1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2011 NetApp, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD$
29 */
30 /*
31 * This file and its contents are supplied under the terms of the
32 * Common Development and Distribution License ("CDDL"), version 1.0.
33 * You may only use this file in accordance with the terms of version
34 * 1.0 of the CDDL.
35 *
36 * A full copy of the text of the CDDL should have accompanied this
37 * source. A copy of the CDDL is also available via the Internet at
38 * http://www.illumos.org/license/CDDL.
39 *
40 * Copyright 2015 Pluribus Networks Inc.
41 * Copyright 2019 Joyent, Inc.
42 * Copyright 2020 Oxide Computer Company
43 */
44
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47
48 #include <sys/param.h>
49 #include <sys/sysctl.h>
50 #include <sys/ioctl.h>
51 #ifdef __FreeBSD__
52 #include <sys/linker.h>
53 #endif
54 #include <sys/mman.h>
55 #include <sys/module.h>
56 #include <sys/_iovec.h>
57 #include <sys/cpuset.h>
58
59 #include <x86/segments.h>
60 #include <machine/specialreg.h>
61
62 #include <errno.h>
63 #include <stdio.h>
64 #include <stdlib.h>
65 #include <assert.h>
66 #include <string.h>
67 #include <fcntl.h>
68 #include <unistd.h>
69
70 #include <libutil.h>
71
72 #include <machine/vmm.h>
73 #include <machine/vmm_dev.h>
74
75 #include "vmmapi.h"
76
77 #define MB (1024 * 1024UL)
78 #define GB (1024 * 1024 * 1024UL)
79
80 #ifndef __FreeBSD__
81 /* shim to no-op for now */
82 #define MAP_NOCORE 0
83 #define MAP_ALIGNED_SUPER 0
84
85 /* Rely on PROT_NONE for guard purposes */
86 #define MAP_GUARD (MAP_PRIVATE | MAP_ANON | MAP_NORESERVE)
87 #endif
88
89 /*
90 * Size of the guard region before and after the virtual address space
91 * mapping the guest physical memory. This must be a multiple of the
92 * superpage size for performance reasons.
93 */
94 #define VM_MMAP_GUARD_SIZE (4 * MB)
95
96 #define PROT_RW (PROT_READ | PROT_WRITE)
97 #define PROT_ALL (PROT_READ | PROT_WRITE | PROT_EXEC)
98
99 struct vmctx {
100 int fd;
101 uint32_t lowmem_limit;
102 int memflags;
103 size_t lowmem;
104 size_t highmem;
105 char *baseaddr;
106 char *name;
107 };
108
109 #ifdef __FreeBSD__
110 #define CREATE(x) sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x)))
111 #define DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x)))
112 #else
113 #define CREATE(x) vm_do_ctl(VMM_CREATE_VM, (x))
114 #define DESTROY(x) vm_do_ctl(VMM_DESTROY_VM, (x))
115
116 static int
117 vm_do_ctl(int cmd, const char *name)
118 {
119 int ctl_fd;
120
121 ctl_fd = open(VMM_CTL_DEV, O_EXCL | O_RDWR);
122 if (ctl_fd < 0) {
123 return (-1);
124 }
125
126 if (ioctl(ctl_fd, cmd, name) == -1) {
127 int err = errno;
128
129 /* Do not lose ioctl errno through the close(2) */
130 (void) close(ctl_fd);
131 errno = err;
132 return (-1);
133 }
134 (void) close(ctl_fd);
135
136 return (0);
137 }
138 #endif
139
140 static int
141 vm_device_open(const char *name)
142 {
143 int fd, len;
144 char *vmfile;
145
146 len = strlen("/dev/vmm/") + strlen(name) + 1;
147 vmfile = malloc(len);
148 assert(vmfile != NULL);
149 snprintf(vmfile, len, "/dev/vmm/%s", name);
150
151 /* Open the device file */
152 fd = open(vmfile, O_RDWR, 0);
153
154 free(vmfile);
155 return (fd);
156 }
157
158 int
159 vm_create(const char *name)
160 {
161 #ifdef __FreeBSD__
162 /* Try to load vmm(4) module before creating a guest. */
163 if (modfind("vmm") < 0)
164 kldload("vmm");
165 #endif
166 return (CREATE((char *)name));
167 }
168
169 struct vmctx *
170 vm_open(const char *name)
171 {
172 struct vmctx *vm;
173
174 vm = malloc(sizeof(struct vmctx) + strlen(name) + 1);
175 assert(vm != NULL);
176
177 vm->fd = -1;
178 vm->memflags = 0;
179 vm->lowmem_limit = 3 * GB;
180 vm->name = (char *)(vm + 1);
181 strcpy(vm->name, name);
182
183 if ((vm->fd = vm_device_open(vm->name)) < 0)
184 goto err;
185
186 return (vm);
187 err:
188 #ifdef __FreeBSD__
189 vm_destroy(vm);
190 #else
191 /*
192 * As libvmmapi is used by other programs to query and control bhyve
193 * VMs, destroying a VM just because the open failed isn't useful. We
194 * have to free what we have allocated, though.
195 */
196 free(vm);
197 #endif
198 return (NULL);
199 }
200
201 #ifndef __FreeBSD__
202 void
203 vm_close(struct vmctx *vm)
204 {
205 assert(vm != NULL);
206 assert(vm->fd >= 0);
207
208 (void) close(vm->fd);
209
210 free(vm);
211 }
212 #endif
213
214 void
215 vm_destroy(struct vmctx *vm)
216 {
217 assert(vm != NULL);
218
219 if (vm->fd >= 0)
220 close(vm->fd);
221 DESTROY(vm->name);
222
223 free(vm);
224 }
225
226 int
227 vm_parse_memsize(const char *optarg, size_t *ret_memsize)
228 {
229 char *endptr;
230 size_t optval;
231 int error;
232
233 optval = strtoul(optarg, &endptr, 0);
234 if (*optarg != '\0' && *endptr == '\0') {
235 /*
236 * For the sake of backward compatibility if the memory size
237 * specified on the command line is less than a megabyte then
238 * it is interpreted as being in units of MB.
