392          if (salt != NULL)
3393 3393                  bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3394 3394          if (iv != NULL)
3395 3395                  bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3396 3396          if (mac != NULL)
3397 3397                  bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3398 3398  }
3399 3399  
3400 3400  /*
3401 3401   * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3402 3402   * The buf is returned thawed since we expect the consumer to modify it.
3403 3403   */
3404 3404  arc_buf_t *
3405 3405  arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3406 3406  {
3407 3407          arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3408 3408              B_FALSE, ZIO_COMPRESS_OFF, type, B_FALSE);
3409 3409  
3410 3410          arc_buf_t *buf = NULL;
3411 3411          VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3412 3412              B_FALSE, B_FALSE, &buf));
3413 3413          arc_buf_thaw(buf);
3414 3414  
3415 3415          return (buf);
3416 3416  }
3417 3417  
3418 3418  /*
3419 3419   * Allocates an ARC buf header that's in an evicted & L2-cached state.
3420 3420   * This is used during l2arc reconstruction to make empty ARC buffers
3421 3421   * which circumvent the regular disk->arc->l2arc path and instead come
3422 3422   * into being in the reverse order, i.e. l2arc->arc.
3423 3423   */
3424 3424  arc_buf_hdr_t *
3425 3425  arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
3426 3426      dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth,
3427 3427      enum zio_compress compress, boolean_t protected, boolean_t prefetch)
3428 3428  {
3429 3429          arc_buf_hdr_t   *hdr;
3430 3430  
3431 3431          ASSERT(size != 0);
3432 3432          hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
3433 3433          hdr->b_birth = birth;
3434 3434          hdr->b_type = type;
3435 3435          hdr->b_flags = 0;
3436 3436          arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
3437 3437          HDR_SET_LSIZE(hdr, size);
3438 3438          HDR_SET_PSIZE(hdr, psize);
3439 3439          arc_hdr_set_compress(hdr, compress);
3440 3440          if (protected)
3441 3441                  arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3442 3442          if (prefetch)
3443 3443                  arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
3444 3444          hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
3445 3445  
3446 3446          hdr->b_dva = dva;
3447 3447  
3448 3448          hdr->b_l2hdr.b_dev = dev;
3449 3449          hdr->b_l2hdr.b_daddr = daddr;
3450 3450  
3451 3451          return (hdr);
3452 3452  }
3453 3453  
3454 3454  /*
3455 3455   * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3456 3456   * for bufs containing metadata.
3457 3457   */
3458 3458  arc_buf_t *
3459 3459  arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3460 3460      enum zio_compress compression_type)
3461 3461  {
3462 3462          ASSERT3U(lsize, >, 0);
3463 3463          ASSERT3U(lsize, >=, psize);
3464 3464          ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3465 3465          ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3466 3466  
3467 3467          arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3468 3468              B_FALSE, compression_type, ARC_BUFC_DATA, B_FALSE);
3469 3469  
3470 3470          arc_buf_t *buf = NULL;
3471 3471          VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3472 3472              B_TRUE, B_FALSE, B_FALSE, &buf));
3473 3473          arc_buf_thaw(buf);
3474 3474          ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3475 3475  
3476 3476          if (!arc_buf_is_shared(buf)) {
3477 3477                  /*
3478 3478                   * To ensure that the hdr has the correct data in it if we call
3479 3479                   * arc_untransform() on this buf before it's been written to
3480 3480                   * disk, it's easiest if we just set up sharing between the
3481 3481                   * buf and the hdr.
3482 3482                   */
3483 3483                  ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3484 3484                  arc_hdr_free_pabd(hdr, B_FALSE);
3485 3485                  arc_share_buf(hdr, buf);
3486 3486          }
3487 3487  
3488 3488          return (buf);
3489 3489  }
3490 3490  
3491 3491  arc_buf_t *
3492 3492  arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder,
3493 3493      const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
3494 3494      dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3495 3495      enum zio_compress compression_type)
3496 3496  {
3497 3497          arc_buf_hdr_t *hdr;
3498 3498          arc_buf_t *buf;
3499 3499          arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3500 3500              ARC_BUFC_METADATA : ARC_BUFC_DATA;
3501 3501  
3502 3502          ASSERT3U(lsize, >, 0);
3503 3503          ASSERT3U(lsize, >=, psize);
3504 3504          ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3505 3505          ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3506 3506  
3507 3507          hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3508 3508              compression_type, type, B_TRUE);
3509 3509  
3510 3510          hdr->b_crypt_hdr.b_dsobj = dsobj;
3511 3511          hdr->b_crypt_hdr.b_ot = ot;
3512 3512          hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3513 3513              DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3514 3514          bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3515 3515          bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3516 3516          bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3517 3517  
3518 3518          /*
3519 3519           * This buffer will be considered encrypted even if the ot is not an
3520 3520           * encrypted type. It will become authenticated instead in
3521 3521           * arc_write_ready().
3522 3522           */
3523 3523          buf = NULL;
3524 3524          VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3525 3525              B_FALSE, B_FALSE, &buf));
3526 3526          arc_buf_thaw(buf);
3527 3527          ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3528 3528  
3529 3529          return (buf);
3530 3530  }
3531 3531  
3532 3532  static void
3533 3533  arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3534 3534  {
3535 3535          l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3536 3536          l2arc_dev_t *dev = l2hdr->b_dev;
3537 3537          uint64_t psize = HDR_GET_PSIZE(hdr);
3538 3538          uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3539 3539  
3540 3540          ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3541 3541          ASSERT(HDR_HAS_L2HDR(hdr));
3542 3542  
3543 3543          list_remove(&dev->l2ad_buflist, hdr);
3544 3544  
3545 3545          ARCSTAT_INCR(arcstat_l2_psize, -psize);
3546 3546          ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
3547 3547  
3548 3548          vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3549 3549  
3550 3550          (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3551 3551              hdr);
3552 3552          arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3553 3553  }
3554 3554  
3555 3555  static void
3556 3556  arc_hdr_destroy(arc_buf_hdr_t *hdr)
3557 3557  {
3558 3558          if (HDR_HAS_L1HDR(hdr)) {
3559 3559                  ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3560 3560                      hdr->b_l1hdr.b_bufcnt > 0);
3561 3561                  ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3562 3562                  ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3563 3563          }
3564 3564          ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3565 3565          ASSERT(!HDR_IN_HASH_TABLE(hdr));
3566 3566  
3567 3567          if (HDR_HAS_L2HDR(hdr)) {
3568 3568                  l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3569 3569                  boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3570 3570  
3571 3571                  if (!buflist_held)
3572 3572                          mutex_enter(&dev->l2ad_mtx);
3573 3573  
3574 3574                  /*
3575 3575                   * Even though we checked this conditional above, we
3576 3576                   * need to check this again now that we have the
3577 3577                   * l2ad_mtx. This is because we could be racing with
3578 3578                   * another thread calling l2arc_evict() which might have
3579 3579                   * destroyed this header's L2 portion as we were waiting
3580 3580                   * to acquire the l2ad_mtx. If that happens, we don't
3581 3581                   * want to re-destroy the header's L2 portion.
3582 3582                   */
3583 3583                  if (HDR_HAS_L2HDR(hdr))
3584 3584                          arc_hdr_l2hdr_destroy(hdr);
3585 3585  
3586 3586                  if (!buflist_held)
3587 3587                          mutex_exit(&dev->l2ad_mtx);
3588 3588          }
3589 3589  
3590 3590          /*
3591 3591           * The header's identity can only be safely discarded once it is no
3592 3592           * longer discoverable.  This requires removing it from the hash table
3593 3593           * and the l2arc header list.  After this point the hash lock can not
3594 3594           * be used to protect the header.
3595 3595           */
3596 3596          if (!HDR_EMPTY(hdr))
3597 3597                  buf_discard_identity(hdr);
3598 3598  
3599 3599          if (HDR_HAS_L1HDR(hdr)) {
3600 3600                  arc_cksum_free(hdr);
3601 3601  
3602 3602                  while (hdr->b_l1hdr.b_buf != NULL)
3603 3603                          arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3604 3604  
3605 3605  #ifdef ZFS_DEBUG
3606 3606                  if (hdr->b_l1hdr.b_thawed != NULL) {
3607 3607                          kmem_free(hdr->b_l1hdr.b_thawed, 1);
3608 3608                          hdr->b_l1hdr.b_thawed = NULL;
3609 3609                  }
3610 3610  #endif
3611 3611  
3612 3612                  if (hdr->b_l1hdr.b_pabd != NULL)
3613 3613                          arc_hdr_free_pabd(hdr, B_FALSE);
3614 3614  
3615 3615                  if (HDR_HAS_RABD(hdr))
3616 3616                          arc_hdr_free_pabd(hdr, B_TRUE);
3617 3617          }
3618 3618  
3619 3619          ASSERT3P(hdr->b_hash_next, ==, NULL);
3620 3620          if (HDR_HAS_L1HDR(hdr)) {
3621 3621                  ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3622 3622                  ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3623 3623  
3624 3624                  if (!HDR_PROTECTED(hdr)) {
3625 3625                          kmem_cache_free(hdr_full_cache, hdr);
3626 3626                  } else {
3627 3627                          kmem_cache_free(hdr_full_crypt_cache, hdr);
3628 3628                  }
3629 3629          } else {
3630 3630                  kmem_cache_free(hdr_l2only_cache, hdr);
3631 3631          }
3632 3632  }
3633 3633  
3634 3634  void
3635 3635  arc_buf_destroy(arc_buf_t *buf, void* tag)
3636 3636  {
3637 3637          arc_buf_hdr_t *hdr = buf->b_hdr;
3638 3638  
3639 3639          if (hdr->b_l1hdr.b_state == arc_anon) {
3640 3640                  ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3641 3641                  ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3642 3642                  VERIFY0(remove_reference(hdr, NULL, tag));
3643 3643                  arc_hdr_destroy(hdr);
3644 3644                  return;
3645 3645          }
3646 3646  
3647 3647          kmutex_t *hash_lock = HDR_LOCK(hdr);
3648 3648          mutex_enter(hash_lock);
3649 3649  
3650 3650          ASSERT3P(hdr, ==, buf->b_hdr);
3651 3651          ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3652 3652          ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3653 3653          ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3654 3654          ASSERT3P(buf->b_data, !=, NULL);
3655 3655  
3656 3656          (void) remove_reference(hdr, hash_lock, tag);
3657 3657          arc_buf_destroy_impl(buf);
3658 3658          mutex_exit(hash_lock);
3659 3659  }
3660 3660  
3661 3661  /*
3662 3662   * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3663 3663   * state of the header is dependent on its state prior to entering this
3664 3664   * function. The following transitions are possible:
3665 3665   *
3666 3666   *    - arc_mru -> arc_mru_ghost
3667 3667   *    - arc_mfu -> arc_mfu_ghost
3668 3668   *    - arc_mru_ghost -> arc_l2c_only
3669 3669   *    - arc_mru_ghost -> deleted
3670 3670   *    - arc_mfu_ghost -> arc_l2c_only
3671 3671   *    - arc_mfu_ghost -> deleted
3672 3672   */
3673 3673  static int64_t
3674 3674  arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3675 3675  {
3676 3676          arc_state_t *evicted_state, *state;
3677 3677          int64_t bytes_evicted = 0;
3678 3678          int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3679 3679              zfs_arc_min_prescient_prefetch_ms : zfs_arc_min_prefetch_ms;
3680 3680  
3681 3681          ASSERT(MUTEX_HELD(hash_lock));
3682 3682          ASSERT(HDR_HAS_L1HDR(hdr));
3683 3683  
3684 3684          state = hdr->b_l1hdr.b_state;
3685 3685          if (GHOST_STATE(state)) {
3686 3686                  ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3687 3687                  ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3688 3688  
3689 3689                  /*
3690 3690                   * l2arc_write_buffers() relies on a header's L1 portion
3691 3691                   * (i.e. its b_pabd field) during its write phase.
3692 3692                   * Thus, we cannot push a header onto the arc_l2c_only
3693 3693                   * state (removing its L1 piece) until the header is
3694 3694                   * done being written to the l2arc.
3695 3695                   */
3696 3696                  if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3697 3697                          ARCSTAT_BUMP(arcstat_evict_l2_skip);
3698 3698                          return (bytes_evicted);
3699 3699                  }
3700 3700  
3701 3701                  ARCSTAT_BUMP(arcstat_deleted);
3702 3702                  bytes_evicted += HDR_GET_LSIZE(hdr);
3703 3703  
3704 3704                  DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3705 3705  
3706 3706                  if (HDR_HAS_L2HDR(hdr)) {
3707 3707                          ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3708 3708                          ASSERT(!HDR_HAS_RABD(hdr));
3709 3709                          /*
3710 3710                           * This buffer is cached on the 2nd Level ARC;
3711 3711                           * don't destroy the header.
3712 3712                           */
3713 3713                          arc_change_state(arc_l2c_only, hdr, hash_lock);
3714 3714                          /*
3715 3715                           * dropping from L1+L2 cached to L2-only,
3716 3716                           * realloc to remove the L1 header.
3717 3717                           */
3718 3718                          hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3719 3719                              hdr_l2only_cache);
3720 3720                  } else {
3721 3721                          arc_change_state(arc_anon, hdr, hash_lock);
3722 3722                          arc_hdr_destroy(hdr);
3723 3723                  }
3724 3724                  return (bytes_evicted);
3725 3725          }
3726 3726  
3727 3727          ASSERT(state == arc_mru || state == arc_mfu);
3728 3728          evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3729 3729  
3730 3730          /* prefetch buffers have a minimum lifespan */
3731 3731          if (HDR_IO_IN_PROGRESS(hdr) ||
3732 3732              ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3733 3733              ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < min_lifetime * hz)) {
3734 3734                  ARCSTAT_BUMP(arcstat_evict_skip);
3735 3735                  return (bytes_evicted);
3736 3736          }
3737 3737  
3738 3738          ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3739 3739          while (hdr->b_l1hdr.b_buf) {
3740 3740                  arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3741 3741                  if (!mutex_tryenter(&buf->b_evict_lock)) {
3742 3742                          ARCSTAT_BUMP(arcstat_mutex_miss);
3743 3743                          break;
3744 3744                  }
3745 3745                  if (buf->b_data != NULL)
3746 3746                          bytes_evicted += HDR_GET_LSIZE(hdr);
3747 3747                  mutex_exit(&buf->b_evict_lock);
3748 3748                  arc_buf_destroy_impl(buf);
3749 3749          }
3750 3750  
3751 3751          if (HDR_HAS_L2HDR(hdr)) {
3752 3752                  ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3753 3753          } else {
3754 3754                  if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3755 3755                          ARCSTAT_INCR(arcstat_evict_l2_eligible,
3756 3756                              HDR_GET_LSIZE(hdr));
3757 3757                  } else {
3758 3758                          ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3759 3759                              HDR_GET_LSIZE(hdr));
3760 3760                  }
3761 3761          }
3762 3762  
3763 3763          if (hdr->b_l1hdr.b_bufcnt == 0) {
3764 3764                  arc_cksum_free(hdr);
3765 3765  
3766 3766                  bytes_evicted += arc_hdr_size(hdr);
3767 3767  
3768 3768                  /*
3769 3769                   * If this hdr is being evicted and has a compressed
3770 3770                   * buffer then we discard it here before we change states.
3771 3771                   * This ensures that the accounting is updated correctly
3772 3772                   * in arc_free_data_impl().
3773 3773                   */
3774 3774                  if (hdr->b_l1hdr.b_pabd != NULL)
3775 3775                          arc_hdr_free_pabd(hdr, B_FALSE);
3776 3776  
3777 3777                  if (HDR_HAS_RABD(hdr))
3778 3778                          arc_hdr_free_pabd(hdr, B_TRUE);
3779 3779  
3780 3780                  arc_change_state(evicted_state, hdr, hash_lock);
3781 3781                  ASSERT(HDR_IN_HASH_TABLE(hdr));
3782 3782                  arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3783 3783                  DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3784 3784          }
3785 3785  
3786 3786          return (bytes_evicted);
3787 3787  }
3788 3788  
3789 3789  static uint64_t
3790 3790  arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3791 3791      uint64_t spa, int64_t bytes)
3792 3792  {
3793 3793          multilist_sublist_t *mls;
3794 3794          uint64_t bytes_evicted = 0;
3795 3795          arc_buf_hdr_t *hdr;
3796 3796          kmutex_t *hash_lock;
3797 3797          int evict_count = 0;
3798 3798  
3799 3799          ASSERT3P(marker, !=, NULL);
3800 3800          IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3801 3801  
3802 3802          mls = multilist_sublist_lock(ml, idx);
3803 3803  
3804 3804          for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3805 3805              hdr = multilist_sublist_prev(mls, marker)) {
3806 3806                  if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3807 3807                      (evict_count >= zfs_arc_evict_batch_limit))
3808 3808                          break;
3809 3809  
3810 3810                  /*
3811 3811                   * To keep our iteration location, move the marker
3812 3812                   * forward. Since we're not holding hdr's hash lock, we
3813 3813                   * must be very careful and not remove 'hdr' from the
3814 3814                   * sublist. Otherwise, other consumers might mistake the
3815 3815                   * 'hdr' as not being on a sublist when they call the
3816 3816                   * multilist_link_active() function (they all rely on
3817 3817                   * the hash lock protecting concurrent insertions and
3818 3818                   * removals). multilist_sublist_move_forward() was
3819 3819                   * specifically implemented to ensure this is the case
3820 3820                   * (only 'marker' will be removed and re-inserted).
3821 3821                   */
3822 3822                  multilist_sublist_move_forward(mls, marker);
3823 3823  
3824 3824                  /*
3825 3825                   * The only case where the b_spa field should ever be
3826 3826                   * zero, is the marker headers inserted by
3827 3827                   * arc_evict_state(). It's possible for multiple threads
3828 3828                   * to be calling arc_evict_state() concurrently (e.g.
3829 3829                   * dsl_pool_close() and zio_inject_fault()), so we must
3830 3830                   * skip any markers we see from these other threads.
3831 3831                   */
3832 3832                  if (hdr->b_spa == 0)
3833 3833                          continue;
3834 3834  
3835 3835                  /* we're only interested in evicting buffers of a certain spa */
3836 3836                  if (spa != 0 && hdr->b_spa != spa) {
3837 3837                          ARCSTAT_BUMP(arcstat_evict_skip);
3838 3838                          continue;
3839 3839                  }
3840 3840  
3841 3841                  hash_lock = HDR_LOCK(hdr);
3842 3842  
3843 3843                  /*
3844 3844                   * We aren't calling this function from any code path
3845 3845                   * that would already be holding a hash lock, so we're
3846 3846                   * asserting on this assumption to be defensive in case
3847 3847                   * this ever changes. Without this check, it would be
3848 3848                   * possible to incorrectly increment arcstat_mutex_miss
3849 3849                   * below (e.g. if the code changed such that we called
3850 3850                   * this function with a hash lock held).
3851 3851                   */
3852 3852                  ASSERT(!MUTEX_HELD(hash_lock));
3853 3853  
3854 3854                  if (mutex_tryenter(hash_lock)) {
3855 3855                          uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3856 3856                          mutex_exit(hash_lock);
3857 3857  
3858 3858                          bytes_evicted += evicted;
3859 3859  
3860 3860                          /*
3861 3861                           * If evicted is zero, arc_evict_hdr() must have
3862 3862                           * decided to skip this header, don't increment
3863 3863                           * evict_count in this case.
3864 3864                           */
3865 3865                          if (evicted != 0)
3866 3866                                  evict_count++;
3867 3867  
3868 3868                          /*
3869 3869                           * If arc_size isn't overflowing, signal any
3870 3870                           * threads that might happen to be waiting.
3871 3871                           *
3872 3872                           * For each header evicted, we wake up a single
3873 3873                           * thread. If we used cv_broadcast, we could
3874 3874                           * wake up "too many" threads causing arc_size
3875 3875                           * to significantly overflow arc_c; since
3876 3876                           * arc_get_data_impl() doesn't check for overflow
3877 3877                           * when it's woken up (it doesn't because it's
3878 3878                           * possible for the ARC to be overflowing while
3879 3879                           * full of un-evictable buffers, and the
3880 3880                           * function should proceed in this case).
3881 3881                           *
3882 3882                           * If threads are left sleeping, due to not
3883 3883                           * using cv_broadcast here, they will be woken
3884 3884                           * up via cv_broadcast in arc_adjust_cb() just
3885 3885                           * before arc_adjust_zthr sleeps.
3886 3886                           */
3887 3887                          mutex_enter(&arc_adjust_lock);
3888 3888                          if (!arc_is_overflowing())
3889 3889                                  cv_signal(&arc_adjust_waiters_cv);
3890 3890                          mutex_exit(&arc_adjust_lock);
3891 3891                  } else {
3892 3892                          ARCSTAT_BUMP(arcstat_mutex_miss);
3893 3893                  }
3894 3894          }
3895 3895  
3896 3896          multilist_sublist_unlock(mls);
3897 3897  
3898 3898          return (bytes_evicted);
3899 3899  }
3900 3900  
3901 3901  /*
3902 3902   * Evict buffers from the given arc state, until we've removed the
3903 3903   * specified number of bytes. Move the removed buffers to the
3904 3904   * appropriate evict state.
3905 3905   *
3906 3906   * This function makes a "best effort". It skips over any buffers
3907 3907   * it can't get a hash_lock on, and so, may not catch all candidates.
3908 3908   * It may also return without evicting as much space as requested.
3909 3909   *
3910 3910   * If bytes is specified using the special value ARC_EVICT_ALL, this
3911 3911   * will evict all available (i.e. unlocked and evictable) buffers from
3912 3912   * the given arc state; which is used by arc_flush().
3913 3913   */
3914 3914  static uint64_t
3915 3915  arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3916 3916      arc_buf_contents_t type)
3917 3917  {
3918 3918          uint64_t total_evicted = 0;
3919 3919          multilist_t *ml = state->arcs_list[type];
3920 3920          int num_sublists;
3921 3921          arc_buf_hdr_t **markers;
3922 3922  
3923 3923          IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3924 3924  
3925 3925          num_sublists = multilist_get_num_sublists(ml);
3926 3926  
3927 3927          /*
3928 3928           * If we've tried to evict from each sublist, made some
3929 3929           * progress, but still have not hit the target number of bytes
3930 3930           * to evict, we want to keep trying. The markers allow us to
3931 3931           * pick up where we left off for each individual sublist, rather
3932 3932           * than starting from the tail each time.
3933 3933           */
3934 3934          markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3935 3935          for (int i = 0; i < num_sublists; i++) {
3936 3936                  markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3937 3937  
3938 3938                  /*
3939 3939                   * A b_spa of 0 is used to indicate that this header is
3940 3940                   * a marker. This fact is used in arc_adjust_type() and
3941 3941                   * arc_evict_state_impl().
3942 3942                   */
3943 3943                  markers[i]->b_spa = 0;
3944 3944  
3945 3945                  multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3946 3946                  multilist_sublist_insert_tail(mls, markers[i]);
3947 3947                  multilist_sublist_unlock(mls);
3948 3948          }
3949 3949  
3950 3950          /*
3951 3951           * While we haven't hit our target number of bytes to evict, or
3952 3952           * we're evicting all available buffers.
3953 3953           */
3954 3954          while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3955 3955                  /*
3956 3956                   * Start eviction using a randomly selected sublist,
3957 3957                   * this is to try and evenly balance eviction across all
3958 3958                   * sublists. Always starting at the same sublist
3959 3959                   * (e.g. index 0) would cause evictions to favor certain
3960 3960                   * sublists over others.
3961 3961                   */
3962 3962                  int sublist_idx = multilist_get_random_index(ml);
3963 3963                  uint64_t scan_evicted = 0;
3964 3964  
3965 3965                  for (int i = 0; i < num_sublists; i++) {
3966 3966                          uint64_t bytes_remaining;
3967 3967                          uint64_t bytes_evicted;
3968 3968  
3969 3969                          if (bytes == ARC_EVICT_ALL)
3970 3970                                  bytes_remaining = ARC_EVICT_ALL;
3971 3971                          else if (total_evicted < bytes)
3972 3972                                  bytes_remaining = bytes - total_evicted;
3973 3973                          else
3974 3974                                  break;
3975 3975  
3976 3976                          bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3977 3977                              markers[sublist_idx], spa, bytes_remaining);
3978 3978  
3979 3979                          scan_evicted += bytes_evicted;
3980 3980                          total_evicted += bytes_evicted;
3981 3981  
3982 3982                          /* we've reached the end, wrap to the beginning */
3983 3983                          if (++sublist_idx >= num_sublists)
3984 3984                                  sublist_idx = 0;
3985 3985                  }
3986 3986  
3987 3987                  /*
3988 3988                   * If we didn't evict anything during this scan, we have
3989 3989                   * no reason to believe we'll evict more during another
3990 3990                   * scan, so break the loop.
3991 3991                   */
3992 3992                  if (scan_evicted == 0) {
3993 3993                          /* This isn't possible, let's make that obvious */
3994 3994                          ASSERT3S(bytes, !=, 0);
3995 3995  
3996 3996                          /*
3997 3997                           * When bytes is ARC_EVICT_ALL, the only way to
3998 3998                           * break the loop is when scan_evicted is zero.
3999 3999                           * In that case, we actually have evicted enough,
4000 4000                           * so we don't want to increment the kstat.
4001 4001                           */
4002 4002                          if (bytes != ARC_EVICT_ALL) {
4003 4003                                  ASSERT3S(total_evicted, <, bytes);
4004 4004                                  ARCSTAT_BUMP(arcstat_evict_not_enough);
4005 4005                          }
4006 4006  
4007 4007                          break;
4008 4008                  }
4009 4009          }
4010 4010  
4011 4011          for (int i = 0; i < num_sublists; i++) {
4012 4012                  multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4013 4013                  multilist_sublist_remove(mls, markers[i]);
4014 4014                  multilist_sublist_unlock(mls);
4015 4015  
4016 4016                  kmem_cache_free(hdr_full_cache, markers[i]);
4017 4017          }
4018 4018          kmem_free(markers, sizeof (*markers) * num_sublists);
4019 4019  
4020 4020          return (total_evicted);
4021 4021  }
4022 4022  
4023 4023  /*
4024 4024   * Flush all "evictable" data of the given type from the arc state
4025 4025   * specified. This will not evict any "active" buffers (i.e. referenced).
4026 4026   *
4027 4027   * When 'retry' is set to B_FALSE, the function will make a single pass
4028 4028   * over the state and evict any buffers that it can. Since it doesn't
4029 4029   * continually retry the eviction, it might end up leaving some buffers
4030 4030   * in the ARC due to lock misses.
4031 4031   *
4032 4032   * When 'retry' is set to B_TRUE, the function will continually retry the
4033 4033   * eviction until *all* evictable buffers have been removed from the
4034 4034   * state. As a result, if concurrent insertions into the state are
4035 4035   * allowed (e.g. if the ARC isn't shutting down), this function might
4036 4036   * wind up in an infinite loop, continually trying to evict buffers.
4037 4037   */
4038 4038  static uint64_t
4039 4039  arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4040 4040      boolean_t retry)
4041 4041  {
4042 4042          uint64_t evicted = 0;
4043 4043  
4044 4044          while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4045 4045                  evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
4046 4046  
4047 4047                  if (!retry)
4048 4048                          break;
4049 4049          }
4050 4050  
4051 4051          return (evicted);
4052 4052  }
4053 4053  
4054 4054  /*
4055 4055   * Evict the specified number of bytes from the state specified,
4056 4056   * restricting eviction to the spa and type given. This function
4057 4057   * prevents us from trying to evict more from a state's list than
4058 4058   * is "evictable", and to skip evicting altogether when passed a
4059 4059   * negative value for "bytes". In contrast, arc_evict_state() will
4060 4060   * evict everything it can, when passed a negative value for "bytes".
4061 4061   */
4062 4062  static uint64_t
4063 4063  arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
4064 4064      arc_buf_contents_t type)
4065 4065  {
4066 4066          int64_t delta;
4067 4067  
4068 4068          if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4069 4069                  delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4070 4070                      bytes);
4071 4071                  return (arc_evict_state(state, spa, delta, type));
4072 4072          }
4073 4073  
4074 4074          return (0);
4075 4075  }
4076 4076  
4077 4077  /*
4078 4078   * Evict metadata buffers from the cache, such that arc_meta_used is
4079 4079   * capped by the arc_meta_limit tunable.
4080 4080   */
4081 4081  static uint64_t
4082 4082  arc_adjust_meta(uint64_t meta_used)
4083 4083  {
4084 4084          uint64_t total_evicted = 0;
4085 4085          int64_t target;
4086 4086  
4087 4087          /*
4088 4088           * If we're over the meta limit, we want to evict enough
4089 4089           * metadata to get back under the meta limit. We don't want to
4090 4090           * evict so much that we drop the MRU below arc_p, though. If
4091 4091           * we're over the meta limit more than we're over arc_p, we
4092 4092           * evict some from the MRU here, and some from the MFU below.
4093 4093           */
4094 4094          target = MIN((int64_t)(meta_used - arc_meta_limit),
4095 4095              (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4096 4096              zfs_refcount_count(&arc_mru->arcs_size) - arc_p));
4097 4097  
4098 4098          total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4099 4099  
4100 4100          /*
4101 4101           * Similar to the above, we want to evict enough bytes to get us
4102 4102           * below the meta limit, but not so much as to drop us below the
4103 4103           * space allotted to the MFU (which is defined as arc_c - arc_p).
4104 4104           */
4105 4105          target = MIN((int64_t)(meta_used - arc_meta_limit),
4106 4106              (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) -
4107 4107              (arc_c - arc_p)));
4108 4108  
4109 4109          total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4110 4110  
4111 4111          return (total_evicted);
4112 4112  }
4113 4113  
4114 4114  /*
4115 4115   * Return the type of the oldest buffer in the given arc state
4116 4116   *
4117 4117   * This function will select a random sublist of type ARC_BUFC_DATA and
4118 4118   * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4119 4119   * is compared, and the type which contains the "older" buffer will be
4120 4120   * returned.
4121 4121   */
4122 4122  static arc_buf_contents_t
4123 4123  arc_adjust_type(arc_state_t *state)
4124 4124  {
4125 4125          multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
4126 4126          multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
4127 4127          int data_idx = multilist_get_random_index(data_ml);
4128 4128          int meta_idx = multilist_get_random_index(meta_ml);
4129 4129          multilist_sublist_t *data_mls;
4130 4130          multilist_sublist_t *meta_mls;
4131 4131          arc_buf_contents_t type;
4132 4132          arc_buf_hdr_t *data_hdr;
4133 4133          arc_buf_hdr_t *meta_hdr;
4134 4134  
4135 4135          /*
4136 4136           * We keep the sublist lock until we're finished, to prevent
4137 4137           * the headers from being destroyed via arc_evict_state().
4138 4138           */
4139 4139          data_mls = multilist_sublist_lock(data_ml, data_idx);
4140 4140          meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4141 4141  
4142 4142          /*
4143 4143           * These two loops are to ensure we skip any markers that
4144 4144           * might be at the tail of the lists due to arc_evict_state().
4145 4145           */
4146 4146  
4147 4147          for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4148 4148              data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4149 4149                  if (data_hdr->b_spa != 0)
4150 4150                          break;
4151 4151          }
4152 4152  
4153 4153          for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4154 4154              meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4155 4155                  if (meta_hdr->b_spa != 0)
4156 4156                          break;
4157 4157          }
4158 4158  
4159 4159          if (data_hdr == NULL && meta_hdr == NULL) {
4160 4160                  type = ARC_BUFC_DATA;
4161 4161          } else if (data_hdr == NULL) {
4162 4162                  ASSERT3P(meta_hdr, !=, NULL);
4163 4163                  type = ARC_BUFC_METADATA;
4164 4164          } else if (meta_hdr == NULL) {
4165 4165                  ASSERT3P(data_hdr, !=, NULL);
4166 4166                  type = ARC_BUFC_DATA;
4167 4167          } else {
4168 4168                  ASSERT3P(data_hdr, !=, NULL);
4169 4169                  ASSERT3P(meta_hdr, !=, NULL);
4170 4170  
4171 4171                  /* The headers can't be on the sublist without an L1 header */
4172 4172                  ASSERT(HDR_HAS_L1HDR(data_hdr));
4173 4173                  ASSERT(HDR_HAS_L1HDR(meta_hdr));
4174 4174  
4175 4175                  if (data_hdr->b_l1hdr.b_arc_access <
4176 4176                      meta_hdr->b_l1hdr.b_arc_access) {
4177 4177                          type = ARC_BUFC_DATA;
4178 4178                  } else {
4179 4179                          type = ARC_BUFC_METADATA;
4180 4180                  }
4181 4181          }
4182 4182  
4183 4183          multilist_sublist_unlock(meta_mls);
4184 4184          multilist_sublist_unlock(data_mls);
4185 4185  
4186 4186          return (type);
4187 4187  }
4188 4188  
4189 4189  /*
4190 4190   * Evict buffers from the cache, such that arc_size is capped by arc_c.
4191 4191   */
4192 4192  static uint64_t
4193 4193  arc_adjust(void)
4194 4194  {
4195 4195          uint64_t total_evicted = 0;
4196 4196          uint64_t bytes;
4197 4197          int64_t target;
4198 4198          uint64_t asize = aggsum_value(&arc_size);
4199 4199          uint64_t ameta = aggsum_value(&arc_meta_used);
4200 4200  
4201 4201          /*
4202 4202           * If we're over arc_meta_limit, we want to correct that before
4203 4203           * potentially evicting data buffers below.
4204 4204           */
4205 4205          total_evicted += arc_adjust_meta(ameta);
4206 4206  
4207 4207          /*
4208 4208           * Adjust MRU size
4209 4209           *
4210 4210           * If we're over the target cache size, we want to evict enough
4211 4211           * from the list to get back to our target size. We don't want
4212 4212           * to evict too much from the MRU, such that it drops below
4213 4213           * arc_p. So, if we're over our target cache size more than
4214 4214           * the MRU is over arc_p, we'll evict enough to get back to
4215 4215           * arc_p here, and then evict more from the MFU below.
4216 4216           */
4217 4217          target = MIN((int64_t)(asize - arc_c),
4218 4218              (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4219 4219              zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
4220 4220  
4221 4221          /*
4222 4222           * If we're below arc_meta_min, always prefer to evict data.
4223 4223           * Otherwise, try to satisfy the requested number of bytes to
4224 4224           * evict from the type which contains older buffers; in an
4225 4225           * effort to keep newer buffers in the cache regardless of their
4226 4226           * type. If we cannot satisfy the number of bytes from this
4227 4227           * type, spill over into the next type.
