1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2019, Joyent, Inc.
  24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
  25  * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
  26  * Copyright 2017 Nexenta Systems, Inc.  All rights reserved.
  27  * Copyright (c) 2011, 2019, Delphix. All rights reserved.
  28  * Copyright (c) 2020, George Amanakis. All rights reserved.
  29  */
  30 
  31 /*
  32  * DVA-based Adjustable Replacement Cache
  33  *
  34  * While much of the theory of operation used here is
  35  * based on the self-tuning, low overhead replacement cache
  36  * presented by Megiddo and Modha at FAST 2003, there are some
  37  * significant differences:
  38  *
  39  * 1. The Megiddo and Modha model assumes any page is evictable.
  40  * Pages in its cache cannot be "locked" into memory.  This makes
  41  * the eviction algorithm simple: evict the last page in the list.
  42  * This also make the performance characteristics easy to reason
  43  * about.  Our cache is not so simple.  At any given moment, some
  44  * subset of the blocks in the cache are un-evictable because we
  45  * have handed out a reference to them.  Blocks are only evictable
  46  * when there are no external references active.  This makes
  47  * eviction far more problematic:  we choose to evict the evictable
  48  * blocks that are the "lowest" in the list.
  49  *
  50  * There are times when it is not possible to evict the requested
  51  * space.  In these circumstances we are unable to adjust the cache
  52  * size.  To prevent the cache growing unbounded at these times we
  53  * implement a "cache throttle" that slows the flow of new data
  54  * into the cache until we can make space available.
  55  *
  56  * 2. The Megiddo and Modha model assumes a fixed cache size.
  57  * Pages are evicted when the cache is full and there is a cache
  58  * miss.  Our model has a variable sized cache.  It grows with
  59  * high use, but also tries to react to memory pressure from the
  60  * operating system: decreasing its size when system memory is
  61  * tight.
  62  *
  63  * 3. The Megiddo and Modha model assumes a fixed page size. All
  64  * elements of the cache are therefore exactly the same size.  So
  65  * when adjusting the cache size following a cache miss, its simply
  66  * a matter of choosing a single page to evict.  In our model, we
  67  * have variable sized cache blocks (rangeing from 512 bytes to
  68  * 128K bytes).  We therefore choose a set of blocks to evict to make
  69  * space for a cache miss that approximates as closely as possible
  70  * the space used by the new block.
  71  *
  72  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
  73  * by N. Megiddo & D. Modha, FAST 2003
  74  */
  75 
  76 /*
  77  * The locking model:
  78  *
  79  * A new reference to a cache buffer can be obtained in two
  80  * ways: 1) via a hash table lookup using the DVA as a key,
  81  * or 2) via one of the ARC lists.  The arc_read() interface
  82  * uses method 1, while the internal ARC algorithms for
  83  * adjusting the cache use method 2.  We therefore provide two
  84  * types of locks: 1) the hash table lock array, and 2) the
  85  * ARC list locks.
  86  *
  87  * Buffers do not have their own mutexes, rather they rely on the
  88  * hash table mutexes for the bulk of their protection (i.e. most
  89  * fields in the arc_buf_hdr_t are protected by these mutexes).
  90  *
  91  * buf_hash_find() returns the appropriate mutex (held) when it
  92  * locates the requested buffer in the hash table.  It returns
  93  * NULL for the mutex if the buffer was not in the table.
  94  *
  95  * buf_hash_remove() expects the appropriate hash mutex to be
  96  * already held before it is invoked.
  97  *
  98  * Each ARC state also has a mutex which is used to protect the
  99  * buffer list associated with the state.  When attempting to
 100  * obtain a hash table lock while holding an ARC list lock you
 101  * must use: mutex_tryenter() to avoid deadlock.  Also note that
 102  * the active state mutex must be held before the ghost state mutex.
 103  *
 104  * Note that the majority of the performance stats are manipulated
 105  * with atomic operations.
 106  *
 107  * The L2ARC uses the l2ad_mtx on each vdev for the following:
 108  *
 109  *      - L2ARC buflist creation
 110  *      - L2ARC buflist eviction
 111  *      - L2ARC write completion, which walks L2ARC buflists
 112  *      - ARC header destruction, as it removes from L2ARC buflists
 113  *      - ARC header release, as it removes from L2ARC buflists
 114  */
 115 
 116 /*
 117  * ARC operation:
 118  *
 119  * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
 120  * This structure can point either to a block that is still in the cache or to
 121  * one that is only accessible in an L2 ARC device, or it can provide
 122  * information about a block that was recently evicted. If a block is
 123  * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
 124  * information to retrieve it from the L2ARC device. This information is
 125  * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
 126  * that is in this state cannot access the data directly.
 127  *
 128  * Blocks that are actively being referenced or have not been evicted
 129  * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
 130  * the arc_buf_hdr_t that will point to the data block in memory. A block can
 131  * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
 132  * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
 133  * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
 134  *
 135  * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
 136  * ability to store the physical data (b_pabd) associated with the DVA of the
 137  * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
 138  * it will match its on-disk compression characteristics. This behavior can be
 139  * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
 140  * compressed ARC functionality is disabled, the b_pabd will point to an
 141  * uncompressed version of the on-disk data.
 142  *
 143  * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
 144  * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
 145  * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
 146  * consumer. The ARC will provide references to this data and will keep it
 147  * cached until it is no longer in use. The ARC caches only the L1ARC's physical
 148  * data block and will evict any arc_buf_t that is no longer referenced. The
 149  * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
 150  * "overhead_size" kstat.
 151  *
 152  * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
 153  * compressed form. The typical case is that consumers will want uncompressed
 154  * data, and when that happens a new data buffer is allocated where the data is
 155  * decompressed for them to use. Currently the only consumer who wants
 156  * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
 157  * exists on disk. When this happens, the arc_buf_t's data buffer is shared
 158  * with the arc_buf_hdr_t.
 159  *
 160  * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
 161  * first one is owned by a compressed send consumer (and therefore references
 162  * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
 163  * used by any other consumer (and has its own uncompressed copy of the data
 164  * buffer).
 165  *
 166  *   arc_buf_hdr_t
 167  *   +-----------+
 168  *   | fields    |
 169  *   | common to |
 170  *   | L1- and   |
 171  *   | L2ARC     |
 172  *   +-----------+
 173  *   | l2arc_buf_hdr_t
 174  *   |           |
 175  *   +-----------+
 176  *   | l1arc_buf_hdr_t
 177  *   |           |              arc_buf_t
 178  *   | b_buf     +------------>+-----------+      arc_buf_t
 179  *   | b_pabd    +-+           |b_next     +---->+-----------+
 180  *   +-----------+ |           |-----------|     |b_next     +-->NULL
 181  *                 |           |b_comp = T |     +-----------+
 182  *                 |           |b_data     +-+   |b_comp = F |
 183  *                 |           +-----------+ |   |b_data     +-+
 184  *                 +->+------+               |   +-----------+ |
 185  *        compressed  |      |               |                 |
 186  *           data     |      |<--------------+                 | uncompressed
 187  *                    +------+          compressed,            |     data
 188  *                                        shared               +-->+------+
 189  *                                         data                    |      |
 190  *                                                                 |      |
 191  *                                                                 +------+
 192  *
 193  * When a consumer reads a block, the ARC must first look to see if the
 194  * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
 195  * arc_buf_t and either copies uncompressed data into a new data buffer from an
 196  * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
 197  * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
 198  * hdr is compressed and the desired compression characteristics of the
 199  * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
 200  * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
 201  * the last buffer in the hdr's b_buf list, however a shared compressed buf can
 202  * be anywhere in the hdr's list.
 203  *
 204  * The diagram below shows an example of an uncompressed ARC hdr that is
 205  * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
 206  * the last element in the buf list):
 207  *
 208  *                arc_buf_hdr_t
 209  *                +-----------+
 210  *                |           |
 211  *                |           |
 212  *                |           |
 213  *                +-----------+
 214  * l2arc_buf_hdr_t|           |
 215  *                |           |
 216  *                +-----------+
 217  * l1arc_buf_hdr_t|           |
 218  *                |           |                 arc_buf_t    (shared)
 219  *                |    b_buf  +------------>+---------+      arc_buf_t
 220  *                |           |             |b_next   +---->+---------+
 221  *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
 222  *                +-----------+ |           |         |     +---------+
 223  *                              |           |b_data   +-+   |         |
 224  *                              |           +---------+ |   |b_data   +-+
 225  *                              +->+------+             |   +---------+ |
 226  *                                 |      |             |               |
 227  *                   uncompressed  |      |             |               |
 228  *                        data     +------+             |               |
 229  *                                    ^                 +->+------+     |
 230  *                                    |       uncompressed |      |     |
 231  *                                    |           data     |      |     |
 232  *                                    |                    +------+     |
 233  *                                    +---------------------------------+
 234  *
 235  * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
 236  * since the physical block is about to be rewritten. The new data contents
 237  * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
 238  * it may compress the data before writing it to disk. The ARC will be called
 239  * with the transformed data and will bcopy the transformed on-disk block into
 240  * a newly allocated b_pabd. Writes are always done into buffers which have
 241  * either been loaned (and hence are new and don't have other readers) or
 242  * buffers which have been released (and hence have their own hdr, if there
 243  * were originally other readers of the buf's original hdr). This ensures that
 244  * the ARC only needs to update a single buf and its hdr after a write occurs.
 245  *
 246  * When the L2ARC is in use, it will also take advantage of the b_pabd. The
 247  * L2ARC will always write the contents of b_pabd to the L2ARC. This means
 248  * that when compressed ARC is enabled that the L2ARC blocks are identical
 249  * to the on-disk block in the main data pool. This provides a significant
 250  * advantage since the ARC can leverage the bp's checksum when reading from the
 251  * L2ARC to determine if the contents are valid. However, if the compressed
 252  * ARC is disabled, then the L2ARC's block must be transformed to look
 253  * like the physical block in the main data pool before comparing the
 254  * checksum and determining its validity.
 255  *
 256  * The L1ARC has a slightly different system for storing encrypted data.
 257  * Raw (encrypted + possibly compressed) data has a few subtle differences from
 258  * data that is just compressed. The biggest difference is that it is not
 259  * possible to decrypt encrypted data (or visa versa) if the keys aren't loaded.
 260  * The other difference is that encryption cannot be treated as a suggestion.
 261  * If a caller would prefer compressed data, but they actually wind up with
 262  * uncompressed data the worst thing that could happen is there might be a
 263  * performance hit. If the caller requests encrypted data, however, we must be
 264  * sure they actually get it or else secret information could be leaked. Raw
 265  * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
 266  * may have both an encrypted version and a decrypted version of its data at
 267  * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
 268  * copied out of this header. To avoid complications with b_pabd, raw buffers
 269  * cannot be shared.
 270  */
 271 
 272 #include <sys/spa.h>
 273 #include <sys/zio.h>
 274 #include <sys/spa_impl.h>
 275 #include <sys/zio_compress.h>
 276 #include <sys/zio_checksum.h>
 277 #include <sys/zfs_context.h>
 278 #include <sys/arc.h>
 279 #include <sys/refcount.h>
 280 #include <sys/vdev.h>
 281 #include <sys/vdev_impl.h>
 282 #include <sys/dsl_pool.h>
 283 #include <sys/zio_checksum.h>
 284 #include <sys/multilist.h>
 285 #include <sys/abd.h>
 286 #include <sys/zil.h>
 287 #include <sys/fm/fs/zfs.h>
 288 #ifdef _KERNEL
 289 #include <sys/vmsystm.h>
 290 #include <vm/anon.h>
 291 #include <sys/fs/swapnode.h>
 292 #include <sys/dnlc.h>
 293 #endif
 294 #include <sys/callb.h>
 295 #include <sys/kstat.h>
 296 #include <sys/zthr.h>
 297 #include <zfs_fletcher.h>
 298 #include <sys/arc_impl.h>
 299 #include <sys/aggsum.h>
 300 #include <sys/cityhash.h>
 301 #include <sys/param.h>
 302 
 303 #ifndef _KERNEL
 304 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
 305 boolean_t arc_watch = B_FALSE;
 306 int arc_procfd;
 307 #endif
 308 
 309 /*
 310  * This thread's job is to keep enough free memory in the system, by
 311  * calling arc_kmem_reap_now() plus arc_shrink(), which improves
 312  * arc_available_memory().
 313  */
 314 static zthr_t           *arc_reap_zthr;
 315 
 316 /*
 317  * This thread's job is to keep arc_size under arc_c, by calling
 318  * arc_adjust(), which improves arc_is_overflowing().
 319  */
 320 static zthr_t           *arc_adjust_zthr;
 321 
 322 static kmutex_t         arc_adjust_lock;
 323 static kcondvar_t       arc_adjust_waiters_cv;
 324 static boolean_t        arc_adjust_needed = B_FALSE;
 325 
 326 uint_t arc_reduce_dnlc_percent = 3;
 327 
 328 /*
 329  * The number of headers to evict in arc_evict_state_impl() before
 330  * dropping the sublist lock and evicting from another sublist. A lower
 331  * value means we're more likely to evict the "correct" header (i.e. the
 332  * oldest header in the arc state), but comes with higher overhead
 333  * (i.e. more invocations of arc_evict_state_impl()).
 334  */
 335 int zfs_arc_evict_batch_limit = 10;
 336 
 337 /* number of seconds before growing cache again */
 338 int arc_grow_retry = 60;
 339 
 340 /*
 341  * Minimum time between calls to arc_kmem_reap_soon().  Note that this will
 342  * be converted to ticks, so with the default hz=100, a setting of 15 ms
 343  * will actually wait 2 ticks, or 20ms.
 344  */
 345 int arc_kmem_cache_reap_retry_ms = 1000;
 346 
 347 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
 348 int zfs_arc_overflow_shift = 8;
 349 
 350 /* shift of arc_c for calculating both min and max arc_p */
 351 int arc_p_min_shift = 4;
 352 
 353 /* log2(fraction of arc to reclaim) */
 354 int arc_shrink_shift = 7;
 355 
 356 /*
 357  * log2(fraction of ARC which must be free to allow growing).
 358  * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
 359  * when reading a new block into the ARC, we will evict an equal-sized block
 360  * from the ARC.
 361  *
 362  * This must be less than arc_shrink_shift, so that when we shrink the ARC,
 363  * we will still not allow it to grow.
 364  */
 365 int                     arc_no_grow_shift = 5;
 366 
 367 
 368 /*
 369  * minimum lifespan of a prefetch block in clock ticks
 370  * (initialized in arc_init())
 371  */
 372 static int              zfs_arc_min_prefetch_ms = 1;
 373 static int              zfs_arc_min_prescient_prefetch_ms = 6;
 374 
 375 /*
 376  * If this percent of memory is free, don't throttle.
 377  */
 378 int arc_lotsfree_percent = 10;
 379 
 380 static boolean_t arc_initialized;
 381 
 382 /*
 383  * The arc has filled available memory and has now warmed up.
 384  */
 385 static boolean_t arc_warm;
 386 
 387 /*
 388  * log2 fraction of the zio arena to keep free.
 389  */
 390 int arc_zio_arena_free_shift = 2;
 391 
 392 /*
 393  * These tunables are for performance analysis.
 394  */
 395 uint64_t zfs_arc_max;
 396 uint64_t zfs_arc_min;
 397 uint64_t zfs_arc_meta_limit = 0;
 398 uint64_t zfs_arc_meta_min = 0;
 399 int zfs_arc_grow_retry = 0;
 400 int zfs_arc_shrink_shift = 0;
 401 int zfs_arc_p_min_shift = 0;
 402 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
 403 
 404 /*
 405  * ARC dirty data constraints for arc_tempreserve_space() throttle
 406  */
 407 uint_t zfs_arc_dirty_limit_percent = 50;        /* total dirty data limit */
 408 uint_t zfs_arc_anon_limit_percent = 25;         /* anon block dirty limit */
 409 uint_t zfs_arc_pool_dirty_percent = 20;         /* each pool's anon allowance */
 410 
 411 boolean_t zfs_compressed_arc_enabled = B_TRUE;
 412 
 413 /* The 6 states: */
 414 static arc_state_t ARC_anon;
 415 static arc_state_t ARC_mru;
 416 static arc_state_t ARC_mru_ghost;
 417 static arc_state_t ARC_mfu;
 418 static arc_state_t ARC_mfu_ghost;
 419 static arc_state_t ARC_l2c_only;
 420 
 421 arc_stats_t arc_stats = {
 422         { "hits",                       KSTAT_DATA_UINT64 },
 423         { "misses",                     KSTAT_DATA_UINT64 },
 424         { "demand_data_hits",           KSTAT_DATA_UINT64 },
 425         { "demand_data_misses",         KSTAT_DATA_UINT64 },
 426         { "demand_metadata_hits",       KSTAT_DATA_UINT64 },
 427         { "demand_metadata_misses",     KSTAT_DATA_UINT64 },
 428         { "prefetch_data_hits",         KSTAT_DATA_UINT64 },
 429         { "prefetch_data_misses",       KSTAT_DATA_UINT64 },
 430         { "prefetch_metadata_hits",     KSTAT_DATA_UINT64 },
 431         { "prefetch_metadata_misses",   KSTAT_DATA_UINT64 },
 432         { "mru_hits",                   KSTAT_DATA_UINT64 },
 433         { "mru_ghost_hits",             KSTAT_DATA_UINT64 },
 434         { "mfu_hits",                   KSTAT_DATA_UINT64 },
 435         { "mfu_ghost_hits",             KSTAT_DATA_UINT64 },
 436         { "deleted",                    KSTAT_DATA_UINT64 },
 437         { "mutex_miss",                 KSTAT_DATA_UINT64 },
 438         { "access_skip",                KSTAT_DATA_UINT64 },
 439         { "evict_skip",                 KSTAT_DATA_UINT64 },
 440         { "evict_not_enough",           KSTAT_DATA_UINT64 },
 441         { "evict_l2_cached",            KSTAT_DATA_UINT64 },
 442         { "evict_l2_eligible",          KSTAT_DATA_UINT64 },
 443         { "evict_l2_ineligible",        KSTAT_DATA_UINT64 },
 444         { "evict_l2_skip",              KSTAT_DATA_UINT64 },
 445         { "hash_elements",              KSTAT_DATA_UINT64 },
 446         { "hash_elements_max",          KSTAT_DATA_UINT64 },
 447         { "hash_collisions",            KSTAT_DATA_UINT64 },
 448         { "hash_chains",                KSTAT_DATA_UINT64 },
 449         { "hash_chain_max",             KSTAT_DATA_UINT64 },
 450         { "p",                          KSTAT_DATA_UINT64 },
 451         { "c",                          KSTAT_DATA_UINT64 },
 452         { "c_min",                      KSTAT_DATA_UINT64 },
 453         { "c_max",                      KSTAT_DATA_UINT64 },
 454         { "size",                       KSTAT_DATA_UINT64 },
 455         { "compressed_size",            KSTAT_DATA_UINT64 },
 456         { "uncompressed_size",          KSTAT_DATA_UINT64 },
 457         { "overhead_size",              KSTAT_DATA_UINT64 },
 458         { "hdr_size",                   KSTAT_DATA_UINT64 },
 459         { "data_size",                  KSTAT_DATA_UINT64 },
 460         { "metadata_size",              KSTAT_DATA_UINT64 },
 461         { "other_size",                 KSTAT_DATA_UINT64 },
 462         { "anon_size",                  KSTAT_DATA_UINT64 },
 463         { "anon_evictable_data",        KSTAT_DATA_UINT64 },
 464         { "anon_evictable_metadata",    KSTAT_DATA_UINT64 },
 465         { "mru_size",                   KSTAT_DATA_UINT64 },
 466         { "mru_evictable_data",         KSTAT_DATA_UINT64 },
 467         { "mru_evictable_metadata",     KSTAT_DATA_UINT64 },
 468         { "mru_ghost_size",             KSTAT_DATA_UINT64 },
 469         { "mru_ghost_evictable_data",   KSTAT_DATA_UINT64 },
 470         { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
 471         { "mfu_size",                   KSTAT_DATA_UINT64 },
 472         { "mfu_evictable_data",         KSTAT_DATA_UINT64 },
 473         { "mfu_evictable_metadata",     KSTAT_DATA_UINT64 },
 474         { "mfu_ghost_size",             KSTAT_DATA_UINT64 },
 475         { "mfu_ghost_evictable_data",   KSTAT_DATA_UINT64 },
 476         { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
 477         { "l2_hits",                    KSTAT_DATA_UINT64 },
 478         { "l2_misses",                  KSTAT_DATA_UINT64 },
 479         { "l2_feeds",                   KSTAT_DATA_UINT64 },
 480         { "l2_rw_clash",                KSTAT_DATA_UINT64 },
 481         { "l2_read_bytes",              KSTAT_DATA_UINT64 },
 482         { "l2_write_bytes",             KSTAT_DATA_UINT64 },
 483         { "l2_writes_sent",             KSTAT_DATA_UINT64 },
 484         { "l2_writes_done",             KSTAT_DATA_UINT64 },
 485         { "l2_writes_error",            KSTAT_DATA_UINT64 },
 486         { "l2_writes_lock_retry",       KSTAT_DATA_UINT64 },
 487         { "l2_evict_lock_retry",        KSTAT_DATA_UINT64 },
 488         { "l2_evict_reading",           KSTAT_DATA_UINT64 },
 489         { "l2_evict_l1cached",          KSTAT_DATA_UINT64 },
 490         { "l2_free_on_write",           KSTAT_DATA_UINT64 },
 491         { "l2_abort_lowmem",            KSTAT_DATA_UINT64 },
 492         { "l2_cksum_bad",               KSTAT_DATA_UINT64 },
 493         { "l2_io_error",                KSTAT_DATA_UINT64 },
 494         { "l2_size",                    KSTAT_DATA_UINT64 },
 495         { "l2_asize",                   KSTAT_DATA_UINT64 },
 496         { "l2_hdr_size",                KSTAT_DATA_UINT64 },
 497         { "l2_log_blk_writes",          KSTAT_DATA_UINT64 },
 498         { "l2_log_blk_avg_asize",       KSTAT_DATA_UINT64 },
 499         { "l2_log_blk_asize",           KSTAT_DATA_UINT64 },
 500         { "l2_log_blk_count",           KSTAT_DATA_UINT64 },
 501         { "l2_data_to_meta_ratio",      KSTAT_DATA_UINT64 },
 502         { "l2_rebuild_success",         KSTAT_DATA_UINT64 },
 503         { "l2_rebuild_unsupported",     KSTAT_DATA_UINT64 },
 504         { "l2_rebuild_io_errors",       KSTAT_DATA_UINT64 },
 505         { "l2_rebuild_dh_errors",       KSTAT_DATA_UINT64 },
 506         { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 },
 507         { "l2_rebuild_lowmem",          KSTAT_DATA_UINT64 },
 508         { "l2_rebuild_size",            KSTAT_DATA_UINT64 },
 509         { "l2_rebuild_asize",           KSTAT_DATA_UINT64 },
 510         { "l2_rebuild_bufs",            KSTAT_DATA_UINT64 },
 511         { "l2_rebuild_bufs_precached",  KSTAT_DATA_UINT64 },
 512         { "l2_rebuild_log_blks",        KSTAT_DATA_UINT64 },
 513         { "memory_throttle_count",      KSTAT_DATA_UINT64 },
 514         { "arc_meta_used",              KSTAT_DATA_UINT64 },
 515         { "arc_meta_limit",             KSTAT_DATA_UINT64 },
 516         { "arc_meta_max",               KSTAT_DATA_UINT64 },
 517         { "arc_meta_min",               KSTAT_DATA_UINT64 },
 518         { "async_upgrade_sync",         KSTAT_DATA_UINT64 },
 519         { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
 520         { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
 521 };
 522 
 523 #define ARCSTAT_MAX(stat, val) {                                        \
 524         uint64_t m;                                                     \
 525         while ((val) > (m = arc_stats.stat.value.ui64) &&            \
 526             (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))     \
 527                 continue;                                               \
 528 }
 529 
 530 #define ARCSTAT_MAXSTAT(stat) \
 531         ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
 532 
 533 /*
 534  * We define a macro to allow ARC hits/misses to be easily broken down by
 535  * two separate conditions, giving a total of four different subtypes for
 536  * each of hits and misses (so eight statistics total).
 537  */
 538 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
 539         if (cond1) {                                                    \
 540                 if (cond2) {                                            \
 541                         ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
 542                 } else {                                                \
 543                         ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
 544                 }                                                       \
 545         } else {                                                        \
 546                 if (cond2) {                                            \
 547                         ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
 548                 } else {                                                \
 549                         ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
 550                 }                                                       \
 551         }
 552 
 553 /*
 554  * This macro allows us to use kstats as floating averages. Each time we
 555  * update this kstat, we first factor it and the update value by
 556  * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
 557  * average. This macro assumes that integer loads and stores are atomic, but
 558  * is not safe for multiple writers updating the kstat in parallel (only the
 559  * last writer's update will remain).
 560  */
 561 #define ARCSTAT_F_AVG_FACTOR    3
 562 #define ARCSTAT_F_AVG(stat, value) \
 563         do { \
 564                 uint64_t x = ARCSTAT(stat); \
 565                 x = x - x / ARCSTAT_F_AVG_FACTOR + \
 566                     (value) / ARCSTAT_F_AVG_FACTOR; \
 567                 ARCSTAT(stat) = x; \
 568                 _NOTE(CONSTCOND) \
 569         } while (0)
 570 
 571 kstat_t                 *arc_ksp;
 572 static arc_state_t      *arc_anon;
 573 static arc_state_t      *arc_mru;
 574 static arc_state_t      *arc_mru_ghost;
 575 static arc_state_t      *arc_mfu;
 576 static arc_state_t      *arc_mfu_ghost;
 577 static arc_state_t      *arc_l2c_only;
 578 
 579 /*
 580  * There are also some ARC variables that we want to export, but that are
 581  * updated so often that having the canonical representation be the statistic
 582  * variable causes a performance bottleneck. We want to use aggsum_t's for these
 583  * instead, but still be able to export the kstat in the same way as before.
 584  * The solution is to always use the aggsum version, except in the kstat update
 585  * callback.
 586  */
 587 aggsum_t arc_size;
 588 aggsum_t arc_meta_used;
 589 aggsum_t astat_data_size;
 590 aggsum_t astat_metadata_size;
 591 aggsum_t astat_hdr_size;
 592 aggsum_t astat_other_size;
 593 aggsum_t astat_l2_hdr_size;
 594 
 595 static int              arc_no_grow;    /* Don't try to grow cache size */
 596 static hrtime_t         arc_growtime;
 597 static uint64_t         arc_tempreserve;
 598 static uint64_t         arc_loaned_bytes;
 599 
 600 #define GHOST_STATE(state)      \
 601         ((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||        \
 602         (state) == arc_l2c_only)
 603 
 604 #define HDR_IN_HASH_TABLE(hdr)  ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
 605 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
 606 #define HDR_IO_ERROR(hdr)       ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
 607 #define HDR_PREFETCH(hdr)       ((hdr)->b_flags & ARC_FLAG_PREFETCH)
 608 #define HDR_PRESCIENT_PREFETCH(hdr)     \
 609         ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
 610 #define HDR_COMPRESSION_ENABLED(hdr)    \
 611         ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
 612 
 613 #define HDR_L2CACHE(hdr)        ((hdr)->b_flags & ARC_FLAG_L2CACHE)
 614 #define HDR_L2_READING(hdr)     \
 615         (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&   \
 616         ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
 617 #define HDR_L2_WRITING(hdr)     ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
 618 #define HDR_L2_EVICTED(hdr)     ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
 619 #define HDR_L2_WRITE_HEAD(hdr)  ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
 620 #define HDR_PROTECTED(hdr)      ((hdr)->b_flags & ARC_FLAG_PROTECTED)
 621 #define HDR_NOAUTH(hdr)         ((hdr)->b_flags & ARC_FLAG_NOAUTH)
 622 #define HDR_SHARED_DATA(hdr)    ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
 623 
 624 #define HDR_ISTYPE_METADATA(hdr)        \
 625         ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
 626 #define HDR_ISTYPE_DATA(hdr)    (!HDR_ISTYPE_METADATA(hdr))
 627 
 628 #define HDR_HAS_L1HDR(hdr)      ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
 629 #define HDR_HAS_L2HDR(hdr)      ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
 630 #define HDR_HAS_RABD(hdr)       \
 631         (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) &&    \
 632         (hdr)->b_crypt_hdr.b_rabd != NULL)
 633 #define HDR_ENCRYPTED(hdr)      \
 634         (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
 635 #define HDR_AUTHENTICATED(hdr)  \
 636         (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
 637 
 638 /* For storing compression mode in b_flags */
 639 #define HDR_COMPRESS_OFFSET     (highbit64(ARC_FLAG_COMPRESS_0) - 1)
 640 
 641 #define HDR_GET_COMPRESS(hdr)   ((enum zio_compress)BF32_GET((hdr)->b_flags, \
 642         HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
 643 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
 644         HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
 645 
 646 #define ARC_BUF_LAST(buf)       ((buf)->b_next == NULL)
 647 #define ARC_BUF_SHARED(buf)     ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
 648 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
 649 #define ARC_BUF_ENCRYPTED(buf)  ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
 650 
 651 /*
 652  * Other sizes
 653  */
 654 
 655 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
 656 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
 657 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
 658 
 659 /*
 660  * Hash table routines
 661  */
 662 
 663 #define HT_LOCK_PAD     64
 664 
 665 struct ht_lock {
 666         kmutex_t        ht_lock;
 667 #ifdef _KERNEL
 668         unsigned char   pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
 669 #endif
 670 };
 671 
 672 #define BUF_LOCKS 256
 673 typedef struct buf_hash_table {
 674         uint64_t ht_mask;
 675         arc_buf_hdr_t **ht_table;
 676         struct ht_lock ht_locks[BUF_LOCKS];
 677 } buf_hash_table_t;
 678 
 679 static buf_hash_table_t buf_hash_table;
 680 
 681 #define BUF_HASH_INDEX(spa, dva, birth) \
 682         (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
 683 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
 684 #define BUF_HASH_LOCK(idx)      (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
 685 #define HDR_LOCK(hdr) \
 686         (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
 687 
 688 uint64_t zfs_crc64_table[256];
 689 
 690 /*
 691  * Level 2 ARC
 692  */
 693 
 694 #define L2ARC_WRITE_SIZE        (8 * 1024 * 1024)       /* initial write max */
 695 #define L2ARC_HEADROOM          2                       /* num of writes */
 696 /*
 697  * If we discover during ARC scan any buffers to be compressed, we boost
 698  * our headroom for the next scanning cycle by this percentage multiple.
 699  */
 700 #define L2ARC_HEADROOM_BOOST    200
 701 #define L2ARC_FEED_SECS         1               /* caching interval secs */
 702 #define L2ARC_FEED_MIN_MS       200             /* min caching interval ms */
 703 
 704 #define l2arc_writes_sent       ARCSTAT(arcstat_l2_writes_sent)
 705 #define l2arc_writes_done       ARCSTAT(arcstat_l2_writes_done)
 706 
 707 /* L2ARC Performance Tunables */
 708 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;    /* default max write size */
 709 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;  /* extra write during warmup */
 710 uint64_t l2arc_headroom = L2ARC_HEADROOM;       /* number of dev writes */
 711 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
 712 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;     /* interval seconds */
 713 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
 714 boolean_t l2arc_noprefetch = B_TRUE;            /* don't cache prefetch bufs */
 715 boolean_t l2arc_feed_again = B_TRUE;            /* turbo warmup */
 716 boolean_t l2arc_norw = B_TRUE;                  /* no reads during writes */
 717 
 718 /*
 719  * L2ARC Internals
 720  */
 721 static list_t L2ARC_dev_list;                   /* device list */
 722 static list_t *l2arc_dev_list;                  /* device list pointer */
 723 static kmutex_t l2arc_dev_mtx;                  /* device list mutex */
 724 static l2arc_dev_t *l2arc_dev_last;             /* last device used */
 725 static list_t L2ARC_free_on_write;              /* free after write buf list */
 726 static list_t *l2arc_free_on_write;             /* free after write list ptr */
 727 static kmutex_t l2arc_free_on_write_mtx;        /* mutex for list */
 728 static uint64_t l2arc_ndev;                     /* number of devices */
 729 
 730 typedef struct l2arc_read_callback {
 731         arc_buf_hdr_t           *l2rcb_hdr;             /* read header */
 732         blkptr_t                l2rcb_bp;               /* original blkptr */
 733         zbookmark_phys_t        l2rcb_zb;               /* original bookmark */
 734         int                     l2rcb_flags;            /* original flags */
 735         abd_t                   *l2rcb_abd;             /* temporary buffer */
 736 } l2arc_read_callback_t;
 737 
 738 typedef struct l2arc_data_free {
 739         /* protected by l2arc_free_on_write_mtx */
 740         abd_t           *l2df_abd;
 741         size_t          l2df_size;
 742         arc_buf_contents_t l2df_type;
 743         list_node_t     l2df_list_node;
 744 } l2arc_data_free_t;
 745 
 746 static kmutex_t l2arc_feed_thr_lock;
 747 static kcondvar_t l2arc_feed_thr_cv;
 748 static uint8_t l2arc_thread_exit;
 749 
 750 static kmutex_t l2arc_rebuild_thr_lock;
 751 static kcondvar_t l2arc_rebuild_thr_cv;
 752 
 753 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
 754 typedef enum arc_fill_flags {
 755         ARC_FILL_LOCKED         = 1 << 0, /* hdr lock is held */
 756         ARC_FILL_COMPRESSED     = 1 << 1, /* fill with compressed data */
 757         ARC_FILL_ENCRYPTED      = 1 << 2, /* fill with encrypted data */
 758         ARC_FILL_NOAUTH         = 1 << 3, /* don't attempt to authenticate */
 759         ARC_FILL_IN_PLACE       = 1 << 4  /* fill in place (special case) */
 760 } arc_fill_flags_t;
 761 
 762 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
 763 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
 764 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
 765 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
 766 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
 767 static void arc_hdr_free_pabd(arc_buf_hdr_t *, boolean_t);
 768 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *, boolean_t);
 769 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
 770 static boolean_t arc_is_overflowing();
 771 static void arc_buf_watch(arc_buf_t *);
 772 static l2arc_dev_t *l2arc_vdev_get(vdev_t *vd);
 773 
 774 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
 775 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
 776 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
 777 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
 778 
 779 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
 780 static void l2arc_read_done(zio_t *);
 781 
 782 /*
 783  * The arc_all_memory function is a ZoL enhancement that lives in their OSL
 784  * code. In user-space code, which is used primarily for testing, we return
 785  * half of all memory.
 786  */
 787 uint64_t
 788 arc_all_memory(void)
 789 {
 790 #ifdef _KERNEL
 791         return (ptob(physmem));
 792 #else
 793         return ((sysconf(_SC_PAGESIZE) * sysconf(_SC_PHYS_PAGES)) / 2);
 794 #endif
 795 }
 796 
 797 /*
 798  * We use Cityhash for this. It's fast, and has good hash properties without
 799  * requiring any large static buffers.
 800  */
 801 static uint64_t
 802 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
 803 {
 804         return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
 805 }
 806 
 807 #define HDR_EMPTY(hdr)                                          \
 808         ((hdr)->b_dva.dva_word[0] == 0 &&                    \
 809         (hdr)->b_dva.dva_word[1] == 0)
 810 
 811 #define HDR_EMPTY_OR_LOCKED(hdr)                                \
 812         (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
 813 
 814 #define HDR_EQUAL(spa, dva, birth, hdr)                         \
 815         ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&       \
 816         ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&       \
 817         ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
 818 
 819 static void
 820 buf_discard_identity(arc_buf_hdr_t *hdr)
 821 {
 822         hdr->b_dva.dva_word[0] = 0;
 823         hdr->b_dva.dva_word[1] = 0;
 824         hdr->b_birth = 0;
 825 }
 826 
 827 static arc_buf_hdr_t *
 828 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
 829 {
 830         const dva_t *dva = BP_IDENTITY(bp);
 831         uint64_t birth = BP_PHYSICAL_BIRTH(bp);
 832         uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
 833         kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
 834         arc_buf_hdr_t *hdr;
 835 
 836         mutex_enter(hash_lock);
 837         for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
 838             hdr = hdr->b_hash_next) {
 839                 if (HDR_EQUAL(spa, dva, birth, hdr)) {
 840                         *lockp = hash_lock;
 841                         return (hdr);
 842                 }
 843         }
 844         mutex_exit(hash_lock);
 845         *lockp = NULL;
 846         return (NULL);
 847 }
 848 
 849 /*
 850  * Insert an entry into the hash table.  If there is already an element
 851  * equal to elem in the hash table, then the already existing element
 852  * will be returned and the new element will not be inserted.
 853  * Otherwise returns NULL.
 854  * If lockp == NULL, the caller is assumed to already hold the hash lock.
 855  */
 856 static arc_buf_hdr_t *
 857 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
 858 {
 859         uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
 860         kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
 861         arc_buf_hdr_t *fhdr;
 862         uint32_t i;
 863 
 864         ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
 865         ASSERT(hdr->b_birth != 0);
 866         ASSERT(!HDR_IN_HASH_TABLE(hdr));
 867 
 868         if (lockp != NULL) {
 869                 *lockp = hash_lock;
 870                 mutex_enter(hash_lock);
 871         } else {
 872                 ASSERT(MUTEX_HELD(hash_lock));
 873         }
 874 
 875         for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
 876             fhdr = fhdr->b_hash_next, i++) {
 877                 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
 878                         return (fhdr);
 879         }
 880 
 881         hdr->b_hash_next = buf_hash_table.ht_table[idx];
 882         buf_hash_table.ht_table[idx] = hdr;
 883         arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
 884 
 885         /* collect some hash table performance data */
 886         if (i > 0) {
 887                 ARCSTAT_BUMP(arcstat_hash_collisions);
 888                 if (i == 1)
 889                         ARCSTAT_BUMP(arcstat_hash_chains);
 890 
 891                 ARCSTAT_MAX(arcstat_hash_chain_max, i);
 892         }
 893 
 894         ARCSTAT_BUMP(arcstat_hash_elements);
 895         ARCSTAT_MAXSTAT(arcstat_hash_elements);
 896 
 897         return (NULL);
 898 }
 899 
 900 static void
 901 buf_hash_remove(arc_buf_hdr_t *hdr)
 902 {
 903         arc_buf_hdr_t *fhdr, **hdrp;
 904         uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
 905 
 906         ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
 907         ASSERT(HDR_IN_HASH_TABLE(hdr));
 908 
 909         hdrp = &buf_hash_table.ht_table[idx];
 910         while ((fhdr = *hdrp) != hdr) {
 911                 ASSERT3P(fhdr, !=, NULL);
 912                 hdrp = &fhdr->b_hash_next;
 913         }
 914         *hdrp = hdr->b_hash_next;
 915         hdr->b_hash_next = NULL;
 916         arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
 917 
 918         /* collect some hash table performance data */
 919         ARCSTAT_BUMPDOWN(arcstat_hash_elements);
 920 
 921         if (buf_hash_table.ht_table[idx] &&
 922             buf_hash_table.ht_table[idx]->b_hash_next == NULL)
 923                 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
 924 }
 925 
 926 /*
 927  * Global data structures and functions for the buf kmem cache.
 928  */
 929 
 930 static kmem_cache_t *hdr_full_cache;
 931 static kmem_cache_t *hdr_full_crypt_cache;
 932 static kmem_cache_t *hdr_l2only_cache;
 933 static kmem_cache_t *buf_cache;
 934 
 935 static void
 936 buf_fini(void)
 937 {
 938         int i;
 939 
 940         kmem_free(buf_hash_table.ht_table,
 941             (buf_hash_table.ht_mask + 1) * sizeof (void *));
 942         for (i = 0; i < BUF_LOCKS; i++)
 943                 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
 944         kmem_cache_destroy(hdr_full_cache);
 945         kmem_cache_destroy(hdr_full_crypt_cache);
 946         kmem_cache_destroy(hdr_l2only_cache);
 947         kmem_cache_destroy(buf_cache);
 948 }
 949 
 950 /*
 951  * Constructor callback - called when the cache is empty
 952  * and a new buf is requested.
 953  */
 954 /* ARGSUSED */
 955 static int
 956 hdr_full_cons(void *vbuf, void *unused, int kmflag)
 957 {
 958         arc_buf_hdr_t *hdr = vbuf;
 959 
 960         bzero(hdr, HDR_FULL_SIZE);
 961         hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
 962         cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
 963         zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
 964         mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
 965         multilist_link_init(&hdr->b_l1hdr.b_arc_node);
 966         arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
 967 
 968         return (0);
 969 }
 970 
 971 /* ARGSUSED */
 972 static int
 973 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag)
 974 {
 975         arc_buf_hdr_t *hdr = vbuf;
 976 
 977         (void) hdr_full_cons(vbuf, unused, kmflag);
 978         bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr));
 979         arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
 980 
 981         return (0);
 982 }
 983 
 984 /* ARGSUSED */
 985 static int
 986 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
 987 {
 988         arc_buf_hdr_t *hdr = vbuf;
 989 
 990         bzero(hdr, HDR_L2ONLY_SIZE);
 991         arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
 992 
 993         return (0);
 994 }
 995 
 996 /* ARGSUSED */
 997 static int
 998 buf_cons(void *vbuf, void *unused, int kmflag)
 999 {
1000         arc_buf_t *buf = vbuf;
1001 
1002         bzero(buf, sizeof (arc_buf_t));
1003         mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1004         arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1005 
1006         return (0);
1007 }
1008 
1009 /*
1010  * Destructor callback - called when a cached buf is
1011  * no longer required.
1012  */
1013 /* ARGSUSED */
1014 static void
1015 hdr_full_dest(void *vbuf, void *unused)
1016 {
1017         arc_buf_hdr_t *hdr = vbuf;
1018 
1019         ASSERT(HDR_EMPTY(hdr));
1020         cv_destroy(&hdr->b_l1hdr.b_cv);
1021         zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1022         mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1023         ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1024         arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1025 }
1026 
1027 /* ARGSUSED */
1028 static void
1029 hdr_full_crypt_dest(void *vbuf, void *unused)
1030 {
1031         arc_buf_hdr_t *hdr = vbuf;
1032 
1033         hdr_full_dest(hdr, unused);
1034         arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1035 }
1036 
1037 /* ARGSUSED */
1038 static void
1039 hdr_l2only_dest(void *vbuf, void *unused)
1040 {
1041         arc_buf_hdr_t *hdr = vbuf;
1042 
1043         ASSERT(HDR_EMPTY(hdr));
1044         arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1045 }
1046 
1047 /* ARGSUSED */
1048 static void
1049 buf_dest(void *vbuf, void *unused)
1050 {
1051         arc_buf_t *buf = vbuf;
1052 
1053         mutex_destroy(&buf->b_evict_lock);
1054         arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1055 }
1056 
1057 /*
1058  * Reclaim callback -- invoked when memory is low.