239 */
240 if (optval < MB)
241 optval *= MB;
242 *ret_memsize = optval;
243 error = 0;
244 } else
245 error = expand_number(optarg, ret_memsize);
246
247 return (error);
248 }
249
250 uint32_t
251 vm_get_lowmem_limit(struct vmctx *ctx)
252 {
253
254 return (ctx->lowmem_limit);
255 }
256
257 void
258 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit)
259 {
260
261 ctx->lowmem_limit = limit;
262 }
263
264 void
265 vm_set_memflags(struct vmctx *ctx, int flags)
266 {
267
268 ctx->memflags = flags;
269 }
270
271 int
272 vm_get_memflags(struct vmctx *ctx)
273 {
274
275 return (ctx->memflags);
276 }
277
278 /*
279 * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len).
280 */
281 int
282 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off,
283 size_t len, int prot)
284 {
285 struct vm_memmap memmap;
286 int error, flags;
287
288 memmap.gpa = gpa;
289 memmap.segid = segid;
290 memmap.segoff = off;
291 memmap.len = len;
292 memmap.prot = prot;
293 memmap.flags = 0;
294
295 if (ctx->memflags & VM_MEM_F_WIRED)
296 memmap.flags |= VM_MEMMAP_F_WIRED;
297
298 /*
299 * If this mapping already exists then don't create it again. This
300 * is the common case for SYSMEM mappings created by bhyveload(8).
301 */
302 error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags);
303 if (error == 0 && gpa == memmap.gpa) {
304 if (segid != memmap.segid || off != memmap.segoff ||
305 prot != memmap.prot || flags != memmap.flags) {
306 errno = EEXIST;
307 return (-1);
308 } else {
309 return (0);
310 }
311 }
312
313 error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap);
314 return (error);
315 }
316
317 int
318 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid,
319 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
320 {
321 struct vm_memmap memmap;
322 int error;
323
324 bzero(&memmap, sizeof(struct vm_memmap));
325 memmap.gpa = *gpa;
326 error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap);
327 if (error == 0) {
328 *gpa = memmap.gpa;
329 *segid = memmap.segid;
330 *segoff = memmap.segoff;
331 *len = memmap.len;
332 *prot = memmap.prot;
333 *flags = memmap.flags;
334 }
335 return (error);
336 }
337
338 /*
339 * Return 0 if the segments are identical and non-zero otherwise.
340 *
341 * This is slightly complicated by the fact that only device memory segments
342 * are named.
343 */
344 static int
345 cmpseg(size_t len, const char *str, size_t len2, const char *str2)
346 {
347
348 if (len == len2) {
349 if ((!str && !str2) || (str && str2 && !strcmp(str, str2)))
350 return (0);
351 }
352 return (-1);
353 }
354
355 static int
356 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name)
357 {
358 struct vm_memseg memseg;
359 size_t n;
360 int error;
361
362 /*
363 * If the memory segment has already been created then just return.
364 * This is the usual case for the SYSMEM segment created by userspace
365 * loaders like bhyveload(8).
366 */
367 error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name,
368 sizeof(memseg.name));
369 if (error)
370 return (error);
371
372 if (memseg.len != 0) {
373 if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) {
374 errno = EINVAL;
375 return (-1);
376 } else {
377 return (0);
378 }
379 }
380
381 bzero(&memseg, sizeof(struct vm_memseg));
382 memseg.segid = segid;
383 memseg.len = len;
384 if (name != NULL) {
385 n = strlcpy(memseg.name, name, sizeof(memseg.name));
386 if (n >= sizeof(memseg.name)) {
387 errno = ENAMETOOLONG;
388 return (-1);
389 }
390 }
391
392 error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg);
393 return (error);
394 }
395
396 int
397 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf,
398 size_t bufsize)
399 {
400 struct vm_memseg memseg;
401 size_t n;
402 int error;
403
404 memseg.segid = segid;
405 error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg);
406 if (error == 0) {
407 *lenp = memseg.len;
408 n = strlcpy(namebuf, memseg.name, bufsize);
409 if (n >= bufsize) {
410 errno = ENAMETOOLONG;
411 error = -1;
412 }
413 }
414 return (error);
415 }
416
417 static int
418 #ifdef __FreeBSD__
419 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base)
420 #else
421 setup_memory_segment(struct vmctx *ctx, int segid, vm_paddr_t gpa, size_t len,
422 char *base)
423 #endif
424 {
425 char *ptr;
426 int error, flags;
427
428 /* Map 'len' bytes starting at 'gpa' in the guest address space */
429 #ifdef __FreeBSD__
430 error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL);
431 #else
432 /*
433 * As we use two segments for lowmem/highmem the offset within the
434 * segment is 0 on illumos.
435 */
436 error = vm_mmap_memseg(ctx, gpa, segid, 0, len, PROT_ALL);
437 #endif
438 if (error)
439 return (error);
440
441 flags = MAP_SHARED | MAP_FIXED;
442 if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
443 flags |= MAP_NOCORE;
444
445 /* mmap into the process address space on the host */
446 ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa);
447 if (ptr == MAP_FAILED)
448 return (-1);
449
450 return (0);
451 }
452
453 int
454 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms)
455 {
456 size_t objsize, len;
457 vm_paddr_t gpa;
458 char *baseaddr, *ptr;
459 int error;
460
461 assert(vms == VM_MMAP_ALL);
462
463 /*
464 * If 'memsize' cannot fit entirely in the 'lowmem' segment then
465 * create another 'highmem' segment above 4GB for the remainder.
466 */
467 if (memsize > ctx->lowmem_limit) {
468 ctx->lowmem = ctx->lowmem_limit;
469 ctx->highmem = memsize - ctx->lowmem_limit;
470 objsize = 4*GB + ctx->highmem;
471 } else {
472 ctx->lowmem = memsize;
473 ctx->highmem = 0;
474 objsize = ctx->lowmem;
475 }
476
477 #ifdef __FreeBSD__
478 error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL);
479 if (error)
480 return (error);
481 #endif
482
483 /*
484 * Stake out a contiguous region covering the guest physical memory
485 * and the adjoining guard regions.