4228 4228           */
4229 4229          if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
4230 4230              ameta > arc_meta_min) {
4231 4231                  bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4232 4232                  total_evicted += bytes;
4233 4233  
4234 4234                  /*
4235 4235                   * If we couldn't evict our target number of bytes from
4236 4236                   * metadata, we try to get the rest from data.
4237 4237                   */
4238 4238                  target -= bytes;
4239 4239  
4240 4240                  total_evicted +=
4241 4241                      arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4242 4242          } else {
4243 4243                  bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4244 4244                  total_evicted += bytes;
4245 4245  
4246 4246                  /*
4247 4247                   * If we couldn't evict our target number of bytes from
4248 4248                   * data, we try to get the rest from metadata.
4249 4249                   */
4250 4250                  target -= bytes;
4251 4251  
4252 4252                  total_evicted +=
4253 4253                      arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4254 4254          }
4255 4255  
4256 4256          /*
4257 4257           * Adjust MFU size
4258 4258           *
4259 4259           * Now that we've tried to evict enough from the MRU to get its
4260 4260           * size back to arc_p, if we're still above the target cache
4261 4261           * size, we evict the rest from the MFU.
4262 4262           */
4263 4263          target = asize - arc_c;
4264 4264  
4265 4265          if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
4266 4266              ameta > arc_meta_min) {
4267 4267                  bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4268 4268                  total_evicted += bytes;
4269 4269  
4270 4270                  /*
4271 4271                   * If we couldn't evict our target number of bytes from
4272 4272                   * metadata, we try to get the rest from data.
4273 4273                   */
4274 4274                  target -= bytes;
4275 4275  
4276 4276                  total_evicted +=
4277 4277                      arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4278 4278          } else {
4279 4279                  bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4280 4280                  total_evicted += bytes;
4281 4281  
4282 4282                  /*
4283 4283                   * If we couldn't evict our target number of bytes from
4284 4284                   * data, we try to get the rest from data.
4285 4285                   */
4286 4286                  target -= bytes;
4287 4287  
4288 4288                  total_evicted +=
4289 4289                      arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4290 4290          }
4291 4291  
4292 4292          /*
4293 4293           * Adjust ghost lists
4294 4294           *
4295 4295           * In addition to the above, the ARC also defines target values
4296 4296           * for the ghost lists. The sum of the mru list and mru ghost
4297 4297           * list should never exceed the target size of the cache, and
4298 4298           * the sum of the mru list, mfu list, mru ghost list, and mfu
4299 4299           * ghost list should never exceed twice the target size of the
4300 4300           * cache. The following logic enforces these limits on the ghost
4301 4301           * caches, and evicts from them as needed.
4302 4302           */
4303 4303          target = zfs_refcount_count(&arc_mru->arcs_size) +
4304 4304              zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
4305 4305  
4306 4306          bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4307 4307          total_evicted += bytes;
4308 4308  
4309 4309          target -= bytes;
4310 4310  
4311 4311          total_evicted +=
4312 4312              arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4313 4313  
4314 4314          /*
4315 4315           * We assume the sum of the mru list and mfu list is less than
4316 4316           * or equal to arc_c (we enforced this above), which means we
4317 4317           * can use the simpler of the two equations below:
4318 4318           *
4319 4319           *      mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4320 4320           *                  mru ghost + mfu ghost <= arc_c
4321 4321           */
4322 4322          target = zfs_refcount_count(&arc_mru_ghost->arcs_size) +
4323 4323              zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
4324 4324  
4325 4325          bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4326 4326          total_evicted += bytes;
4327 4327  
4328 4328          target -= bytes;
4329 4329  
4330 4330          total_evicted +=
4331 4331              arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4332 4332  
4333 4333          return (total_evicted);
4334 4334  }
4335 4335  
4336 4336  void
4337 4337  arc_flush(spa_t *spa, boolean_t retry)
4338 4338  {
4339 4339          uint64_t guid = 0;
4340 4340  
4341 4341          /*
4342 4342           * If retry is B_TRUE, a spa must not be specified since we have
4343 4343           * no good way to determine if all of a spa's buffers have been
4344 4344           * evicted from an arc state.
4345 4345           */
4346 4346          ASSERT(!retry || spa == 0);
4347 4347  
4348 4348          if (spa != NULL)
4349 4349                  guid = spa_load_guid(spa);
4350 4350  
4351 4351          (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4352 4352          (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4353 4353  
4354 4354          (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4355 4355          (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4356 4356  
4357 4357          (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4358 4358          (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4359 4359  
4360 4360          (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4361 4361          (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4362 4362  }
4363 4363  
4364 4364  static void
4365 4365  arc_reduce_target_size(int64_t to_free)
4366 4366  {
4367 4367          uint64_t asize = aggsum_value(&arc_size);
4368 4368          if (arc_c > arc_c_min) {
4369 4369  
4370 4370                  if (arc_c > arc_c_min + to_free)
4371 4371                          atomic_add_64(&arc_c, -to_free);
4372 4372                  else
4373 4373                          arc_c = arc_c_min;
4374 4374  
4375 4375                  atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
4376 4376                  if (asize < arc_c)
4377 4377                          arc_c = MAX(asize, arc_c_min);
4378 4378                  if (arc_p > arc_c)
4379 4379                          arc_p = (arc_c >> 1);
4380 4380                  ASSERT(arc_c >= arc_c_min);
4381 4381                  ASSERT((int64_t)arc_p >= 0);
4382 4382          }
4383 4383  
4384 4384          if (asize > arc_c) {
4385 4385                  /* See comment in arc_adjust_cb_check() on why lock+flag */
4386 4386                  mutex_enter(&arc_adjust_lock);
4387 4387                  arc_adjust_needed = B_TRUE;
4388 4388                  mutex_exit(&arc_adjust_lock);
4389 4389                  zthr_wakeup(arc_adjust_zthr);
4390 4390          }
4391 4391  }
4392 4392  
4393 4393  typedef enum free_memory_reason_t {
4394 4394          FMR_UNKNOWN,
4395 4395          FMR_NEEDFREE,
4396 4396          FMR_LOTSFREE,
4397 4397          FMR_SWAPFS_MINFREE,
4398 4398          FMR_PAGES_PP_MAXIMUM,
4399 4399          FMR_HEAP_ARENA,
4400 4400          FMR_ZIO_ARENA,
4401 4401  } free_memory_reason_t;
4402 4402  
4403 4403  int64_t last_free_memory;
4404 4404  free_memory_reason_t last_free_reason;
4405 4405  
4406 4406  /*
4407 4407   * Additional reserve of pages for pp_reserve.
4408 4408   */
4409 4409  int64_t arc_pages_pp_reserve = 64;
4410 4410  
4411 4411  /*
4412 4412   * Additional reserve of pages for swapfs.
4413 4413   */
4414 4414  int64_t arc_swapfs_reserve = 64;
4415 4415  
4416 4416  /*
4417 4417   * Return the amount of memory that can be consumed before reclaim will be
4418 4418   * needed.  Positive if there is sufficient free memory, negative indicates
4419 4419   * the amount of memory that needs to be freed up.
4420 4420   */
4421 4421  static int64_t
4422 4422  arc_available_memory(void)
4423 4423  {
4424 4424          int64_t lowest = INT64_MAX;
4425 4425          int64_t n;
4426 4426          free_memory_reason_t r = FMR_UNKNOWN;
4427 4427  
4428 4428  #ifdef _KERNEL
4429 4429          if (needfree > 0) {
4430 4430                  n = PAGESIZE * (-needfree);
4431 4431                  if (n < lowest) {
4432 4432                          lowest = n;
4433 4433                          r = FMR_NEEDFREE;
4434 4434                  }
4435 4435          }
4436 4436  
4437 4437          /*
4438 4438           * check that we're out of range of the pageout scanner.  It starts to
4439 4439           * schedule paging if freemem is less than lotsfree and needfree.
4440 4440           * lotsfree is the high-water mark for pageout, and needfree is the
4441 4441           * number of needed free pages.  We add extra pages here to make sure
4442 4442           * the scanner doesn't start up while we're freeing memory.
4443 4443           */
4444 4444          n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
4445 4445          if (n < lowest) {
4446 4446                  lowest = n;
4447 4447                  r = FMR_LOTSFREE;
4448 4448          }
4449 4449  
4450 4450          /*
4451 4451           * check to make sure that swapfs has enough space so that anon
4452 4452           * reservations can still succeed. anon_resvmem() checks that the
4453 4453           * availrmem is greater than swapfs_minfree, and the number of reserved
4454 4454           * swap pages.  We also add a bit of extra here just to prevent
4455 4455           * circumstances from getting really dire.
4456 4456           */
4457 4457          n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4458 4458              desfree - arc_swapfs_reserve);
4459 4459          if (n < lowest) {
4460 4460                  lowest = n;
4461 4461                  r = FMR_SWAPFS_MINFREE;
4462 4462          }
4463 4463  
4464 4464  
4465 4465          /*
4466 4466           * Check that we have enough availrmem that memory locking (e.g., via
4467 4467           * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
4468 4468           * stores the number of pages that cannot be locked; when availrmem
4469 4469           * drops below pages_pp_maximum, page locking mechanisms such as
4470 4470           * page_pp_lock() will fail.)
4471 4471           */
4472 4472          n = PAGESIZE * (availrmem - pages_pp_maximum -
4473 4473              arc_pages_pp_reserve);
4474 4474          if (n < lowest) {
4475 4475                  lowest = n;
4476 4476                  r = FMR_PAGES_PP_MAXIMUM;
4477 4477          }
4478 4478  
4479 4479  #if defined(__i386)
4480 4480          /*
4481 4481           * If we're on an i386 platform, it's possible that we'll exhaust the
4482 4482           * kernel heap space before we ever run out of available physical
4483 4483           * memory.  Most checks of the size of the heap_area compare against
4484 4484           * tune.t_minarmem, which is the minimum available real memory that we
4485 4485           * can have in the system.  However, this is generally fixed at 25 pages
4486 4486           * which is so low that it's useless.  In this comparison, we seek to
4487 4487           * calculate the total heap-size, and reclaim if more than 3/4ths of the
4488 4488           * heap is allocated.  (Or, in the calculation, if less than 1/4th is
4489 4489           * free)
4490 4490           */
4491 4491          n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
4492 4492              (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4493 4493          if (n < lowest) {
4494 4494                  lowest = n;
4495 4495                  r = FMR_HEAP_ARENA;
4496 4496          }
4497 4497  #endif
4498 4498  
4499 4499          /*
4500 4500           * If zio data pages are being allocated out of a separate heap segment,
4501 4501           * then enforce that the size of available vmem for this arena remains
4502 4502           * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4503 4503           *
4504 4504           * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4505 4505           * memory (in the zio_arena) free, which can avoid memory
4506 4506           * fragmentation issues.
4507 4507           */
4508 4508          if (zio_arena != NULL) {
4509 4509                  n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4510 4510                      (vmem_size(zio_arena, VMEM_ALLOC) >>
4511 4511                      arc_zio_arena_free_shift);
4512 4512                  if (n < lowest) {
4513 4513                          lowest = n;
4514 4514                          r = FMR_ZIO_ARENA;
4515 4515                  }
4516 4516          }
4517 4517  #else
4518 4518          /* Every 100 calls, free a small amount */
4519 4519          if (spa_get_random(100) == 0)
4520 4520                  lowest = -1024;
4521 4521  #endif
4522 4522  
4523 4523          last_free_memory = lowest;
4524 4524          last_free_reason = r;
4525 4525  
4526 4526          return (lowest);
4527 4527  }
4528 4528  
4529 4529  
4530 4530  /*
4531 4531   * Determine if the system is under memory pressure and is asking
4532 4532   * to reclaim memory. A return value of B_TRUE indicates that the system
4533 4533   * is under memory pressure and that the arc should adjust accordingly.
4534 4534   */
4535 4535  static boolean_t
4536 4536  arc_reclaim_needed(void)
4537 4537  {
4538 4538          return (arc_available_memory() < 0);
4539 4539  }
4540 4540  
4541 4541  static void
4542 4542  arc_kmem_reap_soon(void)
4543 4543  {
4544 4544          size_t                  i;
4545 4545          kmem_cache_t            *prev_cache = NULL;
4546 4546          kmem_cache_t            *prev_data_cache = NULL;
4547 4547          extern kmem_cache_t     *zio_buf_cache[];
4548 4548          extern kmem_cache_t     *zio_data_buf_cache[];
4549 4549          extern kmem_cache_t     *zfs_btree_leaf_cache;
4550 4550          extern kmem_cache_t     *abd_chunk_cache;
4551 4551  
4552 4552  #ifdef _KERNEL
4553 4553          if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) {
4554 4554                  /*
4555 4555                   * We are exceeding our meta-data cache limit.
4556 4556                   * Purge some DNLC entries to release holds on meta-data.
4557 4557                   */
4558 4558                  dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4559 4559          }
4560 4560  #if defined(__i386)
4561 4561          /*
4562 4562           * Reclaim unused memory from all kmem caches.
4563 4563           */
4564 4564          kmem_reap();
4565 4565  #endif
4566 4566  #endif
4567 4567  
4568 4568          for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4569 4569                  if (zio_buf_cache[i] != prev_cache) {
4570 4570                          prev_cache = zio_buf_cache[i];
4571 4571                          kmem_cache_reap_soon(zio_buf_cache[i]);
4572 4572                  }
4573 4573                  if (zio_data_buf_cache[i] != prev_data_cache) {
4574 4574                          prev_data_cache = zio_data_buf_cache[i];
4575 4575                          kmem_cache_reap_soon(zio_data_buf_cache[i]);
4576 4576                  }
4577 4577          }
4578 4578          kmem_cache_reap_soon(abd_chunk_cache);
4579 4579          kmem_cache_reap_soon(buf_cache);
4580 4580          kmem_cache_reap_soon(hdr_full_cache);
4581 4581          kmem_cache_reap_soon(hdr_l2only_cache);
4582 4582          kmem_cache_reap_soon(zfs_btree_leaf_cache);
4583 4583  
4584 4584          if (zio_arena != NULL) {
4585 4585                  /*
4586 4586                   * Ask the vmem arena to reclaim unused memory from its
4587 4587                   * quantum caches.
4588 4588                   */
4589 4589                  vmem_qcache_reap(zio_arena);
4590 4590          }
4591 4591  }
4592 4592  
4593 4593  /* ARGSUSED */
4594 4594  static boolean_t
4595 4595  arc_adjust_cb_check(void *arg, zthr_t *zthr)
4596 4596  {
4597 4597          /*
4598 4598           * This is necessary in order for the mdb ::arc dcmd to
4599 4599           * show up to date information. Since the ::arc command
4600 4600           * does not call the kstat's update function, without
4601 4601           * this call, the command may show stale stats for the
4602 4602           * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4603 4603           * with this change, the data might be up to 1 second
4604 4604           * out of date(the arc_adjust_zthr has a maximum sleep
4605 4605           * time of 1 second); but that should suffice.  The
4606 4606           * arc_state_t structures can be queried directly if more
4607 4607           * accurate information is needed.
4608 4608           */
4609 4609          if (arc_ksp != NULL)
4610 4610                  arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4611 4611  
4612 4612          /*
4613 4613           * We have to rely on arc_get_data_impl() to tell us when to adjust,
4614 4614           * rather than checking if we are overflowing here, so that we are
4615 4615           * sure to not leave arc_get_data_impl() waiting on
4616 4616           * arc_adjust_waiters_cv.  If we have become "not overflowing" since
4617 4617           * arc_get_data_impl() checked, we need to wake it up.  We could
4618 4618           * broadcast the CV here, but arc_get_data_impl() may have not yet
4619 4619           * gone to sleep.  We would need to use a mutex to ensure that this
4620 4620           * function doesn't broadcast until arc_get_data_impl() has gone to
4621 4621           * sleep (e.g. the arc_adjust_lock).  However, the lock ordering of
4622 4622           * such a lock would necessarily be incorrect with respect to the
4623 4623           * zthr_lock, which is held before this function is called, and is
4624 4624           * held by arc_get_data_impl() when it calls zthr_wakeup().
4625 4625           */
4626 4626          return (arc_adjust_needed);
4627 4627  }
4628 4628  
4629 4629  /*
4630 4630   * Keep arc_size under arc_c by running arc_adjust which evicts data
4631 4631   * from the ARC.
4632 4632   */
4633 4633  /* ARGSUSED */
4634 4634  static void
4635 4635  arc_adjust_cb(void *arg, zthr_t *zthr)
4636 4636  {
4637 4637          uint64_t evicted = 0;
4638 4638  
4639 4639          /* Evict from cache */
4640 4640          evicted = arc_adjust();
4641 4641  
4642 4642          /*
4643 4643           * If evicted is zero, we couldn't evict anything
4644 4644           * via arc_adjust(). This could be due to hash lock
4645 4645           * collisions, but more likely due to the majority of
4646 4646           * arc buffers being unevictable. Therefore, even if
4647 4647           * arc_size is above arc_c, another pass is unlikely to
4648 4648           * be helpful and could potentially cause us to enter an
4649 4649           * infinite loop.  Additionally, zthr_iscancelled() is
4650 4650           * checked here so that if the arc is shutting down, the
4651 4651           * broadcast will wake any remaining arc adjust waiters.
4652 4652           */
4653 4653          mutex_enter(&arc_adjust_lock);
4654 4654          arc_adjust_needed = !zthr_iscancelled(arc_adjust_zthr) &&
4655 4655              evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0;
4656 4656          if (!arc_adjust_needed) {
4657 4657                  /*
4658 4658                   * We're either no longer overflowing, or we
4659 4659                   * can't evict anything more, so we should wake
4660 4660                   * up any waiters.
4661 4661                   */
4662 4662                  cv_broadcast(&arc_adjust_waiters_cv);
4663 4663          }
4664 4664          mutex_exit(&arc_adjust_lock);
4665 4665  }
4666 4666  
4667 4667  /* ARGSUSED */
4668 4668  static boolean_t
4669 4669  arc_reap_cb_check(void *arg, zthr_t *zthr)
4670 4670  {
4671 4671          int64_t free_memory = arc_available_memory();
4672 4672  
4673 4673          /*
4674 4674           * If a kmem reap is already active, don't schedule more.  We must
4675 4675           * check for this because kmem_cache_reap_soon() won't actually
4676 4676           * block on the cache being reaped (this is to prevent callers from
4677 4677           * becoming implicitly blocked by a system-wide kmem reap -- which,
4678 4678           * on a system with many, many full magazines, can take minutes).
4679 4679           */
4680 4680          if (!kmem_cache_reap_active() &&
4681 4681              free_memory < 0) {
4682 4682                  arc_no_grow = B_TRUE;
4683 4683                  arc_warm = B_TRUE;
4684 4684                  /*
4685 4685                   * Wait at least zfs_grow_retry (default 60) seconds
4686 4686                   * before considering growing.
4687 4687                   */
4688 4688                  arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4689 4689                  return (B_TRUE);
4690 4690          } else if (free_memory < arc_c >> arc_no_grow_shift) {
4691 4691                  arc_no_grow = B_TRUE;
4692 4692          } else if (gethrtime() >= arc_growtime) {
4693 4693                  arc_no_grow = B_FALSE;
4694 4694          }
4695 4695  
4696 4696          return (B_FALSE);
4697 4697  }
4698 4698  
4699 4699  /*
4700 4700   * Keep enough free memory in the system by reaping the ARC's kmem
4701 4701   * caches.  To cause more slabs to be reapable, we may reduce the
4702 4702   * target size of the cache (arc_c), causing the arc_adjust_cb()
4703 4703   * to free more buffers.
4704 4704   */
4705 4705  /* ARGSUSED */
4706 4706  static void
4707 4707  arc_reap_cb(void *arg, zthr_t *zthr)
4708 4708  {
4709 4709          int64_t free_memory;
4710 4710  
4711 4711          /*
4712 4712           * Kick off asynchronous kmem_reap()'s of all our caches.
4713 4713           */
4714 4714          arc_kmem_reap_soon();
4715 4715  
4716 4716          /*
4717 4717           * Wait at least arc_kmem_cache_reap_retry_ms between
4718 4718           * arc_kmem_reap_soon() calls. Without this check it is possible to
4719 4719           * end up in a situation where we spend lots of time reaping
4720 4720           * caches, while we're near arc_c_min.  Waiting here also gives the
4721 4721           * subsequent free memory check a chance of finding that the
4722 4722           * asynchronous reap has already freed enough memory, and we don't
4723 4723           * need to call arc_reduce_target_size().
4724 4724           */
4725 4725          delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4726 4726  
4727 4727          /*
4728 4728           * Reduce the target size as needed to maintain the amount of free
4729 4729           * memory in the system at a fraction of the arc_size (1/128th by
4730 4730           * default).  If oversubscribed (free_memory < 0) then reduce the
4731 4731           * target arc_size by the deficit amount plus the fractional
4732 4732           * amount.  If free memory is positive but less then the fractional
4733 4733           * amount, reduce by what is needed to hit the fractional amount.
4734 4734           */
4735 4735          free_memory = arc_available_memory();
4736 4736  
4737 4737          int64_t to_free =
4738 4738              (arc_c >> arc_shrink_shift) - free_memory;
4739 4739          if (to_free > 0) {
4740 4740  #ifdef _KERNEL
4741 4741                  to_free = MAX(to_free, ptob(needfree));
4742 4742  #endif
4743 4743                  arc_reduce_target_size(to_free);
4744 4744          }
4745 4745  }
4746 4746  
4747 4747  /*
4748 4748   * Adapt arc info given the number of bytes we are trying to add and
4749 4749   * the state that we are coming from.  This function is only called
4750 4750   * when we are adding new content to the cache.
4751 4751   */
4752 4752  static void
4753 4753  arc_adapt(int bytes, arc_state_t *state)
4754 4754  {
4755 4755          int mult;
4756 4756          uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4757 4757          int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size);
4758 4758          int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size);
4759 4759  
4760 4760          if (state == arc_l2c_only)
4761 4761                  return;
4762 4762  
4763 4763          ASSERT(bytes > 0);
4764 4764          /*
4765 4765           * Adapt the target size of the MRU list:
4766 4766           *      - if we just hit in the MRU ghost list, then increase
4767 4767           *        the target size of the MRU list.
4768 4768           *      - if we just hit in the MFU ghost list, then increase
4769 4769           *        the target size of the MFU list by decreasing the
4770 4770           *        target size of the MRU list.
4771 4771           */
4772 4772          if (state == arc_mru_ghost) {
4773 4773                  mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4774 4774                  mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4775 4775  
4776 4776                  arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4777 4777          } else if (state == arc_mfu_ghost) {
4778 4778                  uint64_t delta;
4779 4779  
4780 4780                  mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4781 4781                  mult = MIN(mult, 10);
4782 4782  
4783 4783                  delta = MIN(bytes * mult, arc_p);
4784 4784                  arc_p = MAX(arc_p_min, arc_p - delta);
4785 4785          }
4786 4786          ASSERT((int64_t)arc_p >= 0);
4787 4787  
4788 4788          /*
4789 4789           * Wake reap thread if we do not have any available memory
4790 4790           */
4791 4791          if (arc_reclaim_needed()) {
4792 4792                  zthr_wakeup(arc_reap_zthr);
4793 4793                  return;
4794 4794          }
4795 4795  
4796 4796  
4797 4797          if (arc_no_grow)
4798 4798                  return;
4799 4799  
4800 4800          if (arc_c >= arc_c_max)
4801 4801                  return;
4802 4802  
4803 4803          /*
4804 4804           * If we're within (2 * maxblocksize) bytes of the target
4805 4805           * cache size, increment the target cache size
4806 4806           */
4807 4807          if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) >
4808 4808              0) {
4809 4809                  atomic_add_64(&arc_c, (int64_t)bytes);
4810 4810                  if (arc_c > arc_c_max)
4811 4811                          arc_c = arc_c_max;
4812 4812                  else if (state == arc_anon)
4813 4813                          atomic_add_64(&arc_p, (int64_t)bytes);
4814 4814                  if (arc_p > arc_c)
4815 4815                          arc_p = arc_c;
4816 4816          }
4817 4817          ASSERT((int64_t)arc_p >= 0);
4818 4818  }
4819 4819  
4820 4820  /*
4821 4821   * Check if arc_size has grown past our upper threshold, determined by
4822 4822   * zfs_arc_overflow_shift.
4823 4823   */
4824 4824  static boolean_t
4825 4825  arc_is_overflowing(void)
4826 4826  {
4827 4827          /* Always allow at least one block of overflow */
4828 4828          uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4829 4829              arc_c >> zfs_arc_overflow_shift);
4830 4830  
4831 4831          /*
4832 4832           * We just compare the lower bound here for performance reasons. Our
4833 4833           * primary goals are to make sure that the arc never grows without
4834 4834           * bound, and that it can reach its maximum size. This check
4835 4835           * accomplishes both goals. The maximum amount we could run over by is
4836 4836           * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
4837 4837           * in the ARC. In practice, that's in the tens of MB, which is low
4838 4838           * enough to be safe.
4839 4839           */
4840 4840          return (aggsum_lower_bound(&arc_size) >= arc_c + overflow);
4841 4841  }
4842 4842  
4843 4843  static abd_t *
4844 4844  arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4845 4845  {
4846 4846          arc_buf_contents_t type = arc_buf_type(hdr);
4847 4847  
4848 4848          arc_get_data_impl(hdr, size, tag);
4849 4849          if (type == ARC_BUFC_METADATA) {
4850 4850                  return (abd_alloc(size, B_TRUE));
4851 4851          } else {
4852 4852                  ASSERT(type == ARC_BUFC_DATA);
4853 4853                  return (abd_alloc(size, B_FALSE));
4854 4854          }
4855 4855  }
4856 4856  
4857 4857  static void *
4858 4858  arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4859 4859  {
4860 4860          arc_buf_contents_t type = arc_buf_type(hdr);
4861 4861  
4862 4862          arc_get_data_impl(hdr, size, tag);
4863 4863          if (type == ARC_BUFC_METADATA) {
4864 4864                  return (zio_buf_alloc(size));
4865 4865          } else {
4866 4866                  ASSERT(type == ARC_BUFC_DATA);
4867 4867                  return (zio_data_buf_alloc(size));
4868 4868          }
4869 4869  }
4870 4870  
4871 4871  /*
4872 4872   * Allocate a block and return it to the caller. If we are hitting the
4873 4873   * hard limit for the cache size, we must sleep, waiting for the eviction
4874 4874   * thread to catch up. If we're past the target size but below the hard
4875 4875   * limit, we'll only signal the reclaim thread and continue on.
4876 4876   */
4877 4877  static void
4878 4878  arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4879 4879  {
4880 4880          arc_state_t *state = hdr->b_l1hdr.b_state;
4881 4881          arc_buf_contents_t type = arc_buf_type(hdr);
4882 4882  
4883 4883          arc_adapt(size, state);
4884 4884  
4885 4885          /*
4886 4886           * If arc_size is currently overflowing, and has grown past our
4887 4887           * upper limit, we must be adding data faster than the evict
4888 4888           * thread can evict. Thus, to ensure we don't compound the
4889 4889           * problem by adding more data and forcing arc_size to grow even
4890 4890           * further past its target size, we halt and wait for the
4891 4891           * eviction thread to catch up.
4892 4892           *
4893 4893           * It's also possible that the reclaim thread is unable to evict
4894 4894           * enough buffers to get arc_size below the overflow limit (e.g.
4895 4895           * due to buffers being un-evictable, or hash lock collisions).
4896 4896           * In this case, we want to proceed regardless if we're
4897 4897           * overflowing; thus we don't use a while loop here.
4898 4898           */
4899 4899          if (arc_is_overflowing()) {
4900 4900                  mutex_enter(&arc_adjust_lock);
4901 4901  
4902 4902                  /*
4903 4903                   * Now that we've acquired the lock, we may no longer be
4904 4904                   * over the overflow limit, lets check.
4905 4905                   *
4906 4906                   * We're ignoring the case of spurious wake ups. If that
4907 4907                   * were to happen, it'd let this thread consume an ARC
4908 4908                   * buffer before it should have (i.e. before we're under
4909 4909                   * the overflow limit and were signalled by the reclaim
4910 4910                   * thread). As long as that is a rare occurrence, it
4911 4911                   * shouldn't cause any harm.
4912 4912                   */
4913 4913                  if (arc_is_overflowing()) {
4914 4914                          arc_adjust_needed = B_TRUE;
4915 4915                          zthr_wakeup(arc_adjust_zthr);
4916 4916                          (void) cv_wait(&arc_adjust_waiters_cv,
4917 4917                              &arc_adjust_lock);
4918 4918                  }
4919 4919                  mutex_exit(&arc_adjust_lock);
4920 4920          }
4921 4921  
4922 4922          VERIFY3U(hdr->b_type, ==, type);
4923 4923          if (type == ARC_BUFC_METADATA) {
4924 4924                  arc_space_consume(size, ARC_SPACE_META);
4925 4925          } else {
4926 4926                  arc_space_consume(size, ARC_SPACE_DATA);
4927 4927          }
4928 4928  
4929 4929          /*
4930 4930           * Update the state size.  Note that ghost states have a
4931 4931           * "ghost size" and so don't need to be updated.
4932 4932           */
4933 4933          if (!GHOST_STATE(state)) {
4934 4934  
4935 4935                  (void) zfs_refcount_add_many(&state->arcs_size, size, tag);
4936 4936  
4937 4937                  /*
4938 4938                   * If this is reached via arc_read, the link is
4939 4939                   * protected by the hash lock. If reached via
4940 4940                   * arc_buf_alloc, the header should not be accessed by
4941 4941                   * any other thread. And, if reached via arc_read_done,
4942 4942                   * the hash lock will protect it if it's found in the
4943 4943                   * hash table; otherwise no other thread should be
4944 4944                   * trying to [add|remove]_reference it.
4945 4945                   */
4946 4946                  if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4947 4947                          ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4948 4948                          (void) zfs_refcount_add_many(&state->arcs_esize[type],
4949 4949                              size, tag);
4950 4950                  }
4951 4951  
4952 4952                  /*
4953 4953                   * If we are growing the cache, and we are adding anonymous
4954 4954                   * data, and we have outgrown arc_p, update arc_p
4955 4955                   */
4956 4956                  if (aggsum_compare(&arc_size, arc_c) < 0 &&
4957 4957                      hdr->b_l1hdr.b_state == arc_anon &&
4958 4958                      (zfs_refcount_count(&arc_anon->arcs_size) +
4959 4959                      zfs_refcount_count(&arc_mru->arcs_size) > arc_p))
4960 4960                          arc_p = MIN(arc_c, arc_p + size);
4961 4961          }
4962 4962  }
4963 4963  
4964 4964  static void
4965 4965  arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
4966 4966  {
4967 4967          arc_free_data_impl(hdr, size, tag);
4968 4968          abd_free(abd);
4969 4969  }
4970 4970  
4971 4971  static void
4972 4972  arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
4973 4973  {
4974 4974          arc_buf_contents_t type = arc_buf_type(hdr);
4975 4975  
4976 4976          arc_free_data_impl(hdr, size, tag);
4977 4977          if (type == ARC_BUFC_METADATA) {
4978 4978                  zio_buf_free(buf, size);
4979 4979          } else {
4980 4980                  ASSERT(type == ARC_BUFC_DATA);
4981 4981                  zio_data_buf_free(buf, size);
4982 4982          }
4983 4983  }
4984 4984  
4985 4985  /*
4986 4986   * Free the arc data buffer.
4987 4987   */
4988 4988  static void
4989 4989  arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4990 4990  {
4991 4991          arc_state_t *state = hdr->b_l1hdr.b_state;
4992 4992          arc_buf_contents_t type = arc_buf_type(hdr);
4993 4993  
4994 4994          /* protected by hash lock, if in the hash table */
4995 4995          if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4996 4996                  ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4997 4997                  ASSERT(state != arc_anon && state != arc_l2c_only);
4998 4998  
4999 4999                  (void) zfs_refcount_remove_many(&state->arcs_esize[type],
5000 5000                      size, tag);
5001 5001          }
5002 5002          (void) zfs_refcount_remove_many(&state->arcs_size, size, tag);
5003 5003  
5004 5004          VERIFY3U(hdr->b_type, ==, type);
5005 5005          if (type == ARC_BUFC_METADATA) {
5006 5006                  arc_space_return(size, ARC_SPACE_META);
5007 5007          } else {
5008 5008                  ASSERT(type == ARC_BUFC_DATA);
5009 5009                  arc_space_return(size, ARC_SPACE_DATA);
5010 5010          }
5011 5011  }
5012 5012  
5013 5013  /*
5014 5014   * This routine is called whenever a buffer is accessed.
5015 5015   * NOTE: the hash lock is dropped in this function.
5016 5016   */
5017 5017  static void
5018 5018  arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
5019 5019  {
5020 5020          clock_t now;
5021 5021  
5022 5022          ASSERT(MUTEX_HELD(hash_lock));
5023 5023          ASSERT(HDR_HAS_L1HDR(hdr));
5024 5024  
5025 5025          if (hdr->b_l1hdr.b_state == arc_anon) {
5026 5026                  /*
5027 5027                   * This buffer is not in the cache, and does not
5028 5028                   * appear in our "ghost" list.  Add the new buffer
5029 5029                   * to the MRU state.
5030 5030                   */
5031 5031  
5032 5032                  ASSERT0(hdr->b_l1hdr.b_arc_access);
5033 5033                  hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5034 5034                  DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5035 5035                  arc_change_state(arc_mru, hdr, hash_lock);
5036 5036  
5037 5037          } else if (hdr->b_l1hdr.b_state == arc_mru) {
5038 5038                  now = ddi_get_lbolt();
5039 5039  
5040 5040                  /*
5041 5041                   * If this buffer is here because of a prefetch, then either:
5042 5042                   * - clear the flag if this is a "referencing" read
5043 5043                   *   (any subsequent access will bump this into the MFU state).
5044 5044                   * or
5045 5045                   * - move the buffer to the head of the list if this is
5046 5046                   *   another prefetch (to make it less likely to be evicted).
5047 5047                   */
5048 5048                  if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5049 5049                          if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5050 5050                                  /* link protected by hash lock */
5051 5051                                  ASSERT(multilist_link_active(
5052 5052                                      &hdr->b_l1hdr.b_arc_node));
5053 5053                          } else {
5054 5054                                  arc_hdr_clear_flags(hdr,
5055 5055                                      ARC_FLAG_PREFETCH |
5056 5056                                      ARC_FLAG_PRESCIENT_PREFETCH);
5057 5057                                  ARCSTAT_BUMP(arcstat_mru_hits);
5058 5058                          }
5059 5059                          hdr->b_l1hdr.b_arc_access = now;
5060 5060                          return;
5061 5061                  }
5062 5062  
5063 5063                  /*
5064 5064                   * This buffer has been "accessed" only once so far,
5065 5065                   * but it is still in the cache. Move it to the MFU
5066 5066                   * state.