1059  */
1060 /* ARGSUSED */
1061 static void
1062 hdr_recl(void *unused)
1063 {
1064         dprintf("hdr_recl called\n");
1065         /*
1066          * umem calls the reclaim func when we destroy the buf cache,
1067          * which is after we do arc_fini().
1068          */
1069         if (arc_initialized)
1070                 zthr_wakeup(arc_reap_zthr);
1071 }
1072 
1073 static void
1074 buf_init(void)
1075 {
1076         uint64_t *ct;
1077         uint64_t hsize = 1ULL << 12;
1078         int i, j;
1079 
1080         /*
1081          * The hash table is big enough to fill all of physical memory
1082          * with an average block size of zfs_arc_average_blocksize (default 8K).
1083          * By default, the table will take up
1084          * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1085          */
1086         while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
1087                 hsize <<= 1;
1088 retry:
1089         buf_hash_table.ht_mask = hsize - 1;
1090         buf_hash_table.ht_table =
1091             kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1092         if (buf_hash_table.ht_table == NULL) {
1093                 ASSERT(hsize > (1ULL << 8));
1094                 hsize >>= 1;
1095                 goto retry;
1096         }
1097 
1098         hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1099             0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1100         hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt",
1101             HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest,
1102             hdr_recl, NULL, NULL, 0);
1103         hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1104             HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1105             NULL, NULL, 0);
1106         buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1107             0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1108 
1109         for (i = 0; i < 256; i++)
1110                 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1111                         *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1112 
1113         for (i = 0; i < BUF_LOCKS; i++) {
1114                 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1115                     NULL, MUTEX_DEFAULT, NULL);
1116         }
1117 }
1118 
1119 /*
1120  * This is the size that the buf occupies in memory. If the buf is compressed,
1121  * it will correspond to the compressed size. You should use this method of
1122  * getting the buf size unless you explicitly need the logical size.
1123  */
1124 int32_t
1125 arc_buf_size(arc_buf_t *buf)
1126 {
1127         return (ARC_BUF_COMPRESSED(buf) ?
1128             HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1129 }
1130 
1131 int32_t
1132 arc_buf_lsize(arc_buf_t *buf)
1133 {
1134         return (HDR_GET_LSIZE(buf->b_hdr));
1135 }
1136 
1137 /*
1138  * This function will return B_TRUE if the buffer is encrypted in memory.
1139  * This buffer can be decrypted by calling arc_untransform().
1140  */
1141 boolean_t
1142 arc_is_encrypted(arc_buf_t *buf)
1143 {
1144         return (ARC_BUF_ENCRYPTED(buf) != 0);
1145 }
1146 
1147 /*
1148  * Returns B_TRUE if the buffer represents data that has not had its MAC
1149  * verified yet.
1150  */
1151 boolean_t
1152 arc_is_unauthenticated(arc_buf_t *buf)
1153 {
1154         return (HDR_NOAUTH(buf->b_hdr) != 0);
1155 }
1156 
1157 void
1158 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1159     uint8_t *iv, uint8_t *mac)
1160 {
1161         arc_buf_hdr_t *hdr = buf->b_hdr;
1162 
1163         ASSERT(HDR_PROTECTED(hdr));
1164 
1165         bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
1166         bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
1167         bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
1168         *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1169             /* CONSTCOND */
1170             ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1171 }
1172 
1173 /*
1174  * Indicates how this buffer is compressed in memory. If it is not compressed
1175  * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1176  * arc_untransform() as long as it is also unencrypted.
1177  */
1178 enum zio_compress
1179 arc_get_compression(arc_buf_t *buf)
1180 {
1181         return (ARC_BUF_COMPRESSED(buf) ?
1182             HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1183 }
1184 
1185 #define ARC_MINTIME     (hz>>4) /* 62 ms */
1186 
1187 /*
1188  * Return the compression algorithm used to store this data in the ARC. If ARC
1189  * compression is enabled or this is an encrypted block, this will be the same
1190  * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1191  */
1192 static inline enum zio_compress
1193 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1194 {
1195         return (HDR_COMPRESSION_ENABLED(hdr) ?
1196             HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1197 }
1198 
1199 static inline boolean_t
1200 arc_buf_is_shared(arc_buf_t *buf)
1201 {
1202         boolean_t shared = (buf->b_data != NULL &&
1203             buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1204             abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1205             buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1206         IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1207         IMPLY(shared, ARC_BUF_SHARED(buf));
1208         IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1209 
1210         /*
1211          * It would be nice to assert arc_can_share() too, but the "hdr isn't
1212          * already being shared" requirement prevents us from doing that.
1213          */
1214 
1215         return (shared);
1216 }
1217 
1218 /*
1219  * Free the checksum associated with this header. If there is no checksum, this
1220  * is a no-op.
1221  */
1222 static inline void
1223 arc_cksum_free(arc_buf_hdr_t *hdr)
1224 {
1225         ASSERT(HDR_HAS_L1HDR(hdr));
1226 
1227         mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1228         if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1229                 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1230                 hdr->b_l1hdr.b_freeze_cksum = NULL;
1231         }
1232         mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1233 }
1234 
1235 /*
1236  * Return true iff at least one of the bufs on hdr is not compressed.
1237  * Encrypted buffers count as compressed.
1238  */
1239 static boolean_t
1240 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1241 {
1242         ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
1243 
1244         for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1245                 if (!ARC_BUF_COMPRESSED(b)) {
1246                         return (B_TRUE);
1247                 }
1248         }
1249         return (B_FALSE);
1250 }
1251 
1252 /*
1253  * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1254  * matches the checksum that is stored in the hdr. If there is no checksum,
1255  * or if the buf is compressed, this is a no-op.
1256  */
1257 static void
1258 arc_cksum_verify(arc_buf_t *buf)
1259 {
1260         arc_buf_hdr_t *hdr = buf->b_hdr;
1261         zio_cksum_t zc;
1262 
1263         if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1264                 return;
1265 
1266         if (ARC_BUF_COMPRESSED(buf))
1267                 return;
1268 
1269         ASSERT(HDR_HAS_L1HDR(hdr));
1270 
1271         mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1272 
1273         if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1274                 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1275                 return;
1276         }
1277 
1278         fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1279         if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1280                 panic("buffer modified while frozen!");
1281         mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1282 }
1283 
1284 /*
1285  * This function makes the assumption that data stored in the L2ARC
1286  * will be transformed exactly as it is in the main pool. Because of
1287  * this we can verify the checksum against the reading process's bp.
1288  */
1289 static boolean_t
1290 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1291 {
1292         enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1293         boolean_t valid_cksum;
1294 
1295         ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1296         VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1297 
1298         /*
1299          * We rely on the blkptr's checksum to determine if the block
1300          * is valid or not. When compressed arc is enabled, the l2arc
1301          * writes the block to the l2arc just as it appears in the pool.
1302          * This allows us to use the blkptr's checksum to validate the
1303          * data that we just read off of the l2arc without having to store
1304          * a separate checksum in the arc_buf_hdr_t. However, if compressed
1305          * arc is disabled, then the data written to the l2arc is always
1306          * uncompressed and won't match the block as it exists in the main
1307          * pool. When this is the case, we must first compress it if it is
1308          * compressed on the main pool before we can validate the checksum.
1309          */
1310         if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1311                 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1312                 uint64_t lsize = HDR_GET_LSIZE(hdr);
1313                 uint64_t csize;
1314 
1315                 abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE);
1316                 csize = zio_compress_data(compress, zio->io_abd,
1317                     abd_to_buf(cdata), lsize);
1318 
1319                 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1320                 if (csize < HDR_GET_PSIZE(hdr)) {
1321                         /*
1322                          * Compressed blocks are always a multiple of the
1323                          * smallest ashift in the pool. Ideally, we would
1324                          * like to round up the csize to the next
1325                          * spa_min_ashift but that value may have changed
1326                          * since the block was last written. Instead,
1327                          * we rely on the fact that the hdr's psize
1328                          * was set to the psize of the block when it was
1329                          * last written. We set the csize to that value
1330                          * and zero out any part that should not contain
1331                          * data.
1332                          */
1333                         abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize);
1334                         csize = HDR_GET_PSIZE(hdr);
1335                 }
1336                 zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL);
1337         }
1338 
1339         /*
1340          * Block pointers always store the checksum for the logical data.
1341          * If the block pointer has the gang bit set, then the checksum
1342          * it represents is for the reconstituted data and not for an
1343          * individual gang member. The zio pipeline, however, must be able to
1344          * determine the checksum of each of the gang constituents so it
1345          * treats the checksum comparison differently than what we need
1346          * for l2arc blocks. This prevents us from using the
1347          * zio_checksum_error() interface directly. Instead we must call the
1348          * zio_checksum_error_impl() so that we can ensure the checksum is
1349          * generated using the correct checksum algorithm and accounts for the
1350          * logical I/O size and not just a gang fragment.
1351          */
1352         valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1353             BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1354             zio->io_offset, NULL) == 0);
1355         zio_pop_transforms(zio);
1356         return (valid_cksum);
1357 }
1358 
1359 /*
1360  * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1361  * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1362  * isn't modified later on. If buf is compressed or there is already a checksum
1363  * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1364  */
1365 static void
1366 arc_cksum_compute(arc_buf_t *buf)
1367 {
1368         arc_buf_hdr_t *hdr = buf->b_hdr;
1369 
1370         if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1371                 return;
1372 
1373         ASSERT(HDR_HAS_L1HDR(hdr));
1374 
1375         mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1376         if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1377                 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1378                 return;
1379         }
1380 
1381         ASSERT(!ARC_BUF_ENCRYPTED(buf));
1382         ASSERT(!ARC_BUF_COMPRESSED(buf));
1383         hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1384             KM_SLEEP);
1385         fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1386             hdr->b_l1hdr.b_freeze_cksum);
1387         mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1388         arc_buf_watch(buf);
1389 }
1390 
1391 #ifndef _KERNEL
1392 typedef struct procctl {
1393         long cmd;
1394         prwatch_t prwatch;
1395 } procctl_t;
1396 #endif
1397 
1398 /* ARGSUSED */
1399 static void
1400 arc_buf_unwatch(arc_buf_t *buf)
1401 {
1402 #ifndef _KERNEL
1403         if (arc_watch) {
1404                 int result;
1405                 procctl_t ctl;
1406                 ctl.cmd = PCWATCH;
1407                 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1408                 ctl.prwatch.pr_size = 0;
1409                 ctl.prwatch.pr_wflags = 0;
1410                 result = write(arc_procfd, &ctl, sizeof (ctl));
1411                 ASSERT3U(result, ==, sizeof (ctl));
1412         }
1413 #endif
1414 }
1415 
1416 /* ARGSUSED */
1417 static void
1418 arc_buf_watch(arc_buf_t *buf)
1419 {
1420 #ifndef _KERNEL
1421         if (arc_watch) {
1422                 int result;
1423                 procctl_t ctl;
1424                 ctl.cmd = PCWATCH;
1425                 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1426                 ctl.prwatch.pr_size = arc_buf_size(buf);
1427                 ctl.prwatch.pr_wflags = WA_WRITE;
1428                 result = write(arc_procfd, &ctl, sizeof (ctl));
1429                 ASSERT3U(result, ==, sizeof (ctl));
1430         }
1431 #endif
1432 }
1433 
1434 static arc_buf_contents_t
1435 arc_buf_type(arc_buf_hdr_t *hdr)
1436 {
1437         arc_buf_contents_t type;
1438         if (HDR_ISTYPE_METADATA(hdr)) {
1439                 type = ARC_BUFC_METADATA;
1440         } else {
1441                 type = ARC_BUFC_DATA;
1442         }
1443         VERIFY3U(hdr->b_type, ==, type);
1444         return (type);
1445 }
1446 
1447 boolean_t
1448 arc_is_metadata(arc_buf_t *buf)
1449 {
1450         return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1451 }
1452 
1453 static uint32_t
1454 arc_bufc_to_flags(arc_buf_contents_t type)
1455 {
1456         switch (type) {
1457         case ARC_BUFC_DATA:
1458                 /* metadata field is 0 if buffer contains normal data */
1459                 return (0);
1460         case ARC_BUFC_METADATA:
1461                 return (ARC_FLAG_BUFC_METADATA);
1462         default:
1463                 break;
1464         }
1465         panic("undefined ARC buffer type!");
1466         return ((uint32_t)-1);
1467 }
1468 
1469 void
1470 arc_buf_thaw(arc_buf_t *buf)
1471 {
1472         arc_buf_hdr_t *hdr = buf->b_hdr;
1473 
1474         ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1475         ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1476 
1477         arc_cksum_verify(buf);
1478 
1479         /*
1480          * Compressed buffers do not manipulate the b_freeze_cksum.
1481          */
1482         if (ARC_BUF_COMPRESSED(buf))
1483                 return;
1484 
1485         ASSERT(HDR_HAS_L1HDR(hdr));
1486         arc_cksum_free(hdr);
1487 
1488         mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1489 #ifdef ZFS_DEBUG
1490         if (zfs_flags & ZFS_DEBUG_MODIFY) {
1491                 if (hdr->b_l1hdr.b_thawed != NULL)
1492                         kmem_free(hdr->b_l1hdr.b_thawed, 1);
1493                 hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1494         }
1495 #endif
1496 
1497         mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1498 
1499         arc_buf_unwatch(buf);
1500 }
1501 
1502 void
1503 arc_buf_freeze(arc_buf_t *buf)
1504 {
1505         if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1506                 return;
1507 
1508         if (ARC_BUF_COMPRESSED(buf))
1509                 return;
1510 
1511         ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1512         arc_cksum_compute(buf);
1513 }
1514 
1515 /*
1516  * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1517  * the following functions should be used to ensure that the flags are
1518  * updated in a thread-safe way. When manipulating the flags either
1519  * the hash_lock must be held or the hdr must be undiscoverable. This
1520  * ensures that we're not racing with any other threads when updating
1521  * the flags.
1522  */
1523 static inline void
1524 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1525 {
1526         ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1527         hdr->b_flags |= flags;
1528 }
1529 
1530 static inline void
1531 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1532 {
1533         ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1534         hdr->b_flags &= ~flags;
1535 }
1536 
1537 /*
1538  * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1539  * done in a special way since we have to clear and set bits
1540  * at the same time. Consumers that wish to set the compression bits
1541  * must use this function to ensure that the flags are updated in
1542  * thread-safe manner.
1543  */
1544 static void
1545 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1546 {
1547         ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1548 
1549         /*
1550          * Holes and embedded blocks will always have a psize = 0 so
1551          * we ignore the compression of the blkptr and set the
1552          * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
1553          * Holes and embedded blocks remain anonymous so we don't
1554          * want to uncompress them. Mark them as uncompressed.
1555          */
1556         if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1557                 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1558                 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1559         } else {
1560                 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1561                 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1562         }
1563 
1564         HDR_SET_COMPRESS(hdr, cmp);
1565         ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1566 }
1567 
1568 /*
1569  * Looks for another buf on the same hdr which has the data decompressed, copies
1570  * from it, and returns true. If no such buf exists, returns false.
1571  */
1572 static boolean_t
1573 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1574 {
1575         arc_buf_hdr_t *hdr = buf->b_hdr;
1576         boolean_t copied = B_FALSE;
1577 
1578         ASSERT(HDR_HAS_L1HDR(hdr));
1579         ASSERT3P(buf->b_data, !=, NULL);
1580         ASSERT(!ARC_BUF_COMPRESSED(buf));
1581 
1582         for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1583             from = from->b_next) {
1584                 /* can't use our own data buffer */
1585                 if (from == buf) {
1586                         continue;
1587                 }
1588 
1589                 if (!ARC_BUF_COMPRESSED(from)) {
1590                         bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1591                         copied = B_TRUE;
1592                         break;
1593                 }
1594         }
1595 
1596         /*
1597          * Note: With encryption support, the following assertion is no longer
1598          * necessarily valid. If we receive two back to back raw snapshots
1599          * (send -w), the second receive can use a hdr with a cksum already
1600          * calculated. This happens via:
1601          *    dmu_recv_stream() -> receive_read_record() -> arc_loan_raw_buf()
1602          * The rsend/send_mixed_raw test case exercises this code path.
1603          *
1604          * There were no decompressed bufs, so there should not be a
1605          * checksum on the hdr either.
1606          * EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1607          */
1608 
1609         return (copied);
1610 }
1611 
1612 /*
1613  * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1614  */
1615 static uint64_t
1616 arc_hdr_size(arc_buf_hdr_t *hdr)
1617 {
1618         uint64_t size;
1619 
1620         if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1621             HDR_GET_PSIZE(hdr) > 0) {
1622                 size = HDR_GET_PSIZE(hdr);
1623         } else {
1624                 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1625                 size = HDR_GET_LSIZE(hdr);
1626         }
1627         return (size);
1628 }
1629 
1630 static int
1631 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1632 {
1633         int ret;
1634         uint64_t csize;
1635         uint64_t lsize = HDR_GET_LSIZE(hdr);
1636         uint64_t psize = HDR_GET_PSIZE(hdr);
1637         void *tmpbuf = NULL;
1638         abd_t *abd = hdr->b_l1hdr.b_pabd;
1639 
1640         ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1641         ASSERT(HDR_AUTHENTICATED(hdr));
1642         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1643 
1644         /*
1645          * The MAC is calculated on the compressed data that is stored on disk.
1646          * However, if compressed arc is disabled we will only have the
1647          * decompressed data available to us now. Compress it into a temporary
1648          * abd so we can verify the MAC. The performance overhead of this will
1649          * be relatively low, since most objects in an encrypted objset will
1650          * be encrypted (instead of authenticated) anyway.
1651          */
1652         if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1653             !HDR_COMPRESSION_ENABLED(hdr)) {
1654                 tmpbuf = zio_buf_alloc(lsize);
1655                 abd = abd_get_from_buf(tmpbuf, lsize);
1656                 abd_take_ownership_of_buf(abd, B_TRUE);
1657 
1658                 csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1659                     hdr->b_l1hdr.b_pabd, tmpbuf, lsize);
1660                 ASSERT3U(csize, <=, psize);
1661                 abd_zero_off(abd, csize, psize - csize);
1662         }
1663 
1664         /*
1665          * Authentication is best effort. We authenticate whenever the key is
1666          * available. If we succeed we clear ARC_FLAG_NOAUTH.
1667          */
1668         if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1669                 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1670                 ASSERT3U(lsize, ==, psize);
1671                 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1672                     psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1673         } else {
1674                 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1675                     hdr->b_crypt_hdr.b_mac);
1676         }
1677 
1678         if (ret == 0)
1679                 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1680         else if (ret != ENOENT)
1681                 goto error;
1682 
1683         if (tmpbuf != NULL)
1684                 abd_free(abd);
1685 
1686         return (0);
1687 
1688 error:
1689         if (tmpbuf != NULL)
1690                 abd_free(abd);
1691 
1692         return (ret);
1693 }
1694 
1695 /*
1696  * This function will take a header that only has raw encrypted data in
1697  * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1698  * b_l1hdr.b_pabd. If designated in the header flags, this function will
1699  * also decompress the data.
1700  */
1701 static int
1702 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1703 {
1704         int ret;
1705         abd_t *cabd = NULL;
1706         void *tmp = NULL;
1707         boolean_t no_crypt = B_FALSE;
1708         boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1709 
1710         ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1711         ASSERT(HDR_ENCRYPTED(hdr));
1712 
1713         arc_hdr_alloc_pabd(hdr, B_FALSE);
1714 
1715         ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1716             B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1717             hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1718             hdr->b_crypt_hdr.b_rabd, &no_crypt);
1719         if (ret != 0)
1720                 goto error;
1721 
1722         if (no_crypt) {
1723                 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1724                     HDR_GET_PSIZE(hdr));
1725         }
1726 
1727         /*
1728          * If this header has disabled arc compression but the b_pabd is
1729          * compressed after decrypting it, we need to decompress the newly
1730          * decrypted data.
1731          */
1732         if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1733             !HDR_COMPRESSION_ENABLED(hdr)) {
1734                 /*
1735                  * We want to make sure that we are correctly honoring the
1736                  * zfs_abd_scatter_enabled setting, so we allocate an abd here
1737                  * and then loan a buffer from it, rather than allocating a
1738                  * linear buffer and wrapping it in an abd later.
1739                  */
1740                 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
1741                 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
1742 
1743                 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1744                     hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
1745                     HDR_GET_LSIZE(hdr));
1746                 if (ret != 0) {
1747                         abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
1748                         goto error;
1749                 }
1750 
1751                 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
1752                 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1753                     arc_hdr_size(hdr), hdr);
1754                 hdr->b_l1hdr.b_pabd = cabd;
1755         }
1756 
1757         return (0);
1758 
1759 error:
1760         arc_hdr_free_pabd(hdr, B_FALSE);
1761         if (cabd != NULL)
1762                 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
1763 
1764         return (ret);
1765 }
1766 
1767 /*
1768  * This function is called during arc_buf_fill() to prepare the header's
1769  * abd plaintext pointer for use. This involves authenticated protected
1770  * data and decrypting encrypted data into the plaintext abd.
1771  */
1772 static int
1773 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1774     const zbookmark_phys_t *zb, boolean_t noauth)
1775 {
1776         int ret;
1777 
1778         ASSERT(HDR_PROTECTED(hdr));
1779 
1780         if (hash_lock != NULL)
1781                 mutex_enter(hash_lock);
1782 
1783         if (HDR_NOAUTH(hdr) && !noauth) {
1784                 /*
1785                  * The caller requested authenticated data but our data has
1786                  * not been authenticated yet. Verify the MAC now if we can.
1787                  */
1788                 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
1789                 if (ret != 0)
1790                         goto error;
1791         } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1792                 /*
1793                  * If we only have the encrypted version of the data, but the
1794                  * unencrypted version was requested we take this opportunity
1795                  * to store the decrypted version in the header for future use.
1796                  */
1797                 ret = arc_hdr_decrypt(hdr, spa, zb);
1798                 if (ret != 0)
1799                         goto error;
1800         }
1801 
1802         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1803 
1804         if (hash_lock != NULL)
1805                 mutex_exit(hash_lock);
1806 
1807         return (0);
1808 
1809 error:
1810         if (hash_lock != NULL)
1811                 mutex_exit(hash_lock);
1812 
1813         return (ret);
1814 }
1815 
1816 /*
1817  * This function is used by the dbuf code to decrypt bonus buffers in place.
1818  * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1819  * block, so we use the hash lock here to protect against concurrent calls to
1820  * arc_buf_fill().
1821  */
1822 /* ARGSUSED */
1823 static void
1824 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock)
1825 {
1826         arc_buf_hdr_t *hdr = buf->b_hdr;
1827 
1828         ASSERT(HDR_ENCRYPTED(hdr));
1829         ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1830         ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1831         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1832 
1833         zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
1834             arc_buf_size(buf));
1835         buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
1836         buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1837         hdr->b_crypt_hdr.b_ebufcnt -= 1;
1838 }
1839 
1840 /*
1841  * Given a buf that has a data buffer attached to it, this function will
1842  * efficiently fill the buf with data of the specified compression setting from
1843  * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1844  * are already sharing a data buf, no copy is performed.
1845  *
1846  * If the buf is marked as compressed but uncompressed data was requested, this
1847  * will allocate a new data buffer for the buf, remove that flag, and fill the
1848  * buf with uncompressed data. You can't request a compressed buf on a hdr with
1849  * uncompressed data, and (since we haven't added support for it yet) if you
1850  * want compressed data your buf must already be marked as compressed and have
1851  * the correct-sized data buffer.
1852  */
1853 static int
1854 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
1855     arc_fill_flags_t flags)
1856 {
1857         int error = 0;
1858         arc_buf_hdr_t *hdr = buf->b_hdr;
1859         boolean_t hdr_compressed =
1860             (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
1861         boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
1862         boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
1863         dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1864         kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
1865 
1866         ASSERT3P(buf->b_data, !=, NULL);
1867         IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
1868         IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1869         IMPLY(encrypted, HDR_ENCRYPTED(hdr));
1870         IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
1871         IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
1872         IMPLY(encrypted, !ARC_BUF_SHARED(buf));
1873 
1874         /*
1875          * If the caller wanted encrypted data we just need to copy it from
1876          * b_rabd and potentially byteswap it. We won't be able to do any
1877          * further transforms on it.
1878          */
1879         if (encrypted) {
1880                 ASSERT(HDR_HAS_RABD(hdr));
1881                 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
1882                     HDR_GET_PSIZE(hdr));
1883                 goto byteswap;
1884         }
1885 
1886         /*
1887          * Adjust encrypted and authenticated headers to accomodate
1888          * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
1889          * allowed to fail decryption due to keys not being loaded
1890          * without being marked as an IO error.
1891          */
1892         if (HDR_PROTECTED(hdr)) {
1893                 error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
1894                     zb, !!(flags & ARC_FILL_NOAUTH));
1895                 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
1896                         return (error);
1897                 } else if (error != 0) {
1898                         if (hash_lock != NULL)
1899                                 mutex_enter(hash_lock);
1900                         arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
1901                         if (hash_lock != NULL)
1902                                 mutex_exit(hash_lock);
1903                         return (error);
1904                 }
1905         }
1906 
1907         /*
1908          * There is a special case here for dnode blocks which are
1909          * decrypting their bonus buffers. These blocks may request to
1910          * be decrypted in-place. This is necessary because there may
1911          * be many dnodes pointing into this buffer and there is
1912          * currently no method to synchronize replacing the backing
1913          * b_data buffer and updating all of the pointers. Here we use
1914          * the hash lock to ensure there are no races. If the need
1915          * arises for other types to be decrypted in-place, they must
1916          * add handling here as well.
1917          */
1918         if ((flags & ARC_FILL_IN_PLACE) != 0) {
1919                 ASSERT(!hdr_compressed);
1920                 ASSERT(!compressed);
1921                 ASSERT(!encrypted);
1922 
1923                 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
1924                         ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1925 
1926                         if (hash_lock != NULL)
1927                                 mutex_enter(hash_lock);
1928                         arc_buf_untransform_in_place(buf, hash_lock);
1929                         if (hash_lock != NULL)
1930                                 mutex_exit(hash_lock);
1931 
1932                         /* Compute the hdr's checksum if necessary */
1933                         arc_cksum_compute(buf);
1934                 }
1935 
1936                 return (0);
1937         }
1938 
1939         if (hdr_compressed == compressed) {
1940                 if (!arc_buf_is_shared(buf)) {
1941                         abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
1942                             arc_buf_size(buf));
1943                 }
1944         } else {
1945                 ASSERT(hdr_compressed);
1946                 ASSERT(!compressed);
1947                 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
1948 
1949                 /*
1950                  * If the buf is sharing its data with the hdr, unlink it and
1951                  * allocate a new data buffer for the buf.
1952                  */
1953                 if (arc_buf_is_shared(buf)) {
1954                         ASSERT(ARC_BUF_COMPRESSED(buf));
1955 
1956                         /* We need to give the buf its own b_data */
1957                         buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
1958                         buf->b_data =
1959                             arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1960                         arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
1961 
1962                         /* Previously overhead was 0; just add new overhead */
1963                         ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
1964                 } else if (ARC_BUF_COMPRESSED(buf)) {
1965                         /* We need to reallocate the buf's b_data */
1966                         arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
1967                             buf);
1968                         buf->b_data =
1969                             arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1970 
1971                         /* We increased the size of b_data; update overhead */
1972                         ARCSTAT_INCR(arcstat_overhead_size,
1973                             HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
1974                 }
1975 
1976                 /*
1977                  * Regardless of the buf's previous compression settings, it
1978                  * should not be compressed at the end of this function.
1979                  */
1980                 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1981 
1982                 /*
1983                  * Try copying the data from another buf which already has a
1984                  * decompressed version. If that's not possible, it's time to
1985                  * bite the bullet and decompress the data from the hdr.
1986                  */
1987                 if (arc_buf_try_copy_decompressed_data(buf)) {
1988                         /* Skip byteswapping and checksumming (already done) */
1989                         ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
1990                         return (0);
1991                 } else {
1992                         error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1993                             hdr->b_l1hdr.b_pabd, buf->b_data,
1994                             HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1995 
1996                         /*
1997                          * Absent hardware errors or software bugs, this should
1998                          * be impossible, but log it anyway so we can debug it.
1999                          */
2000                         if (error != 0) {
2001                                 zfs_dbgmsg(
2002                                     "hdr %p, compress %d, psize %d, lsize %d",
2003                                     hdr, arc_hdr_get_compress(hdr),
2004                                     HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2005                                 if (hash_lock != NULL)
2006                                         mutex_enter(hash_lock);
2007                                 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2008                                 if (hash_lock != NULL)
2009                                         mutex_exit(hash_lock);
2010                                 return (SET_ERROR(EIO));
2011                         }
2012                 }
2013         }
2014 
2015 byteswap:
2016         /* Byteswap the buf's data if necessary */
2017         if (bswap != DMU_BSWAP_NUMFUNCS) {
2018                 ASSERT(!HDR_SHARED_DATA(hdr));
2019                 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2020                 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2021         }
2022 
2023         /* Compute the hdr's checksum if necessary */
2024         arc_cksum_compute(buf);
2025 
2026         return (0);
2027 }
2028 
2029 /*
2030  * If this function is being called to decrypt an encrypted buffer or verify an
2031  * authenticated one, the key must be loaded and a mapping must be made
2032  * available in the keystore via spa_keystore_create_mapping() or one of its
2033  * callers.
2034  */
2035 int
2036 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2037     boolean_t in_place)
2038 {
2039         int ret;
2040         arc_fill_flags_t flags = 0;
2041 
2042         if (in_place)
2043                 flags |= ARC_FILL_IN_PLACE;
2044 
2045         ret = arc_buf_fill(buf, spa, zb, flags);
2046         if (ret == ECKSUM) {
2047                 /*
2048                  * Convert authentication and decryption errors to EIO
2049                  * (and generate an ereport) before leaving the ARC.
2050                  */
2051                 ret = SET_ERROR(EIO);
2052                 spa_log_error(spa, zb);
2053                 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2054                     spa, NULL, zb, NULL, 0, 0);
2055         }
2056 
2057         return (ret);
2058 }
2059 
2060 /*
2061  * Increment the amount of evictable space in the arc_state_t's refcount.
2062  * We account for the space used by the hdr and the arc buf individually
2063  * so that we can add and remove them from the refcount individually.
2064  */
2065 static void
2066 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2067 {
2068         arc_buf_contents_t type = arc_buf_type(hdr);
2069 
2070         ASSERT(HDR_HAS_L1HDR(hdr));
2071 
2072         if (GHOST_STATE(state)) {
2073                 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2074                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2075                 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2076                 ASSERT(!HDR_HAS_RABD(hdr));
2077                 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2078                     HDR_GET_LSIZE(hdr), hdr);
2079                 return;
2080         }
2081 
2082         ASSERT(!GHOST_STATE(state));
2083         if (hdr->b_l1hdr.b_pabd != NULL) {
2084                 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2085                     arc_hdr_size(hdr), hdr);
2086         }
2087         if (HDR_HAS_RABD(hdr)) {
2088                 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2089                     HDR_GET_PSIZE(hdr), hdr);
2090         }
2091         for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2092             buf = buf->b_next) {
2093                 if (arc_buf_is_shared(buf))
2094                         continue;
2095                 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2096                     arc_buf_size(buf), buf);
2097         }
2098 }
2099 
2100 /*
2101  * Decrement the amount of evictable space in the arc_state_t's refcount.
2102  * We account for the space used by the hdr and the arc buf individually
2103  * so that we can add and remove them from the refcount individually.
2104  */
2105 static void
2106 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2107 {
2108         arc_buf_contents_t type = arc_buf_type(hdr);
2109 
2110         ASSERT(HDR_HAS_L1HDR(hdr));
2111 
2112         if (GHOST_STATE(state)) {
2113                 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2114                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2115                 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2116                 ASSERT(!HDR_HAS_RABD(hdr));
2117                 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2118                     HDR_GET_LSIZE(hdr), hdr);
2119                 return;
2120         }
2121 
2122         ASSERT(!GHOST_STATE(state));
2123         if (hdr->b_l1hdr.b_pabd != NULL) {
2124                 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2125                     arc_hdr_size(hdr), hdr);
2126         }
2127         if (HDR_HAS_RABD(hdr)) {
2128                 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2129                     HDR_GET_PSIZE(hdr), hdr);
2130         }
2131         for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2132             buf = buf->b_next) {
2133                 if (arc_buf_is_shared(buf))
2134                         continue;
2135                 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2136                     arc_buf_size(buf), buf);
2137         }
2138 }
2139 
2140 /*
2141  * Add a reference to this hdr indicating that someone is actively
2142  * referencing that memory. When the refcount transitions from 0 to 1,
2143  * we remove it from the respective arc_state_t list to indicate that
2144  * it is not evictable.
2145  */
2146 static void
2147 add_reference(arc_buf_hdr_t *hdr, void *tag)
2148 {
2149         ASSERT(HDR_HAS_L1HDR(hdr));
2150         if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
2151                 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2152                 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2153                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2154         }
2155 
2156         arc_state_t *state = hdr->b_l1hdr.b_state;
2157 
2158         if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2159             (state != arc_anon)) {
2160                 /* We don't use the L2-only state list. */
2161                 if (state != arc_l2c_only) {
2162                         multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2163                             hdr);
2164                         arc_evictable_space_decrement(hdr, state);
2165                 }
2166                 /* remove the prefetch flag if we get a reference */
2167                 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2168         }
2169 }
2170 
2171 /*
2172  * Remove a reference from this hdr. When the reference transitions from
2173  * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2174  * list making it eligible for eviction.
2175  */
2176 static int
2177 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2178 {
2179         int cnt;
2180         arc_state_t *state = hdr->b_l1hdr.b_state;
2181 
2182         ASSERT(HDR_HAS_L1HDR(hdr));
2183         ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2184         ASSERT(!GHOST_STATE(state));
2185 
2186         /*
2187          * arc_l2c_only counts as a ghost state so we don't need to explicitly
2188          * check to prevent usage of the arc_l2c_only list.
2189          */
2190         if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2191             (state != arc_anon)) {
2192                 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2193                 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2194                 arc_evictable_space_increment(hdr, state);
2195         }
2196         return (cnt);
2197 }
2198 
2199 /*
2200  * Move the supplied buffer to the indicated state. The hash lock
2201  * for the buffer must be held by the caller.
2202  */
2203 static void
2204 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2205     kmutex_t *hash_lock)
2206 {
2207         arc_state_t *old_state;
2208         int64_t refcnt;
2209         uint32_t bufcnt;
2210         boolean_t update_old, update_new;
2211         arc_buf_contents_t buftype = arc_buf_type(hdr);
2212 
2213         /*
2214          * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2215          * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2216          * L1 hdr doesn't always exist when we change state to arc_anon before
2217          * destroying a header, in which case reallocating to add the L1 hdr is
2218          * pointless.
2219          */
2220         if (HDR_HAS_L1HDR(hdr)) {
2221                 old_state = hdr->b_l1hdr.b_state;
2222                 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2223                 bufcnt = hdr->b_l1hdr.b_bufcnt;
2224 
2225                 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL ||
2226                     HDR_HAS_RABD(hdr));
2227         } else {
2228                 old_state = arc_l2c_only;
2229                 refcnt = 0;
2230                 bufcnt = 0;
2231                 update_old = B_FALSE;
2232         }
2233         update_new = update_old;
2234 
2235         ASSERT(MUTEX_HELD(hash_lock));
2236         ASSERT3P(new_state, !=, old_state);
2237         ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2238         ASSERT(old_state != arc_anon || bufcnt <= 1);
2239 
2240         /*
2241          * If this buffer is evictable, transfer it from the
2242          * old state list to the new state list.
2243          */
2244         if (refcnt == 0) {
2245                 if (old_state != arc_anon && old_state != arc_l2c_only) {
2246                         ASSERT(HDR_HAS_L1HDR(hdr));
2247                         multilist_remove(old_state->arcs_list[buftype], hdr);
2248 
2249                         if (GHOST_STATE(old_state)) {
2250                                 ASSERT0(bufcnt);
2251                                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2252                                 update_old = B_TRUE;
2253                         }
2254                         arc_evictable_space_decrement(hdr, old_state);
2255                 }
2256                 if (new_state != arc_anon && new_state != arc_l2c_only) {
2257 
2258                         /*
2259                          * An L1 header always exists here, since if we're
2260                          * moving to some L1-cached state (i.e. not l2c_only or
2261                          * anonymous), we realloc the header to add an L1hdr
2262                          * beforehand.
2263                          */
2264                         ASSERT(HDR_HAS_L1HDR(hdr));
2265                         multilist_insert(new_state->arcs_list[buftype], hdr);
2266 
2267                         if (GHOST_STATE(new_state)) {
2268                                 ASSERT0(bufcnt);
2269                                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2270                                 update_new = B_TRUE;
2271                         }
2272                         arc_evictable_space_increment(hdr, new_state);
2273                 }
2274         }
2275 
2276         ASSERT(!HDR_EMPTY(hdr));
2277         if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2278                 buf_hash_remove(hdr);
2279 
2280         /* adjust state sizes (ignore arc_l2c_only) */
2281 
2282         if (update_new && new_state != arc_l2c_only) {
2283                 ASSERT(HDR_HAS_L1HDR(hdr));
2284                 if (GHOST_STATE(new_state)) {
2285                         ASSERT0(bufcnt);
2286 
2287                         /*
2288                          * When moving a header to a ghost state, we first
2289                          * remove all arc buffers. Thus, we'll have a
2290                          * bufcnt of zero, and no arc buffer to use for
2291                          * the reference. As a result, we use the arc
2292                          * header pointer for the reference.
2293                          */
2294                         (void) zfs_refcount_add_many(&new_state->arcs_size,
2295                             HDR_GET_LSIZE(hdr), hdr);
2296                         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2297                         ASSERT(!HDR_HAS_RABD(hdr));
2298                 } else {
2299                         uint32_t buffers = 0;
2300 
2301                         /*
2302                          * Each individual buffer holds a unique reference,
2303                          * thus we must remove each of these references one
2304                          * at a time.
2305                          */
2306                         for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2307                             buf = buf->b_next) {
2308                                 ASSERT3U(bufcnt, !=, 0);
2309                                 buffers++;
2310 
2311                                 /*
2312                                  * When the arc_buf_t is sharing the data
2313                                  * block with the hdr, the owner of the
2314                                  * reference belongs to the hdr. Only
2315                                  * add to the refcount if the arc_buf_t is
2316                                  * not shared.
2317                                  */
2318                                 if (arc_buf_is_shared(buf))
2319                                         continue;
2320 
2321                                 (void) zfs_refcount_add_many(
2322                                     &new_state->arcs_size,
2323                                     arc_buf_size(buf), buf);
2324                         }
2325                         ASSERT3U(bufcnt, ==, buffers);
2326 
2327                         if (hdr->b_l1hdr.b_pabd != NULL) {
2328                                 (void) zfs_refcount_add_many(
2329                                     &new_state->arcs_size,
2330                                     arc_hdr_size(hdr), hdr);
2331                         }
2332 
2333                         if (HDR_HAS_RABD(hdr)) {
2334                                 (void) zfs_refcount_add_many(
2335                                     &new_state->arcs_size,
2336                                     HDR_GET_PSIZE(hdr), hdr);
2337                         }
2338                 }
2339         }
2340 
2341         if (update_old && old_state != arc_l2c_only) {
2342                 ASSERT(HDR_HAS_L1HDR(hdr));
2343                 if (GHOST_STATE(old_state)) {
2344                         ASSERT0(bufcnt);
2345                         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2346                         ASSERT(!HDR_HAS_RABD(hdr));
2347 
2348                         /*
2349                          * When moving a header off of a ghost state,
2350                          * the header will not contain any arc buffers.
2351                          * We use the arc header pointer for the reference
2352                          * which is exactly what we did when we put the
2353                          * header on the ghost state.
2354                          */
2355 
2356                         (void) zfs_refcount_remove_many(&old_state->arcs_size,
2357                             HDR_GET_LSIZE(hdr), hdr);
2358                 } else {
2359                         uint32_t buffers = 0;
2360 
2361                         /*
2362                          * Each individual buffer holds a unique reference,
2363                          * thus we must remove each of these references one
2364                          * at a time.
2365                          */
2366                         for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2367                             buf = buf->b_next) {
2368                                 ASSERT3U(bufcnt, !=, 0);
2369                                 buffers++;
2370 
2371                                 /*
2372                                  * When the arc_buf_t is sharing the data
2373                                  * block with the hdr, the owner of the
2374                                  * reference belongs to the hdr. Only
2375                                  * add to the refcount if the arc_buf_t is
2376                                  * not shared.
2377                                  */
2378                                 if (arc_buf_is_shared(buf))
2379                                         continue;
2380 
2381                                 (void) zfs_refcount_remove_many(
2382                                     &old_state->arcs_size, arc_buf_size(buf),
2383                                     buf);
2384                         }
2385                         ASSERT3U(bufcnt, ==, buffers);
2386                         ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2387                             HDR_HAS_RABD(hdr));
2388 
2389                         if (hdr->b_l1hdr.b_pabd != NULL) {
2390                                 (void) zfs_refcount_remove_many(
2391                                     &old_state->arcs_size, arc_hdr_size(hdr),
2392                                     hdr);
2393                         }
2394 
2395                         if (HDR_HAS_RABD(hdr)) {
2396                                 (void) zfs_refcount_remove_many(
2397                                     &old_state->arcs_size, HDR_GET_PSIZE(hdr),
2398                                     hdr);
2399                         }
2400                 }
2401         }
2402 
2403         if (HDR_HAS_L1HDR(hdr))
2404                 hdr->b_l1hdr.b_state = new_state;
2405 
2406         /*
2407          * L2 headers should never be on the L2 state list since they don't
2408          * have L1 headers allocated.
2409          */
2410         ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2411             multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2412 }
2413 
2414 void
2415 arc_space_consume(uint64_t space, arc_space_type_t type)
2416 {
2417         ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2418 
2419         switch (type) {
2420         case ARC_SPACE_DATA:
2421                 aggsum_add(&astat_data_size, space);
2422                 break;
2423         case ARC_SPACE_META:
2424                 aggsum_add(&astat_metadata_size, space);
2425                 break;
2426         case ARC_SPACE_OTHER:
2427                 aggsum_add(&astat_other_size, space);
2428                 break;
2429         case ARC_SPACE_HDRS:
2430                 aggsum_add(&astat_hdr_size, space);
2431                 break;
2432         case ARC_SPACE_L2HDRS:
2433                 aggsum_add(&astat_l2_hdr_size, space);
2434                 break;
2435         }
2436 
2437         if (type != ARC_SPACE_DATA)
2438                 aggsum_add(&arc_meta_used, space);
2439 
2440         aggsum_add(&arc_size, space);
2441 }
2442 
2443 void
2444 arc_space_return(uint64_t space, arc_space_type_t type)
2445 {
2446         ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2447 
2448         switch (type) {
2449         case ARC_SPACE_DATA:
2450                 aggsum_add(&astat_data_size, -space);
2451                 break;
2452         case ARC_SPACE_META:
2453                 aggsum_add(&astat_metadata_size, -space);
2454                 break;
2455         case ARC_SPACE_OTHER:
2456                 aggsum_add(&astat_other_size, -space);
2457                 break;
2458         case ARC_SPACE_HDRS:
2459                 aggsum_add(&astat_hdr_size, -space);
2460                 break;
2461         case ARC_SPACE_L2HDRS:
2462                 aggsum_add(&astat_l2_hdr_size, -space);
2463                 break;
2464         }
2465 
2466         if (type != ARC_SPACE_DATA) {
2467                 ASSERT(aggsum_compare(&arc_meta_used, space) >= 0);
2468                 /*
2469                  * We use the upper bound here rather than the precise value
2470                  * because the arc_meta_max value doesn't need to be
2471                  * precise. It's only consumed by humans via arcstats.