486 */
487 len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE;
488 ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0);
489 if (ptr == MAP_FAILED)
490 return (-1);
491
492 baseaddr = ptr + VM_MMAP_GUARD_SIZE;
493
494 #ifdef __FreeBSD__
495 if (ctx->highmem > 0) {
496 gpa = 4*GB;
497 len = ctx->highmem;
498 error = setup_memory_segment(ctx, gpa, len, baseaddr);
499 if (error)
500 return (error);
501 }
502
503 if (ctx->lowmem > 0) {
504 gpa = 0;
505 len = ctx->lowmem;
506 error = setup_memory_segment(ctx, gpa, len, baseaddr);
507 if (error)
508 return (error);
509 }
510 #else
511 if (ctx->highmem > 0) {
512 error = vm_alloc_memseg(ctx, VM_HIGHMEM, ctx->highmem, NULL);
513 if (error)
514 return (error);
515 gpa = 4*GB;
516 len = ctx->highmem;
517 error = setup_memory_segment(ctx, VM_HIGHMEM, gpa, len, baseaddr);
518 if (error)
519 return (error);
520 }
521
522 if (ctx->lowmem > 0) {
523 error = vm_alloc_memseg(ctx, VM_LOWMEM, ctx->lowmem, NULL);
524 if (error)
525 return (error);
526 gpa = 0;
527 len = ctx->lowmem;
528 error = setup_memory_segment(ctx, VM_LOWMEM, gpa, len, baseaddr);
529 if (error)
530 return (error);
531 }
532 #endif
533
534 ctx->baseaddr = baseaddr;
535
536 return (0);
537 }
538
539 /*
540 * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in
541 * the lowmem or highmem regions.
542 *
543 * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region.
544 * The instruction emulation code depends on this behavior.
545 */
546 void *
547 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len)
548 {
549
550 if (ctx->lowmem > 0) {
551 if (gaddr < ctx->lowmem && len <= ctx->lowmem &&
552 gaddr + len <= ctx->lowmem)
553 return (ctx->baseaddr + gaddr);
554 }
555
556 if (ctx->highmem > 0) {
557 if (gaddr >= 4*GB) {
558 if (gaddr < 4*GB + ctx->highmem &&
559 len <= ctx->highmem &&
560 gaddr + len <= 4*GB + ctx->highmem)
561 return (ctx->baseaddr + gaddr);
562 }
563 }
564
565 return (NULL);
566 }
567
568 size_t
569 vm_get_lowmem_size(struct vmctx *ctx)
570 {
571
572 return (ctx->lowmem);
573 }
574
575 size_t
576 vm_get_highmem_size(struct vmctx *ctx)
577 {
578
579 return (ctx->highmem);
580 }
581
582 #ifndef __FreeBSD__
583 int
584 vm_get_devmem_offset(struct vmctx *ctx, int segid, off_t *mapoff)
585 {
586 struct vm_devmem_offset vdo;
587 int error;
588
589 vdo.segid = segid;
590 error = ioctl(ctx->fd, VM_DEVMEM_GETOFFSET, &vdo);
591 if (error == 0)
592 *mapoff = vdo.offset;
593
594 return (error);
595 }
596 #endif
597
598 void *
599 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len)
600 {
601 #ifdef __FreeBSD__
602 char pathname[MAXPATHLEN];
603 #endif
604 size_t len2;
605 char *base, *ptr;
606 int fd, error, flags;
607 off_t mapoff;
608
609 fd = -1;
610 ptr = MAP_FAILED;
611 if (name == NULL || strlen(name) == 0) {
612 errno = EINVAL;
613 goto done;
614 }
615
616 error = vm_alloc_memseg(ctx, segid, len, name);
617 if (error)
618 goto done;
619
620 #ifdef __FreeBSD__
621 strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname));
622 strlcat(pathname, ctx->name, sizeof(pathname));
623 strlcat(pathname, ".", sizeof(pathname));
624 strlcat(pathname, name, sizeof(pathname));
625
626 fd = open(pathname, O_RDWR);
627 if (fd < 0)
628 goto done;
629 #else
630 if (vm_get_devmem_offset(ctx, segid, &mapoff) != 0)
631 goto done;
632 #endif
633
634 /*
635 * Stake out a contiguous region covering the device memory and the
636 * adjoining guard regions.
637 */
638 len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE;
639 base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1,
640 0);
641 if (base == MAP_FAILED)
642 goto done;
643
644 flags = MAP_SHARED | MAP_FIXED;
645 if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
646 flags |= MAP_NOCORE;
647
648 #ifdef __FreeBSD__
649 /* mmap the devmem region in the host address space */
650 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0);
651 #else
652 /* mmap the devmem region in the host address space */
653 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, ctx->fd,
654 mapoff);
655 #endif
656 done:
657 if (fd >= 0)
658 close(fd);
659 return (ptr);
660 }
661
662 int
663 vm_set_desc(struct vmctx *ctx, int vcpu, int reg,
664 uint64_t base, uint32_t limit, uint32_t access)
665 {
666 int error;
667 struct vm_seg_desc vmsegdesc;
668
669 bzero(&vmsegdesc, sizeof(vmsegdesc));
670 vmsegdesc.cpuid = vcpu;
671 vmsegdesc.regnum = reg;
672 vmsegdesc.desc.base = base;
673 vmsegdesc.desc.limit = limit;
674 vmsegdesc.desc.access = access;
675
676 error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc);
677 return (error);
678 }
679
680 int
681 vm_get_desc(struct vmctx *ctx, int vcpu, int reg,
682 uint64_t *base, uint32_t *limit, uint32_t *access)
683 {
684 int error;
685 struct vm_seg_desc vmsegdesc;
686
687 bzero(&vmsegdesc, sizeof(vmsegdesc));
688 vmsegdesc.cpuid = vcpu;
689 vmsegdesc.regnum = reg;
690
691 error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc);
692 if (error == 0) {
693 *base = vmsegdesc.desc.base;
694 *limit = vmsegdesc.desc.limit;
695 *access = vmsegdesc.desc.access;
696 }
697 return (error);
698 }
699
700 int
701 vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc)
702 {
703 int error;
704
705 error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit,
706 &seg_desc->access);
707 return (error);
708 }
709
710 int
711 vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val)
712 {
713 int error;
714 struct vm_register vmreg;
715
716 bzero(&vmreg, sizeof(vmreg));
717 vmreg.cpuid = vcpu;
718 vmreg.regnum = reg;
719 vmreg.regval = val;
720
721 error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg);
722 return (error);
723 }
724
725 int
726 vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val)
727 {
728 int error;
729 struct vm_register vmreg;
730