5067 5067                   */
5068 5068                  if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
5069 5069                          /*
5070 5070                           * More than 125ms have passed since we
5071 5071                           * instantiated this buffer.  Move it to the
5072 5072                           * most frequently used state.
5073 5073                           */
5074 5074                          hdr->b_l1hdr.b_arc_access = now;
5075 5075                          DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5076 5076                          arc_change_state(arc_mfu, hdr, hash_lock);
5077 5077                  }
5078 5078                  ARCSTAT_BUMP(arcstat_mru_hits);
5079 5079          } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5080 5080                  arc_state_t     *new_state;
5081 5081                  /*
5082 5082                   * This buffer has been "accessed" recently, but
5083 5083                   * was evicted from the cache.  Move it to the
5084 5084                   * MFU state.
5085 5085                   */
5086 5086  
5087 5087                  if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5088 5088                          new_state = arc_mru;
5089 5089                          if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) {
5090 5090                                  arc_hdr_clear_flags(hdr,
5091 5091                                      ARC_FLAG_PREFETCH |
5092 5092                                      ARC_FLAG_PRESCIENT_PREFETCH);
5093 5093                          }
5094 5094                          DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5095 5095                  } else {
5096 5096                          new_state = arc_mfu;
5097 5097                          DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5098 5098                  }
5099 5099  
5100 5100                  hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5101 5101                  arc_change_state(new_state, hdr, hash_lock);
5102 5102  
5103 5103                  ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5104 5104          } else if (hdr->b_l1hdr.b_state == arc_mfu) {
5105 5105                  /*
5106 5106                   * This buffer has been accessed more than once and is
5107 5107                   * still in the cache.  Keep it in the MFU state.
5108 5108                   *
5109 5109                   * NOTE: an add_reference() that occurred when we did
5110 5110                   * the arc_read() will have kicked this off the list.
5111 5111                   * If it was a prefetch, we will explicitly move it to
5112 5112                   * the head of the list now.
5113 5113                   */
5114 5114                  ARCSTAT_BUMP(arcstat_mfu_hits);
5115 5115                  hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5116 5116          } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5117 5117                  arc_state_t     *new_state = arc_mfu;
5118 5118                  /*
5119 5119                   * This buffer has been accessed more than once but has
5120 5120                   * been evicted from the cache.  Move it back to the
5121 5121                   * MFU state.
5122 5122                   */
5123 5123  
5124 5124                  if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5125 5125                          /*
5126 5126                           * This is a prefetch access...
5127 5127                           * move this block back to the MRU state.
5128 5128                           */
5129 5129                          new_state = arc_mru;
5130 5130                  }
5131 5131  
5132 5132                  hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5133 5133                  DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5134 5134                  arc_change_state(new_state, hdr, hash_lock);
5135 5135  
5136 5136                  ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5137 5137          } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5138 5138                  /*
5139 5139                   * This buffer is on the 2nd Level ARC.
5140 5140                   */
5141 5141  
5142 5142                  hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5143 5143                  DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5144 5144                  arc_change_state(arc_mfu, hdr, hash_lock);
5145 5145          } else {
5146 5146                  ASSERT(!"invalid arc state");
5147 5147          }
5148 5148  }
5149 5149  
5150 5150  /*
5151 5151   * This routine is called by dbuf_hold() to update the arc_access() state
5152 5152   * which otherwise would be skipped for entries in the dbuf cache.
5153 5153   */
5154 5154  void
5155 5155  arc_buf_access(arc_buf_t *buf)
5156 5156  {
5157 5157          mutex_enter(&buf->b_evict_lock);
5158 5158          arc_buf_hdr_t *hdr = buf->b_hdr;
5159 5159  
5160 5160          /*
5161 5161           * Avoid taking the hash_lock when possible as an optimization.
5162 5162           * The header must be checked again under the hash_lock in order
5163 5163           * to handle the case where it is concurrently being released.
5164 5164           */
5165 5165          if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5166 5166                  mutex_exit(&buf->b_evict_lock);
5167 5167                  return;
5168 5168          }
5169 5169  
5170 5170          kmutex_t *hash_lock = HDR_LOCK(hdr);
5171 5171          mutex_enter(hash_lock);
5172 5172  
5173 5173          if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5174 5174                  mutex_exit(hash_lock);
5175 5175                  mutex_exit(&buf->b_evict_lock);
5176 5176                  ARCSTAT_BUMP(arcstat_access_skip);
5177 5177                  return;
5178 5178          }
5179 5179  
5180 5180          mutex_exit(&buf->b_evict_lock);
5181 5181  
5182 5182          ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5183 5183              hdr->b_l1hdr.b_state == arc_mfu);
5184 5184  
5185 5185          DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5186 5186          arc_access(hdr, hash_lock);
5187 5187          mutex_exit(hash_lock);
5188 5188  
5189 5189          ARCSTAT_BUMP(arcstat_hits);
5190 5190          ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5191 5191              demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5192 5192  }
5193 5193  
5194 5194  /* a generic arc_read_done_func_t which you can use */
5195 5195  /* ARGSUSED */
5196 5196  void
5197 5197  arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5198 5198      arc_buf_t *buf, void *arg)
5199 5199  {
5200 5200          if (buf == NULL)
5201 5201                  return;
5202 5202  
5203 5203          bcopy(buf->b_data, arg, arc_buf_size(buf));
5204 5204          arc_buf_destroy(buf, arg);
5205 5205  }
5206 5206  
5207 5207  /* a generic arc_read_done_func_t */
5208 5208  void
5209 5209  arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5210 5210      arc_buf_t *buf, void *arg)
5211 5211  {
5212 5212          arc_buf_t **bufp = arg;
5213 5213  
5214 5214          if (buf == NULL) {
5215 5215                  ASSERT(zio == NULL || zio->io_error != 0);
5216 5216                  *bufp = NULL;
5217 5217          } else {
5218 5218                  ASSERT(zio == NULL || zio->io_error == 0);
5219 5219                  *bufp = buf;
5220 5220                  ASSERT(buf->b_data != NULL);
5221 5221          }
5222 5222  }
5223 5223  
5224 5224  static void
5225 5225  arc_hdr_verify(arc_buf_hdr_t *hdr, const blkptr_t *bp)
5226 5226  {
5227 5227          if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5228 5228                  ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5229 5229                  ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5230 5230          } else {
5231 5231                  if (HDR_COMPRESSION_ENABLED(hdr)) {
5232 5232                          ASSERT3U(arc_hdr_get_compress(hdr), ==,
5233 5233                              BP_GET_COMPRESS(bp));
5234 5234                  }
5235 5235                  ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5236 5236                  ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5237 5237                  ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5238 5238          }
5239 5239  }
5240 5240  
5241 5241  /*
5242 5242   * XXX this should be changed to return an error, and callers
5243 5243   * re-read from disk on failure (on nondebug bits).
5244 5244   */
5245 5245  static void
5246 5246  arc_hdr_verify_checksum(spa_t *spa, arc_buf_hdr_t *hdr, const blkptr_t *bp)
5247 5247  {
5248 5248          arc_hdr_verify(hdr, bp);
5249 5249          if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
5250 5250                  return;
5251 5251          int err = 0;
5252 5252          abd_t *abd = NULL;
5253 5253          if (BP_IS_ENCRYPTED(bp)) {
5254 5254                  if (HDR_HAS_RABD(hdr)) {
5255 5255                          abd = hdr->b_crypt_hdr.b_rabd;
5256 5256                  }
5257 5257          } else if (HDR_COMPRESSION_ENABLED(hdr)) {
5258 5258                  abd = hdr->b_l1hdr.b_pabd;
5259 5259          }
5260 5260          if (abd != NULL) {
5261 5261                  /*
5262 5262                   * The offset is only used for labels, which are not
5263 5263                   * cached in the ARC, so it doesn't matter what we
5264 5264                   * pass for the offset parameter.
5265 5265                   */
5266 5266                  int psize = HDR_GET_PSIZE(hdr);
5267 5267                  err = zio_checksum_error_impl(spa, bp,
5268 5268                      BP_GET_CHECKSUM(bp), abd, psize, 0, NULL);
5269 5269                  if (err != 0) {
5270 5270                          /*
5271 5271                           * Use abd_copy_to_buf() rather than
5272 5272                           * abd_borrow_buf_copy() so that we are sure to
5273 5273                           * include the buf in crash dumps.
5274 5274                           */
5275 5275                          void *buf = kmem_alloc(psize, KM_SLEEP);
5276 5276                          abd_copy_to_buf(buf, abd, psize);
5277 5277                          panic("checksum of cached data doesn't match BP "
5278 5278                              "err=%u hdr=%p bp=%p abd=%p buf=%p",
5279 5279                              err, (void *)hdr, (void *)bp, (void *)abd, buf);
5280 5280                  }
5281 5281          }
5282 5282  }
5283 5283  
5284 5284  static void
5285 5285  arc_read_done(zio_t *zio)
5286 5286  {
5287 5287          blkptr_t        *bp = zio->io_bp;
5288 5288          arc_buf_hdr_t   *hdr = zio->io_private;
5289 5289          kmutex_t        *hash_lock = NULL;
5290 5290          arc_callback_t  *callback_list;
5291 5291          arc_callback_t  *acb;
5292 5292          boolean_t       freeable = B_FALSE;
5293 5293  
5294 5294          /*
5295 5295           * The hdr was inserted into hash-table and removed from lists
5296 5296           * prior to starting I/O.  We should find this header, since
5297 5297           * it's in the hash table, and it should be legit since it's
5298 5298           * not possible to evict it during the I/O.  The only possible
5299 5299           * reason for it not to be found is if we were freed during the
5300 5300           * read.
5301 5301           */
5302 5302          if (HDR_IN_HASH_TABLE(hdr)) {
5303 5303                  ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5304 5304                  ASSERT3U(hdr->b_dva.dva_word[0], ==,
5305 5305                      BP_IDENTITY(zio->io_bp)->dva_word[0]);
5306 5306                  ASSERT3U(hdr->b_dva.dva_word[1], ==,
5307 5307                      BP_IDENTITY(zio->io_bp)->dva_word[1]);
5308 5308  
5309 5309                  arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
5310 5310                      &hash_lock);
5311 5311  
5312 5312                  ASSERT((found == hdr &&
5313 5313                      DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5314 5314                      (found == hdr && HDR_L2_READING(hdr)));
5315 5315                  ASSERT3P(hash_lock, !=, NULL);
5316 5316          }
5317 5317  
5318 5318          if (BP_IS_PROTECTED(bp)) {
5319 5319                  hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5320 5320                  hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5321 5321                  zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5322 5322                      hdr->b_crypt_hdr.b_iv);
5323 5323  
5324 5324                  if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5325 5325                          void *tmpbuf;
5326 5326  
5327 5327                          tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5328 5328                              sizeof (zil_chain_t));
5329 5329                          zio_crypt_decode_mac_zil(tmpbuf,
5330 5330                              hdr->b_crypt_hdr.b_mac);
5331 5331                          abd_return_buf(zio->io_abd, tmpbuf,
5332 5332                              sizeof (zil_chain_t));
5333 5333                  } else {
5334 5334                          zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
5335 5335                  }
5336 5336          }
5337 5337  
5338 5338          if (zio->io_error == 0) {
5339 5339                  /* byteswap if necessary */
5340 5340                  if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5341 5341                          if (BP_GET_LEVEL(zio->io_bp) > 0) {
5342 5342                                  hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5343 5343                          } else {
5344 5344                                  hdr->b_l1hdr.b_byteswap =
5345 5345                                      DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5346 5346                          }
5347 5347                  } else {
5348 5348                          hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5349 5349                  }
5350 5350          }
5351 5351  
5352 5352          arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5353 5353          if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5354 5354                  arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5355 5355  
5356 5356          callback_list = hdr->b_l1hdr.b_acb;
5357 5357          ASSERT3P(callback_list, !=, NULL);
5358 5358  
5359 5359          if (hash_lock && zio->io_error == 0 &&
5360 5360              hdr->b_l1hdr.b_state == arc_anon) {
5361 5361                  /*
5362 5362                   * Only call arc_access on anonymous buffers.  This is because
5363 5363                   * if we've issued an I/O for an evicted buffer, we've already
5364 5364                   * called arc_access (to prevent any simultaneous readers from
5365 5365                   * getting confused).
5366 5366                   */
5367 5367                  arc_access(hdr, hash_lock);
5368 5368          }
5369 5369  
5370 5370          /*
5371 5371           * If a read request has a callback (i.e. acb_done is not NULL), then we
5372 5372           * make a buf containing the data according to the parameters which were
5373 5373           * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5374 5374           * aren't needlessly decompressing the data multiple times.
5375 5375           */
5376 5376          int callback_cnt = 0;
5377 5377          for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5378 5378                  if (!acb->acb_done)
5379 5379                          continue;
5380 5380  
5381 5381                  callback_cnt++;
5382 5382  
5383 5383                  if (zio->io_error != 0)
5384 5384                          continue;
5385 5385  
5386 5386                  int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5387 5387                      &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5388 5388                      acb->acb_compressed, acb->acb_noauth, B_TRUE,
5389 5389                      &acb->acb_buf);
5390 5390  
5391 5391                  /*
5392 5392                   * Assert non-speculative zios didn't fail because an
5393 5393                   * encryption key wasn't loaded
5394 5394                   */
5395 5395                  ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5396 5396                      error != EACCES);
5397 5397  
5398 5398                  /*
5399 5399                   * If we failed to decrypt, report an error now (as the zio
5400 5400                   * layer would have done if it had done the transforms).
5401 5401                   */
5402 5402                  if (error == ECKSUM) {
5403 5403                          ASSERT(BP_IS_PROTECTED(bp));
5404 5404                          error = SET_ERROR(EIO);
5405 5405                          if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5406 5406                                  spa_log_error(zio->io_spa, &acb->acb_zb);
5407 5407                                  (void) zfs_ereport_post(
5408 5408                                      FM_EREPORT_ZFS_AUTHENTICATION,
5409 5409                                      zio->io_spa, NULL, &acb->acb_zb, zio, 0, 0);
5410 5410                          }
5411 5411                  }
5412 5412  
5413 5413                  if (error != 0) {
5414 5414                          /*
5415 5415                           * Decompression failed.  Set io_error
5416 5416                           * so that when we call acb_done (below),
5417 5417                           * we will indicate that the read failed.
5418 5418                           * Note that in the unusual case where one
5419 5419                           * callback is compressed and another
5420 5420                           * uncompressed, we will mark all of them
5421 5421                           * as failed, even though the uncompressed
5422 5422                           * one can't actually fail.  In this case,
5423 5423                           * the hdr will not be anonymous, because
5424 5424                           * if there are multiple callbacks, it's
5425 5425                           * because multiple threads found the same
5426 5426                           * arc buf in the hash table.
5427 5427                           */
5428 5428                          zio->io_error = error;
5429 5429                  }
5430 5430          }
5431 5431  
5432 5432          /*
5433 5433           * If there are multiple callbacks, we must have the hash lock,
5434 5434           * because the only way for multiple threads to find this hdr is
5435 5435           * in the hash table.  This ensures that if there are multiple
5436 5436           * callbacks, the hdr is not anonymous.  If it were anonymous,
5437 5437           * we couldn't use arc_buf_destroy() in the error case below.
5438 5438           */
5439 5439          ASSERT(callback_cnt < 2 || hash_lock != NULL);
5440 5440  
5441 5441          hdr->b_l1hdr.b_acb = NULL;
5442 5442          arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5443 5443          if (callback_cnt == 0)
5444 5444                  ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
5445 5445  
5446 5446          ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5447 5447              callback_list != NULL);
5448 5448  
5449 5449          if (zio->io_error == 0) {
5450 5450                  arc_hdr_verify(hdr, zio->io_bp);
5451 5451          } else {
5452 5452                  arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5453 5453                  if (hdr->b_l1hdr.b_state != arc_anon)
5454 5454                          arc_change_state(arc_anon, hdr, hash_lock);
5455 5455                  if (HDR_IN_HASH_TABLE(hdr))
5456 5456                          buf_hash_remove(hdr);
5457 5457                  freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5458 5458          }
5459 5459  
5460 5460          /*
5461 5461           * Broadcast before we drop the hash_lock to avoid the possibility
5462 5462           * that the hdr (and hence the cv) might be freed before we get to
5463 5463           * the cv_broadcast().
5464 5464           */
5465 5465          cv_broadcast(&hdr->b_l1hdr.b_cv);
5466 5466  
5467 5467          if (hash_lock != NULL) {
5468 5468                  mutex_exit(hash_lock);
5469 5469          } else {
5470 5470                  /*
5471 5471                   * This block was freed while we waited for the read to
5472 5472                   * complete.  It has been removed from the hash table and
5473 5473                   * moved to the anonymous state (so that it won't show up
5474 5474                   * in the cache).
5475 5475                   */
5476 5476                  ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5477 5477                  freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5478 5478          }
5479 5479  
5480 5480          /* execute each callback and free its structure */
5481 5481          while ((acb = callback_list) != NULL) {
5482 5482  
5483 5483                  if (acb->acb_done != NULL) {
5484 5484                          if (zio->io_error != 0 && acb->acb_buf != NULL) {
5485 5485                                  /*
5486 5486                                   * If arc_buf_alloc_impl() fails during
5487 5487                                   * decompression, the buf will still be
5488 5488                                   * allocated, and needs to be freed here.
5489 5489                                   */
5490 5490                                  arc_buf_destroy(acb->acb_buf, acb->acb_private);
5491 5491                                  acb->acb_buf = NULL;
5492 5492                          }
5493 5493                          acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5494 5494                              acb->acb_buf, acb->acb_private);
5495 5495                  }
5496 5496  
5497 5497                  if (acb->acb_zio_dummy != NULL) {
5498 5498                          acb->acb_zio_dummy->io_error = zio->io_error;
5499 5499                          zio_nowait(acb->acb_zio_dummy);
5500 5500                  }
5501 5501  
5502 5502                  callback_list = acb->acb_next;
5503 5503                  kmem_free(acb, sizeof (arc_callback_t));
5504 5504          }
5505 5505  
5506 5506          if (freeable)
5507 5507                  arc_hdr_destroy(hdr);
5508 5508  }
5509 5509  
5510 5510  /*
5511 5511   * "Read" the block at the specified DVA (in bp) via the
5512 5512   * cache.  If the block is found in the cache, invoke the provided
5513 5513   * callback immediately and return.  Note that the `zio' parameter
5514 5514   * in the callback will be NULL in this case, since no IO was
5515 5515   * required.  If the block is not in the cache pass the read request
5516 5516   * on to the spa with a substitute callback function, so that the
5517 5517   * requested block will be added to the cache.
5518 5518   *
5519 5519   * If a read request arrives for a block that has a read in-progress,
5520 5520   * either wait for the in-progress read to complete (and return the
5521 5521   * results); or, if this is a read with a "done" func, add a record
5522 5522   * to the read to invoke the "done" func when the read completes,
5523 5523   * and return; or just return.
5524 5524   *
5525 5525   * arc_read_done() will invoke all the requested "done" functions
5526 5526   * for readers of this block.
5527 5527   */
5528 5528  int
5529 5529  arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_read_done_func_t *done,
5530 5530      void *private, zio_priority_t priority, int zio_flags,
5531 5531      arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5532 5532  {
5533 5533          arc_buf_hdr_t *hdr = NULL;
5534 5534          kmutex_t *hash_lock = NULL;
5535 5535          zio_t *rzio;
5536 5536          uint64_t guid = spa_load_guid(spa);
5537 5537          boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5538 5538          boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5539 5539              (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5540 5540          boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5541 5541              (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5542 5542          int rc = 0;
5543 5543  
5544 5544          ASSERT(!BP_IS_EMBEDDED(bp) ||
5545 5545              BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5546 5546  
5547 5547  top:
5548 5548          if (!BP_IS_EMBEDDED(bp)) {
5549 5549                  /*
5550 5550                   * Embedded BP's have no DVA and require no I/O to "read".
5551 5551                   * Create an anonymous arc buf to back it.
5552 5552                   */
5553 5553                  hdr = buf_hash_find(guid, bp, &hash_lock);
5554 5554          }
5555 5555  
5556 5556          /*
5557 5557           * Determine if we have an L1 cache hit or a cache miss. For simplicity
5558 5558           * we maintain encrypted data seperately from compressed / uncompressed
5559 5559           * data. If the user is requesting raw encrypted data and we don't have
5560 5560           * that in the header we will read from disk to guarantee that we can
5561 5561           * get it even if the encryption keys aren't loaded.
5562 5562           */
5563 5563          if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5564 5564              (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5565 5565                  arc_buf_t *buf = NULL;
5566 5566                  *arc_flags |= ARC_FLAG_CACHED;
5567 5567  
5568 5568                  if (HDR_IO_IN_PROGRESS(hdr)) {
5569 5569                          zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5570 5570  
5571 5571                          ASSERT3P(head_zio, !=, NULL);
5572 5572                          if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5573 5573                              priority == ZIO_PRIORITY_SYNC_READ) {
5574 5574                                  /*
5575 5575                                   * This is a sync read that needs to wait for
5576 5576                                   * an in-flight async read. Request that the
5577 5577                                   * zio have its priority upgraded.
5578 5578                                   */
5579 5579                                  zio_change_priority(head_zio, priority);
5580 5580                                  DTRACE_PROBE1(arc__async__upgrade__sync,
5581 5581                                      arc_buf_hdr_t *, hdr);
5582 5582                                  ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5583 5583                          }
5584 5584                          if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5585 5585                                  arc_hdr_clear_flags(hdr,
5586 5586                                      ARC_FLAG_PREDICTIVE_PREFETCH);
5587 5587                          }
5588 5588  
5589 5589                          if (*arc_flags & ARC_FLAG_WAIT) {
5590 5590                                  cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5591 5591                                  mutex_exit(hash_lock);
5592 5592                                  goto top;
5593 5593                          }
5594 5594                          ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5595 5595  
5596 5596                          if (done) {
5597 5597                                  arc_callback_t *acb = NULL;
5598 5598  
5599 5599                                  acb = kmem_zalloc(sizeof (arc_callback_t),
5600 5600                                      KM_SLEEP);
5601 5601                                  acb->acb_done = done;
5602 5602                                  acb->acb_private = private;
5603 5603                                  acb->acb_compressed = compressed_read;
5604 5604                                  acb->acb_encrypted = encrypted_read;
5605 5605                                  acb->acb_noauth = noauth_read;
5606 5606                                  acb->acb_zb = *zb;
5607 5607                                  if (pio != NULL)
5608 5608                                          acb->acb_zio_dummy = zio_null(pio,
5609 5609                                              spa, NULL, NULL, NULL, zio_flags);
5610 5610  
5611 5611                                  ASSERT3P(acb->acb_done, !=, NULL);
5612 5612                                  acb->acb_zio_head = head_zio;
5613 5613                                  acb->acb_next = hdr->b_l1hdr.b_acb;
5614 5614                                  hdr->b_l1hdr.b_acb = acb;
5615 5615                                  mutex_exit(hash_lock);
5616 5616                                  return (0);
5617 5617                          }
5618 5618                          mutex_exit(hash_lock);
5619 5619                          return (0);
5620 5620                  }
5621 5621  
5622 5622                  ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5623 5623                      hdr->b_l1hdr.b_state == arc_mfu);
5624 5624  
5625 5625                  if (done) {
5626 5626                          if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5627 5627                                  /*
5628 5628                                   * This is a demand read which does not have to
5629 5629                                   * wait for i/o because we did a predictive
5630 5630                                   * prefetch i/o for it, which has completed.
5631 5631                                   */
5632 5632                                  DTRACE_PROBE1(
5633 5633                                      arc__demand__hit__predictive__prefetch,
5634 5634                                      arc_buf_hdr_t *, hdr);
5635 5635                                  ARCSTAT_BUMP(
5636 5636                                      arcstat_demand_hit_predictive_prefetch);
5637 5637                                  arc_hdr_clear_flags(hdr,
5638 5638                                      ARC_FLAG_PREDICTIVE_PREFETCH);
5639 5639                          }
5640 5640  
5641 5641                          if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5642 5642                                  ARCSTAT_BUMP(
5643 5643                                      arcstat_demand_hit_prescient_prefetch);
5644 5644                                  arc_hdr_clear_flags(hdr,
5645 5645                                      ARC_FLAG_PRESCIENT_PREFETCH);
5646 5646                          }
5647 5647  
5648 5648                          ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
5649 5649  
5650 5650                          arc_hdr_verify_checksum(spa, hdr, bp);
5651 5651  
5652 5652                          /* Get a buf with the desired data in it. */
5653 5653                          rc = arc_buf_alloc_impl(hdr, spa, zb, private,
5654 5654                              encrypted_read, compressed_read, noauth_read,
5655 5655                              B_TRUE, &buf);
5656 5656                          if (rc == ECKSUM) {
5657 5657                                  /*
5658 5658                                   * Convert authentication and decryption errors
5659 5659                                   * to EIO (and generate an ereport if needed)
5660 5660                                   * before leaving the ARC.
5661 5661                                   */
5662 5662                                  rc = SET_ERROR(EIO);
5663 5663                                  if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5664 5664                                          spa_log_error(spa, zb);
5665 5665                                          (void) zfs_ereport_post(
5666 5666                                              FM_EREPORT_ZFS_AUTHENTICATION,
5667 5667                                              spa, NULL, zb, NULL, 0, 0);
5668 5668                                  }
5669 5669                          }
5670 5670                          if (rc != 0) {
5671 5671                                  (void) remove_reference(hdr, hash_lock,
5672 5672                                      private);
5673 5673                                  arc_buf_destroy_impl(buf);
5674 5674                                  buf = NULL;
5675 5675                          }
5676 5676                          /* assert any errors weren't due to unloaded keys */
5677 5677                          ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
5678 5678                              rc != EACCES);
5679 5679                  } else if (*arc_flags & ARC_FLAG_PREFETCH &&
5680 5680                      zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5681 5681                          arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5682 5682                  }
5683 5683                  DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5684 5684                  arc_access(hdr, hash_lock);
5685 5685                  if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
5686 5686                          arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5687 5687                  if (*arc_flags & ARC_FLAG_L2CACHE)
5688 5688                          arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5689 5689                  mutex_exit(hash_lock);
5690 5690                  ARCSTAT_BUMP(arcstat_hits);
5691 5691                  ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5692 5692                      demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5693 5693                      data, metadata, hits);
5694 5694  
5695 5695                  if (done)
5696 5696                          done(NULL, zb, bp, buf, private);
5697 5697          } else {
5698 5698                  uint64_t lsize = BP_GET_LSIZE(bp);
5699 5699                  uint64_t psize = BP_GET_PSIZE(bp);
5700 5700                  arc_callback_t *acb;
5701 5701                  vdev_t *vd = NULL;
5702 5702                  uint64_t addr = 0;
5703 5703                  boolean_t devw = B_FALSE;
5704 5704                  uint64_t size;
5705 5705                  abd_t *hdr_abd;
5706 5706  
5707 5707                  if (hdr == NULL) {
5708 5708                          /* this block is not in the cache */
5709 5709                          arc_buf_hdr_t *exists = NULL;
5710 5710                          arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5711 5711                          hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5712 5712                              BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), type,
5713 5713                              encrypted_read);
5714 5714  
5715 5715                          if (!BP_IS_EMBEDDED(bp)) {
5716 5716                                  hdr->b_dva = *BP_IDENTITY(bp);
5717 5717                                  hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5718 5718                                  exists = buf_hash_insert(hdr, &hash_lock);
5719 5719                          }
5720 5720                          if (exists != NULL) {
5721 5721                                  /* somebody beat us to the hash insert */
5722 5722                                  mutex_exit(hash_lock);
5723 5723                                  buf_discard_identity(hdr);
5724 5724                                  arc_hdr_destroy(hdr);
5725 5725                                  goto top; /* restart the IO request */
5726 5726                          }
5727 5727                  } else {
5728 5728                          /*
5729 5729                           * This block is in the ghost cache or encrypted data
5730 5730                           * was requested and we didn't have it. If it was
5731 5731                           * L2-only (and thus didn't have an L1 hdr),
5732 5732                           * we realloc the header to add an L1 hdr.
5733 5733                           */
5734 5734                          if (!HDR_HAS_L1HDR(hdr)) {
5735 5735                                  hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5736 5736                                      hdr_full_cache);
5737 5737                          }
5738 5738  
5739 5739                          if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
5740 5740                                  ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5741 5741                                  ASSERT(!HDR_HAS_RABD(hdr));
5742 5742                                  ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5743 5743                                  ASSERT0(zfs_refcount_count(
5744 5744                                      &hdr->b_l1hdr.b_refcnt));
5745 5745                                  ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5746 5746                                  ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5747 5747                          } else if (HDR_IO_IN_PROGRESS(hdr)) {
5748 5748                                  /*
5749 5749                                   * If this header already had an IO in progress
5750 5750                                   * and we are performing another IO to fetch
5751 5751                                   * encrypted data we must wait until the first
5752 5752                                   * IO completes so as not to confuse
5753 5753                                   * arc_read_done(). This should be very rare
5754 5754                                   * and so the performance impact shouldn't
5755 5755                                   * matter.
5756 5756                                   */
5757 5757                                  cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5758 5758                                  mutex_exit(hash_lock);
5759 5759                                  goto top;
5760 5760                          }
5761 5761  
5762 5762                          /*
5763 5763                           * This is a delicate dance that we play here.
5764 5764                           * This hdr might be in the ghost list so we access
5765 5765                           * it to move it out of the ghost list before we
5766 5766                           * initiate the read. If it's a prefetch then
5767 5767                           * it won't have a callback so we'll remove the
5768 5768                           * reference that arc_buf_alloc_impl() created. We
5769 5769                           * do this after we've called arc_access() to
5770 5770                           * avoid hitting an assert in remove_reference().
5771 5771                           */
5772 5772                          arc_access(hdr, hash_lock);
5773 5773                          arc_hdr_alloc_pabd(hdr, encrypted_read);
5774 5774                  }
5775 5775  
5776 5776                  if (encrypted_read) {
5777 5777                          ASSERT(HDR_HAS_RABD(hdr));
5778 5778                          size = HDR_GET_PSIZE(hdr);
5779 5779                          hdr_abd = hdr->b_crypt_hdr.b_rabd;
5780 5780                          zio_flags |= ZIO_FLAG_RAW;
5781 5781                  } else {
5782 5782                          ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5783 5783                          size = arc_hdr_size(hdr);
5784 5784                          hdr_abd = hdr->b_l1hdr.b_pabd;
5785 5785  
5786 5786                          if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
5787 5787                                  zio_flags |= ZIO_FLAG_RAW_COMPRESS;
5788 5788                          }
5789 5789  
5790 5790                          /*
5791 5791                           * For authenticated bp's, we do not ask the ZIO layer
5792 5792                           * to authenticate them since this will cause the entire
5793 5793                           * IO to fail if the key isn't loaded. Instead, we
5794 5794                           * defer authentication until arc_buf_fill(), which will
5795 5795                           * verify the data when the key is available.
5796 5796                           */
5797 5797                          if (BP_IS_AUTHENTICATED(bp))
5798 5798                                  zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
5799 5799                  }
5800 5800  
5801 5801                  if (*arc_flags & ARC_FLAG_PREFETCH &&
5802 5802                      zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))
5803 5803                          arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5804 5804                  if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
5805 5805                          arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5806 5806  
5807 5807                  if (*arc_flags & ARC_FLAG_L2CACHE)
5808 5808                          arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5809 5809                  if (BP_IS_AUTHENTICATED(bp))
5810 5810                          arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
5811 5811                  if (BP_GET_LEVEL(bp) > 0)
5812 5812                          arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5813 5813                  if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
5814 5814                          arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
5815 5815                  ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5816 5816  
5817 5817                  acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5818 5818                  acb->acb_done = done;
5819 5819                  acb->acb_private = private;
5820 5820                  acb->acb_compressed = compressed_read;
5821 5821                  acb->acb_encrypted = encrypted_read;
5822 5822                  acb->acb_noauth = noauth_read;
5823 5823                  acb->acb_zb = *zb;
5824 5824  
5825 5825                  ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5826 5826                  hdr->b_l1hdr.b_acb = acb;
5827 5827                  arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5828 5828  
5829 5829                  if (HDR_HAS_L2HDR(hdr) &&
5830 5830                      (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5831 5831                          devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5832 5832                          addr = hdr->b_l2hdr.b_daddr;
5833 5833                          /*
5834 5834                           * Lock out L2ARC device removal.
5835 5835                           */
5836 5836                          if (vdev_is_dead(vd) ||
5837 5837                              !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5838 5838                                  vd = NULL;
5839 5839                  }
5840 5840  
5841 5841                  /*
5842 5842                   * We count both async reads and scrub IOs as asynchronous so
5843 5843                   * that both can be upgraded in the event of a cache hit while
5844 5844                   * the read IO is still in-flight.
5845 5845                   */
5846 5846                  if (priority == ZIO_PRIORITY_ASYNC_READ ||
5847 5847                      priority == ZIO_PRIORITY_SCRUB)
5848 5848                          arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5849 5849                  else
5850 5850                          arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5851 5851  
5852 5852                  /*
5853 5853                   * At this point, we have a level 1 cache miss.  Try again in
5854 5854                   * L2ARC if possible.
5855 5855                   */
5856 5856                  ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5857 5857  
5858 5858                  DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5859 5859                      uint64_t, lsize, zbookmark_phys_t *, zb);
5860 5860                  ARCSTAT_BUMP(arcstat_misses);
5861 5861                  ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5862 5862                      demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5863 5863                      data, metadata, misses);
5864 5864  
5865 5865                  if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5866 5866                          /*
5867 5867                           * Read from the L2ARC if the following are true:
5868 5868                           * 1. The L2ARC vdev was previously cached.
5869 5869                           * 2. This buffer still has L2ARC metadata.
5870 5870                           * 3. This buffer isn't currently writing to the L2ARC.
5871 5871                           * 4. The L2ARC entry wasn't evicted, which may
5872 5872                           *    also have invalidated the vdev.
5873 5873                           * 5. This isn't prefetch and l2arc_noprefetch is set.