2472                  */
2473                 if (arc_meta_max < aggsum_upper_bound(&arc_meta_used))
2474                         arc_meta_max = aggsum_upper_bound(&arc_meta_used);
2475                 aggsum_add(&arc_meta_used, -space);
2476         }
2477 
2478         ASSERT(aggsum_compare(&arc_size, space) >= 0);
2479         aggsum_add(&arc_size, -space);
2480 }
2481 
2482 /*
2483  * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2484  * with the hdr's b_pabd.
2485  */
2486 static boolean_t
2487 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2488 {
2489         /*
2490          * The criteria for sharing a hdr's data are:
2491          * 1. the buffer is not encrypted
2492          * 2. the hdr's compression matches the buf's compression
2493          * 3. the hdr doesn't need to be byteswapped
2494          * 4. the hdr isn't already being shared
2495          * 5. the buf is either compressed or it is the last buf in the hdr list
2496          *
2497          * Criterion #5 maintains the invariant that shared uncompressed
2498          * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2499          * might ask, "if a compressed buf is allocated first, won't that be the
2500          * last thing in the list?", but in that case it's impossible to create
2501          * a shared uncompressed buf anyway (because the hdr must be compressed
2502          * to have the compressed buf). You might also think that #3 is
2503          * sufficient to make this guarantee, however it's possible
2504          * (specifically in the rare L2ARC write race mentioned in
2505          * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2506          * is sharable, but wasn't at the time of its allocation. Rather than
2507          * allow a new shared uncompressed buf to be created and then shuffle
2508          * the list around to make it the last element, this simply disallows
2509          * sharing if the new buf isn't the first to be added.
2510          */
2511         ASSERT3P(buf->b_hdr, ==, hdr);
2512         boolean_t hdr_compressed = arc_hdr_get_compress(hdr) !=
2513             ZIO_COMPRESS_OFF;
2514         boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2515         return (!ARC_BUF_ENCRYPTED(buf) &&
2516             buf_compressed == hdr_compressed &&
2517             hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2518             !HDR_SHARED_DATA(hdr) &&
2519             (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2520 }
2521 
2522 /*
2523  * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2524  * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2525  * copy was made successfully, or an error code otherwise.
2526  */
2527 static int
2528 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2529     void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth,
2530     boolean_t fill, arc_buf_t **ret)
2531 {
2532         arc_buf_t *buf;
2533         arc_fill_flags_t flags = ARC_FILL_LOCKED;
2534 
2535         ASSERT(HDR_HAS_L1HDR(hdr));
2536         ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2537         VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2538             hdr->b_type == ARC_BUFC_METADATA);
2539         ASSERT3P(ret, !=, NULL);
2540         ASSERT3P(*ret, ==, NULL);
2541         IMPLY(encrypted, compressed);
2542 
2543         buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2544         buf->b_hdr = hdr;
2545         buf->b_data = NULL;
2546         buf->b_next = hdr->b_l1hdr.b_buf;
2547         buf->b_flags = 0;
2548 
2549         add_reference(hdr, tag);
2550 
2551         /*
2552          * We're about to change the hdr's b_flags. We must either
2553          * hold the hash_lock or be undiscoverable.
2554          */
2555         ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2556 
2557         /*
2558          * Only honor requests for compressed bufs if the hdr is actually
2559          * compressed. This must be overriden if the buffer is encrypted since
2560          * encrypted buffers cannot be decompressed.
2561          */
2562         if (encrypted) {
2563                 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2564                 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2565                 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2566         } else if (compressed &&
2567             arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2568                 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2569                 flags |= ARC_FILL_COMPRESSED;
2570         }
2571 
2572         if (noauth) {
2573                 ASSERT0(encrypted);
2574                 flags |= ARC_FILL_NOAUTH;
2575         }
2576 
2577         /*
2578          * If the hdr's data can be shared then we share the data buffer and
2579          * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2580          * allocate a new buffer to store the buf's data.
2581          *
2582          * There are two additional restrictions here because we're sharing
2583          * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2584          * actively involved in an L2ARC write, because if this buf is used by
2585          * an arc_write() then the hdr's data buffer will be released when the
2586          * write completes, even though the L2ARC write might still be using it.
2587          * Second, the hdr's ABD must be linear so that the buf's user doesn't
2588          * need to be ABD-aware.
2589          */
2590         boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2591             hdr->b_l1hdr.b_pabd != NULL && abd_is_linear(hdr->b_l1hdr.b_pabd);
2592 
2593         /* Set up b_data and sharing */
2594         if (can_share) {
2595                 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2596                 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2597                 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2598         } else {
2599                 buf->b_data =
2600                     arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2601                 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2602         }
2603         VERIFY3P(buf->b_data, !=, NULL);
2604 
2605         hdr->b_l1hdr.b_buf = buf;
2606         hdr->b_l1hdr.b_bufcnt += 1;
2607         if (encrypted)
2608                 hdr->b_crypt_hdr.b_ebufcnt += 1;
2609 
2610         /*
2611          * If the user wants the data from the hdr, we need to either copy or
2612          * decompress the data.
2613          */
2614         if (fill) {
2615                 ASSERT3P(zb, !=, NULL);
2616                 return (arc_buf_fill(buf, spa, zb, flags));
2617         }
2618 
2619         return (0);
2620 }
2621 
2622 static char *arc_onloan_tag = "onloan";
2623 
2624 static inline void
2625 arc_loaned_bytes_update(int64_t delta)
2626 {
2627         atomic_add_64(&arc_loaned_bytes, delta);
2628 
2629         /* assert that it did not wrap around */
2630         ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2631 }
2632 
2633 /*
2634  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2635  * flight data by arc_tempreserve_space() until they are "returned". Loaned
2636  * buffers must be returned to the arc before they can be used by the DMU or
2637  * freed.
2638  */
2639 arc_buf_t *
2640 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2641 {
2642         arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2643             is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2644 
2645         arc_loaned_bytes_update(arc_buf_size(buf));
2646 
2647         return (buf);
2648 }
2649 
2650 arc_buf_t *
2651 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2652     enum zio_compress compression_type)
2653 {
2654         arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2655             psize, lsize, compression_type);
2656 
2657         arc_loaned_bytes_update(arc_buf_size(buf));
2658 
2659         return (buf);
2660 }
2661 
2662 arc_buf_t *
2663 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2664     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2665     dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2666     enum zio_compress compression_type)
2667 {
2668         arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2669             byteorder, salt, iv, mac, ot, psize, lsize, compression_type);
2670 
2671         atomic_add_64(&arc_loaned_bytes, psize);
2672         return (buf);
2673 }
2674 
2675 /*
2676  * Performance tuning of L2ARC persistence:
2677  *
2678  * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
2679  *              an L2ARC device (either at pool import or later) will attempt
2680  *              to rebuild L2ARC buffer contents.
2681  * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
2682  *              whether log blocks are written to the L2ARC device. If the L2ARC
2683  *              device is less than 1GB, the amount of data l2arc_evict()
2684  *              evicts is significant compared to the amount of restored L2ARC
2685  *              data. In this case do not write log blocks in L2ARC in order
2686  *              not to waste space.
2687  */
2688 int l2arc_rebuild_enabled = B_TRUE;
2689 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
2690 
2691 /* L2ARC persistence rebuild control routines. */
2692 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
2693 static void l2arc_dev_rebuild_start(l2arc_dev_t *dev);
2694 static int l2arc_rebuild(l2arc_dev_t *dev);
2695 
2696 /* L2ARC persistence read I/O routines. */
2697 static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
2698 static int l2arc_log_blk_read(l2arc_dev_t *dev,
2699     const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
2700     l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
2701     zio_t *this_io, zio_t **next_io);
2702 static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
2703     const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
2704 static void l2arc_log_blk_fetch_abort(zio_t *zio);
2705 
2706 /* L2ARC persistence block restoration routines. */
2707 static void l2arc_log_blk_restore(l2arc_dev_t *dev,
2708     const l2arc_log_blk_phys_t *lb, uint64_t lb_asize, uint64_t lb_daddr);
2709 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
2710     l2arc_dev_t *dev);
2711 
2712 /* L2ARC persistence write I/O routines. */
2713 static void l2arc_dev_hdr_update(l2arc_dev_t *dev);
2714 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
2715     l2arc_write_callback_t *cb);
2716 
2717 /* L2ARC persistence auxilliary routines. */
2718 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
2719     const l2arc_log_blkptr_t *lbp);
2720 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
2721     const arc_buf_hdr_t *ab);
2722 boolean_t l2arc_range_check_overlap(uint64_t bottom,
2723     uint64_t top, uint64_t check);
2724 static void l2arc_blk_fetch_done(zio_t *zio);
2725 static inline uint64_t
2726     l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
2727 
2728 /*
2729  * Return a loaned arc buffer to the arc.
2730  */
2731 void
2732 arc_return_buf(arc_buf_t *buf, void *tag)
2733 {
2734         arc_buf_hdr_t *hdr = buf->b_hdr;
2735 
2736         ASSERT3P(buf->b_data, !=, NULL);
2737         ASSERT(HDR_HAS_L1HDR(hdr));
2738         (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2739         (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2740 
2741         arc_loaned_bytes_update(-arc_buf_size(buf));
2742 }
2743 
2744 /* Detach an arc_buf from a dbuf (tag) */
2745 void
2746 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2747 {
2748         arc_buf_hdr_t *hdr = buf->b_hdr;
2749 
2750         ASSERT3P(buf->b_data, !=, NULL);
2751         ASSERT(HDR_HAS_L1HDR(hdr));
2752         (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2753         (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2754 
2755         arc_loaned_bytes_update(arc_buf_size(buf));
2756 }
2757 
2758 static void
2759 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2760 {
2761         l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2762 
2763         df->l2df_abd = abd;
2764         df->l2df_size = size;
2765         df->l2df_type = type;
2766         mutex_enter(&l2arc_free_on_write_mtx);
2767         list_insert_head(l2arc_free_on_write, df);
2768         mutex_exit(&l2arc_free_on_write_mtx);
2769 }
2770 
2771 static void
2772 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2773 {
2774         arc_state_t *state = hdr->b_l1hdr.b_state;
2775         arc_buf_contents_t type = arc_buf_type(hdr);
2776         uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2777 
2778         /* protected by hash lock, if in the hash table */
2779         if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2780                 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2781                 ASSERT(state != arc_anon && state != arc_l2c_only);
2782 
2783                 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2784                     size, hdr);
2785         }
2786         (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr);
2787         if (type == ARC_BUFC_METADATA) {
2788                 arc_space_return(size, ARC_SPACE_META);
2789         } else {
2790                 ASSERT(type == ARC_BUFC_DATA);
2791                 arc_space_return(size, ARC_SPACE_DATA);
2792         }
2793 
2794         if (free_rdata) {
2795                 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2796         } else {
2797                 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2798         }
2799 }
2800 
2801 /*
2802  * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2803  * data buffer, we transfer the refcount ownership to the hdr and update
2804  * the appropriate kstats.
2805  */
2806 static void
2807 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2808 {
2809         /* LINTED */
2810         arc_state_t *state = hdr->b_l1hdr.b_state;
2811 
2812         ASSERT(arc_can_share(hdr, buf));
2813         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2814         ASSERT(!ARC_BUF_ENCRYPTED(buf));
2815         ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2816 
2817         /*
2818          * Start sharing the data buffer. We transfer the
2819          * refcount ownership to the hdr since it always owns
2820          * the refcount whenever an arc_buf_t is shared.
2821          */
2822         zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
2823             arc_hdr_size(hdr), buf, hdr);
2824         hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2825         abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2826             HDR_ISTYPE_METADATA(hdr));
2827         arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2828         buf->b_flags |= ARC_BUF_FLAG_SHARED;
2829 
2830         /*
2831          * Since we've transferred ownership to the hdr we need
2832          * to increment its compressed and uncompressed kstats and
2833          * decrement the overhead size.
2834          */
2835         ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2836         ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2837         ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2838 }
2839 
2840 static void
2841 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2842 {
2843         /* LINTED */
2844         arc_state_t *state = hdr->b_l1hdr.b_state;
2845 
2846         ASSERT(arc_buf_is_shared(buf));
2847         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2848         ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2849 
2850         /*
2851          * We are no longer sharing this buffer so we need
2852          * to transfer its ownership to the rightful owner.
2853          */
2854         zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
2855             arc_hdr_size(hdr), hdr, buf);
2856         arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2857         abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2858         abd_put(hdr->b_l1hdr.b_pabd);
2859         hdr->b_l1hdr.b_pabd = NULL;
2860         buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2861 
2862         /*
2863          * Since the buffer is no longer shared between
2864          * the arc buf and the hdr, count it as overhead.
2865          */
2866         ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2867         ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2868         ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2869 }
2870 
2871 /*
2872  * Remove an arc_buf_t from the hdr's buf list and return the last
2873  * arc_buf_t on the list. If no buffers remain on the list then return
2874  * NULL.
2875  */
2876 static arc_buf_t *
2877 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2878 {
2879         arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
2880         arc_buf_t *lastbuf = NULL;
2881 
2882         ASSERT(HDR_HAS_L1HDR(hdr));
2883         ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2884 
2885         /*
2886          * Remove the buf from the hdr list and locate the last
2887          * remaining buffer on the list.
2888          */
2889         while (*bufp != NULL) {
2890                 if (*bufp == buf)
2891                         *bufp = buf->b_next;
2892 
2893                 /*
2894                  * If we've removed a buffer in the middle of
2895                  * the list then update the lastbuf and update
2896                  * bufp.
2897                  */
2898                 if (*bufp != NULL) {
2899                         lastbuf = *bufp;
2900                         bufp = &(*bufp)->b_next;
2901                 }
2902         }
2903         buf->b_next = NULL;
2904         ASSERT3P(lastbuf, !=, buf);
2905         IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
2906         IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
2907         IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
2908 
2909         return (lastbuf);
2910 }
2911 
2912 /*
2913  * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
2914  * list and free it.
2915  */
2916 static void
2917 arc_buf_destroy_impl(arc_buf_t *buf)
2918 {
2919         arc_buf_hdr_t *hdr = buf->b_hdr;
2920 
2921         /*
2922          * Free up the data associated with the buf but only if we're not
2923          * sharing this with the hdr. If we are sharing it with the hdr, the
2924          * hdr is responsible for doing the free.
2925          */
2926         if (buf->b_data != NULL) {
2927                 /*
2928                  * We're about to change the hdr's b_flags. We must either
2929                  * hold the hash_lock or be undiscoverable.
2930                  */
2931                 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2932 
2933                 arc_cksum_verify(buf);
2934                 arc_buf_unwatch(buf);
2935 
2936                 if (arc_buf_is_shared(buf)) {
2937                         arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2938                 } else {
2939                         uint64_t size = arc_buf_size(buf);
2940                         arc_free_data_buf(hdr, buf->b_data, size, buf);
2941                         ARCSTAT_INCR(arcstat_overhead_size, -size);
2942                 }
2943                 buf->b_data = NULL;
2944 
2945                 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2946                 hdr->b_l1hdr.b_bufcnt -= 1;
2947 
2948                 if (ARC_BUF_ENCRYPTED(buf)) {
2949                         hdr->b_crypt_hdr.b_ebufcnt -= 1;
2950 
2951                         /*
2952                          * If we have no more encrypted buffers and we've
2953                          * already gotten a copy of the decrypted data we can
2954                          * free b_rabd to save some space.
2955                          */
2956                         if (hdr->b_crypt_hdr.b_ebufcnt == 0 &&
2957                             HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL &&
2958                             !HDR_IO_IN_PROGRESS(hdr)) {
2959                                 arc_hdr_free_pabd(hdr, B_TRUE);
2960                         }
2961                 }
2962         }
2963 
2964         arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
2965 
2966         if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2967                 /*
2968                  * If the current arc_buf_t is sharing its data buffer with the
2969                  * hdr, then reassign the hdr's b_pabd to share it with the new
2970                  * buffer at the end of the list. The shared buffer is always
2971                  * the last one on the hdr's buffer list.
2972                  *
2973                  * There is an equivalent case for compressed bufs, but since
2974                  * they aren't guaranteed to be the last buf in the list and
2975                  * that is an exceedingly rare case, we just allow that space be
2976                  * wasted temporarily. We must also be careful not to share
2977                  * encrypted buffers, since they cannot be shared.
2978                  */
2979                 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
2980                         /* Only one buf can be shared at once */
2981                         VERIFY(!arc_buf_is_shared(lastbuf));
2982                         /* hdr is uncompressed so can't have compressed buf */
2983                         VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
2984 
2985                         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2986                         arc_hdr_free_pabd(hdr, B_FALSE);
2987 
2988                         /*
2989                          * We must setup a new shared block between the
2990                          * last buffer and the hdr. The data would have
2991                          * been allocated by the arc buf so we need to transfer
2992                          * ownership to the hdr since it's now being shared.
2993                          */
2994                         arc_share_buf(hdr, lastbuf);
2995                 }
2996         } else if (HDR_SHARED_DATA(hdr)) {
2997                 /*
2998                  * Uncompressed shared buffers are always at the end
2999                  * of the list. Compressed buffers don't have the
3000                  * same requirements. This makes it hard to
3001                  * simply assert that the lastbuf is shared so
3002                  * we rely on the hdr's compression flags to determine
3003                  * if we have a compressed, shared buffer.
3004                  */
3005                 ASSERT3P(lastbuf, !=, NULL);
3006                 ASSERT(arc_buf_is_shared(lastbuf) ||
3007                     arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3008         }
3009 
3010         /*
3011          * Free the checksum if we're removing the last uncompressed buf from
3012          * this hdr.
3013          */
3014         if (!arc_hdr_has_uncompressed_buf(hdr)) {
3015                 arc_cksum_free(hdr);
3016         }
3017 
3018         /* clean up the buf */
3019         buf->b_hdr = NULL;
3020         kmem_cache_free(buf_cache, buf);
3021 }
3022 
3023 static void
3024 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr, boolean_t alloc_rdata)
3025 {
3026         uint64_t size;
3027 
3028         ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3029         ASSERT(HDR_HAS_L1HDR(hdr));
3030         ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3031         IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3032 
3033         if (alloc_rdata) {
3034                 size = HDR_GET_PSIZE(hdr);
3035                 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3036                 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr);
3037                 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3038         } else {
3039                 size = arc_hdr_size(hdr);
3040                 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3041                 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr);
3042                 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3043         }
3044 
3045         ARCSTAT_INCR(arcstat_compressed_size, size);
3046         ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3047 }
3048 
3049 static void
3050 arc_hdr_free_pabd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3051 {
3052         uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3053 
3054         ASSERT(HDR_HAS_L1HDR(hdr));
3055         ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3056         IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3057 
3058 
3059         /*
3060          * If the hdr is currently being written to the l2arc then
3061          * we defer freeing the data by adding it to the l2arc_free_on_write
3062          * list. The l2arc will free the data once it's finished
3063          * writing it to the l2arc device.
3064          */
3065         if (HDR_L2_WRITING(hdr)) {
3066                 arc_hdr_free_on_write(hdr, free_rdata);
3067                 ARCSTAT_BUMP(arcstat_l2_free_on_write);
3068         } else if (free_rdata) {
3069                 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3070         } else {
3071                 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
3072                     size, hdr);
3073         }
3074 
3075         if (free_rdata) {
3076                 hdr->b_crypt_hdr.b_rabd = NULL;
3077         } else {
3078                 hdr->b_l1hdr.b_pabd = NULL;
3079         }
3080 
3081         if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3082                 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3083 
3084         ARCSTAT_INCR(arcstat_compressed_size, -size);
3085         ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3086 }
3087 
3088 static arc_buf_hdr_t *
3089 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3090     boolean_t protected, enum zio_compress compression_type,
3091     arc_buf_contents_t type, boolean_t alloc_rdata)
3092 {
3093         arc_buf_hdr_t *hdr;
3094 
3095         VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3096         if (protected) {
3097                 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE);
3098         } else {
3099                 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3100         }
3101         ASSERT(HDR_EMPTY(hdr));
3102         ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3103         ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
3104         HDR_SET_PSIZE(hdr, psize);
3105         HDR_SET_LSIZE(hdr, lsize);
3106         hdr->b_spa = spa;
3107         hdr->b_type = type;
3108         hdr->b_flags = 0;
3109         arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3110         arc_hdr_set_compress(hdr, compression_type);
3111         if (protected)
3112                 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3113 
3114         hdr->b_l1hdr.b_state = arc_anon;
3115         hdr->b_l1hdr.b_arc_access = 0;
3116         hdr->b_l1hdr.b_bufcnt = 0;
3117         hdr->b_l1hdr.b_buf = NULL;
3118 
3119         /*
3120          * Allocate the hdr's buffer. This will contain either
3121          * the compressed or uncompressed data depending on the block
3122          * it references and compressed arc enablement.
3123          */
3124         arc_hdr_alloc_pabd(hdr, alloc_rdata);
3125         ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3126 
3127         return (hdr);
3128 }
3129 
3130 /*
3131  * Transition between the two allocation states for the arc_buf_hdr struct.
3132  * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3133  * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3134  * version is used when a cache buffer is only in the L2ARC in order to reduce
3135  * memory usage.
3136  */
3137 static arc_buf_hdr_t *
3138 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3139 {
3140         ASSERT(HDR_HAS_L2HDR(hdr));
3141 
3142         arc_buf_hdr_t *nhdr;
3143         l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3144 
3145         ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3146             (old == hdr_l2only_cache && new == hdr_full_cache));
3147 
3148         /*
3149          * if the caller wanted a new full header and the header is to be
3150          * encrypted we will actually allocate the header from the full crypt
3151          * cache instead. The same applies to freeing from the old cache.
3152          */
3153         if (HDR_PROTECTED(hdr) && new == hdr_full_cache)
3154                 new = hdr_full_crypt_cache;
3155         if (HDR_PROTECTED(hdr) && old == hdr_full_cache)
3156                 old = hdr_full_crypt_cache;
3157 
3158         nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3159 
3160         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3161         buf_hash_remove(hdr);
3162 
3163         bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
3164 
3165         if (new == hdr_full_cache || new == hdr_full_crypt_cache) {
3166                 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3167                 /*
3168                  * arc_access and arc_change_state need to be aware that a
3169                  * header has just come out of L2ARC, so we set its state to
3170                  * l2c_only even though it's about to change.
3171                  */
3172                 nhdr->b_l1hdr.b_state = arc_l2c_only;
3173 
3174                 /* Verify previous threads set to NULL before freeing */
3175                 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3176                 ASSERT(!HDR_HAS_RABD(hdr));
3177         } else {
3178                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3179                 ASSERT0(hdr->b_l1hdr.b_bufcnt);
3180                 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3181 
3182                 /*
3183                  * If we've reached here, We must have been called from
3184                  * arc_evict_hdr(), as such we should have already been
3185                  * removed from any ghost list we were previously on
3186                  * (which protects us from racing with arc_evict_state),
3187                  * thus no locking is needed during this check.
3188                  */
3189                 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3190 
3191                 /*
3192                  * A buffer must not be moved into the arc_l2c_only
3193                  * state if it's not finished being written out to the
3194                  * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3195                  * might try to be accessed, even though it was removed.
3196                  */
3197                 VERIFY(!HDR_L2_WRITING(hdr));
3198                 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3199                 ASSERT(!HDR_HAS_RABD(hdr));
3200 
3201 #ifdef ZFS_DEBUG
3202                 if (hdr->b_l1hdr.b_thawed != NULL) {
3203                         kmem_free(hdr->b_l1hdr.b_thawed, 1);
3204                         hdr->b_l1hdr.b_thawed = NULL;
3205                 }
3206 #endif
3207 
3208                 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3209         }
3210         /*
3211          * The header has been reallocated so we need to re-insert it into any
3212          * lists it was on.
3213          */
3214         (void) buf_hash_insert(nhdr, NULL);
3215 
3216         ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3217 
3218         mutex_enter(&dev->l2ad_mtx);
3219 
3220         /*
3221          * We must place the realloc'ed header back into the list at
3222          * the same spot. Otherwise, if it's placed earlier in the list,
3223          * l2arc_write_buffers() could find it during the function's
3224          * write phase, and try to write it out to the l2arc.
3225          */
3226         list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3227         list_remove(&dev->l2ad_buflist, hdr);
3228 
3229         mutex_exit(&dev->l2ad_mtx);
3230 
3231         /*
3232          * Since we're using the pointer address as the tag when
3233          * incrementing and decrementing the l2ad_alloc refcount, we
3234          * must remove the old pointer (that we're about to destroy) and
3235          * add the new pointer to the refcount. Otherwise we'd remove
3236          * the wrong pointer address when calling arc_hdr_destroy() later.
3237          */
3238 
3239         (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3240             hdr);
3241         (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr),
3242             nhdr);
3243 
3244         buf_discard_identity(hdr);
3245         kmem_cache_free(old, hdr);
3246 
3247         return (nhdr);
3248 }
3249 
3250 /*
3251  * This function allows an L1 header to be reallocated as a crypt
3252  * header and vice versa. If we are going to a crypt header, the
3253  * new fields will be zeroed out.
3254  */
3255 static arc_buf_hdr_t *
3256 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt)
3257 {
3258         arc_buf_hdr_t *nhdr;
3259         arc_buf_t *buf;
3260         kmem_cache_t *ncache, *ocache;
3261 
3262         ASSERT(HDR_HAS_L1HDR(hdr));
3263         ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt);
3264         ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3265         ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3266         ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node));
3267         ASSERT3P(hdr->b_hash_next, ==, NULL);
3268 
3269         if (need_crypt) {
3270                 ncache = hdr_full_crypt_cache;
3271                 ocache = hdr_full_cache;
3272         } else {
3273                 ncache = hdr_full_cache;
3274                 ocache = hdr_full_crypt_cache;
3275         }
3276 
3277         nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE);
3278 
3279         /*
3280          * Copy all members that aren't locks or condvars to the new header.
3281          * No lists are pointing to us (as we asserted above), so we don't
3282          * need to worry about the list nodes.
3283          */
3284         nhdr->b_dva = hdr->b_dva;
3285         nhdr->b_birth = hdr->b_birth;
3286         nhdr->b_type = hdr->b_type;
3287         nhdr->b_flags = hdr->b_flags;
3288         nhdr->b_psize = hdr->b_psize;
3289         nhdr->b_lsize = hdr->b_lsize;
3290         nhdr->b_spa = hdr->b_spa;
3291         nhdr->b_l2hdr.b_dev = hdr->b_l2hdr.b_dev;
3292         nhdr->b_l2hdr.b_daddr = hdr->b_l2hdr.b_daddr;
3293         nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum;
3294         nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt;
3295         nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap;
3296         nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state;
3297         nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access;
3298         nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb;
3299         nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd;
3300 #ifdef ZFS_DEBUG
3301         if (hdr->b_l1hdr.b_thawed != NULL) {
3302                 nhdr->b_l1hdr.b_thawed = hdr->b_l1hdr.b_thawed;
3303                 hdr->b_l1hdr.b_thawed = NULL;
3304         }
3305 #endif
3306 
3307         /*
3308          * This refcount_add() exists only to ensure that the individual
3309          * arc buffers always point to a header that is referenced, avoiding
3310          * a small race condition that could trigger ASSERTs.
3311          */
3312         (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG);
3313         nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf;
3314         for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
3315                 mutex_enter(&buf->b_evict_lock);
3316                 buf->b_hdr = nhdr;
3317                 mutex_exit(&buf->b_evict_lock);
3318         }
3319         zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt);
3320         (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG);
3321         ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3322 
3323         if (need_crypt) {
3324                 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED);
3325         } else {
3326                 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED);
3327         }
3328 
3329         /* unset all members of the original hdr */
3330         bzero(&hdr->b_dva, sizeof (dva_t));
3331         hdr->b_birth = 0;
3332         hdr->b_type = ARC_BUFC_INVALID;
3333         hdr->b_flags = 0;
3334         hdr->b_psize = 0;
3335         hdr->b_lsize = 0;
3336         hdr->b_spa = 0;
3337         hdr->b_l2hdr.b_dev = NULL;
3338         hdr->b_l2hdr.b_daddr = 0;
3339         hdr->b_l1hdr.b_freeze_cksum = NULL;
3340         hdr->b_l1hdr.b_buf = NULL;
3341         hdr->b_l1hdr.b_bufcnt = 0;
3342         hdr->b_l1hdr.b_byteswap = 0;
3343         hdr->b_l1hdr.b_state = NULL;
3344         hdr->b_l1hdr.b_arc_access = 0;
3345         hdr->b_l1hdr.b_acb = NULL;
3346         hdr->b_l1hdr.b_pabd = NULL;
3347 
3348         if (ocache == hdr_full_crypt_cache) {
3349                 ASSERT(!HDR_HAS_RABD(hdr));
3350                 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE;
3351                 hdr->b_crypt_hdr.b_ebufcnt = 0;
3352                 hdr->b_crypt_hdr.b_dsobj = 0;
3353                 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3354                 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3355                 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3356         }
3357 
3358         buf_discard_identity(hdr);
3359         kmem_cache_free(ocache, hdr);
3360 
3361         return (nhdr);
3362 }
3363 
3364 /*
3365  * This function is used by the send / receive code to convert a newly
3366  * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3367  * is also used to allow the root objset block to be uupdated without altering
3368  * its embedded MACs. Both block types will always be uncompressed so we do not
3369  * have to worry about compression type or psize.
3370  */
3371 void
3372 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3373     dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3374     const uint8_t *mac)
3375 {
3376         arc_buf_hdr_t *hdr = buf->b_hdr;
3377 
3378         ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3379         ASSERT(HDR_HAS_L1HDR(hdr));
3380         ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3381 
3382         buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3383         if (!HDR_PROTECTED(hdr))
3384                 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE);
3385         hdr->b_crypt_hdr.b_dsobj = dsobj;
3386         hdr->b_crypt_hdr.b_ot = ot;
3387         hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3388             DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3389         if (!arc_hdr_has_uncompressed_buf(hdr))
3390                 arc_cksum_free(hdr);
3391 
3392         if (salt != NULL)
3393                 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3394         if (iv != NULL)
3395                 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3396         if (mac != NULL)
3397                 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3398 }
3399 
3400 /*
3401  * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3402  * The buf is returned thawed since we expect the consumer to modify it.
3403  */
3404 arc_buf_t *
3405 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3406 {
3407         arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3408             B_FALSE, ZIO_COMPRESS_OFF, type, B_FALSE);
3409 
3410         arc_buf_t *buf = NULL;
3411         VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3412             B_FALSE, B_FALSE, &buf));
3413         arc_buf_thaw(buf);
3414 
3415         return (buf);
3416 }
3417 
3418 /*
3419  * Allocates an ARC buf header that's in an evicted & L2-cached state.
3420  * This is used during l2arc reconstruction to make empty ARC buffers
3421  * which circumvent the regular disk->arc->l2arc path and instead come
3422  * into being in the reverse order, i.e. l2arc->arc.
3423  */
3424 arc_buf_hdr_t *
3425 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
3426     dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth,
3427     enum zio_compress compress, boolean_t protected, boolean_t prefetch)
3428 {
3429         arc_buf_hdr_t   *hdr;
3430 
3431         ASSERT(size != 0);
3432         hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
3433         hdr->b_birth = birth;
3434         hdr->b_type = type;
3435         hdr->b_flags = 0;
3436         arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
3437         HDR_SET_LSIZE(hdr, size);
3438         HDR_SET_PSIZE(hdr, psize);
3439         arc_hdr_set_compress(hdr, compress);
3440         if (protected)
3441                 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3442         if (prefetch)
3443                 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
3444         hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
3445 
3446         hdr->b_dva = dva;
3447 
3448         hdr->b_l2hdr.b_dev = dev;
3449         hdr->b_l2hdr.b_daddr = daddr;
3450 
3451         return (hdr);
3452 }
3453 
3454 /*
3455  * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3456  * for bufs containing metadata.
3457  */
3458 arc_buf_t *
3459 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3460     enum zio_compress compression_type)
3461 {
3462         ASSERT3U(lsize, >, 0);
3463         ASSERT3U(lsize, >=, psize);
3464         ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3465         ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3466 
3467         arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3468             B_FALSE, compression_type, ARC_BUFC_DATA, B_FALSE);
3469 
3470         arc_buf_t *buf = NULL;
3471         VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3472             B_TRUE, B_FALSE, B_FALSE, &buf));
3473         arc_buf_thaw(buf);
3474         ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3475 
3476         if (!arc_buf_is_shared(buf)) {
3477                 /*
3478                  * To ensure that the hdr has the correct data in it if we call
3479                  * arc_untransform() on this buf before it's been written to
3480                  * disk, it's easiest if we just set up sharing between the
3481                  * buf and the hdr.
3482                  */
3483                 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3484                 arc_hdr_free_pabd(hdr, B_FALSE);
3485                 arc_share_buf(hdr, buf);
3486         }
3487 
3488         return (buf);
3489 }
3490 
3491 arc_buf_t *
3492 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder,
3493     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
3494     dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3495     enum zio_compress compression_type)
3496 {
3497         arc_buf_hdr_t *hdr;
3498         arc_buf_t *buf;
3499         arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3500             ARC_BUFC_METADATA : ARC_BUFC_DATA;
3501 
3502         ASSERT3U(lsize, >, 0);
3503         ASSERT3U(lsize, >=, psize);
3504         ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3505         ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3506 
3507         hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3508             compression_type, type, B_TRUE);
3509 
3510         hdr->b_crypt_hdr.b_dsobj = dsobj;
3511         hdr->b_crypt_hdr.b_ot = ot;
3512         hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3513             DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3514         bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3515         bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3516         bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3517 
3518         /*
3519          * This buffer will be considered encrypted even if the ot is not an
3520          * encrypted type. It will become authenticated instead in
3521          * arc_write_ready().
3522          */
3523         buf = NULL;
3524         VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3525             B_FALSE, B_FALSE, &buf));
3526         arc_buf_thaw(buf);
3527         ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3528 
3529         return (buf);
3530 }
3531 
3532 static void
3533 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3534 {
3535         l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3536         l2arc_dev_t *dev = l2hdr->b_dev;
3537         uint64_t psize = HDR_GET_PSIZE(hdr);
3538         uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3539 
3540         ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3541         ASSERT(HDR_HAS_L2HDR(hdr));
3542 
3543         list_remove(&dev->l2ad_buflist, hdr);
3544 
3545         ARCSTAT_INCR(arcstat_l2_psize, -psize);
3546         ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
3547 
3548         vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3549 
3550         (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3551             hdr);
3552         arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3553 }
3554 
3555 static void
3556 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3557 {
3558         if (HDR_HAS_L1HDR(hdr)) {
3559                 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3560                     hdr->b_l1hdr.b_bufcnt > 0);
3561                 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3562                 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3563         }
3564         ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3565         ASSERT(!HDR_IN_HASH_TABLE(hdr));
3566 
3567         if (HDR_HAS_L2HDR(hdr)) {
3568                 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3569                 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3570 
3571                 if (!buflist_held)
3572                         mutex_enter(&dev->l2ad_mtx);
3573 
3574                 /*
3575                  * Even though we checked this conditional above, we
3576                  * need to check this again now that we have the
3577                  * l2ad_mtx. This is because we could be racing with
3578                  * another thread calling l2arc_evict() which might have
3579                  * destroyed this header's L2 portion as we were waiting
3580                  * to acquire the l2ad_mtx. If that happens, we don't
3581                  * want to re-destroy the header's L2 portion.
3582                  */
3583                 if (HDR_HAS_L2HDR(hdr))
3584                         arc_hdr_l2hdr_destroy(hdr);
3585 
3586                 if (!buflist_held)
3587                         mutex_exit(&dev->l2ad_mtx);
3588         }
3589 
3590         /*
3591          * The header's identity can only be safely discarded once it is no
3592          * longer discoverable.  This requires removing it from the hash table
3593          * and the l2arc header list.  After this point the hash lock can not
3594          * be used to protect the header.
3595          */
3596         if (!HDR_EMPTY(hdr))
3597                 buf_discard_identity(hdr);
3598 
3599         if (HDR_HAS_L1HDR(hdr)) {
3600                 arc_cksum_free(hdr);
3601 
3602                 while (hdr->b_l1hdr.b_buf != NULL)
3603                         arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3604 
3605 #ifdef ZFS_DEBUG
3606                 if (hdr->b_l1hdr.b_thawed != NULL) {
3607                         kmem_free(hdr->b_l1hdr.b_thawed, 1);
3608                         hdr->b_l1hdr.b_thawed = NULL;
3609                 }
3610 #endif
3611 
3612                 if (hdr->b_l1hdr.b_pabd != NULL)
3613                         arc_hdr_free_pabd(hdr, B_FALSE);
3614 
3615                 if (HDR_HAS_RABD(hdr))
3616                         arc_hdr_free_pabd(hdr, B_TRUE);
3617         }
3618 
3619         ASSERT3P(hdr->b_hash_next, ==, NULL);
3620         if (HDR_HAS_L1HDR(hdr)) {
3621                 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3622                 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3623 
3624                 if (!HDR_PROTECTED(hdr)) {
3625                         kmem_cache_free(hdr_full_cache, hdr);
3626                 } else {
3627                         kmem_cache_free(hdr_full_crypt_cache, hdr);
3628                 }
3629         } else {
3630                 kmem_cache_free(hdr_l2only_cache, hdr);
3631         }
3632 }
3633 
3634 void
3635 arc_buf_destroy(arc_buf_t *buf, void* tag)
3636 {
3637         arc_buf_hdr_t *hdr = buf->b_hdr;
3638 
3639         if (hdr->b_l1hdr.b_state == arc_anon) {
3640                 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3641                 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3642                 VERIFY0(remove_reference(hdr, NULL, tag));
3643                 arc_hdr_destroy(hdr);
3644                 return;
3645         }
3646 
3647         kmutex_t *hash_lock = HDR_LOCK(hdr);
3648         mutex_enter(hash_lock);
3649 
3650         ASSERT3P(hdr, ==, buf->b_hdr);
3651         ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3652         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3653         ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3654         ASSERT3P(buf->b_data, !=, NULL);
3655 
3656         (void) remove_reference(hdr, hash_lock, tag);
3657         arc_buf_destroy_impl(buf);
3658         mutex_exit(hash_lock);
3659 }
3660 
3661 /*
3662  * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3663  * state of the header is dependent on its state prior to entering this
3664  * function. The following transitions are possible:
3665  *
3666  *    - arc_mru -> arc_mru_ghost
3667  *    - arc_mfu -> arc_mfu_ghost
3668  *    - arc_mru_ghost -> arc_l2c_only
3669  *    - arc_mru_ghost -> deleted
3670  *    - arc_mfu_ghost -> arc_l2c_only
3671  *    - arc_mfu_ghost -> deleted
3672  */
3673 static int64_t
3674 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3675 {
3676         arc_state_t *evicted_state, *state;
3677         int64_t bytes_evicted = 0;
3678         int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3679             zfs_arc_min_prescient_prefetch_ms : zfs_arc_min_prefetch_ms;
3680 
3681         ASSERT(MUTEX_HELD(hash_lock));
3682         ASSERT(HDR_HAS_L1HDR(hdr));
3683 
3684         state = hdr->b_l1hdr.b_state;
3685         if (GHOST_STATE(state)) {
3686                 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3687                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3688 
3689                 /*
3690                  * l2arc_write_buffers() relies on a header's L1 portion
3691                  * (i.e. its b_pabd field) during its write phase.
3692                  * Thus, we cannot push a header onto the arc_l2c_only
3693                  * state (removing its L1 piece) until the header is
3694                  * done being written to the l2arc.
3695                  */
3696                 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3697                         ARCSTAT_BUMP(arcstat_evict_l2_skip);
3698                         return (bytes_evicted);
3699                 }
3700 
3701                 ARCSTAT_BUMP(arcstat_deleted);
3702                 bytes_evicted += HDR_GET_LSIZE(hdr);
3703 
3704                 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3705 
3706                 if (HDR_HAS_L2HDR(hdr)) {
3707                         ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3708                         ASSERT(!HDR_HAS_RABD(hdr));
3709                         /*
3710                          * This buffer is cached on the 2nd Level ARC;
3711                          * don't destroy the header.
3712                          */
3713                         arc_change_state(arc_l2c_only, hdr, hash_lock);
3714                         /*
3715                          * dropping from L1+L2 cached to L2-only,
3716                          * realloc to remove the L1 header.
3717                          */
3718                         hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3719                             hdr_l2only_cache);
3720                 } else {
3721                         arc_change_state(arc_anon, hdr, hash_lock);
3722                         arc_hdr_destroy(hdr);
3723                 }
3724                 return (bytes_evicted);
3725         }
3726 
3727         ASSERT(state == arc_mru || state == arc_mfu);
3728         evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3729 
3730         /* prefetch buffers have a minimum lifespan */
3731         if (HDR_IO_IN_PROGRESS(hdr) ||
3732             ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3733             ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < min_lifetime * hz)) {
3734                 ARCSTAT_BUMP(arcstat_evict_skip);
3735                 return (bytes_evicted);
3736         }
3737 
3738         ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3739         while (hdr->b_l1hdr.b_buf) {
3740                 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3741                 if (!mutex_tryenter(&buf->b_evict_lock)) {
3742                         ARCSTAT_BUMP(arcstat_mutex_miss);
3743                         break;
3744                 }
3745                 if (buf->b_data != NULL)
3746                         bytes_evicted += HDR_GET_LSIZE(hdr);
3747                 mutex_exit(&buf->b_evict_lock);
3748                 arc_buf_destroy_impl(buf);
3749         }
3750 
3751         if (HDR_HAS_L2HDR(hdr)) {
3752                 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3753         } else {
3754                 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3755                         ARCSTAT_INCR(arcstat_evict_l2_eligible,
3756                             HDR_GET_LSIZE(hdr));
3757                 } else {
3758                         ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3759                             HDR_GET_LSIZE(hdr));
3760                 }
3761         }
3762 
3763         if (hdr->b_l1hdr.b_bufcnt == 0) {
3764                 arc_cksum_free(hdr);
3765 
3766                 bytes_evicted += arc_hdr_size(hdr);
3767 
3768                 /*
3769                  * If this hdr is being evicted and has a compressed
3770                  * buffer then we discard it here before we change states.
3771                  * This ensures that the accounting is updated correctly
3772                  * in arc_free_data_impl().