731 bzero(&vmreg, sizeof(vmreg));
732 vmreg.cpuid = vcpu;
733 vmreg.regnum = reg;
734
735 error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg);
736 *ret_val = vmreg.regval;
737 return (error);
738 }
739
740 int
741 vm_set_register_set(struct vmctx *ctx, int vcpu, unsigned int count,
742 const int *regnums, uint64_t *regvals)
743 {
744 int error;
745 struct vm_register_set vmregset;
746
747 bzero(&vmregset, sizeof(vmregset));
748 vmregset.cpuid = vcpu;
749 vmregset.count = count;
750 vmregset.regnums = regnums;
751 vmregset.regvals = regvals;
752
753 error = ioctl(ctx->fd, VM_SET_REGISTER_SET, &vmregset);
754 return (error);
755 }
756
757 int
758 vm_get_register_set(struct vmctx *ctx, int vcpu, unsigned int count,
759 const int *regnums, uint64_t *regvals)
760 {
761 int error;
762 struct vm_register_set vmregset;
763
764 bzero(&vmregset, sizeof(vmregset));
765 vmregset.cpuid = vcpu;
766 vmregset.count = count;
767 vmregset.regnums = regnums;
768 vmregset.regvals = regvals;
769
770 error = ioctl(ctx->fd, VM_GET_REGISTER_SET, &vmregset);
771 return (error);
772 }
773
774 int
775 vm_run(struct vmctx *ctx, int vcpu, const struct vm_entry *vm_entry,
776 struct vm_exit *vm_exit)
777 {
778 struct vm_entry entry;
779
780 bcopy(vm_entry, &entry, sizeof (entry));
781 entry.cpuid = vcpu;
782 entry.exit_data = vm_exit;
783
784 return (ioctl(ctx->fd, VM_RUN, &entry));
785 }
786
787 int
788 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how)
789 {
790 struct vm_suspend vmsuspend;
791
792 bzero(&vmsuspend, sizeof(vmsuspend));
793 vmsuspend.how = how;
794 return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend));
795 }
796
797 int
798 vm_reinit(struct vmctx *ctx)
799 {
800
801 return (ioctl(ctx->fd, VM_REINIT, 0));
802 }
803
804 int
805 vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid,
806 uint32_t errcode, int restart_instruction)
807 {
808 struct vm_exception exc;
809
810 exc.cpuid = vcpu;
811 exc.vector = vector;
812 exc.error_code = errcode;
813 exc.error_code_valid = errcode_valid;
814 exc.restart_instruction = restart_instruction;
815
816 return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc));
817 }
818
819 #ifndef __FreeBSD__
820 void
821 vm_inject_fault(struct vmctx *ctx, int vcpu, int vector, int errcode_valid,
822 int errcode)
823 {
824 int error;
825 struct vm_exception exc;
826
827 exc.cpuid = vcpu;
828 exc.vector = vector;
829 exc.error_code = errcode;
830 exc.error_code_valid = errcode_valid;
831 exc.restart_instruction = 1;
832 error = ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc);
833
834 assert(error == 0);
835 }
836 #endif /* __FreeBSD__ */
837
838 int
839 vm_apicid2vcpu(struct vmctx *ctx, int apicid)
840 {
841 /*
842 * The apic id associated with the 'vcpu' has the same numerical value
843 * as the 'vcpu' itself.
844 */
845 return (apicid);
846 }
847
848 int
849 vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector)
850 {
851 struct vm_lapic_irq vmirq;
852
853 bzero(&vmirq, sizeof(vmirq));
854 vmirq.cpuid = vcpu;
855 vmirq.vector = vector;
856
857 return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq));
858 }
859
860 int
861 vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector)
862 {
863 struct vm_lapic_irq vmirq;
864
865 bzero(&vmirq, sizeof(vmirq));
866 vmirq.cpuid = vcpu;
867 vmirq.vector = vector;
868
869 return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq));
870 }
871
872 int
873 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg)
874 {
875 struct vm_lapic_msi vmmsi;
876
877 bzero(&vmmsi, sizeof(vmmsi));
878 vmmsi.addr = addr;
879 vmmsi.msg = msg;
880
881 return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi));
882 }
883
884 int
885 vm_ioapic_assert_irq(struct vmctx *ctx, int irq)
886 {
887 struct vm_ioapic_irq ioapic_irq;
888
889 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
890 ioapic_irq.irq = irq;
891
892 return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq));
893 }
894
895 int
896 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq)
897 {
898 struct vm_ioapic_irq ioapic_irq;
899
900 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
901 ioapic_irq.irq = irq;
902
903 return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq));
904 }
905
906 int
907 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq)
908 {
909 struct vm_ioapic_irq ioapic_irq;
910
911 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
912 ioapic_irq.irq = irq;
913
914 return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq));
915 }
916
917 int
918 vm_ioapic_pincount(struct vmctx *ctx, int *pincount)
919 {
920
921 return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount));
922 }
923
924 int
925 vm_readwrite_kernemu_device(struct vmctx *ctx, int vcpu, vm_paddr_t gpa,
926 bool write, int size, uint64_t *value)
927 {
928 struct vm_readwrite_kernemu_device irp = {
929 .vcpuid = vcpu,
930 .access_width = fls(size) - 1,
931 .gpa = gpa,
932 .value = write ? *value : ~0ul,
933 };
934 long cmd = (write ? VM_SET_KERNEMU_DEV : VM_GET_KERNEMU_DEV);
935 int rc;
936
937 rc = ioctl(ctx->fd, cmd, &irp);
938 if (rc == 0 && !write)
939 *value = irp.value;
940 return (rc);
941 }
942
943 int
944 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
945 {
946 struct vm_isa_irq isa_irq;
947
948 bzero(&isa_irq, sizeof(struct vm_isa_irq));
949 isa_irq.atpic_irq = atpic_irq;
950 isa_irq.ioapic_irq = ioapic_irq;
951
952 return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq));
953 }
954
955 int
956 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
957 {
958 struct vm_isa_irq isa_irq;
959
960 bzero(&isa_irq, sizeof(struct vm_isa_irq));
961 isa_irq.atpic_irq = atpic_irq;
962 isa_irq.ioapic_irq = ioapic_irq;
963
964 return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq));
965 }
966
967 int