5874 5874                           */
5875 5875                          if (HDR_HAS_L2HDR(hdr) &&
5876 5876                              !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5877 5877                              !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5878 5878                                  l2arc_read_callback_t *cb;
5879 5879                                  abd_t *abd;
5880 5880                                  uint64_t asize;
5881 5881  
5882 5882                                  DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5883 5883                                  ARCSTAT_BUMP(arcstat_l2_hits);
5884 5884  
5885 5885                                  cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5886 5886                                      KM_SLEEP);
5887 5887                                  cb->l2rcb_hdr = hdr;
5888 5888                                  cb->l2rcb_bp = *bp;
5889 5889                                  cb->l2rcb_zb = *zb;
5890 5890                                  cb->l2rcb_flags = zio_flags;
5891 5891  
5892 5892                                  asize = vdev_psize_to_asize(vd, size);
5893 5893                                  if (asize != size) {
5894 5894                                          abd = abd_alloc_for_io(asize,
5895 5895                                              HDR_ISTYPE_METADATA(hdr));
5896 5896                                          cb->l2rcb_abd = abd;
5897 5897                                  } else {
5898 5898                                          abd = hdr_abd;
5899 5899                                  }
5900 5900  
5901 5901                                  ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5902 5902                                      addr + asize <= vd->vdev_psize -
5903 5903                                      VDEV_LABEL_END_SIZE);
5904 5904  
5905 5905                                  /*
5906 5906                                   * l2arc read.  The SCL_L2ARC lock will be
5907 5907                                   * released by l2arc_read_done().
5908 5908                                   * Issue a null zio if the underlying buffer
5909 5909                                   * was squashed to zero size by compression.
5910 5910                                   */
5911 5911                                  ASSERT3U(arc_hdr_get_compress(hdr), !=,
5912 5912                                      ZIO_COMPRESS_EMPTY);
5913 5913                                  rzio = zio_read_phys(pio, vd, addr,
5914 5914                                      asize, abd,
5915 5915                                      ZIO_CHECKSUM_OFF,
5916 5916                                      l2arc_read_done, cb, priority,
5917 5917                                      zio_flags | ZIO_FLAG_DONT_CACHE |
5918 5918                                      ZIO_FLAG_CANFAIL |
5919 5919                                      ZIO_FLAG_DONT_PROPAGATE |
5920 5920                                      ZIO_FLAG_DONT_RETRY, B_FALSE);
5921 5921                                  acb->acb_zio_head = rzio;
5922 5922  
5923 5923                                  if (hash_lock != NULL)
5924 5924                                          mutex_exit(hash_lock);
5925 5925  
5926 5926                                  DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5927 5927                                      zio_t *, rzio);
5928 5928                                  ARCSTAT_INCR(arcstat_l2_read_bytes,
5929 5929                                      HDR_GET_PSIZE(hdr));
5930 5930  
5931 5931                                  if (*arc_flags & ARC_FLAG_NOWAIT) {
5932 5932                                          zio_nowait(rzio);
5933 5933                                          return (0);
5934 5934                                  }
5935 5935  
5936 5936                                  ASSERT(*arc_flags & ARC_FLAG_WAIT);
5937 5937                                  if (zio_wait(rzio) == 0)
5938 5938                                          return (0);
5939 5939  
5940 5940                                  /* l2arc read error; goto zio_read() */
5941 5941                                  if (hash_lock != NULL)
5942 5942                                          mutex_enter(hash_lock);
5943 5943                          } else {
5944 5944                                  DTRACE_PROBE1(l2arc__miss,
5945 5945                                      arc_buf_hdr_t *, hdr);
5946 5946                                  ARCSTAT_BUMP(arcstat_l2_misses);
5947 5947                                  if (HDR_L2_WRITING(hdr))
5948 5948                                          ARCSTAT_BUMP(arcstat_l2_rw_clash);
5949 5949                                  spa_config_exit(spa, SCL_L2ARC, vd);
5950 5950                          }
5951 5951                  } else {
5952 5952                          if (vd != NULL)
5953 5953                                  spa_config_exit(spa, SCL_L2ARC, vd);
5954 5954                          if (l2arc_ndev != 0) {
5955 5955                                  DTRACE_PROBE1(l2arc__miss,
5956 5956                                      arc_buf_hdr_t *, hdr);
5957 5957                                  ARCSTAT_BUMP(arcstat_l2_misses);
5958 5958                          }
5959 5959                  }
5960 5960  
5961 5961                  rzio = zio_read(pio, spa, bp, hdr_abd, size,
5962 5962                      arc_read_done, hdr, priority, zio_flags, zb);
5963 5963                  acb->acb_zio_head = rzio;
5964 5964  
5965 5965                  if (hash_lock != NULL)
5966 5966                          mutex_exit(hash_lock);
5967 5967  
5968 5968                  if (*arc_flags & ARC_FLAG_WAIT)
5969 5969                          return (zio_wait(rzio));
5970 5970  
5971 5971                  ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5972 5972                  zio_nowait(rzio);
5973 5973          }
5974 5974          return (rc);
5975 5975  }
5976 5976  
5977 5977  /*
5978 5978   * Notify the arc that a block was freed, and thus will never be used again.
5979 5979   */
5980 5980  void
5981 5981  arc_freed(spa_t *spa, const blkptr_t *bp)
5982 5982  {
5983 5983          arc_buf_hdr_t *hdr;
5984 5984          kmutex_t *hash_lock;
5985 5985          uint64_t guid = spa_load_guid(spa);
5986 5986  
5987 5987          ASSERT(!BP_IS_EMBEDDED(bp));
5988 5988  
5989 5989          hdr = buf_hash_find(guid, bp, &hash_lock);
5990 5990          if (hdr == NULL)
5991 5991                  return;
5992 5992  
5993 5993          /*
5994 5994           * We might be trying to free a block that is still doing I/O
5995 5995           * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5996 5996           * dmu_sync-ed block). If this block is being prefetched, then it
5997 5997           * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5998 5998           * until the I/O completes. A block may also have a reference if it is
5999 5999           * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6000 6000           * have written the new block to its final resting place on disk but
6001 6001           * without the dedup flag set. This would have left the hdr in the MRU
6002 6002           * state and discoverable. When the txg finally syncs it detects that
6003 6003           * the block was overridden in open context and issues an override I/O.
6004 6004           * Since this is a dedup block, the override I/O will determine if the
6005 6005           * block is already in the DDT. If so, then it will replace the io_bp
6006 6006           * with the bp from the DDT and allow the I/O to finish. When the I/O
6007 6007           * reaches the done callback, dbuf_write_override_done, it will
6008 6008           * check to see if the io_bp and io_bp_override are identical.
6009 6009           * If they are not, then it indicates that the bp was replaced with
6010 6010           * the bp in the DDT and the override bp is freed. This allows
6011 6011           * us to arrive here with a reference on a block that is being
6012 6012           * freed. So if we have an I/O in progress, or a reference to
6013 6013           * this hdr, then we don't destroy the hdr.
6014 6014           */
6015 6015          if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
6016 6016              zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
6017 6017                  arc_change_state(arc_anon, hdr, hash_lock);
6018 6018                  arc_hdr_destroy(hdr);
6019 6019                  mutex_exit(hash_lock);
6020 6020          } else {
6021 6021                  mutex_exit(hash_lock);
6022 6022          }
6023 6023  
6024 6024  }
6025 6025  
6026 6026  /*
6027 6027   * Release this buffer from the cache, making it an anonymous buffer.  This
6028 6028   * must be done after a read and prior to modifying the buffer contents.
6029 6029   * If the buffer has more than one reference, we must make
6030 6030   * a new hdr for the buffer.
6031 6031   */
6032 6032  void
6033 6033  arc_release(arc_buf_t *buf, void *tag)
6034 6034  {
6035 6035          arc_buf_hdr_t *hdr = buf->b_hdr;
6036 6036  
6037 6037          /*
6038 6038           * It would be nice to assert that if its DMU metadata (level >
6039 6039           * 0 || it's the dnode file), then it must be syncing context.
6040 6040           * But we don't know that information at this level.
6041 6041           */
6042 6042  
6043 6043          mutex_enter(&buf->b_evict_lock);
6044 6044  
6045 6045          ASSERT(HDR_HAS_L1HDR(hdr));
6046 6046  
6047 6047          /*
6048 6048           * We don't grab the hash lock prior to this check, because if
6049 6049           * the buffer's header is in the arc_anon state, it won't be
6050 6050           * linked into the hash table.
6051 6051           */
6052 6052          if (hdr->b_l1hdr.b_state == arc_anon) {
6053 6053                  mutex_exit(&buf->b_evict_lock);
6054 6054                  /*
6055 6055                   * If we are called from dmu_convert_mdn_block_to_raw(),
6056 6056                   * a write might be in progress.  This is OK because
6057 6057                   * the caller won't change the content of this buffer,
6058 6058                   * only the flags (via arc_convert_to_raw()).
6059 6059                   */
6060 6060                  /* ASSERT(!HDR_IO_IN_PROGRESS(hdr)); */
6061 6061                  ASSERT(!HDR_IN_HASH_TABLE(hdr));
6062 6062                  ASSERT(!HDR_HAS_L2HDR(hdr));
6063 6063                  ASSERT(HDR_EMPTY(hdr));
6064 6064  
6065 6065                  ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6066 6066                  ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6067 6067                  ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
6068 6068  
6069 6069                  hdr->b_l1hdr.b_arc_access = 0;
6070 6070  
6071 6071                  /*
6072 6072                   * If the buf is being overridden then it may already
6073 6073                   * have a hdr that is not empty.
6074 6074                   */
6075 6075                  buf_discard_identity(hdr);
6076 6076                  arc_buf_thaw(buf);
6077 6077  
6078 6078                  return;
6079 6079          }
6080 6080  
6081 6081          kmutex_t *hash_lock = HDR_LOCK(hdr);
6082 6082          mutex_enter(hash_lock);
6083 6083  
6084 6084          /*
6085 6085           * This assignment is only valid as long as the hash_lock is
6086 6086           * held, we must be careful not to reference state or the
6087 6087           * b_state field after dropping the lock.
6088 6088           */
6089 6089          arc_state_t *state = hdr->b_l1hdr.b_state;
6090 6090          ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6091 6091          ASSERT3P(state, !=, arc_anon);
6092 6092  
6093 6093          /* this buffer is not on any list */
6094 6094          ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6095 6095  
6096 6096          if (HDR_HAS_L2HDR(hdr)) {
6097 6097                  mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6098 6098  
6099 6099                  /*
6100 6100                   * We have to recheck this conditional again now that
6101 6101                   * we're holding the l2ad_mtx to prevent a race with
6102 6102                   * another thread which might be concurrently calling
6103 6103                   * l2arc_evict(). In that case, l2arc_evict() might have
6104 6104                   * destroyed the header's L2 portion as we were waiting
6105 6105                   * to acquire the l2ad_mtx.
6106 6106                   */
6107 6107                  if (HDR_HAS_L2HDR(hdr))
6108 6108                          arc_hdr_l2hdr_destroy(hdr);
6109 6109  
6110 6110                  mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6111 6111          }
6112 6112  
6113 6113          /*
6114 6114           * Do we have more than one buf?
6115 6115           */
6116 6116          if (hdr->b_l1hdr.b_bufcnt > 1) {
6117 6117                  arc_buf_hdr_t *nhdr;
6118 6118                  uint64_t spa = hdr->b_spa;
6119 6119                  uint64_t psize = HDR_GET_PSIZE(hdr);
6120 6120                  uint64_t lsize = HDR_GET_LSIZE(hdr);
6121 6121                  boolean_t protected = HDR_PROTECTED(hdr);
6122 6122                  enum zio_compress compress = arc_hdr_get_compress(hdr);
6123 6123                  arc_buf_contents_t type = arc_buf_type(hdr);
6124 6124                  VERIFY3U(hdr->b_type, ==, type);
6125 6125  
6126 6126                  ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6127 6127                  (void) remove_reference(hdr, hash_lock, tag);
6128 6128  
6129 6129                  if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
6130 6130                          ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6131 6131                          ASSERT(ARC_BUF_LAST(buf));
6132 6132                  }
6133 6133  
6134 6134                  /*
6135 6135                   * Pull the data off of this hdr and attach it to
6136 6136                   * a new anonymous hdr. Also find the last buffer
6137 6137                   * in the hdr's buffer list.
6138 6138                   */
6139 6139                  arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6140 6140                  ASSERT3P(lastbuf, !=, NULL);
6141 6141  
6142 6142                  /*
6143 6143                   * If the current arc_buf_t and the hdr are sharing their data
6144 6144                   * buffer, then we must stop sharing that block.
6145 6145                   */
6146 6146                  if (arc_buf_is_shared(buf)) {
6147 6147                          ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6148 6148                          VERIFY(!arc_buf_is_shared(lastbuf));
6149 6149  
6150 6150                          /*
6151 6151                           * First, sever the block sharing relationship between
6152 6152                           * buf and the arc_buf_hdr_t.
6153 6153                           */
6154 6154                          arc_unshare_buf(hdr, buf);
6155 6155  
6156 6156                          /*
6157 6157                           * Now we need to recreate the hdr's b_pabd. Since we
6158 6158                           * have lastbuf handy, we try to share with it, but if
6159 6159                           * we can't then we allocate a new b_pabd and copy the
6160 6160                           * data from buf into it.
6161 6161                           */
6162 6162                          if (arc_can_share(hdr, lastbuf)) {
6163 6163                                  arc_share_buf(hdr, lastbuf);
6164 6164                          } else {
6165 6165                                  arc_hdr_alloc_pabd(hdr, B_FALSE);
6166 6166                                  abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6167 6167                                      buf->b_data, psize);
6168 6168                          }
6169 6169                          VERIFY3P(lastbuf->b_data, !=, NULL);
6170 6170                  } else if (HDR_SHARED_DATA(hdr)) {
6171 6171                          /*
6172 6172                           * Uncompressed shared buffers are always at the end
6173 6173                           * of the list. Compressed buffers don't have the
6174 6174                           * same requirements. This makes it hard to
6175 6175                           * simply assert that the lastbuf is shared so
6176 6176                           * we rely on the hdr's compression flags to determine
6177 6177                           * if we have a compressed, shared buffer.
6178 6178                           */
6179 6179                          ASSERT(arc_buf_is_shared(lastbuf) ||
6180 6180                              arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6181 6181                          ASSERT(!ARC_BUF_SHARED(buf));
6182 6182                  }
6183 6183                  ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6184 6184                  ASSERT3P(state, !=, arc_l2c_only);
6185 6185  
6186 6186                  (void) zfs_refcount_remove_many(&state->arcs_size,
6187 6187                      arc_buf_size(buf), buf);
6188 6188  
6189 6189                  if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6190 6190                          ASSERT3P(state, !=, arc_l2c_only);
6191 6191                          (void) zfs_refcount_remove_many(
6192 6192                              &state->arcs_esize[type],
6193 6193                              arc_buf_size(buf), buf);
6194 6194                  }
6195 6195  
6196 6196                  hdr->b_l1hdr.b_bufcnt -= 1;
6197 6197                  if (ARC_BUF_ENCRYPTED(buf))
6198 6198                          hdr->b_crypt_hdr.b_ebufcnt -= 1;
6199 6199  
6200 6200                  arc_cksum_verify(buf);
6201 6201                  arc_buf_unwatch(buf);
6202 6202  
6203 6203                  /* if this is the last uncompressed buf free the checksum */
6204 6204                  if (!arc_hdr_has_uncompressed_buf(hdr))
6205 6205                          arc_cksum_free(hdr);
6206 6206  
6207 6207                  mutex_exit(hash_lock);
6208 6208  
6209 6209                  /*
6210 6210                   * Allocate a new hdr. The new hdr will contain a b_pabd
6211 6211                   * buffer which will be freed in arc_write().
6212 6212                   */
6213 6213                  nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6214 6214                      compress, type, HDR_HAS_RABD(hdr));
6215 6215                  ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6216 6216                  ASSERT0(nhdr->b_l1hdr.b_bufcnt);
6217 6217                  ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6218 6218                  VERIFY3U(nhdr->b_type, ==, type);
6219 6219                  ASSERT(!HDR_SHARED_DATA(nhdr));
6220 6220  
6221 6221                  nhdr->b_l1hdr.b_buf = buf;
6222 6222                  nhdr->b_l1hdr.b_bufcnt = 1;
6223 6223                  if (ARC_BUF_ENCRYPTED(buf))
6224 6224                          nhdr->b_crypt_hdr.b_ebufcnt = 1;
6225 6225                  (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6226 6226                  buf->b_hdr = nhdr;
6227 6227  
6228 6228                  mutex_exit(&buf->b_evict_lock);
6229 6229                  (void) zfs_refcount_add_many(&arc_anon->arcs_size,
6230 6230                      arc_buf_size(buf), buf);
6231 6231          } else {
6232 6232                  mutex_exit(&buf->b_evict_lock);
6233 6233                  ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6234 6234                  /* protected by hash lock, or hdr is on arc_anon */
6235 6235                  ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6236 6236                  ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6237 6237                  arc_change_state(arc_anon, hdr, hash_lock);
6238 6238                  hdr->b_l1hdr.b_arc_access = 0;
6239 6239  
6240 6240                  mutex_exit(hash_lock);
6241 6241                  buf_discard_identity(hdr);
6242 6242                  arc_buf_thaw(buf);
6243 6243          }
6244 6244  }
6245 6245  
6246 6246  int
6247 6247  arc_released(arc_buf_t *buf)
6248 6248  {
6249 6249          int released;
6250 6250  
6251 6251          mutex_enter(&buf->b_evict_lock);
6252 6252          released = (buf->b_data != NULL &&
6253 6253              buf->b_hdr->b_l1hdr.b_state == arc_anon);
6254 6254          mutex_exit(&buf->b_evict_lock);
6255 6255          return (released);
6256 6256  }
6257 6257  
6258 6258  #ifdef ZFS_DEBUG
6259 6259  int
6260 6260  arc_referenced(arc_buf_t *buf)
6261 6261  {
6262 6262          int referenced;
6263 6263  
6264 6264          mutex_enter(&buf->b_evict_lock);
6265 6265          referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6266 6266          mutex_exit(&buf->b_evict_lock);
6267 6267          return (referenced);
6268 6268  }
6269 6269  #endif
6270 6270  
6271 6271  static void
6272 6272  arc_write_ready(zio_t *zio)
6273 6273  {
6274 6274          arc_write_callback_t *callback = zio->io_private;
6275 6275          arc_buf_t *buf = callback->awcb_buf;
6276 6276          arc_buf_hdr_t *hdr = buf->b_hdr;
6277 6277          blkptr_t *bp = zio->io_bp;
6278 6278          uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6279 6279  
6280 6280          ASSERT(HDR_HAS_L1HDR(hdr));
6281 6281          ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6282 6282          ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
6283 6283  
6284 6284          /*
6285 6285           * If we're reexecuting this zio because the pool suspended, then
6286 6286           * cleanup any state that was previously set the first time the
6287 6287           * callback was invoked.
6288 6288           */
6289 6289          if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6290 6290                  arc_cksum_free(hdr);
6291 6291                  arc_buf_unwatch(buf);
6292 6292                  if (hdr->b_l1hdr.b_pabd != NULL) {
6293 6293                          if (arc_buf_is_shared(buf)) {
6294 6294                                  arc_unshare_buf(hdr, buf);
6295 6295                          } else {
6296 6296                                  arc_hdr_free_pabd(hdr, B_FALSE);
6297 6297                          }
6298 6298                  }
6299 6299  
6300 6300                  if (HDR_HAS_RABD(hdr))
6301 6301                          arc_hdr_free_pabd(hdr, B_TRUE);
6302 6302          }
6303 6303          ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6304 6304          ASSERT(!HDR_HAS_RABD(hdr));
6305 6305          ASSERT(!HDR_SHARED_DATA(hdr));
6306 6306          ASSERT(!arc_buf_is_shared(buf));
6307 6307  
6308 6308          callback->awcb_ready(zio, buf, callback->awcb_private);
6309 6309  
6310 6310          if (HDR_IO_IN_PROGRESS(hdr))
6311 6311                  ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6312 6312  
6313 6313          arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6314 6314  
6315 6315          if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr))
6316 6316                  hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp));
6317 6317  
6318 6318          if (BP_IS_PROTECTED(bp)) {
6319 6319                  /* ZIL blocks are written through zio_rewrite */
6320 6320                  ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6321 6321                  ASSERT(HDR_PROTECTED(hdr));
6322 6322  
6323 6323                  if (BP_SHOULD_BYTESWAP(bp)) {
6324 6324                          if (BP_GET_LEVEL(bp) > 0) {
6325 6325                                  hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6326 6326                          } else {
6327 6327                                  hdr->b_l1hdr.b_byteswap =
6328 6328                                      DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6329 6329                          }
6330 6330                  } else {
6331 6331                          hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6332 6332                  }
6333 6333  
6334 6334                  hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6335 6335                  hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6336 6336                  zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6337 6337                      hdr->b_crypt_hdr.b_iv);
6338 6338                  zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6339 6339          }
6340 6340  
6341 6341          /*
6342 6342           * If this block was written for raw encryption but the zio layer
6343 6343           * ended up only authenticating it, adjust the buffer flags now.
6344 6344           */
6345 6345          if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6346 6346                  arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6347 6347                  buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6348 6348                  if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6349 6349                          buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6350 6350          } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6351 6351                  buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6352 6352                  buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6353 6353          }
6354 6354  
6355 6355          /* this must be done after the buffer flags are adjusted */
6356 6356          arc_cksum_compute(buf);
6357 6357  
6358 6358          enum zio_compress compress;
6359 6359          if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6360 6360                  compress = ZIO_COMPRESS_OFF;
6361 6361          } else {
6362 6362                  ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6363 6363                  compress = BP_GET_COMPRESS(bp);
6364 6364          }
6365 6365          HDR_SET_PSIZE(hdr, psize);
6366 6366          arc_hdr_set_compress(hdr, compress);
6367 6367  
6368 6368          if (zio->io_error != 0 || psize == 0)
6369 6369                  goto out;
6370 6370  
6371 6371          /*
6372 6372           * Fill the hdr with data. If the buffer is encrypted we have no choice
6373 6373           * but to copy the data into b_rabd. If the hdr is compressed, the data
6374 6374           * we want is available from the zio, otherwise we can take it from
6375 6375           * the buf.
6376 6376           *
6377 6377           * We might be able to share the buf's data with the hdr here. However,
6378 6378           * doing so would cause the ARC to be full of linear ABDs if we write a
6379 6379           * lot of shareable data. As a compromise, we check whether scattered
6380 6380           * ABDs are allowed, and assume that if they are then the user wants
6381 6381           * the ARC to be primarily filled with them regardless of the data being
6382 6382           * written. Therefore, if they're allowed then we allocate one and copy
6383 6383           * the data into it; otherwise, we share the data directly if we can.
6384 6384           */
6385 6385          if (ARC_BUF_ENCRYPTED(buf)) {
6386 6386                  ASSERT3U(psize, >, 0);
6387 6387                  ASSERT(ARC_BUF_COMPRESSED(buf));
6388 6388                  arc_hdr_alloc_pabd(hdr, B_TRUE);
6389 6389                  abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6390 6390          } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
6391 6391                  /*
6392 6392                   * Ideally, we would always copy the io_abd into b_pabd, but the
6393 6393                   * user may have disabled compressed ARC, thus we must check the
6394 6394                   * hdr's compression setting rather than the io_bp's.
6395 6395                   */
6396 6396                  if (BP_IS_ENCRYPTED(bp)) {
6397 6397                          ASSERT3U(psize, >, 0);
6398 6398                          arc_hdr_alloc_pabd(hdr, B_TRUE);
6399 6399                          abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6400 6400                  } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6401 6401                      !ARC_BUF_COMPRESSED(buf)) {
6402 6402                          ASSERT3U(psize, >, 0);
6403 6403                          arc_hdr_alloc_pabd(hdr, B_FALSE);
6404 6404                          abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6405 6405                  } else {
6406 6406                          ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6407 6407                          arc_hdr_alloc_pabd(hdr, B_FALSE);
6408 6408                          abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6409 6409                              arc_buf_size(buf));
6410 6410                  }
6411 6411          } else {
6412 6412                  ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6413 6413                  ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6414 6414                  ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6415 6415                  arc_share_buf(hdr, buf);
6416 6416          }
6417 6417  
6418 6418  out:
6419 6419          arc_hdr_verify(hdr, bp);
6420 6420  }
6421 6421  
6422 6422  static void
6423 6423  arc_write_children_ready(zio_t *zio)
6424 6424  {
6425 6425          arc_write_callback_t *callback = zio->io_private;
6426 6426          arc_buf_t *buf = callback->awcb_buf;
6427 6427  
6428 6428          callback->awcb_children_ready(zio, buf, callback->awcb_private);
6429 6429  }
6430 6430  
6431 6431  /*
6432 6432   * The SPA calls this callback for each physical write that happens on behalf
6433 6433   * of a logical write.  See the comment in dbuf_write_physdone() for details.
6434 6434   */
6435 6435  static void
6436 6436  arc_write_physdone(zio_t *zio)
6437 6437  {
6438 6438          arc_write_callback_t *cb = zio->io_private;
6439 6439          if (cb->awcb_physdone != NULL)
6440 6440                  cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
6441 6441  }
6442 6442  
6443 6443  static void
6444 6444  arc_write_done(zio_t *zio)
6445 6445  {
6446 6446          arc_write_callback_t *callback = zio->io_private;
6447 6447          arc_buf_t *buf = callback->awcb_buf;
6448 6448          arc_buf_hdr_t *hdr = buf->b_hdr;
6449 6449  
6450 6450          ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6451 6451  
6452 6452          if (zio->io_error == 0) {
6453 6453                  arc_hdr_verify(hdr, zio->io_bp);
6454 6454  
6455 6455                  if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6456 6456                          buf_discard_identity(hdr);
6457 6457                  } else {
6458 6458                          hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6459 6459                          hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
6460 6460                  }
6461 6461          } else {
6462 6462                  ASSERT(HDR_EMPTY(hdr));
6463 6463          }
6464 6464  
6465 6465          /*
6466 6466           * If the block to be written was all-zero or compressed enough to be
6467 6467           * embedded in the BP, no write was performed so there will be no
6468 6468           * dva/birth/checksum.  The buffer must therefore remain anonymous
6469 6469           * (and uncached).
6470 6470           */
6471 6471          if (!HDR_EMPTY(hdr)) {
6472 6472                  arc_buf_hdr_t *exists;
6473 6473                  kmutex_t *hash_lock;
6474 6474  
6475 6475                  ASSERT3U(zio->io_error, ==, 0);
6476 6476  
6477 6477                  arc_cksum_verify(buf);
6478 6478  
6479 6479                  exists = buf_hash_insert(hdr, &hash_lock);
6480 6480                  if (exists != NULL) {
6481 6481                          /*
6482 6482                           * This can only happen if we overwrite for
6483 6483                           * sync-to-convergence, because we remove
6484 6484                           * buffers from the hash table when we arc_free().
6485 6485                           */
6486 6486                          if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6487 6487                                  if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6488 6488                                          panic("bad overwrite, hdr=%p exists=%p",
6489 6489                                              (void *)hdr, (void *)exists);
6490 6490                                  ASSERT(zfs_refcount_is_zero(
6491 6491                                      &exists->b_l1hdr.b_refcnt));
6492 6492                                  arc_change_state(arc_anon, exists, hash_lock);
6493 6493                                  arc_hdr_destroy(exists);
6494 6494                                  mutex_exit(hash_lock);
6495 6495                                  exists = buf_hash_insert(hdr, &hash_lock);
6496 6496                                  ASSERT3P(exists, ==, NULL);
6497 6497                          } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6498 6498                                  /* nopwrite */
6499 6499                                  ASSERT(zio->io_prop.zp_nopwrite);
6500 6500                                  if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6501 6501                                          panic("bad nopwrite, hdr=%p exists=%p",
6502 6502                                              (void *)hdr, (void *)exists);
6503 6503                          } else {
6504 6504                                  /* Dedup */
6505 6505                                  ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
6506 6506                                  ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6507 6507                                  ASSERT(BP_GET_DEDUP(zio->io_bp));
6508 6508                                  ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6509 6509                          }
6510 6510                  }
6511 6511                  arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6512 6512                  /* if it's not anon, we are doing a scrub */
6513 6513                  if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6514 6514                          arc_access(hdr, hash_lock);
6515 6515                  mutex_exit(hash_lock);
6516 6516          } else {
6517 6517                  arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6518 6518          }
6519 6519  
6520 6520          ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
6521 6521          callback->awcb_done(zio, buf, callback->awcb_private);
6522 6522  
6523 6523          abd_put(zio->io_abd);
6524 6524          kmem_free(callback, sizeof (arc_write_callback_t));
6525 6525  }
6526 6526  
6527 6527  zio_t *
6528 6528  arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
6529 6529      boolean_t l2arc, const zio_prop_t *zp, arc_write_done_func_t *ready,
6530 6530      arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
6531 6531      arc_write_done_func_t *done, void *private, zio_priority_t priority,
6532 6532      int zio_flags, const zbookmark_phys_t *zb)
6533 6533  {
6534 6534          arc_buf_hdr_t *hdr = buf->b_hdr;
6535 6535          arc_write_callback_t *callback;
6536 6536          zio_t *zio;
6537 6537          zio_prop_t localprop = *zp;
6538 6538  
6539 6539          ASSERT3P(ready, !=, NULL);
6540 6540          ASSERT3P(done, !=, NULL);
6541 6541          ASSERT(!HDR_IO_ERROR(hdr));
6542 6542          ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6543 6543          ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6544 6544          ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
6545 6545          if (l2arc)
6546 6546                  arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6547 6547  
6548 6548          if (ARC_BUF_ENCRYPTED(buf)) {
6549 6549                  ASSERT(ARC_BUF_COMPRESSED(buf));
6550 6550                  localprop.zp_encrypt = B_TRUE;
6551 6551                  localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6552 6552                  /* CONSTCOND */
6553 6553                  localprop.zp_byteorder =
6554 6554                      (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
6555 6555                      ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
6556 6556                  bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt,
6557 6557                      ZIO_DATA_SALT_LEN);
6558 6558                  bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv,
6559 6559                      ZIO_DATA_IV_LEN);
6560 6560                  bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac,
6561 6561                      ZIO_DATA_MAC_LEN);
6562 6562                  if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
6563 6563                          localprop.zp_nopwrite = B_FALSE;
6564 6564                          localprop.zp_copies =
6565 6565                              MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
6566 6566                  }
6567 6567                  zio_flags |= ZIO_FLAG_RAW;
6568 6568          } else if (ARC_BUF_COMPRESSED(buf)) {
6569 6569                  ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6570 6570                  localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6571 6571                  zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6572 6572          }
6573 6573  
6574 6574          callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6575 6575          callback->awcb_ready = ready;
6576 6576          callback->awcb_children_ready = children_ready;
6577 6577          callback->awcb_physdone = physdone;
6578 6578          callback->awcb_done = done;
6579 6579          callback->awcb_private = private;
6580 6580          callback->awcb_buf = buf;
6581 6581  
6582 6582          /*
6583 6583           * The hdr's b_pabd is now stale, free it now. A new data block
6584 6584           * will be allocated when the zio pipeline calls arc_write_ready().
6585 6585           */
6586 6586          if (hdr->b_l1hdr.b_pabd != NULL) {
6587 6587                  /*
6588 6588                   * If the buf is currently sharing the data block with
6589 6589                   * the hdr then we need to break that relationship here.
6590 6590                   * The hdr will remain with a NULL data pointer and the
6591 6591                   * buf will take sole ownership of the block.
6592 6592                   */
6593 6593                  if (arc_buf_is_shared(buf)) {
6594 6594                          arc_unshare_buf(hdr, buf);
6595 6595                  } else {
6596 6596                          arc_hdr_free_pabd(hdr, B_FALSE);
6597 6597                  }
6598 6598                  VERIFY3P(buf->b_data, !=, NULL);
6599 6599          }
6600 6600  
6601 6601          if (HDR_HAS_RABD(hdr))
6602 6602                  arc_hdr_free_pabd(hdr, B_TRUE);
6603 6603  
6604 6604          if (!(zio_flags & ZIO_FLAG_RAW))
6605 6605                  arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6606 6606  
6607 6607          ASSERT(!arc_buf_is_shared(buf));
6608 6608          ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6609 6609  
6610 6610          zio = zio_write(pio, spa, txg, bp,
6611 6611              abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6612 6612              HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6613 6613              (children_ready != NULL) ? arc_write_children_ready : NULL,
6614 6614              arc_write_physdone, arc_write_done, callback,
6615 6615              priority, zio_flags, zb);
6616 6616  
6617 6617          return (zio);
6618 6618  }
6619 6619  
6620 6620  static int
6621 6621  arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
6622 6622  {
6623 6623  #ifdef _KERNEL
6624 6624          uint64_t available_memory = ptob(freemem);
6625 6625  
6626 6626  #if defined(__i386)
6627 6627          available_memory =
6628 6628              MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
6629 6629  #endif
6630 6630  
6631 6631          if (freemem > physmem * arc_lotsfree_percent / 100)
6632 6632                  return (0);
6633 6633  
6634 6634          if (txg > spa->spa_lowmem_last_txg) {
6635 6635                  spa->spa_lowmem_last_txg = txg;
6636 6636                  spa->spa_lowmem_page_load = 0;
6637 6637          }
6638 6638          /*
6639 6639           * If we are in pageout, we know that memory is already tight,
6640 6640           * the arc is already going to be evicting, so we just want to
6641 6641           * continue to let page writes occur as quickly as possible.
6642 6642           */
6643 6643          if (curproc == proc_pageout) {
6644 6644                  if (spa->spa_lowmem_page_load >
6645 6645                      MAX(ptob(minfree), available_memory) / 4)
6646 6646                          return (SET_ERROR(ERESTART));
6647 6647                  /* Note: reserve is inflated, so we deflate */
6648 6648                  atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
6649 6649                  return (0);
6650 6650          } else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
6651 6651                  /* memory is low, delay before restarting */
6652 6652                  ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
6653 6653                  return (SET_ERROR(EAGAIN));
6654 6654          }
6655 6655          spa->spa_lowmem_page_load = 0;
6656 6656  #endif /* _KERNEL */
6657 6657          return (0);
6658 6658  }
6659 6659  
6660 6660  void
6661 6661  arc_tempreserve_clear(uint64_t reserve)
6662 6662  {
6663 6663          atomic_add_64(&arc_tempreserve, -reserve);
6664 6664          ASSERT((int64_t)arc_tempreserve >= 0);
6665 6665  }
6666 6666  
6667 6667  int
6668 6668  arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
6669 6669  {
6670 6670          int error;
6671 6671          uint64_t anon_size;
6672 6672  
6673 6673          if (reserve > arc_c/4 && !arc_no_grow)
6674 6674                  arc_c = MIN(arc_c_max, reserve * 4);
6675 6675          if (reserve > arc_c)
6676 6676                  return (SET_ERROR(ENOMEM));
6677 6677  
6678 6678          /*
6679 6679           * Don't count loaned bufs as in flight dirty data to prevent long
6680 6680           * network delays from blocking transactions that are ready to be
6681 6681           * assigned to a txg.