3773                  */
3774                 if (hdr->b_l1hdr.b_pabd != NULL)
3775                         arc_hdr_free_pabd(hdr, B_FALSE);
3776 
3777                 if (HDR_HAS_RABD(hdr))
3778                         arc_hdr_free_pabd(hdr, B_TRUE);
3779 
3780                 arc_change_state(evicted_state, hdr, hash_lock);
3781                 ASSERT(HDR_IN_HASH_TABLE(hdr));
3782                 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3783                 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3784         }
3785 
3786         return (bytes_evicted);
3787 }
3788 
3789 static uint64_t
3790 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3791     uint64_t spa, int64_t bytes)
3792 {
3793         multilist_sublist_t *mls;
3794         uint64_t bytes_evicted = 0;
3795         arc_buf_hdr_t *hdr;
3796         kmutex_t *hash_lock;
3797         int evict_count = 0;
3798 
3799         ASSERT3P(marker, !=, NULL);
3800         IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3801 
3802         mls = multilist_sublist_lock(ml, idx);
3803 
3804         for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3805             hdr = multilist_sublist_prev(mls, marker)) {
3806                 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3807                     (evict_count >= zfs_arc_evict_batch_limit))
3808                         break;
3809 
3810                 /*
3811                  * To keep our iteration location, move the marker
3812                  * forward. Since we're not holding hdr's hash lock, we
3813                  * must be very careful and not remove 'hdr' from the
3814                  * sublist. Otherwise, other consumers might mistake the
3815                  * 'hdr' as not being on a sublist when they call the
3816                  * multilist_link_active() function (they all rely on
3817                  * the hash lock protecting concurrent insertions and
3818                  * removals). multilist_sublist_move_forward() was
3819                  * specifically implemented to ensure this is the case
3820                  * (only 'marker' will be removed and re-inserted).
3821                  */
3822                 multilist_sublist_move_forward(mls, marker);
3823 
3824                 /*
3825                  * The only case where the b_spa field should ever be
3826                  * zero, is the marker headers inserted by
3827                  * arc_evict_state(). It's possible for multiple threads
3828                  * to be calling arc_evict_state() concurrently (e.g.
3829                  * dsl_pool_close() and zio_inject_fault()), so we must
3830                  * skip any markers we see from these other threads.
3831                  */
3832                 if (hdr->b_spa == 0)
3833                         continue;
3834 
3835                 /* we're only interested in evicting buffers of a certain spa */
3836                 if (spa != 0 && hdr->b_spa != spa) {
3837                         ARCSTAT_BUMP(arcstat_evict_skip);
3838                         continue;
3839                 }
3840 
3841                 hash_lock = HDR_LOCK(hdr);
3842 
3843                 /*
3844                  * We aren't calling this function from any code path
3845                  * that would already be holding a hash lock, so we're
3846                  * asserting on this assumption to be defensive in case
3847                  * this ever changes. Without this check, it would be
3848                  * possible to incorrectly increment arcstat_mutex_miss
3849                  * below (e.g. if the code changed such that we called
3850                  * this function with a hash lock held).
3851                  */
3852                 ASSERT(!MUTEX_HELD(hash_lock));
3853 
3854                 if (mutex_tryenter(hash_lock)) {
3855                         uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3856                         mutex_exit(hash_lock);
3857 
3858                         bytes_evicted += evicted;
3859 
3860                         /*
3861                          * If evicted is zero, arc_evict_hdr() must have
3862                          * decided to skip this header, don't increment
3863                          * evict_count in this case.
3864                          */
3865                         if (evicted != 0)
3866                                 evict_count++;
3867 
3868                         /*
3869                          * If arc_size isn't overflowing, signal any
3870                          * threads that might happen to be waiting.
3871                          *
3872                          * For each header evicted, we wake up a single
3873                          * thread. If we used cv_broadcast, we could
3874                          * wake up "too many" threads causing arc_size
3875                          * to significantly overflow arc_c; since
3876                          * arc_get_data_impl() doesn't check for overflow
3877                          * when it's woken up (it doesn't because it's
3878                          * possible for the ARC to be overflowing while
3879                          * full of un-evictable buffers, and the
3880                          * function should proceed in this case).
3881                          *
3882                          * If threads are left sleeping, due to not
3883                          * using cv_broadcast here, they will be woken
3884                          * up via cv_broadcast in arc_adjust_cb() just
3885                          * before arc_adjust_zthr sleeps.
3886                          */
3887                         mutex_enter(&arc_adjust_lock);
3888                         if (!arc_is_overflowing())
3889                                 cv_signal(&arc_adjust_waiters_cv);
3890                         mutex_exit(&arc_adjust_lock);
3891                 } else {
3892                         ARCSTAT_BUMP(arcstat_mutex_miss);
3893                 }
3894         }
3895 
3896         multilist_sublist_unlock(mls);
3897 
3898         return (bytes_evicted);
3899 }
3900 
3901 /*
3902  * Evict buffers from the given arc state, until we've removed the
3903  * specified number of bytes. Move the removed buffers to the
3904  * appropriate evict state.
3905  *
3906  * This function makes a "best effort". It skips over any buffers
3907  * it can't get a hash_lock on, and so, may not catch all candidates.
3908  * It may also return without evicting as much space as requested.
3909  *
3910  * If bytes is specified using the special value ARC_EVICT_ALL, this
3911  * will evict all available (i.e. unlocked and evictable) buffers from
3912  * the given arc state; which is used by arc_flush().
3913  */
3914 static uint64_t
3915 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3916     arc_buf_contents_t type)
3917 {
3918         uint64_t total_evicted = 0;
3919         multilist_t *ml = state->arcs_list[type];
3920         int num_sublists;
3921         arc_buf_hdr_t **markers;
3922 
3923         IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3924 
3925         num_sublists = multilist_get_num_sublists(ml);
3926 
3927         /*
3928          * If we've tried to evict from each sublist, made some
3929          * progress, but still have not hit the target number of bytes
3930          * to evict, we want to keep trying. The markers allow us to
3931          * pick up where we left off for each individual sublist, rather
3932          * than starting from the tail each time.
3933          */
3934         markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3935         for (int i = 0; i < num_sublists; i++) {
3936                 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3937 
3938                 /*
3939                  * A b_spa of 0 is used to indicate that this header is
3940                  * a marker. This fact is used in arc_adjust_type() and
3941                  * arc_evict_state_impl().
3942                  */
3943                 markers[i]->b_spa = 0;
3944 
3945                 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3946                 multilist_sublist_insert_tail(mls, markers[i]);
3947                 multilist_sublist_unlock(mls);
3948         }
3949 
3950         /*
3951          * While we haven't hit our target number of bytes to evict, or
3952          * we're evicting all available buffers.
3953          */
3954         while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3955                 /*
3956                  * Start eviction using a randomly selected sublist,
3957                  * this is to try and evenly balance eviction across all
3958                  * sublists. Always starting at the same sublist
3959                  * (e.g. index 0) would cause evictions to favor certain
3960                  * sublists over others.
3961                  */
3962                 int sublist_idx = multilist_get_random_index(ml);
3963                 uint64_t scan_evicted = 0;
3964 
3965                 for (int i = 0; i < num_sublists; i++) {
3966                         uint64_t bytes_remaining;
3967                         uint64_t bytes_evicted;
3968 
3969                         if (bytes == ARC_EVICT_ALL)
3970                                 bytes_remaining = ARC_EVICT_ALL;
3971                         else if (total_evicted < bytes)
3972                                 bytes_remaining = bytes - total_evicted;
3973                         else
3974                                 break;
3975 
3976                         bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3977                             markers[sublist_idx], spa, bytes_remaining);
3978 
3979                         scan_evicted += bytes_evicted;
3980                         total_evicted += bytes_evicted;
3981 
3982                         /* we've reached the end, wrap to the beginning */
3983                         if (++sublist_idx >= num_sublists)
3984                                 sublist_idx = 0;
3985                 }
3986 
3987                 /*
3988                  * If we didn't evict anything during this scan, we have
3989                  * no reason to believe we'll evict more during another
3990                  * scan, so break the loop.
3991                  */
3992                 if (scan_evicted == 0) {
3993                         /* This isn't possible, let's make that obvious */
3994                         ASSERT3S(bytes, !=, 0);
3995 
3996                         /*
3997                          * When bytes is ARC_EVICT_ALL, the only way to
3998                          * break the loop is when scan_evicted is zero.
3999                          * In that case, we actually have evicted enough,
4000                          * so we don't want to increment the kstat.
4001                          */
4002                         if (bytes != ARC_EVICT_ALL) {
4003                                 ASSERT3S(total_evicted, <, bytes);
4004                                 ARCSTAT_BUMP(arcstat_evict_not_enough);
4005                         }
4006 
4007                         break;
4008                 }
4009         }
4010 
4011         for (int i = 0; i < num_sublists; i++) {
4012                 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4013                 multilist_sublist_remove(mls, markers[i]);
4014                 multilist_sublist_unlock(mls);
4015 
4016                 kmem_cache_free(hdr_full_cache, markers[i]);
4017         }
4018         kmem_free(markers, sizeof (*markers) * num_sublists);
4019 
4020         return (total_evicted);
4021 }
4022 
4023 /*
4024  * Flush all "evictable" data of the given type from the arc state
4025  * specified. This will not evict any "active" buffers (i.e. referenced).
4026  *
4027  * When 'retry' is set to B_FALSE, the function will make a single pass
4028  * over the state and evict any buffers that it can. Since it doesn't
4029  * continually retry the eviction, it might end up leaving some buffers
4030  * in the ARC due to lock misses.
4031  *
4032  * When 'retry' is set to B_TRUE, the function will continually retry the
4033  * eviction until *all* evictable buffers have been removed from the
4034  * state. As a result, if concurrent insertions into the state are
4035  * allowed (e.g. if the ARC isn't shutting down), this function might
4036  * wind up in an infinite loop, continually trying to evict buffers.
4037  */
4038 static uint64_t
4039 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4040     boolean_t retry)
4041 {
4042         uint64_t evicted = 0;
4043 
4044         while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4045                 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
4046 
4047                 if (!retry)
4048                         break;
4049         }
4050 
4051         return (evicted);
4052 }
4053 
4054 /*
4055  * Evict the specified number of bytes from the state specified,
4056  * restricting eviction to the spa and type given. This function
4057  * prevents us from trying to evict more from a state's list than
4058  * is "evictable", and to skip evicting altogether when passed a
4059  * negative value for "bytes". In contrast, arc_evict_state() will
4060  * evict everything it can, when passed a negative value for "bytes".
4061  */
4062 static uint64_t
4063 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
4064     arc_buf_contents_t type)
4065 {
4066         int64_t delta;
4067 
4068         if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4069                 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4070                     bytes);
4071                 return (arc_evict_state(state, spa, delta, type));
4072         }
4073 
4074         return (0);
4075 }
4076 
4077 /*
4078  * Evict metadata buffers from the cache, such that arc_meta_used is
4079  * capped by the arc_meta_limit tunable.
4080  */
4081 static uint64_t
4082 arc_adjust_meta(uint64_t meta_used)
4083 {
4084         uint64_t total_evicted = 0;
4085         int64_t target;
4086 
4087         /*
4088          * If we're over the meta limit, we want to evict enough
4089          * metadata to get back under the meta limit. We don't want to
4090          * evict so much that we drop the MRU below arc_p, though. If
4091          * we're over the meta limit more than we're over arc_p, we
4092          * evict some from the MRU here, and some from the MFU below.
4093          */
4094         target = MIN((int64_t)(meta_used - arc_meta_limit),
4095             (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4096             zfs_refcount_count(&arc_mru->arcs_size) - arc_p));
4097 
4098         total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4099 
4100         /*
4101          * Similar to the above, we want to evict enough bytes to get us
4102          * below the meta limit, but not so much as to drop us below the
4103          * space allotted to the MFU (which is defined as arc_c - arc_p).
4104          */
4105         target = MIN((int64_t)(meta_used - arc_meta_limit),
4106             (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) -
4107             (arc_c - arc_p)));
4108 
4109         total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4110 
4111         return (total_evicted);
4112 }
4113 
4114 /*
4115  * Return the type of the oldest buffer in the given arc state
4116  *
4117  * This function will select a random sublist of type ARC_BUFC_DATA and
4118  * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4119  * is compared, and the type which contains the "older" buffer will be
4120  * returned.
4121  */
4122 static arc_buf_contents_t
4123 arc_adjust_type(arc_state_t *state)
4124 {
4125         multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
4126         multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
4127         int data_idx = multilist_get_random_index(data_ml);
4128         int meta_idx = multilist_get_random_index(meta_ml);
4129         multilist_sublist_t *data_mls;
4130         multilist_sublist_t *meta_mls;
4131         arc_buf_contents_t type;
4132         arc_buf_hdr_t *data_hdr;
4133         arc_buf_hdr_t *meta_hdr;
4134 
4135         /*
4136          * We keep the sublist lock until we're finished, to prevent
4137          * the headers from being destroyed via arc_evict_state().
4138          */
4139         data_mls = multilist_sublist_lock(data_ml, data_idx);
4140         meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4141 
4142         /*
4143          * These two loops are to ensure we skip any markers that
4144          * might be at the tail of the lists due to arc_evict_state().
4145          */
4146 
4147         for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4148             data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4149                 if (data_hdr->b_spa != 0)
4150                         break;
4151         }
4152 
4153         for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4154             meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4155                 if (meta_hdr->b_spa != 0)
4156                         break;
4157         }
4158 
4159         if (data_hdr == NULL && meta_hdr == NULL) {
4160                 type = ARC_BUFC_DATA;
4161         } else if (data_hdr == NULL) {
4162                 ASSERT3P(meta_hdr, !=, NULL);
4163                 type = ARC_BUFC_METADATA;
4164         } else if (meta_hdr == NULL) {
4165                 ASSERT3P(data_hdr, !=, NULL);
4166                 type = ARC_BUFC_DATA;
4167         } else {
4168                 ASSERT3P(data_hdr, !=, NULL);
4169                 ASSERT3P(meta_hdr, !=, NULL);
4170 
4171                 /* The headers can't be on the sublist without an L1 header */
4172                 ASSERT(HDR_HAS_L1HDR(data_hdr));
4173                 ASSERT(HDR_HAS_L1HDR(meta_hdr));
4174 
4175                 if (data_hdr->b_l1hdr.b_arc_access <
4176                     meta_hdr->b_l1hdr.b_arc_access) {
4177                         type = ARC_BUFC_DATA;
4178                 } else {
4179                         type = ARC_BUFC_METADATA;
4180                 }
4181         }
4182 
4183         multilist_sublist_unlock(meta_mls);
4184         multilist_sublist_unlock(data_mls);
4185 
4186         return (type);
4187 }
4188 
4189 /*
4190  * Evict buffers from the cache, such that arc_size is capped by arc_c.
4191  */
4192 static uint64_t
4193 arc_adjust(void)
4194 {
4195         uint64_t total_evicted = 0;
4196         uint64_t bytes;
4197         int64_t target;
4198         uint64_t asize = aggsum_value(&arc_size);
4199         uint64_t ameta = aggsum_value(&arc_meta_used);
4200 
4201         /*
4202          * If we're over arc_meta_limit, we want to correct that before
4203          * potentially evicting data buffers below.
4204          */
4205         total_evicted += arc_adjust_meta(ameta);
4206 
4207         /*
4208          * Adjust MRU size
4209          *
4210          * If we're over the target cache size, we want to evict enough
4211          * from the list to get back to our target size. We don't want
4212          * to evict too much from the MRU, such that it drops below
4213          * arc_p. So, if we're over our target cache size more than
4214          * the MRU is over arc_p, we'll evict enough to get back to
4215          * arc_p here, and then evict more from the MFU below.
4216          */
4217         target = MIN((int64_t)(asize - arc_c),
4218             (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4219             zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
4220 
4221         /*
4222          * If we're below arc_meta_min, always prefer to evict data.
4223          * Otherwise, try to satisfy the requested number of bytes to
4224          * evict from the type which contains older buffers; in an
4225          * effort to keep newer buffers in the cache regardless of their
4226          * type. If we cannot satisfy the number of bytes from this
4227          * type, spill over into the next type.
4228          */
4229         if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
4230             ameta > arc_meta_min) {
4231                 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4232                 total_evicted += bytes;
4233 
4234                 /*
4235                  * If we couldn't evict our target number of bytes from
4236                  * metadata, we try to get the rest from data.
4237                  */
4238                 target -= bytes;
4239 
4240                 total_evicted +=
4241                     arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4242         } else {
4243                 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4244                 total_evicted += bytes;
4245 
4246                 /*
4247                  * If we couldn't evict our target number of bytes from
4248                  * data, we try to get the rest from metadata.
4249                  */
4250                 target -= bytes;
4251 
4252                 total_evicted +=
4253                     arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4254         }
4255 
4256         /*
4257          * Adjust MFU size
4258          *
4259          * Now that we've tried to evict enough from the MRU to get its
4260          * size back to arc_p, if we're still above the target cache
4261          * size, we evict the rest from the MFU.
4262          */
4263         target = asize - arc_c;
4264 
4265         if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
4266             ameta > arc_meta_min) {
4267                 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4268                 total_evicted += bytes;
4269 
4270                 /*
4271                  * If we couldn't evict our target number of bytes from
4272                  * metadata, we try to get the rest from data.
4273                  */
4274                 target -= bytes;
4275 
4276                 total_evicted +=
4277                     arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4278         } else {
4279                 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4280                 total_evicted += bytes;
4281 
4282                 /*
4283                  * If we couldn't evict our target number of bytes from
4284                  * data, we try to get the rest from data.
4285                  */
4286                 target -= bytes;
4287 
4288                 total_evicted +=
4289                     arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4290         }
4291 
4292         /*
4293          * Adjust ghost lists
4294          *
4295          * In addition to the above, the ARC also defines target values
4296          * for the ghost lists. The sum of the mru list and mru ghost
4297          * list should never exceed the target size of the cache, and
4298          * the sum of the mru list, mfu list, mru ghost list, and mfu
4299          * ghost list should never exceed twice the target size of the
4300          * cache. The following logic enforces these limits on the ghost
4301          * caches, and evicts from them as needed.
4302          */
4303         target = zfs_refcount_count(&arc_mru->arcs_size) +
4304             zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
4305 
4306         bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4307         total_evicted += bytes;
4308 
4309         target -= bytes;
4310 
4311         total_evicted +=
4312             arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4313 
4314         /*
4315          * We assume the sum of the mru list and mfu list is less than
4316          * or equal to arc_c (we enforced this above), which means we
4317          * can use the simpler of the two equations below:
4318          *
4319          *      mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4320          *                  mru ghost + mfu ghost <= arc_c
4321          */
4322         target = zfs_refcount_count(&arc_mru_ghost->arcs_size) +
4323             zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
4324 
4325         bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4326         total_evicted += bytes;
4327 
4328         target -= bytes;
4329 
4330         total_evicted +=
4331             arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4332 
4333         return (total_evicted);
4334 }
4335 
4336 void
4337 arc_flush(spa_t *spa, boolean_t retry)
4338 {
4339         uint64_t guid = 0;
4340 
4341         /*
4342          * If retry is B_TRUE, a spa must not be specified since we have
4343          * no good way to determine if all of a spa's buffers have been
4344          * evicted from an arc state.
4345          */
4346         ASSERT(!retry || spa == 0);
4347 
4348         if (spa != NULL)
4349                 guid = spa_load_guid(spa);
4350 
4351         (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4352         (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4353 
4354         (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4355         (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4356 
4357         (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4358         (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4359 
4360         (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4361         (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4362 }
4363 
4364 static void
4365 arc_reduce_target_size(int64_t to_free)
4366 {
4367         uint64_t asize = aggsum_value(&arc_size);
4368         if (arc_c > arc_c_min) {
4369 
4370                 if (arc_c > arc_c_min + to_free)
4371                         atomic_add_64(&arc_c, -to_free);
4372                 else
4373                         arc_c = arc_c_min;
4374 
4375                 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
4376                 if (asize < arc_c)
4377                         arc_c = MAX(asize, arc_c_min);
4378                 if (arc_p > arc_c)
4379                         arc_p = (arc_c >> 1);
4380                 ASSERT(arc_c >= arc_c_min);
4381                 ASSERT((int64_t)arc_p >= 0);
4382         }
4383 
4384         if (asize > arc_c) {
4385                 /* See comment in arc_adjust_cb_check() on why lock+flag */
4386                 mutex_enter(&arc_adjust_lock);
4387                 arc_adjust_needed = B_TRUE;
4388                 mutex_exit(&arc_adjust_lock);
4389                 zthr_wakeup(arc_adjust_zthr);
4390         }
4391 }
4392 
4393 typedef enum free_memory_reason_t {
4394         FMR_UNKNOWN,
4395         FMR_NEEDFREE,
4396         FMR_LOTSFREE,
4397         FMR_SWAPFS_MINFREE,
4398         FMR_PAGES_PP_MAXIMUM,
4399         FMR_HEAP_ARENA,
4400         FMR_ZIO_ARENA,
4401 } free_memory_reason_t;
4402 
4403 int64_t last_free_memory;
4404 free_memory_reason_t last_free_reason;
4405 
4406 /*
4407  * Additional reserve of pages for pp_reserve.
4408  */
4409 int64_t arc_pages_pp_reserve = 64;
4410 
4411 /*
4412  * Additional reserve of pages for swapfs.
4413  */
4414 int64_t arc_swapfs_reserve = 64;
4415 
4416 /*
4417  * Return the amount of memory that can be consumed before reclaim will be
4418  * needed.  Positive if there is sufficient free memory, negative indicates
4419  * the amount of memory that needs to be freed up.
4420  */
4421 static int64_t
4422 arc_available_memory(void)
4423 {
4424         int64_t lowest = INT64_MAX;
4425         int64_t n;
4426         free_memory_reason_t r = FMR_UNKNOWN;
4427 
4428 #ifdef _KERNEL
4429         if (needfree > 0) {
4430                 n = PAGESIZE * (-needfree);
4431                 if (n < lowest) {
4432                         lowest = n;
4433                         r = FMR_NEEDFREE;
4434                 }
4435         }
4436 
4437         /*
4438          * check that we're out of range of the pageout scanner.  It starts to
4439          * schedule paging if freemem is less than lotsfree and needfree.
4440          * lotsfree is the high-water mark for pageout, and needfree is the
4441          * number of needed free pages.  We add extra pages here to make sure
4442          * the scanner doesn't start up while we're freeing memory.
4443          */
4444         n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
4445         if (n < lowest) {
4446                 lowest = n;
4447                 r = FMR_LOTSFREE;
4448         }
4449 
4450         /*
4451          * check to make sure that swapfs has enough space so that anon
4452          * reservations can still succeed. anon_resvmem() checks that the
4453          * availrmem is greater than swapfs_minfree, and the number of reserved
4454          * swap pages.  We also add a bit of extra here just to prevent
4455          * circumstances from getting really dire.
4456          */
4457         n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4458             desfree - arc_swapfs_reserve);
4459         if (n < lowest) {
4460                 lowest = n;
4461                 r = FMR_SWAPFS_MINFREE;
4462         }
4463 
4464 
4465         /*
4466          * Check that we have enough availrmem that memory locking (e.g., via
4467          * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
4468          * stores the number of pages that cannot be locked; when availrmem
4469          * drops below pages_pp_maximum, page locking mechanisms such as
4470          * page_pp_lock() will fail.)
4471          */
4472         n = PAGESIZE * (availrmem - pages_pp_maximum -
4473             arc_pages_pp_reserve);
4474         if (n < lowest) {
4475                 lowest = n;
4476                 r = FMR_PAGES_PP_MAXIMUM;
4477         }
4478 
4479 #if defined(__i386)
4480         /*
4481          * If we're on an i386 platform, it's possible that we'll exhaust the
4482          * kernel heap space before we ever run out of available physical
4483          * memory.  Most checks of the size of the heap_area compare against
4484          * tune.t_minarmem, which is the minimum available real memory that we
4485          * can have in the system.  However, this is generally fixed at 25 pages
4486          * which is so low that it's useless.  In this comparison, we seek to
4487          * calculate the total heap-size, and reclaim if more than 3/4ths of the
4488          * heap is allocated.  (Or, in the calculation, if less than 1/4th is
4489          * free)
4490          */
4491         n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
4492             (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4493         if (n < lowest) {
4494                 lowest = n;
4495                 r = FMR_HEAP_ARENA;
4496         }
4497 #endif
4498 
4499         /*
4500          * If zio data pages are being allocated out of a separate heap segment,
4501          * then enforce that the size of available vmem for this arena remains
4502          * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4503          *
4504          * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4505          * memory (in the zio_arena) free, which can avoid memory
4506          * fragmentation issues.
4507          */
4508         if (zio_arena != NULL) {
4509                 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4510                     (vmem_size(zio_arena, VMEM_ALLOC) >>
4511                     arc_zio_arena_free_shift);
4512                 if (n < lowest) {
4513                         lowest = n;
4514                         r = FMR_ZIO_ARENA;
4515                 }
4516         }
4517 #else
4518         /* Every 100 calls, free a small amount */
4519         if (spa_get_random(100) == 0)
4520                 lowest = -1024;
4521 #endif
4522 
4523         last_free_memory = lowest;
4524         last_free_reason = r;
4525 
4526         return (lowest);
4527 }
4528 
4529 
4530 /*
4531  * Determine if the system is under memory pressure and is asking
4532  * to reclaim memory. A return value of B_TRUE indicates that the system
4533  * is under memory pressure and that the arc should adjust accordingly.
4534  */
4535 static boolean_t
4536 arc_reclaim_needed(void)
4537 {
4538         return (arc_available_memory() < 0);
4539 }
4540 
4541 static void
4542 arc_kmem_reap_soon(void)
4543 {
4544         size_t                  i;
4545         kmem_cache_t            *prev_cache = NULL;
4546         kmem_cache_t            *prev_data_cache = NULL;
4547         extern kmem_cache_t     *zio_buf_cache[];
4548         extern kmem_cache_t     *zio_data_buf_cache[];
4549         extern kmem_cache_t     *zfs_btree_leaf_cache;
4550         extern kmem_cache_t     *abd_chunk_cache;
4551 
4552 #ifdef _KERNEL
4553         if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) {
4554                 /*
4555                  * We are exceeding our meta-data cache limit.
4556                  * Purge some DNLC entries to release holds on meta-data.
4557                  */
4558                 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4559         }
4560 #if defined(__i386)
4561         /*
4562          * Reclaim unused memory from all kmem caches.
4563          */
4564         kmem_reap();
4565 #endif
4566 #endif
4567 
4568         for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4569                 if (zio_buf_cache[i] != prev_cache) {
4570                         prev_cache = zio_buf_cache[i];
4571                         kmem_cache_reap_soon(zio_buf_cache[i]);
4572                 }
4573                 if (zio_data_buf_cache[i] != prev_data_cache) {
4574                         prev_data_cache = zio_data_buf_cache[i];
4575                         kmem_cache_reap_soon(zio_data_buf_cache[i]);
4576                 }
4577         }
4578         kmem_cache_reap_soon(abd_chunk_cache);
4579         kmem_cache_reap_soon(buf_cache);
4580         kmem_cache_reap_soon(hdr_full_cache);
4581         kmem_cache_reap_soon(hdr_l2only_cache);
4582         kmem_cache_reap_soon(zfs_btree_leaf_cache);
4583 
4584         if (zio_arena != NULL) {
4585                 /*
4586                  * Ask the vmem arena to reclaim unused memory from its
4587                  * quantum caches.
4588                  */
4589                 vmem_qcache_reap(zio_arena);
4590         }
4591 }
4592 
4593 /* ARGSUSED */
4594 static boolean_t
4595 arc_adjust_cb_check(void *arg, zthr_t *zthr)
4596 {
4597         /*
4598          * This is necessary in order for the mdb ::arc dcmd to
4599          * show up to date information. Since the ::arc command
4600          * does not call the kstat's update function, without
4601          * this call, the command may show stale stats for the
4602          * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4603          * with this change, the data might be up to 1 second
4604          * out of date(the arc_adjust_zthr has a maximum sleep
4605          * time of 1 second); but that should suffice.  The
4606          * arc_state_t structures can be queried directly if more
4607          * accurate information is needed.
4608          */
4609         if (arc_ksp != NULL)
4610                 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4611 
4612         /*
4613          * We have to rely on arc_get_data_impl() to tell us when to adjust,
4614          * rather than checking if we are overflowing here, so that we are
4615          * sure to not leave arc_get_data_impl() waiting on
4616          * arc_adjust_waiters_cv.  If we have become "not overflowing" since
4617          * arc_get_data_impl() checked, we need to wake it up.  We could
4618          * broadcast the CV here, but arc_get_data_impl() may have not yet
4619          * gone to sleep.  We would need to use a mutex to ensure that this
4620          * function doesn't broadcast until arc_get_data_impl() has gone to
4621          * sleep (e.g. the arc_adjust_lock).  However, the lock ordering of
4622          * such a lock would necessarily be incorrect with respect to the
4623          * zthr_lock, which is held before this function is called, and is
4624          * held by arc_get_data_impl() when it calls zthr_wakeup().
4625          */
4626         return (arc_adjust_needed);
4627 }
4628 
4629 /*
4630  * Keep arc_size under arc_c by running arc_adjust which evicts data
4631  * from the ARC.
4632  */
4633 /* ARGSUSED */
4634 static void
4635 arc_adjust_cb(void *arg, zthr_t *zthr)
4636 {
4637         uint64_t evicted = 0;
4638 
4639         /* Evict from cache */
4640         evicted = arc_adjust();
4641 
4642         /*
4643          * If evicted is zero, we couldn't evict anything
4644          * via arc_adjust(). This could be due to hash lock
4645          * collisions, but more likely due to the majority of
4646          * arc buffers being unevictable. Therefore, even if
4647          * arc_size is above arc_c, another pass is unlikely to
4648          * be helpful and could potentially cause us to enter an
4649          * infinite loop.  Additionally, zthr_iscancelled() is
4650          * checked here so that if the arc is shutting down, the
4651          * broadcast will wake any remaining arc adjust waiters.
4652          */
4653         mutex_enter(&arc_adjust_lock);
4654         arc_adjust_needed = !zthr_iscancelled(arc_adjust_zthr) &&
4655             evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0;
4656         if (!arc_adjust_needed) {
4657                 /*
4658                  * We're either no longer overflowing, or we
4659                  * can't evict anything more, so we should wake
4660                  * up any waiters.
4661                  */
4662                 cv_broadcast(&arc_adjust_waiters_cv);
4663         }
4664         mutex_exit(&arc_adjust_lock);
4665 }
4666 
4667 /* ARGSUSED */
4668 static boolean_t
4669 arc_reap_cb_check(void *arg, zthr_t *zthr)
4670 {
4671         int64_t free_memory = arc_available_memory();
4672 
4673         /*
4674          * If a kmem reap is already active, don't schedule more.  We must
4675          * check for this because kmem_cache_reap_soon() won't actually
4676          * block on the cache being reaped (this is to prevent callers from
4677          * becoming implicitly blocked by a system-wide kmem reap -- which,
4678          * on a system with many, many full magazines, can take minutes).
4679          */
4680         if (!kmem_cache_reap_active() &&
4681             free_memory < 0) {
4682                 arc_no_grow = B_TRUE;
4683                 arc_warm = B_TRUE;
4684                 /*
4685                  * Wait at least zfs_grow_retry (default 60) seconds
4686                  * before considering growing.
4687                  */
4688                 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4689                 return (B_TRUE);
4690         } else if (free_memory < arc_c >> arc_no_grow_shift) {
4691                 arc_no_grow = B_TRUE;
4692         } else if (gethrtime() >= arc_growtime) {
4693                 arc_no_grow = B_FALSE;
4694         }
4695 
4696         return (B_FALSE);
4697 }
4698 
4699 /*
4700  * Keep enough free memory in the system by reaping the ARC's kmem
4701  * caches.  To cause more slabs to be reapable, we may reduce the
4702  * target size of the cache (arc_c), causing the arc_adjust_cb()
4703  * to free more buffers.
4704  */
4705 /* ARGSUSED */
4706 static void
4707 arc_reap_cb(void *arg, zthr_t *zthr)
4708 {
4709         int64_t free_memory;
4710 
4711         /*
4712          * Kick off asynchronous kmem_reap()'s of all our caches.
4713          */
4714         arc_kmem_reap_soon();
4715 
4716         /*
4717          * Wait at least arc_kmem_cache_reap_retry_ms between
4718          * arc_kmem_reap_soon() calls. Without this check it is possible to
4719          * end up in a situation where we spend lots of time reaping
4720          * caches, while we're near arc_c_min.  Waiting here also gives the
4721          * subsequent free memory check a chance of finding that the
4722          * asynchronous reap has already freed enough memory, and we don't
4723          * need to call arc_reduce_target_size().
4724          */
4725         delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4726 
4727         /*
4728          * Reduce the target size as needed to maintain the amount of free
4729          * memory in the system at a fraction of the arc_size (1/128th by
4730          * default).  If oversubscribed (free_memory < 0) then reduce the
4731          * target arc_size by the deficit amount plus the fractional
4732          * amount.  If free memory is positive but less then the fractional
4733          * amount, reduce by what is needed to hit the fractional amount.
4734          */
4735         free_memory = arc_available_memory();
4736 
4737         int64_t to_free =
4738             (arc_c >> arc_shrink_shift) - free_memory;
4739         if (to_free > 0) {
4740 #ifdef _KERNEL
4741                 to_free = MAX(to_free, ptob(needfree));
4742 #endif
4743                 arc_reduce_target_size(to_free);
4744         }
4745 }
4746 
4747 /*
4748  * Adapt arc info given the number of bytes we are trying to add and
4749  * the state that we are coming from.  This function is only called
4750  * when we are adding new content to the cache.
4751  */
4752 static void
4753 arc_adapt(int bytes, arc_state_t *state)
4754 {
4755         int mult;
4756         uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4757         int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size);
4758         int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size);
4759 
4760         if (state == arc_l2c_only)
4761                 return;
4762 
4763         ASSERT(bytes > 0);
4764         /*
4765          * Adapt the target size of the MRU list:
4766          *      - if we just hit in the MRU ghost list, then increase
4767          *        the target size of the MRU list.
4768          *      - if we just hit in the MFU ghost list, then increase
4769          *        the target size of the MFU list by decreasing the
4770          *        target size of the MRU list.
4771          */
4772         if (state == arc_mru_ghost) {
4773                 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4774                 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4775 
4776                 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4777         } else if (state == arc_mfu_ghost) {
4778                 uint64_t delta;
4779 
4780                 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4781                 mult = MIN(mult, 10);
4782 
4783                 delta = MIN(bytes * mult, arc_p);
4784                 arc_p = MAX(arc_p_min, arc_p - delta);
4785         }
4786         ASSERT((int64_t)arc_p >= 0);
4787 
4788         /*
4789          * Wake reap thread if we do not have any available memory
4790          */
4791         if (arc_reclaim_needed()) {
4792                 zthr_wakeup(arc_reap_zthr);
4793                 return;
4794         }
4795 
4796 
4797         if (arc_no_grow)
4798                 return;
4799 
4800         if (arc_c >= arc_c_max)
4801                 return;
4802 
4803         /*
4804          * If we're within (2 * maxblocksize) bytes of the target
4805          * cache size, increment the target cache size
4806          */
4807         if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) >
4808             0) {
4809                 atomic_add_64(&arc_c, (int64_t)bytes);
4810                 if (arc_c > arc_c_max)
4811                         arc_c = arc_c_max;
4812                 else if (state == arc_anon)
4813                         atomic_add_64(&arc_p, (int64_t)bytes);
4814                 if (arc_p > arc_c)
4815                         arc_p = arc_c;
4816         }
4817         ASSERT((int64_t)arc_p >= 0);
4818 }
4819 
4820 /*
4821  * Check if arc_size has grown past our upper threshold, determined by
4822  * zfs_arc_overflow_shift.
4823  */
4824 static boolean_t
4825 arc_is_overflowing(void)
4826 {
4827         /* Always allow at least one block of overflow */
4828         uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4829             arc_c >> zfs_arc_overflow_shift);
4830 
4831         /*
4832          * We just compare the lower bound here for performance reasons. Our
4833          * primary goals are to make sure that the arc never grows without
4834          * bound, and that it can reach its maximum size. This check
4835          * accomplishes both goals. The maximum amount we could run over by is
4836          * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
4837          * in the ARC. In practice, that's in the tens of MB, which is low
4838          * enough to be safe.
4839          */
4840         return (aggsum_lower_bound(&arc_size) >= arc_c + overflow);
4841 }
4842 
4843 static abd_t *
4844 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4845 {
4846         arc_buf_contents_t type = arc_buf_type(hdr);
4847 
4848         arc_get_data_impl(hdr, size, tag);
4849         if (type == ARC_BUFC_METADATA) {
4850                 return (abd_alloc(size, B_TRUE));
4851         } else {
4852                 ASSERT(type == ARC_BUFC_DATA);
4853                 return (abd_alloc(size, B_FALSE));
4854         }
4855 }
4856 
4857 static void *
4858 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4859 {
4860         arc_buf_contents_t type = arc_buf_type(hdr);
4861 
4862         arc_get_data_impl(hdr, size, tag);
4863         if (type == ARC_BUFC_METADATA) {
4864                 return (zio_buf_alloc(size));
4865         } else {
4866                 ASSERT(type == ARC_BUFC_DATA);
4867                 return (zio_data_buf_alloc(size));
4868         }
4869 }
4870 
4871 /*
4872  * Allocate a block and return it to the caller. If we are hitting the
4873  * hard limit for the cache size, we must sleep, waiting for the eviction
4874  * thread to catch up. If we're past the target size but below the hard
4875  * limit, we'll only signal the reclaim thread and continue on.
4876  */
4877 static void
4878 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4879 {
4880         arc_state_t *state = hdr->b_l1hdr.b_state;
4881         arc_buf_contents_t type = arc_buf_type(hdr);
4882 
4883         arc_adapt(size, state);
4884 
4885         /*
4886          * If arc_size is currently overflowing, and has grown past our
4887          * upper limit, we must be adding data faster than the evict
4888          * thread can evict. Thus, to ensure we don't compound the
4889          * problem by adding more data and forcing arc_size to grow even
4890          * further past its target size, we halt and wait for the
4891          * eviction thread to catch up.
4892          *
4893          * It's also possible that the reclaim thread is unable to evict
4894          * enough buffers to get arc_size below the overflow limit (e.g.
4895          * due to buffers being un-evictable, or hash lock collisions).
4896          * In this case, we want to proceed regardless if we're
4897          * overflowing; thus we don't use a while loop here.
4898          */
4899         if (arc_is_overflowing()) {
4900                 mutex_enter(&arc_adjust_lock);
4901 
4902                 /*
4903                  * Now that we've acquired the lock, we may no longer be
4904                  * over the overflow limit, lets check.
4905                  *
4906                  * We're ignoring the case of spurious wake ups. If that
4907                  * were to happen, it'd let this thread consume an ARC
4908                  * buffer before it should have (i.e. before we're under
4909                  * the overflow limit and were signalled by the reclaim
4910                  * thread). As long as that is a rare occurrence, it
4911                  * shouldn't cause any harm.
4912                  */
4913                 if (arc_is_overflowing()) {
4914                         arc_adjust_needed = B_TRUE;
4915                         zthr_wakeup(arc_adjust_zthr);
4916                         (void) cv_wait(&arc_adjust_waiters_cv,
4917                             &arc_adjust_lock);
4918                 }
4919                 mutex_exit(&arc_adjust_lock);
4920         }
4921 
4922         VERIFY3U(hdr->b_type, ==, type);
4923         if (type == ARC_BUFC_METADATA) {
4924                 arc_space_consume(size, ARC_SPACE_META);
4925         } else {
4926                 arc_space_consume(size, ARC_SPACE_DATA);
4927         }
4928 
4929         /*
4930          * Update the state size.  Note that ghost states have a
4931          * "ghost size" and so don't need to be updated.
4932          */
4933         if (!GHOST_STATE(state)) {
4934 
4935                 (void) zfs_refcount_add_many(&state->arcs_size, size, tag);
4936 
4937                 /*
4938                  * If this is reached via arc_read, the link is
4939                  * protected by the hash lock. If reached via
4940                  * arc_buf_alloc, the header should not be accessed by
4941                  * any other thread. And, if reached via arc_read_done,
4942                  * the hash lock will protect it if it's found in the
4943                  * hash table; otherwise no other thread should be
4944                  * trying to [add|remove]_reference it.
4945                  */
4946                 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4947                         ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4948                         (void) zfs_refcount_add_many(&state->arcs_esize[type],
4949                             size, tag);
4950                 }
4951 
4952                 /*
4953                  * If we are growing the cache, and we are adding anonymous
4954                  * data, and we have outgrown arc_p, update arc_p
4955                  */
4956                 if (aggsum_compare(&arc_size, arc_c) < 0 &&
4957                     hdr->b_l1hdr.b_state == arc_anon &&
4958                     (zfs_refcount_count(&arc_anon->arcs_size) +
4959                     zfs_refcount_count(&arc_mru->arcs_size) > arc_p))
4960                         arc_p = MIN(arc_c, arc_p + size);
4961         }
4962 }
4963 
4964 static void
4965 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
4966 {
4967         arc_free_data_impl(hdr, size, tag);
4968         abd_free(abd);
4969 }
4970 
4971 static void
4972 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
4973 {
4974         arc_buf_contents_t type = arc_buf_type(hdr);
4975 
4976         arc_free_data_impl(hdr, size, tag);
4977         if (type == ARC_BUFC_METADATA) {
4978                 zio_buf_free(buf, size);
4979         } else {
4980                 ASSERT(type == ARC_BUFC_DATA);
4981                 zio_data_buf_free(buf, size);
4982         }
4983 }
4984 
4985 /*
4986  * Free the arc data buffer.
4987  */
4988 static void
4989 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4990 {
4991         arc_state_t *state = hdr->b_l1hdr.b_state;
4992         arc_buf_contents_t type = arc_buf_type(hdr);
4993 
4994         /* protected by hash lock, if in the hash table */
4995         if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4996                 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4997                 ASSERT(state != arc_anon && state != arc_l2c_only);
4998 
4999                 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
5000                     size, tag);
5001         }
5002         (void) zfs_refcount_remove_many(&state->arcs_size, size, tag);
5003 
5004         VERIFY3U(hdr->b_type, ==, type);
5005         if (type == ARC_BUFC_METADATA) {
5006                 arc_space_return(size, ARC_SPACE_META);
5007         } else {
5008                 ASSERT(type == ARC_BUFC_DATA);
5009                 arc_space_return(size, ARC_SPACE_DATA);
5010         }
5011 }
5012 
5013 /*
5014  * This routine is called whenever a buffer is accessed.
5015  * NOTE: the hash lock is dropped in this function.
5016  */
5017 static void
5018 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
5019 {
5020         clock_t now;
5021 
5022         ASSERT(MUTEX_HELD(hash_lock));
5023         ASSERT(HDR_HAS_L1HDR(hdr));
5024 
5025         if (hdr->b_l1hdr.b_state == arc_anon) {
5026                 /*
5027                  * This buffer is not in the cache, and does not
5028                  * appear in our "ghost" list.  Add the new buffer
5029                  * to the MRU state.