968 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
969 {
970 struct vm_isa_irq isa_irq;
971
972 bzero(&isa_irq, sizeof(struct vm_isa_irq));
973 isa_irq.atpic_irq = atpic_irq;
974 isa_irq.ioapic_irq = ioapic_irq;
975
976 return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq));
977 }
978
979 int
980 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq,
981 enum vm_intr_trigger trigger)
982 {
983 struct vm_isa_irq_trigger isa_irq_trigger;
984
985 bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger));
986 isa_irq_trigger.atpic_irq = atpic_irq;
987 isa_irq_trigger.trigger = trigger;
988
989 return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger));
990 }
991
992 int
993 vm_inject_nmi(struct vmctx *ctx, int vcpu)
994 {
995 struct vm_nmi vmnmi;
996
997 bzero(&vmnmi, sizeof(vmnmi));
998 vmnmi.cpuid = vcpu;
999
1000 return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi));
1001 }
1002
1003 static const char *capstrmap[] = {
1004 [VM_CAP_HALT_EXIT] = "hlt_exit",
1005 [VM_CAP_MTRAP_EXIT] = "mtrap_exit",
1006 [VM_CAP_PAUSE_EXIT] = "pause_exit",
1007 #ifdef __FreeBSD__
1008 [VM_CAP_UNRESTRICTED_GUEST] = "unrestricted_guest",
1009 #endif
1010 [VM_CAP_ENABLE_INVPCID] = "enable_invpcid",
1011 [VM_CAP_BPT_EXIT] = "bpt_exit",
1012 };
1013
1014 int
1015 vm_capability_name2type(const char *capname)
1016 {
1017 int i;
1018
1019 for (i = 0; i < nitems(capstrmap); i++) {
1020 if (strcmp(capstrmap[i], capname) == 0)
1021 return (i);
1022 }
1023
1024 return (-1);
1025 }
1026
1027 const char *
1028 vm_capability_type2name(int type)
1029 {
1030 if (type >= 0 && type < nitems(capstrmap))
1031 return (capstrmap[type]);
1032
1033 return (NULL);
1034 }
1035
1036 int
1037 vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap,
1038 int *retval)
1039 {
1040 int error;
1041 struct vm_capability vmcap;
1042
1043 bzero(&vmcap, sizeof(vmcap));
1044 vmcap.cpuid = vcpu;
1045 vmcap.captype = cap;
1046
1047 error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap);
1048 *retval = vmcap.capval;
1049 return (error);
1050 }
1051
1052 int
1053 vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val)
1054 {
1055 struct vm_capability vmcap;
1056
1057 bzero(&vmcap, sizeof(vmcap));
1058 vmcap.cpuid = vcpu;
1059 vmcap.captype = cap;
1060 vmcap.capval = val;
1061
1062 return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap));
1063 }
1064
1065 #ifdef __FreeBSD__
1066 int
1067 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
1068 {
1069 struct vm_pptdev pptdev;
1070
1071 bzero(&pptdev, sizeof(pptdev));
1072 pptdev.bus = bus;
1073 pptdev.slot = slot;
1074 pptdev.func = func;
1075
1076 return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
1077 }
1078
1079 int
1080 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
1081 {
1082 struct vm_pptdev pptdev;
1083
1084 bzero(&pptdev, sizeof(pptdev));
1085 pptdev.bus = bus;
1086 pptdev.slot = slot;
1087 pptdev.func = func;
1088
1089 return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
1090 }
1091
1092 int
1093 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
1094 vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
1095 {
1096 struct vm_pptdev_mmio pptmmio;
1097
1098 bzero(&pptmmio, sizeof(pptmmio));
1099 pptmmio.bus = bus;
1100 pptmmio.slot = slot;
1101 pptmmio.func = func;
1102 pptmmio.gpa = gpa;
1103 pptmmio.len = len;
1104 pptmmio.hpa = hpa;
1105
1106 return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
1107 }
1108
1109 int
1110 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
1111 uint64_t addr, uint64_t msg, int numvec)
1112 {
1113 struct vm_pptdev_msi pptmsi;
1114
1115 bzero(&pptmsi, sizeof(pptmsi));
1116 pptmsi.vcpu = vcpu;
1117 pptmsi.bus = bus;
1118 pptmsi.slot = slot;
1119 pptmsi.func = func;
1120 pptmsi.msg = msg;
1121 pptmsi.addr = addr;
1122 pptmsi.numvec = numvec;
1123
1124 return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
1125 }
1126
1127 int
1128 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
1129 int idx, uint64_t addr, uint64_t msg, uint32_t vector_control)
1130 {
1131 struct vm_pptdev_msix pptmsix;
1132
1133 bzero(&pptmsix, sizeof(pptmsix));
1134 pptmsix.vcpu = vcpu;
1135 pptmsix.bus = bus;
1136 pptmsix.slot = slot;
1137 pptmsix.func = func;
1138 pptmsix.idx = idx;
1139 pptmsix.msg = msg;
1140 pptmsix.addr = addr;
1141 pptmsix.vector_control = vector_control;
1142
1143 return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
1144 }
1145
1146 int
1147 vm_get_pptdev_limits(struct vmctx *ctx, int bus, int slot, int func,
1148 int *msi_limit, int *msix_limit)
1149 {
1150 struct vm_pptdev_limits pptlimits;
1151 int error;
1152
1153 bzero(&pptlimits, sizeof (pptlimits));
1154 pptlimits.bus = bus;
1155 pptlimits.slot = slot;
1156 pptlimits.func = func;
1157
1158 error = ioctl(ctx->fd, VM_GET_PPTDEV_LIMITS, &pptlimits);
1159
1160 *msi_limit = pptlimits.msi_limit;
1161 *msix_limit = pptlimits.msix_limit;
1162
1163 return (error);
1164 }
1165 #else /* __FreeBSD__ */
1166 int
1167 vm_assign_pptdev(struct vmctx *ctx, int pptfd)
1168 {
1169 struct vm_pptdev pptdev;
1170
1171 pptdev.pptfd = pptfd;
1172 return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
1173 }
1174
1175 int
1176 vm_unassign_pptdev(struct vmctx *ctx, int pptfd)
1177 {
1178 struct vm_pptdev pptdev;
1179
1180 pptdev.pptfd = pptfd;
1181 return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
1182 }
1183
1184 int
1185 vm_map_pptdev_mmio(struct vmctx *ctx, int pptfd, vm_paddr_t gpa, size_t len,
1186 vm_paddr_t hpa)
1187 {
1188 struct vm_pptdev_mmio pptmmio;
1189
1190 pptmmio.pptfd = pptfd;
1191 pptmmio.gpa = gpa;
1192 pptmmio.len = len;
1193 pptmmio.hpa = hpa;
1194 return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
1195 }
1196
1197 int
1198 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int pptfd, uint64_t addr,