6682 6682           */
6683 6683  
6684 6684          /* assert that it has not wrapped around */
6685 6685          ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6686 6686  
6687 6687          anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) -
6688 6688              arc_loaned_bytes), 0);
6689 6689  
6690 6690          /*
6691 6691           * Writes will, almost always, require additional memory allocations
6692 6692           * in order to compress/encrypt/etc the data.  We therefore need to
6693 6693           * make sure that there is sufficient available memory for this.
6694 6694           */
6695 6695          error = arc_memory_throttle(spa, reserve, txg);
6696 6696          if (error != 0)
6697 6697                  return (error);
6698 6698  
6699 6699          /*
6700 6700           * Throttle writes when the amount of dirty data in the cache
6701 6701           * gets too large.  We try to keep the cache less than half full
6702 6702           * of dirty blocks so that our sync times don't grow too large.
6703 6703           *
6704 6704           * In the case of one pool being built on another pool, we want
6705 6705           * to make sure we don't end up throttling the lower (backing)
6706 6706           * pool when the upper pool is the majority contributor to dirty
6707 6707           * data. To insure we make forward progress during throttling, we
6708 6708           * also check the current pool's net dirty data and only throttle
6709 6709           * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
6710 6710           * data in the cache.
6711 6711           *
6712 6712           * Note: if two requests come in concurrently, we might let them
6713 6713           * both succeed, when one of them should fail.  Not a huge deal.
6714 6714           */
6715 6715          uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
6716 6716          uint64_t spa_dirty_anon = spa_dirty_data(spa);
6717 6717  
6718 6718          if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 &&
6719 6719              anon_size > arc_c * zfs_arc_anon_limit_percent / 100 &&
6720 6720              spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
6721 6721                  uint64_t meta_esize =
6722 6722                      zfs_refcount_count(
6723 6723                      &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6724 6724                  uint64_t data_esize =
6725 6725                      zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6726 6726                  dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6727 6727                      "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
6728 6728                      arc_tempreserve >> 10, meta_esize >> 10,
6729 6729                      data_esize >> 10, reserve >> 10, arc_c >> 10);
6730 6730                  return (SET_ERROR(ERESTART));
6731 6731          }
6732 6732          atomic_add_64(&arc_tempreserve, reserve);
6733 6733          return (0);
6734 6734  }
6735 6735  
6736 6736  static void
6737 6737  arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6738 6738      kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6739 6739  {
6740 6740          size->value.ui64 = zfs_refcount_count(&state->arcs_size);
6741 6741          evict_data->value.ui64 =
6742 6742              zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6743 6743          evict_metadata->value.ui64 =
6744 6744              zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
6745 6745  }
6746 6746  
6747 6747  static int
6748 6748  arc_kstat_update(kstat_t *ksp, int rw)
6749 6749  {
6750 6750          arc_stats_t *as = ksp->ks_data;
6751 6751  
6752 6752          if (rw == KSTAT_WRITE) {
6753 6753                  return (EACCES);
6754 6754          } else {
6755 6755                  arc_kstat_update_state(arc_anon,
6756 6756                      &as->arcstat_anon_size,
6757 6757                      &as->arcstat_anon_evictable_data,
6758 6758                      &as->arcstat_anon_evictable_metadata);
6759 6759                  arc_kstat_update_state(arc_mru,
6760 6760                      &as->arcstat_mru_size,
6761 6761                      &as->arcstat_mru_evictable_data,
6762 6762                      &as->arcstat_mru_evictable_metadata);
6763 6763                  arc_kstat_update_state(arc_mru_ghost,
6764 6764                      &as->arcstat_mru_ghost_size,
6765 6765                      &as->arcstat_mru_ghost_evictable_data,
6766 6766                      &as->arcstat_mru_ghost_evictable_metadata);
6767 6767                  arc_kstat_update_state(arc_mfu,
6768 6768                      &as->arcstat_mfu_size,
6769 6769                      &as->arcstat_mfu_evictable_data,
6770 6770                      &as->arcstat_mfu_evictable_metadata);
6771 6771                  arc_kstat_update_state(arc_mfu_ghost,
6772 6772                      &as->arcstat_mfu_ghost_size,
6773 6773                      &as->arcstat_mfu_ghost_evictable_data,
6774 6774                      &as->arcstat_mfu_ghost_evictable_metadata);
6775 6775  
6776 6776                  ARCSTAT(arcstat_size) = aggsum_value(&arc_size);
6777 6777                  ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used);
6778 6778                  ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size);
6779 6779                  ARCSTAT(arcstat_metadata_size) =
6780 6780                      aggsum_value(&astat_metadata_size);
6781 6781                  ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size);
6782 6782                  ARCSTAT(arcstat_other_size) = aggsum_value(&astat_other_size);
6783 6783                  ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size);
6784 6784          }
6785 6785  
6786 6786          return (0);
6787 6787  }
6788 6788  
6789 6789  /*
6790 6790   * This function *must* return indices evenly distributed between all
6791 6791   * sublists of the multilist. This is needed due to how the ARC eviction
6792 6792   * code is laid out; arc_evict_state() assumes ARC buffers are evenly
6793 6793   * distributed between all sublists and uses this assumption when
6794 6794   * deciding which sublist to evict from and how much to evict from it.
6795 6795   */
6796 6796  unsigned int
6797 6797  arc_state_multilist_index_func(multilist_t *ml, void *obj)
6798 6798  {
6799 6799          arc_buf_hdr_t *hdr = obj;
6800 6800  
6801 6801          /*
6802 6802           * We rely on b_dva to generate evenly distributed index
6803 6803           * numbers using buf_hash below. So, as an added precaution,
6804 6804           * let's make sure we never add empty buffers to the arc lists.
6805 6805           */
6806 6806          ASSERT(!HDR_EMPTY(hdr));
6807 6807  
6808 6808          /*
6809 6809           * The assumption here, is the hash value for a given
6810 6810           * arc_buf_hdr_t will remain constant throughout its lifetime
6811 6811           * (i.e. its b_spa, b_dva, and b_birth fields don't change).
6812 6812           * Thus, we don't need to store the header's sublist index
6813 6813           * on insertion, as this index can be recalculated on removal.
6814 6814           *
6815 6815           * Also, the low order bits of the hash value are thought to be
6816 6816           * distributed evenly. Otherwise, in the case that the multilist
6817 6817           * has a power of two number of sublists, each sublists' usage
6818 6818           * would not be evenly distributed.
6819 6819           */
6820 6820          return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
6821 6821              multilist_get_num_sublists(ml));
6822 6822  }
6823 6823  
6824 6824  static void
6825 6825  arc_state_init(void)
6826 6826  {
6827 6827          arc_anon = &ARC_anon;
6828 6828          arc_mru = &ARC_mru;
6829 6829          arc_mru_ghost = &ARC_mru_ghost;
6830 6830          arc_mfu = &ARC_mfu;
6831 6831          arc_mfu_ghost = &ARC_mfu_ghost;
6832 6832          arc_l2c_only = &ARC_l2c_only;
6833 6833  
6834 6834          arc_mru->arcs_list[ARC_BUFC_METADATA] =
6835 6835              multilist_create(sizeof (arc_buf_hdr_t),
6836 6836              offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6837 6837              arc_state_multilist_index_func);
6838 6838          arc_mru->arcs_list[ARC_BUFC_DATA] =
6839 6839              multilist_create(sizeof (arc_buf_hdr_t),
6840 6840              offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6841 6841              arc_state_multilist_index_func);
6842 6842          arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
6843 6843              multilist_create(sizeof (arc_buf_hdr_t),
6844 6844              offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6845 6845              arc_state_multilist_index_func);
6846 6846          arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
6847 6847              multilist_create(sizeof (arc_buf_hdr_t),
6848 6848              offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6849 6849              arc_state_multilist_index_func);
6850 6850          arc_mfu->arcs_list[ARC_BUFC_METADATA] =
6851 6851              multilist_create(sizeof (arc_buf_hdr_t),
6852 6852              offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6853 6853              arc_state_multilist_index_func);
6854 6854          arc_mfu->arcs_list[ARC_BUFC_DATA] =
6855 6855              multilist_create(sizeof (arc_buf_hdr_t),
6856 6856              offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6857 6857              arc_state_multilist_index_func);
6858 6858          arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
6859 6859              multilist_create(sizeof (arc_buf_hdr_t),
6860 6860              offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6861 6861              arc_state_multilist_index_func);
6862 6862          arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
6863 6863              multilist_create(sizeof (arc_buf_hdr_t),
6864 6864              offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6865 6865              arc_state_multilist_index_func);
6866 6866          arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
6867 6867              multilist_create(sizeof (arc_buf_hdr_t),
6868 6868              offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6869 6869              arc_state_multilist_index_func);
6870 6870          arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
6871 6871              multilist_create(sizeof (arc_buf_hdr_t),
6872 6872              offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6873 6873              arc_state_multilist_index_func);
6874 6874  
6875 6875          zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6876 6876          zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6877 6877          zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6878 6878          zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6879 6879          zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6880 6880          zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6881 6881          zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6882 6882          zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6883 6883          zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6884 6884          zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6885 6885          zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6886 6886          zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6887 6887  
6888 6888          zfs_refcount_create(&arc_anon->arcs_size);
6889 6889          zfs_refcount_create(&arc_mru->arcs_size);
6890 6890          zfs_refcount_create(&arc_mru_ghost->arcs_size);
6891 6891          zfs_refcount_create(&arc_mfu->arcs_size);
6892 6892          zfs_refcount_create(&arc_mfu_ghost->arcs_size);
6893 6893          zfs_refcount_create(&arc_l2c_only->arcs_size);
6894 6894  
6895 6895          aggsum_init(&arc_meta_used, 0);
6896 6896          aggsum_init(&arc_size, 0);
6897 6897          aggsum_init(&astat_data_size, 0);
6898 6898          aggsum_init(&astat_metadata_size, 0);
6899 6899          aggsum_init(&astat_hdr_size, 0);
6900 6900          aggsum_init(&astat_other_size, 0);
6901 6901          aggsum_init(&astat_l2_hdr_size, 0);
6902 6902  }
6903 6903  
6904 6904  static void
6905 6905  arc_state_fini(void)
6906 6906  {
6907 6907          zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6908 6908          zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6909 6909          zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6910 6910          zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6911 6911          zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6912 6912          zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6913 6913          zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6914 6914          zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6915 6915          zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6916 6916          zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6917 6917          zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6918 6918          zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6919 6919  
6920 6920          zfs_refcount_destroy(&arc_anon->arcs_size);
6921 6921          zfs_refcount_destroy(&arc_mru->arcs_size);
6922 6922          zfs_refcount_destroy(&arc_mru_ghost->arcs_size);
6923 6923          zfs_refcount_destroy(&arc_mfu->arcs_size);
6924 6924          zfs_refcount_destroy(&arc_mfu_ghost->arcs_size);
6925 6925          zfs_refcount_destroy(&arc_l2c_only->arcs_size);
6926 6926  
6927 6927          multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
6928 6928          multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
6929 6929          multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
6930 6930          multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
6931 6931          multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
6932 6932          multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
6933 6933          multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
6934 6934          multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
6935 6935          multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
6936 6936          multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
6937 6937  
6938 6938          aggsum_fini(&arc_meta_used);
6939 6939          aggsum_fini(&arc_size);
6940 6940          aggsum_fini(&astat_data_size);
6941 6941          aggsum_fini(&astat_metadata_size);
6942 6942          aggsum_fini(&astat_hdr_size);
6943 6943          aggsum_fini(&astat_other_size);
6944 6944          aggsum_fini(&astat_l2_hdr_size);
6945 6945  
6946 6946  }
6947 6947  
6948 6948  uint64_t
6949 6949  arc_max_bytes(void)
6950 6950  {
6951 6951          return (arc_c_max);
6952 6952  }
6953 6953  
6954 6954  void
6955 6955  arc_init(void)
6956 6956  {
6957 6957          /*
6958 6958           * allmem is "all memory that we could possibly use".
6959 6959           */
6960 6960  #ifdef _KERNEL
6961 6961          uint64_t allmem = ptob(physmem - swapfs_minfree);
6962 6962  #else
6963 6963          uint64_t allmem = (physmem * PAGESIZE) / 2;
6964 6964  #endif
6965 6965          mutex_init(&arc_adjust_lock, NULL, MUTEX_DEFAULT, NULL);
6966 6966          cv_init(&arc_adjust_waiters_cv, NULL, CV_DEFAULT, NULL);
6967 6967  
6968 6968          /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
6969 6969          arc_c_min = MAX(allmem / 32, 64 << 20);
6970 6970          /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
6971 6971          if (allmem >= 1 << 30)
6972 6972                  arc_c_max = allmem - (1 << 30);
6973 6973          else
6974 6974                  arc_c_max = arc_c_min;
6975 6975          arc_c_max = MAX(allmem * 3 / 4, arc_c_max);
6976 6976  
6977 6977          /*
6978 6978           * In userland, there's only the memory pressure that we artificially
6979 6979           * create (see arc_available_memory()).  Don't let arc_c get too
6980 6980           * small, because it can cause transactions to be larger than
6981 6981           * arc_c, causing arc_tempreserve_space() to fail.
6982 6982           */
6983 6983  #ifndef _KERNEL
6984 6984          arc_c_min = arc_c_max / 2;
6985 6985  #endif
6986 6986  
6987 6987          /*
6988 6988           * Allow the tunables to override our calculations if they are
6989 6989           * reasonable (ie. over 64MB)
6990 6990           */
6991 6991          if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) {
6992 6992                  arc_c_max = zfs_arc_max;
6993 6993                  arc_c_min = MIN(arc_c_min, arc_c_max);
6994 6994          }
6995 6995          if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max)
6996 6996                  arc_c_min = zfs_arc_min;
6997 6997  
6998 6998          arc_c = arc_c_max;
6999 6999          arc_p = (arc_c >> 1);
7000 7000  
7001 7001          /* limit meta-data to 1/4 of the arc capacity */
7002 7002          arc_meta_limit = arc_c_max / 4;
7003 7003  
7004 7004  #ifdef _KERNEL
7005 7005          /*
7006 7006           * Metadata is stored in the kernel's heap.  Don't let us
7007 7007           * use more than half the heap for the ARC.
7008 7008           */
7009 7009          arc_meta_limit = MIN(arc_meta_limit,
7010 7010              vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
7011 7011  #endif
7012 7012  
7013 7013          /* Allow the tunable to override if it is reasonable */
7014 7014          if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
7015 7015                  arc_meta_limit = zfs_arc_meta_limit;
7016 7016  
7017 7017          if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
7018 7018                  arc_c_min = arc_meta_limit / 2;
7019 7019  
7020 7020          if (zfs_arc_meta_min > 0) {
7021 7021                  arc_meta_min = zfs_arc_meta_min;
7022 7022          } else {
7023 7023                  arc_meta_min = arc_c_min / 2;
7024 7024          }
7025 7025  
7026 7026          if (zfs_arc_grow_retry > 0)
7027 7027                  arc_grow_retry = zfs_arc_grow_retry;
7028 7028  
7029 7029          if (zfs_arc_shrink_shift > 0)
7030 7030                  arc_shrink_shift = zfs_arc_shrink_shift;
7031 7031  
7032 7032          /*
7033 7033           * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
7034 7034           */
7035 7035          if (arc_no_grow_shift >= arc_shrink_shift)
7036 7036                  arc_no_grow_shift = arc_shrink_shift - 1;
7037 7037  
7038 7038          if (zfs_arc_p_min_shift > 0)
7039 7039                  arc_p_min_shift = zfs_arc_p_min_shift;
7040 7040  
7041 7041          /* if kmem_flags are set, lets try to use less memory */
7042 7042          if (kmem_debugging())
7043 7043                  arc_c = arc_c / 2;
7044 7044          if (arc_c < arc_c_min)
7045 7045                  arc_c = arc_c_min;
7046 7046  
7047 7047          arc_state_init();
7048 7048  
7049 7049          /*
7050 7050           * The arc must be "uninitialized", so that hdr_recl() (which is
7051 7051           * registered by buf_init()) will not access arc_reap_zthr before
7052 7052           * it is created.
7053 7053           */
7054 7054          ASSERT(!arc_initialized);
7055 7055          buf_init();
7056 7056  
7057 7057          arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7058 7058              sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7059 7059  
7060 7060          if (arc_ksp != NULL) {
7061 7061                  arc_ksp->ks_data = &arc_stats;
7062 7062                  arc_ksp->ks_update = arc_kstat_update;
7063 7063                  kstat_install(arc_ksp);
7064 7064          }
7065 7065  
7066 7066          arc_adjust_zthr = zthr_create(arc_adjust_cb_check,
7067 7067              arc_adjust_cb, NULL);
7068 7068          arc_reap_zthr = zthr_create_timer(arc_reap_cb_check,
7069 7069              arc_reap_cb, NULL, SEC2NSEC(1));
7070 7070  
7071 7071          arc_initialized = B_TRUE;
7072 7072          arc_warm = B_FALSE;
7073 7073  
7074 7074          /*
7075 7075           * Calculate maximum amount of dirty data per pool.
7076 7076           *
7077 7077           * If it has been set by /etc/system, take that.
7078 7078           * Otherwise, use a percentage of physical memory defined by
7079 7079           * zfs_dirty_data_max_percent (default 10%) with a cap at
7080 7080           * zfs_dirty_data_max_max (default 4GB).
7081 7081           */
7082 7082          if (zfs_dirty_data_max == 0) {
7083 7083                  zfs_dirty_data_max = physmem * PAGESIZE *
7084 7084                      zfs_dirty_data_max_percent / 100;
7085 7085                  zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7086 7086                      zfs_dirty_data_max_max);
7087 7087          }
7088 7088  }
7089 7089  
7090 7090  void
7091 7091  arc_fini(void)
7092 7092  {
7093 7093          /* Use B_TRUE to ensure *all* buffers are evicted */
7094 7094          arc_flush(NULL, B_TRUE);
7095 7095  
7096 7096          arc_initialized = B_FALSE;
7097 7097  
7098 7098          if (arc_ksp != NULL) {
7099 7099                  kstat_delete(arc_ksp);
7100 7100                  arc_ksp = NULL;
7101 7101          }
7102 7102  
7103 7103          (void) zthr_cancel(arc_adjust_zthr);
7104 7104          zthr_destroy(arc_adjust_zthr);
7105 7105  
7106 7106          (void) zthr_cancel(arc_reap_zthr);
7107 7107          zthr_destroy(arc_reap_zthr);
7108 7108  
7109 7109          mutex_destroy(&arc_adjust_lock);
7110 7110          cv_destroy(&arc_adjust_waiters_cv);
7111 7111  
7112 7112          /*
7113 7113           * buf_fini() must proceed arc_state_fini() because buf_fin() may
7114 7114           * trigger the release of kmem magazines, which can callback to
7115 7115           * arc_space_return() which accesses aggsums freed in act_state_fini().
7116 7116           */
7117 7117          buf_fini();
7118 7118          arc_state_fini();
7119 7119  
7120 7120          ASSERT0(arc_loaned_bytes);
7121 7121  }
7122 7122  
7123 7123  /*
7124 7124   * Level 2 ARC
7125 7125   *
7126 7126   * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7127 7127   * It uses dedicated storage devices to hold cached data, which are populated
7128 7128   * using large infrequent writes.  The main role of this cache is to boost
7129 7129   * the performance of random read workloads.  The intended L2ARC devices
7130 7130   * include short-stroked disks, solid state disks, and other media with
7131 7131   * substantially faster read latency than disk.
7132 7132   *
7133 7133   *                 +-----------------------+
7134 7134   *                 |         ARC           |
7135 7135   *                 +-----------------------+
7136 7136   *                    |         ^     ^
7137 7137   *                    |         |     |
7138 7138   *      l2arc_feed_thread()    arc_read()
7139 7139   *                    |         |     |
7140 7140   *                    |  l2arc read   |
7141 7141   *                    V         |     |
7142 7142   *               +---------------+    |
7143 7143   *               |     L2ARC     |    |
7144 7144   *               +---------------+    |
7145 7145   *                   |    ^           |
7146 7146   *          l2arc_write() |           |
7147 7147   *                   |    |           |
7148 7148   *                   V    |           |
7149 7149   *                 +-------+      +-------+
7150 7150   *                 | vdev  |      | vdev  |
7151 7151   *                 | cache |      | cache |
7152 7152   *                 +-------+      +-------+
7153 7153   *                 +=========+     .-----.
7154 7154   *                 :  L2ARC  :    |-_____-|
7155 7155   *                 : devices :    | Disks |
7156 7156   *                 +=========+    `-_____-'
7157 7157   *
7158 7158   * Read requests are satisfied from the following sources, in order:
7159 7159   *
7160 7160   *      1) ARC
7161 7161   *      2) vdev cache of L2ARC devices
7162 7162   *      3) L2ARC devices
7163 7163   *      4) vdev cache of disks
7164 7164   *      5) disks
7165 7165   *
7166 7166   * Some L2ARC device types exhibit extremely slow write performance.
7167 7167   * To accommodate for this there are some significant differences between
7168 7168   * the L2ARC and traditional cache design:
7169 7169   *
7170 7170   * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
7171 7171   * the ARC behave as usual, freeing buffers and placing headers on ghost
7172 7172   * lists.  The ARC does not send buffers to the L2ARC during eviction as
7173 7173   * this would add inflated write latencies for all ARC memory pressure.
7174 7174   *
7175 7175   * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
7176 7176   * It does this by periodically scanning buffers from the eviction-end of
7177 7177   * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
7178 7178   * not already there. It scans until a headroom of buffers is satisfied,
7179 7179   * which itself is a buffer for ARC eviction. If a compressible buffer is
7180 7180   * found during scanning and selected for writing to an L2ARC device, we
7181 7181   * temporarily boost scanning headroom during the next scan cycle to make
7182 7182   * sure we adapt to compression effects (which might significantly reduce
7183 7183   * the data volume we write to L2ARC). The thread that does this is
7184 7184   * l2arc_feed_thread(), illustrated below; example sizes are included to
7185 7185   * provide a better sense of ratio than this diagram:
7186 7186   *
7187 7187   *             head -->                        tail
7188 7188   *              +---------------------+----------+
7189 7189   *      ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
7190 7190   *              +---------------------+----------+   |   o L2ARC eligible
7191 7191   *      ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
7192 7192   *              +---------------------+----------+   |
7193 7193   *                   15.9 Gbytes      ^ 32 Mbytes    |
7194 7194   *                                 headroom          |
7195 7195   *                                            l2arc_feed_thread()
7196 7196   *                                                   |
7197 7197   *                       l2arc write hand <--[oooo]--'
7198 7198   *                               |           8 Mbyte
7199 7199   *                               |          write max
7200 7200   *                               V
7201 7201   *                +==============================+
7202 7202   *      L2ARC dev |####|#|###|###|    |####| ... |
7203 7203   *                +==============================+
7204 7204   *                           32 Gbytes
7205 7205   *
7206 7206   * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
7207 7207   * evicted, then the L2ARC has cached a buffer much sooner than it probably
7208 7208   * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
7209 7209   * safe to say that this is an uncommon case, since buffers at the end of
7210 7210   * the ARC lists have moved there due to inactivity.
7211 7211   *
7212 7212   * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
7213 7213   * then the L2ARC simply misses copying some buffers.  This serves as a
7214 7214   * pressure valve to prevent heavy read workloads from both stalling the ARC
7215 7215   * with waits and clogging the L2ARC with writes.  This also helps prevent
7216 7216   * the potential for the L2ARC to churn if it attempts to cache content too
7217 7217   * quickly, such as during backups of the entire pool.
7218 7218   *
7219 7219   * 5. After system boot and before the ARC has filled main memory, there are
7220 7220   * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
7221 7221   * lists can remain mostly static.  Instead of searching from tail of these
7222 7222   * lists as pictured, the l2arc_feed_thread() will search from the list heads
7223 7223   * for eligible buffers, greatly increasing its chance of finding them.
7224 7224   *
7225 7225   * The L2ARC device write speed is also boosted during this time so that
7226 7226   * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
7227 7227   * there are no L2ARC reads, and no fear of degrading read performance
7228 7228   * through increased writes.
7229 7229   *
7230 7230   * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
7231 7231   * the vdev queue can aggregate them into larger and fewer writes.  Each
7232 7232   * device is written to in a rotor fashion, sweeping writes through
7233 7233   * available space then repeating.
7234 7234   *
7235 7235   * 7. The L2ARC does not store dirty content.  It never needs to flush
7236 7236   * write buffers back to disk based storage.
7237 7237   *
7238 7238   * 8. If an ARC buffer is written (and dirtied) which also exists in the
7239 7239   * L2ARC, the now stale L2ARC buffer is immediately dropped.
7240 7240   *
7241 7241   * The performance of the L2ARC can be tweaked by a number of tunables, which
7242 7242   * may be necessary for different workloads:
7243 7243   *
7244 7244   *      l2arc_write_max         max write bytes per interval
7245 7245   *      l2arc_write_boost       extra write bytes during device warmup
7246 7246   *      l2arc_noprefetch        skip caching prefetched buffers
7247 7247   *      l2arc_headroom          number of max device writes to precache
7248 7248   *      l2arc_headroom_boost    when we find compressed buffers during ARC
7249 7249   *                              scanning, we multiply headroom by this
7250 7250   *                              percentage factor for the next scan cycle,
7251 7251   *                              since more compressed buffers are likely to
7252 7252   *                              be present
7253 7253   *      l2arc_feed_secs         seconds between L2ARC writing
7254 7254   *
7255 7255   * Tunables may be removed or added as future performance improvements are
7256 7256   * integrated, and also may become zpool properties.
7257 7257   *
7258 7258   * There are three key functions that control how the L2ARC warms up:
7259 7259   *
7260 7260   *      l2arc_write_eligible()  check if a buffer is eligible to cache
7261 7261   *      l2arc_write_size()      calculate how much to write
7262 7262   *      l2arc_write_interval()  calculate sleep delay between writes
7263 7263   *
7264 7264   * These three functions determine what to write, how much, and how quickly
7265 7265   * to send writes.
7266 7266   *
7267 7267   * L2ARC persistence:
7268 7268   *
7269 7269   * When writing buffers to L2ARC, we periodically add some metadata to
7270 7270   * make sure we can pick them up after reboot, thus dramatically reducing
7271 7271   * the impact that any downtime has on the performance of storage systems
7272 7272   * with large caches.
7273 7273   *
7274 7274   * The implementation works fairly simply by integrating the following two
7275 7275   * modifications:
7276 7276   *
7277 7277   * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
7278 7278   *    which is an additional piece of metadata which describes what's been
7279 7279   *    written. This allows us to rebuild the arc_buf_hdr_t structures of the
7280 7280   *    main ARC buffers. There are 2 linked-lists of log blocks headed by
7281 7281   *    dh_start_lbps[2]. We alternate which chain we append to, so they are
7282 7282   *    time-wise and offset-wise interleaved, but that is an optimization rather
7283 7283   *    than for correctness. The log block also includes a pointer to the
7284 7284   *    previous block in its chain.
7285 7285   *
7286 7286   * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
7287 7287   *    for our header bookkeeping purposes. This contains a device header,
7288 7288   *    which contains our top-level reference structures. We update it each
7289 7289   *    time we write a new log block, so that we're able to locate it in the
7290 7290   *    L2ARC device. If this write results in an inconsistent device header
7291 7291   *    (e.g. due to power failure), we detect this by verifying the header's
7292 7292   *    checksum and simply fail to reconstruct the L2ARC after reboot.
7293 7293   *
7294 7294   * Implementation diagram:
7295 7295   *
7296 7296   * +=== L2ARC device (not to scale) ======================================+
7297 7297   * |       ___two newest log block pointers__.__________                  |
7298 7298   * |      /                                   \dh_start_lbps[1]           |
7299 7299   * |     /                                     \         \dh_start_lbps[0]|
7300 7300   * |.___/__.                                    V         V               |
7301 7301   * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
7302 7302   * ||   hdr|      ^         /^       /^        /         /                |
7303 7303   * |+------+  ...--\-------/  \-----/--\------/         /                 |
7304 7304   * |                \--------------/    \--------------/                  |
7305 7305   * +======================================================================+
7306 7306   *
7307 7307   * As can be seen on the diagram, rather than using a simple linked list,
7308 7308   * we use a pair of linked lists with alternating elements. This is a
7309 7309   * performance enhancement due to the fact that we only find out the
7310 7310   * address of the next log block access once the current block has been
7311 7311   * completely read in. Obviously, this hurts performance, because we'd be
7312 7312   * keeping the device's I/O queue at only a 1 operation deep, thus
7313 7313   * incurring a large amount of I/O round-trip latency. Having two lists
7314 7314   * allows us to fetch two log blocks ahead of where we are currently
7315 7315   * rebuilding L2ARC buffers.
7316 7316   *
7317 7317   * On-device data structures:
7318 7318   *
7319 7319   * L2ARC device header: l2arc_dev_hdr_phys_t
7320 7320   * L2ARC log block:     l2arc_log_blk_phys_t
7321 7321   *
7322 7322   * L2ARC reconstruction:
7323 7323   *
7324 7324   * When writing data, we simply write in the standard rotary fashion,
7325 7325   * evicting buffers as we go and simply writing new data over them (writing
7326 7326   * a new log block every now and then). This obviously means that once we
7327 7327   * loop around the end of the device, we will start cutting into an already
7328 7328   * committed log block (and its referenced data buffers), like so:
7329 7329   *
7330 7330   *    current write head__       __old tail
7331 7331   *                        \     /
7332 7332   *                        V    V
7333 7333   * <--|bufs |lb |bufs |lb |    |bufs |lb |bufs |lb |-->
7334 7334   *                         ^    ^^^^^^^^^___________________________________
7335 7335   *                         |                                                \
7336 7336   *                   <<nextwrite>> may overwrite this blk and/or its bufs --'
7337 7337   *
7338 7338   * When importing the pool, we detect this situation and use it to stop
7339 7339   * our scanning process (see l2arc_rebuild).
7340 7340   *
7341 7341   * There is one significant caveat to consider when rebuilding ARC contents
7342 7342   * from an L2ARC device: what about invalidated buffers? Given the above
7343 7343   * construction, we cannot update blocks which we've already written to amend
7344 7344   * them to remove buffers which were invalidated. Thus, during reconstruction,
7345 7345   * we might be populating the cache with buffers for data that's not on the
7346 7346   * main pool anymore, or may have been overwritten!
7347 7347   *
7348 7348   * As it turns out, this isn't a problem. Every arc_read request includes
7349 7349   * both the DVA and, crucially, the birth TXG of the BP the caller is
7350 7350   * looking for. So even if the cache were populated by completely rotten
7351 7351   * blocks for data that had been long deleted and/or overwritten, we'll
7352 7352   * never actually return bad data from the cache, since the DVA with the
7353 7353   * birth TXG uniquely identify a block in space and time - once created,
7354 7354   * a block is immutable on disk. The worst thing we have done is wasted
7355 7355   * some time and memory at l2arc rebuild to reconstruct outdated ARC
7356 7356   * entries that will get dropped from the l2arc as it is being updated
7357 7357   * with new blocks.
7358 7358   *
7359 7359   * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
7360 7360   * hand are not restored. This is done by saving the offset (in bytes)
7361 7361   * l2arc_evict() has evicted to in the L2ARC device header and taking it
7362 7362   * into account when restoring buffers.
7363 7363   */
7364 7364  
7365 7365  static boolean_t
7366 7366  l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
7367 7367  {
7368 7368          /*
7369 7369           * A buffer is *not* eligible for the L2ARC if it:
7370 7370           * 1. belongs to a different spa.
7371 7371           * 2. is already cached on the L2ARC.
7372 7372           * 3. has an I/O in progress (it may be an incomplete read).
7373 7373           * 4. is flagged not eligible (zfs property).
7374 7374           */
7375 7375          if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
7376 7376              HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
7377 7377                  return (B_FALSE);
7378 7378  
7379 7379          return (B_TRUE);
7380 7380  }
7381 7381  
7382 7382  static uint64_t
7383 7383  l2arc_write_size(l2arc_dev_t *dev)
7384 7384  {
7385 7385          uint64_t size, dev_size;
7386 7386  
7387 7387          /*
7388 7388           * Make sure our globals have meaningful values in case the user
7389 7389           * altered them.
7390 7390           */
7391 7391          size = l2arc_write_max;
7392 7392          if (size == 0) {
7393 7393                  cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
7394 7394                      "be greater than zero, resetting it to the default (%d)",
7395 7395                      L2ARC_WRITE_SIZE);
7396 7396                  size = l2arc_write_max = L2ARC_WRITE_SIZE;
7397 7397          }
7398 7398  
7399 7399          if (arc_warm == B_FALSE)
7400 7400                  size += l2arc_write_boost;
7401 7401  
7402 7402          /*
7403 7403           * Make sure the write size does not exceed the size of the cache
7404 7404           * device. This is important in l2arc_evict(), otherwise infinite
7405 7405           * iteration can occur.
7406 7406           */
7407 7407          dev_size = dev->l2ad_end - dev->l2ad_start;
7408 7408          if ((size + l2arc_log_blk_overhead(size, dev)) >= dev_size) {
7409 7409                  cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost "
7410 7410                      "plus the overhead of log blocks (persistent L2ARC, "
7411 7411                      "%" PRIu64 " bytes) exceeds the size of the cache device "
7412 7412                      "(guid %" PRIu64 "), resetting them to the default (%d)",
7413 7413                      l2arc_log_blk_overhead(size, dev),
7414 7414                      dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE);
7415 7415                  size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE;
7416 7416  
7417 7417                  if (arc_warm == B_FALSE)
7418 7418                          size += l2arc_write_boost;
7419 7419          }
7420 7420  
7421 7421          return (size);
7422 7422  
7423 7423  }
7424 7424  
7425 7425  static clock_t
7426 7426  l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
7427 7427  {
7428 7428          clock_t interval, next, now;
7429 7429  
7430 7430          /*
7431 7431           * If the ARC lists are busy, increase our write rate; if the
7432 7432           * lists are stale, idle back.  This is achieved by checking
7433 7433           * how much we previously wrote - if it was more than half of
7434 7434           * what we wanted, schedule the next write much sooner.