5030                  */
5031 
5032                 ASSERT0(hdr->b_l1hdr.b_arc_access);
5033                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5034                 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5035                 arc_change_state(arc_mru, hdr, hash_lock);
5036 
5037         } else if (hdr->b_l1hdr.b_state == arc_mru) {
5038                 now = ddi_get_lbolt();
5039 
5040                 /*
5041                  * If this buffer is here because of a prefetch, then either:
5042                  * - clear the flag if this is a "referencing" read
5043                  *   (any subsequent access will bump this into the MFU state).
5044                  * or
5045                  * - move the buffer to the head of the list if this is
5046                  *   another prefetch (to make it less likely to be evicted).
5047                  */
5048                 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5049                         if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5050                                 /* link protected by hash lock */
5051                                 ASSERT(multilist_link_active(
5052                                     &hdr->b_l1hdr.b_arc_node));
5053                         } else {
5054                                 arc_hdr_clear_flags(hdr,
5055                                     ARC_FLAG_PREFETCH |
5056                                     ARC_FLAG_PRESCIENT_PREFETCH);
5057                                 ARCSTAT_BUMP(arcstat_mru_hits);
5058                         }
5059                         hdr->b_l1hdr.b_arc_access = now;
5060                         return;
5061                 }
5062 
5063                 /*
5064                  * This buffer has been "accessed" only once so far,
5065                  * but it is still in the cache. Move it to the MFU
5066                  * state.
5067                  */
5068                 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
5069                         /*
5070                          * More than 125ms have passed since we
5071                          * instantiated this buffer.  Move it to the
5072                          * most frequently used state.
5073                          */
5074                         hdr->b_l1hdr.b_arc_access = now;
5075                         DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5076                         arc_change_state(arc_mfu, hdr, hash_lock);
5077                 }
5078                 ARCSTAT_BUMP(arcstat_mru_hits);
5079         } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5080                 arc_state_t     *new_state;
5081                 /*
5082                  * This buffer has been "accessed" recently, but
5083                  * was evicted from the cache.  Move it to the
5084                  * MFU state.
5085                  */
5086 
5087                 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5088                         new_state = arc_mru;
5089                         if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) {
5090                                 arc_hdr_clear_flags(hdr,
5091                                     ARC_FLAG_PREFETCH |
5092                                     ARC_FLAG_PRESCIENT_PREFETCH);
5093                         }
5094                         DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5095                 } else {
5096                         new_state = arc_mfu;
5097                         DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5098                 }
5099 
5100                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5101                 arc_change_state(new_state, hdr, hash_lock);
5102 
5103                 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5104         } else if (hdr->b_l1hdr.b_state == arc_mfu) {
5105                 /*
5106                  * This buffer has been accessed more than once and is
5107                  * still in the cache.  Keep it in the MFU state.
5108                  *
5109                  * NOTE: an add_reference() that occurred when we did
5110                  * the arc_read() will have kicked this off the list.
5111                  * If it was a prefetch, we will explicitly move it to
5112                  * the head of the list now.
5113                  */
5114                 ARCSTAT_BUMP(arcstat_mfu_hits);
5115                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5116         } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5117                 arc_state_t     *new_state = arc_mfu;
5118                 /*
5119                  * This buffer has been accessed more than once but has
5120                  * been evicted from the cache.  Move it back to the
5121                  * MFU state.
5122                  */
5123 
5124                 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5125                         /*
5126                          * This is a prefetch access...
5127                          * move this block back to the MRU state.
5128                          */
5129                         new_state = arc_mru;
5130                 }
5131 
5132                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5133                 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5134                 arc_change_state(new_state, hdr, hash_lock);
5135 
5136                 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5137         } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5138                 /*
5139                  * This buffer is on the 2nd Level ARC.
5140                  */
5141 
5142                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5143                 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5144                 arc_change_state(arc_mfu, hdr, hash_lock);
5145         } else {
5146                 ASSERT(!"invalid arc state");
5147         }
5148 }
5149 
5150 /*
5151  * This routine is called by dbuf_hold() to update the arc_access() state
5152  * which otherwise would be skipped for entries in the dbuf cache.
5153  */
5154 void
5155 arc_buf_access(arc_buf_t *buf)
5156 {
5157         mutex_enter(&buf->b_evict_lock);
5158         arc_buf_hdr_t *hdr = buf->b_hdr;
5159 
5160         /*
5161          * Avoid taking the hash_lock when possible as an optimization.
5162          * The header must be checked again under the hash_lock in order
5163          * to handle the case where it is concurrently being released.
5164          */
5165         if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5166                 mutex_exit(&buf->b_evict_lock);
5167                 return;
5168         }
5169 
5170         kmutex_t *hash_lock = HDR_LOCK(hdr);
5171         mutex_enter(hash_lock);
5172 
5173         if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5174                 mutex_exit(hash_lock);
5175                 mutex_exit(&buf->b_evict_lock);
5176                 ARCSTAT_BUMP(arcstat_access_skip);
5177                 return;
5178         }
5179 
5180         mutex_exit(&buf->b_evict_lock);
5181 
5182         ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5183             hdr->b_l1hdr.b_state == arc_mfu);
5184 
5185         DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5186         arc_access(hdr, hash_lock);
5187         mutex_exit(hash_lock);
5188 
5189         ARCSTAT_BUMP(arcstat_hits);
5190         ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5191             demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5192 }
5193 
5194 /* a generic arc_read_done_func_t which you can use */
5195 /* ARGSUSED */
5196 void
5197 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5198     arc_buf_t *buf, void *arg)
5199 {
5200         if (buf == NULL)
5201                 return;
5202 
5203         bcopy(buf->b_data, arg, arc_buf_size(buf));
5204         arc_buf_destroy(buf, arg);
5205 }
5206 
5207 /* a generic arc_read_done_func_t */
5208 void
5209 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5210     arc_buf_t *buf, void *arg)
5211 {
5212         arc_buf_t **bufp = arg;
5213 
5214         if (buf == NULL) {
5215                 ASSERT(zio == NULL || zio->io_error != 0);
5216                 *bufp = NULL;
5217         } else {
5218                 ASSERT(zio == NULL || zio->io_error == 0);
5219                 *bufp = buf;
5220                 ASSERT(buf->b_data != NULL);
5221         }
5222 }
5223 
5224 static void
5225 arc_hdr_verify(arc_buf_hdr_t *hdr, const blkptr_t *bp)
5226 {
5227         if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5228                 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5229                 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5230         } else {
5231                 if (HDR_COMPRESSION_ENABLED(hdr)) {
5232                         ASSERT3U(arc_hdr_get_compress(hdr), ==,
5233                             BP_GET_COMPRESS(bp));
5234                 }
5235                 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5236                 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5237                 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5238         }
5239 }
5240 
5241 /*
5242  * XXX this should be changed to return an error, and callers
5243  * re-read from disk on failure (on nondebug bits).
5244  */
5245 static void
5246 arc_hdr_verify_checksum(spa_t *spa, arc_buf_hdr_t *hdr, const blkptr_t *bp)
5247 {
5248         arc_hdr_verify(hdr, bp);
5249         if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
5250                 return;
5251         int err = 0;
5252         abd_t *abd = NULL;
5253         if (BP_IS_ENCRYPTED(bp)) {
5254                 if (HDR_HAS_RABD(hdr)) {
5255                         abd = hdr->b_crypt_hdr.b_rabd;
5256                 }
5257         } else if (HDR_COMPRESSION_ENABLED(hdr)) {
5258                 abd = hdr->b_l1hdr.b_pabd;
5259         }
5260         if (abd != NULL) {
5261                 /*
5262                  * The offset is only used for labels, which are not
5263                  * cached in the ARC, so it doesn't matter what we
5264                  * pass for the offset parameter.
5265                  */
5266                 int psize = HDR_GET_PSIZE(hdr);
5267                 err = zio_checksum_error_impl(spa, bp,
5268                     BP_GET_CHECKSUM(bp), abd, psize, 0, NULL);
5269                 if (err != 0) {
5270                         /*
5271                          * Use abd_copy_to_buf() rather than
5272                          * abd_borrow_buf_copy() so that we are sure to
5273                          * include the buf in crash dumps.
5274                          */
5275                         void *buf = kmem_alloc(psize, KM_SLEEP);
5276                         abd_copy_to_buf(buf, abd, psize);
5277                         panic("checksum of cached data doesn't match BP "
5278                             "err=%u hdr=%p bp=%p abd=%p buf=%p",
5279                             err, (void *)hdr, (void *)bp, (void *)abd, buf);
5280                 }
5281         }
5282 }
5283 
5284 static void
5285 arc_read_done(zio_t *zio)
5286 {
5287         blkptr_t        *bp = zio->io_bp;
5288         arc_buf_hdr_t   *hdr = zio->io_private;
5289         kmutex_t        *hash_lock = NULL;
5290         arc_callback_t  *callback_list;
5291         arc_callback_t  *acb;
5292         boolean_t       freeable = B_FALSE;
5293 
5294         /*
5295          * The hdr was inserted into hash-table and removed from lists
5296          * prior to starting I/O.  We should find this header, since
5297          * it's in the hash table, and it should be legit since it's
5298          * not possible to evict it during the I/O.  The only possible
5299          * reason for it not to be found is if we were freed during the
5300          * read.
5301          */
5302         if (HDR_IN_HASH_TABLE(hdr)) {
5303                 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5304                 ASSERT3U(hdr->b_dva.dva_word[0], ==,
5305                     BP_IDENTITY(zio->io_bp)->dva_word[0]);
5306                 ASSERT3U(hdr->b_dva.dva_word[1], ==,
5307                     BP_IDENTITY(zio->io_bp)->dva_word[1]);
5308 
5309                 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
5310                     &hash_lock);
5311 
5312                 ASSERT((found == hdr &&
5313                     DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5314                     (found == hdr && HDR_L2_READING(hdr)));
5315                 ASSERT3P(hash_lock, !=, NULL);
5316         }
5317 
5318         if (BP_IS_PROTECTED(bp)) {
5319                 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5320                 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5321                 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5322                     hdr->b_crypt_hdr.b_iv);
5323 
5324                 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5325                         void *tmpbuf;
5326 
5327                         tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5328                             sizeof (zil_chain_t));
5329                         zio_crypt_decode_mac_zil(tmpbuf,
5330                             hdr->b_crypt_hdr.b_mac);
5331                         abd_return_buf(zio->io_abd, tmpbuf,
5332                             sizeof (zil_chain_t));
5333                 } else {
5334                         zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
5335                 }
5336         }
5337 
5338         if (zio->io_error == 0) {
5339                 /* byteswap if necessary */
5340                 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5341                         if (BP_GET_LEVEL(zio->io_bp) > 0) {
5342                                 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5343                         } else {
5344                                 hdr->b_l1hdr.b_byteswap =
5345                                     DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5346                         }
5347                 } else {
5348                         hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5349                 }
5350         }
5351 
5352         arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5353         if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5354                 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5355 
5356         callback_list = hdr->b_l1hdr.b_acb;
5357         ASSERT3P(callback_list, !=, NULL);
5358 
5359         if (hash_lock && zio->io_error == 0 &&
5360             hdr->b_l1hdr.b_state == arc_anon) {
5361                 /*
5362                  * Only call arc_access on anonymous buffers.  This is because
5363                  * if we've issued an I/O for an evicted buffer, we've already
5364                  * called arc_access (to prevent any simultaneous readers from
5365                  * getting confused).
5366                  */
5367                 arc_access(hdr, hash_lock);
5368         }
5369 
5370         /*
5371          * If a read request has a callback (i.e. acb_done is not NULL), then we
5372          * make a buf containing the data according to the parameters which were
5373          * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5374          * aren't needlessly decompressing the data multiple times.
5375          */
5376         int callback_cnt = 0;
5377         for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5378                 if (!acb->acb_done)
5379                         continue;
5380 
5381                 callback_cnt++;
5382 
5383                 if (zio->io_error != 0)
5384                         continue;
5385 
5386                 int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5387                     &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5388                     acb->acb_compressed, acb->acb_noauth, B_TRUE,
5389                     &acb->acb_buf);
5390 
5391                 /*
5392                  * Assert non-speculative zios didn't fail because an
5393                  * encryption key wasn't loaded
5394                  */
5395                 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5396                     error != EACCES);
5397 
5398                 /*
5399                  * If we failed to decrypt, report an error now (as the zio
5400                  * layer would have done if it had done the transforms).
5401                  */
5402                 if (error == ECKSUM) {
5403                         ASSERT(BP_IS_PROTECTED(bp));
5404                         error = SET_ERROR(EIO);
5405                         if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5406                                 spa_log_error(zio->io_spa, &acb->acb_zb);
5407                                 (void) zfs_ereport_post(
5408                                     FM_EREPORT_ZFS_AUTHENTICATION,
5409                                     zio->io_spa, NULL, &acb->acb_zb, zio, 0, 0);
5410                         }
5411                 }
5412 
5413                 if (error != 0) {
5414                         /*
5415                          * Decompression failed.  Set io_error
5416                          * so that when we call acb_done (below),
5417                          * we will indicate that the read failed.
5418                          * Note that in the unusual case where one
5419                          * callback is compressed and another
5420                          * uncompressed, we will mark all of them
5421                          * as failed, even though the uncompressed
5422                          * one can't actually fail.  In this case,
5423                          * the hdr will not be anonymous, because
5424                          * if there are multiple callbacks, it's
5425                          * because multiple threads found the same
5426                          * arc buf in the hash table.
5427                          */
5428                         zio->io_error = error;
5429                 }
5430         }
5431 
5432         /*
5433          * If there are multiple callbacks, we must have the hash lock,
5434          * because the only way for multiple threads to find this hdr is
5435          * in the hash table.  This ensures that if there are multiple
5436          * callbacks, the hdr is not anonymous.  If it were anonymous,
5437          * we couldn't use arc_buf_destroy() in the error case below.
5438          */
5439         ASSERT(callback_cnt < 2 || hash_lock != NULL);
5440 
5441         hdr->b_l1hdr.b_acb = NULL;
5442         arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5443         if (callback_cnt == 0)
5444                 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
5445 
5446         ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5447             callback_list != NULL);
5448 
5449         if (zio->io_error == 0) {
5450                 arc_hdr_verify(hdr, zio->io_bp);
5451         } else {
5452                 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5453                 if (hdr->b_l1hdr.b_state != arc_anon)
5454                         arc_change_state(arc_anon, hdr, hash_lock);
5455                 if (HDR_IN_HASH_TABLE(hdr))
5456                         buf_hash_remove(hdr);
5457                 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5458         }
5459 
5460         /*
5461          * Broadcast before we drop the hash_lock to avoid the possibility
5462          * that the hdr (and hence the cv) might be freed before we get to
5463          * the cv_broadcast().
5464          */
5465         cv_broadcast(&hdr->b_l1hdr.b_cv);
5466 
5467         if (hash_lock != NULL) {
5468                 mutex_exit(hash_lock);
5469         } else {
5470                 /*
5471                  * This block was freed while we waited for the read to
5472                  * complete.  It has been removed from the hash table and
5473                  * moved to the anonymous state (so that it won't show up
5474                  * in the cache).
5475                  */
5476                 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5477                 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5478         }
5479 
5480         /* execute each callback and free its structure */
5481         while ((acb = callback_list) != NULL) {
5482 
5483                 if (acb->acb_done != NULL) {
5484                         if (zio->io_error != 0 && acb->acb_buf != NULL) {
5485                                 /*
5486                                  * If arc_buf_alloc_impl() fails during
5487                                  * decompression, the buf will still be
5488                                  * allocated, and needs to be freed here.
5489                                  */
5490                                 arc_buf_destroy(acb->acb_buf, acb->acb_private);
5491                                 acb->acb_buf = NULL;
5492                         }
5493                         acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5494                             acb->acb_buf, acb->acb_private);
5495                 }
5496 
5497                 if (acb->acb_zio_dummy != NULL) {
5498                         acb->acb_zio_dummy->io_error = zio->io_error;
5499                         zio_nowait(acb->acb_zio_dummy);
5500                 }
5501 
5502                 callback_list = acb->acb_next;
5503                 kmem_free(acb, sizeof (arc_callback_t));
5504         }
5505 
5506         if (freeable)
5507                 arc_hdr_destroy(hdr);
5508 }
5509 
5510 /*
5511  * "Read" the block at the specified DVA (in bp) via the
5512  * cache.  If the block is found in the cache, invoke the provided
5513  * callback immediately and return.  Note that the `zio' parameter
5514  * in the callback will be NULL in this case, since no IO was
5515  * required.  If the block is not in the cache pass the read request
5516  * on to the spa with a substitute callback function, so that the
5517  * requested block will be added to the cache.
5518  *
5519  * If a read request arrives for a block that has a read in-progress,
5520  * either wait for the in-progress read to complete (and return the
5521  * results); or, if this is a read with a "done" func, add a record
5522  * to the read to invoke the "done" func when the read completes,
5523  * and return; or just return.
5524  *
5525  * arc_read_done() will invoke all the requested "done" functions
5526  * for readers of this block.
5527  */
5528 int
5529 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_read_done_func_t *done,
5530     void *private, zio_priority_t priority, int zio_flags,
5531     arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5532 {
5533         arc_buf_hdr_t *hdr = NULL;
5534         kmutex_t *hash_lock = NULL;
5535         zio_t *rzio;
5536         uint64_t guid = spa_load_guid(spa);
5537         boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5538         boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5539             (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5540         boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5541             (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5542         int rc = 0;
5543 
5544         ASSERT(!BP_IS_EMBEDDED(bp) ||
5545             BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5546 
5547 top:
5548         if (!BP_IS_EMBEDDED(bp)) {
5549                 /*
5550                  * Embedded BP's have no DVA and require no I/O to "read".
5551                  * Create an anonymous arc buf to back it.
5552                  */
5553                 hdr = buf_hash_find(guid, bp, &hash_lock);
5554         }
5555 
5556         /*
5557          * Determine if we have an L1 cache hit or a cache miss. For simplicity
5558          * we maintain encrypted data seperately from compressed / uncompressed
5559          * data. If the user is requesting raw encrypted data and we don't have
5560          * that in the header we will read from disk to guarantee that we can
5561          * get it even if the encryption keys aren't loaded.
5562          */
5563         if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5564             (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5565                 arc_buf_t *buf = NULL;
5566                 *arc_flags |= ARC_FLAG_CACHED;
5567 
5568                 if (HDR_IO_IN_PROGRESS(hdr)) {
5569                         zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5570 
5571                         ASSERT3P(head_zio, !=, NULL);
5572                         if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5573                             priority == ZIO_PRIORITY_SYNC_READ) {
5574                                 /*
5575                                  * This is a sync read that needs to wait for
5576                                  * an in-flight async read. Request that the
5577                                  * zio have its priority upgraded.
5578                                  */
5579                                 zio_change_priority(head_zio, priority);
5580                                 DTRACE_PROBE1(arc__async__upgrade__sync,
5581                                     arc_buf_hdr_t *, hdr);
5582                                 ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5583                         }
5584                         if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5585                                 arc_hdr_clear_flags(hdr,
5586                                     ARC_FLAG_PREDICTIVE_PREFETCH);
5587                         }
5588 
5589                         if (*arc_flags & ARC_FLAG_WAIT) {
5590                                 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5591                                 mutex_exit(hash_lock);
5592                                 goto top;
5593                         }
5594                         ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5595 
5596                         if (done) {
5597                                 arc_callback_t *acb = NULL;
5598 
5599                                 acb = kmem_zalloc(sizeof (arc_callback_t),
5600                                     KM_SLEEP);
5601                                 acb->acb_done = done;
5602                                 acb->acb_private = private;
5603                                 acb->acb_compressed = compressed_read;
5604                                 acb->acb_encrypted = encrypted_read;
5605                                 acb->acb_noauth = noauth_read;
5606                                 acb->acb_zb = *zb;
5607                                 if (pio != NULL)
5608                                         acb->acb_zio_dummy = zio_null(pio,
5609                                             spa, NULL, NULL, NULL, zio_flags);
5610 
5611                                 ASSERT3P(acb->acb_done, !=, NULL);
5612                                 acb->acb_zio_head = head_zio;
5613                                 acb->acb_next = hdr->b_l1hdr.b_acb;
5614                                 hdr->b_l1hdr.b_acb = acb;
5615                                 mutex_exit(hash_lock);
5616                                 return (0);
5617                         }
5618                         mutex_exit(hash_lock);
5619                         return (0);
5620                 }
5621 
5622                 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5623                     hdr->b_l1hdr.b_state == arc_mfu);
5624 
5625                 if (done) {
5626                         if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5627                                 /*
5628                                  * This is a demand read which does not have to
5629                                  * wait for i/o because we did a predictive
5630                                  * prefetch i/o for it, which has completed.
5631                                  */
5632                                 DTRACE_PROBE1(
5633                                     arc__demand__hit__predictive__prefetch,
5634                                     arc_buf_hdr_t *, hdr);
5635                                 ARCSTAT_BUMP(
5636                                     arcstat_demand_hit_predictive_prefetch);
5637                                 arc_hdr_clear_flags(hdr,
5638                                     ARC_FLAG_PREDICTIVE_PREFETCH);
5639                         }
5640 
5641                         if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5642                                 ARCSTAT_BUMP(
5643                                     arcstat_demand_hit_prescient_prefetch);
5644                                 arc_hdr_clear_flags(hdr,
5645                                     ARC_FLAG_PRESCIENT_PREFETCH);
5646                         }
5647 
5648                         ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
5649 
5650                         arc_hdr_verify_checksum(spa, hdr, bp);
5651 
5652                         /* Get a buf with the desired data in it. */
5653                         rc = arc_buf_alloc_impl(hdr, spa, zb, private,
5654                             encrypted_read, compressed_read, noauth_read,
5655                             B_TRUE, &buf);
5656                         if (rc == ECKSUM) {
5657                                 /*
5658                                  * Convert authentication and decryption errors
5659                                  * to EIO (and generate an ereport if needed)
5660                                  * before leaving the ARC.
5661                                  */
5662                                 rc = SET_ERROR(EIO);
5663                                 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5664                                         spa_log_error(spa, zb);
5665                                         (void) zfs_ereport_post(
5666                                             FM_EREPORT_ZFS_AUTHENTICATION,
5667                                             spa, NULL, zb, NULL, 0, 0);
5668                                 }
5669                         }
5670                         if (rc != 0) {
5671                                 (void) remove_reference(hdr, hash_lock,
5672                                     private);
5673                                 arc_buf_destroy_impl(buf);
5674                                 buf = NULL;
5675                         }
5676                         /* assert any errors weren't due to unloaded keys */
5677                         ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
5678                             rc != EACCES);
5679                 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
5680                     zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5681                         arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5682                 }
5683                 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5684                 arc_access(hdr, hash_lock);
5685                 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
5686                         arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5687                 if (*arc_flags & ARC_FLAG_L2CACHE)
5688                         arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5689                 mutex_exit(hash_lock);
5690                 ARCSTAT_BUMP(arcstat_hits);
5691                 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5692                     demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5693                     data, metadata, hits);
5694 
5695                 if (done)
5696                         done(NULL, zb, bp, buf, private);
5697         } else {
5698                 uint64_t lsize = BP_GET_LSIZE(bp);
5699                 uint64_t psize = BP_GET_PSIZE(bp);
5700                 arc_callback_t *acb;
5701                 vdev_t *vd = NULL;
5702                 uint64_t addr = 0;
5703                 boolean_t devw = B_FALSE;
5704                 uint64_t size;
5705                 abd_t *hdr_abd;
5706 
5707                 if (hdr == NULL) {
5708                         /* this block is not in the cache */
5709                         arc_buf_hdr_t *exists = NULL;
5710                         arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5711                         hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5712                             BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), type,
5713                             encrypted_read);
5714 
5715                         if (!BP_IS_EMBEDDED(bp)) {
5716                                 hdr->b_dva = *BP_IDENTITY(bp);
5717                                 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5718                                 exists = buf_hash_insert(hdr, &hash_lock);
5719                         }
5720                         if (exists != NULL) {
5721                                 /* somebody beat us to the hash insert */
5722                                 mutex_exit(hash_lock);
5723                                 buf_discard_identity(hdr);
5724                                 arc_hdr_destroy(hdr);
5725                                 goto top; /* restart the IO request */
5726                         }
5727                 } else {
5728                         /*
5729                          * This block is in the ghost cache or encrypted data
5730                          * was requested and we didn't have it. If it was
5731                          * L2-only (and thus didn't have an L1 hdr),
5732                          * we realloc the header to add an L1 hdr.
5733                          */
5734                         if (!HDR_HAS_L1HDR(hdr)) {
5735                                 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5736                                     hdr_full_cache);
5737                         }
5738 
5739                         if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
5740                                 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5741                                 ASSERT(!HDR_HAS_RABD(hdr));
5742                                 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5743                                 ASSERT0(zfs_refcount_count(
5744                                     &hdr->b_l1hdr.b_refcnt));
5745                                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5746                                 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5747                         } else if (HDR_IO_IN_PROGRESS(hdr)) {
5748                                 /*
5749                                  * If this header already had an IO in progress
5750                                  * and we are performing another IO to fetch
5751                                  * encrypted data we must wait until the first
5752                                  * IO completes so as not to confuse
5753                                  * arc_read_done(). This should be very rare
5754                                  * and so the performance impact shouldn't
5755                                  * matter.
5756                                  */
5757                                 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5758                                 mutex_exit(hash_lock);
5759                                 goto top;
5760                         }
5761 
5762                         /*
5763                          * This is a delicate dance that we play here.
5764                          * This hdr might be in the ghost list so we access
5765                          * it to move it out of the ghost list before we
5766                          * initiate the read. If it's a prefetch then
5767                          * it won't have a callback so we'll remove the
5768                          * reference that arc_buf_alloc_impl() created. We
5769                          * do this after we've called arc_access() to
5770                          * avoid hitting an assert in remove_reference().
5771                          */
5772                         arc_access(hdr, hash_lock);
5773                         arc_hdr_alloc_pabd(hdr, encrypted_read);
5774                 }
5775 
5776                 if (encrypted_read) {
5777                         ASSERT(HDR_HAS_RABD(hdr));
5778                         size = HDR_GET_PSIZE(hdr);
5779                         hdr_abd = hdr->b_crypt_hdr.b_rabd;
5780                         zio_flags |= ZIO_FLAG_RAW;
5781                 } else {
5782                         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5783                         size = arc_hdr_size(hdr);
5784                         hdr_abd = hdr->b_l1hdr.b_pabd;
5785 
5786                         if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
5787                                 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
5788                         }
5789 
5790                         /*
5791                          * For authenticated bp's, we do not ask the ZIO layer
5792                          * to authenticate them since this will cause the entire
5793                          * IO to fail if the key isn't loaded. Instead, we
5794                          * defer authentication until arc_buf_fill(), which will
5795                          * verify the data when the key is available.
5796                          */
5797                         if (BP_IS_AUTHENTICATED(bp))
5798                                 zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
5799                 }
5800 
5801                 if (*arc_flags & ARC_FLAG_PREFETCH &&
5802                     zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))
5803                         arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5804                 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
5805                         arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5806 
5807                 if (*arc_flags & ARC_FLAG_L2CACHE)
5808                         arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5809                 if (BP_IS_AUTHENTICATED(bp))
5810                         arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
5811                 if (BP_GET_LEVEL(bp) > 0)
5812                         arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5813                 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
5814                         arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
5815                 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5816 
5817                 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5818                 acb->acb_done = done;
5819                 acb->acb_private = private;
5820                 acb->acb_compressed = compressed_read;
5821                 acb->acb_encrypted = encrypted_read;
5822                 acb->acb_noauth = noauth_read;
5823                 acb->acb_zb = *zb;
5824 
5825                 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5826                 hdr->b_l1hdr.b_acb = acb;
5827                 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5828 
5829                 if (HDR_HAS_L2HDR(hdr) &&
5830                     (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5831                         devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5832                         addr = hdr->b_l2hdr.b_daddr;
5833                         /*
5834                          * Lock out L2ARC device removal.
5835                          */
5836                         if (vdev_is_dead(vd) ||
5837                             !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5838                                 vd = NULL;
5839                 }
5840 
5841                 /*
5842                  * We count both async reads and scrub IOs as asynchronous so
5843                  * that both can be upgraded in the event of a cache hit while
5844                  * the read IO is still in-flight.
5845                  */
5846                 if (priority == ZIO_PRIORITY_ASYNC_READ ||
5847                     priority == ZIO_PRIORITY_SCRUB)
5848                         arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5849                 else
5850                         arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5851 
5852                 /*
5853                  * At this point, we have a level 1 cache miss.  Try again in
5854                  * L2ARC if possible.
5855                  */
5856                 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5857 
5858                 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5859                     uint64_t, lsize, zbookmark_phys_t *, zb);
5860                 ARCSTAT_BUMP(arcstat_misses);
5861                 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5862                     demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5863                     data, metadata, misses);
5864 
5865                 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5866                         /*
5867                          * Read from the L2ARC if the following are true:
5868                          * 1. The L2ARC vdev was previously cached.
5869                          * 2. This buffer still has L2ARC metadata.
5870                          * 3. This buffer isn't currently writing to the L2ARC.
5871                          * 4. The L2ARC entry wasn't evicted, which may
5872                          *    also have invalidated the vdev.
5873                          * 5. This isn't prefetch and l2arc_noprefetch is set.
5874                          */
5875                         if (HDR_HAS_L2HDR(hdr) &&
5876                             !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5877                             !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5878                                 l2arc_read_callback_t *cb;
5879                                 abd_t *abd;
5880                                 uint64_t asize;
5881 
5882                                 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5883                                 ARCSTAT_BUMP(arcstat_l2_hits);
5884 
5885                                 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5886                                     KM_SLEEP);
5887                                 cb->l2rcb_hdr = hdr;
5888                                 cb->l2rcb_bp = *bp;
5889                                 cb->l2rcb_zb = *zb;
5890                                 cb->l2rcb_flags = zio_flags;
5891 
5892                                 asize = vdev_psize_to_asize(vd, size);
5893                                 if (asize != size) {
5894                                         abd = abd_alloc_for_io(asize,
5895                                             HDR_ISTYPE_METADATA(hdr));
5896                                         cb->l2rcb_abd = abd;
5897                                 } else {
5898                                         abd = hdr_abd;
5899                                 }
5900 
5901                                 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5902                                     addr + asize <= vd->vdev_psize -
5903                                     VDEV_LABEL_END_SIZE);
5904 
5905                                 /*
5906                                  * l2arc read.  The SCL_L2ARC lock will be
5907                                  * released by l2arc_read_done().
5908                                  * Issue a null zio if the underlying buffer
5909                                  * was squashed to zero size by compression.
5910                                  */
5911                                 ASSERT3U(arc_hdr_get_compress(hdr), !=,
5912                                     ZIO_COMPRESS_EMPTY);
5913                                 rzio = zio_read_phys(pio, vd, addr,
5914                                     asize, abd,
5915                                     ZIO_CHECKSUM_OFF,
5916                                     l2arc_read_done, cb, priority,
5917                                     zio_flags | ZIO_FLAG_DONT_CACHE |
5918                                     ZIO_FLAG_CANFAIL |
5919                                     ZIO_FLAG_DONT_PROPAGATE |
5920                                     ZIO_FLAG_DONT_RETRY, B_FALSE);
5921                                 acb->acb_zio_head = rzio;
5922 
5923                                 if (hash_lock != NULL)
5924                                         mutex_exit(hash_lock);
5925 
5926                                 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5927                                     zio_t *, rzio);
5928                                 ARCSTAT_INCR(arcstat_l2_read_bytes,
5929                                     HDR_GET_PSIZE(hdr));
5930 
5931                                 if (*arc_flags & ARC_FLAG_NOWAIT) {
5932                                         zio_nowait(rzio);
5933                                         return (0);
5934                                 }
5935 
5936                                 ASSERT(*arc_flags & ARC_FLAG_WAIT);
5937                                 if (zio_wait(rzio) == 0)
5938                                         return (0);
5939 
5940                                 /* l2arc read error; goto zio_read() */
5941                                 if (hash_lock != NULL)
5942                                         mutex_enter(hash_lock);
5943                         } else {
5944                                 DTRACE_PROBE1(l2arc__miss,
5945                                     arc_buf_hdr_t *, hdr);
5946                                 ARCSTAT_BUMP(arcstat_l2_misses);
5947                                 if (HDR_L2_WRITING(hdr))
5948                                         ARCSTAT_BUMP(arcstat_l2_rw_clash);
5949                                 spa_config_exit(spa, SCL_L2ARC, vd);
5950                         }
5951                 } else {
5952                         if (vd != NULL)
5953                                 spa_config_exit(spa, SCL_L2ARC, vd);
5954                         if (l2arc_ndev != 0) {
5955                                 DTRACE_PROBE1(l2arc__miss,
5956                                     arc_buf_hdr_t *, hdr);
5957                                 ARCSTAT_BUMP(arcstat_l2_misses);
5958                         }
5959                 }
5960 
5961                 rzio = zio_read(pio, spa, bp, hdr_abd, size,
5962                     arc_read_done, hdr, priority, zio_flags, zb);
5963                 acb->acb_zio_head = rzio;
5964 
5965                 if (hash_lock != NULL)
5966                         mutex_exit(hash_lock);
5967 
5968                 if (*arc_flags & ARC_FLAG_WAIT)
5969                         return (zio_wait(rzio));
5970 
5971                 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5972                 zio_nowait(rzio);
5973         }
5974         return (rc);
5975 }
5976 
5977 /*
5978  * Notify the arc that a block was freed, and thus will never be used again.
5979  */
5980 void
5981 arc_freed(spa_t *spa, const blkptr_t *bp)
5982 {
5983         arc_buf_hdr_t *hdr;
5984         kmutex_t *hash_lock;
5985         uint64_t guid = spa_load_guid(spa);
5986 
5987         ASSERT(!BP_IS_EMBEDDED(bp));
5988 
5989         hdr = buf_hash_find(guid, bp, &hash_lock);
5990         if (hdr == NULL)
5991                 return;
5992 
5993         /*
5994          * We might be trying to free a block that is still doing I/O
5995          * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5996          * dmu_sync-ed block). If this block is being prefetched, then it
5997          * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5998          * until the I/O completes. A block may also have a reference if it is
5999          * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6000          * have written the new block to its final resting place on disk but
6001          * without the dedup flag set. This would have left the hdr in the MRU
6002          * state and discoverable. When the txg finally syncs it detects that
6003          * the block was overridden in open context and issues an override I/O.
6004          * Since this is a dedup block, the override I/O will determine if the
6005          * block is already in the DDT. If so, then it will replace the io_bp
6006          * with the bp from the DDT and allow the I/O to finish. When the I/O
6007          * reaches the done callback, dbuf_write_override_done, it will
6008          * check to see if the io_bp and io_bp_override are identical.
6009          * If they are not, then it indicates that the bp was replaced with
6010          * the bp in the DDT and the override bp is freed. This allows
6011          * us to arrive here with a reference on a block that is being
6012          * freed. So if we have an I/O in progress, or a reference to
6013          * this hdr, then we don't destroy the hdr.
6014          */
6015         if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
6016             zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
6017                 arc_change_state(arc_anon, hdr, hash_lock);
6018                 arc_hdr_destroy(hdr);
6019                 mutex_exit(hash_lock);
6020         } else {
6021                 mutex_exit(hash_lock);
6022         }
6023 
6024 }
6025 
6026 /*
6027  * Release this buffer from the cache, making it an anonymous buffer.  This
6028  * must be done after a read and prior to modifying the buffer contents.
6029  * If the buffer has more than one reference, we must make
6030  * a new hdr for the buffer.
6031  */
6032 void
6033 arc_release(arc_buf_t *buf, void *tag)
6034 {
6035         arc_buf_hdr_t *hdr = buf->b_hdr;
6036 
6037         /*
6038          * It would be nice to assert that if its DMU metadata (level >
6039          * 0 || it's the dnode file), then it must be syncing context.
6040          * But we don't know that information at this level.
6041          */
6042 
6043         mutex_enter(&buf->b_evict_lock);
6044 
6045         ASSERT(HDR_HAS_L1HDR(hdr));
6046 
6047         /*
6048          * We don't grab the hash lock prior to this check, because if
6049          * the buffer's header is in the arc_anon state, it won't be
6050          * linked into the hash table.
6051          */
6052         if (hdr->b_l1hdr.b_state == arc_anon) {
6053                 mutex_exit(&buf->b_evict_lock);
6054                 /*
6055                  * If we are called from dmu_convert_mdn_block_to_raw(),
6056                  * a write might be in progress.  This is OK because
6057                  * the caller won't change the content of this buffer,
6058                  * only the flags (via arc_convert_to_raw()).
6059                  */
6060                 /* ASSERT(!HDR_IO_IN_PROGRESS(hdr)); */
6061                 ASSERT(!HDR_IN_HASH_TABLE(hdr));
6062                 ASSERT(!HDR_HAS_L2HDR(hdr));
6063                 ASSERT(HDR_EMPTY(hdr));
6064 
6065                 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6066                 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6067                 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
6068 
6069                 hdr->b_l1hdr.b_arc_access = 0;
6070 
6071                 /*
6072                  * If the buf is being overridden then it may already
6073                  * have a hdr that is not empty.
6074                  */
6075                 buf_discard_identity(hdr);
6076                 arc_buf_thaw(buf);
6077 
6078                 return;
6079         }
6080 
6081         kmutex_t *hash_lock = HDR_LOCK(hdr);
6082         mutex_enter(hash_lock);
6083 
6084         /*
6085          * This assignment is only valid as long as the hash_lock is
6086          * held, we must be careful not to reference state or the
6087          * b_state field after dropping the lock.
6088          */
6089         arc_state_t *state = hdr->b_l1hdr.b_state;
6090         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6091         ASSERT3P(state, !=, arc_anon);
6092 
6093         /* this buffer is not on any list */
6094         ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6095 
6096         if (HDR_HAS_L2HDR(hdr)) {
6097                 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6098 
6099                 /*
6100                  * We have to recheck this conditional again now that
6101                  * we're holding the l2ad_mtx to prevent a race with
6102                  * another thread which might be concurrently calling
6103                  * l2arc_evict(). In that case, l2arc_evict() might have
6104                  * destroyed the header's L2 portion as we were waiting
6105                  * to acquire the l2ad_mtx.
6106                  */
6107                 if (HDR_HAS_L2HDR(hdr))
6108                         arc_hdr_l2hdr_destroy(hdr);
6109 
6110                 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6111         }
6112 
6113         /*
6114          * Do we have more than one buf?
6115          */
6116         if (hdr->b_l1hdr.b_bufcnt > 1) {
6117                 arc_buf_hdr_t *nhdr;
6118                 uint64_t spa = hdr->b_spa;
6119                 uint64_t psize = HDR_GET_PSIZE(hdr);
6120                 uint64_t lsize = HDR_GET_LSIZE(hdr);
6121                 boolean_t protected = HDR_PROTECTED(hdr);
6122                 enum zio_compress compress = arc_hdr_get_compress(hdr);
6123                 arc_buf_contents_t type = arc_buf_type(hdr);
6124                 VERIFY3U(hdr->b_type, ==, type);
6125 
6126                 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6127                 (void) remove_reference(hdr, hash_lock, tag);
6128 
6129                 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
6130                         ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6131                         ASSERT(ARC_BUF_LAST(buf));
6132                 }
6133 
6134                 /*
6135                  * Pull the data off of this hdr and attach it to
6136                  * a new anonymous hdr. Also find the last buffer
6137                  * in the hdr's buffer list.
6138                  */
6139                 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6140                 ASSERT3P(lastbuf, !=, NULL);
6141 
6142                 /*
6143                  * If the current arc_buf_t and the hdr are sharing their data
6144                  * buffer, then we must stop sharing that block.
6145                  */
6146                 if (arc_buf_is_shared(buf)) {
6147                         ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6148                         VERIFY(!arc_buf_is_shared(lastbuf));
6149 
6150                         /*
6151                          * First, sever the block sharing relationship between
6152                          * buf and the arc_buf_hdr_t.
6153                          */
6154                         arc_unshare_buf(hdr, buf);
6155 
6156                         /*
6157                          * Now we need to recreate the hdr's b_pabd. Since we
6158                          * have lastbuf handy, we try to share with it, but if
6159                          * we can't then we allocate a new b_pabd and copy the
6160                          * data from buf into it.
6161                          */
6162                         if (arc_can_share(hdr, lastbuf)) {
6163                                 arc_share_buf(hdr, lastbuf);
6164                         } else {
6165                                 arc_hdr_alloc_pabd(hdr, B_FALSE);
6166                                 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6167                                     buf->b_data, psize);
6168                         }
6169                         VERIFY3P(lastbuf->b_data, !=, NULL);
6170                 } else if (HDR_SHARED_DATA(hdr)) {
6171                         /*
6172                          * Uncompressed shared buffers are always at the end
6173                          * of the list. Compressed buffers don't have the
6174                          * same requirements. This makes it hard to
6175                          * simply assert that the lastbuf is shared so
6176                          * we rely on the hdr's compression flags to determine
6177                          * if we have a compressed, shared buffer.
6178                          */
6179                         ASSERT(arc_buf_is_shared(lastbuf) ||
6180                             arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6181                         ASSERT(!ARC_BUF_SHARED(buf));
6182                 }
6183                 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6184                 ASSERT3P(state, !=, arc_l2c_only);
6185 
6186                 (void) zfs_refcount_remove_many(&state->arcs_size,
6187                     arc_buf_size(buf), buf);
6188 
6189                 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6190                         ASSERT3P(state, !=, arc_l2c_only);
6191                         (void) zfs_refcount_remove_many(
6192                             &state->arcs_esize[type],
6193                             arc_buf_size(buf), buf);
6194                 }
6195 
6196                 hdr->b_l1hdr.b_bufcnt -= 1;
6197                 if (ARC_BUF_ENCRYPTED(buf))
6198                         hdr->b_crypt_hdr.b_ebufcnt -= 1;
6199 
6200                 arc_cksum_verify(buf);
6201                 arc_buf_unwatch(buf);
6202 
6203                 /* if this is the last uncompressed buf free the checksum */
6204                 if (!arc_hdr_has_uncompressed_buf(hdr))
6205                         arc_cksum_free(hdr);
6206 
6207                 mutex_exit(hash_lock);
6208 
6209                 /*
6210                  * Allocate a new hdr. The new hdr will contain a b_pabd
6211                  * buffer which will be freed in arc_write().