1199 uint64_t msg, int numvec)
1200 {
1201 struct vm_pptdev_msi pptmsi;
1202
1203 pptmsi.vcpu = vcpu;
1204 pptmsi.pptfd = pptfd;
1205 pptmsi.msg = msg;
1206 pptmsi.addr = addr;
1207 pptmsi.numvec = numvec;
1208 return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
1209 }
1210
1211 int
1212 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int pptfd, int idx,
1213 uint64_t addr, uint64_t msg, uint32_t vector_control)
1214 {
1215 struct vm_pptdev_msix pptmsix;
1216
1217 pptmsix.vcpu = vcpu;
1218 pptmsix.pptfd = pptfd;
1219 pptmsix.idx = idx;
1220 pptmsix.msg = msg;
1221 pptmsix.addr = addr;
1222 pptmsix.vector_control = vector_control;
1223 return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
1224 }
1225
1226 int
1227 vm_get_pptdev_limits(struct vmctx *ctx, int pptfd, int *msi_limit,
1228 int *msix_limit)
1229 {
1230 struct vm_pptdev_limits pptlimits;
1231 int error;
1232
1233 bzero(&pptlimits, sizeof (pptlimits));
1234 pptlimits.pptfd = pptfd;
1235 error = ioctl(ctx->fd, VM_GET_PPTDEV_LIMITS, &pptlimits);
1236
1237 *msi_limit = pptlimits.msi_limit;
1238 *msix_limit = pptlimits.msix_limit;
1239 return (error);
1240 }
1241 #endif /* __FreeBSD__ */
1242
1243 uint64_t *
1244 vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv,
1245 int *ret_entries)
1246 {
1247 int error;
1248
1249 static struct vm_stats vmstats;
1250
1251 vmstats.cpuid = vcpu;
1252
1253 error = ioctl(ctx->fd, VM_STATS_IOC, &vmstats);
1254 if (error == 0) {
1255 if (ret_entries)
1256 *ret_entries = vmstats.num_entries;
1257 if (ret_tv)
1258 *ret_tv = vmstats.tv;
1259 return (vmstats.statbuf);
1260 } else
1261 return (NULL);
1262 }
1263
1264 const char *
1265 vm_get_stat_desc(struct vmctx *ctx, int index)
1266 {
1267 static struct vm_stat_desc statdesc;
1268
1269 statdesc.index = index;
1270 if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0)
1271 return (statdesc.desc);
1272 else
1273 return (NULL);
1274 }
1275
1276 int
1277 vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state)
1278 {
1279 int error;
1280 struct vm_x2apic x2apic;
1281
1282 bzero(&x2apic, sizeof(x2apic));
1283 x2apic.cpuid = vcpu;
1284
1285 error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic);
1286 *state = x2apic.state;
1287 return (error);
1288 }
1289
1290 int
1291 vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state)
1292 {
1293 int error;
1294 struct vm_x2apic x2apic;
1295
1296 bzero(&x2apic, sizeof(x2apic));
1297 x2apic.cpuid = vcpu;
1298 x2apic.state = state;
1299
1300 error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic);
1301
1302 return (error);
1303 }
1304
1305 /*
1306 * From Intel Vol 3a:
1307 * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT
1308 */
1309 int
1310 vcpu_reset(struct vmctx *vmctx, int vcpu)
1311 {
1312 int error;
1313 uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx;
1314 uint32_t desc_access, desc_limit;
1315 uint16_t sel;
1316
1317 zero = 0;
1318
1319 rflags = 0x2;
1320 error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags);
1321 if (error)
1322 goto done;
1323
1324 rip = 0xfff0;
1325 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0)
1326 goto done;
1327
1328 cr0 = CR0_NE;
1329 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0)
1330 goto done;
1331
1332 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0)
1333 goto done;
1334
1335 cr4 = 0;
1336 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0)
1337 goto done;
1338
1339 /*
1340 * CS: present, r/w, accessed, 16-bit, byte granularity, usable
1341 */
1342 desc_base = 0xffff0000;
1343 desc_limit = 0xffff;
1344 desc_access = 0x0093;
1345 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS,
1346 desc_base, desc_limit, desc_access);
1347 if (error)
1348 goto done;
1349
1350 sel = 0xf000;
1351 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0)
1352 goto done;
1353
1354 /*
1355 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity
1356 */
1357 desc_base = 0;
1358 desc_limit = 0xffff;
1359 desc_access = 0x0093;
1360 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS,
1361 desc_base, desc_limit, desc_access);
1362 if (error)
1363 goto done;
1364
1365 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS,
1366 desc_base, desc_limit, desc_access);
1367 if (error)
1368 goto done;
1369
1370 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES,
1371 desc_base, desc_limit, desc_access);
1372 if (error)
1373 goto done;
1374
1375 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS,
1376 desc_base, desc_limit, desc_access);
1377 if (error)
1378 goto done;
1379
1380 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS,
1381 desc_base, desc_limit, desc_access);
1382 if (error)
1383 goto done;
1384
1385 sel = 0;
1386 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0)
1387 goto done;
1388 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0)
1389 goto done;
1390 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0)
1391 goto done;
1392 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0)
1393 goto done;
1394 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0)
1395 goto done;
1396
1397 /* General purpose registers */
1398 rdx = 0xf00;
1399 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0)
1400 goto done;
1401 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0)
1402 goto done;
1403 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0)
1404 goto done;
1405 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0)
1406 goto done;
1407 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0)
1408 goto done;
1409 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0)
1410 goto done;
1411 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0)
1412 goto done;
1413 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0)
1414 goto done;