7435 7435           */
7436 7436          if (l2arc_feed_again && wrote > (wanted / 2))
7437 7437                  interval = (hz * l2arc_feed_min_ms) / 1000;
7438 7438          else
7439 7439                  interval = hz * l2arc_feed_secs;
7440 7440  
7441 7441          now = ddi_get_lbolt();
7442 7442          next = MAX(now, MIN(now + interval, began + interval));
7443 7443  
7444 7444          return (next);
7445 7445  }
7446 7446  
7447 7447  /*
7448 7448   * Cycle through L2ARC devices.  This is how L2ARC load balances.
7449 7449   * If a device is returned, this also returns holding the spa config lock.
7450 7450   */
7451 7451  static l2arc_dev_t *
7452 7452  l2arc_dev_get_next(void)
7453 7453  {
7454 7454          l2arc_dev_t *first, *next = NULL;
7455 7455  
7456 7456          /*
7457 7457           * Lock out the removal of spas (spa_namespace_lock), then removal
7458 7458           * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
7459 7459           * both locks will be dropped and a spa config lock held instead.
7460 7460           */
7461 7461          mutex_enter(&spa_namespace_lock);
7462 7462          mutex_enter(&l2arc_dev_mtx);
7463 7463  
7464 7464          /* if there are no vdevs, there is nothing to do */
7465 7465          if (l2arc_ndev == 0)
7466 7466                  goto out;
7467 7467  
7468 7468          first = NULL;
7469 7469          next = l2arc_dev_last;
7470 7470          do {
7471 7471                  /* loop around the list looking for a non-faulted vdev */
7472 7472                  if (next == NULL) {
7473 7473                          next = list_head(l2arc_dev_list);
7474 7474                  } else {
7475 7475                          next = list_next(l2arc_dev_list, next);
7476 7476                          if (next == NULL)
7477 7477                                  next = list_head(l2arc_dev_list);
7478 7478                  }
7479 7479  
7480 7480                  /* if we have come back to the start, bail out */
7481 7481                  if (first == NULL)
7482 7482                          first = next;
7483 7483                  else if (next == first)
7484 7484                          break;
7485 7485  
7486 7486          } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild);
7487 7487  
7488 7488          /* if we were unable to find any usable vdevs, return NULL */
7489 7489          if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild)
7490 7490                  next = NULL;
7491 7491  
7492 7492          l2arc_dev_last = next;
7493 7493  
7494 7494  out:
7495 7495          mutex_exit(&l2arc_dev_mtx);
7496 7496  
7497 7497          /*
7498 7498           * Grab the config lock to prevent the 'next' device from being
7499 7499           * removed while we are writing to it.
7500 7500           */
7501 7501          if (next != NULL)
7502 7502                  spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
7503 7503          mutex_exit(&spa_namespace_lock);
7504 7504  
7505 7505          return (next);
7506 7506  }
7507 7507  
7508 7508  /*
7509 7509   * Free buffers that were tagged for destruction.
7510 7510   */
7511 7511  static void
7512 7512  l2arc_do_free_on_write()
7513 7513  {
7514 7514          list_t *buflist;
7515 7515          l2arc_data_free_t *df, *df_prev;
7516 7516  
7517 7517          mutex_enter(&l2arc_free_on_write_mtx);
7518 7518          buflist = l2arc_free_on_write;
7519 7519  
7520 7520          for (df = list_tail(buflist); df; df = df_prev) {
7521 7521                  df_prev = list_prev(buflist, df);
7522 7522                  ASSERT3P(df->l2df_abd, !=, NULL);
7523 7523                  abd_free(df->l2df_abd);
7524 7524                  list_remove(buflist, df);
7525 7525                  kmem_free(df, sizeof (l2arc_data_free_t));
7526 7526          }
7527 7527  
7528 7528          mutex_exit(&l2arc_free_on_write_mtx);
7529 7529  }
7530 7530  
7531 7531  /*
7532 7532   * A write to a cache device has completed.  Update all headers to allow
7533 7533   * reads from these buffers to begin.
7534 7534   */
7535 7535  static void
7536 7536  l2arc_write_done(zio_t *zio)
7537 7537  {
7538 7538          l2arc_write_callback_t  *cb;
7539 7539          l2arc_lb_abd_buf_t      *abd_buf;
7540 7540          l2arc_lb_ptr_buf_t      *lb_ptr_buf;
7541 7541          l2arc_dev_t             *dev;
7542 7542          l2arc_dev_hdr_phys_t    *l2dhdr;
7543 7543          list_t                  *buflist;
7544 7544          arc_buf_hdr_t           *head, *hdr, *hdr_prev;
7545 7545          kmutex_t                *hash_lock;
7546 7546          int64_t                 bytes_dropped = 0;
7547 7547  
7548 7548          cb = zio->io_private;
7549 7549          ASSERT3P(cb, !=, NULL);
7550 7550          dev = cb->l2wcb_dev;
7551 7551          l2dhdr = dev->l2ad_dev_hdr;
7552 7552          ASSERT3P(dev, !=, NULL);
7553 7553          head = cb->l2wcb_head;
7554 7554          ASSERT3P(head, !=, NULL);
7555 7555          buflist = &dev->l2ad_buflist;
7556 7556          ASSERT3P(buflist, !=, NULL);
7557 7557          DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
7558 7558              l2arc_write_callback_t *, cb);
7559 7559  
7560 7560          if (zio->io_error != 0)
7561 7561                  ARCSTAT_BUMP(arcstat_l2_writes_error);
7562 7562  
7563 7563          /*
7564 7564           * All writes completed, or an error was hit.
7565 7565           */
7566 7566  top:
7567 7567          mutex_enter(&dev->l2ad_mtx);
7568 7568          for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
7569 7569                  hdr_prev = list_prev(buflist, hdr);
7570 7570  
7571 7571                  hash_lock = HDR_LOCK(hdr);
7572 7572  
7573 7573                  /*
7574 7574                   * We cannot use mutex_enter or else we can deadlock
7575 7575                   * with l2arc_write_buffers (due to swapping the order
7576 7576                   * the hash lock and l2ad_mtx are taken).
7577 7577                   */
7578 7578                  if (!mutex_tryenter(hash_lock)) {
7579 7579                          /*
7580 7580                           * Missed the hash lock. We must retry so we
7581 7581                           * don't leave the ARC_FLAG_L2_WRITING bit set.
7582 7582                           */
7583 7583                          ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
7584 7584  
7585 7585                          /*
7586 7586                           * We don't want to rescan the headers we've
7587 7587                           * already marked as having been written out, so
7588 7588                           * we reinsert the head node so we can pick up
7589 7589                           * where we left off.
7590 7590                           */
7591 7591                          list_remove(buflist, head);
7592 7592                          list_insert_after(buflist, hdr, head);
7593 7593  
7594 7594                          mutex_exit(&dev->l2ad_mtx);
7595 7595  
7596 7596                          /*
7597 7597                           * We wait for the hash lock to become available
7598 7598                           * to try and prevent busy waiting, and increase
7599 7599                           * the chance we'll be able to acquire the lock
7600 7600                           * the next time around.
7601 7601                           */
7602 7602                          mutex_enter(hash_lock);
7603 7603                          mutex_exit(hash_lock);
7604 7604                          goto top;
7605 7605                  }
7606 7606  
7607 7607                  /*
7608 7608                   * We could not have been moved into the arc_l2c_only
7609 7609                   * state while in-flight due to our ARC_FLAG_L2_WRITING
7610 7610                   * bit being set. Let's just ensure that's being enforced.
7611 7611                   */
7612 7612                  ASSERT(HDR_HAS_L1HDR(hdr));
7613 7613  
7614 7614                  if (zio->io_error != 0) {
7615 7615                          /*
7616 7616                           * Error - drop L2ARC entry.
7617 7617                           */
7618 7618                          list_remove(buflist, hdr);
7619 7619                          arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
7620 7620  
7621 7621                          uint64_t psize = HDR_GET_PSIZE(hdr);
7622 7622                          ARCSTAT_INCR(arcstat_l2_psize, -psize);
7623 7623                          ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
7624 7624  
7625 7625                          bytes_dropped +=
7626 7626                              vdev_psize_to_asize(dev->l2ad_vdev, psize);
7627 7627                          (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
7628 7628                              arc_hdr_size(hdr), hdr);
7629 7629                  }
7630 7630  
7631 7631                  /*
7632 7632                   * Allow ARC to begin reads and ghost list evictions to
7633 7633                   * this L2ARC entry.
7634 7634                   */
7635 7635                  arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
7636 7636  
7637 7637                  mutex_exit(hash_lock);
7638 7638          }
7639 7639  
7640 7640          /*
7641 7641           * Free the allocated abd buffers for writing the log blocks.
7642 7642           * If the zio failed reclaim the allocated space and remove the
7643 7643           * pointers to these log blocks from the log block pointer list
7644 7644           * of the L2ARC device.
7645 7645           */
7646 7646          while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
7647 7647                  abd_free(abd_buf->abd);
7648 7648                  zio_buf_free(abd_buf, sizeof (*abd_buf));
7649 7649                  if (zio->io_error != 0) {
7650 7650                          lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
7651 7651                          /*
7652 7652                           * L2BLK_GET_PSIZE returns aligned size for log
7653 7653                           * blocks.
7654 7654                           */
7655 7655                          uint64_t asize =
7656 7656                              L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
7657 7657                          bytes_dropped += asize;
7658 7658                          ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
7659 7659                          ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
7660 7660                          zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
7661 7661                              lb_ptr_buf);
7662 7662                          zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
7663 7663                          kmem_free(lb_ptr_buf->lb_ptr,
7664 7664                              sizeof (l2arc_log_blkptr_t));
7665 7665                          kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
7666 7666                  }
7667 7667          }
7668 7668          list_destroy(&cb->l2wcb_abd_list);
7669 7669  
7670 7670          if (zio->io_error != 0) {
7671 7671                  /*
7672 7672                   * Restore the lbps array in the header to its previous state.
7673 7673                   * If the list of log block pointers is empty, zero out the
7674 7674                   * log block pointers in the device header.
7675 7675                   */
7676 7676                  lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
7677 7677                  for (int i = 0; i < 2; i++) {
7678 7678                          if (lb_ptr_buf == NULL) {
7679 7679                                  /*
7680 7680                                   * If the list is empty zero out the device
7681 7681                                   * header. Otherwise zero out the second log
7682 7682                                   * block pointer in the header.
7683 7683                                   */
7684 7684                                  if (i == 0) {
7685 7685                                          bzero(l2dhdr, dev->l2ad_dev_hdr_asize);
7686 7686                                  } else {
7687 7687                                          bzero(&l2dhdr->dh_start_lbps[i],
7688 7688                                              sizeof (l2arc_log_blkptr_t));
7689 7689                                  }
7690 7690                                  break;
7691 7691                          }
7692 7692                          bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i],
7693 7693                              sizeof (l2arc_log_blkptr_t));
7694 7694                          lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
7695 7695                              lb_ptr_buf);
7696 7696                  }
7697 7697          }
7698 7698  
7699 7699          atomic_inc_64(&l2arc_writes_done);
7700 7700          list_remove(buflist, head);
7701 7701          ASSERT(!HDR_HAS_L1HDR(head));
7702 7702          kmem_cache_free(hdr_l2only_cache, head);
7703 7703          mutex_exit(&dev->l2ad_mtx);
7704 7704  
7705 7705          ASSERT(dev->l2ad_vdev != NULL);
7706 7706          vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
7707 7707  
7708 7708          l2arc_do_free_on_write();
7709 7709  
7710 7710          kmem_free(cb, sizeof (l2arc_write_callback_t));
7711 7711  }
7712 7712  
7713 7713  static int
7714 7714  l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
7715 7715  {
7716 7716          int ret;
7717 7717          spa_t *spa = zio->io_spa;
7718 7718          arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
7719 7719          blkptr_t *bp = zio->io_bp;
7720 7720          uint8_t salt[ZIO_DATA_SALT_LEN];
7721 7721          uint8_t iv[ZIO_DATA_IV_LEN];
7722 7722          uint8_t mac[ZIO_DATA_MAC_LEN];
7723 7723          boolean_t no_crypt = B_FALSE;
7724 7724  
7725 7725          /*
7726 7726           * ZIL data is never be written to the L2ARC, so we don't need
7727 7727           * special handling for its unique MAC storage.
7728 7728           */
7729 7729          ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
7730 7730          ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
7731 7731          ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
7732 7732  
7733 7733          /*
7734 7734           * If the data was encrypted, decrypt it now. Note that
7735 7735           * we must check the bp here and not the hdr, since the
7736 7736           * hdr does not have its encryption parameters updated
7737 7737           * until arc_read_done().
7738 7738           */
7739 7739          if (BP_IS_ENCRYPTED(bp)) {
7740 7740                  abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
7741 7741  
7742 7742                  zio_crypt_decode_params_bp(bp, salt, iv);
7743 7743                  zio_crypt_decode_mac_bp(bp, mac);
7744 7744  
7745 7745                  ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
7746 7746                      BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
7747 7747                      salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
7748 7748                      hdr->b_l1hdr.b_pabd, &no_crypt);
7749 7749                  if (ret != 0) {
7750 7750                          arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
7751 7751                          goto error;
7752 7752                  }
7753 7753  
7754 7754                  /*
7755 7755                   * If we actually performed decryption, replace b_pabd
7756 7756                   * with the decrypted data. Otherwise we can just throw
7757 7757                   * our decryption buffer away.
7758 7758                   */
7759 7759                  if (!no_crypt) {
7760 7760                          arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
7761 7761                              arc_hdr_size(hdr), hdr);
7762 7762                          hdr->b_l1hdr.b_pabd = eabd;
7763 7763                          zio->io_abd = eabd;
7764 7764                  } else {
7765 7765                          arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
7766 7766                  }
7767 7767          }
7768 7768  
7769 7769          /*
7770 7770           * If the L2ARC block was compressed, but ARC compression
7771 7771           * is disabled we decompress the data into a new buffer and
7772 7772           * replace the existing data.
7773 7773           */
7774 7774          if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
7775 7775              !HDR_COMPRESSION_ENABLED(hdr)) {
7776 7776                  abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
7777 7777                  void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
7778 7778  
7779 7779                  ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
7780 7780                      hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
7781 7781                      HDR_GET_LSIZE(hdr));
7782 7782                  if (ret != 0) {
7783 7783                          abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
7784 7784                          arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
7785 7785                          goto error;
7786 7786                  }
7787 7787  
7788 7788                  abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
7789 7789                  arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
7790 7790                      arc_hdr_size(hdr), hdr);
7791 7791                  hdr->b_l1hdr.b_pabd = cabd;
7792 7792                  zio->io_abd = cabd;
7793 7793                  zio->io_size = HDR_GET_LSIZE(hdr);
7794 7794          }
7795 7795  
7796 7796          return (0);
7797 7797  
7798 7798  error:
7799 7799          return (ret);
7800 7800  }
7801 7801  
7802 7802  
7803 7803  /*
7804 7804   * A read to a cache device completed.  Validate buffer contents before
7805 7805   * handing over to the regular ARC routines.
7806 7806   */
7807 7807  static void
7808 7808  l2arc_read_done(zio_t *zio)
7809 7809  {
7810 7810          int tfm_error = 0;
7811 7811          l2arc_read_callback_t *cb = zio->io_private;
7812 7812          arc_buf_hdr_t *hdr;
7813 7813          kmutex_t *hash_lock;
7814 7814          boolean_t valid_cksum;
7815 7815          boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
7816 7816              (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
7817 7817  
7818 7818          ASSERT3P(zio->io_vd, !=, NULL);
7819 7819          ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
7820 7820  
7821 7821          spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
7822 7822  
7823 7823          ASSERT3P(cb, !=, NULL);
7824 7824          hdr = cb->l2rcb_hdr;
7825 7825          ASSERT3P(hdr, !=, NULL);
7826 7826  
7827 7827          hash_lock = HDR_LOCK(hdr);
7828 7828          mutex_enter(hash_lock);
7829 7829          ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
7830 7830  
7831 7831          /*
7832 7832           * If the data was read into a temporary buffer,
7833 7833           * move it and free the buffer.
7834 7834           */
7835 7835          if (cb->l2rcb_abd != NULL) {
7836 7836                  ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
7837 7837                  if (zio->io_error == 0) {
7838 7838                          if (using_rdata) {
7839 7839                                  abd_copy(hdr->b_crypt_hdr.b_rabd,
7840 7840                                      cb->l2rcb_abd, arc_hdr_size(hdr));
7841 7841                          } else {
7842 7842                                  abd_copy(hdr->b_l1hdr.b_pabd,
7843 7843                                      cb->l2rcb_abd, arc_hdr_size(hdr));
7844 7844                          }
7845 7845                  }
7846 7846  
7847 7847                  /*
7848 7848                   * The following must be done regardless of whether
7849 7849                   * there was an error:
7850 7850                   * - free the temporary buffer
7851 7851                   * - point zio to the real ARC buffer
7852 7852                   * - set zio size accordingly
7853 7853                   * These are required because zio is either re-used for
7854 7854                   * an I/O of the block in the case of the error
7855 7855                   * or the zio is passed to arc_read_done() and it
7856 7856                   * needs real data.
7857 7857                   */
7858 7858                  abd_free(cb->l2rcb_abd);
7859 7859                  zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
7860 7860  
7861 7861                  if (using_rdata) {
7862 7862                          ASSERT(HDR_HAS_RABD(hdr));
7863 7863                          zio->io_abd = zio->io_orig_abd =
7864 7864                              hdr->b_crypt_hdr.b_rabd;
7865 7865                  } else {
7866 7866                          ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
7867 7867                          zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
7868 7868                  }
7869 7869          }
7870 7870  
7871 7871          ASSERT3P(zio->io_abd, !=, NULL);
7872 7872  
7873 7873          /*
7874 7874           * Check this survived the L2ARC journey.
7875 7875           */
7876 7876          ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
7877 7877              (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
7878 7878          zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
7879 7879          zio->io_bp = &zio->io_bp_copy;  /* XXX fix in L2ARC 2.0 */
7880 7880  
7881 7881          valid_cksum = arc_cksum_is_equal(hdr, zio);
7882 7882  
7883 7883          /*
7884 7884           * b_rabd will always match the data as it exists on disk if it is
7885 7885           * being used. Therefore if we are reading into b_rabd we do not
7886 7886           * attempt to untransform the data.
7887 7887           */
7888 7888          if (valid_cksum && !using_rdata)
7889 7889                  tfm_error = l2arc_untransform(zio, cb);
7890 7890  
7891 7891          if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
7892 7892              !HDR_L2_EVICTED(hdr)) {
7893 7893                  mutex_exit(hash_lock);
7894 7894                  zio->io_private = hdr;
7895 7895                  arc_read_done(zio);
7896 7896          } else {
7897 7897                  /*
7898 7898                   * Buffer didn't survive caching.  Increment stats and
7899 7899                   * reissue to the original storage device.
7900 7900                   */
7901 7901                  if (zio->io_error != 0) {
7902 7902                          ARCSTAT_BUMP(arcstat_l2_io_error);
7903 7903                  } else {
7904 7904                          zio->io_error = SET_ERROR(EIO);
7905 7905                  }
7906 7906                  if (!valid_cksum || tfm_error != 0)
7907 7907                          ARCSTAT_BUMP(arcstat_l2_cksum_bad);
7908 7908  
7909 7909                  /*
7910 7910                   * If there's no waiter, issue an async i/o to the primary
7911 7911                   * storage now.  If there *is* a waiter, the caller must
7912 7912                   * issue the i/o in a context where it's OK to block.
7913 7913                   */
7914 7914                  if (zio->io_waiter == NULL) {
7915 7915                          zio_t *pio = zio_unique_parent(zio);
7916 7916                          void *abd = (using_rdata) ?
7917 7917                              hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
7918 7918  
7919 7919                          ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
7920 7920  
7921 7921                          zio = zio_read(pio, zio->io_spa, zio->io_bp,
7922 7922                              abd, zio->io_size, arc_read_done,
7923 7923                              hdr, zio->io_priority, cb->l2rcb_flags,
7924 7924                              &cb->l2rcb_zb);
7925 7925  
7926 7926                          /*
7927 7927                           * Original ZIO will be freed, so we need to update
7928 7928                           * ARC header with the new ZIO pointer to be used
7929 7929                           * by zio_change_priority() in arc_read().
7930 7930                           */
7931 7931                          for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
7932 7932                              acb != NULL; acb = acb->acb_next)
7933 7933                                  acb->acb_zio_head = zio;
7934 7934  
7935 7935                          mutex_exit(hash_lock);
7936 7936                          zio_nowait(zio);
7937 7937                  } else {
7938 7938                          mutex_exit(hash_lock);
7939 7939                  }
7940 7940          }
7941 7941  
7942 7942          kmem_free(cb, sizeof (l2arc_read_callback_t));
7943 7943  }
7944 7944  
7945 7945  /*
7946 7946   * This is the list priority from which the L2ARC will search for pages to
7947 7947   * cache.  This is used within loops (0..3) to cycle through lists in the
7948 7948   * desired order.  This order can have a significant effect on cache
7949 7949   * performance.
7950 7950   *
7951 7951   * Currently the metadata lists are hit first, MFU then MRU, followed by
7952 7952   * the data lists.  This function returns a locked list, and also returns
7953 7953   * the lock pointer.
7954 7954   */
7955 7955  static multilist_sublist_t *
7956 7956  l2arc_sublist_lock(int list_num)
7957 7957  {
7958 7958          multilist_t *ml = NULL;
7959 7959          unsigned int idx;
7960 7960  
7961 7961          ASSERT(list_num >= 0 && list_num <= 3);
7962 7962  
7963 7963          switch (list_num) {
7964 7964          case 0:
7965 7965                  ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
7966 7966                  break;
7967 7967          case 1:
7968 7968                  ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
7969 7969                  break;
7970 7970          case 2:
7971 7971                  ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
7972 7972                  break;
7973 7973          case 3:
7974 7974                  ml = arc_mru->arcs_list[ARC_BUFC_DATA];
7975 7975                  break;
7976 7976          }
7977 7977  
7978 7978          /*
7979 7979           * Return a randomly-selected sublist. This is acceptable
7980 7980           * because the caller feeds only a little bit of data for each
7981 7981           * call (8MB). Subsequent calls will result in different
7982 7982           * sublists being selected.
7983 7983           */
7984 7984          idx = multilist_get_random_index(ml);
7985 7985          return (multilist_sublist_lock(ml, idx));
7986 7986  }
7987 7987  
7988 7988  /*
7989 7989   * Calculates the maximum overhead of L2ARC metadata log blocks for a given
7990 7990   * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
7991 7991   * overhead in processing to make sure there is enough headroom available
7992 7992   * when writing buffers.
7993 7993   */
7994 7994  static inline uint64_t
7995 7995  l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
7996 7996  {
7997 7997          if (dev->l2ad_log_entries == 0) {
7998 7998                  return (0);
7999 7999          } else {
8000 8000                  uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
8001 8001  
8002 8002                  uint64_t log_blocks = (log_entries +
8003 8003                      dev->l2ad_log_entries - 1) /
8004 8004                      dev->l2ad_log_entries;
8005 8005  
8006 8006                  return (vdev_psize_to_asize(dev->l2ad_vdev,
8007 8007                      sizeof (l2arc_log_blk_phys_t)) * log_blocks);
8008 8008          }
8009 8009  }
8010 8010  
8011 8011  /*
8012 8012   * Evict buffers from the device write hand to the distance specified in
8013 8013   * bytes. This distance may span populated buffers, it may span nothing.
8014 8014   * This is clearing a region on the L2ARC device ready for writing.
8015 8015   * If the 'all' boolean is set, every buffer is evicted.
8016 8016   */
8017 8017  static void
8018 8018  l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8019 8019  {
8020 8020          list_t *buflist;
8021 8021          arc_buf_hdr_t *hdr, *hdr_prev;
8022 8022          kmutex_t *hash_lock;
8023 8023          uint64_t taddr;
8024 8024          l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
8025 8025          boolean_t rerun;
8026 8026  
8027 8027          buflist = &dev->l2ad_buflist;
8028 8028  
8029 8029          /*
8030 8030           * We need to add in the worst case scenario of log block overhead.
8031 8031           */
8032 8032          distance += l2arc_log_blk_overhead(distance, dev);
8033 8033  
8034 8034  top:
8035 8035          rerun = B_FALSE;
8036 8036          if (dev->l2ad_hand >= (dev->l2ad_end - distance)) {
8037 8037                  /*
8038 8038                   * When there is no space to accommodate upcoming writes,
8039 8039                   * evict to the end. Then bump the write and evict hands
8040 8040                   * to the start and iterate. This iteration does not
8041 8041                   * happen indefinitely as we make sure in
8042 8042                   * l2arc_write_size() that when the write hand is reset,
8043 8043                   * the write size does not exceed the end of the device.
8044 8044                   */
8045 8045                  rerun = B_TRUE;
8046 8046                  taddr = dev->l2ad_end;
8047 8047          } else {
8048 8048                  taddr = dev->l2ad_hand + distance;
8049 8049          }
8050 8050          DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
8051 8051              uint64_t, taddr, boolean_t, all);
8052 8052  
8053 8053          /*
8054 8054           * This check has to be placed after deciding whether to iterate
8055 8055           * (rerun).
8056 8056           */
8057 8057          if (!all && dev->l2ad_first) {
8058 8058                  /*
8059 8059                   * This is the first sweep through the device. There is
8060 8060                   * nothing to evict.
8061 8061                   */
8062 8062                  goto out;
8063 8063          }
8064 8064  
8065 8065          /*
8066 8066           * When rebuilding L2ARC we retrieve the evict hand from the header of
8067 8067           * the device. Of note, l2arc_evict() does not actually delete buffers
8068 8068           * from the cache device, but keeping track of the evict hand will be
8069 8069           * useful when TRIM is implemented.
8070 8070           */
8071 8071          dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
8072 8072  
8073 8073  retry:
8074 8074          mutex_enter(&dev->l2ad_mtx);
8075 8075          /*
8076 8076           * We have to account for evicted log blocks. Run vdev_space_update()
8077 8077           * on log blocks whose offset (in bytes) is before the evicted offset
8078 8078           * (in bytes) by searching in the list of pointers to log blocks
8079 8079           * present in the L2ARC device.
8080 8080           */
8081 8081          for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
8082 8082              lb_ptr_buf = lb_ptr_buf_prev) {
8083 8083  
8084 8084                  lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
8085 8085  
8086 8086                  /* L2BLK_GET_PSIZE returns aligned size for log blocks */
8087 8087                  uint64_t asize = L2BLK_GET_PSIZE(
8088 8088                      (lb_ptr_buf->lb_ptr)->lbp_prop);
8089 8089  
8090 8090                  /*
8091 8091                   * We don't worry about log blocks left behind (ie
8092 8092                   * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
8093 8093                   * will never write more than l2arc_evict() evicts.
8094 8094                   */
8095 8095                  if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
8096 8096                          break;
8097 8097                  } else {
8098 8098                          vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
8099 8099                          ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8100 8100                          ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8101 8101                          zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8102 8102                              lb_ptr_buf);
8103 8103                          zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
8104 8104                          list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
8105 8105                          kmem_free(lb_ptr_buf->lb_ptr,
8106 8106                              sizeof (l2arc_log_blkptr_t));
8107 8107                          kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8108 8108                  }
8109 8109          }
8110 8110  
8111 8111          for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
8112 8112                  hdr_prev = list_prev(buflist, hdr);
8113 8113  
8114 8114                  ASSERT(!HDR_EMPTY(hdr));
8115 8115                  hash_lock = HDR_LOCK(hdr);
8116 8116  
8117 8117                  /*
8118 8118                   * We cannot use mutex_enter or else we can deadlock
8119 8119                   * with l2arc_write_buffers (due to swapping the order
8120 8120                   * the hash lock and l2ad_mtx are taken).
8121 8121                   */
8122 8122                  if (!mutex_tryenter(hash_lock)) {
8123 8123                          /*
8124 8124                           * Missed the hash lock.  Retry.
8125 8125                           */
8126 8126                          ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
8127 8127                          mutex_exit(&dev->l2ad_mtx);
8128 8128                          mutex_enter(hash_lock);
8129 8129                          mutex_exit(hash_lock);
8130 8130                          goto retry;
8131 8131                  }
8132 8132  
8133 8133                  /*
8134 8134                   * A header can't be on this list if it doesn't have L2 header.
8135 8135                   */
8136 8136                  ASSERT(HDR_HAS_L2HDR(hdr));
8137 8137  
8138 8138                  /* Ensure this header has finished being written. */
8139 8139                  ASSERT(!HDR_L2_WRITING(hdr));
8140 8140                  ASSERT(!HDR_L2_WRITE_HEAD(hdr));
8141 8141  
8142 8142                  if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
8143 8143                      hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
8144 8144                          /*
8145 8145                           * We've evicted to the target address,
8146 8146                           * or the end of the device.
8147 8147                           */
8148 8148                          mutex_exit(hash_lock);
8149 8149                          break;
8150 8150                  }
8151 8151  
8152 8152                  if (!HDR_HAS_L1HDR(hdr)) {
8153 8153                          ASSERT(!HDR_L2_READING(hdr));
8154 8154                          /*
8155 8155                           * This doesn't exist in the ARC.  Destroy.
8156 8156                           * arc_hdr_destroy() will call list_remove()
8157 8157                           * and decrement arcstat_l2_lsize.
8158 8158                           */
8159 8159                          arc_change_state(arc_anon, hdr, hash_lock);
8160 8160                          arc_hdr_destroy(hdr);
8161 8161                  } else {
8162 8162                          ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
8163 8163                          ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
8164 8164                          /*
8165 8165                           * Invalidate issued or about to be issued
8166 8166                           * reads, since we may be about to write
8167 8167                           * over this location.
8168 8168                           */
8169 8169                          if (HDR_L2_READING(hdr)) {
8170 8170                                  ARCSTAT_BUMP(arcstat_l2_evict_reading);
8171 8171                                  arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
8172 8172                          }
8173 8173  
8174 8174                          arc_hdr_l2hdr_destroy(hdr);
8175 8175                  }
8176 8176                  mutex_exit(hash_lock);
8177 8177          }
8178 8178          mutex_exit(&dev->l2ad_mtx);
8179 8179  
8180 8180  out:
8181 8181          /*
8182 8182           * We need to check if we evict all buffers, otherwise we may iterate
8183 8183           * unnecessarily.
8184 8184           */
8185 8185          if (!all && rerun) {
8186 8186                  /*
8187 8187                   * Bump device hand to the device start if it is approaching the
8188 8188                   * end. l2arc_evict() has already evicted ahead for this case.
8189 8189                   */
8190 8190                  dev->l2ad_hand = dev->l2ad_start;
8191 8191                  dev->l2ad_evict = dev->l2ad_start;
8192 8192                  dev->l2ad_first = B_FALSE;
8193 8193                  goto top;
8194 8194          }
8195 8195  
8196 8196          ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end);
8197 8197          if (!dev->l2ad_first)
8198 8198                  ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict);
8199 8199  }
8200 8200  
8201 8201  /*
8202 8202   * Handle any abd transforms that might be required for writing to the L2ARC.
8203 8203   * If successful, this function will always return an abd with the data
8204 8204   * transformed as it is on disk in a new abd of asize bytes.
8205 8205   */
8206 8206  static int
8207 8207  l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
8208 8208      abd_t **abd_out)
8209 8209  {
8210 8210          int ret;
8211 8211          void *tmp = NULL;
8212 8212          abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
8213 8213          enum zio_compress compress = HDR_GET_COMPRESS(hdr);
8214 8214          uint64_t psize = HDR_GET_PSIZE(hdr);
8215 8215          uint64_t size = arc_hdr_size(hdr);
8216 8216          boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
8217 8217          boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
8218 8218          dsl_crypto_key_t *dck = NULL;
8219 8219          uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
8220 8220          boolean_t no_crypt = B_FALSE;
8221 8221  
8222 8222          ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8223 8223              !HDR_COMPRESSION_ENABLED(hdr)) ||
8224 8224              HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
8225 8225          ASSERT3U(psize, <=, asize);
8226 8226  
8227 8227          /*
8228 8228           * If this data simply needs its own buffer, we simply allocate it
8229 8229           * and copy the data. This may be done to eliminate a dependency on a
8230 8230           * shared buffer or to reallocate the buffer to match asize.
8231 8231           */
8232 8232          if (HDR_HAS_RABD(hdr) && asize != psize) {
8233 8233                  ASSERT3U(asize, >=, psize);
8234 8234                  to_write = abd_alloc_for_io(asize, ismd);
8235 8235                  abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
8236 8236                  if (psize != asize)
8237 8237                          abd_zero_off(to_write, psize, asize - psize);
8238 8238                  goto out;
8239 8239          }
8240 8240  
8241 8241          if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
8242 8242              !HDR_ENCRYPTED(hdr)) {
8243 8243                  ASSERT3U(size, ==, psize);
8244 8244                  to_write = abd_alloc_for_io(asize, ismd);
8245 8245                  abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
8246 8246                  if (size != asize)
8247 8247                          abd_zero_off(to_write, size, asize - size);
8248 8248                  goto out;
8249 8249          }
8250 8250  
8251 8251          if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
8252 8252                  cabd = abd_alloc_for_io(asize, ismd);
8253 8253                  tmp = abd_borrow_buf(cabd, asize);
8254 8254  
8255 8255                  psize = zio_compress_data(compress, to_write, tmp, size);
8256 8256                  ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr));
8257 8257                  if (psize < asize)
8258 8258                          bzero((char *)tmp + psize, asize - psize);
8259 8259                  psize = HDR_GET_PSIZE(hdr);
8260 8260                  abd_return_buf_copy(cabd, tmp, asize);
8261 8261                  to_write = cabd;
8262 8262          }
8263 8263  
8264 8264          if (HDR_ENCRYPTED(hdr)) {
8265 8265                  eabd = abd_alloc_for_io(asize, ismd);
8266 8266  
8267 8267                  /*
8268 8268                   * If the dataset was disowned before the buffer
8269 8269                   * made it to this point, the key to re-encrypt
8270 8270                   * it won't be available. In this case we simply
8271 8271                   * won't write the buffer to the L2ARC.