6212                  */
6213                 nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6214                     compress, type, HDR_HAS_RABD(hdr));
6215                 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6216                 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
6217                 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6218                 VERIFY3U(nhdr->b_type, ==, type);
6219                 ASSERT(!HDR_SHARED_DATA(nhdr));
6220 
6221                 nhdr->b_l1hdr.b_buf = buf;
6222                 nhdr->b_l1hdr.b_bufcnt = 1;
6223                 if (ARC_BUF_ENCRYPTED(buf))
6224                         nhdr->b_crypt_hdr.b_ebufcnt = 1;
6225                 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6226                 buf->b_hdr = nhdr;
6227 
6228                 mutex_exit(&buf->b_evict_lock);
6229                 (void) zfs_refcount_add_many(&arc_anon->arcs_size,
6230                     arc_buf_size(buf), buf);
6231         } else {
6232                 mutex_exit(&buf->b_evict_lock);
6233                 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6234                 /* protected by hash lock, or hdr is on arc_anon */
6235                 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6236                 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6237                 arc_change_state(arc_anon, hdr, hash_lock);
6238                 hdr->b_l1hdr.b_arc_access = 0;
6239 
6240                 mutex_exit(hash_lock);
6241                 buf_discard_identity(hdr);
6242                 arc_buf_thaw(buf);
6243         }
6244 }
6245 
6246 int
6247 arc_released(arc_buf_t *buf)
6248 {
6249         int released;
6250 
6251         mutex_enter(&buf->b_evict_lock);
6252         released = (buf->b_data != NULL &&
6253             buf->b_hdr->b_l1hdr.b_state == arc_anon);
6254         mutex_exit(&buf->b_evict_lock);
6255         return (released);
6256 }
6257 
6258 #ifdef ZFS_DEBUG
6259 int
6260 arc_referenced(arc_buf_t *buf)
6261 {
6262         int referenced;
6263 
6264         mutex_enter(&buf->b_evict_lock);
6265         referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6266         mutex_exit(&buf->b_evict_lock);
6267         return (referenced);
6268 }
6269 #endif
6270 
6271 static void
6272 arc_write_ready(zio_t *zio)
6273 {
6274         arc_write_callback_t *callback = zio->io_private;
6275         arc_buf_t *buf = callback->awcb_buf;
6276         arc_buf_hdr_t *hdr = buf->b_hdr;
6277         blkptr_t *bp = zio->io_bp;
6278         uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6279 
6280         ASSERT(HDR_HAS_L1HDR(hdr));
6281         ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6282         ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
6283 
6284         /*
6285          * If we're reexecuting this zio because the pool suspended, then
6286          * cleanup any state that was previously set the first time the
6287          * callback was invoked.
6288          */
6289         if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6290                 arc_cksum_free(hdr);
6291                 arc_buf_unwatch(buf);
6292                 if (hdr->b_l1hdr.b_pabd != NULL) {
6293                         if (arc_buf_is_shared(buf)) {
6294                                 arc_unshare_buf(hdr, buf);
6295                         } else {
6296                                 arc_hdr_free_pabd(hdr, B_FALSE);
6297                         }
6298                 }
6299 
6300                 if (HDR_HAS_RABD(hdr))
6301                         arc_hdr_free_pabd(hdr, B_TRUE);
6302         }
6303         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6304         ASSERT(!HDR_HAS_RABD(hdr));
6305         ASSERT(!HDR_SHARED_DATA(hdr));
6306         ASSERT(!arc_buf_is_shared(buf));
6307 
6308         callback->awcb_ready(zio, buf, callback->awcb_private);
6309 
6310         if (HDR_IO_IN_PROGRESS(hdr))
6311                 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6312 
6313         arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6314 
6315         if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr))
6316                 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp));
6317 
6318         if (BP_IS_PROTECTED(bp)) {
6319                 /* ZIL blocks are written through zio_rewrite */
6320                 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6321                 ASSERT(HDR_PROTECTED(hdr));
6322 
6323                 if (BP_SHOULD_BYTESWAP(bp)) {
6324                         if (BP_GET_LEVEL(bp) > 0) {
6325                                 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6326                         } else {
6327                                 hdr->b_l1hdr.b_byteswap =
6328                                     DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6329                         }
6330                 } else {
6331                         hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6332                 }
6333 
6334                 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6335                 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6336                 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6337                     hdr->b_crypt_hdr.b_iv);
6338                 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6339         }
6340 
6341         /*
6342          * If this block was written for raw encryption but the zio layer
6343          * ended up only authenticating it, adjust the buffer flags now.
6344          */
6345         if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6346                 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6347                 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6348                 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6349                         buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6350         } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6351                 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6352                 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6353         }
6354 
6355         /* this must be done after the buffer flags are adjusted */
6356         arc_cksum_compute(buf);
6357 
6358         enum zio_compress compress;
6359         if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6360                 compress = ZIO_COMPRESS_OFF;
6361         } else {
6362                 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6363                 compress = BP_GET_COMPRESS(bp);
6364         }
6365         HDR_SET_PSIZE(hdr, psize);
6366         arc_hdr_set_compress(hdr, compress);
6367 
6368         if (zio->io_error != 0 || psize == 0)
6369                 goto out;
6370 
6371         /*
6372          * Fill the hdr with data. If the buffer is encrypted we have no choice
6373          * but to copy the data into b_rabd. If the hdr is compressed, the data
6374          * we want is available from the zio, otherwise we can take it from
6375          * the buf.
6376          *
6377          * We might be able to share the buf's data with the hdr here. However,
6378          * doing so would cause the ARC to be full of linear ABDs if we write a
6379          * lot of shareable data. As a compromise, we check whether scattered
6380          * ABDs are allowed, and assume that if they are then the user wants
6381          * the ARC to be primarily filled with them regardless of the data being
6382          * written. Therefore, if they're allowed then we allocate one and copy
6383          * the data into it; otherwise, we share the data directly if we can.
6384          */
6385         if (ARC_BUF_ENCRYPTED(buf)) {
6386                 ASSERT3U(psize, >, 0);
6387                 ASSERT(ARC_BUF_COMPRESSED(buf));
6388                 arc_hdr_alloc_pabd(hdr, B_TRUE);
6389                 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6390         } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
6391                 /*
6392                  * Ideally, we would always copy the io_abd into b_pabd, but the
6393                  * user may have disabled compressed ARC, thus we must check the
6394                  * hdr's compression setting rather than the io_bp's.
6395                  */
6396                 if (BP_IS_ENCRYPTED(bp)) {
6397                         ASSERT3U(psize, >, 0);
6398                         arc_hdr_alloc_pabd(hdr, B_TRUE);
6399                         abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6400                 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6401                     !ARC_BUF_COMPRESSED(buf)) {
6402                         ASSERT3U(psize, >, 0);
6403                         arc_hdr_alloc_pabd(hdr, B_FALSE);
6404                         abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6405                 } else {
6406                         ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6407                         arc_hdr_alloc_pabd(hdr, B_FALSE);
6408                         abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6409                             arc_buf_size(buf));
6410                 }
6411         } else {
6412                 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6413                 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6414                 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6415                 arc_share_buf(hdr, buf);
6416         }
6417 
6418 out:
6419         arc_hdr_verify(hdr, bp);
6420 }
6421 
6422 static void
6423 arc_write_children_ready(zio_t *zio)
6424 {
6425         arc_write_callback_t *callback = zio->io_private;
6426         arc_buf_t *buf = callback->awcb_buf;
6427 
6428         callback->awcb_children_ready(zio, buf, callback->awcb_private);
6429 }
6430 
6431 /*
6432  * The SPA calls this callback for each physical write that happens on behalf
6433  * of a logical write.  See the comment in dbuf_write_physdone() for details.
6434  */
6435 static void
6436 arc_write_physdone(zio_t *zio)
6437 {
6438         arc_write_callback_t *cb = zio->io_private;
6439         if (cb->awcb_physdone != NULL)
6440                 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
6441 }
6442 
6443 static void
6444 arc_write_done(zio_t *zio)
6445 {
6446         arc_write_callback_t *callback = zio->io_private;
6447         arc_buf_t *buf = callback->awcb_buf;
6448         arc_buf_hdr_t *hdr = buf->b_hdr;
6449 
6450         ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6451 
6452         if (zio->io_error == 0) {
6453                 arc_hdr_verify(hdr, zio->io_bp);
6454 
6455                 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6456                         buf_discard_identity(hdr);
6457                 } else {
6458                         hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6459                         hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
6460                 }
6461         } else {
6462                 ASSERT(HDR_EMPTY(hdr));
6463         }
6464 
6465         /*
6466          * If the block to be written was all-zero or compressed enough to be
6467          * embedded in the BP, no write was performed so there will be no
6468          * dva/birth/checksum.  The buffer must therefore remain anonymous
6469          * (and uncached).
6470          */
6471         if (!HDR_EMPTY(hdr)) {
6472                 arc_buf_hdr_t *exists;
6473                 kmutex_t *hash_lock;
6474 
6475                 ASSERT3U(zio->io_error, ==, 0);
6476 
6477                 arc_cksum_verify(buf);
6478 
6479                 exists = buf_hash_insert(hdr, &hash_lock);
6480                 if (exists != NULL) {
6481                         /*
6482                          * This can only happen if we overwrite for
6483                          * sync-to-convergence, because we remove
6484                          * buffers from the hash table when we arc_free().
6485                          */
6486                         if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6487                                 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6488                                         panic("bad overwrite, hdr=%p exists=%p",
6489                                             (void *)hdr, (void *)exists);
6490                                 ASSERT(zfs_refcount_is_zero(
6491                                     &exists->b_l1hdr.b_refcnt));
6492                                 arc_change_state(arc_anon, exists, hash_lock);
6493                                 arc_hdr_destroy(exists);
6494                                 mutex_exit(hash_lock);
6495                                 exists = buf_hash_insert(hdr, &hash_lock);
6496                                 ASSERT3P(exists, ==, NULL);
6497                         } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6498                                 /* nopwrite */
6499                                 ASSERT(zio->io_prop.zp_nopwrite);
6500                                 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6501                                         panic("bad nopwrite, hdr=%p exists=%p",
6502                                             (void *)hdr, (void *)exists);
6503                         } else {
6504                                 /* Dedup */
6505                                 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
6506                                 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6507                                 ASSERT(BP_GET_DEDUP(zio->io_bp));
6508                                 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6509                         }
6510                 }
6511                 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6512                 /* if it's not anon, we are doing a scrub */
6513                 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6514                         arc_access(hdr, hash_lock);
6515                 mutex_exit(hash_lock);
6516         } else {
6517                 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6518         }
6519 
6520         ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
6521         callback->awcb_done(zio, buf, callback->awcb_private);
6522 
6523         abd_put(zio->io_abd);
6524         kmem_free(callback, sizeof (arc_write_callback_t));
6525 }
6526 
6527 zio_t *
6528 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
6529     boolean_t l2arc, const zio_prop_t *zp, arc_write_done_func_t *ready,
6530     arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
6531     arc_write_done_func_t *done, void *private, zio_priority_t priority,
6532     int zio_flags, const zbookmark_phys_t *zb)
6533 {
6534         arc_buf_hdr_t *hdr = buf->b_hdr;
6535         arc_write_callback_t *callback;
6536         zio_t *zio;
6537         zio_prop_t localprop = *zp;
6538 
6539         ASSERT3P(ready, !=, NULL);
6540         ASSERT3P(done, !=, NULL);
6541         ASSERT(!HDR_IO_ERROR(hdr));
6542         ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6543         ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6544         ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
6545         if (l2arc)
6546                 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6547 
6548         if (ARC_BUF_ENCRYPTED(buf)) {
6549                 ASSERT(ARC_BUF_COMPRESSED(buf));
6550                 localprop.zp_encrypt = B_TRUE;
6551                 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6552                 /* CONSTCOND */
6553                 localprop.zp_byteorder =
6554                     (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
6555                     ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
6556                 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt,
6557                     ZIO_DATA_SALT_LEN);
6558                 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv,
6559                     ZIO_DATA_IV_LEN);
6560                 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac,
6561                     ZIO_DATA_MAC_LEN);
6562                 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
6563                         localprop.zp_nopwrite = B_FALSE;
6564                         localprop.zp_copies =
6565                             MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
6566                 }
6567                 zio_flags |= ZIO_FLAG_RAW;
6568         } else if (ARC_BUF_COMPRESSED(buf)) {
6569                 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6570                 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6571                 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6572         }
6573 
6574         callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6575         callback->awcb_ready = ready;
6576         callback->awcb_children_ready = children_ready;
6577         callback->awcb_physdone = physdone;
6578         callback->awcb_done = done;
6579         callback->awcb_private = private;
6580         callback->awcb_buf = buf;
6581 
6582         /*
6583          * The hdr's b_pabd is now stale, free it now. A new data block
6584          * will be allocated when the zio pipeline calls arc_write_ready().
6585          */
6586         if (hdr->b_l1hdr.b_pabd != NULL) {
6587                 /*
6588                  * If the buf is currently sharing the data block with
6589                  * the hdr then we need to break that relationship here.
6590                  * The hdr will remain with a NULL data pointer and the
6591                  * buf will take sole ownership of the block.
6592                  */
6593                 if (arc_buf_is_shared(buf)) {
6594                         arc_unshare_buf(hdr, buf);
6595                 } else {
6596                         arc_hdr_free_pabd(hdr, B_FALSE);
6597                 }
6598                 VERIFY3P(buf->b_data, !=, NULL);
6599         }
6600 
6601         if (HDR_HAS_RABD(hdr))
6602                 arc_hdr_free_pabd(hdr, B_TRUE);
6603 
6604         if (!(zio_flags & ZIO_FLAG_RAW))
6605                 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6606 
6607         ASSERT(!arc_buf_is_shared(buf));
6608         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6609 
6610         zio = zio_write(pio, spa, txg, bp,
6611             abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6612             HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6613             (children_ready != NULL) ? arc_write_children_ready : NULL,
6614             arc_write_physdone, arc_write_done, callback,
6615             priority, zio_flags, zb);
6616 
6617         return (zio);
6618 }
6619 
6620 static int
6621 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
6622 {
6623 #ifdef _KERNEL
6624         uint64_t available_memory = ptob(freemem);
6625 
6626 #if defined(__i386)
6627         available_memory =
6628             MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
6629 #endif
6630 
6631         if (freemem > physmem * arc_lotsfree_percent / 100)
6632                 return (0);
6633 
6634         if (txg > spa->spa_lowmem_last_txg) {
6635                 spa->spa_lowmem_last_txg = txg;
6636                 spa->spa_lowmem_page_load = 0;
6637         }
6638         /*
6639          * If we are in pageout, we know that memory is already tight,
6640          * the arc is already going to be evicting, so we just want to
6641          * continue to let page writes occur as quickly as possible.
6642          */
6643         if (curproc == proc_pageout) {
6644                 if (spa->spa_lowmem_page_load >
6645                     MAX(ptob(minfree), available_memory) / 4)
6646                         return (SET_ERROR(ERESTART));
6647                 /* Note: reserve is inflated, so we deflate */
6648                 atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
6649                 return (0);
6650         } else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
6651                 /* memory is low, delay before restarting */
6652                 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
6653                 return (SET_ERROR(EAGAIN));
6654         }
6655         spa->spa_lowmem_page_load = 0;
6656 #endif /* _KERNEL */
6657         return (0);
6658 }
6659 
6660 void
6661 arc_tempreserve_clear(uint64_t reserve)
6662 {
6663         atomic_add_64(&arc_tempreserve, -reserve);
6664         ASSERT((int64_t)arc_tempreserve >= 0);
6665 }
6666 
6667 int
6668 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
6669 {
6670         int error;
6671         uint64_t anon_size;
6672 
6673         if (reserve > arc_c/4 && !arc_no_grow)
6674                 arc_c = MIN(arc_c_max, reserve * 4);
6675         if (reserve > arc_c)
6676                 return (SET_ERROR(ENOMEM));
6677 
6678         /*
6679          * Don't count loaned bufs as in flight dirty data to prevent long
6680          * network delays from blocking transactions that are ready to be
6681          * assigned to a txg.
6682          */
6683 
6684         /* assert that it has not wrapped around */
6685         ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6686 
6687         anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) -
6688             arc_loaned_bytes), 0);
6689 
6690         /*
6691          * Writes will, almost always, require additional memory allocations
6692          * in order to compress/encrypt/etc the data.  We therefore need to
6693          * make sure that there is sufficient available memory for this.
6694          */
6695         error = arc_memory_throttle(spa, reserve, txg);
6696         if (error != 0)
6697                 return (error);
6698 
6699         /*
6700          * Throttle writes when the amount of dirty data in the cache
6701          * gets too large.  We try to keep the cache less than half full
6702          * of dirty blocks so that our sync times don't grow too large.
6703          *
6704          * In the case of one pool being built on another pool, we want
6705          * to make sure we don't end up throttling the lower (backing)
6706          * pool when the upper pool is the majority contributor to dirty
6707          * data. To insure we make forward progress during throttling, we
6708          * also check the current pool's net dirty data and only throttle
6709          * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
6710          * data in the cache.
6711          *
6712          * Note: if two requests come in concurrently, we might let them
6713          * both succeed, when one of them should fail.  Not a huge deal.
6714          */
6715         uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
6716         uint64_t spa_dirty_anon = spa_dirty_data(spa);
6717 
6718         if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 &&
6719             anon_size > arc_c * zfs_arc_anon_limit_percent / 100 &&
6720             spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
6721                 uint64_t meta_esize =
6722                     zfs_refcount_count(
6723                     &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6724                 uint64_t data_esize =
6725                     zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6726                 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6727                     "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
6728                     arc_tempreserve >> 10, meta_esize >> 10,
6729                     data_esize >> 10, reserve >> 10, arc_c >> 10);
6730                 return (SET_ERROR(ERESTART));
6731         }
6732         atomic_add_64(&arc_tempreserve, reserve);
6733         return (0);
6734 }
6735 
6736 static void
6737 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6738     kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6739 {
6740         size->value.ui64 = zfs_refcount_count(&state->arcs_size);
6741         evict_data->value.ui64 =
6742             zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6743         evict_metadata->value.ui64 =
6744             zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
6745 }
6746 
6747 static int
6748 arc_kstat_update(kstat_t *ksp, int rw)
6749 {
6750         arc_stats_t *as = ksp->ks_data;
6751 
6752         if (rw == KSTAT_WRITE) {
6753                 return (EACCES);
6754         } else {
6755                 arc_kstat_update_state(arc_anon,
6756                     &as->arcstat_anon_size,
6757                     &as->arcstat_anon_evictable_data,
6758                     &as->arcstat_anon_evictable_metadata);
6759                 arc_kstat_update_state(arc_mru,
6760                     &as->arcstat_mru_size,
6761                     &as->arcstat_mru_evictable_data,
6762                     &as->arcstat_mru_evictable_metadata);
6763                 arc_kstat_update_state(arc_mru_ghost,
6764                     &as->arcstat_mru_ghost_size,
6765                     &as->arcstat_mru_ghost_evictable_data,
6766                     &as->arcstat_mru_ghost_evictable_metadata);
6767                 arc_kstat_update_state(arc_mfu,
6768                     &as->arcstat_mfu_size,
6769                     &as->arcstat_mfu_evictable_data,
6770                     &as->arcstat_mfu_evictable_metadata);
6771                 arc_kstat_update_state(arc_mfu_ghost,
6772                     &as->arcstat_mfu_ghost_size,
6773                     &as->arcstat_mfu_ghost_evictable_data,
6774                     &as->arcstat_mfu_ghost_evictable_metadata);
6775 
6776                 ARCSTAT(arcstat_size) = aggsum_value(&arc_size);
6777                 ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used);
6778                 ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size);
6779                 ARCSTAT(arcstat_metadata_size) =
6780                     aggsum_value(&astat_metadata_size);
6781                 ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size);
6782                 ARCSTAT(arcstat_other_size) = aggsum_value(&astat_other_size);
6783                 ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size);
6784         }
6785 
6786         return (0);
6787 }
6788 
6789 /*
6790  * This function *must* return indices evenly distributed between all
6791  * sublists of the multilist. This is needed due to how the ARC eviction
6792  * code is laid out; arc_evict_state() assumes ARC buffers are evenly
6793  * distributed between all sublists and uses this assumption when
6794  * deciding which sublist to evict from and how much to evict from it.
6795  */
6796 unsigned int
6797 arc_state_multilist_index_func(multilist_t *ml, void *obj)
6798 {
6799         arc_buf_hdr_t *hdr = obj;
6800 
6801         /*
6802          * We rely on b_dva to generate evenly distributed index
6803          * numbers using buf_hash below. So, as an added precaution,
6804          * let's make sure we never add empty buffers to the arc lists.
6805          */
6806         ASSERT(!HDR_EMPTY(hdr));
6807 
6808         /*
6809          * The assumption here, is the hash value for a given
6810          * arc_buf_hdr_t will remain constant throughout its lifetime
6811          * (i.e. its b_spa, b_dva, and b_birth fields don't change).
6812          * Thus, we don't need to store the header's sublist index
6813          * on insertion, as this index can be recalculated on removal.
6814          *
6815          * Also, the low order bits of the hash value are thought to be
6816          * distributed evenly. Otherwise, in the case that the multilist
6817          * has a power of two number of sublists, each sublists' usage
6818          * would not be evenly distributed.
6819          */
6820         return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
6821             multilist_get_num_sublists(ml));
6822 }
6823 
6824 static void
6825 arc_state_init(void)
6826 {
6827         arc_anon = &ARC_anon;
6828         arc_mru = &ARC_mru;
6829         arc_mru_ghost = &ARC_mru_ghost;
6830         arc_mfu = &ARC_mfu;
6831         arc_mfu_ghost = &ARC_mfu_ghost;
6832         arc_l2c_only = &ARC_l2c_only;
6833 
6834         arc_mru->arcs_list[ARC_BUFC_METADATA] =
6835             multilist_create(sizeof (arc_buf_hdr_t),
6836             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6837             arc_state_multilist_index_func);
6838         arc_mru->arcs_list[ARC_BUFC_DATA] =
6839             multilist_create(sizeof (arc_buf_hdr_t),
6840             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6841             arc_state_multilist_index_func);
6842         arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
6843             multilist_create(sizeof (arc_buf_hdr_t),
6844             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6845             arc_state_multilist_index_func);
6846         arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
6847             multilist_create(sizeof (arc_buf_hdr_t),
6848             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6849             arc_state_multilist_index_func);
6850         arc_mfu->arcs_list[ARC_BUFC_METADATA] =
6851             multilist_create(sizeof (arc_buf_hdr_t),
6852             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6853             arc_state_multilist_index_func);
6854         arc_mfu->arcs_list[ARC_BUFC_DATA] =
6855             multilist_create(sizeof (arc_buf_hdr_t),
6856             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6857             arc_state_multilist_index_func);
6858         arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
6859             multilist_create(sizeof (arc_buf_hdr_t),
6860             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6861             arc_state_multilist_index_func);
6862         arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
6863             multilist_create(sizeof (arc_buf_hdr_t),
6864             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6865             arc_state_multilist_index_func);
6866         arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
6867             multilist_create(sizeof (arc_buf_hdr_t),
6868             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6869             arc_state_multilist_index_func);
6870         arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
6871             multilist_create(sizeof (arc_buf_hdr_t),
6872             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6873             arc_state_multilist_index_func);
6874 
6875         zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6876         zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6877         zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6878         zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6879         zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6880         zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6881         zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6882         zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6883         zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6884         zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6885         zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6886         zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6887 
6888         zfs_refcount_create(&arc_anon->arcs_size);
6889         zfs_refcount_create(&arc_mru->arcs_size);
6890         zfs_refcount_create(&arc_mru_ghost->arcs_size);
6891         zfs_refcount_create(&arc_mfu->arcs_size);
6892         zfs_refcount_create(&arc_mfu_ghost->arcs_size);
6893         zfs_refcount_create(&arc_l2c_only->arcs_size);
6894 
6895         aggsum_init(&arc_meta_used, 0);
6896         aggsum_init(&arc_size, 0);
6897         aggsum_init(&astat_data_size, 0);
6898         aggsum_init(&astat_metadata_size, 0);
6899         aggsum_init(&astat_hdr_size, 0);
6900         aggsum_init(&astat_other_size, 0);
6901         aggsum_init(&astat_l2_hdr_size, 0);
6902 }
6903 
6904 static void
6905 arc_state_fini(void)
6906 {
6907         zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6908         zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6909         zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6910         zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6911         zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6912         zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6913         zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6914         zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6915         zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6916         zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6917         zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6918         zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6919 
6920         zfs_refcount_destroy(&arc_anon->arcs_size);
6921         zfs_refcount_destroy(&arc_mru->arcs_size);
6922         zfs_refcount_destroy(&arc_mru_ghost->arcs_size);
6923         zfs_refcount_destroy(&arc_mfu->arcs_size);
6924         zfs_refcount_destroy(&arc_mfu_ghost->arcs_size);
6925         zfs_refcount_destroy(&arc_l2c_only->arcs_size);
6926 
6927         multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
6928         multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
6929         multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
6930         multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
6931         multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
6932         multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
6933         multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
6934         multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
6935         multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
6936         multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
6937 
6938         aggsum_fini(&arc_meta_used);
6939         aggsum_fini(&arc_size);
6940         aggsum_fini(&astat_data_size);
6941         aggsum_fini(&astat_metadata_size);
6942         aggsum_fini(&astat_hdr_size);
6943         aggsum_fini(&astat_other_size);
6944         aggsum_fini(&astat_l2_hdr_size);
6945 
6946 }
6947 
6948 uint64_t
6949 arc_max_bytes(void)
6950 {
6951         return (arc_c_max);
6952 }
6953 
6954 void
6955 arc_init(void)
6956 {
6957         /*
6958          * allmem is "all memory that we could possibly use".
6959          */
6960 #ifdef _KERNEL
6961         uint64_t allmem = ptob(physmem - swapfs_minfree);
6962 #else
6963         uint64_t allmem = (physmem * PAGESIZE) / 2;
6964 #endif
6965         mutex_init(&arc_adjust_lock, NULL, MUTEX_DEFAULT, NULL);
6966         cv_init(&arc_adjust_waiters_cv, NULL, CV_DEFAULT, NULL);
6967 
6968         /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
6969         arc_c_min = MAX(allmem / 32, 64 << 20);
6970         /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
6971         if (allmem >= 1 << 30)
6972                 arc_c_max = allmem - (1 << 30);
6973         else
6974                 arc_c_max = arc_c_min;
6975         arc_c_max = MAX(allmem * 3 / 4, arc_c_max);
6976 
6977         /*
6978          * In userland, there's only the memory pressure that we artificially
6979          * create (see arc_available_memory()).  Don't let arc_c get too
6980          * small, because it can cause transactions to be larger than
6981          * arc_c, causing arc_tempreserve_space() to fail.
6982          */
6983 #ifndef _KERNEL
6984         arc_c_min = arc_c_max / 2;
6985 #endif
6986 
6987         /*
6988          * Allow the tunables to override our calculations if they are
6989          * reasonable (ie. over 64MB)
6990          */
6991         if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) {
6992                 arc_c_max = zfs_arc_max;
6993                 arc_c_min = MIN(arc_c_min, arc_c_max);
6994         }
6995         if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max)
6996                 arc_c_min = zfs_arc_min;
6997 
6998         arc_c = arc_c_max;
6999         arc_p = (arc_c >> 1);
7000 
7001         /* limit meta-data to 1/4 of the arc capacity */
7002         arc_meta_limit = arc_c_max / 4;
7003 
7004 #ifdef _KERNEL
7005         /*
7006          * Metadata is stored in the kernel's heap.  Don't let us
7007          * use more than half the heap for the ARC.
7008          */
7009         arc_meta_limit = MIN(arc_meta_limit,
7010             vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
7011 #endif
7012 
7013         /* Allow the tunable to override if it is reasonable */
7014         if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
7015                 arc_meta_limit = zfs_arc_meta_limit;
7016 
7017         if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
7018                 arc_c_min = arc_meta_limit / 2;
7019 
7020         if (zfs_arc_meta_min > 0) {
7021                 arc_meta_min = zfs_arc_meta_min;
7022         } else {
7023                 arc_meta_min = arc_c_min / 2;
7024         }
7025 
7026         if (zfs_arc_grow_retry > 0)
7027                 arc_grow_retry = zfs_arc_grow_retry;
7028 
7029         if (zfs_arc_shrink_shift > 0)
7030                 arc_shrink_shift = zfs_arc_shrink_shift;
7031 
7032         /*
7033          * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
7034          */
7035         if (arc_no_grow_shift >= arc_shrink_shift)
7036                 arc_no_grow_shift = arc_shrink_shift - 1;
7037 
7038         if (zfs_arc_p_min_shift > 0)
7039                 arc_p_min_shift = zfs_arc_p_min_shift;
7040 
7041         /* if kmem_flags are set, lets try to use less memory */
7042         if (kmem_debugging())
7043                 arc_c = arc_c / 2;
7044         if (arc_c < arc_c_min)
7045                 arc_c = arc_c_min;
7046 
7047         arc_state_init();
7048 
7049         /*
7050          * The arc must be "uninitialized", so that hdr_recl() (which is
7051          * registered by buf_init()) will not access arc_reap_zthr before
7052          * it is created.
7053          */
7054         ASSERT(!arc_initialized);
7055         buf_init();
7056 
7057         arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7058             sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7059 
7060         if (arc_ksp != NULL) {
7061                 arc_ksp->ks_data = &arc_stats;
7062                 arc_ksp->ks_update = arc_kstat_update;
7063                 kstat_install(arc_ksp);
7064         }
7065 
7066         arc_adjust_zthr = zthr_create(arc_adjust_cb_check,
7067             arc_adjust_cb, NULL);
7068         arc_reap_zthr = zthr_create_timer(arc_reap_cb_check,
7069             arc_reap_cb, NULL, SEC2NSEC(1));
7070 
7071         arc_initialized = B_TRUE;
7072         arc_warm = B_FALSE;
7073 
7074         /*
7075          * Calculate maximum amount of dirty data per pool.
7076          *
7077          * If it has been set by /etc/system, take that.
7078          * Otherwise, use a percentage of physical memory defined by
7079          * zfs_dirty_data_max_percent (default 10%) with a cap at
7080          * zfs_dirty_data_max_max (default 4GB).
7081          */
7082         if (zfs_dirty_data_max == 0) {
7083                 zfs_dirty_data_max = physmem * PAGESIZE *
7084                     zfs_dirty_data_max_percent / 100;
7085                 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7086                     zfs_dirty_data_max_max);
7087         }
7088 }
7089 
7090 void
7091 arc_fini(void)
7092 {
7093         /* Use B_TRUE to ensure *all* buffers are evicted */
7094         arc_flush(NULL, B_TRUE);
7095 
7096         arc_initialized = B_FALSE;
7097 
7098         if (arc_ksp != NULL) {
7099                 kstat_delete(arc_ksp);
7100                 arc_ksp = NULL;
7101         }
7102 
7103         (void) zthr_cancel(arc_adjust_zthr);
7104         zthr_destroy(arc_adjust_zthr);
7105 
7106         (void) zthr_cancel(arc_reap_zthr);
7107         zthr_destroy(arc_reap_zthr);
7108 
7109         mutex_destroy(&arc_adjust_lock);
7110         cv_destroy(&arc_adjust_waiters_cv);
7111 
7112         /*
7113          * buf_fini() must proceed arc_state_fini() because buf_fin() may
7114          * trigger the release of kmem magazines, which can callback to
7115          * arc_space_return() which accesses aggsums freed in act_state_fini().
7116          */
7117         buf_fini();
7118         arc_state_fini();
7119 
7120         ASSERT0(arc_loaned_bytes);
7121 }
7122 
7123 /*
7124  * Level 2 ARC
7125  *
7126  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7127  * It uses dedicated storage devices to hold cached data, which are populated
7128  * using large infrequent writes.  The main role of this cache is to boost
7129  * the performance of random read workloads.  The intended L2ARC devices
7130  * include short-stroked disks, solid state disks, and other media with
7131  * substantially faster read latency than disk.
7132  *
7133  *                 +-----------------------+
7134  *                 |         ARC           |
7135  *                 +-----------------------+
7136  *                    |         ^     ^
7137  *                    |         |     |
7138  *      l2arc_feed_thread()    arc_read()
7139  *                    |         |     |
7140  *                    |  l2arc read   |
7141  *                    V         |     |
7142  *               +---------------+    |
7143  *               |     L2ARC     |    |
7144  *               +---------------+    |
7145  *                   |    ^           |
7146  *          l2arc_write() |           |
7147  *                   |    |           |
7148  *                   V    |           |
7149  *                 +-------+      +-------+
7150  *                 | vdev  |      | vdev  |
7151  *                 | cache |      | cache |
7152  *                 +-------+      +-------+
7153  *                 +=========+     .-----.
7154  *                 :  L2ARC  :    |-_____-|
7155  *                 : devices :    | Disks |
7156  *                 +=========+    `-_____-'
7157  *
7158  * Read requests are satisfied from the following sources, in order:
7159  *
7160  *      1) ARC
7161  *      2) vdev cache of L2ARC devices
7162  *      3) L2ARC devices
7163  *      4) vdev cache of disks
7164  *      5) disks
7165  *
7166  * Some L2ARC device types exhibit extremely slow write performance.
7167  * To accommodate for this there are some significant differences between
7168  * the L2ARC and traditional cache design:
7169  *
7170  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
7171  * the ARC behave as usual, freeing buffers and placing headers on ghost
7172  * lists.  The ARC does not send buffers to the L2ARC during eviction as
7173  * this would add inflated write latencies for all ARC memory pressure.
7174  *
7175  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
7176  * It does this by periodically scanning buffers from the eviction-end of
7177  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
7178  * not already there. It scans until a headroom of buffers is satisfied,
7179  * which itself is a buffer for ARC eviction. If a compressible buffer is
7180  * found during scanning and selected for writing to an L2ARC device, we
7181  * temporarily boost scanning headroom during the next scan cycle to make
7182  * sure we adapt to compression effects (which might significantly reduce
7183  * the data volume we write to L2ARC). The thread that does this is
7184  * l2arc_feed_thread(), illustrated below; example sizes are included to
7185  * provide a better sense of ratio than this diagram:
7186  *
7187  *             head -->                        tail
7188  *              +---------------------+----------+
7189  *      ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
7190  *              +---------------------+----------+   |   o L2ARC eligible
7191  *      ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
7192  *              +---------------------+----------+   |
7193  *                   15.9 Gbytes      ^ 32 Mbytes    |
7194  *                                 headroom          |
7195  *                                            l2arc_feed_thread()
7196  *                                                   |
7197  *                       l2arc write hand <--[oooo]--'
7198  *                               |           8 Mbyte
7199  *                               |          write max
7200  *                               V
7201  *                +==============================+
7202  *      L2ARC dev |####|#|###|###|    |####| ... |
7203  *                +==============================+
7204  *                           32 Gbytes
7205  *
7206  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
7207  * evicted, then the L2ARC has cached a buffer much sooner than it probably
7208  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
7209  * safe to say that this is an uncommon case, since buffers at the end of
7210  * the ARC lists have moved there due to inactivity.
7211  *
7212  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
7213  * then the L2ARC simply misses copying some buffers.  This serves as a
7214  * pressure valve to prevent heavy read workloads from both stalling the ARC
7215  * with waits and clogging the L2ARC with writes.  This also helps prevent
7216  * the potential for the L2ARC to churn if it attempts to cache content too
7217  * quickly, such as during backups of the entire pool.
7218  *
7219  * 5. After system boot and before the ARC has filled main memory, there are
7220  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
7221  * lists can remain mostly static.  Instead of searching from tail of these
7222  * lists as pictured, the l2arc_feed_thread() will search from the list heads
7223  * for eligible buffers, greatly increasing its chance of finding them.
7224  *
7225  * The L2ARC device write speed is also boosted during this time so that
7226  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
7227  * there are no L2ARC reads, and no fear of degrading read performance
7228  * through increased writes.
7229  *
7230  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
7231  * the vdev queue can aggregate them into larger and fewer writes.  Each
7232  * device is written to in a rotor fashion, sweeping writes through
7233  * available space then repeating.
7234  *
7235  * 7. The L2ARC does not store dirty content.  It never needs to flush
7236  * write buffers back to disk based storage.
7237  *
7238  * 8. If an ARC buffer is written (and dirtied) which also exists in the
7239  * L2ARC, the now stale L2ARC buffer is immediately dropped.
7240  *
7241  * The performance of the L2ARC can be tweaked by a number of tunables, which
7242  * may be necessary for different workloads:
7243  *
7244  *      l2arc_write_max         max write bytes per interval
7245  *      l2arc_write_boost       extra write bytes during device warmup
7246  *      l2arc_noprefetch        skip caching prefetched buffers
7247  *      l2arc_headroom          number of max device writes to precache
7248  *      l2arc_headroom_boost    when we find compressed buffers during ARC
7249  *                              scanning, we multiply headroom by this
7250  *                              percentage factor for the next scan cycle,
7251  *                              since more compressed buffers are likely to
7252  *                              be present
7253  *      l2arc_feed_secs         seconds between L2ARC writing
7254  *
7255  * Tunables may be removed or added as future performance improvements are
7256  * integrated, and also may become zpool properties.
7257  *
7258  * There are three key functions that control how the L2ARC warms up:
7259  *
7260  *      l2arc_write_eligible()  check if a buffer is eligible to cache
7261  *      l2arc_write_size()      calculate how much to write
7262  *      l2arc_write_interval()  calculate sleep delay between writes
7263  *
7264  * These three functions determine what to write, how much, and how quickly
7265  * to send writes.
7266  *
7267  * L2ARC persistence:
7268  *
7269  * When writing buffers to L2ARC, we periodically add some metadata to
7270  * make sure we can pick them up after reboot, thus dramatically reducing
7271  * the impact that any downtime has on the performance of storage systems
7272  * with large caches.
7273  *
7274  * The implementation works fairly simply by integrating the following two
7275  * modifications:
7276  *
7277  * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
7278  *    which is an additional piece of metadata which describes what's been
7279  *    written. This allows us to rebuild the arc_buf_hdr_t structures of the
7280  *    main ARC buffers. There are 2 linked-lists of log blocks headed by
7281  *    dh_start_lbps[2]. We alternate which chain we append to, so they are
7282  *    time-wise and offset-wise interleaved, but that is an optimization rather
7283  *    than for correctness. The log block also includes a pointer to the
7284  *    previous block in its chain.
7285  *
7286  * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
7287  *    for our header bookkeeping purposes. This contains a device header,
7288  *    which contains our top-level reference structures. We update it each
7289  *    time we write a new log block, so that we're able to locate it in the
7290  *    L2ARC device. If this write results in an inconsistent device header
7291  *    (e.g. due to power failure), we detect this by verifying the header's
7292  *    checksum and simply fail to reconstruct the L2ARC after reboot.
7293  *
7294  * Implementation diagram:
7295  *
7296  * +=== L2ARC device (not to scale) ======================================+
7297  * |       ___two newest log block pointers__.__________                  |
7298  * |      /                                   \dh_start_lbps[1]           |
7299  * |     /                                     \         \dh_start_lbps[0]|
7300  * |.___/__.                                    V         V               |
7301  * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
7302  * ||   hdr|      ^         /^       /^        /         /                |
7303  * |+------+  ...--\-------/  \-----/--\------/         /                 |
7304  * |                \--------------/    \--------------/                  |
7305  * +======================================================================+
7306  *
7307  * As can be seen on the diagram, rather than using a simple linked list,
7308  * we use a pair of linked lists with alternating elements. This is a
7309  * performance enhancement due to the fact that we only find out the
7310  * address of the next log block access once the current block has been
7311  * completely read in. Obviously, this hurts performance, because we'd be
7312  * keeping the device's I/O queue at only a 1 operation deep, thus
7313  * incurring a large amount of I/O round-trip latency. Having two lists
7314  * allows us to fetch two log blocks ahead of where we are currently
7315  * rebuilding L2ARC buffers.
7316  *
7317  * On-device data structures:
7318  *
7319  * L2ARC device header: l2arc_dev_hdr_phys_t
7320  * L2ARC log block:     l2arc_log_blk_phys_t
7321  *
7322  * L2ARC reconstruction:
7323  *
7324  * When writing data, we simply write in the standard rotary fashion,
7325  * evicting buffers as we go and simply writing new data over them (writing
7326  * a new log block every now and then). This obviously means that once we
7327  * loop around the end of the device, we will start cutting into an already
7328  * committed log block (and its referenced data buffers), like so:
7329  *
7330  *    current write head__       __old tail
7331  *                        \     /
7332  *                        V    V
7333  * <--|bufs |lb |bufs |lb |    |bufs |lb |bufs |lb |-->
7334  *                         ^    ^^^^^^^^^___________________________________
7335  *                         |                                                \
7336  *                   <<nextwrite>> may overwrite this blk and/or its bufs --'
7337  *
7338  * When importing the pool, we detect this situation and use it to stop
7339  * our scanning process (see l2arc_rebuild).
7340  *
7341  * There is one significant caveat to consider when rebuilding ARC contents
7342  * from an L2ARC device: what about invalidated buffers? Given the above
7343  * construction, we cannot update blocks which we've already written to amend
7344  * them to remove buffers which were invalidated. Thus, during reconstruction,
7345  * we might be populating the cache with buffers for data that's not on the
7346  * main pool anymore, or may have been overwritten!
7347  *
7348  * As it turns out, this isn't a problem. Every arc_read request includes
7349  * both the DVA and, crucially, the birth TXG of the BP the caller is
7350  * looking for. So even if the cache were populated by completely rotten
7351  * blocks for data that had been long deleted and/or overwritten, we'll
7352  * never actually return bad data from the cache, since the DVA with the
7353  * birth TXG uniquely identify a block in space and time - once created,
7354  * a block is immutable on disk. The worst thing we have done is wasted
7355  * some time and memory at l2arc rebuild to reconstruct outdated ARC
7356  * entries that will get dropped from the l2arc as it is being updated
7357  * with new blocks.
7358  *
7359  * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
7360  * hand are not restored. This is done by saving the offset (in bytes)
7361  * l2arc_evict() has evicted to in the L2ARC device header and taking it
7362  * into account when restoring buffers.
7363  */
7364 
7365 static boolean_t
7366 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
7367 {
7368         /*
7369          * A buffer is *not* eligible for the L2ARC if it:
7370          * 1. belongs to a different spa.
7371          * 2. is already cached on the L2ARC.
7372          * 3. has an I/O in progress (it may be an incomplete read).
7373          * 4. is flagged not eligible (zfs property).
7374          */
7375         if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
7376             HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
7377                 return (B_FALSE);
7378 
7379         return (B_TRUE);
7380 }
7381 
7382 static uint64_t
7383 l2arc_write_size(l2arc_dev_t *dev)
7384 {
7385         uint64_t size, dev_size;
7386 
7387         /*
7388          * Make sure our globals have meaningful values in case the user
7389          * altered them.
7390          */
7391         size = l2arc_write_max;
7392         if (size == 0) {
7393                 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
7394                     "be greater than zero, resetting it to the default (%d)",
7395                     L2ARC_WRITE_SIZE);
7396                 size = l2arc_write_max = L2ARC_WRITE_SIZE;
7397         }
7398 
7399         if (arc_warm == B_FALSE)
7400                 size += l2arc_write_boost;
7401 
7402         /*
7403          * Make sure the write size does not exceed the size of the cache
7404          * device. This is important in l2arc_evict(), otherwise infinite
7405          * iteration can occur.
7406          */
7407         dev_size = dev->l2ad_end - dev->l2ad_start;
7408         if ((size + l2arc_log_blk_overhead(size, dev)) >= dev_size) {
7409                 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost "
7410                     "plus the overhead of log blocks (persistent L2ARC, "
7411                     "%" PRIu64 " bytes) exceeds the size of the cache device "
7412                     "(guid %" PRIu64 "), resetting them to the default (%d)",
7413                     l2arc_log_blk_overhead(size, dev),
7414                     dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE);
7415                 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE;
7416 
7417                 if (arc_warm == B_FALSE)
7418                         size += l2arc_write_boost;
7419         }
7420 
7421         return (size);
7422 
7423 }
7424 
7425 static clock_t
7426 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
7427 {
7428         clock_t interval, next, now;
7429 
7430         /*
7431          * If the ARC lists are busy, increase our write rate; if the
7432          * lists are stale, idle back.  This is achieved by checking
7433          * how much we previously wrote - if it was more than half of
7434          * what we wanted, schedule the next write much sooner.
7435          */
7436         if (l2arc_feed_again && wrote > (wanted / 2))
7437                 interval = (hz * l2arc_feed_min_ms) / 1000;
7438         else
7439                 interval = hz * l2arc_feed_secs;
7440 
7441         now = ddi_get_lbolt();
7442         next = MAX(now, MIN(now + interval, began + interval));
7443 
7444         return (next);
7445 }
7446 
7447 /*
7448  * Cycle through L2ARC devices.  This is how L2ARC load balances.
7449  * If a device is returned, this also returns holding the spa config lock.
7450  */
7451 static l2arc_dev_t *
7452 l2arc_dev_get_next(void)
7453 {
7454         l2arc_dev_t *first, *next = NULL;
7455 
7456         /*
7457          * Lock out the removal of spas (spa_namespace_lock), then removal
7458          * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
7459          * both locks will be dropped and a spa config lock held instead.
7460          */
7461         mutex_enter(&spa_namespace_lock);
7462         mutex_enter(&l2arc_dev_mtx);
7463 
7464         /* if there are no vdevs, there is nothing to do */
7465         if (l2arc_ndev == 0)
7466                 goto out;
7467 
7468         first = NULL;
7469         next = l2arc_dev_last;
7470         do {
7471                 /* loop around the list looking for a non-faulted vdev */
7472                 if (next == NULL) {
7473                         next = list_head(l2arc_dev_list);
7474                 } else {
7475                         next = list_next(l2arc_dev_list, next);
7476                         if (next == NULL)
7477                                 next = list_head(l2arc_dev_list);
7478                 }
7479 
7480                 /* if we have come back to the start, bail out */
7481                 if (first == NULL)
7482                         first = next;
7483                 else if (next == first)
7484                         break;
7485 
7486         } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild);
7487 
7488         /* if we were unable to find any usable vdevs, return NULL */
7489         if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild)
7490                 next = NULL;
7491 
7492         l2arc_dev_last = next;
7493 
7494 out:
7495         mutex_exit(&l2arc_dev_mtx);
7496 
7497         /*
7498          * Grab the config lock to prevent the 'next' device from being
7499          * removed while we are writing to it.
7500          */
7501         if (next != NULL)
7502                 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
7503         mutex_exit(&spa_namespace_lock);
7504 
7505         return (next);
7506 }
7507 
7508 /*
7509  * Free buffers that were tagged for destruction.
7510  */
7511 static void
7512 l2arc_do_free_on_write()
7513 {
7514         list_t *buflist;
7515         l2arc_data_free_t *df, *df_prev;
7516 
7517         mutex_enter(&l2arc_free_on_write_mtx);
7518         buflist = l2arc_free_on_write;
7519 
7520         for (df = list_tail(buflist); df; df = df_prev) {
7521                 df_prev = list_prev(buflist, df);
7522                 ASSERT3P(df->l2df_abd, !=, NULL);
7523                 abd_free(df->l2df_abd);
7524                 list_remove(buflist, df);
7525                 kmem_free(df, sizeof (l2arc_data_free_t));
7526         }
7527 
7528         mutex_exit(&l2arc_free_on_write_mtx);
7529 }
7530 
7531 /*
7532  * A write to a cache device has completed.  Update all headers to allow
7533  * reads from these buffers to begin.
7534  */
7535 static void
7536 l2arc_write_done(zio_t *zio)
7537 {
7538         l2arc_write_callback_t  *cb;
7539         l2arc_lb_abd_buf_t      *abd_buf;
7540         l2arc_lb_ptr_buf_t      *lb_ptr_buf;
7541         l2arc_dev_t             *dev;
7542         l2arc_dev_hdr_phys_t    *l2dhdr;
7543         list_t                  *buflist;
7544         arc_buf_hdr_t           *head, *hdr, *hdr_prev;
7545         kmutex_t                *hash_lock;
7546         int64_t                 bytes_dropped = 0;
7547 
7548         cb = zio->io_private;
7549         ASSERT3P(cb, !=, NULL);
7550         dev = cb->l2wcb_dev;
7551         l2dhdr = dev->l2ad_dev_hdr;
7552         ASSERT3P(dev, !=, NULL);
7553         head = cb->l2wcb_head;
7554         ASSERT3P(head, !=, NULL);
7555         buflist = &dev->l2ad_buflist;
7556         ASSERT3P(buflist, !=, NULL);
7557         DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
7558             l2arc_write_callback_t *, cb);
7559 
7560         if (zio->io_error != 0)
7561                 ARCSTAT_BUMP(arcstat_l2_writes_error);
7562 
7563         /*
7564          * All writes completed, or an error was hit.
7565          */
7566 top:
7567         mutex_enter(&dev->l2ad_mtx);
7568         for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
7569                 hdr_prev = list_prev(buflist, hdr);
7570 
7571                 hash_lock = HDR_LOCK(hdr);
7572 
7573                 /*
7574                  * We cannot use mutex_enter or else we can deadlock
7575                  * with l2arc_write_buffers (due to swapping the order
7576                  * the hash lock and l2ad_mtx are taken).
7577                  */
7578                 if (!mutex_tryenter(hash_lock)) {
7579                         /*
7580                          * Missed the hash lock. We must retry so we
7581                          * don't leave the ARC_FLAG_L2_WRITING bit set.
7582                          */
7583                         ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
7584 
7585                         /*
7586                          * We don't want to rescan the headers we've
7587                          * already marked as having been written out, so
7588                          * we reinsert the head node so we can pick up
7589                          * where we left off.
7590                          */
7591                         list_remove(buflist, head);
7592                         list_insert_after(buflist, hdr, head);
7593 
7594                         mutex_exit(&dev->l2ad_mtx);
7595 
7596                         /*
7597                          * We wait for the hash lock to become available
7598                          * to try and prevent busy waiting, and increase
7599                          * the chance we'll be able to acquire the lock
7600                          * the next time around.
7601                          */
7602                         mutex_enter(hash_lock);
7603                         mutex_exit(hash_lock);
7604                         goto top;
7605                 }
7606 
7607                 /*
7608                  * We could not have been moved into the arc_l2c_only
7609                  * state while in-flight due to our ARC_FLAG_L2_WRITING
7610                  * bit being set. Let's just ensure that's being enforced.
7611                  */
7612                 ASSERT(HDR_HAS_L1HDR(hdr));
7613 
7614                 if (zio->io_error != 0) {
7615                         /*
7616                          * Error - drop L2ARC entry.
7617                          */
7618                         list_remove(buflist, hdr);
7619                         arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
7620 
7621                         uint64_t psize = HDR_GET_PSIZE(hdr);
7622                         ARCSTAT_INCR(arcstat_l2_psize, -psize);
7623                         ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
7624 
7625                         bytes_dropped +=
7626                             vdev_psize_to_asize(dev->l2ad_vdev, psize);
7627                         (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
7628                             arc_hdr_size(hdr), hdr);
7629                 }
7630 
7631                 /*
7632                  * Allow ARC to begin reads and ghost list evictions to
7633                  * this L2ARC entry.
7634                  */
7635                 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
7636 
7637                 mutex_exit(hash_lock);
7638         }
7639 
7640         /*
7641          * Free the allocated abd buffers for writing the log blocks.
7642          * If the zio failed reclaim the allocated space and remove the
7643          * pointers to these log blocks from the log block pointer list
7644          * of the L2ARC device.
7645          */
7646         while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
7647                 abd_free(abd_buf->abd);
7648                 zio_buf_free(abd_buf, sizeof (*abd_buf));
7649                 if (zio->io_error != 0) {
7650                         lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
7651                         /*
7652                          * L2BLK_GET_PSIZE returns aligned size for log
7653                          * blocks.
7654                          */
7655                         uint64_t asize =
7656                             L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
7657                         bytes_dropped += asize;
7658                         ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
7659                         ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
7660                         zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
7661                             lb_ptr_buf);
7662                         zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
7663                         kmem_free(lb_ptr_buf->lb_ptr,
7664                             sizeof (l2arc_log_blkptr_t));
7665                         kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
7666                 }
7667         }
7668         list_destroy(&cb->l2wcb_abd_list);
7669 
7670         if (zio->io_error != 0) {
7671                 /*
7672                  * Restore the lbps array in the header to its previous state.
7673                  * If the list of log block pointers is empty, zero out the
7674                  * log block pointers in the device header.
7675                  */
7676                 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
7677                 for (int i = 0; i < 2; i++) {
7678                         if (lb_ptr_buf == NULL) {
7679                                 /*
7680                                  * If the list is empty zero out the device
7681                                  * header. Otherwise zero out the second log
7682                                  * block pointer in the header.
7683                                  */
7684                                 if (i == 0) {
7685                                         bzero(l2dhdr, dev->l2ad_dev_hdr_asize);
7686                                 } else {
7687                                         bzero(&l2dhdr->dh_start_lbps[i],
7688                                             sizeof (l2arc_log_blkptr_t));
7689                                 }
7690                                 break;
7691                         }
7692                         bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i],
7693                             sizeof (l2arc_log_blkptr_t));
7694                         lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
7695                             lb_ptr_buf);
7696                 }
7697         }
7698 
7699         atomic_inc_64(&l2arc_writes_done);
7700         list_remove(buflist, head);
7701         ASSERT(!HDR_HAS_L1HDR(head));
7702         kmem_cache_free(hdr_l2only_cache, head);
7703         mutex_exit(&dev->l2ad_mtx);
7704 
7705         ASSERT(dev->l2ad_vdev != NULL);
7706         vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
7707 
7708         l2arc_do_free_on_write();
7709 
7710         kmem_free(cb, sizeof (l2arc_write_callback_t));
7711 }
7712 
7713 static int
7714 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
7715 {
7716         int ret;
7717         spa_t *spa = zio->io_spa;
7718         arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
7719         blkptr_t *bp = zio->io_bp;
7720         uint8_t salt[ZIO_DATA_SALT_LEN];
7721         uint8_t iv[ZIO_DATA_IV_LEN];
7722         uint8_t mac[ZIO_DATA_MAC_LEN];
7723         boolean_t no_crypt = B_FALSE;
7724 
7725         /*
7726          * ZIL data is never be written to the L2ARC, so we don't need
7727          * special handling for its unique MAC storage.
7728          */
7729         ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
7730         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
7731         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
7732 
7733         /*
7734          * If the data was encrypted, decrypt it now. Note that
7735          * we must check the bp here and not the hdr, since the
7736          * hdr does not have its encryption parameters updated
7737          * until arc_read_done().
7738          */
7739         if (BP_IS_ENCRYPTED(bp)) {
7740                 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
7741 
7742                 zio_crypt_decode_params_bp(bp, salt, iv);
7743                 zio_crypt_decode_mac_bp(bp, mac);
7744 
7745                 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
7746                     BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
7747                     salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
7748                     hdr->b_l1hdr.b_pabd, &no_crypt);
7749                 if (ret != 0) {
7750                         arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
7751                         goto error;
7752                 }
7753 
7754                 /*
7755                  * If we actually performed decryption, replace b_pabd
7756                  * with the decrypted data. Otherwise we can just throw
7757                  * our decryption buffer away.
7758                  */
7759                 if (!no_crypt) {
7760                         arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
7761                             arc_hdr_size(hdr), hdr);
7762                         hdr->b_l1hdr.b_pabd = eabd;
7763                         zio->io_abd = eabd;
7764                 } else {
7765                         arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
7766                 }
7767         }
7768 
7769         /*
7770          * If the L2ARC block was compressed, but ARC compression
7771          * is disabled we decompress the data into a new buffer and
7772          * replace the existing data.
7773          */
7774         if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
7775             !HDR_COMPRESSION_ENABLED(hdr)) {
7776                 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
7777                 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
7778 
7779                 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
7780                     hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
7781                     HDR_GET_LSIZE(hdr));
7782                 if (ret != 0) {
7783                         abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
7784                         arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
7785                         goto error;
7786                 }
7787 
7788                 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
7789                 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
7790                     arc_hdr_size(hdr), hdr);
7791                 hdr->b_l1hdr.b_pabd = cabd;
7792                 zio->io_abd = cabd;
7793                 zio->io_size = HDR_GET_LSIZE(hdr);
7794         }
7795 
7796         return (0);
7797 
7798 error:
7799         return (ret);
7800 }
7801 
7802 
7803 /*
7804  * A read to a cache device completed.  Validate buffer contents before
7805  * handing over to the regular ARC routines.
7806  */
7807 static void
7808 l2arc_read_done(zio_t *zio)
7809 {
7810         int tfm_error = 0;
7811         l2arc_read_callback_t *cb = zio->io_private;
7812         arc_buf_hdr_t *hdr;
7813         kmutex_t *hash_lock;
7814         boolean_t valid_cksum;
7815         boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
7816             (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
7817 
7818         ASSERT3P(zio->io_vd, !=, NULL);
7819         ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
7820 
7821         spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
7822 
7823         ASSERT3P(cb, !=, NULL);
7824         hdr = cb->l2rcb_hdr;
7825         ASSERT3P(hdr, !=, NULL);
7826 
7827         hash_lock = HDR_LOCK(hdr);
7828         mutex_enter(hash_lock);
7829         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
7830 
7831         /*
7832          * If the data was read into a temporary buffer,
7833          * move it and free the buffer.
7834          */
7835         if (cb->l2rcb_abd != NULL) {
7836                 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
7837                 if (zio->io_error == 0) {
7838                         if (using_rdata) {
7839                                 abd_copy(hdr->b_crypt_hdr.b_rabd,
7840                                     cb->l2rcb_abd, arc_hdr_size(hdr));
7841                         } else {
7842                                 abd_copy(hdr->b_l1hdr.b_pabd,
7843                                     cb->l2rcb_abd, arc_hdr_size(hdr));
7844                         }
7845                 }
7846 
7847                 /*
7848                  * The following must be done regardless of whether
7849                  * there was an error:
7850                  * - free the temporary buffer
7851                  * - point zio to the real ARC buffer
7852                  * - set zio size accordingly
7853                  * These are required because zio is either re-used for
7854                  * an I/O of the block in the case of the error
7855                  * or the zio is passed to arc_read_done() and it
7856                  * needs real data.
7857                  */
7858                 abd_free(cb->l2rcb_abd);
7859                 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
7860 
7861                 if (using_rdata) {
7862                         ASSERT(HDR_HAS_RABD(hdr));
7863                         zio->io_abd = zio->io_orig_abd =
7864                             hdr->b_crypt_hdr.b_rabd;
7865                 } else {
7866                         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
7867                         zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
7868                 }
7869         }
7870 
7871         ASSERT3P(zio->io_abd, !=, NULL);
7872 
7873         /*
7874          * Check this survived the L2ARC journey.
7875          */
7876         ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
7877             (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
7878         zio->io_bp_copy = cb->l2rcb_bp;   /* XXX fix in L2ARC 2.0 */
7879         zio->io_bp = &zio->io_bp_copy;        /* XXX fix in L2ARC 2.0 */
7880 
7881         valid_cksum = arc_cksum_is_equal(hdr, zio);
7882 
7883         /*
7884          * b_rabd will always match the data as it exists on disk if it is
7885          * being used. Therefore if we are reading into b_rabd we do not
7886          * attempt to untransform the data.
7887          */
7888         if (valid_cksum && !using_rdata)
7889                 tfm_error = l2arc_untransform(zio, cb);
7890 
7891         if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
7892             !HDR_L2_EVICTED(hdr)) {
7893                 mutex_exit(hash_lock);
7894                 zio->io_private = hdr;
7895                 arc_read_done(zio);
7896         } else {
7897                 /*
7898                  * Buffer didn't survive caching.  Increment stats and
7899                  * reissue to the original storage device.
7900                  */
7901                 if (zio->io_error != 0) {
7902                         ARCSTAT_BUMP(arcstat_l2_io_error);
7903                 } else {
7904                         zio->io_error = SET_ERROR(EIO);
7905                 }
7906                 if (!valid_cksum || tfm_error != 0)
7907                         ARCSTAT_BUMP(arcstat_l2_cksum_bad);
7908 
7909                 /*
7910                  * If there's no waiter, issue an async i/o to the primary
7911                  * storage now.  If there *is* a waiter, the caller must
7912                  * issue the i/o in a context where it's OK to block.
7913                  */
7914                 if (zio->io_waiter == NULL) {
7915                         zio_t *pio = zio_unique_parent(zio);
7916                         void *abd = (using_rdata) ?
7917                             hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
7918 
7919                         ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
7920 
7921                         zio = zio_read(pio, zio->io_spa, zio->io_bp,
7922                             abd, zio->io_size, arc_read_done,
7923                             hdr, zio->io_priority, cb->l2rcb_flags,
7924                             &cb->l2rcb_zb);
7925 
7926                         /*
7927                          * Original ZIO will be freed, so we need to update
7928                          * ARC header with the new ZIO pointer to be used
7929                          * by zio_change_priority() in arc_read().
7930                          */
7931                         for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
7932                             acb != NULL; acb = acb->acb_next)
7933                                 acb->acb_zio_head = zio;
7934 
7935                         mutex_exit(hash_lock);
7936                         zio_nowait(zio);
7937                 } else {
7938                         mutex_exit(hash_lock);
7939                 }
7940         }
7941 
7942         kmem_free(cb, sizeof (l2arc_read_callback_t));
7943 }
7944 
7945 /*
7946  * This is the list priority from which the L2ARC will search for pages to
7947  * cache.  This is used within loops (0..3) to cycle through lists in the
7948  * desired order.  This order can have a significant effect on cache
7949  * performance.
7950  *
7951  * Currently the metadata lists are hit first, MFU then MRU, followed by
7952  * the data lists.  This function returns a locked list, and also returns
7953  * the lock pointer.
7954  */
7955 static multilist_sublist_t *
7956 l2arc_sublist_lock(int list_num)
7957 {
7958         multilist_t *ml = NULL;
7959         unsigned int idx;
7960 
7961         ASSERT(list_num >= 0 && list_num <= 3);
7962 
7963         switch (list_num) {
7964         case 0:
7965                 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
7966                 break;
7967         case 1:
7968                 ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
7969                 break;
7970         case 2:
7971                 ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
7972                 break;
7973         case 3:
7974                 ml = arc_mru->arcs_list[ARC_BUFC_DATA];
7975                 break;
7976         }
7977 
7978         /*
7979          * Return a randomly-selected sublist. This is acceptable
7980          * because the caller feeds only a little bit of data for each
7981          * call (8MB). Subsequent calls will result in different
7982          * sublists being selected.
7983          */
7984         idx = multilist_get_random_index(ml);
7985         return (multilist_sublist_lock(ml, idx));
7986 }
7987 
7988 /*
7989  * Calculates the maximum overhead of L2ARC metadata log blocks for a given
7990  * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
7991  * overhead in processing to make sure there is enough headroom available
7992  * when writing buffers.
7993  */
7994 static inline uint64_t
7995 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
7996 {
7997         if (dev->l2ad_log_entries == 0) {
7998                 return (0);
7999         } else {
8000                 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
8001 
8002                 uint64_t log_blocks = (log_entries +
8003                     dev->l2ad_log_entries - 1) /
8004                     dev->l2ad_log_entries;
8005 
8006                 return (vdev_psize_to_asize(dev->l2ad_vdev,
8007                     sizeof (l2arc_log_blk_phys_t)) * log_blocks);
8008         }
8009 }
8010 
8011 /*
8012  * Evict buffers from the device write hand to the distance specified in
8013  * bytes. This distance may span populated buffers, it may span nothing.
8014  * This is clearing a region on the L2ARC device ready for writing.
8015  * If the 'all' boolean is set, every buffer is evicted.
8016  */
8017 static void
8018 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8019 {
8020         list_t *buflist;
8021         arc_buf_hdr_t *hdr, *hdr_prev;
8022         kmutex_t *hash_lock;
8023         uint64_t taddr;
8024         l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
8025         boolean_t rerun;
8026 
8027         buflist = &dev->l2ad_buflist;
8028 
8029         /*
8030          * We need to add in the worst case scenario of log block overhead.
8031          */
8032         distance += l2arc_log_blk_overhead(distance, dev);
8033 
8034 top:
8035         rerun = B_FALSE;
8036         if (dev->l2ad_hand >= (dev->l2ad_end - distance)) {
8037                 /*
8038                  * When there is no space to accommodate upcoming writes,
8039                  * evict to the end. Then bump the write and evict hands
8040                  * to the start and iterate. This iteration does not
8041                  * happen indefinitely as we make sure in
8042                  * l2arc_write_size() that when the write hand is reset,
8043                  * the write size does not exceed the end of the device.
8044                  */
8045                 rerun = B_TRUE;
8046                 taddr = dev->l2ad_end;
8047         } else {
8048                 taddr = dev->l2ad_hand + distance;
8049         }
8050         DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
8051             uint64_t, taddr, boolean_t, all);
8052 
8053         /*
8054          * This check has to be placed after deciding whether to iterate
8055          * (rerun).
8056          */
8057         if (!all && dev->l2ad_first) {
8058                 /*
8059                  * This is the first sweep through the device. There is
8060                  * nothing to evict.
8061                  */
8062                 goto out;
8063         }
8064 
8065         /*
8066          * When rebuilding L2ARC we retrieve the evict hand from the header of
8067          * the device. Of note, l2arc_evict() does not actually delete buffers
8068          * from the cache device, but keeping track of the evict hand will be
8069          * useful when TRIM is implemented.
8070          */
8071         dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
8072 
8073 retry:
8074         mutex_enter(&dev->l2ad_mtx);
8075         /*
8076          * We have to account for evicted log blocks. Run vdev_space_update()
8077          * on log blocks whose offset (in bytes) is before the evicted offset
8078          * (in bytes) by searching in the list of pointers to log blocks
8079          * present in the L2ARC device.
8080          */
8081         for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
8082             lb_ptr_buf = lb_ptr_buf_prev) {
8083 
8084                 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
8085 
8086                 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
8087                 uint64_t asize = L2BLK_GET_PSIZE(
8088                     (lb_ptr_buf->lb_ptr)->lbp_prop);
8089 
8090                 /*
8091                  * We don't worry about log blocks left behind (ie
8092                  * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
8093                  * will never write more than l2arc_evict() evicts.
8094                  */
8095                 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
8096                         break;
8097                 } else {
8098                         vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
8099                         ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8100                         ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8101                         zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8102                             lb_ptr_buf);
8103                         zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
8104                         list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
8105                         kmem_free(lb_ptr_buf->lb_ptr,
8106                             sizeof (l2arc_log_blkptr_t));
8107                         kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8108                 }
8109         }
8110 
8111         for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
8112                 hdr_prev = list_prev(buflist, hdr);
8113 
8114                 ASSERT(!HDR_EMPTY(hdr));
8115                 hash_lock = HDR_LOCK(hdr);
8116 
8117                 /*
8118                  * We cannot use mutex_enter or else we can deadlock
8119                  * with l2arc_write_buffers (due to swapping the order
8120                  * the hash lock and l2ad_mtx are taken).
8121                  */
8122                 if (!mutex_tryenter(hash_lock)) {
8123                         /*
8124                          * Missed the hash lock.  Retry.
8125                          */
8126                         ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
8127                         mutex_exit(&dev->l2ad_mtx);
8128                         mutex_enter(hash_lock);
8129                         mutex_exit(hash_lock);
8130                         goto retry;
8131                 }
8132 
8133                 /*
8134                  * A header can't be on this list if it doesn't have L2 header.
8135                  */
8136                 ASSERT(HDR_HAS_L2HDR(hdr));
8137 
8138                 /* Ensure this header has finished being written. */
8139                 ASSERT(!HDR_L2_WRITING(hdr));
8140                 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
8141 
8142                 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
8143                     hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
8144                         /*
8145                          * We've evicted to the target address,
8146                          * or the end of the device.
8147                          */
8148                         mutex_exit(hash_lock);
8149                         break;
8150                 }
8151 
8152                 if (!HDR_HAS_L1HDR(hdr)) {
8153                         ASSERT(!HDR_L2_READING(hdr));
8154                         /*
8155                          * This doesn't exist in the ARC.  Destroy.
8156                          * arc_hdr_destroy() will call list_remove()
8157                          * and decrement arcstat_l2_lsize.
8158                          */
8159                         arc_change_state(arc_anon, hdr, hash_lock);
8160                         arc_hdr_destroy(hdr);
8161                 } else {
8162                         ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
8163                         ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
8164                         /*
8165                          * Invalidate issued or about to be issued
8166                          * reads, since we may be about to write
8167                          * over this location.
8168                          */
8169                         if (HDR_L2_READING(hdr)) {
8170                                 ARCSTAT_BUMP(arcstat_l2_evict_reading);
8171                                 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
8172                         }
8173 
8174                         arc_hdr_l2hdr_destroy(hdr);
8175                 }
8176                 mutex_exit(hash_lock);
8177         }
8178         mutex_exit(&dev->l2ad_mtx);
8179 
8180 out:
8181         /*
8182          * We need to check if we evict all buffers, otherwise we may iterate
8183          * unnecessarily.
8184          */
8185         if (!all && rerun) {
8186                 /*
8187                  * Bump device hand to the device start if it is approaching the
8188                  * end. l2arc_evict() has already evicted ahead for this case.
8189                  */
8190                 dev->l2ad_hand = dev->l2ad_start;
8191                 dev->l2ad_evict = dev->l2ad_start;
8192                 dev->l2ad_first = B_FALSE;
8193                 goto top;
8194         }
8195 
8196         ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end);
8197         if (!dev->l2ad_first)
8198                 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict);
8199 }
8200 
8201 /*
8202  * Handle any abd transforms that might be required for writing to the L2ARC.
8203  * If successful, this function will always return an abd with the data
8204  * transformed as it is on disk in a new abd of asize bytes.
8205  */
8206 static int
8207 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
8208     abd_t **abd_out)
8209 {
8210         int ret;
8211         void *tmp = NULL;
8212         abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
8213         enum zio_compress compress = HDR_GET_COMPRESS(hdr);
8214         uint64_t psize = HDR_GET_PSIZE(hdr);
8215         uint64_t size = arc_hdr_size(hdr);
8216         boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
8217         boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
8218         dsl_crypto_key_t *dck = NULL;
8219         uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
8220         boolean_t no_crypt = B_FALSE;
8221 
8222         ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8223             !HDR_COMPRESSION_ENABLED(hdr)) ||
8224             HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
8225         ASSERT3U(psize, <=, asize);
8226 
8227         /*
8228          * If this data simply needs its own buffer, we simply allocate it
8229          * and copy the data. This may be done to eliminate a dependency on a
8230          * shared buffer or to reallocate the buffer to match asize.
8231          */
8232         if (HDR_HAS_RABD(hdr) && asize != psize) {
8233                 ASSERT3U(asize, >=, psize);
8234                 to_write = abd_alloc_for_io(asize, ismd);
8235                 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
8236                 if (psize != asize)
8237                         abd_zero_off(to_write, psize, asize - psize);
8238                 goto out;
8239         }
8240 
8241         if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
8242             !HDR_ENCRYPTED(hdr)) {
8243                 ASSERT3U(size, ==, psize);
8244                 to_write = abd_alloc_for_io(asize, ismd);
8245                 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
8246                 if (size != asize)
8247                         abd_zero_off(to_write, size, asize - size);
8248                 goto out;
8249         }
8250 
8251         if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
8252                 cabd = abd_alloc_for_io(asize, ismd);
8253                 tmp = abd_borrow_buf(cabd, asize);
8254 
8255                 psize = zio_compress_data(compress, to_write, tmp, size);
8256                 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr));
8257                 if (psize < asize)
8258                         bzero((char *)tmp + psize, asize - psize);
8259                 psize = HDR_GET_PSIZE(hdr);
8260                 abd_return_buf_copy(cabd, tmp, asize);
8261                 to_write = cabd;
8262         }
8263 
8264         if (HDR_ENCRYPTED(hdr)) {
8265                 eabd = abd_alloc_for_io(asize, ismd);
8266 
8267                 /*
8268                  * If the dataset was disowned before the buffer
8269                  * made it to this point, the key to re-encrypt
8270                  * it won't be available. In this case we simply
8271                  * won't write the buffer to the L2ARC.
8272                  */
8273                 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
8274                     FTAG, &dck);
8275                 if (ret != 0)
8276                         goto error;
8277 
8278                 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
8279                     hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
8280                     hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
8281                     &no_crypt);
8282                 if (ret != 0)
8283                         goto error;
8284 
8285                 if (no_crypt)
8286                         abd_copy(eabd, to_write, psize);
8287 
8288                 if (psize != asize)
8289                         abd_zero_off(eabd, psize, asize - psize);
8290 
8291                 /* assert that the MAC we got here matches the one we saved */
8292                 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
8293                 spa_keystore_dsl_key_rele(spa, dck, FTAG);
8294 
8295                 if (to_write == cabd)
8296                         abd_free(cabd);
8297 
8298                 to_write = eabd;
8299         }
8300 
8301 out:
8302         ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
8303         *abd_out = to_write;
8304         return (0);
8305 
8306 error:
8307         if (dck != NULL)
8308                 spa_keystore_dsl_key_rele(spa, dck, FTAG);
8309         if (cabd != NULL)
8310                 abd_free(cabd);
8311         if (eabd != NULL)
8312                 abd_free(eabd);
8313 
8314         *abd_out = NULL;
8315         return (ret);
8316 }
8317 
8318 static void
8319 l2arc_blk_fetch_done(zio_t *zio)
8320 {
8321         l2arc_read_callback_t *cb;
8322 
8323         cb = zio->io_private;
8324         if (cb->l2rcb_abd != NULL)
8325                 abd_put(cb->l2rcb_abd);
8326         kmem_free(cb, sizeof (l2arc_read_callback_t));
8327 }
8328 
8329 /*
8330  * Find and write ARC buffers to the L2ARC device.
8331  *
8332  * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
8333  * for reading until they have completed writing.
8334  * The headroom_boost is an in-out parameter used to maintain headroom boost
8335  * state between calls to this function.
8336  *
8337  * Returns the number of bytes actually written (which may be smaller than
8338  * the delta by which the device hand has changed due to alignment and the
8339  * writing of log blocks).
8340  */
8341 static uint64_t
8342 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
8343 {
8344         arc_buf_hdr_t           *hdr, *hdr_prev, *head;
8345         uint64_t                write_asize, write_psize, write_lsize, headroom;
8346         boolean_t               full;
8347         l2arc_write_callback_t  *cb = NULL;
8348         zio_t                   *pio, *wzio;
8349         uint64_t                guid = spa_load_guid(spa);
8350 
8351         ASSERT3P(dev->l2ad_vdev, !=, NULL);
8352 
8353         pio = NULL;
8354         write_lsize = write_asize = write_psize = 0;
8355         full = B_FALSE;
8356         head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
8357         arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
8358 
8359         /*
8360          * Copy buffers for L2ARC writing.
8361          */
8362         for (int try = 0; try <= 3; try++) {
8363                 multilist_sublist_t *mls = l2arc_sublist_lock(try);
8364                 uint64_t passed_sz = 0;
8365 
8366                 VERIFY3P(mls, !=, NULL);
8367 
8368                 /*
8369                  * L2ARC fast warmup.
8370                  *
8371                  * Until the ARC is warm and starts to evict, read from the
8372                  * head of the ARC lists rather than the tail.
8373                  */
8374                 if (arc_warm == B_FALSE)
8375                         hdr = multilist_sublist_head(mls);
8376                 else
8377                         hdr = multilist_sublist_tail(mls);
8378 
8379                 headroom = target_sz * l2arc_headroom;
8380                 if (zfs_compressed_arc_enabled)
8381                         headroom = (headroom * l2arc_headroom_boost) / 100;
8382 
8383                 for (; hdr; hdr = hdr_prev) {
8384                         kmutex_t *hash_lock;
8385                         abd_t *to_write = NULL;
8386 
8387                         if (arc_warm == B_FALSE)
8388                                 hdr_prev = multilist_sublist_next(mls, hdr);
8389                         else
8390                                 hdr_prev = multilist_sublist_prev(mls, hdr);
8391 
8392                         hash_lock = HDR_LOCK(hdr);
8393                         if (!mutex_tryenter(hash_lock)) {
8394                                 /*
8395                                  * Skip this buffer rather than waiting.
8396                                  */
8397                                 continue;
8398                         }
8399 
8400                         passed_sz += HDR_GET_LSIZE(hdr);
8401                         if (l2arc_headroom != 0 && passed_sz > headroom) {
8402                                 /*
8403                                  * Searched too far.
8404                                  */
8405                                 mutex_exit(hash_lock);
8406                                 break;
8407                         }
8408 
8409                         if (!l2arc_write_eligible(guid, hdr)) {
8410                                 mutex_exit(hash_lock);
8411                                 continue;
8412                         }
8413 
8414                         /*
8415                          * We rely on the L1 portion of the header below, so
8416                          * it's invalid for this header to have been evicted out
8417                          * of the ghost cache, prior to being written out. The
8418                          * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8419                          */
8420                         ASSERT(HDR_HAS_L1HDR(hdr));
8421 
8422                         ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8423                         ASSERT3U(arc_hdr_size(hdr), >, 0);
8424                         ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8425                             HDR_HAS_RABD(hdr));
8426                         uint64_t psize = HDR_GET_PSIZE(hdr);
8427                         uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
8428                             psize);
8429 
8430                         if ((write_asize + asize) > target_sz) {
8431                                 full = B_TRUE;
8432                                 mutex_exit(hash_lock);
8433                                 break;
8434                         }
8435 
8436                         /*
8437                          * We rely on the L1 portion of the header below, so
8438                          * it's invalid for this header to have been evicted out
8439                          * of the ghost cache, prior to being written out. The
8440                          * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8441                          */
8442                         arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING);
8443                         ASSERT(HDR_HAS_L1HDR(hdr));
8444 
8445                         ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8446                         ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8447                             HDR_HAS_RABD(hdr));
8448                         ASSERT3U(arc_hdr_size(hdr), >, 0);
8449 
8450                         /*
8451                          * If this header has b_rabd, we can use this since it
8452                          * must always match the data exactly as it exists on
8453                          * disk. Otherwise, the L2ARC can normally use the
8454                          * hdr's data, but if we're sharing data between the
8455                          * hdr and one of its bufs, L2ARC needs its own copy of
8456                          * the data so that the ZIO below can't race with the
8457                          * buf consumer. To ensure that this copy will be
8458                          * available for the lifetime of the ZIO and be cleaned
8459                          * up afterwards, we add it to the l2arc_free_on_write
8460                          * queue. If we need to apply any transforms to the
8461                          * data (compression, encryption) we will also need the
8462                          * extra buffer.
8463                          */
8464                         if (HDR_HAS_RABD(hdr) && psize == asize) {
8465                                 to_write = hdr->b_crypt_hdr.b_rabd;
8466                         } else if ((HDR_COMPRESSION_ENABLED(hdr) ||
8467                             HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
8468                             !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
8469                             psize == asize) {
8470                                 to_write = hdr->b_l1hdr.b_pabd;
8471                         } else {
8472                                 int ret;
8473                                 arc_buf_contents_t type = arc_buf_type(hdr);
8474 
8475                                 ret = l2arc_apply_transforms(spa, hdr, asize,
8476                                     &to_write);
8477                                 if (ret != 0) {
8478                                         arc_hdr_clear_flags(hdr,
8479                                             ARC_FLAG_L2_WRITING);
8480                                         mutex_exit(hash_lock);
8481                                         continue;
8482                                 }
8483 
8484                                 l2arc_free_abd_on_write(to_write, asize, type);
8485                         }
8486 
8487                         if (pio == NULL) {
8488                                 /*
8489                                  * Insert a dummy header on the buflist so
8490                                  * l2arc_write_done() can find where the
8491                                  * write buffers begin without searching.
8492                                  */
8493                                 mutex_enter(&dev->l2ad_mtx);
8494                                 list_insert_head(&dev->l2ad_buflist, head);
8495                                 mutex_exit(&dev->l2ad_mtx);
8496 
8497                                 cb = kmem_alloc(
8498                                     sizeof (l2arc_write_callback_t), KM_SLEEP);
8499                                 cb->l2wcb_dev = dev;
8500                                 cb->l2wcb_head = head;
8501                                 /*
8502                                  * Create a list to save allocated abd buffers
8503                                  * for l2arc_log_blk_commit().
8504                                  */
8505                                 list_create(&cb->l2wcb_abd_list,
8506                                     sizeof (l2arc_lb_abd_buf_t),
8507                                     offsetof(l2arc_lb_abd_buf_t, node));
8508                                 pio = zio_root(spa, l2arc_write_done, cb,
8509                                     ZIO_FLAG_CANFAIL);
8510                         }
8511 
8512                         hdr->b_l2hdr.b_dev = dev;
8513                         hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
8514                         arc_hdr_set_flags(hdr,
8515                             ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
8516 
8517                         mutex_enter(&dev->l2ad_mtx);
8518                         list_insert_head(&dev->l2ad_buflist, hdr);
8519                         mutex_exit(&dev->l2ad_mtx);
8520 
8521                         (void) zfs_refcount_add_many(&dev->l2ad_alloc,
8522                             arc_hdr_size(hdr), hdr);
8523 
8524                         wzio = zio_write_phys(pio, dev->l2ad_vdev,
8525                             hdr->b_l2hdr.b_daddr, asize, to_write,
8526                             ZIO_CHECKSUM_OFF, NULL, hdr,
8527                             ZIO_PRIORITY_ASYNC_WRITE,
8528                             ZIO_FLAG_CANFAIL, B_FALSE);
8529 
8530                         write_lsize += HDR_GET_LSIZE(hdr);
8531                         DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
8532                             zio_t *, wzio);
8533 
8534                         write_psize += psize;
8535                         write_asize += asize;
8536                         dev->l2ad_hand += asize;
8537                         vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
8538 
8539                         mutex_exit(hash_lock);
8540 
8541                         /*
8542                          * Append buf info to current log and commit if full.
8543                          * arcstat_l2_{size,asize} kstats are updated
8544                          * internally.
8545                          */
8546                         if (l2arc_log_blk_insert(dev, hdr))
8547                                 l2arc_log_blk_commit(dev, pio, cb);
8548 
8549                         (void) zio_nowait(wzio);
8550                 }
8551 
8552                 multilist_sublist_unlock(mls);
8553 
8554                 if (full == B_TRUE)
8555                         break;
8556         }
8557 
8558         /* No buffers selected for writing? */
8559         if (pio == NULL) {
8560                 ASSERT0(write_lsize);
8561                 ASSERT(!HDR_HAS_L1HDR(head));
8562                 kmem_cache_free(hdr_l2only_cache, head);
8563 
8564                 /*
8565                  * Although we did not write any buffers l2ad_evict may
8566                  * have advanced.
8567                  */
8568                 l2arc_dev_hdr_update(dev);
8569 
8570                 return (0);
8571         }
8572 
8573         if (!dev->l2ad_first)
8574                 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
8575 
8576         ASSERT3U(write_asize, <=, target_sz);
8577         ARCSTAT_BUMP(arcstat_l2_writes_sent);
8578         ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
8579         ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
8580         ARCSTAT_INCR(arcstat_l2_psize, write_psize);
8581 
8582         dev->l2ad_writing = B_TRUE;
8583         (void) zio_wait(pio);
8584         dev->l2ad_writing = B_FALSE;
8585 
8586         /*
8587          * Update the device header after the zio completes as
8588          * l2arc_write_done() may have updated the memory holding the log block
8589          * pointers in the device header.
8590          */
8591         l2arc_dev_hdr_update(dev);
8592 
8593         return (write_asize);
8594 }
8595 
8596 /*
8597  * This thread feeds the L2ARC at regular intervals.  This is the beating
8598  * heart of the L2ARC.
8599  */
8600 /* ARGSUSED */
8601 static void
8602 l2arc_feed_thread(void *unused)
8603 {
8604         callb_cpr_t cpr;
8605         l2arc_dev_t *dev;
8606         spa_t *spa;
8607         uint64_t size, wrote;
8608         clock_t begin, next = ddi_get_lbolt();
8609 
8610         CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
8611 
8612         mutex_enter(&l2arc_feed_thr_lock);
8613 
8614         while (l2arc_thread_exit == 0) {
8615                 CALLB_CPR_SAFE_BEGIN(&cpr);
8616                 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
8617                     next);
8618                 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
8619                 next = ddi_get_lbolt() + hz;
8620 
8621                 /*
8622                  * Quick check for L2ARC devices.
8623                  */
8624                 mutex_enter(&l2arc_dev_mtx);
8625                 if (l2arc_ndev == 0) {
8626                         mutex_exit(&l2arc_dev_mtx);
8627                         continue;
8628                 }
8629                 mutex_exit(&l2arc_dev_mtx);
8630                 begin = ddi_get_lbolt();
8631 
8632                 /*
8633                  * This selects the next l2arc device to write to, and in
8634                  * doing so the next spa to feed from: dev->l2ad_spa.   This
8635                  * will return NULL if there are now no l2arc devices or if
8636                  * they are all faulted.
8637                  *
8638                  * If a device is returned, its spa's config lock is also
8639                  * held to prevent device removal.  l2arc_dev_get_next()
8640                  * will grab and release l2arc_dev_mtx.
8641                  */
8642                 if ((dev = l2arc_dev_get_next()) == NULL)
8643                         continue;
8644 
8645                 spa = dev->l2ad_spa;
8646                 ASSERT3P(spa, !=, NULL);
8647 
8648                 /*
8649                  * If the pool is read-only then force the feed thread to
8650                  * sleep a little longer.
8651                  */
8652                 if (!spa_writeable(spa)) {
8653                         next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
8654                         spa_config_exit(spa, SCL_L2ARC, dev);
8655                         continue;
8656                 }
8657 
8658                 /*
8659                  * Avoid contributing to memory pressure.
8660                  */
8661                 if (arc_reclaim_needed()) {
8662                         ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
8663                         spa_config_exit(spa, SCL_L2ARC, dev);
8664                         continue;
8665                 }
8666 
8667                 ARCSTAT_BUMP(arcstat_l2_feeds);
8668 
8669                 size = l2arc_write_size(dev);
8670 
8671                 /*
8672                  * Evict L2ARC buffers that will be overwritten.
8673                  */
8674                 l2arc_evict(dev, size, B_FALSE);
8675 
8676                 /*
8677                  * Write ARC buffers.
8678                  */
8679                 wrote = l2arc_write_buffers(spa, dev, size);
8680 
8681                 /*
8682                  * Calculate interval between writes.
8683                  */
8684                 next = l2arc_write_interval(begin, size, wrote);
8685                 spa_config_exit(spa, SCL_L2ARC, dev);
8686         }
8687 
8688         l2arc_thread_exit = 0;
8689         cv_broadcast(&l2arc_feed_thr_cv);
8690         CALLB_CPR_EXIT(&cpr);               /* drops l2arc_feed_thr_lock */
8691         thread_exit();
8692 }
8693 
8694 boolean_t
8695 l2arc_vdev_present(vdev_t *vd)
8696 {
8697         return (l2arc_vdev_get(vd) != NULL);
8698 }
8699 
8700 /*
8701  * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
8702  * the vdev_t isn't an L2ARC device.
8703  */
8704 static l2arc_dev_t *
8705 l2arc_vdev_get(vdev_t *vd)
8706 {
8707         l2arc_dev_t     *dev;
8708 
8709         mutex_enter(&l2arc_dev_mtx);
8710         for (dev = list_head(l2arc_dev_list); dev != NULL;
8711             dev = list_next(l2arc_dev_list, dev)) {
8712                 if (dev->l2ad_vdev == vd)
8713                         break;
8714         }
8715         mutex_exit(&l2arc_dev_mtx);
8716 
8717         return (dev);
8718 }
8719 
8720 /*
8721  * Add a vdev for use by the L2ARC.  By this point the spa has already
8722  * validated the vdev and opened it.
8723  */
8724 void
8725 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
8726 {
8727         l2arc_dev_t             *adddev;
8728         uint64_t                l2dhdr_asize;
8729 
8730         ASSERT(!l2arc_vdev_present(vd));
8731 
8732         /*
8733          * Create a new l2arc device entry.
8734          */
8735         adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
8736         adddev->l2ad_spa = spa;
8737         adddev->l2ad_vdev = vd;
8738         /* leave extra size for an l2arc device header */
8739         l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
8740             MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
8741         adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
8742         adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
8743         ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
8744         adddev->l2ad_hand = adddev->l2ad_start;
8745         adddev->l2ad_evict = adddev->l2ad_start;
8746         adddev->l2ad_first = B_TRUE;
8747         adddev->l2ad_writing = B_FALSE;
8748         adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
8749 
8750         mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
8751         /*
8752          * This is a list of all ARC buffers that are still valid on the
8753          * device.
8754          */
8755         list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
8756             offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
8757 
8758         /*
8759          * This is a list of pointers to log blocks that are still present
8760          * on the device.
8761          */
8762         list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
8763             offsetof(l2arc_lb_ptr_buf_t, node));
8764 
8765         vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
8766         zfs_refcount_create(&adddev->l2ad_alloc);
8767         zfs_refcount_create(&adddev->l2ad_lb_asize);
8768         zfs_refcount_create(&adddev->l2ad_lb_count);
8769 
8770         /*
8771          * Add device to global list
8772          */
8773         mutex_enter(&l2arc_dev_mtx);
8774         list_insert_head(l2arc_dev_list, adddev);
8775         atomic_inc_64(&l2arc_ndev);
8776         mutex_exit(&l2arc_dev_mtx);
8777 
8778         /*
8779          * Decide if vdev is eligible for L2ARC rebuild
8780          */
8781         l2arc_rebuild_vdev(adddev->l2ad_vdev, B_FALSE);
8782 }
8783 
8784 void
8785 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
8786 {
8787         l2arc_dev_t             *dev = NULL;
8788         l2arc_dev_hdr_phys_t    *l2dhdr;
8789         uint64_t                l2dhdr_asize;
8790         spa_t                   *spa;
8791         int                     err;
8792         boolean_t               l2dhdr_valid = B_TRUE;
8793 
8794         dev = l2arc_vdev_get(vd);
8795         ASSERT3P(dev, !=, NULL);
8796         spa = dev->l2ad_spa;
8797         l2dhdr = dev->l2ad_dev_hdr;
8798         l2dhdr_asize = dev->l2ad_dev_hdr_asize;
8799 
8800         /*
8801          * The L2ARC has to hold at least the payload of one log block for
8802          * them to be restored (persistent L2ARC). The payload of a log block
8803          * depends on the amount of its log entries. We always write log blocks
8804          * with 1022 entries. How many of them are committed or restored depends
8805          * on the size of the L2ARC device. Thus the maximum payload of
8806          * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
8807          * is less than that, we reduce the amount of committed and restored
8808          * log entries per block so as to enable persistence.
8809          */
8810         if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
8811                 dev->l2ad_log_entries = 0;
8812         } else {
8813                 dev->l2ad_log_entries = MIN((dev->l2ad_end -
8814                     dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
8815                     L2ARC_LOG_BLK_MAX_ENTRIES);
8816         }
8817 
8818         /*
8819          * Read the device header, if an error is returned do not rebuild L2ARC.
8820          */
8821         if ((err = l2arc_dev_hdr_read(dev)) != 0)
8822                 l2dhdr_valid = B_FALSE;
8823 
8824         if (l2dhdr_valid && dev->l2ad_log_entries > 0) {
8825                 /*
8826                  * If we are onlining a cache device (vdev_reopen) that was
8827                  * still present (l2arc_vdev_present()) and rebuild is enabled,
8828                  * we should evict all ARC buffers and pointers to log blocks
8829                  * and reclaim their space before restoring its contents to
8830                  * L2ARC.
8831                  */
8832                 if (reopen) {
8833                         if (!l2arc_rebuild_enabled) {
8834                                 return;
8835                         } else {
8836                                 l2arc_evict(dev, 0, B_TRUE);
8837                                 /* start a new log block */
8838                                 dev->l2ad_log_ent_idx = 0;
8839                                 dev->l2ad_log_blk_payload_asize = 0;
8840                                 dev->l2ad_log_blk_payload_start = 0;
8841                         }
8842                 }
8843                 /*
8844                  * Just mark the device as pending for a rebuild. We won't
8845                  * be starting a rebuild in line here as it would block pool
8846                  * import. Instead spa_load_impl will hand that off to an
8847                  * async task which will call l2arc_spa_rebuild_start.
8848                  */
8849                 dev->l2ad_rebuild = B_TRUE;
8850         } else if (spa_writeable(spa)) {
8851                 /*
8852                  * In this case create a new header. We zero out the memory
8853                  * holding the header to reset dh_start_lbps.
8854                  */
8855                 bzero(l2dhdr, l2dhdr_asize);
8856                 l2arc_dev_hdr_update(dev);
8857         }
8858 }
8859 
8860 /*
8861  * Remove a vdev from the L2ARC.
8862  */
8863 void
8864 l2arc_remove_vdev(vdev_t *vd)
8865 {
8866         l2arc_dev_t *remdev = NULL;
8867 
8868         /*
8869          * Find the device by vdev
8870          */
8871         remdev = l2arc_vdev_get(vd);
8872         ASSERT3P(remdev, !=, NULL);
8873 
8874         /*
8875          * Cancel any ongoing or scheduled rebuild.
8876          */
8877         mutex_enter(&l2arc_rebuild_thr_lock);
8878         if (remdev->l2ad_rebuild_began == B_TRUE) {
8879                 remdev->l2ad_rebuild_cancel = B_TRUE;
8880                 while (remdev->l2ad_rebuild == B_TRUE)
8881                         cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
8882         }
8883         mutex_exit(&l2arc_rebuild_thr_lock);
8884 
8885         /*
8886          * Remove device from global list
8887          */
8888         mutex_enter(&l2arc_dev_mtx);
8889         list_remove(l2arc_dev_list, remdev);
8890         l2arc_dev_last = NULL;          /* may have been invalidated */
8891         atomic_dec_64(&l2arc_ndev);
8892         mutex_exit(&l2arc_dev_mtx);
8893 
8894         /*
8895          * Clear all buflists and ARC references.  L2ARC device flush.
8896          */
8897         l2arc_evict(remdev, 0, B_TRUE);
8898         list_destroy(&remdev->l2ad_buflist);
8899         ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
8900         list_destroy(&remdev->l2ad_lbptr_list);
8901         mutex_destroy(&remdev->l2ad_mtx);
8902         zfs_refcount_destroy(&remdev->l2ad_alloc);
8903         zfs_refcount_destroy(&remdev->l2ad_lb_asize);
8904         zfs_refcount_destroy(&remdev->l2ad_lb_count);
8905         kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
8906         kmem_free(remdev, sizeof (l2arc_dev_t));
8907 }
8908 
8909 void
8910 l2arc_init(void)
8911 {
8912         l2arc_thread_exit = 0;
8913         l2arc_ndev = 0;
8914         l2arc_writes_sent = 0;
8915         l2arc_writes_done = 0;
8916 
8917         mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
8918         cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
8919         mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
8920         cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
8921         mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
8922         mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
8923 
8924         l2arc_dev_list = &L2ARC_dev_list;
8925         l2arc_free_on_write = &L2ARC_free_on_write;
8926         list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
8927             offsetof(l2arc_dev_t, l2ad_node));
8928         list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
8929             offsetof(l2arc_data_free_t, l2df_list_node));
8930 }
8931 
8932 void
8933 l2arc_fini(void)
8934 {
8935         /*
8936          * This is called from dmu_fini(), which is called from spa_fini();
8937          * Because of this, we can assume that all l2arc devices have
8938          * already been removed when the pools themselves were removed.
8939          */
8940 
8941         l2arc_do_free_on_write();
8942 
8943         mutex_destroy(&l2arc_feed_thr_lock);
8944         cv_destroy(&l2arc_feed_thr_cv);
8945         mutex_destroy(&l2arc_rebuild_thr_lock);
8946         cv_destroy(&l2arc_rebuild_thr_cv);
8947         mutex_destroy(&l2arc_dev_mtx);
8948         mutex_destroy(&l2arc_free_on_write_mtx);
8949 
8950         list_destroy(l2arc_dev_list);
8951         list_destroy(l2arc_free_on_write);
8952 }
8953 
8954 void
8955 l2arc_start(void)
8956 {
8957         if (!(spa_mode_global & FWRITE))
8958                 return;
8959 
8960         (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
8961             TS_RUN, minclsyspri);
8962 }
8963 
8964 void
8965 l2arc_stop(void)
8966 {
8967         if (!(spa_mode_global & FWRITE))
8968                 return;
8969 
8970         mutex_enter(&l2arc_feed_thr_lock);
8971         cv_signal(&l2arc_feed_thr_cv);      /* kick thread out of startup */
8972         l2arc_thread_exit = 1;
8973         while (l2arc_thread_exit != 0)
8974                 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
8975         mutex_exit(&l2arc_feed_thr_lock);
8976 }
8977 
8978 /*
8979  * Punches out rebuild threads for the L2ARC devices in a spa. This should
8980  * be called after pool import from the spa async thread, since starting
8981  * these threads directly from spa_import() will make them part of the
8982  * "zpool import" context and delay process exit (and thus pool import).
8983  */
8984 void
8985 l2arc_spa_rebuild_start(spa_t *spa)
8986 {
8987         ASSERT(MUTEX_HELD(&spa_namespace_lock));
8988 
8989         /*
8990          * Locate the spa's l2arc devices and kick off rebuild threads.
8991          */
8992         for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
8993                 l2arc_dev_t *dev =
8994                     l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
8995                 if (dev == NULL) {
8996                         /* Don't attempt a rebuild if the vdev is UNAVAIL */
8997                         continue;
8998                 }
8999                 mutex_enter(&l2arc_rebuild_thr_lock);
9000                 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
9001                         dev->l2ad_rebuild_began = B_TRUE;
9002                         (void) thread_create(NULL, 0,
9003                             (void (*)(void *))l2arc_dev_rebuild_start,
9004                             dev, 0, &p0, TS_RUN, minclsyspri);
9005                 }
9006                 mutex_exit(&l2arc_rebuild_thr_lock);
9007         }
9008 }
9009 
9010 /*
9011  * Main entry point for L2ARC rebuilding.
9012  */
9013 static void
9014 l2arc_dev_rebuild_start(l2arc_dev_t *dev)
9015 {
9016         VERIFY(!dev->l2ad_rebuild_cancel);
9017         VERIFY(dev->l2ad_rebuild);
9018         (void) l2arc_rebuild(dev);
9019         mutex_enter(&l2arc_rebuild_thr_lock);
9020         dev->l2ad_rebuild_began = B_FALSE;
9021         dev->l2ad_rebuild = B_FALSE;
9022         mutex_exit(&l2arc_rebuild_thr_lock);
9023 
9024         thread_exit();
9025 }
9026 
9027 /*
9028  * This function implements the actual L2ARC metadata rebuild. It:
9029  * starts reading the log block chain and restores each block's contents
9030  * to memory (reconstructing arc_buf_hdr_t's).
9031  *
9032  * Operation stops under any of the following conditions:
9033  *
9034  * 1) We reach the end of the log block chain.
9035  * 2) We encounter *any* error condition (cksum errors, io errors)
9036  */
9037 static int
9038 l2arc_rebuild(l2arc_dev_t *dev)
9039 {
9040         vdev_t                  *vd = dev->l2ad_vdev;
9041         spa_t                   *spa = vd->vdev_spa;
9042         int                     err = 0;
9043         l2arc_dev_hdr_phys_t    *l2dhdr = dev->l2ad_dev_hdr;
9044         l2arc_log_blk_phys_t    *this_lb, *next_lb;
9045         zio_t                   *this_io = NULL, *next_io = NULL;
9046         l2arc_log_blkptr_t      lbps[2];
9047         l2arc_lb_ptr_buf_t      *lb_ptr_buf;
9048         boolean_t               lock_held;
9049 
9050         this_lb = kmem_zalloc(sizeof (*this_lb), KM_SLEEP);
9051         next_lb = kmem_zalloc(sizeof (*next_lb), KM_SLEEP);
9052 
9053         /*
9054          * We prevent device removal while issuing reads to the device,
9055          * then during the rebuilding phases we drop this lock again so
9056          * that a spa_unload or device remove can be initiated - this is
9057          * safe, because the spa will signal us to stop before removing
9058          * our device and wait for us to stop.
9059          */
9060         spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
9061         lock_held = B_TRUE;
9062 
9063         /*
9064          * Retrieve the persistent L2ARC device state.
9065          * L2BLK_GET_PSIZE returns aligned size for log blocks.
9066          */
9067         dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
9068         dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
9069             L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
9070             dev->l2ad_start);
9071         dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
9072 
9073         /*
9074          * In case the zfs module parameter l2arc_rebuild_enabled is false
9075          * we do not start the rebuild process.
9076          */
9077         if (!l2arc_rebuild_enabled)
9078                 goto out;
9079 
9080         /* Prepare the rebuild process */
9081         bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps));
9082 
9083         /* Start the rebuild process */
9084         for (;;) {
9085                 if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
9086                         break;
9087 
9088                 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
9089                     this_lb, next_lb, this_io, &next_io)) != 0)
9090                         goto out;
9091 
9092                 /*
9093                  * Our memory pressure valve. If the system is running low
9094                  * on memory, rather than swamping memory with new ARC buf
9095                  * hdrs, we opt not to rebuild the L2ARC. At this point,
9096                  * however, we have already set up our L2ARC dev to chain in
9097                  * new metadata log blocks, so the user may choose to offline/
9098                  * online the L2ARC dev at a later time (or re-import the pool)
9099                  * to reconstruct it (when there's less memory pressure).
9100                  */
9101                 if (arc_reclaim_needed()) {
9102                         ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
9103                         cmn_err(CE_NOTE, "System running low on memory, "
9104                             "aborting L2ARC rebuild.");
9105                         err = SET_ERROR(ENOMEM);
9106                         goto out;
9107                 }
9108 
9109                 spa_config_exit(spa, SCL_L2ARC, vd);
9110                 lock_held = B_FALSE;
9111 
9112                 /*
9113                  * Now that we know that the next_lb checks out alright, we
9114                  * can start reconstruction from this log block.
9115                  * L2BLK_GET_PSIZE returns aligned size for log blocks.
9116                  */
9117                 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
9118                 l2arc_log_blk_restore(dev, this_lb, asize, lbps[0].lbp_daddr);
9119 
9120                 /*
9121                  * log block restored, include its pointer in the list of
9122                  * pointers to log blocks present in the L2ARC device.
9123                  */
9124                 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
9125                 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
9126                     KM_SLEEP);
9127                 bcopy(&lbps[0], lb_ptr_buf->lb_ptr,
9128                     sizeof (l2arc_log_blkptr_t));
9129                 mutex_enter(&dev->l2ad_mtx);
9130                 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
9131                 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
9132                 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
9133                 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
9134                 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
9135                 mutex_exit(&dev->l2ad_mtx);
9136                 vdev_space_update(vd, asize, 0, 0);
9137 
9138                 /* BEGIN CSTYLED */
9139                 /*
9140                  * Protection against loops of log blocks:
9141                  *
9142                  *                                     l2ad_hand  l2ad_evict
9143                  *                                         V          V
9144                  * l2ad_start |=======================================| l2ad_end
9145                  *             -----|||----|||---|||----|||
9146                  *                  (3)    (2)   (1)    (0)
9147                  *             ---|||---|||----|||---|||
9148                  *                (7)   (6)    (5)   (4)
9149                  *
9150                  * In this situation the pointer of log block (4) passes
9151                  * l2arc_log_blkptr_valid() but the log block should not be
9152                  * restored as it is overwritten by the payload of log block
9153                  * (0). Only log blocks (0)-(3) should be restored. We check
9154                  * whether l2ad_evict lies in between the payload starting
9155                  * offset of the next log block (lbps[1].lbp_payload_start)
9156                  * and the payload starting offset of the present log block
9157                  * (lbps[0].lbp_payload_start). If true and this isn't the
9158                  * first pass, we are looping from the beginning and we should
9159                  * stop.
9160                  */
9161                 /* END CSTYLED */
9162                 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
9163                     lbps[0].lbp_payload_start, dev->l2ad_evict) &&
9164                     !dev->l2ad_first)
9165                         goto out;
9166 
9167                 for (;;) {
9168                         mutex_enter(&l2arc_rebuild_thr_lock);
9169                         if (dev->l2ad_rebuild_cancel) {
9170                                 dev->l2ad_rebuild = B_FALSE;
9171                                 cv_signal(&l2arc_rebuild_thr_cv);
9172                                 mutex_exit(&l2arc_rebuild_thr_lock);
9173                                 err = SET_ERROR(ECANCELED);
9174                                 goto out;
9175                         }
9176                         mutex_exit(&l2arc_rebuild_thr_lock);
9177                         if (spa_config_tryenter(spa, SCL_L2ARC, vd,
9178                             RW_READER)) {
9179                                 lock_held = B_TRUE;
9180                                 break;
9181                         }
9182                         /*
9183                          * L2ARC config lock held by somebody in writer,
9184                          * possibly due to them trying to remove us. They'll
9185                          * likely to want us to shut down, so after a little
9186                          * delay, we check l2ad_rebuild_cancel and retry
9187                          * the lock again.
9188                          */
9189                         delay(1);
9190                 }
9191 
9192                 /*
9193                  * Continue with the next log block.
9194                  */
9195                 lbps[0] = lbps[1];
9196                 lbps[1] = this_lb->lb_prev_lbp;
9197                 PTR_SWAP(this_lb, next_lb);
9198                 this_io = next_io;
9199                 next_io = NULL;
9200                 }
9201 
9202         if (this_io != NULL)
9203                 l2arc_log_blk_fetch_abort(this_io);
9204 out:
9205         if (next_io != NULL)
9206                 l2arc_log_blk_fetch_abort(next_io);
9207         kmem_free(this_lb, sizeof (*this_lb));
9208         kmem_free(next_lb, sizeof (*next_lb));
9209 
9210         if (!l2arc_rebuild_enabled) {
9211                 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9212                     "disabled");
9213         } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
9214                 ARCSTAT_BUMP(arcstat_l2_rebuild_success);
9215                 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9216                     "successful, restored %llu blocks",
9217                     (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9218         } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
9219                 /*
9220                  * No error but also nothing restored, meaning the lbps array
9221                  * in the device header points to invalid/non-present log
9222                  * blocks. Reset the header.
9223                  */
9224                 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9225                     "no valid log blocks");
9226                 bzero(l2dhdr, dev->l2ad_dev_hdr_asize);
9227                 l2arc_dev_hdr_update(dev);
9228         } else if (err != 0) {
9229                 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9230                     "aborted, restored %llu blocks",
9231                     (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9232         }
9233 
9234         if (lock_held)
9235                 spa_config_exit(spa, SCL_L2ARC, vd);
9236 
9237         return (err);
9238 }
9239 
9240 /*
9241  * Attempts to read the device header on the provided L2ARC device and writes
9242  * it to `hdr'. On success, this function returns 0, otherwise the appropriate
9243  * error code is returned.
9244  */
9245 static int
9246 l2arc_dev_hdr_read(l2arc_dev_t *dev)
9247 {
9248         int                     err;
9249         uint64_t                guid;
9250         l2arc_dev_hdr_phys_t    *l2dhdr = dev->l2ad_dev_hdr;
9251         const uint64_t          l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9252         abd_t                   *abd;
9253 
9254         guid = spa_guid(dev->l2ad_vdev->vdev_spa);
9255 
9256         abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
9257 
9258         err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
9259             VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
9260             ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_ASYNC_READ,
9261             ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
9262             ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
9263             ZIO_FLAG_SPECULATIVE, B_FALSE));
9264 
9265         abd_put(abd);
9266 
9267         if (err != 0) {
9268                 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
9269                 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
9270                     "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid);
9271                 return (err);
9272         }
9273 
9274         if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
9275                 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
9276 
9277         if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
9278             l2dhdr->dh_spa_guid != guid ||
9279             l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
9280             l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
9281             l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
9282             l2dhdr->dh_end != dev->l2ad_end ||
9283             !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
9284             l2dhdr->dh_evict)) {
9285                 /*
9286                  * Attempt to rebuild a device containing no actual dev hdr
9287                  * or containing a header from some other pool or from another
9288                  * version of persistent L2ARC.
9289                  */
9290                 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
9291                 return (SET_ERROR(ENOTSUP));
9292         }
9293 
9294         return (0);
9295 }
9296 
9297 /*
9298  * Reads L2ARC log blocks from storage and validates their contents.
9299  *
9300  * This function implements a simple fetcher to make sure that while
9301  * we're processing one buffer the L2ARC is already fetching the next
9302  * one in the chain.
9303  *
9304  * The arguments this_lp and next_lp point to the current and next log block
9305  * address in the block chain. Similarly, this_lb and next_lb hold the
9306  * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
9307  *
9308  * The `this_io' and `next_io' arguments are used for block fetching.
9309  * When issuing the first blk IO during rebuild, you should pass NULL for
9310  * `this_io'. This function will then issue a sync IO to read the block and
9311  * also issue an async IO to fetch the next block in the block chain. The
9312  * fetched IO is returned in `next_io'. On subsequent calls to this
9313  * function, pass the value returned in `next_io' from the previous call
9314  * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
9315  * Prior to the call, you should initialize your `next_io' pointer to be
9316  * NULL. If no fetch IO was issued, the pointer is left set at NULL.
9317  *
9318  * On success, this function returns 0, otherwise it returns an appropriate
9319  * error code. On error the fetching IO is aborted and cleared before
9320  * returning from this function. Therefore, if we return `success', the
9321  * caller can assume that we have taken care of cleanup of fetch IOs.
9322  */
9323 static int
9324 l2arc_log_blk_read(l2arc_dev_t *dev,
9325     const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
9326     l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
9327     zio_t *this_io, zio_t **next_io)
9328 {
9329         int             err = 0;
9330         zio_cksum_t     cksum;
9331         abd_t           *abd = NULL;
9332         uint64_t        asize;
9333 
9334         ASSERT(this_lbp != NULL && next_lbp != NULL);
9335         ASSERT(this_lb != NULL && next_lb != NULL);
9336         ASSERT(next_io != NULL && *next_io == NULL);
9337         ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
9338 
9339         /*
9340          * Check to see if we have issued the IO for this log block in a
9341          * previous run. If not, this is the first call, so issue it now.
9342          */
9343         if (this_io == NULL) {
9344                 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
9345                     this_lb);
9346         }
9347 
9348         /*
9349          * Peek to see if we can start issuing the next IO immediately.
9350          */
9351         if (l2arc_log_blkptr_valid(dev, next_lbp)) {
9352                 /*
9353                  * Start issuing IO for the next log block early - this
9354                  * should help keep the L2ARC device busy while we
9355                  * decompress and restore this log block.
9356                  */
9357                 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
9358                     next_lb);
9359         }
9360 
9361         /* Wait for the IO to read this log block to complete */
9362         if ((err = zio_wait(this_io)) != 0) {
9363                 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
9364                 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
9365                     "offset: %llu, vdev guid: %llu", err, this_lbp->lbp_daddr,
9366                     dev->l2ad_vdev->vdev_guid);
9367                 goto cleanup;
9368         }
9369 
9370         /*
9371          * Make sure the buffer checks out.
9372          * L2BLK_GET_PSIZE returns aligned size for log blocks.
9373          */
9374         asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
9375         fletcher_4_native(this_lb, asize, NULL, &cksum);
9376         if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
9377                 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
9378                 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
9379                     "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
9380                     this_lbp->lbp_daddr, dev->l2ad_vdev->vdev_guid,
9381                     dev->l2ad_hand, dev->l2ad_evict);
9382                 err = SET_ERROR(ECKSUM);
9383                 goto cleanup;
9384         }
9385 
9386         /* Now we can take our time decoding this buffer */
9387         switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
9388         case ZIO_COMPRESS_OFF:
9389                 break;
9390         case ZIO_COMPRESS_LZ4:
9391                 abd = abd_alloc_for_io(asize, B_TRUE);
9392                 abd_copy_from_buf_off(abd, this_lb, 0, asize);
9393                 if ((err = zio_decompress_data(
9394                     L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
9395                     abd, this_lb, asize, sizeof (*this_lb))) != 0) {
9396                         err = SET_ERROR(EINVAL);
9397                         goto cleanup;
9398                 }
9399                 break;
9400         default:
9401                 err = SET_ERROR(EINVAL);
9402                 goto cleanup;
9403         }
9404         if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
9405                 byteswap_uint64_array(this_lb, sizeof (*this_lb));
9406         if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
9407                 err = SET_ERROR(EINVAL);
9408                 goto cleanup;
9409         }
9410 cleanup:
9411         /* Abort an in-flight fetch I/O in case of error */
9412         if (err != 0 && *next_io != NULL) {
9413                 l2arc_log_blk_fetch_abort(*next_io);
9414                 *next_io = NULL;
9415         }
9416         if (abd != NULL)
9417                 abd_free(abd);
9418         return (err);
9419 }
9420 
9421 /*
9422  * Restores the payload of a log block to ARC. This creates empty ARC hdr
9423  * entries which only contain an l2arc hdr, essentially restoring the
9424  * buffers to their L2ARC evicted state. This function also updates space
9425  * usage on the L2ARC vdev to make sure it tracks restored buffers.
9426  */
9427 static void
9428 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
9429     uint64_t lb_asize, uint64_t lb_daddr)
9430 {
9431         uint64_t        size = 0, asize = 0;
9432         uint64_t        log_entries = dev->l2ad_log_entries;
9433 
9434         for (int i = log_entries - 1; i >= 0; i--) {
9435                 /*
9436                  * Restore goes in the reverse temporal direction to preserve
9437                  * correct temporal ordering of buffers in the l2ad_buflist.
9438                  * l2arc_hdr_restore also does a list_insert_tail instead of
9439                  * list_insert_head on the l2ad_buflist:
9440                  *
9441                  *              LIST    l2ad_buflist            LIST
9442                  *              HEAD  <------ (time) ------  TAIL
9443                  * direction    +-----+-----+-----+-----+-----+    direction
9444                  * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
9445                  * fill         +-----+-----+-----+-----+-----+
9446                  *              ^                               ^
9447                  *              |                               |
9448                  *              |                               |
9449                  *      l2arc_feed_thread               l2arc_rebuild
9450                  *      will place new bufs here        restores bufs here
9451                  *
9452                  * During l2arc_rebuild() the device is not used by
9453                  * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
9454                  */
9455                 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
9456                 asize += vdev_psize_to_asize(dev->l2ad_vdev,
9457                     L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
9458                 l2arc_hdr_restore(&lb->lb_entries[i], dev);
9459         }
9460 
9461         /*
9462          * Record rebuild stats:
9463          *      size            Logical size of restored buffers in the L2ARC
9464          *      asize           Aligned size of restored buffers in the L2ARC
9465          */
9466         ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
9467         ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
9468         ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
9469         ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
9470         ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
9471         ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
9472 }
9473 
9474 /*
9475  * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
9476  * into a state indicating that it has been evicted to L2ARC.
9477  */
9478 static void
9479 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
9480 {
9481         arc_buf_hdr_t           *hdr, *exists;
9482         kmutex_t                *hash_lock;
9483         arc_buf_contents_t      type = L2BLK_GET_TYPE((le)->le_prop);
9484         uint64_t                asize;
9485 
9486         /*
9487          * Do all the allocation before grabbing any locks, this lets us
9488          * sleep if memory is full and we don't have to deal with failed
9489          * allocations.
9490          */
9491         hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
9492             dev, le->le_dva, le->le_daddr,
9493             L2BLK_GET_PSIZE((le)->le_prop), le->le_birth,
9494             L2BLK_GET_COMPRESS((le)->le_prop),
9495             L2BLK_GET_PROTECTED((le)->le_prop),
9496             L2BLK_GET_PREFETCH((le)->le_prop));
9497         asize = vdev_psize_to_asize(dev->l2ad_vdev,
9498             L2BLK_GET_PSIZE((le)->le_prop));
9499 
9500         /*
9501          * vdev_space_update() has to be called before arc_hdr_destroy() to
9502          * avoid underflow since the latter also calls the former.
9503          */
9504         vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9505 
9506         ARCSTAT_INCR(arcstat_l2_lsize, HDR_GET_LSIZE(hdr));
9507         ARCSTAT_INCR(arcstat_l2_psize, HDR_GET_PSIZE(hdr));
9508 
9509         mutex_enter(&dev->l2ad_mtx);
9510         list_insert_tail(&dev->l2ad_buflist, hdr);
9511         (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
9512         mutex_exit(&dev->l2ad_mtx);
9513 
9514         exists = buf_hash_insert(hdr, &hash_lock);
9515         if (exists) {
9516                 /* Buffer was already cached, no need to restore it. */
9517                 arc_hdr_destroy(hdr);
9518                 /*
9519                  * If the buffer is already cached, check whether it has
9520                  * L2ARC metadata. If not, enter them and update the flag.
9521                  * This is important is case of onlining a cache device, since
9522                  * we previously evicted all L2ARC metadata from ARC.
9523                  */
9524                 if (!HDR_HAS_L2HDR(exists)) {
9525                         arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
9526                         exists->b_l2hdr.b_dev = dev;
9527                         exists->b_l2hdr.b_daddr = le->le_daddr;
9528                         mutex_enter(&dev->l2ad_mtx);
9529                         list_insert_tail(&dev->l2ad_buflist, exists);
9530                         (void) zfs_refcount_add_many(&dev->l2ad_alloc,
9531                             arc_hdr_size(exists), exists);
9532                         mutex_exit(&dev->l2ad_mtx);
9533                         vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9534                         ARCSTAT_INCR(arcstat_l2_lsize, HDR_GET_LSIZE(exists));
9535                         ARCSTAT_INCR(arcstat_l2_psize, HDR_GET_PSIZE(exists));
9536                 }
9537                 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
9538         }
9539 
9540         mutex_exit(hash_lock);
9541 }
9542 
9543 /*
9544  * Starts an asynchronous read IO to read a log block. This is used in log
9545  * block reconstruction to start reading the next block before we are done
9546  * decoding and reconstructing the current block, to keep the l2arc device
9547  * nice and hot with read IO to process.
9548  * The returned zio will contain newly allocated memory buffers for the IO
9549  * data which should then be freed by the caller once the zio is no longer
9550  * needed (i.e. due to it having completed). If you wish to abort this
9551  * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
9552  * care of disposing of the allocated buffers correctly.
9553  */
9554 static zio_t *
9555 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
9556     l2arc_log_blk_phys_t *lb)
9557 {
9558         uint32_t                asize;
9559         zio_t                   *pio;
9560         l2arc_read_callback_t   *cb;
9561 
9562         /* L2BLK_GET_PSIZE returns aligned size for log blocks */
9563         asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
9564         ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
9565 
9566         cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
9567         cb->l2rcb_abd = abd_get_from_buf(lb, asize);
9568         pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
9569             ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
9570             ZIO_FLAG_DONT_RETRY);
9571         (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
9572             cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
9573             ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
9574             ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
9575 
9576         return (pio);
9577 }
9578 
9579 /*
9580  * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
9581  * buffers allocated for it.
9582  */
9583 static void
9584 l2arc_log_blk_fetch_abort(zio_t *zio)
9585 {
9586         (void) zio_wait(zio);
9587 }
9588 
9589 /*
9590  * Creates a zio to update the device header on an l2arc device.
9591  */
9592 static void
9593 l2arc_dev_hdr_update(l2arc_dev_t *dev)
9594 {
9595         l2arc_dev_hdr_phys_t    *l2dhdr = dev->l2ad_dev_hdr;
9596         const uint64_t          l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9597         abd_t                   *abd;
9598         int                     err;
9599 
9600         VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
9601 
9602         l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
9603         l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
9604         l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
9605         l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
9606         l2dhdr->dh_log_entries = dev->l2ad_log_entries;
9607         l2dhdr->dh_evict = dev->l2ad_evict;
9608         l2dhdr->dh_start = dev->l2ad_start;
9609         l2dhdr->dh_end = dev->l2ad_end;
9610         l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
9611         l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
9612         l2dhdr->dh_flags = 0;
9613         if (dev->l2ad_first)
9614                 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
9615 
9616         abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
9617 
9618         err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
9619             VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
9620             NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
9621 
9622         abd_put(abd);
9623 
9624         if (err != 0) {
9625                 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
9626                     "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid);
9627         }
9628 }
9629 
9630 /*
9631  * Commits a log block to the L2ARC device. This routine is invoked from
9632  * l2arc_write_buffers when the log block fills up.
9633  * This function allocates some memory to temporarily hold the serialized
9634  * buffer to be written. This is then released in l2arc_write_done.
9635  */
9636 static void
9637 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
9638 {
9639         l2arc_log_blk_phys_t    *lb = &dev->l2ad_log_blk;
9640         l2arc_dev_hdr_phys_t    *l2dhdr = dev->l2ad_dev_hdr;
9641         uint64_t                psize, asize;
9642         zio_t                   *wzio;
9643         l2arc_lb_abd_buf_t      *abd_buf;
9644         uint8_t                 *tmpbuf;
9645         l2arc_lb_ptr_buf_t      *lb_ptr_buf;
9646 
9647         VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
9648 
9649         tmpbuf = zio_buf_alloc(sizeof (*lb));
9650         abd_buf = zio_buf_alloc(sizeof (*abd_buf));
9651         abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
9652         lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
9653         lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
9654 
9655         /* link the buffer into the block chain */
9656         lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
9657         lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
9658 
9659         /*
9660          * l2arc_log_blk_commit() may be called multiple times during a single
9661          * l2arc_write_buffers() call. Save the allocated abd buffers in a list
9662          * so we can free them in l2arc_write_done() later on.
9663          */
9664         list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
9665 
9666         /* try to compress the buffer */
9667         psize = zio_compress_data(ZIO_COMPRESS_LZ4,
9668             abd_buf->abd, tmpbuf, sizeof (*lb));
9669 
9670         /* a log block is never entirely zero */
9671         ASSERT(psize != 0);
9672         asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
9673         ASSERT(asize <= sizeof (*lb));
9674 
9675         /*
9676          * Update the start log block pointer in the device header to point
9677          * to the log block we're about to write.
9678          */
9679         l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
9680         l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
9681         l2dhdr->dh_start_lbps[0].lbp_payload_asize =
9682             dev->l2ad_log_blk_payload_asize;
9683         l2dhdr->dh_start_lbps[0].lbp_payload_start =
9684             dev->l2ad_log_blk_payload_start;
9685         _NOTE(CONSTCOND)
9686         L2BLK_SET_LSIZE(
9687             (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
9688         L2BLK_SET_PSIZE(
9689             (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
9690         L2BLK_SET_CHECKSUM(
9691             (&l2dhdr->dh_start_lbps[0])->lbp_prop,
9692             ZIO_CHECKSUM_FLETCHER_4);
9693         if (asize < sizeof (*lb)) {
9694                 /* compression succeeded */
9695                 bzero(tmpbuf + psize, asize - psize);
9696                 L2BLK_SET_COMPRESS(
9697                     (&l2dhdr->dh_start_lbps[0])->lbp_prop,
9698                     ZIO_COMPRESS_LZ4);
9699         } else {
9700                 /* compression failed */
9701                 bcopy(lb, tmpbuf, sizeof (*lb));
9702                 L2BLK_SET_COMPRESS(
9703                     (&l2dhdr->dh_start_lbps[0])->lbp_prop,
9704                     ZIO_COMPRESS_OFF);
9705         }
9706 
9707         /* checksum what we're about to write */
9708         fletcher_4_native(tmpbuf, asize, NULL,
9709             &l2dhdr->dh_start_lbps[0].lbp_cksum);
9710 
9711         abd_put(abd_buf->abd);
9712 
9713         /* perform the write itself */
9714         abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb));
9715         abd_take_ownership_of_buf(abd_buf->abd, B_TRUE);
9716         wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
9717             asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
9718             ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
9719         DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
9720         (void) zio_nowait(wzio);
9721 
9722         dev->l2ad_hand += asize;
9723         /*
9724          * Include the committed log block's pointer  in the list of pointers
9725          * to log blocks present in the L2ARC device.
9726          */
9727         bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr,
9728             sizeof (l2arc_log_blkptr_t));
9729         mutex_enter(&dev->l2ad_mtx);
9730         list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
9731         ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
9732         ARCSTAT_BUMP(arcstat_l2_log_blk_count);
9733         zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
9734         zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
9735         mutex_exit(&dev->l2ad_mtx);
9736         vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9737 
9738         /* bump the kstats */
9739         ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
9740         ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
9741         ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
9742         ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
9743             dev->l2ad_log_blk_payload_asize / asize);
9744 
9745         /* start a new log block */
9746         dev->l2ad_log_ent_idx = 0;
9747         dev->l2ad_log_blk_payload_asize = 0;
9748         dev->l2ad_log_blk_payload_start = 0;
9749 }
9750 
9751 /*
9752  * Validates an L2ARC log block address to make sure that it can be read
9753  * from the provided L2ARC device.
9754  */
9755 boolean_t
9756 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
9757 {
9758         /* L2BLK_GET_PSIZE returns aligned size for log blocks */
9759         uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
9760         uint64_t end = lbp->lbp_daddr + asize - 1;
9761         uint64_t start = lbp->lbp_payload_start;
9762         boolean_t evicted = B_FALSE;
9763 
9764         /* BEGIN CSTYLED */
9765         /*
9766          * A log block is valid if all of the following conditions are true:
9767          * - it fits entirely (including its payload) between l2ad_start and
9768          *   l2ad_end
9769          * - it has a valid size
9770          * - neither the log block itself nor part of its payload was evicted
9771          *   by l2arc_evict():
9772          *
9773          *              l2ad_hand          l2ad_evict
9774          *              |                        |      lbp_daddr
9775          *              |     start              |      |  end
9776          *              |     |                  |      |  |
9777          *              V     V                  V      V  V
9778          *   l2ad_start ============================================ l2ad_end
9779          *                    --------------------------||||
9780          *                              ^                ^
9781          *                              |               log block
9782          *                              payload
9783          */
9784         /* END CSTYLED */
9785         evicted =
9786             l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
9787             l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
9788             l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
9789             l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
9790 
9791         return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
9792             asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
9793             (!evicted || dev->l2ad_first));
9794 }
9795 
9796 /*
9797  * Inserts ARC buffer header `hdr' into the current L2ARC log block on
9798  * the device. The buffer being inserted must be present in L2ARC.
9799  * Returns B_TRUE if the L2ARC log block is full and needs to be committed
9800  * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
9801  */
9802 static boolean_t
9803 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
9804 {
9805         l2arc_log_blk_phys_t    *lb = &dev->l2ad_log_blk;
9806         l2arc_log_ent_phys_t    *le;
9807 
9808         if (dev->l2ad_log_entries == 0)
9809                 return (B_FALSE);
9810 
9811         int index = dev->l2ad_log_ent_idx++;
9812 
9813         ASSERT3S(index, <, dev->l2ad_log_entries);
9814         ASSERT(HDR_HAS_L2HDR(hdr));
9815 
9816         le = &lb->lb_entries[index];
9817         bzero(le, sizeof (*le));
9818         le->le_dva = hdr->b_dva;
9819         le->le_birth = hdr->b_birth;
9820         le->le_daddr = hdr->b_l2hdr.b_daddr;
9821         if (index == 0)
9822                 dev->l2ad_log_blk_payload_start = le->le_daddr;
9823         L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
9824         L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
9825         L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
9826         L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
9827         L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
9828         L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
9829 
9830         dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
9831             HDR_GET_PSIZE(hdr));
9832 
9833         return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
9834 }
9835 
9836 /*
9837  * Checks whether a given L2ARC device address sits in a time-sequential
9838  * range. The trick here is that the L2ARC is a rotary buffer, so we can't
9839  * just do a range comparison, we need to handle the situation in which the
9840  * range wraps around the end of the L2ARC device. Arguments:
9841  *      bottom -- Lower end of the range to check (written to earlier).
9842  *      top    -- Upper end of the range to check (written to later).
9843  *      check  -- The address for which we want to determine if it sits in
9844  *                between the top and bottom.
9845  *
9846  * The 3-way conditional below represents the following cases:
9847  *
9848  *      bottom < top : Sequentially ordered case:
9849  *        <check>--------+-------------------+
9850  *                       |  (overlap here?)  |
9851  *       L2ARC dev       V                   V
9852  *       |---------------<bottom>============<top>--------------|
9853  *
9854  *      bottom > top: Looped-around case:
9855  *                            <check>--------+------------------+
9856  *                                           |  (overlap here?) |
9857  *       L2ARC dev                           V                  V
9858  *       |===============<top>---------------<bottom>===========|
9859  *       ^               ^
9860  *       |  (or here?)   |
9861  *       +---------------+---------<check>
9862  *
9863  *      top == bottom : Just a single address comparison.
9864  */
9865 boolean_t
9866 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
9867 {
9868         if (bottom < top)
9869                 return (bottom <= check && check <= top);
9870         else if (bottom > top)
9871                 return (check <= top || bottom <= check);
9872         else
9873                 return (check == top);
9874 }