1415
1416 /* GDTR, IDTR */
1417 desc_base = 0;
1418 desc_limit = 0xffff;
1419 desc_access = 0;
1420 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR,
1421 desc_base, desc_limit, desc_access);
1422 if (error != 0)
1423 goto done;
1424
1425 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR,
1426 desc_base, desc_limit, desc_access);
1427 if (error != 0)
1428 goto done;
1429
1430 /* TR */
1431 desc_base = 0;
1432 desc_limit = 0xffff;
1433 desc_access = 0x0000008b;
1434 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access);
1435 if (error)
1436 goto done;
1437
1438 sel = 0;
1439 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0)
1440 goto done;
1441
1442 /* LDTR */
1443 desc_base = 0;
1444 desc_limit = 0xffff;
1445 desc_access = 0x00000082;
1446 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base,
1447 desc_limit, desc_access);
1448 if (error)
1449 goto done;
1450
1451 sel = 0;
1452 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0)
1453 goto done;
1454
1455 /* XXX cr2, debug registers */
1456
1457 error = 0;
1458 done:
1459 return (error);
1460 }
1461
1462 int
1463 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num)
1464 {
1465 int error, i;
1466 struct vm_gpa_pte gpapte;
1467
1468 bzero(&gpapte, sizeof(gpapte));
1469 gpapte.gpa = gpa;
1470
1471 error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte);
1472
1473 if (error == 0) {
1474 *num = gpapte.ptenum;
1475 for (i = 0; i < gpapte.ptenum; i++)
1476 pte[i] = gpapte.pte[i];
1477 }
1478
1479 return (error);
1480 }
1481
1482 int
1483 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities)
1484 {
1485 int error;
1486 struct vm_hpet_cap cap;
1487
1488 bzero(&cap, sizeof(struct vm_hpet_cap));
1489 error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap);
1490 if (capabilities != NULL)
1491 *capabilities = cap.capabilities;
1492 return (error);
1493 }
1494
1495 int
1496 vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1497 uint64_t gla, int prot, uint64_t *gpa, int *fault)
1498 {
1499 struct vm_gla2gpa gg;
1500 int error;
1501
1502 bzero(&gg, sizeof(struct vm_gla2gpa));
1503 gg.vcpuid = vcpu;
1504 gg.prot = prot;
1505 gg.gla = gla;
1506 gg.paging = *paging;
1507
1508 error = ioctl(ctx->fd, VM_GLA2GPA, &gg);
1509 if (error == 0) {
1510 *fault = gg.fault;
1511 *gpa = gg.gpa;
1512 }
1513 return (error);
1514 }
1515
1516 int
1517 vm_gla2gpa_nofault(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1518 uint64_t gla, int prot, uint64_t *gpa, int *fault)
1519 {
1520 struct vm_gla2gpa gg;
1521 int error;
1522
1523 bzero(&gg, sizeof(struct vm_gla2gpa));
1524 gg.vcpuid = vcpu;
1525 gg.prot = prot;
1526 gg.gla = gla;
1527 gg.paging = *paging;
1528
1529 error = ioctl(ctx->fd, VM_GLA2GPA_NOFAULT, &gg);
1530 if (error == 0) {
1531 *fault = gg.fault;
1532 *gpa = gg.gpa;
1533 }
1534 return (error);
1535 }
1536
1537 #ifndef min
1538 #define min(a,b) (((a) < (b)) ? (a) : (b))
1539 #endif
1540
1541 int
1542 vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1543 uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt,
1544 int *fault)
1545 {
1546 void *va;
1547 uint64_t gpa;
1548 int error, i, n, off;
1549
1550 for (i = 0; i < iovcnt; i++) {
1551 iov[i].iov_base = 0;
1552 iov[i].iov_len = 0;
1553 }
1554
1555 while (len) {
1556 assert(iovcnt > 0);
1557 error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault);
1558 if (error || *fault)
1559 return (error);
1560
1561 off = gpa & PAGE_MASK;
1562 n = min(len, PAGE_SIZE - off);
1563
1564 va = vm_map_gpa(ctx, gpa, n);
1565 if (va == NULL)
1566 return (EFAULT);
1567
1568 iov->iov_base = va;
1569 iov->iov_len = n;
1570 iov++;
1571 iovcnt--;
1572
1573 gla += n;
1574 len -= n;
1575 }
1576 return (0);
1577 }
1578
1579 void
1580 vm_copy_teardown(struct vmctx *ctx, int vcpu, struct iovec *iov, int iovcnt)
1581 {
1582
1583 return;
1584 }
1585
1586 void
1587 vm_copyin(struct vmctx *ctx, int vcpu, struct iovec *iov, void *vp, size_t len)
1588 {
1589 const char *src;
1590 char *dst;
1591 size_t n;
1592
1593 dst = vp;
1594 while (len) {
1595 assert(iov->iov_len);
1596 n = min(len, iov->iov_len);
1597 src = iov->iov_base;
1598 bcopy(src, dst, n);
1599
1600 iov++;
1601 dst += n;
1602 len -= n;
1603 }
1604 }
1605
1606 void
1607 vm_copyout(struct vmctx *ctx, int vcpu, const void *vp, struct iovec *iov,
1608 size_t len)
1609 {
1610 const char *src;
1611 char *dst;
1612 size_t n;
1613
1614 src = vp;
1615 while (len) {
1616 assert(iov->iov_len);
1617 n = min(len, iov->iov_len);
1618 dst = iov->iov_base;
1619 bcopy(src, dst, n);
1620
1621 iov++;
1622 src += n;
1623 len -= n;
1624 }
1625 }
1626
1627 static int
1628 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus)
1629 {
1630 struct vm_cpuset vm_cpuset;
1631 int error;
1632
1633 bzero(&vm_cpuset, sizeof(struct vm_cpuset));
1634 vm_cpuset.which = which;
1635 vm_cpuset.cpusetsize = sizeof(cpuset_t);
1636 vm_cpuset.cpus = cpus;
1637
1638 error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset);
1639 return (error);
1640 }
1641
1642 int
1643 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus)
1644 {
1645
1646 return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus));
1647 }
1648
1649 int
1650 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus)
1651 {
1652
1653 return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus));
1654 }
1655
1656 int
1657 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus)
1658 {
1659
1660 return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus));
1661 }
1662
1663 int
1664 vm_activate_cpu(struct vmctx *ctx, int vcpu)
1665 {
1666 struct vm_activate_cpu ac;
1667 int error;
1668
1669 bzero(&ac, sizeof(struct vm_activate_cpu));
1670 ac.vcpuid = vcpu;
1671 error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac);
1672 return (error);
1673 }
1674
1675 int
1676 vm_suspend_cpu(struct vmctx *ctx, int vcpu)
1677 {
1678 struct vm_activate_cpu ac;
1679 int error;
1680
1681 bzero(&ac, sizeof(struct vm_activate_cpu));
1682 ac.vcpuid = vcpu;
1683 error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac);
1684 return (error);
1685 }
1686
1687 int
1688 vm_resume_cpu(struct vmctx *ctx, int vcpu)
1689 {
1690 struct vm_activate_cpu ac;
1691 int error;
1692
1693 bzero(&ac, sizeof(struct vm_activate_cpu));
1694 ac.vcpuid = vcpu;
1695 error = ioctl(ctx->fd, VM_RESUME_CPU, &ac);
1696 return (error);
1697 }
1698
1699 int
1700 vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2)
1701 {
1702 struct vm_intinfo vmii;
1703 int error;
1704
1705 bzero(&vmii, sizeof(struct vm_intinfo));
1706 vmii.vcpuid = vcpu;
1707 error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii);
1708 if (error == 0) {
1709 *info1 = vmii.info1;
1710 *info2 = vmii.info2;
1711 }
1712 return (error);
1713 }
1714
1715 int
1716 vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1)
1717 {
1718 struct vm_intinfo vmii;
1719 int error;
1720
1721 bzero(&vmii, sizeof(struct vm_intinfo));
1722 vmii.vcpuid = vcpu;
1723 vmii.info1 = info1;
1724 error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii);
1725 return (error);
1726 }
1727
1728 int
1729 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value)
1730 {
1731 struct vm_rtc_data rtcdata;
1732 int error;
1733
1734 bzero(&rtcdata, sizeof(struct vm_rtc_data));
1735 rtcdata.offset = offset;
1736 rtcdata.value = value;
1737 error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata);
1738 return (error);
1739 }
1740
1741 int
1742 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval)
1743 {
1744 struct vm_rtc_data rtcdata;
1745 int error;
1746
1747 bzero(&rtcdata, sizeof(struct vm_rtc_data));
1748 rtcdata.offset = offset;
1749 error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata);
1750 if (error == 0)
1751 *retval = rtcdata.value;
1752 return (error);
1753 }
1754
1755 int
1756 vm_rtc_settime(struct vmctx *ctx, time_t secs)
1757 {
1758 struct vm_rtc_time rtctime;
1759 int error;
1760
1761 bzero(&rtctime, sizeof(struct vm_rtc_time));
1762 rtctime.secs = secs;
1763 error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime);
1764 return (error);
1765 }
1766
1767 int
1768 vm_rtc_gettime(struct vmctx *ctx, time_t *secs)
1769 {
1770 struct vm_rtc_time rtctime;
1771 int error;
1772
1773 bzero(&rtctime, sizeof(struct vm_rtc_time));
1774 error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime);
1775 if (error == 0)
1776 *secs = rtctime.secs;
1777 return (error);
1778 }
1779
1780 int
1781 vm_restart_instruction(void *arg, int vcpu)
1782 {
1783 struct vmctx *ctx = arg;
1784
1785 return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu));
1786 }
1787
1788 int
1789 vm_set_topology(struct vmctx *ctx,
1790 uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus)
1791 {
1792 struct vm_cpu_topology topology;
1793
1794 bzero(&topology, sizeof (struct vm_cpu_topology));
1795 topology.sockets = sockets;
1796 topology.cores = cores;
1797 topology.threads = threads;
1798 topology.maxcpus = maxcpus;
1799 return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology));
1800 }
1801
1802 int
1803 vm_get_topology(struct vmctx *ctx,
1804 uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus)
1805 {
1806 struct vm_cpu_topology topology;
1807 int error;
1808
1809 bzero(&topology, sizeof (struct vm_cpu_topology));
1810 error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology);
1811 if (error == 0) {
1812 *sockets = topology.sockets;
1813 *cores = topology.cores;
1814 *threads = topology.threads;
1815 *maxcpus = topology.maxcpus;
1816 }
1817 return (error);
1818 }
1819
1820 int
1821 vm_get_device_fd(struct vmctx *ctx)
1822 {
1823
1824 return (ctx->fd);
1825 }
1826
1827 #ifndef __FreeBSD__
1828 int
1829 vm_pmtmr_set_location(struct vmctx *ctx, uint16_t ioport)
1830 {
1831 return (ioctl(ctx->fd, VM_PMTMR_LOCATE, ioport));
1832 }
1833
1834 int
1835 vm_wrlock_cycle(struct vmctx *ctx)
1836 {
1837 if (ioctl(ctx->fd, VM_WRLOCK_CYCLE, 0) != 0) {
1838 return (errno);
1839 }
1840 return (0);
1841 }
1842 #endif /* __FreeBSD__ */
1843
1844 #ifdef __FreeBSD__
1845 const cap_ioctl_t *
1846 vm_get_ioctls(size_t *len)
1847 {
1848 cap_ioctl_t *cmds;
1849 /* keep in sync with machine/vmm_dev.h */
1850 static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT,
1851 VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG,
1852 VM_MMAP_GETNEXT, VM_SET_REGISTER, VM_GET_REGISTER,
1853 VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR,
1854 VM_SET_REGISTER_SET, VM_GET_REGISTER_SET,
1855 VM_SET_KERNEMU_DEV, VM_GET_KERNEMU_DEV,
1856 VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ,
1857 VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ,
1858 VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ,
1859 VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER,
1860 VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV,
1861 VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI,
1862 VM_PPTDEV_MSIX, VM_INJECT_NMI, VM_STATS, VM_STAT_DESC,
1863 VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE,
1864 VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA,
1865 VM_GLA2GPA_NOFAULT,
1866 VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU,
1867 VM_SET_INTINFO, VM_GET_INTINFO,
1868 VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME,
1869 VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY };
1870
1871 if (len == NULL) {
1872 cmds = malloc(sizeof(vm_ioctl_cmds));
1873 if (cmds == NULL)
1874 return (NULL);
1875 bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds));
1876 return (cmds);
1877 }
1878
1879 *len = nitems(vm_ioctl_cmds);
1880 return (NULL);
1881 }
1882 #endif /* __FreeBSD__ */