8272 8272                   */
8273 8273                  ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
8274 8274                      FTAG, &dck);
8275 8275                  if (ret != 0)
8276 8276                          goto error;
8277 8277  
8278 8278                  ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
8279 8279                      hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
8280 8280                      hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
8281 8281                      &no_crypt);
8282 8282                  if (ret != 0)
8283 8283                          goto error;
8284 8284  
8285 8285                  if (no_crypt)
8286 8286                          abd_copy(eabd, to_write, psize);
8287 8287  
8288 8288                  if (psize != asize)
8289 8289                          abd_zero_off(eabd, psize, asize - psize);
8290 8290  
8291 8291                  /* assert that the MAC we got here matches the one we saved */
8292 8292                  ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
8293 8293                  spa_keystore_dsl_key_rele(spa, dck, FTAG);
8294 8294  
8295 8295                  if (to_write == cabd)
8296 8296                          abd_free(cabd);
8297 8297  
8298 8298                  to_write = eabd;
8299 8299          }
8300 8300  
8301 8301  out:
8302 8302          ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
8303 8303          *abd_out = to_write;
8304 8304          return (0);
8305 8305  
8306 8306  error:
8307 8307          if (dck != NULL)
8308 8308                  spa_keystore_dsl_key_rele(spa, dck, FTAG);
8309 8309          if (cabd != NULL)
8310 8310                  abd_free(cabd);
8311 8311          if (eabd != NULL)
8312 8312                  abd_free(eabd);
8313 8313  
8314 8314          *abd_out = NULL;
8315 8315          return (ret);
8316 8316  }
8317 8317  
8318 8318  static void
8319 8319  l2arc_blk_fetch_done(zio_t *zio)
8320 8320  {
8321 8321          l2arc_read_callback_t *cb;
8322 8322  
8323 8323          cb = zio->io_private;
8324 8324          if (cb->l2rcb_abd != NULL)
8325 8325                  abd_put(cb->l2rcb_abd);
8326 8326          kmem_free(cb, sizeof (l2arc_read_callback_t));
8327 8327  }
8328 8328  
8329 8329  /*
8330 8330   * Find and write ARC buffers to the L2ARC device.
8331 8331   *
8332 8332   * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
8333 8333   * for reading until they have completed writing.
8334 8334   * The headroom_boost is an in-out parameter used to maintain headroom boost
8335 8335   * state between calls to this function.
8336 8336   *
8337 8337   * Returns the number of bytes actually written (which may be smaller than
8338 8338   * the delta by which the device hand has changed due to alignment and the
8339 8339   * writing of log blocks).
  
    | 
      ↓ open down ↓ | 
    8339 lines elided | 
    
      ↑ open up ↑ | 
  
8340 8340   */
8341 8341  static uint64_t
8342 8342  l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
8343 8343  {
8344 8344          arc_buf_hdr_t           *hdr, *hdr_prev, *head;
8345 8345          uint64_t                write_asize, write_psize, write_lsize, headroom;
8346 8346          boolean_t               full;
8347 8347          l2arc_write_callback_t  *cb = NULL;
8348 8348          zio_t                   *pio, *wzio;
8349 8349          uint64_t                guid = spa_load_guid(spa);
     8350 +        l2arc_dev_hdr_phys_t    *l2dhdr = dev->l2ad_dev_hdr;
8350 8351  
8351 8352          ASSERT3P(dev->l2ad_vdev, !=, NULL);
8352 8353  
8353 8354          pio = NULL;
8354 8355          write_lsize = write_asize = write_psize = 0;
8355 8356          full = B_FALSE;
8356 8357          head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
8357 8358          arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
8358 8359  
8359 8360          /*
8360 8361           * Copy buffers for L2ARC writing.
8361 8362           */
8362 8363          for (int try = 0; try <= 3; try++) {
8363 8364                  multilist_sublist_t *mls = l2arc_sublist_lock(try);
8364 8365                  uint64_t passed_sz = 0;
8365 8366  
8366 8367                  VERIFY3P(mls, !=, NULL);
8367 8368  
8368 8369                  /*
8369 8370                   * L2ARC fast warmup.
8370 8371                   *
8371 8372                   * Until the ARC is warm and starts to evict, read from the
8372 8373                   * head of the ARC lists rather than the tail.
8373 8374                   */
8374 8375                  if (arc_warm == B_FALSE)
8375 8376                          hdr = multilist_sublist_head(mls);
8376 8377                  else
8377 8378                          hdr = multilist_sublist_tail(mls);
8378 8379  
8379 8380                  headroom = target_sz * l2arc_headroom;
8380 8381                  if (zfs_compressed_arc_enabled)
8381 8382                          headroom = (headroom * l2arc_headroom_boost) / 100;
8382 8383  
8383 8384                  for (; hdr; hdr = hdr_prev) {
8384 8385                          kmutex_t *hash_lock;
8385 8386                          abd_t *to_write = NULL;
8386 8387  
8387 8388                          if (arc_warm == B_FALSE)
8388 8389                                  hdr_prev = multilist_sublist_next(mls, hdr);
8389 8390                          else
8390 8391                                  hdr_prev = multilist_sublist_prev(mls, hdr);
8391 8392  
8392 8393                          hash_lock = HDR_LOCK(hdr);
8393 8394                          if (!mutex_tryenter(hash_lock)) {
8394 8395                                  /*
8395 8396                                   * Skip this buffer rather than waiting.
8396 8397                                   */
8397 8398                                  continue;
8398 8399                          }
8399 8400  
8400 8401                          passed_sz += HDR_GET_LSIZE(hdr);
8401 8402                          if (l2arc_headroom != 0 && passed_sz > headroom) {
8402 8403                                  /*
8403 8404                                   * Searched too far.
8404 8405                                   */
8405 8406                                  mutex_exit(hash_lock);
8406 8407                                  break;
8407 8408                          }
8408 8409  
8409 8410                          if (!l2arc_write_eligible(guid, hdr)) {
8410 8411                                  mutex_exit(hash_lock);
8411 8412                                  continue;
8412 8413                          }
8413 8414  
8414 8415                          /*
8415 8416                           * We rely on the L1 portion of the header below, so
8416 8417                           * it's invalid for this header to have been evicted out
8417 8418                           * of the ghost cache, prior to being written out. The
8418 8419                           * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8419 8420                           */
8420 8421                          ASSERT(HDR_HAS_L1HDR(hdr));
8421 8422  
8422 8423                          ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8423 8424                          ASSERT3U(arc_hdr_size(hdr), >, 0);
8424 8425                          ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8425 8426                              HDR_HAS_RABD(hdr));
8426 8427                          uint64_t psize = HDR_GET_PSIZE(hdr);
8427 8428                          uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
8428 8429                              psize);
8429 8430  
8430 8431                          if ((write_asize + asize) > target_sz) {
8431 8432                                  full = B_TRUE;
8432 8433                                  mutex_exit(hash_lock);
8433 8434                                  break;
8434 8435                          }
8435 8436  
8436 8437                          /*
8437 8438                           * We rely on the L1 portion of the header below, so
8438 8439                           * it's invalid for this header to have been evicted out
8439 8440                           * of the ghost cache, prior to being written out. The
8440 8441                           * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8441 8442                           */
8442 8443                          arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING);
8443 8444                          ASSERT(HDR_HAS_L1HDR(hdr));
8444 8445  
8445 8446                          ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8446 8447                          ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8447 8448                              HDR_HAS_RABD(hdr));
8448 8449                          ASSERT3U(arc_hdr_size(hdr), >, 0);
8449 8450  
8450 8451                          /*
8451 8452                           * If this header has b_rabd, we can use this since it
8452 8453                           * must always match the data exactly as it exists on
8453 8454                           * disk. Otherwise, the L2ARC can normally use the
8454 8455                           * hdr's data, but if we're sharing data between the
8455 8456                           * hdr and one of its bufs, L2ARC needs its own copy of
8456 8457                           * the data so that the ZIO below can't race with the
8457 8458                           * buf consumer. To ensure that this copy will be
8458 8459                           * available for the lifetime of the ZIO and be cleaned
8459 8460                           * up afterwards, we add it to the l2arc_free_on_write
8460 8461                           * queue. If we need to apply any transforms to the
8461 8462                           * data (compression, encryption) we will also need the
8462 8463                           * extra buffer.
8463 8464                           */
8464 8465                          if (HDR_HAS_RABD(hdr) && psize == asize) {
8465 8466                                  to_write = hdr->b_crypt_hdr.b_rabd;
8466 8467                          } else if ((HDR_COMPRESSION_ENABLED(hdr) ||
8467 8468                              HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
8468 8469                              !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
8469 8470                              psize == asize) {
8470 8471                                  to_write = hdr->b_l1hdr.b_pabd;
8471 8472                          } else {
8472 8473                                  int ret;
8473 8474                                  arc_buf_contents_t type = arc_buf_type(hdr);
8474 8475  
8475 8476                                  ret = l2arc_apply_transforms(spa, hdr, asize,
8476 8477                                      &to_write);
8477 8478                                  if (ret != 0) {
8478 8479                                          arc_hdr_clear_flags(hdr,
8479 8480                                              ARC_FLAG_L2_WRITING);
8480 8481                                          mutex_exit(hash_lock);
8481 8482                                          continue;
8482 8483                                  }
8483 8484  
8484 8485                                  l2arc_free_abd_on_write(to_write, asize, type);
8485 8486                          }
8486 8487  
8487 8488                          if (pio == NULL) {
8488 8489                                  /*
8489 8490                                   * Insert a dummy header on the buflist so
8490 8491                                   * l2arc_write_done() can find where the
8491 8492                                   * write buffers begin without searching.
8492 8493                                   */
8493 8494                                  mutex_enter(&dev->l2ad_mtx);
8494 8495                                  list_insert_head(&dev->l2ad_buflist, head);
8495 8496                                  mutex_exit(&dev->l2ad_mtx);
8496 8497  
8497 8498                                  cb = kmem_alloc(
8498 8499                                      sizeof (l2arc_write_callback_t), KM_SLEEP);
8499 8500                                  cb->l2wcb_dev = dev;
8500 8501                                  cb->l2wcb_head = head;
8501 8502                                  /*
8502 8503                                   * Create a list to save allocated abd buffers
8503 8504                                   * for l2arc_log_blk_commit().
8504 8505                                   */
8505 8506                                  list_create(&cb->l2wcb_abd_list,
8506 8507                                      sizeof (l2arc_lb_abd_buf_t),
8507 8508                                      offsetof(l2arc_lb_abd_buf_t, node));
8508 8509                                  pio = zio_root(spa, l2arc_write_done, cb,
8509 8510                                      ZIO_FLAG_CANFAIL);
8510 8511                          }
8511 8512  
8512 8513                          hdr->b_l2hdr.b_dev = dev;
8513 8514                          hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
8514 8515                          arc_hdr_set_flags(hdr,
8515 8516                              ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
8516 8517  
8517 8518                          mutex_enter(&dev->l2ad_mtx);
8518 8519                          list_insert_head(&dev->l2ad_buflist, hdr);
8519 8520                          mutex_exit(&dev->l2ad_mtx);
8520 8521  
8521 8522                          (void) zfs_refcount_add_many(&dev->l2ad_alloc,
8522 8523                              arc_hdr_size(hdr), hdr);
8523 8524  
8524 8525                          wzio = zio_write_phys(pio, dev->l2ad_vdev,
8525 8526                              hdr->b_l2hdr.b_daddr, asize, to_write,
8526 8527                              ZIO_CHECKSUM_OFF, NULL, hdr,
8527 8528                              ZIO_PRIORITY_ASYNC_WRITE,
8528 8529                              ZIO_FLAG_CANFAIL, B_FALSE);
8529 8530  
8530 8531                          write_lsize += HDR_GET_LSIZE(hdr);
8531 8532                          DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
8532 8533                              zio_t *, wzio);
8533 8534  
8534 8535                          write_psize += psize;
8535 8536                          write_asize += asize;
8536 8537                          dev->l2ad_hand += asize;
8537 8538                          vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
8538 8539  
8539 8540                          mutex_exit(hash_lock);
8540 8541  
8541 8542                          /*
8542 8543                           * Append buf info to current log and commit if full.
8543 8544                           * arcstat_l2_{size,asize} kstats are updated
8544 8545                           * internally.
8545 8546                           */
8546 8547                          if (l2arc_log_blk_insert(dev, hdr))
8547 8548                                  l2arc_log_blk_commit(dev, pio, cb);
8548 8549  
8549 8550                          (void) zio_nowait(wzio);
8550 8551                  }
8551 8552  
8552 8553                  multilist_sublist_unlock(mls);
8553 8554  
8554 8555                  if (full == B_TRUE)
8555 8556                          break;
8556 8557          }
8557 8558  
  
    | 
      ↓ open down ↓ | 
    198 lines elided | 
    
      ↑ open up ↑ | 
  
8558 8559          /* No buffers selected for writing? */
8559 8560          if (pio == NULL) {
8560 8561                  ASSERT0(write_lsize);
8561 8562                  ASSERT(!HDR_HAS_L1HDR(head));
8562 8563                  kmem_cache_free(hdr_l2only_cache, head);
8563 8564  
8564 8565                  /*
8565 8566                   * Although we did not write any buffers l2ad_evict may
8566 8567                   * have advanced.
8567 8568                   */
8568      -                l2arc_dev_hdr_update(dev);
     8569 +                if (dev->l2ad_evict != l2dhdr->dh_evict)
     8570 +                        l2arc_dev_hdr_update(dev);
8569 8571  
8570 8572                  return (0);
8571 8573          }
8572 8574  
8573 8575          if (!dev->l2ad_first)
8574 8576                  ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
8575 8577  
8576 8578          ASSERT3U(write_asize, <=, target_sz);
8577 8579          ARCSTAT_BUMP(arcstat_l2_writes_sent);
8578 8580          ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
8579 8581          ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
8580 8582          ARCSTAT_INCR(arcstat_l2_psize, write_psize);
8581 8583  
8582 8584          dev->l2ad_writing = B_TRUE;
8583 8585          (void) zio_wait(pio);
8584 8586          dev->l2ad_writing = B_FALSE;
8585 8587  
8586 8588          /*
8587 8589           * Update the device header after the zio completes as
8588 8590           * l2arc_write_done() may have updated the memory holding the log block
8589 8591           * pointers in the device header.
8590 8592           */
8591 8593          l2arc_dev_hdr_update(dev);
8592 8594  
8593 8595          return (write_asize);
8594 8596  }
8595 8597  
8596 8598  /*
8597 8599   * This thread feeds the L2ARC at regular intervals.  This is the beating
8598 8600   * heart of the L2ARC.
8599 8601   */
8600 8602  /* ARGSUSED */
8601 8603  static void
8602 8604  l2arc_feed_thread(void *unused)
8603 8605  {
8604 8606          callb_cpr_t cpr;
8605 8607          l2arc_dev_t *dev;
8606 8608          spa_t *spa;
8607 8609          uint64_t size, wrote;
8608 8610          clock_t begin, next = ddi_get_lbolt();
8609 8611  
8610 8612          CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
8611 8613  
8612 8614          mutex_enter(&l2arc_feed_thr_lock);
8613 8615  
8614 8616          while (l2arc_thread_exit == 0) {
8615 8617                  CALLB_CPR_SAFE_BEGIN(&cpr);
8616 8618                  (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
8617 8619                      next);
8618 8620                  CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
8619 8621                  next = ddi_get_lbolt() + hz;
8620 8622  
8621 8623                  /*
8622 8624                   * Quick check for L2ARC devices.
8623 8625                   */
8624 8626                  mutex_enter(&l2arc_dev_mtx);
8625 8627                  if (l2arc_ndev == 0) {
8626 8628                          mutex_exit(&l2arc_dev_mtx);
8627 8629                          continue;
8628 8630                  }
8629 8631                  mutex_exit(&l2arc_dev_mtx);
8630 8632                  begin = ddi_get_lbolt();
8631 8633  
8632 8634                  /*
8633 8635                   * This selects the next l2arc device to write to, and in
8634 8636                   * doing so the next spa to feed from: dev->l2ad_spa.   This
8635 8637                   * will return NULL if there are now no l2arc devices or if
8636 8638                   * they are all faulted.
8637 8639                   *
8638 8640                   * If a device is returned, its spa's config lock is also
8639 8641                   * held to prevent device removal.  l2arc_dev_get_next()
8640 8642                   * will grab and release l2arc_dev_mtx.
8641 8643                   */
8642 8644                  if ((dev = l2arc_dev_get_next()) == NULL)
8643 8645                          continue;
8644 8646  
8645 8647                  spa = dev->l2ad_spa;
8646 8648                  ASSERT3P(spa, !=, NULL);
8647 8649  
8648 8650                  /*
8649 8651                   * If the pool is read-only then force the feed thread to
8650 8652                   * sleep a little longer.
8651 8653                   */
8652 8654                  if (!spa_writeable(spa)) {
8653 8655                          next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
8654 8656                          spa_config_exit(spa, SCL_L2ARC, dev);
8655 8657                          continue;
8656 8658                  }
8657 8659  
8658 8660                  /*
8659 8661                   * Avoid contributing to memory pressure.
8660 8662                   */
8661 8663                  if (arc_reclaim_needed()) {
8662 8664                          ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
8663 8665                          spa_config_exit(spa, SCL_L2ARC, dev);
8664 8666                          continue;
8665 8667                  }
8666 8668  
8667 8669                  ARCSTAT_BUMP(arcstat_l2_feeds);
8668 8670  
8669 8671                  size = l2arc_write_size(dev);
8670 8672  
8671 8673                  /*
8672 8674                   * Evict L2ARC buffers that will be overwritten.
8673 8675                   */
8674 8676                  l2arc_evict(dev, size, B_FALSE);
8675 8677  
8676 8678                  /*
8677 8679                   * Write ARC buffers.
8678 8680                   */
8679 8681                  wrote = l2arc_write_buffers(spa, dev, size);
8680 8682  
8681 8683                  /*
8682 8684                   * Calculate interval between writes.
8683 8685                   */
8684 8686                  next = l2arc_write_interval(begin, size, wrote);
8685 8687                  spa_config_exit(spa, SCL_L2ARC, dev);
8686 8688          }
8687 8689  
8688 8690          l2arc_thread_exit = 0;
8689 8691          cv_broadcast(&l2arc_feed_thr_cv);
8690 8692          CALLB_CPR_EXIT(&cpr);           /* drops l2arc_feed_thr_lock */
8691 8693          thread_exit();
8692 8694  }
8693 8695  
8694 8696  boolean_t
8695 8697  l2arc_vdev_present(vdev_t *vd)
8696 8698  {
8697 8699          return (l2arc_vdev_get(vd) != NULL);
8698 8700  }
8699 8701  
8700 8702  /*
8701 8703   * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
8702 8704   * the vdev_t isn't an L2ARC device.
8703 8705   */
8704 8706  static l2arc_dev_t *
8705 8707  l2arc_vdev_get(vdev_t *vd)
8706 8708  {
8707 8709          l2arc_dev_t     *dev;
8708 8710  
8709 8711          mutex_enter(&l2arc_dev_mtx);
8710 8712          for (dev = list_head(l2arc_dev_list); dev != NULL;
8711 8713              dev = list_next(l2arc_dev_list, dev)) {
8712 8714                  if (dev->l2ad_vdev == vd)
8713 8715                          break;
8714 8716          }
8715 8717          mutex_exit(&l2arc_dev_mtx);
8716 8718  
8717 8719          return (dev);
8718 8720  }
8719 8721  
8720 8722  /*
8721 8723   * Add a vdev for use by the L2ARC.  By this point the spa has already
8722 8724   * validated the vdev and opened it.
8723 8725   */
8724 8726  void
8725 8727  l2arc_add_vdev(spa_t *spa, vdev_t *vd)
8726 8728  {
8727 8729          l2arc_dev_t             *adddev;
8728 8730          uint64_t                l2dhdr_asize;
8729 8731  
8730 8732          ASSERT(!l2arc_vdev_present(vd));
8731 8733  
8732 8734          /*
8733 8735           * Create a new l2arc device entry.
8734 8736           */
8735 8737          adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
8736 8738          adddev->l2ad_spa = spa;
8737 8739          adddev->l2ad_vdev = vd;
8738 8740          /* leave extra size for an l2arc device header */
8739 8741          l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
8740 8742              MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
8741 8743          adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
8742 8744          adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
8743 8745          ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
8744 8746          adddev->l2ad_hand = adddev->l2ad_start;
8745 8747          adddev->l2ad_evict = adddev->l2ad_start;
8746 8748          adddev->l2ad_first = B_TRUE;
8747 8749          adddev->l2ad_writing = B_FALSE;
8748 8750          adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
8749 8751  
8750 8752          mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
8751 8753          /*
8752 8754           * This is a list of all ARC buffers that are still valid on the
8753 8755           * device.
8754 8756           */
8755 8757          list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
8756 8758              offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
8757 8759  
8758 8760          /*
8759 8761           * This is a list of pointers to log blocks that are still present
8760 8762           * on the device.
8761 8763           */
8762 8764          list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
8763 8765              offsetof(l2arc_lb_ptr_buf_t, node));
8764 8766  
8765 8767          vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
8766 8768          zfs_refcount_create(&adddev->l2ad_alloc);
8767 8769          zfs_refcount_create(&adddev->l2ad_lb_asize);
8768 8770          zfs_refcount_create(&adddev->l2ad_lb_count);
8769 8771  
8770 8772          /*
8771 8773           * Add device to global list
8772 8774           */
8773 8775          mutex_enter(&l2arc_dev_mtx);
8774 8776          list_insert_head(l2arc_dev_list, adddev);
8775 8777          atomic_inc_64(&l2arc_ndev);
8776 8778          mutex_exit(&l2arc_dev_mtx);
8777 8779  
8778 8780          /*
8779 8781           * Decide if vdev is eligible for L2ARC rebuild
8780 8782           */
8781 8783          l2arc_rebuild_vdev(adddev->l2ad_vdev, B_FALSE);
8782 8784  }
8783 8785  
8784 8786  void
8785 8787  l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
8786 8788  {
8787 8789          l2arc_dev_t             *dev = NULL;
8788 8790          l2arc_dev_hdr_phys_t    *l2dhdr;
8789 8791          uint64_t                l2dhdr_asize;
8790 8792          spa_t                   *spa;
8791 8793          int                     err;
8792 8794          boolean_t               l2dhdr_valid = B_TRUE;
8793 8795  
8794 8796          dev = l2arc_vdev_get(vd);
8795 8797          ASSERT3P(dev, !=, NULL);
8796 8798          spa = dev->l2ad_spa;
8797 8799          l2dhdr = dev->l2ad_dev_hdr;
8798 8800          l2dhdr_asize = dev->l2ad_dev_hdr_asize;
8799 8801  
8800 8802          /*
8801 8803           * The L2ARC has to hold at least the payload of one log block for
8802 8804           * them to be restored (persistent L2ARC). The payload of a log block
8803 8805           * depends on the amount of its log entries. We always write log blocks
8804 8806           * with 1022 entries. How many of them are committed or restored depends
8805 8807           * on the size of the L2ARC device. Thus the maximum payload of
8806 8808           * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
8807 8809           * is less than that, we reduce the amount of committed and restored
8808 8810           * log entries per block so as to enable persistence.
8809 8811           */
8810 8812          if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
8811 8813                  dev->l2ad_log_entries = 0;
8812 8814          } else {
8813 8815                  dev->l2ad_log_entries = MIN((dev->l2ad_end -
8814 8816                      dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
8815 8817                      L2ARC_LOG_BLK_MAX_ENTRIES);
8816 8818          }
8817 8819  
8818 8820          /*
8819 8821           * Read the device header, if an error is returned do not rebuild L2ARC.
8820 8822           */
8821 8823          if ((err = l2arc_dev_hdr_read(dev)) != 0)
8822 8824                  l2dhdr_valid = B_FALSE;
8823 8825  
8824 8826          if (l2dhdr_valid && dev->l2ad_log_entries > 0) {
8825 8827                  /*
8826 8828                   * If we are onlining a cache device (vdev_reopen) that was
8827 8829                   * still present (l2arc_vdev_present()) and rebuild is enabled,
8828 8830                   * we should evict all ARC buffers and pointers to log blocks
8829 8831                   * and reclaim their space before restoring its contents to
8830 8832                   * L2ARC.
8831 8833                   */
8832 8834                  if (reopen) {
8833 8835                          if (!l2arc_rebuild_enabled) {
8834 8836                                  return;
8835 8837                          } else {
8836 8838                                  l2arc_evict(dev, 0, B_TRUE);
8837 8839                                  /* start a new log block */
8838 8840                                  dev->l2ad_log_ent_idx = 0;
8839 8841                                  dev->l2ad_log_blk_payload_asize = 0;
8840 8842                                  dev->l2ad_log_blk_payload_start = 0;
8841 8843                          }
8842 8844                  }
8843 8845                  /*
8844 8846                   * Just mark the device as pending for a rebuild. We won't
8845 8847                   * be starting a rebuild in line here as it would block pool
8846 8848                   * import. Instead spa_load_impl will hand that off to an
8847 8849                   * async task which will call l2arc_spa_rebuild_start.
8848 8850                   */
8849 8851                  dev->l2ad_rebuild = B_TRUE;
8850 8852          } else if (spa_writeable(spa)) {
8851 8853                  /*
8852 8854                   * In this case create a new header. We zero out the memory
8853 8855                   * holding the header to reset dh_start_lbps.
8854 8856                   */
8855 8857                  bzero(l2dhdr, l2dhdr_asize);
8856 8858                  l2arc_dev_hdr_update(dev);
8857 8859          }
8858 8860  }
8859 8861  
8860 8862  /*
8861 8863   * Remove a vdev from the L2ARC.
8862 8864   */
8863 8865  void
8864 8866  l2arc_remove_vdev(vdev_t *vd)
8865 8867  {
8866 8868          l2arc_dev_t *remdev = NULL;
8867 8869  
8868 8870          /*
8869 8871           * Find the device by vdev
8870 8872           */
8871 8873          remdev = l2arc_vdev_get(vd);
8872 8874          ASSERT3P(remdev, !=, NULL);
8873 8875  
8874 8876          /*
8875 8877           * Cancel any ongoing or scheduled rebuild.
8876 8878           */
8877 8879          mutex_enter(&l2arc_rebuild_thr_lock);
8878 8880          if (remdev->l2ad_rebuild_began == B_TRUE) {
8879 8881                  remdev->l2ad_rebuild_cancel = B_TRUE;
8880 8882                  while (remdev->l2ad_rebuild == B_TRUE)
8881 8883                          cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
8882 8884          }
8883 8885          mutex_exit(&l2arc_rebuild_thr_lock);
8884 8886  
8885 8887          /*
8886 8888           * Remove device from global list
8887 8889           */
8888 8890          mutex_enter(&l2arc_dev_mtx);
8889 8891          list_remove(l2arc_dev_list, remdev);
8890 8892          l2arc_dev_last = NULL;          /* may have been invalidated */
8891 8893          atomic_dec_64(&l2arc_ndev);
8892 8894          mutex_exit(&l2arc_dev_mtx);
8893 8895  
8894 8896          /*
8895 8897           * Clear all buflists and ARC references.  L2ARC device flush.
8896 8898           */
8897 8899          l2arc_evict(remdev, 0, B_TRUE);
8898 8900          list_destroy(&remdev->l2ad_buflist);
8899 8901          ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
8900 8902          list_destroy(&remdev->l2ad_lbptr_list);
8901 8903          mutex_destroy(&remdev->l2ad_mtx);
8902 8904          zfs_refcount_destroy(&remdev->l2ad_alloc);
8903 8905          zfs_refcount_destroy(&remdev->l2ad_lb_asize);
8904 8906          zfs_refcount_destroy(&remdev->l2ad_lb_count);
8905 8907          kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
8906 8908          kmem_free(remdev, sizeof (l2arc_dev_t));
8907 8909  }
8908 8910  
8909 8911  void
8910 8912  l2arc_init(void)
8911 8913  {
8912 8914          l2arc_thread_exit = 0;
8913 8915          l2arc_ndev = 0;
8914 8916          l2arc_writes_sent = 0;
8915 8917          l2arc_writes_done = 0;
8916 8918  
8917 8919          mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
8918 8920          cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
8919 8921          mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
8920 8922          cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
8921 8923          mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
8922 8924          mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
8923 8925  
8924 8926          l2arc_dev_list = &L2ARC_dev_list;
8925 8927          l2arc_free_on_write = &L2ARC_free_on_write;
8926 8928          list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
8927 8929              offsetof(l2arc_dev_t, l2ad_node));
8928 8930          list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
8929 8931              offsetof(l2arc_data_free_t, l2df_list_node));
8930 8932  }
8931 8933  
8932 8934  void
8933 8935  l2arc_fini(void)
8934 8936  {
8935 8937          /*
8936 8938           * This is called from dmu_fini(), which is called from spa_fini();
8937 8939           * Because of this, we can assume that all l2arc devices have
8938 8940           * already been removed when the pools themselves were removed.
8939 8941           */
8940 8942  
8941 8943          l2arc_do_free_on_write();
8942 8944  
8943 8945          mutex_destroy(&l2arc_feed_thr_lock);
8944 8946          cv_destroy(&l2arc_feed_thr_cv);
8945 8947          mutex_destroy(&l2arc_rebuild_thr_lock);
8946 8948          cv_destroy(&l2arc_rebuild_thr_cv);
8947 8949          mutex_destroy(&l2arc_dev_mtx);
8948 8950          mutex_destroy(&l2arc_free_on_write_mtx);
8949 8951  
8950 8952          list_destroy(l2arc_dev_list);
8951 8953          list_destroy(l2arc_free_on_write);
8952 8954  }
8953 8955  
8954 8956  void
8955 8957  l2arc_start(void)
8956 8958  {
8957 8959          if (!(spa_mode_global & FWRITE))
8958 8960                  return;
8959 8961  
8960 8962          (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
8961 8963              TS_RUN, minclsyspri);
8962 8964  }
8963 8965  
8964 8966  void
8965 8967  l2arc_stop(void)
8966 8968  {
8967 8969          if (!(spa_mode_global & FWRITE))
8968 8970                  return;
8969 8971  
8970 8972          mutex_enter(&l2arc_feed_thr_lock);
8971 8973          cv_signal(&l2arc_feed_thr_cv);  /* kick thread out of startup */
8972 8974          l2arc_thread_exit = 1;
8973 8975          while (l2arc_thread_exit != 0)
8974 8976                  cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
8975 8977          mutex_exit(&l2arc_feed_thr_lock);
8976 8978  }
8977 8979  
8978 8980  /*
8979 8981   * Punches out rebuild threads for the L2ARC devices in a spa. This should
8980 8982   * be called after pool import from the spa async thread, since starting
8981 8983   * these threads directly from spa_import() will make them part of the
8982 8984   * "zpool import" context and delay process exit (and thus pool import).
8983 8985   */
8984 8986  void
8985 8987  l2arc_spa_rebuild_start(spa_t *spa)
8986 8988  {
8987 8989          ASSERT(MUTEX_HELD(&spa_namespace_lock));
8988 8990  
8989 8991          /*
8990 8992           * Locate the spa's l2arc devices and kick off rebuild threads.
8991 8993           */
8992 8994          for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
8993 8995                  l2arc_dev_t *dev =
8994 8996                      l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
8995 8997                  if (dev == NULL) {
8996 8998                          /* Don't attempt a rebuild if the vdev is UNAVAIL */
8997 8999                          continue;
8998 9000                  }
8999 9001                  mutex_enter(&l2arc_rebuild_thr_lock);
9000 9002                  if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
9001 9003                          dev->l2ad_rebuild_began = B_TRUE;
9002 9004                          (void) thread_create(NULL, 0,
9003 9005                              (void (*)(void *))l2arc_dev_rebuild_start,
9004 9006                              dev, 0, &p0, TS_RUN, minclsyspri);
9005 9007                  }
9006 9008                  mutex_exit(&l2arc_rebuild_thr_lock);
9007 9009          }
9008 9010  }
9009 9011  
9010 9012  /*
9011 9013   * Main entry point for L2ARC rebuilding.
9012 9014   */
9013 9015  static void
9014 9016  l2arc_dev_rebuild_start(l2arc_dev_t *dev)
9015 9017  {
9016 9018          VERIFY(!dev->l2ad_rebuild_cancel);
9017 9019          VERIFY(dev->l2ad_rebuild);
9018 9020          (void) l2arc_rebuild(dev);
9019 9021          mutex_enter(&l2arc_rebuild_thr_lock);
9020 9022          dev->l2ad_rebuild_began = B_FALSE;
9021 9023          dev->l2ad_rebuild = B_FALSE;
9022 9024          mutex_exit(&l2arc_rebuild_thr_lock);
9023 9025  
9024 9026          thread_exit();
9025 9027  }
9026 9028  
9027 9029  /*
9028 9030   * This function implements the actual L2ARC metadata rebuild. It:
9029 9031   * starts reading the log block chain and restores each block's contents
9030 9032   * to memory (reconstructing arc_buf_hdr_t's).
9031 9033   *
9032 9034   * Operation stops under any of the following conditions:
9033 9035   *
9034 9036   * 1) We reach the end of the log block chain.
9035 9037   * 2) We encounter *any* error condition (cksum errors, io errors)
9036 9038   */
9037 9039  static int
9038 9040  l2arc_rebuild(l2arc_dev_t *dev)
9039 9041  {
9040 9042          vdev_t                  *vd = dev->l2ad_vdev;
9041 9043          spa_t                   *spa = vd->vdev_spa;
9042 9044          int                     err = 0;
9043 9045          l2arc_dev_hdr_phys_t    *l2dhdr = dev->l2ad_dev_hdr;
9044 9046          l2arc_log_blk_phys_t    *this_lb, *next_lb;
9045 9047          zio_t                   *this_io = NULL, *next_io = NULL;
9046 9048          l2arc_log_blkptr_t      lbps[2];
9047 9049          l2arc_lb_ptr_buf_t      *lb_ptr_buf;
9048 9050          boolean_t               lock_held;
9049 9051  
9050 9052          this_lb = kmem_zalloc(sizeof (*this_lb), KM_SLEEP);
9051 9053          next_lb = kmem_zalloc(sizeof (*next_lb), KM_SLEEP);
9052 9054  
9053 9055          /*
9054 9056           * We prevent device removal while issuing reads to the device,
9055 9057           * then during the rebuilding phases we drop this lock again so
9056 9058           * that a spa_unload or device remove can be initiated - this is
9057 9059           * safe, because the spa will signal us to stop before removing
9058 9060           * our device and wait for us to stop.
9059 9061           */
9060 9062          spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
9061 9063          lock_held = B_TRUE;
9062 9064  
9063 9065          /*
9064 9066           * Retrieve the persistent L2ARC device state.
9065 9067           * L2BLK_GET_PSIZE returns aligned size for log blocks.
9066 9068           */
9067 9069          dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
9068 9070          dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
9069 9071              L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
9070 9072              dev->l2ad_start);
9071 9073          dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
9072 9074  
9073 9075          /*
9074 9076           * In case the zfs module parameter l2arc_rebuild_enabled is false
9075 9077           * we do not start the rebuild process.
9076 9078           */
9077 9079          if (!l2arc_rebuild_enabled)
9078 9080                  goto out;
9079 9081  
9080 9082          /* Prepare the rebuild process */
9081 9083          bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps));
9082 9084  
9083 9085          /* Start the rebuild process */
9084 9086          for (;;) {
9085 9087                  if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
9086 9088                          break;
9087 9089  
9088 9090                  if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
9089 9091                      this_lb, next_lb, this_io, &next_io)) != 0)
9090 9092                          goto out;
9091 9093  
9092 9094                  /*
9093 9095                   * Our memory pressure valve. If the system is running low
9094 9096                   * on memory, rather than swamping memory with new ARC buf
9095 9097                   * hdrs, we opt not to rebuild the L2ARC. At this point,
9096 9098                   * however, we have already set up our L2ARC dev to chain in
9097 9099                   * new metadata log blocks, so the user may choose to offline/
9098 9100                   * online the L2ARC dev at a later time (or re-import the pool)
9099 9101                   * to reconstruct it (when there's less memory pressure).
9100 9102                   */
9101 9103                  if (arc_reclaim_needed()) {
9102 9104                          ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
9103 9105                          cmn_err(CE_NOTE, "System running low on memory, "
9104 9106                              "aborting L2ARC rebuild.");
9105 9107                          err = SET_ERROR(ENOMEM);
9106 9108                          goto out;
9107 9109                  }
9108 9110  
9109 9111                  spa_config_exit(spa, SCL_L2ARC, vd);
9110 9112                  lock_held = B_FALSE;
9111 9113  
9112 9114                  /*
9113 9115                   * Now that we know that the next_lb checks out alright, we
9114 9116                   * can start reconstruction from this log block.
9115 9117                   * L2BLK_GET_PSIZE returns aligned size for log blocks.
9116 9118                   */
9117 9119                  uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
9118 9120                  l2arc_log_blk_restore(dev, this_lb, asize, lbps[0].lbp_daddr);
9119 9121  
9120 9122                  /*
9121 9123                   * log block restored, include its pointer in the list of
9122 9124                   * pointers to log blocks present in the L2ARC device.
9123 9125                   */
9124 9126                  lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
9125 9127                  lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
9126 9128                      KM_SLEEP);
9127 9129                  bcopy(&lbps[0], lb_ptr_buf->lb_ptr,
9128 9130                      sizeof (l2arc_log_blkptr_t));
9129 9131                  mutex_enter(&dev->l2ad_mtx);
9130 9132                  list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
9131 9133                  ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
9132 9134                  ARCSTAT_BUMP(arcstat_l2_log_blk_count);
9133 9135                  zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
9134 9136                  zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
9135 9137                  mutex_exit(&dev->l2ad_mtx);
9136 9138                  vdev_space_update(vd, asize, 0, 0);
9137 9139  
9138 9140                  /* BEGIN CSTYLED */
9139 9141                  /*
9140 9142                   * Protection against loops of log blocks:
9141 9143                   *
9142 9144                   *                                     l2ad_hand  l2ad_evict
9143 9145                   *                                         V          V
9144 9146                   * l2ad_start |=======================================| l2ad_end
9145 9147                   *             -----|||----|||---|||----|||
9146 9148                   *                  (3)    (2)   (1)    (0)
9147 9149                   *             ---|||---|||----|||---|||
9148 9150                   *                (7)   (6)    (5)   (4)
9149 9151                   *
9150 9152                   * In this situation the pointer of log block (4) passes
9151 9153                   * l2arc_log_blkptr_valid() but the log block should not be
9152 9154                   * restored as it is overwritten by the payload of log block
9153 9155                   * (0). Only log blocks (0)-(3) should be restored. We check
9154 9156                   * whether l2ad_evict lies in between the payload starting
9155 9157                   * offset of the next log block (lbps[1].lbp_payload_start)
9156 9158                   * and the payload starting offset of the present log block
9157 9159                   * (lbps[0].lbp_payload_start). If true and this isn't the
9158 9160                   * first pass, we are looping from the beginning and we should
9159 9161                   * stop.
9160 9162                   */
9161 9163                  /* END CSTYLED */
9162 9164                  if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
9163 9165                      lbps[0].lbp_payload_start, dev->l2ad_evict) &&
9164 9166                      !dev->l2ad_first)
9165 9167                          goto out;
9166 9168  
9167 9169                  for (;;) {
9168 9170                          mutex_enter(&l2arc_rebuild_thr_lock);
9169 9171                          if (dev->l2ad_rebuild_cancel) {
9170 9172                                  dev->l2ad_rebuild = B_FALSE;
9171 9173                                  cv_signal(&l2arc_rebuild_thr_cv);
9172 9174                                  mutex_exit(&l2arc_rebuild_thr_lock);
9173 9175                                  err = SET_ERROR(ECANCELED);
9174 9176                                  goto out;
9175 9177                          }
9176 9178                          mutex_exit(&l2arc_rebuild_thr_lock);
9177 9179                          if (spa_config_tryenter(spa, SCL_L2ARC, vd,
9178 9180                              RW_READER)) {
9179 9181                                  lock_held = B_TRUE;
9180 9182                                  break;
9181 9183                          }
9182 9184                          /*
9183 9185                           * L2ARC config lock held by somebody in writer,
9184 9186                           * possibly due to them trying to remove us. They'll
9185 9187                           * likely to want us to shut down, so after a little
9186 9188                           * delay, we check l2ad_rebuild_cancel and retry
9187 9189                           * the lock again.
9188 9190                           */
9189 9191                          delay(1);
9190 9192                  }
9191 9193  
9192 9194                  /*
9193 9195                   * Continue with the next log block.
9194 9196                   */
9195 9197                  lbps[0] = lbps[1];
9196 9198                  lbps[1] = this_lb->lb_prev_lbp;
9197 9199                  PTR_SWAP(this_lb, next_lb);
9198 9200                  this_io = next_io;
9199 9201                  next_io = NULL;
9200 9202                  }
9201 9203  
9202 9204          if (this_io != NULL)
9203 9205                  l2arc_log_blk_fetch_abort(this_io);
9204 9206  out:
9205 9207          if (next_io != NULL)
9206 9208                  l2arc_log_blk_fetch_abort(next_io);
9207 9209          kmem_free(this_lb, sizeof (*this_lb));
9208 9210          kmem_free(next_lb, sizeof (*next_lb));
9209 9211  
9210 9212          if (!l2arc_rebuild_enabled) {
9211 9213                  spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9212 9214                      "disabled");
9213 9215          } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
9214 9216                  ARCSTAT_BUMP(arcstat_l2_rebuild_success);
9215 9217                  spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9216 9218                      "successful, restored %llu blocks",
9217 9219                      (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9218 9220          } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
9219 9221                  /*
9220 9222                   * No error but also nothing restored, meaning the lbps array
9221 9223                   * in the device header points to invalid/non-present log
9222 9224                   * blocks. Reset the header.
9223 9225                   */
9224 9226                  spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9225 9227                      "no valid log blocks");
9226 9228                  bzero(l2dhdr, dev->l2ad_dev_hdr_asize);
9227 9229                  l2arc_dev_hdr_update(dev);
9228 9230          } else if (err != 0) {
9229 9231                  spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9230 9232                      "aborted, restored %llu blocks",
9231 9233                      (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9232 9234          }
9233 9235  
9234 9236          if (lock_held)
9235 9237                  spa_config_exit(spa, SCL_L2ARC, vd);
9236 9238  
9237 9239          return (err);
9238 9240  }
9239 9241  
9240 9242  /*
9241 9243   * Attempts to read the device header on the provided L2ARC device and writes
9242 9244   * it to `hdr'. On success, this function returns 0, otherwise the appropriate
9243 9245   * error code is returned.
9244 9246   */
9245 9247  static int
9246 9248  l2arc_dev_hdr_read(l2arc_dev_t *dev)
9247 9249  {
9248 9250          int                     err;
9249 9251          uint64_t                guid;
9250 9252          l2arc_dev_hdr_phys_t    *l2dhdr = dev->l2ad_dev_hdr;
9251 9253          const uint64_t          l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9252 9254          abd_t                   *abd;
9253 9255  
9254 9256          guid = spa_guid(dev->l2ad_vdev->vdev_spa);
9255 9257  
9256 9258          abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
9257 9259  
9258 9260          err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
9259 9261              VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
9260 9262              ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_ASYNC_READ,
9261 9263              ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
9262 9264              ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
9263 9265              ZIO_FLAG_SPECULATIVE, B_FALSE));
9264 9266  
9265 9267          abd_put(abd);
9266 9268  
9267 9269          if (err != 0) {
9268 9270                  ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
9269 9271                  zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
9270 9272                      "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid);
9271 9273                  return (err);
9272 9274          }
9273 9275  
9274 9276          if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
9275 9277                  byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
9276 9278  
9277 9279          if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
9278 9280              l2dhdr->dh_spa_guid != guid ||
9279 9281              l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
9280 9282              l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
9281 9283              l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
9282 9284              l2dhdr->dh_end != dev->l2ad_end ||
9283 9285              !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
9284 9286              l2dhdr->dh_evict)) {
9285 9287                  /*
9286 9288                   * Attempt to rebuild a device containing no actual dev hdr
9287 9289                   * or containing a header from some other pool or from another
9288 9290                   * version of persistent L2ARC.
9289 9291                   */
9290 9292                  ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
9291 9293                  return (SET_ERROR(ENOTSUP));
9292 9294          }
9293 9295  
9294 9296          return (0);
9295 9297  }
9296 9298  
9297 9299  /*
9298 9300   * Reads L2ARC log blocks from storage and validates their contents.
9299 9301   *
9300 9302   * This function implements a simple fetcher to make sure that while
9301 9303   * we're processing one buffer the L2ARC is already fetching the next
9302 9304   * one in the chain.
9303 9305   *
9304 9306   * The arguments this_lp and next_lp point to the current and next log block
9305 9307   * address in the block chain. Similarly, this_lb and next_lb hold the
9306 9308   * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
9307 9309   *
9308 9310   * The `this_io' and `next_io' arguments are used for block fetching.
9309 9311   * When issuing the first blk IO during rebuild, you should pass NULL for
9310 9312   * `this_io'. This function will then issue a sync IO to read the block and
9311 9313   * also issue an async IO to fetch the next block in the block chain. The
9312 9314   * fetched IO is returned in `next_io'. On subsequent calls to this
9313 9315   * function, pass the value returned in `next_io' from the previous call
9314 9316   * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
9315 9317   * Prior to the call, you should initialize your `next_io' pointer to be
9316 9318   * NULL. If no fetch IO was issued, the pointer is left set at NULL.
9317 9319   *
9318 9320   * On success, this function returns 0, otherwise it returns an appropriate
9319 9321   * error code. On error the fetching IO is aborted and cleared before
9320 9322   * returning from this function. Therefore, if we return `success', the
9321 9323   * caller can assume that we have taken care of cleanup of fetch IOs.
9322 9324   */
9323 9325  static int
9324 9326  l2arc_log_blk_read(l2arc_dev_t *dev,
9325 9327      const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
9326 9328      l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
9327 9329      zio_t *this_io, zio_t **next_io)
9328 9330  {
9329 9331          int             err = 0;
9330 9332          zio_cksum_t     cksum;
9331 9333          abd_t           *abd = NULL;
9332 9334          uint64_t        asize;
9333 9335  
9334 9336          ASSERT(this_lbp != NULL && next_lbp != NULL);
9335 9337          ASSERT(this_lb != NULL && next_lb != NULL);
9336 9338          ASSERT(next_io != NULL && *next_io == NULL);
9337 9339          ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
9338 9340  
9339 9341          /*
9340 9342           * Check to see if we have issued the IO for this log block in a
9341 9343           * previous run. If not, this is the first call, so issue it now.
9342 9344           */
9343 9345          if (this_io == NULL) {
9344 9346                  this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
9345 9347                      this_lb);
9346 9348          }
9347 9349  
9348 9350          /*
9349 9351           * Peek to see if we can start issuing the next IO immediately.
9350 9352           */
9351 9353          if (l2arc_log_blkptr_valid(dev, next_lbp)) {
9352 9354                  /*
9353 9355                   * Start issuing IO for the next log block early - this
9354 9356                   * should help keep the L2ARC device busy while we
9355 9357                   * decompress and restore this log block.
9356 9358                   */
9357 9359                  *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
9358 9360                      next_lb);
9359 9361          }
9360 9362  
9361 9363          /* Wait for the IO to read this log block to complete */
9362 9364          if ((err = zio_wait(this_io)) != 0) {
9363 9365                  ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
9364 9366                  zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
9365 9367                      "offset: %llu, vdev guid: %llu", err, this_lbp->lbp_daddr,
9366 9368                      dev->l2ad_vdev->vdev_guid);
9367 9369                  goto cleanup;
9368 9370          }
9369 9371  
9370 9372          /*
9371 9373           * Make sure the buffer checks out.
9372 9374           * L2BLK_GET_PSIZE returns aligned size for log blocks.
9373 9375           */
9374 9376          asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
9375 9377          fletcher_4_native(this_lb, asize, NULL, &cksum);
9376 9378          if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
9377 9379                  ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
9378 9380                  zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
9379 9381                      "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
9380 9382                      this_lbp->lbp_daddr, dev->l2ad_vdev->vdev_guid,
9381 9383                      dev->l2ad_hand, dev->l2ad_evict);
9382 9384                  err = SET_ERROR(ECKSUM);
9383 9385                  goto cleanup;
9384 9386          }
9385 9387  
9386 9388          /* Now we can take our time decoding this buffer */
9387 9389          switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
9388 9390          case ZIO_COMPRESS_OFF:
9389 9391                  break;
9390 9392          case ZIO_COMPRESS_LZ4:
9391 9393                  abd = abd_alloc_for_io(asize, B_TRUE);
9392 9394                  abd_copy_from_buf_off(abd, this_lb, 0, asize);
9393 9395                  if ((err = zio_decompress_data(
9394 9396                      L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
9395 9397                      abd, this_lb, asize, sizeof (*this_lb))) != 0) {
9396 9398                          err = SET_ERROR(EINVAL);
9397 9399                          goto cleanup;
9398 9400                  }
9399 9401                  break;
9400 9402          default:
9401 9403                  err = SET_ERROR(EINVAL);
9402 9404                  goto cleanup;
9403 9405          }
9404 9406          if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
9405 9407                  byteswap_uint64_array(this_lb, sizeof (*this_lb));
9406 9408          if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
9407 9409                  err = SET_ERROR(EINVAL);
9408 9410                  goto cleanup;
9409 9411          }
9410 9412  cleanup:
9411 9413          /* Abort an in-flight fetch I/O in case of error */
9412 9414          if (err != 0 && *next_io != NULL) {
9413 9415                  l2arc_log_blk_fetch_abort(*next_io);
9414 9416                  *next_io = NULL;
9415 9417          }
9416 9418          if (abd != NULL)
9417 9419                  abd_free(abd);
9418 9420          return (err);
9419 9421  }
9420 9422  
9421 9423  /*
9422 9424   * Restores the payload of a log block to ARC. This creates empty ARC hdr
9423 9425   * entries which only contain an l2arc hdr, essentially restoring the
9424 9426   * buffers to their L2ARC evicted state. This function also updates space
9425 9427   * usage on the L2ARC vdev to make sure it tracks restored buffers.
9426 9428   */
9427 9429  static void
9428 9430  l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
9429 9431      uint64_t lb_asize, uint64_t lb_daddr)
9430 9432  {
9431 9433          uint64_t        size = 0, asize = 0;
9432 9434          uint64_t        log_entries = dev->l2ad_log_entries;
9433 9435  
9434 9436          for (int i = log_entries - 1; i >= 0; i--) {
9435 9437                  /*
9436 9438                   * Restore goes in the reverse temporal direction to preserve
9437 9439                   * correct temporal ordering of buffers in the l2ad_buflist.
9438 9440                   * l2arc_hdr_restore also does a list_insert_tail instead of
9439 9441                   * list_insert_head on the l2ad_buflist:
9440 9442                   *
9441 9443                   *              LIST    l2ad_buflist            LIST
9442 9444                   *              HEAD  <------ (time) ------     TAIL
9443 9445                   * direction    +-----+-----+-----+-----+-----+    direction
9444 9446                   * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
9445 9447                   * fill         +-----+-----+-----+-----+-----+
9446 9448                   *              ^                               ^
9447 9449                   *              |                               |
9448 9450                   *              |                               |
9449 9451                   *      l2arc_feed_thread               l2arc_rebuild
9450 9452                   *      will place new bufs here        restores bufs here
9451 9453                   *
9452 9454                   * During l2arc_rebuild() the device is not used by
9453 9455                   * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
9454 9456                   */
9455 9457                  size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
9456 9458                  asize += vdev_psize_to_asize(dev->l2ad_vdev,
9457 9459                      L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
9458 9460                  l2arc_hdr_restore(&lb->lb_entries[i], dev);
9459 9461          }
9460 9462  
9461 9463          /*
9462 9464           * Record rebuild stats:
9463 9465           *      size            Logical size of restored buffers in the L2ARC
9464 9466           *      asize           Aligned size of restored buffers in the L2ARC
9465 9467           */
9466 9468          ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
9467 9469          ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
9468 9470          ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
9469 9471          ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
9470 9472          ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
9471 9473          ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
9472 9474  }
9473 9475  
9474 9476  /*
9475 9477   * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
9476 9478   * into a state indicating that it has been evicted to L2ARC.
9477 9479   */
9478 9480  static void
9479 9481  l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
9480 9482  {
9481 9483          arc_buf_hdr_t           *hdr, *exists;
9482 9484          kmutex_t                *hash_lock;
9483 9485          arc_buf_contents_t      type = L2BLK_GET_TYPE((le)->le_prop);
9484 9486          uint64_t                asize;
9485 9487  
9486 9488          /*
9487 9489           * Do all the allocation before grabbing any locks, this lets us
9488 9490           * sleep if memory is full and we don't have to deal with failed
9489 9491           * allocations.
9490 9492           */
9491 9493          hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
9492 9494              dev, le->le_dva, le->le_daddr,
9493 9495              L2BLK_GET_PSIZE((le)->le_prop), le->le_birth,
9494 9496              L2BLK_GET_COMPRESS((le)->le_prop),
9495 9497              L2BLK_GET_PROTECTED((le)->le_prop),
9496 9498              L2BLK_GET_PREFETCH((le)->le_prop));
9497 9499          asize = vdev_psize_to_asize(dev->l2ad_vdev,
9498 9500              L2BLK_GET_PSIZE((le)->le_prop));
9499 9501  
9500 9502          /*
9501 9503           * vdev_space_update() has to be called before arc_hdr_destroy() to
9502 9504           * avoid underflow since the latter also calls the former.
9503 9505           */
9504 9506          vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9505 9507  
9506 9508          ARCSTAT_INCR(arcstat_l2_lsize, HDR_GET_LSIZE(hdr));
9507 9509          ARCSTAT_INCR(arcstat_l2_psize, HDR_GET_PSIZE(hdr));
9508 9510  
9509 9511          mutex_enter(&dev->l2ad_mtx);
9510 9512          list_insert_tail(&dev->l2ad_buflist, hdr);
9511 9513          (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
9512 9514          mutex_exit(&dev->l2ad_mtx);
9513 9515  
9514 9516          exists = buf_hash_insert(hdr, &hash_lock);
9515 9517          if (exists) {
9516 9518                  /* Buffer was already cached, no need to restore it. */
9517 9519                  arc_hdr_destroy(hdr);
9518 9520                  /*
9519 9521                   * If the buffer is already cached, check whether it has
9520 9522                   * L2ARC metadata. If not, enter them and update the flag.
9521 9523                   * This is important is case of onlining a cache device, since
9522 9524                   * we previously evicted all L2ARC metadata from ARC.
9523 9525                   */
9524 9526                  if (!HDR_HAS_L2HDR(exists)) {
9525 9527                          arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
9526 9528                          exists->b_l2hdr.b_dev = dev;
9527 9529                          exists->b_l2hdr.b_daddr = le->le_daddr;
9528 9530                          mutex_enter(&dev->l2ad_mtx);
9529 9531                          list_insert_tail(&dev->l2ad_buflist, exists);
9530 9532                          (void) zfs_refcount_add_many(&dev->l2ad_alloc,
9531 9533                              arc_hdr_size(exists), exists);
9532 9534                          mutex_exit(&dev->l2ad_mtx);
9533 9535                          vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9534 9536                          ARCSTAT_INCR(arcstat_l2_lsize, HDR_GET_LSIZE(exists));
9535 9537                          ARCSTAT_INCR(arcstat_l2_psize, HDR_GET_PSIZE(exists));
9536 9538                  }
9537 9539                  ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
9538 9540          }
9539 9541  
9540 9542          mutex_exit(hash_lock);
9541 9543  }
9542 9544  
9543 9545  /*
9544 9546   * Starts an asynchronous read IO to read a log block. This is used in log
9545 9547   * block reconstruction to start reading the next block before we are done
9546 9548   * decoding and reconstructing the current block, to keep the l2arc device
9547 9549   * nice and hot with read IO to process.
9548 9550   * The returned zio will contain newly allocated memory buffers for the IO
9549 9551   * data which should then be freed by the caller once the zio is no longer
9550 9552   * needed (i.e. due to it having completed). If you wish to abort this
9551 9553   * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
9552 9554   * care of disposing of the allocated buffers correctly.
9553 9555   */
9554 9556  static zio_t *
9555 9557  l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
9556 9558      l2arc_log_blk_phys_t *lb)
9557 9559  {
9558 9560          uint32_t                asize;
9559 9561          zio_t                   *pio;
9560 9562          l2arc_read_callback_t   *cb;
9561 9563  
9562 9564          /* L2BLK_GET_PSIZE returns aligned size for log blocks */
9563 9565          asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
9564 9566          ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
9565 9567  
9566 9568          cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
9567 9569          cb->l2rcb_abd = abd_get_from_buf(lb, asize);
9568 9570          pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
9569 9571              ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
9570 9572              ZIO_FLAG_DONT_RETRY);
9571 9573          (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
9572 9574              cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
9573 9575              ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
9574 9576              ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
9575 9577  
9576 9578          return (pio);
9577 9579  }
9578 9580  
9579 9581  /*
9580 9582   * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
9581 9583   * buffers allocated for it.
9582 9584   */
9583 9585  static void
9584 9586  l2arc_log_blk_fetch_abort(zio_t *zio)
9585 9587  {
9586 9588          (void) zio_wait(zio);
9587 9589  }
9588 9590  
9589 9591  /*
9590 9592   * Creates a zio to update the device header on an l2arc device.
9591 9593   */
9592 9594  static void
9593 9595  l2arc_dev_hdr_update(l2arc_dev_t *dev)
9594 9596  {
9595 9597          l2arc_dev_hdr_phys_t    *l2dhdr = dev->l2ad_dev_hdr;
9596 9598          const uint64_t          l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9597 9599          abd_t                   *abd;
9598 9600          int                     err;
9599 9601  
9600 9602          VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
9601 9603  
9602 9604          l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
9603 9605          l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
9604 9606          l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
9605 9607          l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
9606 9608          l2dhdr->dh_log_entries = dev->l2ad_log_entries;
9607 9609          l2dhdr->dh_evict = dev->l2ad_evict;
9608 9610          l2dhdr->dh_start = dev->l2ad_start;
9609 9611          l2dhdr->dh_end = dev->l2ad_end;
9610 9612          l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
9611 9613          l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
9612 9614          l2dhdr->dh_flags = 0;
9613 9615          if (dev->l2ad_first)
9614 9616                  l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
9615 9617  
9616 9618          abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
9617 9619  
9618 9620          err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
9619 9621              VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
9620 9622              NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
9621 9623  
9622 9624          abd_put(abd);
9623 9625  
9624 9626          if (err != 0) {
9625 9627                  zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
9626 9628                      "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid);
9627 9629          }
9628 9630  }
9629 9631  
9630 9632  /*
9631 9633   * Commits a log block to the L2ARC device. This routine is invoked from
9632 9634   * l2arc_write_buffers when the log block fills up.
9633 9635   * This function allocates some memory to temporarily hold the serialized
9634 9636   * buffer to be written. This is then released in l2arc_write_done.
9635 9637   */
9636 9638  static void
9637 9639  l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
9638 9640  {
9639 9641          l2arc_log_blk_phys_t    *lb = &dev->l2ad_log_blk;
9640 9642          l2arc_dev_hdr_phys_t    *l2dhdr = dev->l2ad_dev_hdr;
9641 9643          uint64_t                psize, asize;
9642 9644          zio_t                   *wzio;
9643 9645          l2arc_lb_abd_buf_t      *abd_buf;
9644 9646          uint8_t                 *tmpbuf;
9645 9647          l2arc_lb_ptr_buf_t      *lb_ptr_buf;
9646 9648  
9647 9649          VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
9648 9650  
9649 9651          tmpbuf = zio_buf_alloc(sizeof (*lb));
9650 9652          abd_buf = zio_buf_alloc(sizeof (*abd_buf));
9651 9653          abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
9652 9654          lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
9653 9655          lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
9654 9656  
9655 9657          /* link the buffer into the block chain */
9656 9658          lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
9657 9659          lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
9658 9660  
9659 9661          /*
9660 9662           * l2arc_log_blk_commit() may be called multiple times during a single
9661 9663           * l2arc_write_buffers() call. Save the allocated abd buffers in a list
9662 9664           * so we can free them in l2arc_write_done() later on.
9663 9665           */
9664 9666          list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
9665 9667  
9666 9668          /* try to compress the buffer */
9667 9669          psize = zio_compress_data(ZIO_COMPRESS_LZ4,
9668 9670              abd_buf->abd, tmpbuf, sizeof (*lb));
9669 9671  
9670 9672          /* a log block is never entirely zero */
9671 9673          ASSERT(psize != 0);
9672 9674          asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
9673 9675          ASSERT(asize <= sizeof (*lb));
9674 9676  
9675 9677          /*
9676 9678           * Update the start log block pointer in the device header to point
9677 9679           * to the log block we're about to write.
9678 9680           */
9679 9681          l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
9680 9682          l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
9681 9683          l2dhdr->dh_start_lbps[0].lbp_payload_asize =
9682 9684              dev->l2ad_log_blk_payload_asize;
9683 9685          l2dhdr->dh_start_lbps[0].lbp_payload_start =
9684 9686              dev->l2ad_log_blk_payload_start;
9685 9687          _NOTE(CONSTCOND)
9686 9688          L2BLK_SET_LSIZE(
9687 9689              (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
9688 9690          L2BLK_SET_PSIZE(
9689 9691              (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
9690 9692          L2BLK_SET_CHECKSUM(
9691 9693              (&l2dhdr->dh_start_lbps[0])->lbp_prop,
9692 9694              ZIO_CHECKSUM_FLETCHER_4);
9693 9695          if (asize < sizeof (*lb)) {
9694 9696                  /* compression succeeded */
9695 9697                  bzero(tmpbuf + psize, asize - psize);
9696 9698                  L2BLK_SET_COMPRESS(
9697 9699                      (&l2dhdr->dh_start_lbps[0])->lbp_prop,
9698 9700                      ZIO_COMPRESS_LZ4);
9699 9701          } else {
9700 9702                  /* compression failed */
9701 9703                  bcopy(lb, tmpbuf, sizeof (*lb));
9702 9704                  L2BLK_SET_COMPRESS(
9703 9705                      (&l2dhdr->dh_start_lbps[0])->lbp_prop,
9704 9706                      ZIO_COMPRESS_OFF);
9705 9707          }
9706 9708  
9707 9709          /* checksum what we're about to write */
9708 9710          fletcher_4_native(tmpbuf, asize, NULL,
9709 9711              &l2dhdr->dh_start_lbps[0].lbp_cksum);
9710 9712  
9711 9713          abd_put(abd_buf->abd);
9712 9714  
9713 9715          /* perform the write itself */
9714 9716          abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb));
9715 9717          abd_take_ownership_of_buf(abd_buf->abd, B_TRUE);
9716 9718          wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
9717 9719              asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
9718 9720              ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
9719 9721          DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
9720 9722          (void) zio_nowait(wzio);
9721 9723  
9722 9724          dev->l2ad_hand += asize;
9723 9725          /*
9724 9726           * Include the committed log block's pointer  in the list of pointers
9725 9727           * to log blocks present in the L2ARC device.
9726 9728           */
9727 9729          bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr,
9728 9730              sizeof (l2arc_log_blkptr_t));
9729 9731          mutex_enter(&dev->l2ad_mtx);
9730 9732          list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
9731 9733          ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
9732 9734          ARCSTAT_BUMP(arcstat_l2_log_blk_count);
9733 9735          zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
9734 9736          zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
9735 9737          mutex_exit(&dev->l2ad_mtx);
9736 9738          vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9737 9739  
9738 9740          /* bump the kstats */
9739 9741          ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
9740 9742          ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
9741 9743          ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
9742 9744          ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
9743 9745              dev->l2ad_log_blk_payload_asize / asize);
9744 9746  
9745 9747          /* start a new log block */
9746 9748          dev->l2ad_log_ent_idx = 0;
9747 9749          dev->l2ad_log_blk_payload_asize = 0;
9748 9750          dev->l2ad_log_blk_payload_start = 0;
9749 9751  }
9750 9752  
9751 9753  /*
9752 9754   * Validates an L2ARC log block address to make sure that it can be read
9753 9755   * from the provided L2ARC device.
9754 9756   */
9755 9757  boolean_t
9756 9758  l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
9757 9759  {
9758 9760          /* L2BLK_GET_PSIZE returns aligned size for log blocks */
9759 9761          uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
9760 9762          uint64_t end = lbp->lbp_daddr + asize - 1;
9761 9763          uint64_t start = lbp->lbp_payload_start;
9762 9764          boolean_t evicted = B_FALSE;
9763 9765  
9764 9766          /* BEGIN CSTYLED */
9765 9767          /*
9766 9768           * A log block is valid if all of the following conditions are true:
9767 9769           * - it fits entirely (including its payload) between l2ad_start and
9768 9770           *   l2ad_end
9769 9771           * - it has a valid size
9770 9772           * - neither the log block itself nor part of its payload was evicted
9771 9773           *   by l2arc_evict():
9772 9774           *
9773 9775           *              l2ad_hand          l2ad_evict
9774 9776           *              |                        |      lbp_daddr
9775 9777           *              |     start              |      |  end
9776 9778           *              |     |                  |      |  |
9777 9779           *              V     V                  V      V  V
9778 9780           *   l2ad_start ============================================ l2ad_end
9779 9781           *                    --------------------------||||
9780 9782           *                              ^                ^
9781 9783           *                              |               log block
9782 9784           *                              payload
9783 9785           */
9784 9786          /* END CSTYLED */
9785 9787          evicted =
9786 9788              l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
9787 9789              l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
9788 9790              l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
9789 9791              l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
9790 9792  
9791 9793          return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
9792 9794              asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
9793 9795              (!evicted || dev->l2ad_first));
9794 9796  }
9795 9797  
9796 9798  /*
9797 9799   * Inserts ARC buffer header `hdr' into the current L2ARC log block on
9798 9800   * the device. The buffer being inserted must be present in L2ARC.
9799 9801   * Returns B_TRUE if the L2ARC log block is full and needs to be committed
9800 9802   * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
9801 9803   */
9802 9804  static boolean_t
9803 9805  l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
9804 9806  {
9805 9807          l2arc_log_blk_phys_t    *lb = &dev->l2ad_log_blk;
9806 9808          l2arc_log_ent_phys_t    *le;
9807 9809  
9808 9810          if (dev->l2ad_log_entries == 0)
9809 9811                  return (B_FALSE);
9810 9812  
9811 9813          int index = dev->l2ad_log_ent_idx++;
9812 9814  
9813 9815          ASSERT3S(index, <, dev->l2ad_log_entries);
9814 9816          ASSERT(HDR_HAS_L2HDR(hdr));
9815 9817  
9816 9818          le = &lb->lb_entries[index];
9817 9819          bzero(le, sizeof (*le));
9818 9820          le->le_dva = hdr->b_dva;
9819 9821          le->le_birth = hdr->b_birth;
9820 9822          le->le_daddr = hdr->b_l2hdr.b_daddr;
9821 9823          if (index == 0)
9822 9824                  dev->l2ad_log_blk_payload_start = le->le_daddr;
9823 9825          L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
9824 9826          L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
9825 9827          L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
9826 9828          L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
9827 9829          L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
9828 9830          L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
9829 9831  
9830 9832          dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
9831 9833              HDR_GET_PSIZE(hdr));
9832 9834  
9833 9835          return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
9834 9836  }
9835 9837  
9836 9838  /*
9837 9839   * Checks whether a given L2ARC device address sits in a time-sequential
9838 9840   * range. The trick here is that the L2ARC is a rotary buffer, so we can't
9839 9841   * just do a range comparison, we need to handle the situation in which the
9840 9842   * range wraps around the end of the L2ARC device. Arguments:
9841 9843   *      bottom -- Lower end of the range to check (written to earlier).
9842 9844   *      top    -- Upper end of the range to check (written to later).
9843 9845   *      check  -- The address for which we want to determine if it sits in
9844 9846   *                between the top and bottom.
9845 9847   *
9846 9848   * The 3-way conditional below represents the following cases:
9847 9849   *
9848 9850   *      bottom < top : Sequentially ordered case:
9849 9851   *        <check>--------+-------------------+
9850 9852   *                       |  (overlap here?)  |
9851 9853   *       L2ARC dev       V                   V
9852 9854   *       |---------------<bottom>============<top>--------------|
9853 9855   *
9854 9856   *      bottom > top: Looped-around case:
9855 9857   *                            <check>--------+------------------+
9856 9858   *                                           |  (overlap here?) |
9857 9859   *       L2ARC dev                           V                  V
9858 9860   *       |===============<top>---------------<bottom>===========|
9859 9861   *       ^               ^
9860 9862   *       |  (or here?)   |
9861 9863   *       +---------------+---------<check>
9862 9864   *
9863 9865   *      top == bottom : Just a single address comparison.
9864 9866   */
9865 9867  boolean_t
9866 9868  l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
9867 9869  {
9868 9870          if (bottom < top)
9869 9871                  return (bottom <= check && check <= top);
9870 9872          else if (bottom > top)
9871 9873                  return (check <= top || bottom <= check);
9872 9874          else
9873 9875                  return (check == top);
9874 9876  }
  
    | 
      ↓ open down ↓ | 
    1296 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX