1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2015, Josef 'Jeff' Sipek <jeffpc@josefsipek.net>
  24  * Copyright (c) 2015, 2016 by Delphix. All rights reserved.
  25  * Copyright 2018 Joyent, Inc.
  26  */
  27 
  28 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989  AT&T */
  29 /* All Rights Reserved */
  30 
  31 /*
  32  * University Copyright- Copyright (c) 1982, 1986, 1988
  33  * The Regents of the University of California
  34  * All Rights Reserved
  35  *
  36  * University Acknowledgment- Portions of this document are derived from
  37  * software developed by the University of California, Berkeley, and its
  38  * contributors.
  39  */
  40 
  41 /*
  42  * VM - physical page management.
  43  */
  44 
  45 #include <sys/types.h>
  46 #include <sys/t_lock.h>
  47 #include <sys/param.h>
  48 #include <sys/systm.h>
  49 #include <sys/errno.h>
  50 #include <sys/time.h>
  51 #include <sys/vnode.h>
  52 #include <sys/vm.h>
  53 #include <sys/vtrace.h>
  54 #include <sys/swap.h>
  55 #include <sys/cmn_err.h>
  56 #include <sys/tuneable.h>
  57 #include <sys/sysmacros.h>
  58 #include <sys/cpuvar.h>
  59 #include <sys/callb.h>
  60 #include <sys/debug.h>
  61 #include <sys/tnf_probe.h>
  62 #include <sys/condvar_impl.h>
  63 #include <sys/mem_config.h>
  64 #include <sys/mem_cage.h>
  65 #include <sys/kmem.h>
  66 #include <sys/atomic.h>
  67 #include <sys/strlog.h>
  68 #include <sys/mman.h>
  69 #include <sys/ontrap.h>
  70 #include <sys/lgrp.h>
  71 #include <sys/vfs.h>
  72 
  73 #include <vm/hat.h>
  74 #include <vm/anon.h>
  75 #include <vm/page.h>
  76 #include <vm/seg.h>
  77 #include <vm/pvn.h>
  78 #include <vm/seg_kmem.h>
  79 #include <vm/vm_dep.h>
  80 #include <sys/vm_usage.h>
  81 #include <fs/fs_subr.h>
  82 #include <sys/ddi.h>
  83 #include <sys/modctl.h>
  84 
  85 static pgcnt_t max_page_get;    /* max page_get request size in pages */
  86 pgcnt_t total_pages = 0;        /* total number of pages (used by /proc) */
  87 
  88 /*
  89  * freemem_lock protects all freemem variables:
  90  * availrmem. Also this lock protects the globals which track the
  91  * availrmem changes for accurate kernel footprint calculation.
  92  * See below for an explanation of these
  93  * globals.
  94  */
  95 kmutex_t freemem_lock;
  96 pgcnt_t availrmem;
  97 pgcnt_t availrmem_initial;
  98 
  99 /*
 100  * These globals track availrmem changes to get a more accurate
 101  * estimate of tke kernel size. Historically pp_kernel is used for
 102  * kernel size and is based on availrmem. But availrmem is adjusted for
 103  * locked pages in the system not just for kernel locked pages.
 104  * These new counters will track the pages locked through segvn and
 105  * by explicit user locking.
 106  *
 107  * pages_locked : How many pages are locked because of user specified
 108  * locking through mlock or plock.
 109  *
 110  * pages_useclaim,pages_claimed : These two variables track the
 111  * claim adjustments because of the protection changes on a segvn segment.
 112  *
 113  * All these globals are protected by the same lock which protects availrmem.
 114  */
 115 pgcnt_t pages_locked = 0;
 116 pgcnt_t pages_useclaim = 0;
 117 pgcnt_t pages_claimed = 0;
 118 
 119 
 120 /*
 121  * new_freemem_lock protects freemem, freemem_wait & freemem_cv.
 122  */
 123 static kmutex_t new_freemem_lock;
 124 static uint_t   freemem_wait;   /* someone waiting for freemem */
 125 static kcondvar_t freemem_cv;
 126 
 127 /*
 128  * The logical page free list is maintained as two lists, the 'free'
 129  * and the 'cache' lists.
 130  * The free list contains those pages that should be reused first.
 131  *
 132  * The implementation of the lists is machine dependent.
 133  * page_get_freelist(), page_get_cachelist(),
 134  * page_list_sub(), and page_list_add()
 135  * form the interface to the machine dependent implementation.
 136  *
 137  * Pages with p_free set are on the cache list.
 138  * Pages with p_free and p_age set are on the free list,
 139  *
 140  * A page may be locked while on either list.
 141  */
 142 
 143 /*
 144  * free list accounting stuff.
 145  *
 146  *
 147  * Spread out the value for the number of pages on the
 148  * page free and page cache lists.  If there is just one
 149  * value, then it must be under just one lock.
 150  * The lock contention and cache traffic are a real bother.
 151  *
 152  * When we acquire and then drop a single pcf lock
 153  * we can start in the middle of the array of pcf structures.
 154  * If we acquire more than one pcf lock at a time, we need to
 155  * start at the front to avoid deadlocking.
 156  *
 157  * pcf_count holds the number of pages in each pool.
 158  *
 159  * pcf_block is set when page_create_get_something() has asked the
 160  * PSM page freelist and page cachelist routines without specifying
 161  * a color and nothing came back.  This is used to block anything
 162  * else from moving pages from one list to the other while the
 163  * lists are searched again.  If a page is freeed while pcf_block is
 164  * set, then pcf_reserve is incremented.  pcgs_unblock() takes care
 165  * of clearning pcf_block, doing the wakeups, etc.
 166  */
 167 
 168 #define MAX_PCF_FANOUT NCPU
 169 static uint_t pcf_fanout = 1; /* Will get changed at boot time */
 170 static uint_t pcf_fanout_mask = 0;
 171 
 172 struct pcf {
 173         kmutex_t        pcf_lock;       /* protects the structure */
 174         uint_t          pcf_count;      /* page count */
 175         uint_t          pcf_wait;       /* number of waiters */
 176         uint_t          pcf_block;      /* pcgs flag to page_free() */
 177         uint_t          pcf_reserve;    /* pages freed after pcf_block set */
 178         uint_t          pcf_fill[10];   /* to line up on the caches */
 179 };
 180 
 181 /*
 182  * PCF_INDEX hash needs to be dynamic (every so often the hash changes where
 183  * it will hash the cpu to).  This is done to prevent a drain condition
 184  * from happening.  This drain condition will occur when pcf_count decrement
 185  * occurs on cpu A and the increment of pcf_count always occurs on cpu B.  An
 186  * example of this shows up with device interrupts.  The dma buffer is allocated
 187  * by the cpu requesting the IO thus the pcf_count is decremented based on that.
 188  * When the memory is returned by the interrupt thread, the pcf_count will be
 189  * incremented based on the cpu servicing the interrupt.
 190  */
 191 static struct pcf pcf[MAX_PCF_FANOUT];
 192 #define PCF_INDEX() ((int)(((long)CPU->cpu_seqid) + \
 193         (randtick() >> 24)) & (pcf_fanout_mask))
 194 
 195 static int pcf_decrement_bucket(pgcnt_t);
 196 static int pcf_decrement_multiple(pgcnt_t *, pgcnt_t, int);
 197 
 198 kmutex_t        pcgs_lock;              /* serializes page_create_get_ */
 199 kmutex_t        pcgs_cagelock;          /* serializes NOSLEEP cage allocs */
 200 kmutex_t        pcgs_wait_lock;         /* used for delay in pcgs */
 201 static kcondvar_t       pcgs_cv;        /* cv for delay in pcgs */
 202 
 203 #ifdef VM_STATS
 204 
 205 /*
 206  * No locks, but so what, they are only statistics.
 207  */
 208 
 209 static struct page_tcnt {
 210         int     pc_free_cache;          /* free's into cache list */
 211         int     pc_free_dontneed;       /* free's with dontneed */
 212         int     pc_free_pageout;        /* free's from pageout */
 213         int     pc_free_free;           /* free's into free list */
 214         int     pc_free_pages;          /* free's into large page free list */
 215         int     pc_destroy_pages;       /* large page destroy's */
 216         int     pc_get_cache;           /* get's from cache list */
 217         int     pc_get_free;            /* get's from free list */
 218         int     pc_reclaim;             /* reclaim's */
 219         int     pc_abortfree;           /* abort's of free pages */
 220         int     pc_find_hit;            /* find's that find page */
 221         int     pc_find_miss;           /* find's that don't find page */
 222         int     pc_destroy_free;        /* # of free pages destroyed */
 223 #define PC_HASH_CNT     (4*PAGE_HASHAVELEN)
 224         int     pc_find_hashlen[PC_HASH_CNT+1];
 225         int     pc_addclaim_pages;
 226         int     pc_subclaim_pages;
 227         int     pc_free_replacement_page[2];
 228         int     pc_try_demote_pages[6];
 229         int     pc_demote_pages[2];
 230 } pagecnt;
 231 
 232 uint_t  hashin_count;
 233 uint_t  hashin_not_held;
 234 uint_t  hashin_already;
 235 
 236 uint_t  hashout_count;
 237 uint_t  hashout_not_held;
 238 
 239 uint_t  page_create_count;
 240 uint_t  page_create_not_enough;
 241 uint_t  page_create_not_enough_again;
 242 uint_t  page_create_zero;
 243 uint_t  page_create_hashout;
 244 uint_t  page_create_page_lock_failed;
 245 uint_t  page_create_trylock_failed;
 246 uint_t  page_create_found_one;
 247 uint_t  page_create_hashin_failed;
 248 uint_t  page_create_dropped_phm;
 249 
 250 uint_t  page_create_new;
 251 uint_t  page_create_exists;
 252 uint_t  page_create_putbacks;
 253 uint_t  page_create_overshoot;
 254 
 255 uint_t  page_reclaim_zero;
 256 uint_t  page_reclaim_zero_locked;
 257 
 258 uint_t  page_rename_exists;
 259 uint_t  page_rename_count;
 260 
 261 uint_t  page_lookup_cnt[20];
 262 uint_t  page_lookup_nowait_cnt[10];
 263 uint_t  page_find_cnt;
 264 uint_t  page_exists_cnt;
 265 uint_t  page_exists_forreal_cnt;
 266 uint_t  page_lookup_dev_cnt;
 267 uint_t  get_cachelist_cnt;
 268 uint_t  page_create_cnt[10];
 269 uint_t  alloc_pages[9];
 270 uint_t  page_exphcontg[19];
 271 uint_t  page_create_large_cnt[10];
 272 
 273 #endif
 274 
 275 static inline page_t *
 276 page_hash_search(ulong_t index, vnode_t *vnode, u_offset_t off)
 277 {
 278         uint_t mylen = 0;
 279         page_t *page;
 280 
 281         for (page = page_hash[index]; page; page = page->p_hash, mylen++)
 282                 if (page->p_vnode == vnode && page->p_offset == off)
 283                         break;
 284 
 285 #ifdef  VM_STATS
 286         if (page != NULL)
 287                 pagecnt.pc_find_hit++;
 288         else
 289                 pagecnt.pc_find_miss++;
 290 
 291         pagecnt.pc_find_hashlen[MIN(mylen, PC_HASH_CNT)]++;
 292 #endif
 293 
 294         return (page);
 295 }
 296 
 297 
 298 #ifdef DEBUG
 299 #define MEMSEG_SEARCH_STATS
 300 #endif
 301 
 302 #ifdef MEMSEG_SEARCH_STATS
 303 struct memseg_stats {
 304     uint_t nsearch;
 305     uint_t nlastwon;
 306     uint_t nhashwon;
 307     uint_t nnotfound;
 308 } memseg_stats;
 309 
 310 #define MEMSEG_STAT_INCR(v) \
 311         atomic_inc_32(&memseg_stats.v)
 312 #else
 313 #define MEMSEG_STAT_INCR(x)
 314 #endif
 315 
 316 struct memseg *memsegs;         /* list of memory segments */
 317 
 318 /*
 319  * /etc/system tunable to control large page allocation hueristic.
 320  *
 321  * Setting to LPAP_LOCAL will heavily prefer the local lgroup over remote lgroup
 322  * for large page allocation requests.  If a large page is not readily
 323  * avaliable on the local freelists we will go through additional effort
 324  * to create a large page, potentially moving smaller pages around to coalesce
 325  * larger pages in the local lgroup.
 326  * Default value of LPAP_DEFAULT will go to remote freelists if large pages
 327  * are not readily available in the local lgroup.
 328  */
 329 enum lpap {
 330         LPAP_DEFAULT,   /* default large page allocation policy */
 331         LPAP_LOCAL      /* local large page allocation policy */
 332 };
 333 
 334 enum lpap lpg_alloc_prefer = LPAP_DEFAULT;
 335 
 336 static void page_init_mem_config(void);
 337 static int page_do_hashin(page_t *, vnode_t *, u_offset_t);
 338 static void page_do_hashout(page_t *);
 339 static void page_capture_init();
 340 int page_capture_take_action(page_t *, uint_t, void *);
 341 
 342 static void page_demote_vp_pages(page_t *);
 343 
 344 
 345 void
 346 pcf_init(void)
 347 {
 348         if (boot_ncpus != -1) {
 349                 pcf_fanout = boot_ncpus;
 350         } else {
 351                 pcf_fanout = max_ncpus;
 352         }
 353 #ifdef sun4v
 354         /*
 355          * Force at least 4 buckets if possible for sun4v.
 356          */
 357         pcf_fanout = MAX(pcf_fanout, 4);
 358 #endif /* sun4v */
 359 
 360         /*
 361          * Round up to the nearest power of 2.
 362          */
 363         pcf_fanout = MIN(pcf_fanout, MAX_PCF_FANOUT);
 364         if (!ISP2(pcf_fanout)) {
 365                 pcf_fanout = 1 << highbit(pcf_fanout);
 366 
 367                 if (pcf_fanout > MAX_PCF_FANOUT) {
 368                         pcf_fanout = 1 << (highbit(MAX_PCF_FANOUT) - 1);
 369                 }
 370         }
 371         pcf_fanout_mask = pcf_fanout - 1;
 372 }
 373 
 374 /*
 375  * vm subsystem related initialization
 376  */
 377 void
 378 vm_init(void)
 379 {
 380         boolean_t callb_vm_cpr(void *, int);
 381 
 382         (void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm");
 383         page_init_mem_config();
 384         page_retire_init();
 385         vm_usage_init();
 386         page_capture_init();
 387 }
 388 
 389 /*
 390  * This function is called at startup and when memory is added or deleted.
 391  */
 392 void
 393 init_pages_pp_maximum()
 394 {
 395         static pgcnt_t p_min;
 396         static pgcnt_t pages_pp_maximum_startup;
 397         static pgcnt_t avrmem_delta;
 398         static int init_done;
 399         static int user_set;    /* true if set in /etc/system */
 400 
 401         if (init_done == 0) {
 402 
 403                 /* If the user specified a value, save it */
 404                 if (pages_pp_maximum != 0) {
 405                         user_set = 1;
 406                         pages_pp_maximum_startup = pages_pp_maximum;
 407                 }
 408 
 409                 /*
 410                  * Setting of pages_pp_maximum is based first time
 411                  * on the value of availrmem just after the start-up
 412                  * allocations. To preserve this relationship at run
 413                  * time, use a delta from availrmem_initial.
 414                  */
 415                 ASSERT(availrmem_initial >= availrmem);
 416                 avrmem_delta = availrmem_initial - availrmem;
 417 
 418                 /* The allowable floor of pages_pp_maximum */
 419                 p_min = tune.t_minarmem + 100;
 420 
 421                 /* Make sure we don't come through here again. */
 422                 init_done = 1;
 423         }
 424         /*
 425          * Determine pages_pp_maximum, the number of currently available
 426          * pages (availrmem) that can't be `locked'. If not set by
 427          * the user, we set it to 4% of the currently available memory
 428          * plus 4MB.
 429          * But we also insist that it be greater than tune.t_minarmem;
 430          * otherwise a process could lock down a lot of memory, get swapped
 431          * out, and never have enough to get swapped back in.
 432          */
 433         if (user_set)
 434                 pages_pp_maximum = pages_pp_maximum_startup;
 435         else
 436                 pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25)
 437                     + btop(4 * 1024 * 1024);
 438 
 439         if (pages_pp_maximum <= p_min) {
 440                 pages_pp_maximum = p_min;
 441         }
 442 }
 443 
 444 /*
 445  * In the past, we limited the maximum pages that could be gotten to essentially
 446  * 1/2 of the total pages on the system. However, this is too conservative for
 447  * some cases. For example, if we want to host a large virtual machine which
 448  * needs to use a significant portion of the system's memory. In practice,
 449  * allowing more than 1/2 of the total pages is fine, but becomes problematic
 450  * as we approach or exceed 75% of the pages on the system. Thus, we limit the
 451  * maximum to 23/32 of the total pages, which is ~72%.
 452  */
 453 void
 454 set_max_page_get(pgcnt_t target_total_pages)
 455 {
 456         max_page_get = (target_total_pages >> 5) * 23;
 457         ASSERT3U(max_page_get, >, 0);
 458 }
 459 
 460 pgcnt_t
 461 get_max_page_get()
 462 {
 463         return (max_page_get);
 464 }
 465 
 466 static pgcnt_t pending_delete;
 467 
 468 /*ARGSUSED*/
 469 static void
 470 page_mem_config_post_add(
 471         void *arg,
 472         pgcnt_t delta_pages)
 473 {
 474         set_max_page_get(total_pages - pending_delete);
 475         init_pages_pp_maximum();
 476 }
 477 
 478 /*ARGSUSED*/
 479 static int
 480 page_mem_config_pre_del(
 481         void *arg,
 482         pgcnt_t delta_pages)
 483 {
 484         pgcnt_t nv;
 485 
 486         nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages);
 487         set_max_page_get(total_pages - nv);
 488         return (0);
 489 }
 490 
 491 /*ARGSUSED*/
 492 static void
 493 page_mem_config_post_del(
 494         void *arg,
 495         pgcnt_t delta_pages,
 496         int cancelled)
 497 {
 498         pgcnt_t nv;
 499 
 500         nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages);
 501         set_max_page_get(total_pages - nv);
 502         if (!cancelled)
 503                 init_pages_pp_maximum();
 504 }
 505 
 506 static kphysm_setup_vector_t page_mem_config_vec = {
 507         KPHYSM_SETUP_VECTOR_VERSION,
 508         page_mem_config_post_add,
 509         page_mem_config_pre_del,
 510         page_mem_config_post_del,
 511 };
 512 
 513 static void
 514 page_init_mem_config(void)
 515 {
 516         int ret;
 517 
 518         ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL);
 519         ASSERT(ret == 0);
 520 }
 521 
 522 /*
 523  * Evenly spread out the PCF counters for large free pages
 524  */
 525 static void
 526 page_free_large_ctr(pgcnt_t npages)
 527 {
 528         static struct pcf       *p = pcf;
 529         pgcnt_t                 lump;
 530 
 531         freemem += npages;
 532 
 533         lump = roundup(npages, pcf_fanout) / pcf_fanout;
 534 
 535         while (npages > 0) {
 536 
 537                 ASSERT(!p->pcf_block);
 538 
 539                 if (lump < npages) {
 540                         p->pcf_count += (uint_t)lump;
 541                         npages -= lump;
 542                 } else {
 543                         p->pcf_count += (uint_t)npages;
 544                         npages = 0;
 545                 }
 546 
 547                 ASSERT(!p->pcf_wait);
 548 
 549                 if (++p > &pcf[pcf_fanout - 1])
 550                         p = pcf;
 551         }
 552 
 553         ASSERT(npages == 0);
 554 }
 555 
 556 /*
 557  * Add a physical chunk of memory to the system free lists during startup.
 558  * Platform specific startup() allocates the memory for the page structs.
 559  *
 560  * num  - number of page structures
 561  * base - page number (pfn) to be associated with the first page.
 562  *
 563  * Since we are doing this during startup (ie. single threaded), we will
 564  * use shortcut routines to avoid any locking overhead while putting all
 565  * these pages on the freelists.
 566  *
 567  * NOTE: Any changes performed to page_free(), must also be performed to
 568  *       add_physmem() since this is how we initialize all page_t's at
 569  *       boot time.
 570  */
 571 void
 572 add_physmem(
 573         page_t  *pp,
 574         pgcnt_t num,
 575         pfn_t   pnum)
 576 {
 577         page_t  *root = NULL;
 578         uint_t  szc = page_num_pagesizes() - 1;
 579         pgcnt_t large = page_get_pagecnt(szc);
 580         pgcnt_t cnt = 0;
 581 
 582         TRACE_2(TR_FAC_VM, TR_PAGE_INIT,
 583             "add_physmem:pp %p num %lu", pp, num);
 584 
 585         /*
 586          * Arbitrarily limit the max page_get request
 587          * to 1/2 of the page structs we have.
 588          */
 589         total_pages += num;
 590         set_max_page_get(total_pages);
 591 
 592         PLCNT_MODIFY_MAX(pnum, (long)num);
 593 
 594         /*
 595          * The physical space for the pages array
 596          * representing ram pages has already been
 597          * allocated.  Here we initialize each lock
 598          * in the page structure, and put each on
 599          * the free list
 600          */
 601         for (; num; pp++, pnum++, num--) {
 602 
 603                 /*
 604                  * this needs to fill in the page number
 605                  * and do any other arch specific initialization
 606                  */
 607                 add_physmem_cb(pp, pnum);
 608 
 609                 pp->p_lckcnt = 0;
 610                 pp->p_cowcnt = 0;
 611                 pp->p_slckcnt = 0;
 612 
 613                 /*
 614                  * Initialize the page lock as unlocked, since nobody
 615                  * can see or access this page yet.
 616                  */
 617                 pp->p_selock = 0;
 618 
 619                 /*
 620                  * Initialize IO lock
 621                  */
 622                 page_iolock_init(pp);
 623 
 624                 /*
 625                  * initialize other fields in the page_t
 626                  */
 627                 PP_SETFREE(pp);
 628                 page_clr_all_props(pp);
 629                 PP_SETAGED(pp);
 630                 pp->p_offset = (u_offset_t)-1;
 631                 pp->p_next = pp;
 632                 pp->p_prev = pp;
 633 
 634                 /*
 635                  * Simple case: System doesn't support large pages.
 636                  */
 637                 if (szc == 0) {
 638                         pp->p_szc = 0;
 639                         page_free_at_startup(pp);
 640                         continue;
 641                 }
 642 
 643                 /*
 644                  * Handle unaligned pages, we collect them up onto
 645                  * the root page until we have a full large page.
 646                  */
 647                 if (!IS_P2ALIGNED(pnum, large)) {
 648 
 649                         /*
 650                          * If not in a large page,
 651                          * just free as small page.
 652                          */
 653                         if (root == NULL) {
 654                                 pp->p_szc = 0;
 655                                 page_free_at_startup(pp);
 656                                 continue;
 657                         }
 658 
 659                         /*
 660                          * Link a constituent page into the large page.
 661                          */
 662                         pp->p_szc = szc;
 663                         page_list_concat(&root, &pp);
 664 
 665                         /*
 666                          * When large page is fully formed, free it.
 667                          */
 668                         if (++cnt == large) {
 669                                 page_free_large_ctr(cnt);
 670                                 page_list_add_pages(root, PG_LIST_ISINIT);
 671                                 root = NULL;
 672                                 cnt = 0;
 673                         }
 674                         continue;
 675                 }
 676 
 677                 /*
 678                  * At this point we have a page number which
 679                  * is aligned. We assert that we aren't already
 680                  * in a different large page.
 681                  */
 682                 ASSERT(IS_P2ALIGNED(pnum, large));
 683                 ASSERT(root == NULL && cnt == 0);
 684 
 685                 /*
 686                  * If insufficient number of pages left to form
 687                  * a large page, just free the small page.
 688                  */
 689                 if (num < large) {
 690                         pp->p_szc = 0;
 691                         page_free_at_startup(pp);
 692                         continue;
 693                 }
 694 
 695                 /*
 696                  * Otherwise start a new large page.
 697                  */
 698                 pp->p_szc = szc;
 699                 cnt++;
 700                 root = pp;
 701         }
 702         ASSERT(root == NULL && cnt == 0);
 703 }
 704 
 705 /*
 706  * Find a page representing the specified [vp, offset].
 707  * If we find the page but it is intransit coming in,
 708  * it will have an "exclusive" lock and we wait for
 709  * the i/o to complete.  A page found on the free list
 710  * is always reclaimed and then locked.  On success, the page
 711  * is locked, its data is valid and it isn't on the free
 712  * list, while a NULL is returned if the page doesn't exist.
 713  */
 714 page_t *
 715 page_lookup(vnode_t *vp, u_offset_t off, se_t se)
 716 {
 717         return (page_lookup_create(vp, off, se, NULL, NULL, 0));
 718 }
 719 
 720 /*
 721  * Find a page representing the specified [vp, offset].
 722  * We either return the one we found or, if passed in,
 723  * create one with identity of [vp, offset] of the
 724  * pre-allocated page. If we find existing page but it is
 725  * intransit coming in, it will have an "exclusive" lock
 726  * and we wait for the i/o to complete.  A page found on
 727  * the free list is always reclaimed and then locked.
 728  * On success, the page is locked, its data is valid and
 729  * it isn't on the free list, while a NULL is returned
 730  * if the page doesn't exist and newpp is NULL;
 731  */
 732 page_t *
 733 page_lookup_create(
 734         vnode_t *vp,
 735         u_offset_t off,
 736         se_t se,
 737         page_t *newpp,
 738         spgcnt_t *nrelocp,
 739         int flags)
 740 {
 741         page_t          *pp;
 742         kmutex_t        *phm;
 743         ulong_t         index;
 744         uint_t          hash_locked;
 745         uint_t          es;
 746 
 747         ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
 748         VM_STAT_ADD(page_lookup_cnt[0]);
 749         ASSERT(newpp ? PAGE_EXCL(newpp) : 1);
 750 
 751         /*
 752          * Acquire the appropriate page hash lock since
 753          * we have to search the hash list.  Pages that
 754          * hash to this list can't change identity while
 755          * this lock is held.
 756          */
 757         hash_locked = 0;
 758         index = PAGE_HASH_FUNC(vp, off);
 759         phm = NULL;
 760 top:
 761         pp = page_hash_search(index, vp, off);
 762         if (pp != NULL) {
 763                 VM_STAT_ADD(page_lookup_cnt[1]);
 764                 es = (newpp != NULL) ? 1 : 0;
 765                 es |= flags;
 766                 if (!hash_locked) {
 767                         VM_STAT_ADD(page_lookup_cnt[2]);
 768                         if (!page_try_reclaim_lock(pp, se, es)) {
 769                                 /*
 770                                  * On a miss, acquire the phm.  Then
 771                                  * next time, page_lock() will be called,
 772                                  * causing a wait if the page is busy.
 773                                  * just looping with page_trylock() would
 774                                  * get pretty boring.
 775                                  */
 776                                 VM_STAT_ADD(page_lookup_cnt[3]);
 777                                 phm = PAGE_HASH_MUTEX(index);
 778                                 mutex_enter(phm);
 779                                 hash_locked = 1;
 780                                 goto top;
 781                         }
 782                 } else {
 783                         VM_STAT_ADD(page_lookup_cnt[4]);
 784                         if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) {
 785                                 VM_STAT_ADD(page_lookup_cnt[5]);
 786                                 goto top;
 787                         }
 788                 }
 789 
 790                 /*
 791                  * Since `pp' is locked it can not change identity now.
 792                  * Reconfirm we locked the correct page.
 793                  *
 794                  * Both the p_vnode and p_offset *must* be cast volatile
 795                  * to force a reload of their values: The page_hash_search
 796                  * function will have stuffed p_vnode and p_offset into
 797                  * registers before calling page_trylock(); another thread,
 798                  * actually holding the hash lock, could have changed the
 799                  * page's identity in memory, but our registers would not
 800                  * be changed, fooling the reconfirmation.  If the hash
 801                  * lock was held during the search, the casting would
 802                  * not be needed.
 803                  */
 804                 VM_STAT_ADD(page_lookup_cnt[6]);
 805                 if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
 806                     ((volatile u_offset_t)(pp->p_offset) != off)) {
 807                         VM_STAT_ADD(page_lookup_cnt[7]);
 808                         if (hash_locked) {
 809                                 panic("page_lookup_create: lost page %p",
 810                                     (void *)pp);
 811                                 /*NOTREACHED*/
 812                         }
 813                         page_unlock(pp);
 814                         phm = PAGE_HASH_MUTEX(index);
 815                         mutex_enter(phm);
 816                         hash_locked = 1;
 817                         goto top;
 818                 }
 819 
 820                 /*
 821                  * If page_trylock() was called, then pp may still be on
 822                  * the cachelist (can't be on the free list, it would not
 823                  * have been found in the search).  If it is on the
 824                  * cachelist it must be pulled now. To pull the page from
 825                  * the cachelist, it must be exclusively locked.
 826                  *
 827                  * The other big difference between page_trylock() and
 828                  * page_lock(), is that page_lock() will pull the
 829                  * page from whatever free list (the cache list in this
 830                  * case) the page is on.  If page_trylock() was used
 831                  * above, then we have to do the reclaim ourselves.
 832                  */
 833                 if ((!hash_locked) && (PP_ISFREE(pp))) {
 834                         ASSERT(PP_ISAGED(pp) == 0);
 835                         VM_STAT_ADD(page_lookup_cnt[8]);
 836 
 837                         /*
 838                          * page_relcaim will insure that we
 839                          * have this page exclusively
 840                          */
 841 
 842                         if (!page_reclaim(pp, NULL)) {
 843                                 /*
 844                                  * Page_reclaim dropped whatever lock
 845                                  * we held.
 846                                  */
 847                                 VM_STAT_ADD(page_lookup_cnt[9]);
 848                                 phm = PAGE_HASH_MUTEX(index);
 849                                 mutex_enter(phm);
 850                                 hash_locked = 1;
 851                                 goto top;
 852                         } else if (se == SE_SHARED && newpp == NULL) {
 853                                 VM_STAT_ADD(page_lookup_cnt[10]);
 854                                 page_downgrade(pp);
 855                         }
 856                 }
 857 
 858                 if (hash_locked) {
 859                         mutex_exit(phm);
 860                 }
 861 
 862                 if (newpp != NULL && pp->p_szc < newpp->p_szc &&
 863                     PAGE_EXCL(pp) && nrelocp != NULL) {
 864                         ASSERT(nrelocp != NULL);
 865                         (void) page_relocate(&pp, &newpp, 1, 1, nrelocp,
 866                             NULL);
 867                         if (*nrelocp > 0) {
 868                                 VM_STAT_COND_ADD(*nrelocp == 1,
 869                                     page_lookup_cnt[11]);
 870                                 VM_STAT_COND_ADD(*nrelocp > 1,
 871                                     page_lookup_cnt[12]);
 872                                 pp = newpp;
 873                                 se = SE_EXCL;
 874                         } else {
 875                                 if (se == SE_SHARED) {
 876                                         page_downgrade(pp);
 877                                 }
 878                                 VM_STAT_ADD(page_lookup_cnt[13]);
 879                         }
 880                 } else if (newpp != NULL && nrelocp != NULL) {
 881                         if (PAGE_EXCL(pp) && se == SE_SHARED) {
 882                                 page_downgrade(pp);
 883                         }
 884                         VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc,
 885                             page_lookup_cnt[14]);
 886                         VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc,
 887                             page_lookup_cnt[15]);
 888                         VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc,
 889                             page_lookup_cnt[16]);
 890                 } else if (newpp != NULL && PAGE_EXCL(pp)) {
 891                         se = SE_EXCL;
 892                 }
 893         } else if (!hash_locked) {
 894                 VM_STAT_ADD(page_lookup_cnt[17]);
 895                 phm = PAGE_HASH_MUTEX(index);
 896                 mutex_enter(phm);
 897                 hash_locked = 1;
 898                 goto top;
 899         } else if (newpp != NULL) {
 900                 /*
 901                  * If we have a preallocated page then
 902                  * insert it now and basically behave like
 903                  * page_create.
 904                  */
 905                 VM_STAT_ADD(page_lookup_cnt[18]);
 906                 /*
 907                  * Since we hold the page hash mutex and
 908                  * just searched for this page, page_hashin
 909                  * had better not fail.  If it does, that
 910                  * means some thread did not follow the
 911                  * page hash mutex rules.  Panic now and
 912                  * get it over with.  As usual, go down
 913                  * holding all the locks.
 914                  */
 915                 ASSERT(MUTEX_HELD(phm));
 916                 if (!page_hashin(newpp, vp, off, phm)) {
 917                         ASSERT(MUTEX_HELD(phm));
 918                         panic("page_lookup_create: hashin failed %p %p %llx %p",
 919                             (void *)newpp, (void *)vp, off, (void *)phm);
 920                         /*NOTREACHED*/
 921                 }
 922                 ASSERT(MUTEX_HELD(phm));
 923                 mutex_exit(phm);
 924                 phm = NULL;
 925                 page_set_props(newpp, P_REF);
 926                 page_io_lock(newpp);
 927                 pp = newpp;
 928                 se = SE_EXCL;
 929         } else {
 930                 VM_STAT_ADD(page_lookup_cnt[19]);
 931                 mutex_exit(phm);
 932         }
 933 
 934         ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
 935 
 936         ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1);
 937 
 938         return (pp);
 939 }
 940 
 941 /*
 942  * Search the hash list for the page representing the
 943  * specified [vp, offset] and return it locked.  Skip
 944  * free pages and pages that cannot be locked as requested.
 945  * Used while attempting to kluster pages.
 946  */
 947 page_t *
 948 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se)
 949 {
 950         page_t          *pp;
 951         kmutex_t        *phm;
 952         ulong_t         index;
 953         uint_t          locked;
 954 
 955         ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
 956         VM_STAT_ADD(page_lookup_nowait_cnt[0]);
 957 
 958         index = PAGE_HASH_FUNC(vp, off);
 959         pp = page_hash_search(index, vp, off);
 960         locked = 0;
 961         if (pp == NULL) {
 962 top:
 963                 VM_STAT_ADD(page_lookup_nowait_cnt[1]);
 964                 locked = 1;
 965                 phm = PAGE_HASH_MUTEX(index);
 966                 mutex_enter(phm);
 967                 pp = page_hash_search(index, vp, off);
 968         }
 969 
 970         if (pp == NULL || PP_ISFREE(pp)) {
 971                 VM_STAT_ADD(page_lookup_nowait_cnt[2]);
 972                 pp = NULL;
 973         } else {
 974                 if (!page_trylock(pp, se)) {
 975                         VM_STAT_ADD(page_lookup_nowait_cnt[3]);
 976                         pp = NULL;
 977                 } else {
 978                         VM_STAT_ADD(page_lookup_nowait_cnt[4]);
 979                         /*
 980                          * See the comment in page_lookup()
 981                          */
 982                         if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
 983                             ((u_offset_t)(pp->p_offset) != off)) {
 984                                 VM_STAT_ADD(page_lookup_nowait_cnt[5]);
 985                                 if (locked) {
 986                                         panic("page_lookup_nowait %p",
 987                                             (void *)pp);
 988                                         /*NOTREACHED*/
 989                                 }
 990                                 page_unlock(pp);
 991                                 goto top;
 992                         }
 993                         if (PP_ISFREE(pp)) {
 994                                 VM_STAT_ADD(page_lookup_nowait_cnt[6]);
 995                                 page_unlock(pp);
 996                                 pp = NULL;
 997                         }
 998                 }
 999         }
1000         if (locked) {
1001                 VM_STAT_ADD(page_lookup_nowait_cnt[7]);
1002                 mutex_exit(phm);
1003         }
1004 
1005         ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
1006 
1007         return (pp);
1008 }
1009 
1010 /*
1011  * Search the hash list for a page with the specified [vp, off]
1012  * that is known to exist and is already locked.  This routine
1013  * is typically used by segment SOFTUNLOCK routines.
1014  */
1015 page_t *
1016 page_find(vnode_t *vp, u_offset_t off)
1017 {
1018         page_t          *pp;
1019         kmutex_t        *phm;
1020         ulong_t         index;
1021 
1022         ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1023         VM_STAT_ADD(page_find_cnt);
1024 
1025         index = PAGE_HASH_FUNC(vp, off);
1026         phm = PAGE_HASH_MUTEX(index);
1027 
1028         mutex_enter(phm);
1029         pp = page_hash_search(index, vp, off);
1030         mutex_exit(phm);
1031 
1032         ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr);
1033         return (pp);
1034 }
1035 
1036 /*
1037  * Determine whether a page with the specified [vp, off]
1038  * currently exists in the system.  Obviously this should
1039  * only be considered as a hint since nothing prevents the
1040  * page from disappearing or appearing immediately after
1041  * the return from this routine. Subsequently, we don't
1042  * even bother to lock the list.
1043  */
1044 page_t *
1045 page_exists(vnode_t *vp, u_offset_t off)
1046 {
1047         ulong_t         index;
1048 
1049         ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1050         VM_STAT_ADD(page_exists_cnt);
1051 
1052         index = PAGE_HASH_FUNC(vp, off);
1053 
1054         return (page_hash_search(index, vp, off));
1055 }
1056 
1057 /*
1058  * Determine if physically contiguous pages exist for [vp, off] - [vp, off +
1059  * page_size(szc)) range.  if they exist and ppa is not NULL fill ppa array
1060  * with these pages locked SHARED. If necessary reclaim pages from
1061  * freelist. Return 1 if contiguous pages exist and 0 otherwise.
1062  *
1063  * If we fail to lock pages still return 1 if pages exist and contiguous.
1064  * But in this case return value is just a hint. ppa array won't be filled.
1065  * Caller should initialize ppa[0] as NULL to distinguish return value.
1066  *
1067  * Returns 0 if pages don't exist or not physically contiguous.
1068  *
1069  * This routine doesn't work for anonymous(swapfs) pages.
1070  */
1071 int
1072 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[])
1073 {
1074         pgcnt_t pages;
1075         pfn_t pfn;
1076         page_t *rootpp;
1077         pgcnt_t i;
1078         pgcnt_t j;
1079         u_offset_t save_off = off;
1080         ulong_t index;
1081         kmutex_t *phm;
1082         page_t *pp;
1083         uint_t pszc;
1084         int loopcnt = 0;
1085 
1086         ASSERT(szc != 0);
1087         ASSERT(vp != NULL);
1088         ASSERT(!IS_SWAPFSVP(vp));
1089         ASSERT(!VN_ISKAS(vp));
1090 
1091 again:
1092         if (++loopcnt > 3) {
1093                 VM_STAT_ADD(page_exphcontg[0]);
1094                 return (0);
1095         }
1096 
1097         index = PAGE_HASH_FUNC(vp, off);
1098         phm = PAGE_HASH_MUTEX(index);
1099 
1100         mutex_enter(phm);
1101         pp = page_hash_search(index, vp, off);
1102         mutex_exit(phm);
1103 
1104         VM_STAT_ADD(page_exphcontg[1]);
1105 
1106         if (pp == NULL) {
1107                 VM_STAT_ADD(page_exphcontg[2]);
1108                 return (0);
1109         }
1110 
1111         pages = page_get_pagecnt(szc);
1112         rootpp = pp;
1113         pfn = rootpp->p_pagenum;
1114 
1115         if ((pszc = pp->p_szc) >= szc && ppa != NULL) {
1116                 VM_STAT_ADD(page_exphcontg[3]);
1117                 if (!page_trylock(pp, SE_SHARED)) {
1118                         VM_STAT_ADD(page_exphcontg[4]);
1119                         return (1);
1120                 }
1121                 /*
1122                  * Also check whether p_pagenum was modified by DR.
1123                  */
1124                 if (pp->p_szc != pszc || pp->p_vnode != vp ||
1125                     pp->p_offset != off || pp->p_pagenum != pfn) {
1126                         VM_STAT_ADD(page_exphcontg[5]);
1127                         page_unlock(pp);
1128                         off = save_off;
1129                         goto again;
1130                 }
1131                 /*
1132                  * szc was non zero and vnode and offset matched after we
1133                  * locked the page it means it can't become free on us.
1134                  */
1135                 ASSERT(!PP_ISFREE(pp));
1136                 if (!IS_P2ALIGNED(pfn, pages)) {
1137                         page_unlock(pp);
1138                         return (0);
1139                 }
1140                 ppa[0] = pp;
1141                 pp++;
1142                 off += PAGESIZE;
1143                 pfn++;
1144                 for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1145                         if (!page_trylock(pp, SE_SHARED)) {
1146                                 VM_STAT_ADD(page_exphcontg[6]);
1147                                 pp--;
1148                                 while (i-- > 0) {
1149                                         page_unlock(pp);
1150                                         pp--;
1151                                 }
1152                                 ppa[0] = NULL;
1153                                 return (1);
1154                         }
1155                         if (pp->p_szc != pszc) {
1156                                 VM_STAT_ADD(page_exphcontg[7]);
1157                                 page_unlock(pp);
1158                                 pp--;
1159                                 while (i-- > 0) {
1160                                         page_unlock(pp);
1161                                         pp--;
1162                                 }
1163                                 ppa[0] = NULL;
1164                                 off = save_off;
1165                                 goto again;
1166                         }
1167                         /*
1168                          * szc the same as for previous already locked pages
1169                          * with right identity. Since this page had correct
1170                          * szc after we locked it can't get freed or destroyed
1171                          * and therefore must have the expected identity.
1172                          */
1173                         ASSERT(!PP_ISFREE(pp));
1174                         if (pp->p_vnode != vp ||
1175                             pp->p_offset != off) {
1176                                 panic("page_exists_physcontig: "
1177                                     "large page identity doesn't match");
1178                         }
1179                         ppa[i] = pp;
1180                         ASSERT(pp->p_pagenum == pfn);
1181                 }
1182                 VM_STAT_ADD(page_exphcontg[8]);
1183                 ppa[pages] = NULL;
1184                 return (1);
1185         } else if (pszc >= szc) {
1186                 VM_STAT_ADD(page_exphcontg[9]);
1187                 if (!IS_P2ALIGNED(pfn, pages)) {
1188                         return (0);
1189                 }
1190                 return (1);
1191         }
1192 
1193         if (!IS_P2ALIGNED(pfn, pages)) {
1194                 VM_STAT_ADD(page_exphcontg[10]);
1195                 return (0);
1196         }
1197 
1198         if (page_numtomemseg_nolock(pfn) !=
1199             page_numtomemseg_nolock(pfn + pages - 1)) {
1200                 VM_STAT_ADD(page_exphcontg[11]);
1201                 return (0);
1202         }
1203 
1204         /*
1205          * We loop up 4 times across pages to promote page size.
1206          * We're extra cautious to promote page size atomically with respect
1207          * to everybody else.  But we can probably optimize into 1 loop if
1208          * this becomes an issue.
1209          */
1210 
1211         for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1212                 if (!page_trylock(pp, SE_EXCL)) {
1213                         VM_STAT_ADD(page_exphcontg[12]);
1214                         break;
1215                 }
1216                 /*
1217                  * Check whether p_pagenum was modified by DR.
1218                  */
1219                 if (pp->p_pagenum != pfn) {
1220                         page_unlock(pp);
1221                         break;
1222                 }
1223                 if (pp->p_vnode != vp ||
1224                     pp->p_offset != off) {
1225                         VM_STAT_ADD(page_exphcontg[13]);
1226                         page_unlock(pp);
1227                         break;
1228                 }
1229                 if (pp->p_szc >= szc) {
1230                         ASSERT(i == 0);
1231                         page_unlock(pp);
1232                         off = save_off;
1233                         goto again;
1234                 }
1235         }
1236 
1237         if (i != pages) {
1238                 VM_STAT_ADD(page_exphcontg[14]);
1239                 --pp;
1240                 while (i-- > 0) {
1241                         page_unlock(pp);
1242                         --pp;
1243                 }
1244                 return (0);
1245         }
1246 
1247         pp = rootpp;
1248         for (i = 0; i < pages; i++, pp++) {
1249                 if (PP_ISFREE(pp)) {
1250                         VM_STAT_ADD(page_exphcontg[15]);
1251                         ASSERT(!PP_ISAGED(pp));
1252                         ASSERT(pp->p_szc == 0);
1253                         if (!page_reclaim(pp, NULL)) {
1254                                 break;
1255                         }
1256                 } else {
1257                         ASSERT(pp->p_szc < szc);
1258                         VM_STAT_ADD(page_exphcontg[16]);
1259                         (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1260                 }
1261         }
1262         if (i < pages) {
1263                 VM_STAT_ADD(page_exphcontg[17]);
1264                 /*
1265                  * page_reclaim failed because we were out of memory.
1266                  * drop the rest of the locks and return because this page
1267                  * must be already reallocated anyway.
1268                  */
1269                 pp = rootpp;
1270                 for (j = 0; j < pages; j++, pp++) {
1271                         if (j != i) {
1272                                 page_unlock(pp);
1273                         }
1274                 }
1275                 return (0);
1276         }
1277 
1278         off = save_off;
1279         pp = rootpp;
1280         for (i = 0; i < pages; i++, pp++, off += PAGESIZE) {
1281                 ASSERT(PAGE_EXCL(pp));
1282                 ASSERT(!PP_ISFREE(pp));
1283                 ASSERT(!hat_page_is_mapped(pp));
1284                 ASSERT(pp->p_vnode == vp);
1285                 ASSERT(pp->p_offset == off);
1286                 pp->p_szc = szc;
1287         }
1288         pp = rootpp;
1289         for (i = 0; i < pages; i++, pp++) {
1290                 if (ppa == NULL) {
1291                         page_unlock(pp);
1292                 } else {
1293                         ppa[i] = pp;
1294                         page_downgrade(ppa[i]);
1295                 }
1296         }
1297         if (ppa != NULL) {
1298                 ppa[pages] = NULL;
1299         }
1300         VM_STAT_ADD(page_exphcontg[18]);
1301         ASSERT(vp->v_pages != NULL);
1302         return (1);
1303 }
1304 
1305 /*
1306  * Determine whether a page with the specified [vp, off]
1307  * currently exists in the system and if so return its
1308  * size code. Obviously this should only be considered as
1309  * a hint since nothing prevents the page from disappearing
1310  * or appearing immediately after the return from this routine.
1311  */
1312 int
1313 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc)
1314 {
1315         page_t          *pp;
1316         kmutex_t        *phm;
1317         ulong_t         index;
1318         int             rc = 0;
1319 
1320         ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1321         ASSERT(szc != NULL);
1322         VM_STAT_ADD(page_exists_forreal_cnt);
1323 
1324         index = PAGE_HASH_FUNC(vp, off);
1325         phm = PAGE_HASH_MUTEX(index);
1326 
1327         mutex_enter(phm);
1328         pp = page_hash_search(index, vp, off);
1329         if (pp != NULL) {
1330                 *szc = pp->p_szc;
1331                 rc = 1;
1332         }
1333         mutex_exit(phm);
1334         return (rc);
1335 }
1336 
1337 /* wakeup threads waiting for pages in page_create_get_something() */
1338 void
1339 wakeup_pcgs(void)
1340 {
1341         if (!CV_HAS_WAITERS(&pcgs_cv))
1342                 return;
1343         cv_broadcast(&pcgs_cv);
1344 }
1345 
1346 /*
1347  * 'freemem' is used all over the kernel as an indication of how many
1348  * pages are free (either on the cache list or on the free page list)
1349  * in the system.  In very few places is a really accurate 'freemem'
1350  * needed.  To avoid contention of the lock protecting a the
1351  * single freemem, it was spread out into NCPU buckets.  Set_freemem
1352  * sets freemem to the total of all NCPU buckets.  It is called from
1353  * clock() on each TICK.
1354  */
1355 void
1356 set_freemem(void)
1357 {
1358         struct pcf      *p;
1359         ulong_t         t;
1360         uint_t          i;
1361 
1362         t = 0;
1363         p = pcf;
1364         for (i = 0;  i < pcf_fanout; i++) {
1365                 t += p->pcf_count;
1366                 p++;
1367         }
1368         freemem = t;
1369 
1370         /*
1371          * Don't worry about grabbing mutex.  It's not that
1372          * critical if we miss a tick or two.  This is
1373          * where we wakeup possible delayers in
1374          * page_create_get_something().
1375          */
1376         wakeup_pcgs();
1377 }
1378 
1379 ulong_t
1380 get_freemem()
1381 {
1382         struct pcf      *p;
1383         ulong_t         t;
1384         uint_t          i;
1385 
1386         t = 0;
1387         p = pcf;
1388         for (i = 0; i < pcf_fanout; i++) {
1389                 t += p->pcf_count;
1390                 p++;
1391         }
1392         /*
1393          * We just calculated it, might as well set it.
1394          */
1395         freemem = t;
1396         return (t);
1397 }
1398 
1399 /*
1400  * Acquire all of the page cache & free (pcf) locks.
1401  */
1402 void
1403 pcf_acquire_all()
1404 {
1405         struct pcf      *p;
1406         uint_t          i;
1407 
1408         p = pcf;
1409         for (i = 0; i < pcf_fanout; i++) {
1410                 mutex_enter(&p->pcf_lock);
1411                 p++;
1412         }
1413 }
1414 
1415 /*
1416  * Release all the pcf_locks.
1417  */
1418 void
1419 pcf_release_all()
1420 {
1421         struct pcf      *p;
1422         uint_t          i;
1423 
1424         p = pcf;
1425         for (i = 0; i < pcf_fanout; i++) {
1426                 mutex_exit(&p->pcf_lock);
1427                 p++;
1428         }
1429 }
1430 
1431 /*
1432  * Inform the VM system that we need some pages freed up.
1433  * Calls must be symmetric, e.g.:
1434  *
1435  *      page_needfree(100);
1436  *      wait a bit;
1437  *      page_needfree(-100);
1438  */
1439 void
1440 page_needfree(spgcnt_t npages)
1441 {
1442         mutex_enter(&new_freemem_lock);
1443         needfree += npages;
1444         mutex_exit(&new_freemem_lock);
1445 }
1446 
1447 /*
1448  * Throttle for page_create(): try to prevent freemem from dropping
1449  * below throttlefree.  We can't provide a 100% guarantee because
1450  * KM_NOSLEEP allocations, page_reclaim(), and various other things
1451  * nibble away at the freelist.  However, we can block all PG_WAIT
1452  * allocations until memory becomes available.  The motivation is
1453  * that several things can fall apart when there's no free memory:
1454  *
1455  * (1) If pageout() needs memory to push a page, the system deadlocks.
1456  *
1457  * (2) By (broken) specification, timeout(9F) can neither fail nor
1458  *     block, so it has no choice but to panic the system if it
1459  *     cannot allocate a callout structure.
1460  *
1461  * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block;
1462  *     it panics if it cannot allocate a callback structure.
1463  *
1464  * (4) Untold numbers of third-party drivers have not yet been hardened
1465  *     against KM_NOSLEEP and/or allocb() failures; they simply assume
1466  *     success and panic the system with a data fault on failure.
1467  *     (The long-term solution to this particular problem is to ship
1468  *     hostile fault-injecting DEBUG kernels with the DDK.)
1469  *
1470  * It is theoretically impossible to guarantee success of non-blocking
1471  * allocations, but in practice, this throttle is very hard to break.
1472  */
1473 static int
1474 page_create_throttle(pgcnt_t npages, int flags)
1475 {
1476         ulong_t fm;
1477         uint_t  i;
1478         pgcnt_t tf;     /* effective value of throttlefree */
1479 
1480         atomic_inc_64(&n_throttle);
1481 
1482         /*
1483          * Normal priority allocations.
1484          */
1485         if ((flags & (PG_WAIT | PG_NORMALPRI)) == PG_NORMALPRI) {
1486                 ASSERT(!(flags & (PG_PANIC | PG_PUSHPAGE)));
1487                 return (freemem >= npages + throttlefree);
1488         }
1489 
1490         /*
1491          * Never deny pages when:
1492          * - it's a thread that cannot block [NOMEMWAIT()]
1493          * - the allocation cannot block and must not fail
1494          * - the allocation cannot block and is pageout dispensated
1495          */
1496         if (NOMEMWAIT() ||
1497             ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) ||
1498             ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE))
1499                 return (1);
1500 
1501         /*
1502          * If the allocation can't block, we look favorably upon it
1503          * unless we're below pageout_reserve.  In that case we fail
1504          * the allocation because we want to make sure there are a few
1505          * pages available for pageout.
1506          */
1507         if ((flags & PG_WAIT) == 0)
1508                 return (freemem >= npages + pageout_reserve);
1509 
1510         /* Calculate the effective throttlefree value */
1511         tf = throttlefree -
1512             ((flags & PG_PUSHPAGE) ? pageout_reserve : 0);
1513 
1514         WAKE_PAGEOUT_SCANNER();
1515 
1516         for (;;) {
1517                 fm = 0;
1518                 pcf_acquire_all();
1519                 mutex_enter(&new_freemem_lock);
1520                 for (i = 0; i < pcf_fanout; i++) {
1521                         fm += pcf[i].pcf_count;
1522                         pcf[i].pcf_wait++;
1523                         mutex_exit(&pcf[i].pcf_lock);
1524                 }
1525                 freemem = fm;
1526                 if (freemem >= npages + tf) {
1527                         mutex_exit(&new_freemem_lock);
1528                         break;
1529                 }
1530                 needfree += npages;
1531                 freemem_wait++;
1532                 cv_wait(&freemem_cv, &new_freemem_lock);
1533                 freemem_wait--;
1534                 needfree -= npages;
1535                 mutex_exit(&new_freemem_lock);
1536         }
1537         return (1);
1538 }
1539 
1540 /*
1541  * page_create_wait() is called to either coalesce pages from the
1542  * different pcf buckets or to wait because there simply are not
1543  * enough pages to satisfy the caller's request.
1544  *
1545  * Sadly, this is called from platform/vm/vm_machdep.c
1546  */
1547 int
1548 page_create_wait(pgcnt_t npages, uint_t flags)
1549 {
1550         pgcnt_t         total;
1551         uint_t          i;
1552         struct pcf      *p;
1553 
1554         /*
1555          * Wait until there are enough free pages to satisfy our
1556          * entire request.
1557          * We set needfree += npages before prodding pageout, to make sure
1558          * it does real work when npages > lotsfree > freemem.
1559          */
1560         VM_STAT_ADD(page_create_not_enough);
1561 
1562         ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1);
1563 checkagain:
1564         if ((flags & PG_NORELOC) &&
1565             kcage_freemem < kcage_throttlefree + npages)
1566                 (void) kcage_create_throttle(npages, flags);
1567 
1568         if (freemem < npages + throttlefree)
1569                 if (!page_create_throttle(npages, flags))
1570                         return (0);
1571 
1572         if (pcf_decrement_bucket(npages) ||
1573             pcf_decrement_multiple(&total, npages, 0))
1574                 return (1);
1575 
1576         /*
1577          * All of the pcf locks are held, there are not enough pages
1578          * to satisfy the request (npages < total).
1579          * Be sure to acquire the new_freemem_lock before dropping
1580          * the pcf locks.  This prevents dropping wakeups in page_free().
1581          * The order is always pcf_lock then new_freemem_lock.
1582          *
1583          * Since we hold all the pcf locks, it is a good time to set freemem.
1584          *
1585          * If the caller does not want to wait, return now.
1586          * Else turn the pageout daemon loose to find something
1587          * and wait till it does.
1588          *
1589          */
1590         freemem = total;
1591 
1592         if ((flags & PG_WAIT) == 0) {
1593                 pcf_release_all();
1594 
1595                 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM,
1596                 "page_create_nomem:npages %ld freemem %ld", npages, freemem);
1597                 return (0);
1598         }
1599 
1600         ASSERT(proc_pageout != NULL);
1601         WAKE_PAGEOUT_SCANNER();
1602 
1603         TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START,
1604             "page_create_sleep_start: freemem %ld needfree %ld",
1605             freemem, needfree);
1606 
1607         /*
1608          * We are going to wait.
1609          * We currently hold all of the pcf_locks,
1610          * get the new_freemem_lock (it protects freemem_wait),
1611          * before dropping the pcf_locks.
1612          */
1613         mutex_enter(&new_freemem_lock);
1614 
1615         p = pcf;
1616         for (i = 0; i < pcf_fanout; i++) {
1617                 p->pcf_wait++;
1618                 mutex_exit(&p->pcf_lock);
1619                 p++;
1620         }
1621 
1622         needfree += npages;
1623         freemem_wait++;
1624 
1625         cv_wait(&freemem_cv, &new_freemem_lock);
1626 
1627         freemem_wait--;
1628         needfree -= npages;
1629 
1630         mutex_exit(&new_freemem_lock);
1631 
1632         TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END,
1633             "page_create_sleep_end: freemem %ld needfree %ld",
1634             freemem, needfree);
1635 
1636         VM_STAT_ADD(page_create_not_enough_again);
1637         goto checkagain;
1638 }
1639 /*
1640  * A routine to do the opposite of page_create_wait().
1641  */
1642 void
1643 page_create_putback(spgcnt_t npages)
1644 {
1645         struct pcf      *p;
1646         pgcnt_t         lump;
1647         uint_t          *which;
1648 
1649         /*
1650          * When a contiguous lump is broken up, we have to
1651          * deal with lots of pages (min 64) so lets spread
1652          * the wealth around.
1653          */
1654         lump = roundup(npages, pcf_fanout) / pcf_fanout;
1655         freemem += npages;
1656 
1657         for (p = pcf; (npages > 0) && (p < &pcf[pcf_fanout]); p++) {
1658                 which = &p->pcf_count;
1659 
1660                 mutex_enter(&p->pcf_lock);
1661 
1662                 if (p->pcf_block) {
1663                         which = &p->pcf_reserve;
1664                 }
1665 
1666                 if (lump < npages) {
1667                         *which += (uint_t)lump;
1668                         npages -= lump;
1669                 } else {
1670                         *which += (uint_t)npages;
1671                         npages = 0;
1672                 }
1673 
1674                 if (p->pcf_wait) {
1675                         mutex_enter(&new_freemem_lock);
1676                         /*
1677                          * Check to see if some other thread
1678                          * is actually waiting.  Another bucket
1679                          * may have woken it up by now.  If there
1680                          * are no waiters, then set our pcf_wait
1681                          * count to zero to avoid coming in here
1682                          * next time.
1683                          */
1684                         if (freemem_wait) {
1685                                 if (npages > 1) {
1686                                         cv_broadcast(&freemem_cv);
1687                                 } else {
1688                                         cv_signal(&freemem_cv);
1689                                 }
1690                                 p->pcf_wait--;
1691                         } else {
1692                                 p->pcf_wait = 0;
1693                         }
1694                         mutex_exit(&new_freemem_lock);
1695                 }
1696                 mutex_exit(&p->pcf_lock);
1697         }
1698         ASSERT(npages == 0);
1699 }
1700 
1701 /*
1702  * A helper routine for page_create_get_something.
1703  * The indenting got to deep down there.
1704  * Unblock the pcf counters.  Any pages freed after
1705  * pcf_block got set are moved to pcf_count and
1706  * wakeups (cv_broadcast() or cv_signal()) are done as needed.
1707  */
1708 static void
1709 pcgs_unblock(void)
1710 {
1711         int             i;
1712         struct pcf      *p;
1713 
1714         /* Update freemem while we're here. */
1715         freemem = 0;
1716         p = pcf;
1717         for (i = 0; i < pcf_fanout; i++) {
1718                 mutex_enter(&p->pcf_lock);
1719                 ASSERT(p->pcf_count == 0);
1720                 p->pcf_count = p->pcf_reserve;
1721                 p->pcf_block = 0;
1722                 freemem += p->pcf_count;
1723                 if (p->pcf_wait) {
1724                         mutex_enter(&new_freemem_lock);
1725                         if (freemem_wait) {
1726                                 if (p->pcf_reserve > 1) {
1727                                         cv_broadcast(&freemem_cv);
1728                                         p->pcf_wait = 0;
1729                                 } else {
1730                                         cv_signal(&freemem_cv);
1731                                         p->pcf_wait--;
1732                                 }
1733                         } else {
1734                                 p->pcf_wait = 0;
1735                         }
1736                         mutex_exit(&new_freemem_lock);
1737                 }
1738                 p->pcf_reserve = 0;
1739                 mutex_exit(&p->pcf_lock);
1740                 p++;
1741         }
1742 }
1743 
1744 /*
1745  * Called from page_create_va() when both the cache and free lists
1746  * have been checked once.
1747  *
1748  * Either returns a page or panics since the accounting was done
1749  * way before we got here.
1750  *
1751  * We don't come here often, so leave the accounting on permanently.
1752  */
1753 
1754 #define MAX_PCGS        100
1755 
1756 #ifdef  DEBUG
1757 #define PCGS_TRIES      100
1758 #else   /* DEBUG */
1759 #define PCGS_TRIES      10
1760 #endif  /* DEBUG */
1761 
1762 #ifdef  VM_STATS
1763 uint_t  pcgs_counts[PCGS_TRIES];
1764 uint_t  pcgs_too_many;
1765 uint_t  pcgs_entered;
1766 uint_t  pcgs_entered_noreloc;
1767 uint_t  pcgs_locked;
1768 uint_t  pcgs_cagelocked;
1769 #endif  /* VM_STATS */
1770 
1771 static page_t *
1772 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg,
1773     caddr_t vaddr, uint_t flags)
1774 {
1775         uint_t          count;
1776         page_t          *pp;
1777         uint_t          locked, i;
1778         struct  pcf     *p;
1779         lgrp_t          *lgrp;
1780         int             cagelocked = 0;
1781 
1782         VM_STAT_ADD(pcgs_entered);
1783 
1784         /*
1785          * Tap any reserve freelists: if we fail now, we'll die
1786          * since the page(s) we're looking for have already been
1787          * accounted for.
1788          */
1789         flags |= PG_PANIC;
1790 
1791         if ((flags & PG_NORELOC) != 0) {
1792                 VM_STAT_ADD(pcgs_entered_noreloc);
1793                 /*
1794                  * Requests for free pages from critical threads
1795                  * such as pageout still won't throttle here, but
1796                  * we must try again, to give the cageout thread
1797                  * another chance to catch up. Since we already
1798                  * accounted for the pages, we had better get them
1799                  * this time.
1800                  *
1801                  * N.B. All non-critical threads acquire the pcgs_cagelock
1802                  * to serialize access to the freelists. This implements a
1803                  * turnstile-type synchornization to avoid starvation of
1804                  * critical requests for PG_NORELOC memory by non-critical
1805                  * threads: all non-critical threads must acquire a 'ticket'
1806                  * before passing through, which entails making sure
1807                  * kcage_freemem won't fall below minfree prior to grabbing
1808                  * pages from the freelists.
1809                  */
1810                 if (kcage_create_throttle(1, flags) == KCT_NONCRIT) {
1811                         mutex_enter(&pcgs_cagelock);
1812                         cagelocked = 1;
1813                         VM_STAT_ADD(pcgs_cagelocked);
1814                 }
1815         }
1816 
1817         /*
1818          * Time to get serious.
1819          * We failed to get a `correctly colored' page from both the
1820          * free and cache lists.
1821          * We escalate in stage.
1822          *
1823          * First try both lists without worring about color.
1824          *
1825          * Then, grab all page accounting locks (ie. pcf[]) and
1826          * steal any pages that they have and set the pcf_block flag to
1827          * stop deletions from the lists.  This will help because
1828          * a page can get added to the free list while we are looking
1829          * at the cache list, then another page could be added to the cache
1830          * list allowing the page on the free list to be removed as we
1831          * move from looking at the cache list to the free list. This
1832          * could happen over and over. We would never find the page
1833          * we have accounted for.
1834          *
1835          * Noreloc pages are a subset of the global (relocatable) page pool.
1836          * They are not tracked separately in the pcf bins, so it is
1837          * impossible to know when doing pcf accounting if the available
1838          * page(s) are noreloc pages or not. When looking for a noreloc page
1839          * it is quite easy to end up here even if the global (relocatable)
1840          * page pool has plenty of free pages but the noreloc pool is empty.
1841          *
1842          * When the noreloc pool is empty (or low), additional noreloc pages
1843          * are created by converting pages from the global page pool. This
1844          * process will stall during pcf accounting if the pcf bins are
1845          * already locked. Such is the case when a noreloc allocation is
1846          * looping here in page_create_get_something waiting for more noreloc
1847          * pages to appear.
1848          *
1849          * Short of adding a new field to the pcf bins to accurately track
1850          * the number of free noreloc pages, we instead do not grab the
1851          * pcgs_lock, do not set the pcf blocks and do not timeout when
1852          * allocating a noreloc page. This allows noreloc allocations to
1853          * loop without blocking global page pool allocations.
1854          *
1855          * NOTE: the behaviour of page_create_get_something has not changed
1856          * for the case of global page pool allocations.
1857          */
1858 
1859         flags &= ~PG_MATCH_COLOR;
1860         locked = 0;
1861 #if defined(__i386) || defined(__amd64)
1862         flags = page_create_update_flags_x86(flags);
1863 #endif
1864 
1865         lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
1866 
1867         for (count = 0; kcage_on || count < MAX_PCGS; count++) {
1868                 pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
1869                     flags, lgrp);
1870                 if (pp == NULL) {
1871                         pp = page_get_cachelist(vp, off, seg, vaddr,
1872                             flags, lgrp);
1873                 }
1874                 if (pp == NULL) {
1875                         /*
1876                          * Serialize.  Don't fight with other pcgs().
1877                          */
1878                         if (!locked && (!kcage_on || !(flags & PG_NORELOC))) {
1879                                 mutex_enter(&pcgs_lock);
1880                                 VM_STAT_ADD(pcgs_locked);
1881                                 locked = 1;
1882                                 p = pcf;
1883                                 for (i = 0; i < pcf_fanout; i++) {
1884                                         mutex_enter(&p->pcf_lock);
1885                                         ASSERT(p->pcf_block == 0);
1886                                         p->pcf_block = 1;
1887                                         p->pcf_reserve = p->pcf_count;
1888                                         p->pcf_count = 0;
1889                                         mutex_exit(&p->pcf_lock);
1890                                         p++;
1891                                 }
1892                                 freemem = 0;
1893                         }
1894 
1895                         if (count) {
1896                                 /*
1897                                  * Since page_free() puts pages on
1898                                  * a list then accounts for it, we
1899                                  * just have to wait for page_free()
1900                                  * to unlock any page it was working
1901                                  * with. The page_lock()-page_reclaim()
1902                                  * path falls in the same boat.
1903                                  *
1904                                  * We don't need to check on the
1905                                  * PG_WAIT flag, we have already
1906                                  * accounted for the page we are
1907                                  * looking for in page_create_va().
1908                                  *
1909                                  * We just wait a moment to let any
1910                                  * locked pages on the lists free up,
1911                                  * then continue around and try again.
1912                                  *
1913                                  * Will be awakened by set_freemem().
1914                                  */
1915                                 mutex_enter(&pcgs_wait_lock);
1916                                 cv_wait(&pcgs_cv, &pcgs_wait_lock);
1917                                 mutex_exit(&pcgs_wait_lock);
1918                         }
1919                 } else {
1920 #ifdef VM_STATS
1921                         if (count >= PCGS_TRIES) {
1922                                 VM_STAT_ADD(pcgs_too_many);
1923                         } else {
1924                                 VM_STAT_ADD(pcgs_counts[count]);
1925                         }
1926 #endif
1927                         if (locked) {
1928                                 pcgs_unblock();
1929                                 mutex_exit(&pcgs_lock);
1930                         }
1931                         if (cagelocked)
1932                                 mutex_exit(&pcgs_cagelock);
1933                         return (pp);
1934                 }
1935         }
1936         /*
1937          * we go down holding the pcf locks.
1938          */
1939         panic("no %spage found %d",
1940             ((flags & PG_NORELOC) ? "non-reloc " : ""), count);
1941         /*NOTREACHED*/
1942 }
1943 
1944 /*
1945  * Create enough pages for "bytes" worth of data starting at
1946  * "off" in "vp".
1947  *
1948  *      Where flag must be one of:
1949  *
1950  *              PG_EXCL:        Exclusive create (fail if any page already
1951  *                              exists in the page cache) which does not
1952  *                              wait for memory to become available.
1953  *
1954  *              PG_WAIT:        Non-exclusive create which can wait for
1955  *                              memory to become available.
1956  *
1957  *              PG_PHYSCONTIG:  Allocate physically contiguous pages.
1958  *                              (Not Supported)
1959  *
1960  * A doubly linked list of pages is returned to the caller.  Each page
1961  * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock)
1962  * lock.
1963  *
1964  * Unable to change the parameters to page_create() in a minor release,
1965  * we renamed page_create() to page_create_va(), changed all known calls
1966  * from page_create() to page_create_va(), and created this wrapper.
1967  *
1968  * Upon a major release, we should break compatibility by deleting this
1969  * wrapper, and replacing all the strings "page_create_va", with "page_create".
1970  *
1971  * NOTE: There is a copy of this interface as page_create_io() in
1972  *       i86/vm/vm_machdep.c. Any bugs fixed here should be applied
1973  *       there.
1974  */
1975 page_t *
1976 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags)
1977 {
1978         caddr_t random_vaddr;
1979         struct seg kseg;
1980 
1981 #ifdef DEBUG
1982         cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p",
1983             (void *)caller());
1984 #endif
1985 
1986         random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^
1987             (uintptr_t)(off >> PAGESHIFT));
1988         kseg.s_as = &kas;
1989 
1990         return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr));
1991 }
1992 
1993 #ifdef DEBUG
1994 uint32_t pg_alloc_pgs_mtbf = 0;
1995 #endif
1996 
1997 /*
1998  * Used for large page support. It will attempt to allocate
1999  * a large page(s) off the freelist.
2000  *
2001  * Returns non zero on failure.
2002  */
2003 int
2004 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr,
2005     page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz, int pgflags)
2006 {
2007         pgcnt_t         npgs, curnpgs, totpgs;
2008         size_t          pgsz;
2009         page_t          *pplist = NULL, *pp;
2010         int             err = 0;
2011         lgrp_t          *lgrp;
2012 
2013         ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1));
2014         ASSERT(pgflags == 0 || pgflags == PG_LOCAL);
2015 
2016         /*
2017          * Check if system heavily prefers local large pages over remote
2018          * on systems with multiple lgroups.
2019          */
2020         if (lpg_alloc_prefer == LPAP_LOCAL && nlgrps > 1) {
2021                 pgflags = PG_LOCAL;
2022         }
2023 
2024         VM_STAT_ADD(alloc_pages[0]);
2025 
2026 #ifdef DEBUG
2027         if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) {
2028                 return (ENOMEM);
2029         }
2030 #endif
2031 
2032         /*
2033          * One must be NULL but not both.
2034          * And one must be non NULL but not both.
2035          */
2036         ASSERT(basepp != NULL || ppa != NULL);
2037         ASSERT(basepp == NULL || ppa == NULL);
2038 
2039 #if defined(__i386) || defined(__amd64)
2040         while (page_chk_freelist(szc) == 0) {
2041                 VM_STAT_ADD(alloc_pages[8]);
2042                 if (anypgsz == 0 || --szc == 0)
2043                         return (ENOMEM);
2044         }
2045 #endif
2046 
2047         pgsz = page_get_pagesize(szc);
2048         totpgs = curnpgs = npgs = pgsz >> PAGESHIFT;
2049 
2050         ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0);
2051 
2052         (void) page_create_wait(npgs, PG_WAIT);
2053 
2054         while (npgs && szc) {
2055                 lgrp = lgrp_mem_choose(seg, addr, pgsz);
2056                 if (pgflags == PG_LOCAL) {
2057                         pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2058                             pgflags, lgrp);
2059                         if (pp == NULL) {
2060                                 pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2061                                     0, lgrp);
2062                         }
2063                 } else {
2064                         pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2065                             0, lgrp);
2066                 }
2067                 if (pp != NULL) {
2068                         VM_STAT_ADD(alloc_pages[1]);
2069                         page_list_concat(&pplist, &pp);
2070                         ASSERT(npgs >= curnpgs);
2071                         npgs -= curnpgs;
2072                 } else if (anypgsz) {
2073                         VM_STAT_ADD(alloc_pages[2]);
2074                         szc--;
2075                         pgsz = page_get_pagesize(szc);
2076                         curnpgs = pgsz >> PAGESHIFT;
2077                 } else {
2078                         VM_STAT_ADD(alloc_pages[3]);
2079                         ASSERT(npgs == totpgs);
2080                         page_create_putback(npgs);
2081                         return (ENOMEM);
2082                 }
2083         }
2084         if (szc == 0) {
2085                 VM_STAT_ADD(alloc_pages[4]);
2086                 ASSERT(npgs != 0);
2087                 page_create_putback(npgs);
2088                 err = ENOMEM;
2089         } else if (basepp != NULL) {
2090                 ASSERT(npgs == 0);
2091                 ASSERT(ppa == NULL);
2092                 *basepp = pplist;
2093         }
2094 
2095         npgs = totpgs - npgs;
2096         pp = pplist;
2097 
2098         /*
2099          * Clear the free and age bits. Also if we were passed in a ppa then
2100          * fill it in with all the constituent pages from the large page. But
2101          * if we failed to allocate all the pages just free what we got.
2102          */
2103         while (npgs != 0) {
2104                 ASSERT(PP_ISFREE(pp));
2105                 ASSERT(PP_ISAGED(pp));
2106                 if (ppa != NULL || err != 0) {
2107                         if (err == 0) {
2108                                 VM_STAT_ADD(alloc_pages[5]);
2109                                 PP_CLRFREE(pp);
2110                                 PP_CLRAGED(pp);
2111                                 page_sub(&pplist, pp);
2112                                 *ppa++ = pp;
2113                                 npgs--;
2114                         } else {
2115                                 VM_STAT_ADD(alloc_pages[6]);
2116                                 ASSERT(pp->p_szc != 0);
2117                                 curnpgs = page_get_pagecnt(pp->p_szc);
2118                                 page_list_break(&pp, &pplist, curnpgs);
2119                                 page_list_add_pages(pp, 0);
2120                                 page_create_putback(curnpgs);
2121                                 ASSERT(npgs >= curnpgs);
2122                                 npgs -= curnpgs;
2123                         }
2124                         pp = pplist;
2125                 } else {
2126                         VM_STAT_ADD(alloc_pages[7]);
2127                         PP_CLRFREE(pp);
2128                         PP_CLRAGED(pp);
2129                         pp = pp->p_next;
2130                         npgs--;
2131                 }
2132         }
2133         return (err);
2134 }
2135 
2136 /*
2137  * Get a single large page off of the freelists, and set it up for use.
2138  * Number of bytes requested must be a supported page size.
2139  *
2140  * Note that this call may fail even if there is sufficient
2141  * memory available or PG_WAIT is set, so the caller must
2142  * be willing to fallback on page_create_va(), block and retry,
2143  * or fail the requester.
2144  */
2145 page_t *
2146 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2147     struct seg *seg, caddr_t vaddr, void *arg)
2148 {
2149         pgcnt_t         npages;
2150         page_t          *pp;
2151         page_t          *rootpp;
2152         lgrp_t          *lgrp;
2153         lgrp_id_t       *lgrpid = (lgrp_id_t *)arg;
2154 
2155         ASSERT(vp != NULL);
2156 
2157         ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2158             PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0);
2159         /* but no others */
2160 
2161         ASSERT((flags & PG_EXCL) == PG_EXCL);
2162 
2163         npages = btop(bytes);
2164 
2165         if (!kcage_on || panicstr) {
2166                 /*
2167                  * Cage is OFF, or we are single threaded in
2168                  * panic, so make everything a RELOC request.
2169                  */
2170                 flags &= ~PG_NORELOC;
2171         }
2172 
2173         /*
2174          * Make sure there's adequate physical memory available.
2175          * Note: PG_WAIT is ignored here.
2176          */
2177         if (freemem <= throttlefree + npages) {
2178                 VM_STAT_ADD(page_create_large_cnt[1]);
2179                 return (NULL);
2180         }
2181 
2182         /*
2183          * If cage is on, dampen draw from cage when available
2184          * cage space is low.
2185          */
2186         if ((flags & (PG_NORELOC | PG_WAIT)) ==  (PG_NORELOC | PG_WAIT) &&
2187             kcage_freemem < kcage_throttlefree + npages) {
2188 
2189                 /*
2190                  * The cage is on, the caller wants PG_NORELOC
2191                  * pages and available cage memory is very low.
2192                  * Call kcage_create_throttle() to attempt to
2193                  * control demand on the cage.
2194                  */
2195                 if (kcage_create_throttle(npages, flags) == KCT_FAILURE) {
2196                         VM_STAT_ADD(page_create_large_cnt[2]);
2197                         return (NULL);
2198                 }
2199         }
2200 
2201         if (!pcf_decrement_bucket(npages) &&
2202             !pcf_decrement_multiple(NULL, npages, 1)) {
2203                 VM_STAT_ADD(page_create_large_cnt[4]);
2204                 return (NULL);
2205         }
2206 
2207         /*
2208          * This is where this function behaves fundamentally differently
2209          * than page_create_va(); since we're intending to map the page
2210          * with a single TTE, we have to get it as a physically contiguous
2211          * hardware pagesize chunk.  If we can't, we fail.
2212          */
2213         if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max &&
2214             LGRP_EXISTS(lgrp_table[*lgrpid]))
2215                 lgrp = lgrp_table[*lgrpid];
2216         else
2217                 lgrp = lgrp_mem_choose(seg, vaddr, bytes);
2218 
2219         if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr,
2220             bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) {
2221                 page_create_putback(npages);
2222                 VM_STAT_ADD(page_create_large_cnt[5]);
2223                 return (NULL);
2224         }
2225 
2226         /*
2227          * if we got the page with the wrong mtype give it back this is a
2228          * workaround for CR 6249718. When CR 6249718 is fixed we never get
2229          * inside "if" and the workaround becomes just a nop
2230          */
2231         if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) {
2232                 page_list_add_pages(rootpp, 0);
2233                 page_create_putback(npages);
2234                 VM_STAT_ADD(page_create_large_cnt[6]);
2235                 return (NULL);
2236         }
2237 
2238         /*
2239          * If satisfying this request has left us with too little
2240          * memory, start the wheels turning to get some back.  The
2241          * first clause of the test prevents waking up the pageout
2242          * daemon in situations where it would decide that there's
2243          * nothing to do.
2244          */
2245         if (nscan < desscan && freemem < minfree) {
2246                 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2247                     "pageout_cv_signal:freemem %ld", freemem);
2248                 WAKE_PAGEOUT_SCANNER();
2249         }
2250 
2251         pp = rootpp;
2252         while (npages--) {
2253                 ASSERT(PAGE_EXCL(pp));
2254                 ASSERT(pp->p_vnode == NULL);
2255                 ASSERT(!hat_page_is_mapped(pp));
2256                 PP_CLRFREE(pp);
2257                 PP_CLRAGED(pp);
2258                 if (!page_hashin(pp, vp, off, NULL))
2259                         panic("page_create_large: hashin failed: page %p",
2260                             (void *)pp);
2261                 page_io_lock(pp);
2262                 off += PAGESIZE;
2263                 pp = pp->p_next;
2264         }
2265 
2266         VM_STAT_ADD(page_create_large_cnt[0]);
2267         return (rootpp);
2268 }
2269 
2270 page_t *
2271 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2272     struct seg *seg, caddr_t vaddr)
2273 {
2274         page_t          *plist = NULL;
2275         pgcnt_t         npages;
2276         pgcnt_t         found_on_free = 0;
2277         pgcnt_t         pages_req;
2278         page_t          *npp = NULL;
2279         struct pcf      *p;
2280         lgrp_t          *lgrp;
2281 
2282         TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
2283             "page_create_start:vp %p off %llx bytes %lu flags %x",
2284             vp, off, bytes, flags);
2285 
2286         ASSERT(bytes != 0 && vp != NULL);
2287 
2288         if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) {
2289                 panic("page_create: invalid flags");
2290                 /*NOTREACHED*/
2291         }
2292         ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2293             PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0);
2294             /* but no others */
2295 
2296         pages_req = npages = btopr(bytes);
2297         /*
2298          * Try to see whether request is too large to *ever* be
2299          * satisfied, in order to prevent deadlock.  We arbitrarily
2300          * decide to limit maximum size requests to max_page_get.
2301          */
2302         if (npages >= max_page_get) {
2303                 if ((flags & PG_WAIT) == 0) {
2304                         TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG,
2305                             "page_create_toobig:vp %p off %llx npages "
2306                             "%lu max_page_get %lu",
2307                             vp, off, npages, max_page_get);
2308                         return (NULL);
2309                 } else {
2310                         cmn_err(CE_WARN,
2311                             "Request for too much kernel memory "
2312                             "(%lu bytes), will hang forever", bytes);
2313                         for (;;)
2314                                 delay(1000000000);
2315                 }
2316         }
2317 
2318         if (!kcage_on || panicstr) {
2319                 /*
2320                  * Cage is OFF, or we are single threaded in
2321                  * panic, so make everything a RELOC request.
2322                  */
2323                 flags &= ~PG_NORELOC;
2324         }
2325 
2326         if (freemem <= throttlefree + npages)
2327                 if (!page_create_throttle(npages, flags))
2328                         return (NULL);
2329 
2330         /*
2331          * If cage is on, dampen draw from cage when available
2332          * cage space is low.
2333          */
2334         if ((flags & PG_NORELOC) &&
2335             kcage_freemem < kcage_throttlefree + npages) {
2336 
2337                 /*
2338                  * The cage is on, the caller wants PG_NORELOC
2339                  * pages and available cage memory is very low.
2340                  * Call kcage_create_throttle() to attempt to
2341                  * control demand on the cage.
2342                  */
2343                 if (kcage_create_throttle(npages, flags) == KCT_FAILURE)
2344                         return (NULL);
2345         }
2346 
2347         VM_STAT_ADD(page_create_cnt[0]);
2348 
2349         if (!pcf_decrement_bucket(npages)) {
2350                 /*
2351                  * Have to look harder.  If npages is greater than
2352                  * one, then we might have to coalesce the counters.
2353                  *
2354                  * Go wait.  We come back having accounted
2355                  * for the memory.
2356                  */
2357                 VM_STAT_ADD(page_create_cnt[1]);
2358                 if (!page_create_wait(npages, flags)) {
2359                         VM_STAT_ADD(page_create_cnt[2]);
2360                         return (NULL);
2361                 }
2362         }
2363 
2364         TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
2365             "page_create_success:vp %p off %llx", vp, off);
2366 
2367         /*
2368          * If satisfying this request has left us with too little
2369          * memory, start the wheels turning to get some back.  The
2370          * first clause of the test prevents waking up the pageout
2371          * daemon in situations where it would decide that there's
2372          * nothing to do.
2373          */
2374         if (nscan < desscan && freemem < minfree) {
2375                 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2376                     "pageout_cv_signal:freemem %ld", freemem);
2377                 WAKE_PAGEOUT_SCANNER();
2378         }
2379 
2380         /*
2381          * Loop around collecting the requested number of pages.
2382          * Most of the time, we have to `create' a new page. With
2383          * this in mind, pull the page off the free list before
2384          * getting the hash lock.  This will minimize the hash
2385          * lock hold time, nesting, and the like.  If it turns
2386          * out we don't need the page, we put it back at the end.
2387          */
2388         while (npages--) {
2389                 page_t          *pp;
2390                 kmutex_t        *phm = NULL;
2391                 ulong_t         index;
2392 
2393                 index = PAGE_HASH_FUNC(vp, off);
2394 top:
2395                 ASSERT(phm == NULL);
2396                 ASSERT(index == PAGE_HASH_FUNC(vp, off));
2397                 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
2398 
2399                 if (npp == NULL) {
2400                         /*
2401                          * Try to get a page from the freelist (ie,
2402                          * a page with no [vp, off] tag).  If that
2403                          * fails, use the cachelist.
2404                          *
2405                          * During the first attempt at both the free
2406                          * and cache lists we try for the correct color.
2407                          */
2408                         /*
2409                          * XXXX-how do we deal with virtual indexed
2410                          * caches and and colors?
2411                          */
2412                         VM_STAT_ADD(page_create_cnt[4]);
2413                         /*
2414                          * Get lgroup to allocate next page of shared memory
2415                          * from and use it to specify where to allocate
2416                          * the physical memory
2417                          */
2418                         lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
2419                         npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
2420                             flags | PG_MATCH_COLOR, lgrp);
2421                         if (npp == NULL) {
2422                                 npp = page_get_cachelist(vp, off, seg,
2423                                     vaddr, flags | PG_MATCH_COLOR, lgrp);
2424                                 if (npp == NULL) {
2425                                         npp = page_create_get_something(vp,
2426                                             off, seg, vaddr,
2427                                             flags & ~PG_MATCH_COLOR);
2428                                 }
2429 
2430                                 if (PP_ISAGED(npp) == 0) {
2431                                         /*
2432                                          * Since this page came from the
2433                                          * cachelist, we must destroy the
2434                                          * old vnode association.
2435                                          */
2436                                         page_hashout(npp, NULL);
2437                                 }
2438                         }
2439                 }
2440 
2441                 /*
2442                  * We own this page!
2443                  */
2444                 ASSERT(PAGE_EXCL(npp));
2445                 ASSERT(npp->p_vnode == NULL);
2446                 ASSERT(!hat_page_is_mapped(npp));
2447                 PP_CLRFREE(npp);
2448                 PP_CLRAGED(npp);
2449 
2450                 /*
2451                  * Here we have a page in our hot little mits and are
2452                  * just waiting to stuff it on the appropriate lists.
2453                  * Get the mutex and check to see if it really does
2454                  * not exist.
2455                  */
2456                 phm = PAGE_HASH_MUTEX(index);
2457                 mutex_enter(phm);
2458                 pp = page_hash_search(index, vp, off);
2459                 if (pp == NULL) {
2460                         VM_STAT_ADD(page_create_new);
2461                         pp = npp;
2462                         npp = NULL;
2463                         if (!page_hashin(pp, vp, off, phm)) {
2464                                 /*
2465                                  * Since we hold the page hash mutex and
2466                                  * just searched for this page, page_hashin
2467                                  * had better not fail.  If it does, that
2468                                  * means somethread did not follow the
2469                                  * page hash mutex rules.  Panic now and
2470                                  * get it over with.  As usual, go down
2471                                  * holding all the locks.
2472                                  */
2473                                 ASSERT(MUTEX_HELD(phm));
2474                                 panic("page_create: "
2475                                     "hashin failed %p %p %llx %p",
2476                                     (void *)pp, (void *)vp, off, (void *)phm);
2477                                 /*NOTREACHED*/
2478                         }
2479                         ASSERT(MUTEX_HELD(phm));
2480                         mutex_exit(phm);
2481                         phm = NULL;
2482 
2483                         /*
2484                          * Hat layer locking need not be done to set
2485                          * the following bits since the page is not hashed
2486                          * and was on the free list (i.e., had no mappings).
2487                          *
2488                          * Set the reference bit to protect
2489                          * against immediate pageout
2490                          *
2491                          * XXXmh modify freelist code to set reference
2492                          * bit so we don't have to do it here.
2493                          */
2494                         page_set_props(pp, P_REF);
2495                         found_on_free++;
2496                 } else {
2497                         VM_STAT_ADD(page_create_exists);
2498                         if (flags & PG_EXCL) {
2499                                 /*
2500                                  * Found an existing page, and the caller
2501                                  * wanted all new pages.  Undo all of the work
2502                                  * we have done.
2503                                  */
2504                                 mutex_exit(phm);
2505                                 phm = NULL;
2506                                 while (plist != NULL) {
2507                                         pp = plist;
2508                                         page_sub(&plist, pp);
2509                                         page_io_unlock(pp);
2510                                         /* large pages should not end up here */
2511                                         ASSERT(pp->p_szc == 0);
2512                                         /*LINTED: constant in conditional ctx*/
2513                                         VN_DISPOSE(pp, B_INVAL, 0, kcred);
2514                                 }
2515                                 VM_STAT_ADD(page_create_found_one);
2516                                 goto fail;
2517                         }
2518                         ASSERT(flags & PG_WAIT);
2519                         if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) {
2520                                 /*
2521                                  * Start all over again if we blocked trying
2522                                  * to lock the page.
2523                                  */
2524                                 mutex_exit(phm);
2525                                 VM_STAT_ADD(page_create_page_lock_failed);
2526                                 phm = NULL;
2527                                 goto top;
2528                         }
2529                         mutex_exit(phm);
2530                         phm = NULL;
2531 
2532                         if (PP_ISFREE(pp)) {
2533                                 ASSERT(PP_ISAGED(pp) == 0);
2534                                 VM_STAT_ADD(pagecnt.pc_get_cache);
2535                                 page_list_sub(pp, PG_CACHE_LIST);
2536                                 PP_CLRFREE(pp);
2537                                 found_on_free++;
2538                         }
2539                 }
2540 
2541                 /*
2542                  * Got a page!  It is locked.  Acquire the i/o
2543                  * lock since we are going to use the p_next and
2544                  * p_prev fields to link the requested pages together.
2545                  */
2546                 page_io_lock(pp);
2547                 page_add(&plist, pp);
2548                 plist = plist->p_next;
2549                 off += PAGESIZE;
2550                 vaddr += PAGESIZE;
2551         }
2552 
2553         ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1);
2554 fail:
2555         if (npp != NULL) {
2556                 /*
2557                  * Did not need this page after all.
2558                  * Put it back on the free list.
2559                  */
2560                 VM_STAT_ADD(page_create_putbacks);
2561                 PP_SETFREE(npp);
2562                 PP_SETAGED(npp);
2563                 npp->p_offset = (u_offset_t)-1;
2564                 page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
2565                 page_unlock(npp);
2566 
2567         }
2568 
2569         ASSERT(pages_req >= found_on_free);
2570 
2571         {
2572                 uint_t overshoot = (uint_t)(pages_req - found_on_free);
2573 
2574                 if (overshoot) {
2575                         VM_STAT_ADD(page_create_overshoot);
2576                         p = &pcf[PCF_INDEX()];
2577                         mutex_enter(&p->pcf_lock);
2578                         if (p->pcf_block) {
2579                                 p->pcf_reserve += overshoot;
2580                         } else {
2581                                 p->pcf_count += overshoot;
2582                                 if (p->pcf_wait) {
2583                                         mutex_enter(&new_freemem_lock);
2584                                         if (freemem_wait) {
2585                                                 cv_signal(&freemem_cv);
2586                                                 p->pcf_wait--;
2587                                         } else {
2588                                                 p->pcf_wait = 0;
2589                                         }
2590                                         mutex_exit(&new_freemem_lock);
2591                                 }
2592                         }
2593                         mutex_exit(&p->pcf_lock);
2594                         /* freemem is approximate, so this test OK */
2595                         if (!p->pcf_block)
2596                                 freemem += overshoot;
2597                 }
2598         }
2599 
2600         return (plist);
2601 }
2602 
2603 /*
2604  * One or more constituent pages of this large page has been marked
2605  * toxic. Simply demote the large page to PAGESIZE pages and let
2606  * page_free() handle it. This routine should only be called by
2607  * large page free routines (page_free_pages() and page_destroy_pages().
2608  * All pages are locked SE_EXCL and have already been marked free.
2609  */
2610 static void
2611 page_free_toxic_pages(page_t *rootpp)
2612 {
2613         page_t  *tpp;
2614         pgcnt_t i, pgcnt = page_get_pagecnt(rootpp->p_szc);
2615         uint_t  szc = rootpp->p_szc;
2616 
2617         for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) {
2618                 ASSERT(tpp->p_szc == szc);
2619                 ASSERT((PAGE_EXCL(tpp) &&
2620                     !page_iolock_assert(tpp)) || panicstr);
2621                 tpp->p_szc = 0;
2622         }
2623 
2624         while (rootpp != NULL) {
2625                 tpp = rootpp;
2626                 page_sub(&rootpp, tpp);
2627                 ASSERT(PP_ISFREE(tpp));
2628                 PP_CLRFREE(tpp);
2629                 page_free(tpp, 1);
2630         }
2631 }
2632 
2633 /*
2634  * Put page on the "free" list.
2635  * The free list is really two lists maintained by
2636  * the PSM of whatever machine we happen to be on.
2637  */
2638 void
2639 page_free(page_t *pp, int dontneed)
2640 {
2641         struct pcf      *p;
2642         uint_t          pcf_index;
2643 
2644         ASSERT((PAGE_EXCL(pp) &&
2645             !page_iolock_assert(pp)) || panicstr);
2646 
2647         if (PP_ISFREE(pp)) {
2648                 panic("page_free: page %p is free", (void *)pp);
2649         }
2650 
2651         if (pp->p_szc != 0) {
2652                 if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
2653                     PP_ISKAS(pp)) {
2654                         panic("page_free: anon or kernel "
2655                             "or no vnode large page %p", (void *)pp);
2656                 }
2657                 page_demote_vp_pages(pp);
2658                 ASSERT(pp->p_szc == 0);
2659         }
2660 
2661         /*
2662          * The page_struct_lock need not be acquired to examine these
2663          * fields since the page has an "exclusive" lock.
2664          */
2665         if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
2666             pp->p_slckcnt != 0) {
2667                 panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d "
2668                     "slckcnt = %d", (void *)pp, page_pptonum(pp), pp->p_lckcnt,
2669                     pp->p_cowcnt, pp->p_slckcnt);
2670                 /*NOTREACHED*/
2671         }
2672 
2673         ASSERT(!hat_page_getshare(pp));
2674 
2675         PP_SETFREE(pp);
2676         ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) ||
2677             !hat_ismod(pp));
2678         page_clr_all_props(pp);
2679         ASSERT(!hat_page_getshare(pp));
2680 
2681         /*
2682          * Now we add the page to the head of the free list.
2683          * But if this page is associated with a paged vnode
2684          * then we adjust the head forward so that the page is
2685          * effectively at the end of the list.
2686          */
2687         if (pp->p_vnode == NULL) {
2688                 /*
2689                  * Page has no identity, put it on the free list.
2690                  */
2691                 PP_SETAGED(pp);
2692                 pp->p_offset = (u_offset_t)-1;
2693                 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
2694                 VM_STAT_ADD(pagecnt.pc_free_free);
2695                 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2696                     "page_free_free:pp %p", pp);
2697         } else {
2698                 PP_CLRAGED(pp);
2699 
2700                 if (!dontneed) {
2701                         /* move it to the tail of the list */
2702                         page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL);
2703 
2704                         VM_STAT_ADD(pagecnt.pc_free_cache);
2705                         TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL,
2706                             "page_free_cache_tail:pp %p", pp);
2707                 } else {
2708                         page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD);
2709 
2710                         VM_STAT_ADD(pagecnt.pc_free_dontneed);
2711                         TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD,
2712                             "page_free_cache_head:pp %p", pp);
2713                 }
2714         }
2715         page_unlock(pp);
2716 
2717         /*
2718          * Now do the `freemem' accounting.
2719          */
2720         pcf_index = PCF_INDEX();
2721         p = &pcf[pcf_index];
2722 
2723         mutex_enter(&p->pcf_lock);
2724         if (p->pcf_block) {
2725                 p->pcf_reserve += 1;
2726         } else {
2727                 p->pcf_count += 1;
2728                 if (p->pcf_wait) {
2729                         mutex_enter(&new_freemem_lock);
2730                         /*
2731                          * Check to see if some other thread
2732                          * is actually waiting.  Another bucket
2733                          * may have woken it up by now.  If there
2734                          * are no waiters, then set our pcf_wait
2735                          * count to zero to avoid coming in here
2736                          * next time.  Also, since only one page
2737                          * was put on the free list, just wake
2738                          * up one waiter.
2739                          */
2740                         if (freemem_wait) {
2741                                 cv_signal(&freemem_cv);
2742                                 p->pcf_wait--;
2743                         } else {
2744                                 p->pcf_wait = 0;
2745                         }
2746                         mutex_exit(&new_freemem_lock);
2747                 }
2748         }
2749         mutex_exit(&p->pcf_lock);
2750 
2751         /* freemem is approximate, so this test OK */
2752         if (!p->pcf_block)
2753                 freemem += 1;
2754 }
2755 
2756 /*
2757  * Put page on the "free" list during intial startup.
2758  * This happens during initial single threaded execution.
2759  */
2760 void
2761 page_free_at_startup(page_t *pp)
2762 {
2763         struct pcf      *p;
2764         uint_t          pcf_index;
2765 
2766         page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT);
2767         VM_STAT_ADD(pagecnt.pc_free_free);
2768 
2769         /*
2770          * Now do the `freemem' accounting.
2771          */
2772         pcf_index = PCF_INDEX();
2773         p = &pcf[pcf_index];
2774 
2775         ASSERT(p->pcf_block == 0);
2776         ASSERT(p->pcf_wait == 0);
2777         p->pcf_count += 1;
2778 
2779         /* freemem is approximate, so this is OK */
2780         freemem += 1;
2781 }
2782 
2783 void
2784 page_free_pages(page_t *pp)
2785 {
2786         page_t  *tpp, *rootpp = NULL;
2787         pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc);
2788         pgcnt_t i;
2789         uint_t  szc = pp->p_szc;
2790 
2791         VM_STAT_ADD(pagecnt.pc_free_pages);
2792         TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2793             "page_free_free:pp %p", pp);
2794 
2795         ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
2796         if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
2797                 panic("page_free_pages: not root page %p", (void *)pp);
2798                 /*NOTREACHED*/
2799         }
2800 
2801         for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
2802                 ASSERT((PAGE_EXCL(tpp) &&
2803                     !page_iolock_assert(tpp)) || panicstr);
2804                 if (PP_ISFREE(tpp)) {
2805                         panic("page_free_pages: page %p is free", (void *)tpp);
2806                         /*NOTREACHED*/
2807                 }
2808                 if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 ||
2809                     tpp->p_cowcnt != 0 || tpp->p_slckcnt != 0) {
2810                         panic("page_free_pages %p", (void *)tpp);
2811                         /*NOTREACHED*/
2812                 }
2813 
2814                 ASSERT(!hat_page_getshare(tpp));
2815                 ASSERT(tpp->p_vnode == NULL);
2816                 ASSERT(tpp->p_szc == szc);
2817 
2818                 PP_SETFREE(tpp);
2819                 page_clr_all_props(tpp);
2820                 PP_SETAGED(tpp);
2821                 tpp->p_offset = (u_offset_t)-1;
2822                 ASSERT(tpp->p_next == tpp);
2823                 ASSERT(tpp->p_prev == tpp);
2824                 page_list_concat(&rootpp, &tpp);
2825         }
2826         ASSERT(rootpp == pp);
2827 
2828         page_list_add_pages(rootpp, 0);
2829         page_create_putback(pgcnt);
2830 }
2831 
2832 int free_pages = 1;
2833 
2834 /*
2835  * This routine attempts to return pages to the cachelist via page_release().
2836  * It does not *have* to be successful in all cases, since the pageout scanner
2837  * will catch any pages it misses.  It does need to be fast and not introduce
2838  * too much overhead.
2839  *
2840  * If a page isn't found on the unlocked sweep of the page_hash bucket, we
2841  * don't lock and retry.  This is ok, since the page scanner will eventually
2842  * find any page we miss in free_vp_pages().
2843  */
2844 void
2845 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len)
2846 {
2847         page_t *pp;
2848         u_offset_t eoff;
2849         extern int swap_in_range(vnode_t *, u_offset_t, size_t);
2850 
2851         eoff = off + len;
2852 
2853         if (free_pages == 0)
2854                 return;
2855         if (swap_in_range(vp, off, len))
2856                 return;
2857 
2858         for (; off < eoff; off += PAGESIZE) {
2859 
2860                 /*
2861                  * find the page using a fast, but inexact search. It'll be OK
2862                  * if a few pages slip through the cracks here.
2863                  */
2864                 pp = page_exists(vp, off);
2865 
2866                 /*
2867                  * If we didn't find the page (it may not exist), the page
2868                  * is free, looks still in use (shared), or we can't lock it,
2869                  * just give up.
2870                  */
2871                 if (pp == NULL ||
2872                     PP_ISFREE(pp) ||
2873                     page_share_cnt(pp) > 0 ||
2874                     !page_trylock(pp, SE_EXCL))
2875                         continue;
2876 
2877                 /*
2878                  * Once we have locked pp, verify that it's still the
2879                  * correct page and not already free
2880                  */
2881                 ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL));
2882                 if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) {
2883                         page_unlock(pp);
2884                         continue;
2885                 }
2886 
2887                 /*
2888                  * try to release the page...
2889                  */
2890                 (void) page_release(pp, 1);
2891         }
2892 }
2893 
2894 /*
2895  * Reclaim the given page from the free list.
2896  * If pp is part of a large pages, only the given constituent page is reclaimed
2897  * and the large page it belonged to will be demoted.  This can only happen
2898  * if the page is not on the cachelist.
2899  *
2900  * Returns 1 on success or 0 on failure.
2901  *
2902  * The page is unlocked if it can't be reclaimed (when freemem == 0).
2903  * If `lock' is non-null, it will be dropped and re-acquired if
2904  * the routine must wait while freemem is 0.
2905  *
2906  * As it turns out, boot_getpages() does this.  It picks a page,
2907  * based on where OBP mapped in some address, gets its pfn, searches
2908  * the memsegs, locks the page, then pulls it off the free list!
2909  */
2910 int
2911 page_reclaim(page_t *pp, kmutex_t *lock)
2912 {
2913         struct pcf      *p;
2914         struct cpu      *cpup;
2915         int             enough;
2916         uint_t          i;
2917 
2918         ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1);
2919         ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp));
2920 
2921         /*
2922          * If `freemem' is 0, we cannot reclaim this page from the
2923          * freelist, so release every lock we might hold: the page,
2924          * and the `lock' before blocking.
2925          *
2926          * The only way `freemem' can become 0 while there are pages
2927          * marked free (have their p->p_free bit set) is when the
2928          * system is low on memory and doing a page_create().  In
2929          * order to guarantee that once page_create() starts acquiring
2930          * pages it will be able to get all that it needs since `freemem'
2931          * was decreased by the requested amount.  So, we need to release
2932          * this page, and let page_create() have it.
2933          *
2934          * Since `freemem' being zero is not supposed to happen, just
2935          * use the usual hash stuff as a starting point.  If that bucket
2936          * is empty, then assume the worst, and start at the beginning
2937          * of the pcf array.  If we always start at the beginning
2938          * when acquiring more than one pcf lock, there won't be any
2939          * deadlock problems.
2940          */
2941 
2942         /* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */
2943 
2944         if (freemem <= throttlefree && !page_create_throttle(1l, 0)) {
2945                 pcf_acquire_all();
2946                 goto page_reclaim_nomem;
2947         }
2948 
2949         enough = pcf_decrement_bucket(1);
2950 
2951         if (!enough) {
2952                 VM_STAT_ADD(page_reclaim_zero);
2953                 /*
2954                  * Check again. Its possible that some other thread
2955                  * could have been right behind us, and added one
2956                  * to a list somewhere.  Acquire each of the pcf locks
2957                  * until we find a page.
2958                  */
2959                 p = pcf;
2960                 for (i = 0; i < pcf_fanout; i++) {
2961                         mutex_enter(&p->pcf_lock);
2962                         if (p->pcf_count >= 1) {
2963                                 p->pcf_count -= 1;
2964                                 /*
2965                                  * freemem is not protected by any lock. Thus,
2966                                  * we cannot have any assertion containing
2967                                  * freemem here.
2968                                  */
2969                                 freemem -= 1;
2970                                 enough = 1;
2971                                 break;
2972                         }
2973                         p++;
2974                 }
2975 
2976                 if (!enough) {
2977 page_reclaim_nomem:
2978                         /*
2979                          * We really can't have page `pp'.
2980                          * Time for the no-memory dance with
2981                          * page_free().  This is just like
2982                          * page_create_wait().  Plus the added
2983                          * attraction of releasing whatever mutex
2984                          * we held when we were called with in `lock'.
2985                          * Page_unlock() will wakeup any thread
2986                          * waiting around for this page.
2987                          */
2988                         if (lock) {
2989                                 VM_STAT_ADD(page_reclaim_zero_locked);
2990                                 mutex_exit(lock);
2991                         }
2992                         page_unlock(pp);
2993 
2994                         /*
2995                          * get this before we drop all the pcf locks.
2996                          */
2997                         mutex_enter(&new_freemem_lock);
2998 
2999                         p = pcf;
3000                         for (i = 0; i < pcf_fanout; i++) {
3001                                 p->pcf_wait++;
3002                                 mutex_exit(&p->pcf_lock);
3003                                 p++;
3004                         }
3005 
3006                         freemem_wait++;
3007                         cv_wait(&freemem_cv, &new_freemem_lock);
3008                         freemem_wait--;
3009 
3010                         mutex_exit(&new_freemem_lock);
3011 
3012                         if (lock) {
3013                                 mutex_enter(lock);
3014                         }
3015                         return (0);
3016                 }
3017 
3018                 /*
3019                  * The pcf accounting has been done,
3020                  * though none of the pcf_wait flags have been set,
3021                  * drop the locks and continue on.
3022                  */
3023                 while (p >= pcf) {
3024                         mutex_exit(&p->pcf_lock);
3025                         p--;
3026                 }
3027         }
3028 
3029 
3030         VM_STAT_ADD(pagecnt.pc_reclaim);
3031 
3032         /*
3033          * page_list_sub will handle the case where pp is a large page.
3034          * It's possible that the page was promoted while on the freelist
3035          */
3036         if (PP_ISAGED(pp)) {
3037                 page_list_sub(pp, PG_FREE_LIST);
3038                 TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE,
3039                     "page_reclaim_free:pp %p", pp);
3040         } else {
3041                 page_list_sub(pp, PG_CACHE_LIST);
3042                 TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE,
3043                     "page_reclaim_cache:pp %p", pp);
3044         }
3045 
3046         /*
3047          * clear the p_free & p_age bits since this page is no longer
3048          * on the free list.  Notice that there was a brief time where
3049          * a page is marked as free, but is not on the list.
3050          *
3051          * Set the reference bit to protect against immediate pageout.
3052          */
3053         PP_CLRFREE(pp);
3054         PP_CLRAGED(pp);
3055         page_set_props(pp, P_REF);
3056 
3057         CPU_STATS_ENTER_K();
3058         cpup = CPU;     /* get cpup now that CPU cannot change */
3059         CPU_STATS_ADDQ(cpup, vm, pgrec, 1);
3060         CPU_STATS_ADDQ(cpup, vm, pgfrec, 1);
3061         CPU_STATS_EXIT_K();
3062         ASSERT(pp->p_szc == 0);
3063 
3064         return (1);
3065 }
3066 
3067 /*
3068  * Destroy identity of the page and put it back on
3069  * the page free list.  Assumes that the caller has
3070  * acquired the "exclusive" lock on the page.
3071  */
3072 void
3073 page_destroy(page_t *pp, int dontfree)
3074 {
3075         ASSERT((PAGE_EXCL(pp) &&
3076             !page_iolock_assert(pp)) || panicstr);
3077         ASSERT(pp->p_slckcnt == 0 || panicstr);
3078 
3079         if (pp->p_szc != 0) {
3080                 if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
3081                     PP_ISKAS(pp)) {
3082                         panic("page_destroy: anon or kernel or no vnode "
3083                             "large page %p", (void *)pp);
3084                 }
3085                 page_demote_vp_pages(pp);
3086                 ASSERT(pp->p_szc == 0);
3087         }
3088 
3089         TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp);
3090 
3091         /*
3092          * Unload translations, if any, then hash out the
3093          * page to erase its identity.
3094          */
3095         (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3096         page_hashout(pp, NULL);
3097 
3098         if (!dontfree) {
3099                 /*
3100                  * Acquire the "freemem_lock" for availrmem.
3101                  * The page_struct_lock need not be acquired for lckcnt
3102                  * and cowcnt since the page has an "exclusive" lock.
3103                  * We are doing a modified version of page_pp_unlock here.
3104                  */
3105                 if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) {
3106                         mutex_enter(&freemem_lock);
3107                         if (pp->p_lckcnt != 0) {
3108                                 availrmem++;
3109                                 pages_locked--;
3110                                 pp->p_lckcnt = 0;
3111                         }
3112                         if (pp->p_cowcnt != 0) {
3113                                 availrmem += pp->p_cowcnt;
3114                                 pages_locked -= pp->p_cowcnt;
3115                                 pp->p_cowcnt = 0;
3116                         }
3117                         mutex_exit(&freemem_lock);
3118                 }
3119                 /*
3120                  * Put the page on the "free" list.
3121                  */
3122                 page_free(pp, 0);
3123         }
3124 }
3125 
3126 void
3127 page_destroy_pages(page_t *pp)
3128 {
3129 
3130         page_t  *tpp, *rootpp = NULL;
3131         pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc);
3132         pgcnt_t i, pglcks = 0;
3133         uint_t  szc = pp->p_szc;
3134 
3135         ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
3136 
3137         VM_STAT_ADD(pagecnt.pc_destroy_pages);
3138 
3139         TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp);
3140 
3141         if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
3142                 panic("page_destroy_pages: not root page %p", (void *)pp);
3143                 /*NOTREACHED*/
3144         }
3145 
3146         for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
3147                 ASSERT((PAGE_EXCL(tpp) &&
3148                     !page_iolock_assert(tpp)) || panicstr);
3149                 ASSERT(tpp->p_slckcnt == 0 || panicstr);
3150                 (void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
3151                 page_hashout(tpp, NULL);
3152                 ASSERT(tpp->p_offset == (u_offset_t)-1);
3153                 if (tpp->p_lckcnt != 0) {
3154                         pglcks++;
3155                         tpp->p_lckcnt = 0;
3156                 } else if (tpp->p_cowcnt != 0) {
3157                         pglcks += tpp->p_cowcnt;
3158                         tpp->p_cowcnt = 0;
3159                 }
3160                 ASSERT(!hat_page_getshare(tpp));
3161                 ASSERT(tpp->p_vnode == NULL);
3162                 ASSERT(tpp->p_szc == szc);
3163 
3164                 PP_SETFREE(tpp);
3165                 page_clr_all_props(tpp);
3166                 PP_SETAGED(tpp);
3167                 ASSERT(tpp->p_next == tpp);
3168                 ASSERT(tpp->p_prev == tpp);
3169                 page_list_concat(&rootpp, &tpp);
3170         }
3171 
3172         ASSERT(rootpp == pp);
3173         if (pglcks != 0) {
3174                 mutex_enter(&freemem_lock);
3175                 availrmem += pglcks;
3176                 mutex_exit(&freemem_lock);
3177         }
3178 
3179         page_list_add_pages(rootpp, 0);
3180         page_create_putback(pgcnt);
3181 }
3182 
3183 /*
3184  * Similar to page_destroy(), but destroys pages which are
3185  * locked and known to be on the page free list.  Since
3186  * the page is known to be free and locked, no one can access
3187  * it.
3188  *
3189  * Also, the number of free pages does not change.
3190  */
3191 void
3192 page_destroy_free(page_t *pp)
3193 {
3194         ASSERT(PAGE_EXCL(pp));
3195         ASSERT(PP_ISFREE(pp));
3196         ASSERT(pp->p_vnode);
3197         ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0);
3198         ASSERT(!hat_page_is_mapped(pp));
3199         ASSERT(PP_ISAGED(pp) == 0);
3200         ASSERT(pp->p_szc == 0);
3201 
3202         VM_STAT_ADD(pagecnt.pc_destroy_free);
3203         page_list_sub(pp, PG_CACHE_LIST);
3204 
3205         page_hashout(pp, NULL);
3206         ASSERT(pp->p_vnode == NULL);
3207         ASSERT(pp->p_offset == (u_offset_t)-1);
3208         ASSERT(pp->p_hash == NULL);
3209 
3210         PP_SETAGED(pp);
3211         page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
3212         page_unlock(pp);
3213 
3214         mutex_enter(&new_freemem_lock);
3215         if (freemem_wait) {
3216                 cv_signal(&freemem_cv);
3217         }
3218         mutex_exit(&new_freemem_lock);
3219 }
3220 
3221 /*
3222  * Rename the page "opp" to have an identity specified
3223  * by [vp, off].  If a page already exists with this name
3224  * it is locked and destroyed.  Note that the page's
3225  * translations are not unloaded during the rename.
3226  *
3227  * This routine is used by the anon layer to "steal" the
3228  * original page and is not unlike destroying a page and
3229  * creating a new page using the same page frame.
3230  *
3231  * XXX -- Could deadlock if caller 1 tries to rename A to B while
3232  * caller 2 tries to rename B to A.
3233  */
3234 void
3235 page_rename(page_t *opp, vnode_t *vp, u_offset_t off)
3236 {
3237         page_t          *pp;
3238         int             olckcnt = 0;
3239         int             ocowcnt = 0;
3240         kmutex_t        *phm;
3241         ulong_t         index;
3242 
3243         ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp));
3244         ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3245         ASSERT(PP_ISFREE(opp) == 0);
3246 
3247         VM_STAT_ADD(page_rename_count);
3248 
3249         TRACE_3(TR_FAC_VM, TR_PAGE_RENAME,
3250             "page rename:pp %p vp %p off %llx", opp, vp, off);
3251 
3252         /*
3253          * CacheFS may call page_rename for a large NFS page
3254          * when both CacheFS and NFS mount points are used
3255          * by applications. Demote this large page before
3256          * renaming it, to ensure that there are no "partial"
3257          * large pages left lying around.
3258          */
3259         if (opp->p_szc != 0) {
3260                 vnode_t *ovp = opp->p_vnode;
3261                 ASSERT(ovp != NULL);
3262                 ASSERT(!IS_SWAPFSVP(ovp));
3263                 ASSERT(!VN_ISKAS(ovp));
3264                 page_demote_vp_pages(opp);
3265                 ASSERT(opp->p_szc == 0);
3266         }
3267 
3268         page_hashout(opp, NULL);
3269         PP_CLRAGED(opp);
3270 
3271         /*
3272          * Acquire the appropriate page hash lock, since
3273          * we're going to rename the page.
3274          */
3275         index = PAGE_HASH_FUNC(vp, off);
3276         phm = PAGE_HASH_MUTEX(index);
3277         mutex_enter(phm);
3278 top:
3279         /*
3280          * Look for an existing page with this name and destroy it if found.
3281          * By holding the page hash lock all the way to the page_hashin()
3282          * call, we are assured that no page can be created with this
3283          * identity.  In the case when the phm lock is dropped to undo any
3284          * hat layer mappings, the existing page is held with an "exclusive"
3285          * lock, again preventing another page from being created with
3286          * this identity.
3287          */
3288         pp = page_hash_search(index, vp, off);
3289         if (pp != NULL) {
3290                 VM_STAT_ADD(page_rename_exists);
3291 
3292                 /*
3293                  * As it turns out, this is one of only two places where
3294                  * page_lock() needs to hold the passed in lock in the
3295                  * successful case.  In all of the others, the lock could
3296                  * be dropped as soon as the attempt is made to lock
3297                  * the page.  It is tempting to add yet another arguement,
3298                  * PL_KEEP or PL_DROP, to let page_lock know what to do.
3299                  */
3300                 if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) {
3301                         /*
3302                          * Went to sleep because the page could not
3303                          * be locked.  We were woken up when the page
3304                          * was unlocked, or when the page was destroyed.
3305                          * In either case, `phm' was dropped while we
3306                          * slept.  Hence we should not just roar through
3307                          * this loop.
3308                          */
3309                         goto top;
3310                 }
3311 
3312                 /*
3313                  * If an existing page is a large page, then demote
3314                  * it to ensure that no "partial" large pages are
3315                  * "created" after page_rename. An existing page
3316                  * can be a CacheFS page, and can't belong to swapfs.
3317                  */
3318                 if (hat_page_is_mapped(pp)) {
3319                         /*
3320                          * Unload translations.  Since we hold the
3321                          * exclusive lock on this page, the page
3322                          * can not be changed while we drop phm.
3323                          * This is also not a lock protocol violation,
3324                          * but rather the proper way to do things.
3325                          */
3326                         mutex_exit(phm);
3327                         (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3328                         if (pp->p_szc != 0) {
3329                                 ASSERT(!IS_SWAPFSVP(vp));
3330                                 ASSERT(!VN_ISKAS(vp));
3331                                 page_demote_vp_pages(pp);
3332                                 ASSERT(pp->p_szc == 0);
3333                         }
3334                         mutex_enter(phm);
3335                 } else if (pp->p_szc != 0) {
3336                         ASSERT(!IS_SWAPFSVP(vp));
3337                         ASSERT(!VN_ISKAS(vp));
3338                         mutex_exit(phm);
3339                         page_demote_vp_pages(pp);
3340                         ASSERT(pp->p_szc == 0);
3341                         mutex_enter(phm);
3342                 }
3343                 page_hashout(pp, phm);
3344         }
3345         /*
3346          * Hash in the page with the new identity.
3347          */
3348         if (!page_hashin(opp, vp, off, phm)) {
3349                 /*
3350                  * We were holding phm while we searched for [vp, off]
3351                  * and only dropped phm if we found and locked a page.
3352                  * If we can't create this page now, then some thing
3353                  * is really broken.
3354                  */
3355                 panic("page_rename: Can't hash in page: %p", (void *)pp);
3356                 /*NOTREACHED*/
3357         }
3358 
3359         ASSERT(MUTEX_HELD(phm));
3360         mutex_exit(phm);
3361 
3362         /*
3363          * Now that we have dropped phm, lets get around to finishing up
3364          * with pp.
3365          */
3366         if (pp != NULL) {
3367                 ASSERT(!hat_page_is_mapped(pp));
3368                 /* for now large pages should not end up here */
3369                 ASSERT(pp->p_szc == 0);
3370                 /*
3371                  * Save the locks for transfer to the new page and then
3372                  * clear them so page_free doesn't think they're important.
3373                  * The page_struct_lock need not be acquired for lckcnt and
3374                  * cowcnt since the page has an "exclusive" lock.
3375                  */
3376                 olckcnt = pp->p_lckcnt;
3377                 ocowcnt = pp->p_cowcnt;
3378                 pp->p_lckcnt = pp->p_cowcnt = 0;
3379 
3380                 /*
3381                  * Put the page on the "free" list after we drop
3382                  * the lock.  The less work under the lock the better.
3383                  */
3384                 /*LINTED: constant in conditional context*/
3385                 VN_DISPOSE(pp, B_FREE, 0, kcred);
3386         }
3387 
3388         /*
3389          * Transfer the lock count from the old page (if any).
3390          * The page_struct_lock need not be acquired for lckcnt and
3391          * cowcnt since the page has an "exclusive" lock.
3392          */
3393         opp->p_lckcnt += olckcnt;
3394         opp->p_cowcnt += ocowcnt;
3395 }
3396 
3397 /*
3398  * low level routine to add page `pp' to the hash and vp chains for [vp, offset]
3399  *
3400  * Pages are normally inserted at the start of a vnode's v_pages list.
3401  * If the vnode is VMODSORT and the page is modified, it goes at the end.
3402  * This can happen when a modified page is relocated for DR.
3403  *
3404  * Returns 1 on success and 0 on failure.
3405  */
3406 static int
3407 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset)
3408 {
3409         page_t          **listp;
3410         page_t          *tp;
3411         ulong_t         index;
3412 
3413         ASSERT(PAGE_EXCL(pp));
3414         ASSERT(vp != NULL);
3415         ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3416 
3417         /*
3418          * Be sure to set these up before the page is inserted on the hash
3419          * list.  As soon as the page is placed on the list some other
3420          * thread might get confused and wonder how this page could
3421          * possibly hash to this list.
3422          */
3423         pp->p_vnode = vp;
3424         pp->p_offset = offset;
3425 
3426         /*
3427          * record if this page is on a swap vnode
3428          */
3429         if ((vp->v_flag & VISSWAP) != 0)
3430                 PP_SETSWAP(pp);
3431 
3432         index = PAGE_HASH_FUNC(vp, offset);
3433         ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index)));
3434         listp = &page_hash[index];
3435 
3436         /*
3437          * If this page is already hashed in, fail this attempt to add it.
3438          */
3439         for (tp = *listp; tp != NULL; tp = tp->p_hash) {
3440                 if (tp->p_vnode == vp && tp->p_offset == offset) {
3441                         pp->p_vnode = NULL;
3442                         pp->p_offset = (u_offset_t)(-1);
3443                         return (0);
3444                 }
3445         }
3446         pp->p_hash = *listp;
3447         *listp = pp;
3448 
3449         /*
3450          * Add the page to the vnode's list of pages
3451          */
3452         if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp))
3453                 listp = &vp->v_pages->p_vpprev->p_vpnext;
3454         else
3455                 listp = &vp->v_pages;
3456 
3457         page_vpadd(listp, pp);
3458 
3459         return (1);
3460 }
3461 
3462 /*
3463  * Add page `pp' to both the hash and vp chains for [vp, offset].
3464  *
3465  * Returns 1 on success and 0 on failure.
3466  * If hold is passed in, it is not dropped.
3467  */
3468 int
3469 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold)
3470 {
3471         kmutex_t        *phm = NULL;
3472         kmutex_t        *vphm;
3473         int             rc;
3474 
3475         ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3476         ASSERT(pp->p_fsdata == 0 || panicstr);
3477 
3478         TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN,
3479             "page_hashin:pp %p vp %p offset %llx",
3480             pp, vp, offset);
3481 
3482         VM_STAT_ADD(hashin_count);
3483 
3484         if (hold != NULL)
3485                 phm = hold;
3486         else {
3487                 VM_STAT_ADD(hashin_not_held);
3488                 phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset));
3489                 mutex_enter(phm);
3490         }
3491 
3492         vphm = page_vnode_mutex(vp);
3493         mutex_enter(vphm);
3494         rc = page_do_hashin(pp, vp, offset);
3495         mutex_exit(vphm);
3496         if (hold == NULL)
3497                 mutex_exit(phm);
3498         if (rc == 0)
3499                 VM_STAT_ADD(hashin_already);
3500         return (rc);
3501 }
3502 
3503 /*
3504  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3505  * All mutexes must be held
3506  */
3507 static void
3508 page_do_hashout(page_t *pp)
3509 {
3510         page_t  **hpp;
3511         page_t  *hp;
3512         vnode_t *vp = pp->p_vnode;
3513 
3514         ASSERT(vp != NULL);
3515         ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3516 
3517         /*
3518          * First, take pp off of its hash chain.
3519          */
3520         hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)];
3521 
3522         for (;;) {
3523                 hp = *hpp;
3524                 if (hp == pp)
3525                         break;
3526                 if (hp == NULL) {
3527                         panic("page_do_hashout");
3528                         /*NOTREACHED*/
3529                 }
3530                 hpp = &hp->p_hash;
3531         }
3532         *hpp = pp->p_hash;
3533 
3534         /*
3535          * Now remove it from its associated vnode.
3536          */
3537         if (vp->v_pages)
3538                 page_vpsub(&vp->v_pages, pp);
3539 
3540         pp->p_hash = NULL;
3541         page_clr_all_props(pp);
3542         PP_CLRSWAP(pp);
3543         pp->p_vnode = NULL;
3544         pp->p_offset = (u_offset_t)-1;
3545         pp->p_fsdata = 0;
3546 }
3547 
3548 /*
3549  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3550  *
3551  * When `phm' is non-NULL it contains the address of the mutex protecting the
3552  * hash list pp is on.  It is not dropped.
3553  */
3554 void
3555 page_hashout(page_t *pp, kmutex_t *phm)
3556 {
3557         vnode_t         *vp;
3558         ulong_t         index;
3559         kmutex_t        *nphm;
3560         kmutex_t        *vphm;
3561         kmutex_t        *sep;
3562 
3563         ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1);
3564         ASSERT(pp->p_vnode != NULL);
3565         ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
3566         ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode)));
3567 
3568         vp = pp->p_vnode;
3569 
3570         TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT,
3571             "page_hashout:pp %p vp %p", pp, vp);
3572 
3573         /* Kernel probe */
3574         TNF_PROBE_2(page_unmap, "vm pagefault", /* CSTYLED */,
3575             tnf_opaque, vnode, vp,
3576             tnf_offset, offset, pp->p_offset);
3577 
3578         /*
3579          *
3580          */
3581         VM_STAT_ADD(hashout_count);
3582         index = PAGE_HASH_FUNC(vp, pp->p_offset);
3583         if (phm == NULL) {
3584                 VM_STAT_ADD(hashout_not_held);
3585                 nphm = PAGE_HASH_MUTEX(index);
3586                 mutex_enter(nphm);
3587         }
3588         ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1);
3589 
3590 
3591         /*
3592          * grab page vnode mutex and remove it...
3593          */
3594         vphm = page_vnode_mutex(vp);
3595         mutex_enter(vphm);
3596 
3597         page_do_hashout(pp);
3598 
3599         mutex_exit(vphm);
3600         if (phm == NULL)
3601                 mutex_exit(nphm);
3602 
3603         /*
3604          * Wake up processes waiting for this page.  The page's
3605          * identity has been changed, and is probably not the
3606          * desired page any longer.
3607          */
3608         sep = page_se_mutex(pp);
3609         mutex_enter(sep);
3610         pp->p_selock &= ~SE_EWANTED;
3611         if (CV_HAS_WAITERS(&pp->p_cv))
3612                 cv_broadcast(&pp->p_cv);
3613         mutex_exit(sep);
3614 }
3615 
3616 /*
3617  * Add the page to the front of a linked list of pages
3618  * using the p_next & p_prev pointers for the list.
3619  * The caller is responsible for protecting the list pointers.
3620  */
3621 void
3622 page_add(page_t **ppp, page_t *pp)
3623 {
3624         ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3625 
3626         page_add_common(ppp, pp);
3627 }
3628 
3629 
3630 
3631 /*
3632  *  Common code for page_add() and mach_page_add()
3633  */
3634 void
3635 page_add_common(page_t **ppp, page_t *pp)
3636 {
3637         if (*ppp == NULL) {
3638                 pp->p_next = pp->p_prev = pp;
3639         } else {
3640                 pp->p_next = *ppp;
3641                 pp->p_prev = (*ppp)->p_prev;
3642                 (*ppp)->p_prev = pp;
3643                 pp->p_prev->p_next = pp;
3644         }
3645         *ppp = pp;
3646 }
3647 
3648 
3649 /*
3650  * Remove this page from a linked list of pages
3651  * using the p_next & p_prev pointers for the list.
3652  *
3653  * The caller is responsible for protecting the list pointers.
3654  */
3655 void
3656 page_sub(page_t **ppp, page_t *pp)
3657 {
3658         ASSERT((PP_ISFREE(pp)) ? 1 :
3659             (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3660 
3661         if (*ppp == NULL || pp == NULL) {
3662                 panic("page_sub: bad arg(s): pp %p, *ppp %p",
3663                     (void *)pp, (void *)(*ppp));
3664                 /*NOTREACHED*/
3665         }
3666 
3667         page_sub_common(ppp, pp);
3668 }
3669 
3670 
3671 /*
3672  *  Common code for page_sub() and mach_page_sub()
3673  */
3674 void
3675 page_sub_common(page_t **ppp, page_t *pp)
3676 {
3677         if (*ppp == pp)
3678                 *ppp = pp->p_next;           /* go to next page */
3679 
3680         if (*ppp == pp)
3681                 *ppp = NULL;                    /* page list is gone */
3682         else {
3683                 pp->p_prev->p_next = pp->p_next;
3684                 pp->p_next->p_prev = pp->p_prev;
3685         }
3686         pp->p_prev = pp->p_next = pp;             /* make pp a list of one */
3687 }
3688 
3689 
3690 /*
3691  * Break page list cppp into two lists with npages in the first list.
3692  * The tail is returned in nppp.
3693  */
3694 void
3695 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages)
3696 {
3697         page_t *s1pp = *oppp;
3698         page_t *s2pp;
3699         page_t *e1pp, *e2pp;
3700         long n = 0;
3701 
3702         if (s1pp == NULL) {
3703                 *nppp = NULL;
3704                 return;
3705         }
3706         if (npages == 0) {
3707                 *nppp = s1pp;
3708                 *oppp = NULL;
3709                 return;
3710         }
3711         for (n = 0, s2pp = *oppp; n < npages; n++) {
3712                 s2pp = s2pp->p_next;
3713         }
3714         /* Fix head and tail of new lists */
3715         e1pp = s2pp->p_prev;
3716         e2pp = s1pp->p_prev;
3717         s1pp->p_prev = e1pp;
3718         e1pp->p_next = s1pp;
3719         s2pp->p_prev = e2pp;
3720         e2pp->p_next = s2pp;
3721 
3722         /* second list empty */
3723         if (s2pp == s1pp) {
3724                 *oppp = s1pp;
3725                 *nppp = NULL;
3726         } else {
3727                 *oppp = s1pp;
3728                 *nppp = s2pp;
3729         }
3730 }
3731 
3732 /*
3733  * Concatenate page list nppp onto the end of list ppp.
3734  */
3735 void
3736 page_list_concat(page_t **ppp, page_t **nppp)
3737 {
3738         page_t *s1pp, *s2pp, *e1pp, *e2pp;
3739 
3740         if (*nppp == NULL) {
3741                 return;
3742         }
3743         if (*ppp == NULL) {
3744                 *ppp = *nppp;
3745                 return;
3746         }
3747         s1pp = *ppp;
3748         e1pp =  s1pp->p_prev;
3749         s2pp = *nppp;
3750         e2pp = s2pp->p_prev;
3751         s1pp->p_prev = e2pp;
3752         e2pp->p_next = s1pp;
3753         e1pp->p_next = s2pp;
3754         s2pp->p_prev = e1pp;
3755 }
3756 
3757 /*
3758  * return the next page in the page list
3759  */
3760 page_t *
3761 page_list_next(page_t *pp)
3762 {
3763         return (pp->p_next);
3764 }
3765 
3766 
3767 /*
3768  * Add the page to the front of the linked list of pages
3769  * using p_vpnext/p_vpprev pointers for the list.
3770  *
3771  * The caller is responsible for protecting the lists.
3772  */
3773 void
3774 page_vpadd(page_t **ppp, page_t *pp)
3775 {
3776         if (*ppp == NULL) {
3777                 pp->p_vpnext = pp->p_vpprev = pp;
3778         } else {
3779                 pp->p_vpnext = *ppp;
3780                 pp->p_vpprev = (*ppp)->p_vpprev;
3781                 (*ppp)->p_vpprev = pp;
3782                 pp->p_vpprev->p_vpnext = pp;
3783         }
3784         *ppp = pp;
3785 }
3786 
3787 /*
3788  * Remove this page from the linked list of pages
3789  * using p_vpnext/p_vpprev pointers for the list.
3790  *
3791  * The caller is responsible for protecting the lists.
3792  */
3793 void
3794 page_vpsub(page_t **ppp, page_t *pp)
3795 {
3796         if (*ppp == NULL || pp == NULL) {
3797                 panic("page_vpsub: bad arg(s): pp %p, *ppp %p",
3798                     (void *)pp, (void *)(*ppp));
3799                 /*NOTREACHED*/
3800         }
3801 
3802         if (*ppp == pp)
3803                 *ppp = pp->p_vpnext;         /* go to next page */
3804 
3805         if (*ppp == pp)
3806                 *ppp = NULL;                    /* page list is gone */
3807         else {
3808                 pp->p_vpprev->p_vpnext = pp->p_vpnext;
3809                 pp->p_vpnext->p_vpprev = pp->p_vpprev;
3810         }
3811         pp->p_vpprev = pp->p_vpnext = pp; /* make pp a list of one */
3812 }
3813 
3814 /*
3815  * Lock a physical page into memory "long term".  Used to support "lock
3816  * in memory" functions.  Accepts the page to be locked, and a cow variable
3817  * to indicate whether a the lock will travel to the new page during
3818  * a potential copy-on-write.
3819  */
3820 int
3821 page_pp_lock(
3822         page_t *pp,                     /* page to be locked */
3823         int cow,                        /* cow lock */
3824         int kernel)                     /* must succeed -- ignore checking */
3825 {
3826         int r = 0;                      /* result -- assume failure */
3827 
3828         ASSERT(PAGE_LOCKED(pp));
3829 
3830         page_struct_lock(pp);
3831         /*
3832          * Acquire the "freemem_lock" for availrmem.
3833          */
3834         if (cow) {
3835                 mutex_enter(&freemem_lock);
3836                 if ((availrmem > pages_pp_maximum) &&
3837                     (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
3838                         availrmem--;
3839                         pages_locked++;
3840                         mutex_exit(&freemem_lock);
3841                         r = 1;
3842                         if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
3843                                 cmn_err(CE_WARN,
3844                                     "COW lock limit reached on pfn 0x%lx",
3845                                     page_pptonum(pp));
3846                         }
3847                 } else
3848                         mutex_exit(&freemem_lock);
3849         } else {
3850                 if (pp->p_lckcnt) {
3851                         if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
3852                                 r = 1;
3853                                 if (++pp->p_lckcnt ==
3854                                     (ushort_t)PAGE_LOCK_MAXIMUM) {
3855                                         cmn_err(CE_WARN, "Page lock limit "
3856                                             "reached on pfn 0x%lx",
3857                                             page_pptonum(pp));
3858                                 }
3859                         }
3860                 } else {
3861                         if (kernel) {
3862                                 /* availrmem accounting done by caller */
3863                                 ++pp->p_lckcnt;
3864                                 r = 1;
3865                         } else {
3866                                 mutex_enter(&freemem_lock);
3867                                 if (availrmem > pages_pp_maximum) {
3868                                         availrmem--;
3869                                         pages_locked++;
3870                                         ++pp->p_lckcnt;
3871                                         r = 1;
3872                                 }
3873                                 mutex_exit(&freemem_lock);
3874                         }
3875                 }
3876         }
3877         page_struct_unlock(pp);
3878         return (r);
3879 }
3880 
3881 /*
3882  * Decommit a lock on a physical page frame.  Account for cow locks if
3883  * appropriate.
3884  */
3885 void
3886 page_pp_unlock(
3887         page_t *pp,                     /* page to be unlocked */
3888         int cow,                        /* expect cow lock */
3889         int kernel)                     /* this was a kernel lock */
3890 {
3891         ASSERT(PAGE_LOCKED(pp));
3892 
3893         page_struct_lock(pp);
3894         /*
3895          * Acquire the "freemem_lock" for availrmem.
3896          * If cowcnt or lcknt is already 0 do nothing; i.e., we
3897          * could be called to unlock even if nothing is locked. This could
3898          * happen if locked file pages were truncated (removing the lock)
3899          * and the file was grown again and new pages faulted in; the new
3900          * pages are unlocked but the segment still thinks they're locked.
3901          */
3902         if (cow) {
3903                 if (pp->p_cowcnt) {
3904                         mutex_enter(&freemem_lock);
3905                         pp->p_cowcnt--;
3906                         availrmem++;
3907                         pages_locked--;
3908                         mutex_exit(&freemem_lock);
3909                 }
3910         } else {
3911                 if (pp->p_lckcnt && --pp->p_lckcnt == 0) {
3912                         if (!kernel) {
3913                                 mutex_enter(&freemem_lock);
3914                                 availrmem++;
3915                                 pages_locked--;
3916                                 mutex_exit(&freemem_lock);
3917                         }
3918                 }
3919         }
3920         page_struct_unlock(pp);
3921 }
3922 
3923 /*
3924  * This routine reserves availrmem for npages;
3925  *      flags: KM_NOSLEEP or KM_SLEEP
3926  *      returns 1 on success or 0 on failure
3927  */
3928 int
3929 page_resv(pgcnt_t npages, uint_t flags)
3930 {
3931         mutex_enter(&freemem_lock);
3932         while (availrmem < tune.t_minarmem + npages) {
3933                 if (flags & KM_NOSLEEP) {
3934                         mutex_exit(&freemem_lock);
3935                         return (0);
3936                 }
3937                 mutex_exit(&freemem_lock);
3938                 page_needfree(npages);
3939                 kmem_reap();
3940                 delay(hz >> 2);
3941                 page_needfree(-(spgcnt_t)npages);
3942                 mutex_enter(&freemem_lock);
3943         }
3944         availrmem -= npages;
3945         mutex_exit(&freemem_lock);
3946         return (1);
3947 }
3948 
3949 /*
3950  * This routine unreserves availrmem for npages;
3951  */
3952 void
3953 page_unresv(pgcnt_t npages)
3954 {
3955         mutex_enter(&freemem_lock);
3956         availrmem += npages;
3957         mutex_exit(&freemem_lock);
3958 }
3959 
3960 /*
3961  * See Statement at the beginning of segvn_lockop() regarding
3962  * the way we handle cowcnts and lckcnts.
3963  *
3964  * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage
3965  * that breaks COW has PROT_WRITE.
3966  *
3967  * Note that, we may also break COW in case we are softlocking
3968  * on read access during physio;
3969  * in this softlock case, the vpage may not have PROT_WRITE.
3970  * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp'
3971  * if the vpage doesn't have PROT_WRITE.
3972  *
3973  * This routine is never called if we are stealing a page
3974  * in anon_private.
3975  *
3976  * The caller subtracted from availrmem for read only mapping.
3977  * if lckcnt is 1 increment availrmem.
3978  */
3979 void
3980 page_pp_useclaim(
3981         page_t *opp,            /* original page frame losing lock */
3982         page_t *npp,            /* new page frame gaining lock */
3983         uint_t write_perm)      /* set if vpage has PROT_WRITE */
3984 {
3985         int payback = 0;
3986         int nidx, oidx;
3987 
3988         ASSERT(PAGE_LOCKED(opp));
3989         ASSERT(PAGE_LOCKED(npp));
3990 
3991         /*
3992          * Since we have two pages we probably have two locks.  We need to take
3993          * them in a defined order to avoid deadlocks.  It's also possible they
3994          * both hash to the same lock in which case this is a non-issue.
3995          */
3996         nidx = PAGE_LLOCK_HASH(PP_PAGEROOT(npp));
3997         oidx = PAGE_LLOCK_HASH(PP_PAGEROOT(opp));
3998         if (nidx < oidx) {
3999                 page_struct_lock(npp);
4000                 page_struct_lock(opp);
4001         } else if (oidx < nidx) {
4002                 page_struct_lock(opp);
4003                 page_struct_lock(npp);
4004         } else {        /* The pages hash to the same lock */
4005                 page_struct_lock(npp);
4006         }
4007 
4008         ASSERT(npp->p_cowcnt == 0);
4009         ASSERT(npp->p_lckcnt == 0);
4010 
4011         /* Don't use claim if nothing is locked (see page_pp_unlock above) */
4012         if ((write_perm && opp->p_cowcnt != 0) ||
4013             (!write_perm && opp->p_lckcnt != 0)) {
4014 
4015                 if (write_perm) {
4016                         npp->p_cowcnt++;
4017                         ASSERT(opp->p_cowcnt != 0);
4018                         opp->p_cowcnt--;
4019                 } else {
4020 
4021                         ASSERT(opp->p_lckcnt != 0);
4022 
4023                         /*
4024                          * We didn't need availrmem decremented if p_lckcnt on
4025                          * original page is 1. Here, we are unlocking
4026                          * read-only copy belonging to original page and
4027                          * are locking a copy belonging to new page.
4028                          */
4029                         if (opp->p_lckcnt == 1)
4030                                 payback = 1;
4031 
4032                         npp->p_lckcnt++;
4033                         opp->p_lckcnt--;
4034                 }
4035         }
4036         if (payback) {
4037                 mutex_enter(&freemem_lock);
4038                 availrmem++;
4039                 pages_useclaim--;
4040                 mutex_exit(&freemem_lock);
4041         }
4042 
4043         if (nidx < oidx) {
4044                 page_struct_unlock(opp);
4045                 page_struct_unlock(npp);
4046         } else if (oidx < nidx) {
4047                 page_struct_unlock(npp);
4048                 page_struct_unlock(opp);
4049         } else {        /* The pages hash to the same lock */
4050                 page_struct_unlock(npp);
4051         }
4052 }
4053 
4054 /*
4055  * Simple claim adjust functions -- used to support changes in
4056  * claims due to changes in access permissions.  Used by segvn_setprot().
4057  */
4058 int
4059 page_addclaim(page_t *pp)
4060 {
4061         int r = 0;                      /* result */
4062 
4063         ASSERT(PAGE_LOCKED(pp));
4064 
4065         page_struct_lock(pp);
4066         ASSERT(pp->p_lckcnt != 0);
4067 
4068         if (pp->p_lckcnt == 1) {
4069                 if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4070                         --pp->p_lckcnt;
4071                         r = 1;
4072                         if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4073                                 cmn_err(CE_WARN,
4074                                     "COW lock limit reached on pfn 0x%lx",
4075                                     page_pptonum(pp));
4076                         }
4077                 }
4078         } else {
4079                 mutex_enter(&freemem_lock);
4080                 if ((availrmem > pages_pp_maximum) &&
4081                     (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
4082                         --availrmem;
4083                         ++pages_claimed;
4084                         mutex_exit(&freemem_lock);
4085                         --pp->p_lckcnt;
4086                         r = 1;
4087                         if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4088                                 cmn_err(CE_WARN,
4089                                     "COW lock limit reached on pfn 0x%lx",
4090                                     page_pptonum(pp));
4091                         }
4092                 } else
4093                         mutex_exit(&freemem_lock);
4094         }
4095         page_struct_unlock(pp);
4096         return (r);
4097 }
4098 
4099 int
4100 page_subclaim(page_t *pp)
4101 {
4102         int r = 0;
4103 
4104         ASSERT(PAGE_LOCKED(pp));
4105 
4106         page_struct_lock(pp);
4107         ASSERT(pp->p_cowcnt != 0);
4108 
4109         if (pp->p_lckcnt) {
4110                 if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4111                         r = 1;
4112                         /*
4113                          * for availrmem
4114                          */
4115                         mutex_enter(&freemem_lock);
4116                         availrmem++;
4117                         pages_claimed--;
4118                         mutex_exit(&freemem_lock);
4119 
4120                         pp->p_cowcnt--;
4121 
4122                         if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4123                                 cmn_err(CE_WARN,
4124                                     "Page lock limit reached on pfn 0x%lx",
4125                                     page_pptonum(pp));
4126                         }
4127                 }
4128         } else {
4129                 r = 1;
4130                 pp->p_cowcnt--;
4131                 pp->p_lckcnt++;
4132         }
4133         page_struct_unlock(pp);
4134         return (r);
4135 }
4136 
4137 /*
4138  * Variant of page_addclaim(), where ppa[] contains the pages of a single large
4139  * page.
4140  */
4141 int
4142 page_addclaim_pages(page_t  **ppa)
4143 {
4144         pgcnt_t lckpgs = 0, pg_idx;
4145 
4146         VM_STAT_ADD(pagecnt.pc_addclaim_pages);
4147 
4148         /*
4149          * Only need to take the page struct lock on the large page root.
4150          */
4151         page_struct_lock(ppa[0]);
4152         for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4153 
4154                 ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4155                 ASSERT(ppa[pg_idx]->p_lckcnt != 0);
4156                 if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4157                         page_struct_unlock(ppa[0]);
4158                         return (0);
4159                 }
4160                 if (ppa[pg_idx]->p_lckcnt > 1)
4161                         lckpgs++;
4162         }
4163 
4164         if (lckpgs != 0) {
4165                 mutex_enter(&freemem_lock);
4166                 if (availrmem >= pages_pp_maximum + lckpgs) {
4167                         availrmem -= lckpgs;
4168                         pages_claimed += lckpgs;
4169                 } else {
4170                         mutex_exit(&freemem_lock);
4171                         page_struct_unlock(ppa[0]);
4172                         return (0);
4173                 }
4174                 mutex_exit(&freemem_lock);
4175         }
4176 
4177         for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4178                 ppa[pg_idx]->p_lckcnt--;
4179                 ppa[pg_idx]->p_cowcnt++;
4180         }
4181         page_struct_unlock(ppa[0]);
4182         return (1);
4183 }
4184 
4185 /*
4186  * Variant of page_subclaim(), where ppa[] contains the pages of a single large
4187  * page.
4188  */
4189 int
4190 page_subclaim_pages(page_t  **ppa)
4191 {
4192         pgcnt_t ulckpgs = 0, pg_idx;
4193 
4194         VM_STAT_ADD(pagecnt.pc_subclaim_pages);
4195 
4196         /*
4197          * Only need to take the page struct lock on the large page root.
4198          */
4199         page_struct_lock(ppa[0]);
4200         for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4201 
4202                 ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4203                 ASSERT(ppa[pg_idx]->p_cowcnt != 0);
4204                 if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4205                         page_struct_unlock(ppa[0]);
4206                         return (0);
4207                 }
4208                 if (ppa[pg_idx]->p_lckcnt != 0)
4209                         ulckpgs++;
4210         }
4211 
4212         if (ulckpgs != 0) {
4213                 mutex_enter(&freemem_lock);
4214                 availrmem += ulckpgs;
4215                 pages_claimed -= ulckpgs;
4216                 mutex_exit(&freemem_lock);
4217         }
4218 
4219         for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4220                 ppa[pg_idx]->p_cowcnt--;
4221                 ppa[pg_idx]->p_lckcnt++;
4222 
4223         }
4224         page_struct_unlock(ppa[0]);
4225         return (1);
4226 }
4227 
4228 page_t *
4229 page_numtopp(pfn_t pfnum, se_t se)
4230 {
4231         page_t *pp;
4232 
4233 retry:
4234         pp = page_numtopp_nolock(pfnum);
4235         if (pp == NULL) {
4236                 return ((page_t *)NULL);
4237         }
4238 
4239         /*
4240          * Acquire the appropriate lock on the page.
4241          */
4242         while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) {
4243                 if (page_pptonum(pp) != pfnum)
4244                         goto retry;
4245                 continue;
4246         }
4247 
4248         if (page_pptonum(pp) != pfnum) {
4249                 page_unlock(pp);
4250                 goto retry;
4251         }
4252 
4253         return (pp);
4254 }
4255 
4256 page_t *
4257 page_numtopp_noreclaim(pfn_t pfnum, se_t se)
4258 {
4259         page_t *pp;
4260 
4261 retry:
4262         pp = page_numtopp_nolock(pfnum);
4263         if (pp == NULL) {
4264                 return ((page_t *)NULL);
4265         }
4266 
4267         /*
4268          * Acquire the appropriate lock on the page.
4269          */
4270         while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) {
4271                 if (page_pptonum(pp) != pfnum)
4272                         goto retry;
4273                 continue;
4274         }
4275 
4276         if (page_pptonum(pp) != pfnum) {
4277                 page_unlock(pp);
4278                 goto retry;
4279         }
4280 
4281         return (pp);
4282 }
4283 
4284 /*
4285  * This routine is like page_numtopp, but will only return page structs
4286  * for pages which are ok for loading into hardware using the page struct.
4287  */
4288 page_t *
4289 page_numtopp_nowait(pfn_t pfnum, se_t se)
4290 {
4291         page_t *pp;
4292 
4293 retry:
4294         pp = page_numtopp_nolock(pfnum);
4295         if (pp == NULL) {
4296                 return ((page_t *)NULL);
4297         }
4298 
4299         /*
4300          * Try to acquire the appropriate lock on the page.
4301          */
4302         if (PP_ISFREE(pp))
4303                 pp = NULL;
4304         else {
4305                 if (!page_trylock(pp, se))
4306                         pp = NULL;
4307                 else {
4308                         if (page_pptonum(pp) != pfnum) {
4309                                 page_unlock(pp);
4310                                 goto retry;
4311                         }
4312                         if (PP_ISFREE(pp)) {
4313                                 page_unlock(pp);
4314                                 pp = NULL;
4315                         }
4316                 }
4317         }
4318         return (pp);
4319 }
4320 
4321 /*
4322  * Returns a count of dirty pages that are in the process
4323  * of being written out.  If 'cleanit' is set, try to push the page.
4324  */
4325 pgcnt_t
4326 page_busy(int cleanit)
4327 {
4328         page_t *page0 = page_first();
4329         page_t *pp = page0;
4330         pgcnt_t nppbusy = 0;
4331         u_offset_t off;
4332 
4333         do {
4334                 vnode_t *vp = pp->p_vnode;
4335                 /*
4336                  * A page is a candidate for syncing if it is:
4337                  *
4338                  * (a)  On neither the freelist nor the cachelist
4339                  * (b)  Hashed onto a vnode
4340                  * (c)  Not a kernel page
4341                  * (d)  Dirty
4342                  * (e)  Not part of a swapfile
4343                  * (f)  a page which belongs to a real vnode; eg has a non-null
4344                  *      v_vfsp pointer.
4345                  * (g)  Backed by a filesystem which doesn't have a
4346                  *      stubbed-out sync operation
4347                  */
4348                 if (!PP_ISFREE(pp) && vp != NULL && !VN_ISKAS(vp) &&
4349                     hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL &&
4350                     vfs_can_sync(vp->v_vfsp)) {
4351                         nppbusy++;
4352 
4353                         if (!cleanit)
4354                                 continue;
4355                         if (!page_trylock(pp, SE_EXCL))
4356                                 continue;
4357 
4358                         if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) ||
4359                             pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
4360                             !(hat_pagesync(pp,
4361                             HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) {
4362                                 page_unlock(pp);
4363                                 continue;
4364                         }
4365                         off = pp->p_offset;
4366                         VN_HOLD(vp);
4367                         page_unlock(pp);
4368                         (void) VOP_PUTPAGE(vp, off, PAGESIZE,
4369                             B_ASYNC | B_FREE, kcred, NULL);
4370                         VN_RELE(vp);
4371                 }
4372         } while ((pp = page_next(pp)) != page0);
4373 
4374         return (nppbusy);
4375 }
4376 
4377 void page_invalidate_pages(void);
4378 
4379 /*
4380  * callback handler to vm sub-system
4381  *
4382  * callers make sure no recursive entries to this func.
4383  */
4384 /*ARGSUSED*/
4385 boolean_t
4386 callb_vm_cpr(void *arg, int code)
4387 {
4388         if (code == CB_CODE_CPR_CHKPT)
4389                 page_invalidate_pages();
4390         return (B_TRUE);
4391 }
4392 
4393 /*
4394  * Invalidate all pages of the system.
4395  * It shouldn't be called until all user page activities are all stopped.
4396  */
4397 void
4398 page_invalidate_pages()
4399 {
4400         page_t *pp;
4401         page_t *page0;
4402         pgcnt_t nbusypages;
4403         int retry = 0;
4404         const int MAXRETRIES = 4;
4405 top:
4406         /*
4407          * Flush dirty pages and destroy the clean ones.
4408          */
4409         nbusypages = 0;
4410 
4411         pp = page0 = page_first();
4412         do {
4413                 struct vnode    *vp;
4414                 u_offset_t      offset;
4415                 int             mod;
4416 
4417                 /*
4418                  * skip the page if it has no vnode or the page associated
4419                  * with the kernel vnode or prom allocated kernel mem.
4420                  */
4421                 if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp))
4422                         continue;
4423 
4424                 /*
4425                  * skip the page which is already free invalidated.
4426                  */
4427                 if (PP_ISFREE(pp) && PP_ISAGED(pp))
4428                         continue;
4429 
4430                 /*
4431                  * skip pages that are already locked or can't be "exclusively"
4432                  * locked or are already free.  After we lock the page, check
4433                  * the free and age bits again to be sure it's not destroyed
4434                  * yet.
4435                  * To achieve max. parallelization, we use page_trylock instead
4436                  * of page_lock so that we don't get block on individual pages
4437                  * while we have thousands of other pages to process.
4438                  */
4439                 if (!page_trylock(pp, SE_EXCL)) {
4440                         nbusypages++;
4441                         continue;
4442                 } else if (PP_ISFREE(pp)) {
4443                         if (!PP_ISAGED(pp)) {
4444                                 page_destroy_free(pp);
4445                         } else {
4446                                 page_unlock(pp);
4447                         }
4448                         continue;
4449                 }
4450                 /*
4451                  * Is this page involved in some I/O? shared?
4452                  *
4453                  * The page_struct_lock need not be acquired to
4454                  * examine these fields since the page has an
4455                  * "exclusive" lock.
4456                  */
4457                 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
4458                         page_unlock(pp);
4459                         continue;
4460                 }
4461 
4462                 if (vp->v_type == VCHR) {
4463                         panic("vp->v_type == VCHR");
4464                         /*NOTREACHED*/
4465                 }
4466 
4467                 if (!page_try_demote_pages(pp)) {
4468                         page_unlock(pp);
4469                         continue;
4470                 }
4471 
4472                 /*
4473                  * Check the modified bit. Leave the bits alone in hardware
4474                  * (they will be modified if we do the putpage).
4475                  */
4476                 mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD)
4477                     & P_MOD);
4478                 if (mod) {
4479                         offset = pp->p_offset;
4480                         /*
4481                          * Hold the vnode before releasing the page lock
4482                          * to prevent it from being freed and re-used by
4483                          * some other thread.
4484                          */
4485                         VN_HOLD(vp);
4486                         page_unlock(pp);
4487                         /*
4488                          * No error return is checked here. Callers such as
4489                          * cpr deals with the dirty pages at the dump time
4490                          * if this putpage fails.
4491                          */
4492                         (void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL,
4493                             kcred, NULL);
4494                         VN_RELE(vp);
4495                 } else {
4496                         /*LINTED: constant in conditional context*/
4497                         VN_DISPOSE(pp, B_INVAL, 0, kcred);
4498                 }
4499         } while ((pp = page_next(pp)) != page0);
4500         if (nbusypages && retry++ < MAXRETRIES) {
4501                 delay(1);
4502                 goto top;
4503         }
4504 }
4505 
4506 /*
4507  * Replace the page "old" with the page "new" on the page hash and vnode lists
4508  *
4509  * the replacement must be done in place, ie the equivalent sequence:
4510  *
4511  *      vp = old->p_vnode;
4512  *      off = old->p_offset;
4513  *      page_do_hashout(old)
4514  *      page_do_hashin(new, vp, off)
4515  *
4516  * doesn't work, since
4517  *  1) if old is the only page on the vnode, the v_pages list has a window
4518  *     where it looks empty. This will break file system assumptions.
4519  * and
4520  *  2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list.
4521  */
4522 static void
4523 page_do_relocate_hash(page_t *new, page_t *old)
4524 {
4525         page_t  **hash_list;
4526         vnode_t *vp = old->p_vnode;
4527         kmutex_t *sep;
4528 
4529         ASSERT(PAGE_EXCL(old));
4530         ASSERT(PAGE_EXCL(new));
4531         ASSERT(vp != NULL);
4532         ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
4533         ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset))));
4534 
4535         /*
4536          * First find old page on the page hash list
4537          */
4538         hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)];
4539 
4540         for (;;) {
4541                 if (*hash_list == old)
4542                         break;
4543                 if (*hash_list == NULL) {
4544                         panic("page_do_hashout");
4545                         /*NOTREACHED*/
4546                 }
4547                 hash_list = &(*hash_list)->p_hash;
4548         }
4549 
4550         /*
4551          * update new and replace old with new on the page hash list
4552          */
4553         new->p_vnode = old->p_vnode;
4554         new->p_offset = old->p_offset;
4555         new->p_hash = old->p_hash;
4556         *hash_list = new;
4557 
4558         if ((new->p_vnode->v_flag & VISSWAP) != 0)
4559                 PP_SETSWAP(new);
4560 
4561         /*
4562          * replace old with new on the vnode's page list
4563          */
4564         if (old->p_vpnext == old) {
4565                 new->p_vpnext = new;
4566                 new->p_vpprev = new;
4567         } else {
4568                 new->p_vpnext = old->p_vpnext;
4569                 new->p_vpprev = old->p_vpprev;
4570                 new->p_vpnext->p_vpprev = new;
4571                 new->p_vpprev->p_vpnext = new;
4572         }
4573         if (vp->v_pages == old)
4574                 vp->v_pages = new;
4575 
4576         /*
4577          * clear out the old page
4578          */
4579         old->p_hash = NULL;
4580         old->p_vpnext = NULL;
4581         old->p_vpprev = NULL;
4582         old->p_vnode = NULL;
4583         PP_CLRSWAP(old);
4584         old->p_offset = (u_offset_t)-1;
4585         page_clr_all_props(old);
4586 
4587         /*
4588          * Wake up processes waiting for this page.  The page's
4589          * identity has been changed, and is probably not the
4590          * desired page any longer.
4591          */
4592         sep = page_se_mutex(old);
4593         mutex_enter(sep);
4594         old->p_selock &= ~SE_EWANTED;
4595         if (CV_HAS_WAITERS(&old->p_cv))
4596                 cv_broadcast(&old->p_cv);
4597         mutex_exit(sep);
4598 }
4599 
4600 /*
4601  * This function moves the identity of page "pp_old" to page "pp_new".
4602  * Both pages must be locked on entry.  "pp_new" is free, has no identity,
4603  * and need not be hashed out from anywhere.
4604  */
4605 void
4606 page_relocate_hash(page_t *pp_new, page_t *pp_old)
4607 {
4608         vnode_t *vp = pp_old->p_vnode;
4609         u_offset_t off = pp_old->p_offset;
4610         kmutex_t *phm, *vphm;
4611 
4612         /*
4613          * Rehash two pages
4614          */
4615         ASSERT(PAGE_EXCL(pp_old));
4616         ASSERT(PAGE_EXCL(pp_new));
4617         ASSERT(vp != NULL);
4618         ASSERT(pp_new->p_vnode == NULL);
4619 
4620         /*
4621          * hashout then hashin while holding the mutexes
4622          */
4623         phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off));
4624         mutex_enter(phm);
4625         vphm = page_vnode_mutex(vp);
4626         mutex_enter(vphm);
4627 
4628         page_do_relocate_hash(pp_new, pp_old);
4629 
4630         /* The following comment preserved from page_flip(). */
4631         pp_new->p_fsdata = pp_old->p_fsdata;
4632         pp_old->p_fsdata = 0;
4633         mutex_exit(vphm);
4634         mutex_exit(phm);
4635 
4636         /*
4637          * The page_struct_lock need not be acquired for lckcnt and
4638          * cowcnt since the page has an "exclusive" lock.
4639          */
4640         ASSERT(pp_new->p_lckcnt == 0);
4641         ASSERT(pp_new->p_cowcnt == 0);
4642         pp_new->p_lckcnt = pp_old->p_lckcnt;
4643         pp_new->p_cowcnt = pp_old->p_cowcnt;
4644         pp_old->p_lckcnt = pp_old->p_cowcnt = 0;
4645 
4646 }
4647 
4648 /*
4649  * Helper routine used to lock all remaining members of a
4650  * large page. The caller is responsible for passing in a locked
4651  * pp. If pp is a large page, then it succeeds in locking all the
4652  * remaining constituent pages or it returns with only the
4653  * original page locked.
4654  *
4655  * Returns 1 on success, 0 on failure.
4656  *
4657  * If success is returned this routine guarantees p_szc for all constituent
4658  * pages of a large page pp belongs to can't change. To achieve this we
4659  * recheck szc of pp after locking all constituent pages and retry if szc
4660  * changed (it could only decrease). Since hat_page_demote() needs an EXCL
4661  * lock on one of constituent pages it can't be running after all constituent
4662  * pages are locked.  hat_page_demote() with a lock on a constituent page
4663  * outside of this large page (i.e. pp belonged to a larger large page) is
4664  * already done with all constituent pages of pp since the root's p_szc is
4665  * changed last. Therefore no need to synchronize with hat_page_demote() that
4666  * locked a constituent page outside of pp's current large page.
4667  */
4668 #ifdef DEBUG
4669 uint32_t gpg_trylock_mtbf = 0;
4670 #endif
4671 
4672 int
4673 group_page_trylock(page_t *pp, se_t se)
4674 {
4675         page_t  *tpp;
4676         pgcnt_t npgs, i, j;
4677         uint_t pszc = pp->p_szc;
4678 
4679 #ifdef DEBUG
4680         if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) {
4681                 return (0);
4682         }
4683 #endif
4684 
4685         if (pp != PP_GROUPLEADER(pp, pszc)) {
4686                 return (0);
4687         }
4688 
4689 retry:
4690         ASSERT(PAGE_LOCKED_SE(pp, se));
4691         ASSERT(!PP_ISFREE(pp));
4692         if (pszc == 0) {
4693                 return (1);
4694         }
4695         npgs = page_get_pagecnt(pszc);
4696         tpp = pp + 1;
4697         for (i = 1; i < npgs; i++, tpp++) {
4698                 if (!page_trylock(tpp, se)) {
4699                         tpp = pp + 1;
4700                         for (j = 1; j < i; j++, tpp++) {
4701                                 page_unlock(tpp);
4702                         }
4703                         return (0);
4704                 }
4705         }
4706         if (pp->p_szc != pszc) {
4707                 ASSERT(pp->p_szc < pszc);
4708                 ASSERT(pp->p_vnode != NULL && !PP_ISKAS(pp) &&
4709                     !IS_SWAPFSVP(pp->p_vnode));
4710                 tpp = pp + 1;
4711                 for (i = 1; i < npgs; i++, tpp++) {
4712                         page_unlock(tpp);
4713                 }
4714                 pszc = pp->p_szc;
4715                 goto retry;
4716         }
4717         return (1);
4718 }
4719 
4720 void
4721 group_page_unlock(page_t *pp)
4722 {
4723         page_t *tpp;
4724         pgcnt_t npgs, i;
4725 
4726         ASSERT(PAGE_LOCKED(pp));
4727         ASSERT(!PP_ISFREE(pp));
4728         ASSERT(pp == PP_PAGEROOT(pp));
4729         npgs = page_get_pagecnt(pp->p_szc);
4730         for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) {
4731                 page_unlock(tpp);
4732         }
4733 }
4734 
4735 /*
4736  * returns
4737  * 0            : on success and *nrelocp is number of relocated PAGESIZE pages
4738  * ERANGE       : this is not a base page
4739  * EBUSY        : failure to get locks on the page/pages
4740  * ENOMEM       : failure to obtain replacement pages
4741  * EAGAIN       : OBP has not yet completed its boot-time handoff to the kernel
4742  * EIO          : An error occurred while trying to copy the page data
4743  *
4744  * Return with all constituent members of target and replacement
4745  * SE_EXCL locked. It is the callers responsibility to drop the
4746  * locks.
4747  */
4748 int
4749 do_page_relocate(
4750         page_t **target,
4751         page_t **replacement,
4752         int grouplock,
4753         spgcnt_t *nrelocp,
4754         lgrp_t *lgrp)
4755 {
4756         page_t *first_repl;
4757         page_t *repl;
4758         page_t *targ;
4759         page_t *pl = NULL;
4760         uint_t ppattr;
4761         pfn_t   pfn, repl_pfn;
4762         uint_t  szc;
4763         spgcnt_t npgs, i;
4764         int repl_contig = 0;
4765         uint_t flags = 0;
4766         spgcnt_t dofree = 0;
4767 
4768         *nrelocp = 0;
4769 
4770 #if defined(__sparc)
4771         /*
4772          * We need to wait till OBP has completed
4773          * its boot-time handoff of its resources to the kernel
4774          * before we allow page relocation
4775          */
4776         if (page_relocate_ready == 0) {
4777                 return (EAGAIN);
4778         }
4779 #endif
4780 
4781         /*
4782          * If this is not a base page,
4783          * just return with 0x0 pages relocated.
4784          */
4785         targ = *target;
4786         ASSERT(PAGE_EXCL(targ));
4787         ASSERT(!PP_ISFREE(targ));
4788         szc = targ->p_szc;
4789         ASSERT(szc < mmu_page_sizes);
4790         VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4791         pfn = targ->p_pagenum;
4792         if (pfn != PFN_BASE(pfn, szc)) {
4793                 VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]);
4794                 return (ERANGE);
4795         }
4796 
4797         if ((repl = *replacement) != NULL && repl->p_szc >= szc) {
4798                 repl_pfn = repl->p_pagenum;
4799                 if (repl_pfn != PFN_BASE(repl_pfn, szc)) {
4800                         VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]);
4801                         return (ERANGE);
4802                 }
4803                 repl_contig = 1;
4804         }
4805 
4806         /*
4807          * We must lock all members of this large page or we cannot
4808          * relocate any part of it.
4809          */
4810         if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) {
4811                 VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]);
4812                 return (EBUSY);
4813         }
4814 
4815         /*
4816          * reread szc it could have been decreased before
4817          * group_page_trylock() was done.
4818          */
4819         szc = targ->p_szc;
4820         ASSERT(szc < mmu_page_sizes);
4821         VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4822         ASSERT(pfn == PFN_BASE(pfn, szc));
4823 
4824         npgs = page_get_pagecnt(targ->p_szc);
4825 
4826         if (repl == NULL) {
4827                 dofree = npgs;          /* Size of target page in MMU pages */
4828                 if (!page_create_wait(dofree, 0)) {
4829                         if (grouplock != 0) {
4830                                 group_page_unlock(targ);
4831                         }
4832                         VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4833                         return (ENOMEM);
4834                 }
4835 
4836                 /*
4837                  * seg kmem pages require that the target and replacement
4838                  * page be the same pagesize.
4839                  */
4840                 flags = (VN_ISKAS(targ->p_vnode)) ? PGR_SAMESZC : 0;
4841                 repl = page_get_replacement_page(targ, lgrp, flags);
4842                 if (repl == NULL) {
4843                         if (grouplock != 0) {
4844                                 group_page_unlock(targ);
4845                         }
4846                         page_create_putback(dofree);
4847                         VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4848                         return (ENOMEM);
4849                 }
4850         }
4851 #ifdef DEBUG
4852         else {
4853                 ASSERT(PAGE_LOCKED(repl));
4854         }
4855 #endif /* DEBUG */
4856 
4857 #if defined(__sparc)
4858         /*
4859          * Let hat_page_relocate() complete the relocation if it's kernel page
4860          */
4861         if (VN_ISKAS(targ->p_vnode)) {
4862                 *replacement = repl;
4863                 if (hat_page_relocate(target, replacement, nrelocp) != 0) {
4864                         if (grouplock != 0) {
4865                                 group_page_unlock(targ);
4866                         }
4867                         if (dofree) {
4868                                 *replacement = NULL;
4869                                 page_free_replacement_page(repl);
4870                                 page_create_putback(dofree);
4871                         }
4872                         VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]);
4873                         return (EAGAIN);
4874                 }
4875                 VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4876                 return (0);
4877         }
4878 #else
4879 #if defined(lint)
4880         dofree = dofree;
4881 #endif
4882 #endif
4883 
4884         first_repl = repl;
4885 
4886         for (i = 0; i < npgs; i++) {
4887                 ASSERT(PAGE_EXCL(targ));
4888                 ASSERT(targ->p_slckcnt == 0);
4889                 ASSERT(repl->p_slckcnt == 0);
4890 
4891                 (void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD);
4892 
4893                 ASSERT(hat_page_getshare(targ) == 0);
4894                 ASSERT(!PP_ISFREE(targ));
4895                 ASSERT(targ->p_pagenum == (pfn + i));
4896                 ASSERT(repl_contig == 0 ||
4897                     repl->p_pagenum == (repl_pfn + i));
4898 
4899                 /*
4900                  * Copy the page contents and attributes then
4901                  * relocate the page in the page hash.
4902                  */
4903                 if (ppcopy(targ, repl) == 0) {
4904                         targ = *target;
4905                         repl = first_repl;
4906                         VM_STAT_ADD(vmm_vmstats.ppr_copyfail);
4907                         if (grouplock != 0) {
4908                                 group_page_unlock(targ);
4909                         }
4910                         if (dofree) {
4911                                 *replacement = NULL;
4912                                 page_free_replacement_page(repl);
4913                                 page_create_putback(dofree);
4914                         }
4915                         return (EIO);
4916                 }
4917 
4918                 targ++;
4919                 if (repl_contig != 0) {
4920                         repl++;
4921                 } else {
4922                         repl = repl->p_next;
4923                 }
4924         }
4925 
4926         repl = first_repl;
4927         targ = *target;
4928 
4929         for (i = 0; i < npgs; i++) {
4930                 ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO));
4931                 page_clr_all_props(repl);
4932                 page_set_props(repl, ppattr);
4933                 page_relocate_hash(repl, targ);
4934 
4935                 ASSERT(hat_page_getshare(targ) == 0);
4936                 ASSERT(hat_page_getshare(repl) == 0);
4937                 /*
4938                  * Now clear the props on targ, after the
4939                  * page_relocate_hash(), they no longer
4940                  * have any meaning.
4941                  */
4942                 page_clr_all_props(targ);
4943                 ASSERT(targ->p_next == targ);
4944                 ASSERT(targ->p_prev == targ);
4945                 page_list_concat(&pl, &targ);
4946 
4947                 targ++;
4948                 if (repl_contig != 0) {
4949                         repl++;
4950                 } else {
4951                         repl = repl->p_next;
4952                 }
4953         }
4954         /* assert that we have come full circle with repl */
4955         ASSERT(repl_contig == 1 || first_repl == repl);
4956 
4957         *target = pl;
4958         if (*replacement == NULL) {
4959                 ASSERT(first_repl == repl);
4960                 *replacement = repl;
4961         }
4962         VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4963         *nrelocp = npgs;
4964         return (0);
4965 }
4966 /*
4967  * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated.
4968  */
4969 int
4970 page_relocate(
4971         page_t **target,
4972         page_t **replacement,
4973         int grouplock,
4974         int freetarget,
4975         spgcnt_t *nrelocp,
4976         lgrp_t *lgrp)
4977 {
4978         spgcnt_t ret;
4979 
4980         /* do_page_relocate returns 0 on success or errno value */
4981         ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp);
4982 
4983         if (ret != 0 || freetarget == 0) {
4984                 return (ret);
4985         }
4986         if (*nrelocp == 1) {
4987                 ASSERT(*target != NULL);
4988                 page_free(*target, 1);
4989         } else {
4990                 page_t *tpp = *target;
4991                 uint_t szc = tpp->p_szc;
4992                 pgcnt_t npgs = page_get_pagecnt(szc);
4993                 ASSERT(npgs > 1);
4994                 ASSERT(szc != 0);
4995                 do {
4996                         ASSERT(PAGE_EXCL(tpp));
4997                         ASSERT(!hat_page_is_mapped(tpp));
4998                         ASSERT(tpp->p_szc == szc);
4999                         PP_SETFREE(tpp);
5000                         PP_SETAGED(tpp);
5001                         npgs--;
5002                 } while ((tpp = tpp->p_next) != *target);
5003                 ASSERT(npgs == 0);
5004                 page_list_add_pages(*target, 0);
5005                 npgs = page_get_pagecnt(szc);
5006                 page_create_putback(npgs);
5007         }
5008         return (ret);
5009 }
5010 
5011 /*
5012  * it is up to the caller to deal with pcf accounting.
5013  */
5014 void
5015 page_free_replacement_page(page_t *pplist)
5016 {
5017         page_t *pp;
5018 
5019         while (pplist != NULL) {
5020                 /*
5021                  * pp_targ is a linked list.
5022                  */
5023                 pp = pplist;
5024                 if (pp->p_szc == 0) {
5025                         page_sub(&pplist, pp);
5026                         page_clr_all_props(pp);
5027                         PP_SETFREE(pp);
5028                         PP_SETAGED(pp);
5029                         page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
5030                         page_unlock(pp);
5031                         VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]);
5032                 } else {
5033                         spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc);
5034                         page_t *tpp;
5035                         page_list_break(&pp, &pplist, curnpgs);
5036                         tpp = pp;
5037                         do {
5038                                 ASSERT(PAGE_EXCL(tpp));
5039                                 ASSERT(!hat_page_is_mapped(tpp));
5040                                 page_clr_all_props(tpp);
5041                                 PP_SETFREE(tpp);
5042                                 PP_SETAGED(tpp);
5043                         } while ((tpp = tpp->p_next) != pp);
5044                         page_list_add_pages(pp, 0);
5045                         VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]);
5046                 }
5047         }
5048 }
5049 
5050 /*
5051  * Relocate target to non-relocatable replacement page.
5052  */
5053 int
5054 page_relocate_cage(page_t **target, page_t **replacement)
5055 {
5056         page_t *tpp, *rpp;
5057         spgcnt_t pgcnt, npgs;
5058         int result;
5059 
5060         tpp = *target;
5061 
5062         ASSERT(PAGE_EXCL(tpp));
5063         ASSERT(tpp->p_szc == 0);
5064 
5065         pgcnt = btop(page_get_pagesize(tpp->p_szc));
5066 
5067         do {
5068                 (void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC);
5069                 rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC);
5070                 if (rpp == NULL) {
5071                         page_create_putback(pgcnt);
5072                         kcage_cageout_wakeup();
5073                 }
5074         } while (rpp == NULL);
5075 
5076         ASSERT(PP_ISNORELOC(rpp));
5077 
5078         result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL);
5079 
5080         if (result == 0) {
5081                 *replacement = rpp;
5082                 if (pgcnt != npgs)
5083                         panic("page_relocate_cage: partial relocation");
5084         }
5085 
5086         return (result);
5087 }
5088 
5089 /*
5090  * Release the page lock on a page, place on cachelist
5091  * tail if no longer mapped. Caller can let us know if
5092  * the page is known to be clean.
5093  */
5094 int
5095 page_release(page_t *pp, int checkmod)
5096 {
5097         int status;
5098 
5099         ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) &&
5100             (pp->p_vnode != NULL));
5101 
5102         if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) &&
5103             ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) &&
5104             pp->p_lckcnt == 0 && pp->p_cowcnt == 0 &&
5105             !hat_page_is_mapped(pp)) {
5106 
5107                 /*
5108                  * If page is modified, unlock it
5109                  *
5110                  * (p_nrm & P_MOD) bit has the latest stuff because:
5111                  * (1) We found that this page doesn't have any mappings
5112                  *      _after_ holding SE_EXCL and
5113                  * (2) We didn't drop SE_EXCL lock after the check in (1)
5114                  */
5115                 if (checkmod && hat_ismod(pp)) {
5116                         page_unlock(pp);
5117                         status = PGREL_MOD;
5118                 } else {
5119                         /*LINTED: constant in conditional context*/
5120                         VN_DISPOSE(pp, B_FREE, 0, kcred);
5121                         status = PGREL_CLEAN;
5122                 }
5123         } else {
5124                 page_unlock(pp);
5125                 status = PGREL_NOTREL;
5126         }
5127         return (status);
5128 }
5129 
5130 /*
5131  * Given a constituent page, try to demote the large page on the freelist.
5132  *
5133  * Returns nonzero if the page could be demoted successfully. Returns with
5134  * the constituent page still locked.
5135  */
5136 int
5137 page_try_demote_free_pages(page_t *pp)
5138 {
5139         page_t *rootpp = pp;
5140         pfn_t   pfn = page_pptonum(pp);
5141         spgcnt_t npgs;
5142         uint_t  szc = pp->p_szc;
5143 
5144         ASSERT(PP_ISFREE(pp));
5145         ASSERT(PAGE_EXCL(pp));
5146 
5147         /*
5148          * Adjust rootpp and lock it, if `pp' is not the base
5149          * constituent page.
5150          */
5151         npgs = page_get_pagecnt(pp->p_szc);
5152         if (npgs == 1) {
5153                 return (0);
5154         }
5155 
5156         if (!IS_P2ALIGNED(pfn, npgs)) {
5157                 pfn = P2ALIGN(pfn, npgs);
5158                 rootpp = page_numtopp_nolock(pfn);
5159         }
5160 
5161         if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) {
5162                 return (0);
5163         }
5164 
5165         if (rootpp->p_szc != szc) {
5166                 if (pp != rootpp)
5167                         page_unlock(rootpp);
5168                 return (0);
5169         }
5170 
5171         page_demote_free_pages(rootpp);
5172 
5173         if (pp != rootpp)
5174                 page_unlock(rootpp);
5175 
5176         ASSERT(PP_ISFREE(pp));
5177         ASSERT(PAGE_EXCL(pp));
5178         return (1);
5179 }
5180 
5181 /*
5182  * Given a constituent page, try to demote the large page.
5183  *
5184  * Returns nonzero if the page could be demoted successfully. Returns with
5185  * the constituent page still locked.
5186  */
5187 int
5188 page_try_demote_pages(page_t *pp)
5189 {
5190         page_t *tpp, *rootpp = pp;
5191         pfn_t   pfn = page_pptonum(pp);
5192         spgcnt_t i, npgs;
5193         uint_t  szc = pp->p_szc;
5194         vnode_t *vp = pp->p_vnode;
5195 
5196         ASSERT(PAGE_EXCL(pp));
5197 
5198         VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]);
5199 
5200         if (pp->p_szc == 0) {
5201                 VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]);
5202                 return (1);
5203         }
5204 
5205         if (vp != NULL && !IS_SWAPFSVP(vp) && !VN_ISKAS(vp)) {
5206                 VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]);
5207                 page_demote_vp_pages(pp);
5208                 ASSERT(pp->p_szc == 0);
5209                 return (1);
5210         }
5211 
5212         /*
5213          * Adjust rootpp if passed in is not the base
5214          * constituent page.
5215          */
5216         npgs = page_get_pagecnt(pp->p_szc);
5217         ASSERT(npgs > 1);
5218         if (!IS_P2ALIGNED(pfn, npgs)) {
5219                 pfn = P2ALIGN(pfn, npgs);
5220                 rootpp = page_numtopp_nolock(pfn);
5221                 VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]);
5222                 ASSERT(rootpp->p_vnode != NULL);
5223                 ASSERT(rootpp->p_szc == szc);
5224         }
5225 
5226         /*
5227          * We can't demote kernel pages since we can't hat_unload()
5228          * the mappings.
5229          */
5230         if (VN_ISKAS(rootpp->p_vnode))
5231                 return (0);
5232 
5233         /*
5234          * Attempt to lock all constituent pages except the page passed
5235          * in since it's already locked.
5236          */
5237         for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5238                 ASSERT(!PP_ISFREE(tpp));
5239                 ASSERT(tpp->p_vnode != NULL);
5240 
5241                 if (tpp != pp && !page_trylock(tpp, SE_EXCL))
5242                         break;
5243                 ASSERT(tpp->p_szc == rootpp->p_szc);
5244                 ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i);
5245         }
5246 
5247         /*
5248          * If we failed to lock them all then unlock what we have
5249          * locked so far and bail.
5250          */
5251         if (i < npgs) {
5252                 tpp = rootpp;
5253                 while (i-- > 0) {
5254                         if (tpp != pp)
5255                                 page_unlock(tpp);
5256                         tpp++;
5257                 }
5258                 VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]);
5259                 return (0);
5260         }
5261 
5262         for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5263                 ASSERT(PAGE_EXCL(tpp));
5264                 ASSERT(tpp->p_slckcnt == 0);
5265                 (void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
5266                 tpp->p_szc = 0;
5267         }
5268 
5269         /*
5270          * Unlock all pages except the page passed in.
5271          */
5272         for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5273                 ASSERT(!hat_page_is_mapped(tpp));
5274                 if (tpp != pp)
5275                         page_unlock(tpp);
5276         }
5277 
5278         VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]);
5279         return (1);
5280 }
5281 
5282 /*
5283  * Called by page_free() and page_destroy() to demote the page size code
5284  * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero
5285  * p_szc on free list, neither can we just clear p_szc of a single page_t
5286  * within a large page since it will break other code that relies on p_szc
5287  * being the same for all page_t's of a large page). Anonymous pages should
5288  * never end up here because anon_map_getpages() cannot deal with p_szc
5289  * changes after a single constituent page is locked.  While anonymous or
5290  * kernel large pages are demoted or freed the entire large page at a time
5291  * with all constituent pages locked EXCL for the file system pages we
5292  * have to be able to demote a large page (i.e. decrease all constituent pages
5293  * p_szc) with only just an EXCL lock on one of constituent pages. The reason
5294  * we can easily deal with anonymous page demotion the entire large page at a
5295  * time is that those operation originate at address space level and concern
5296  * the entire large page region with actual demotion only done when pages are
5297  * not shared with any other processes (therefore we can always get EXCL lock
5298  * on all anonymous constituent pages after clearing segment page
5299  * cache). However file system pages can be truncated or invalidated at a
5300  * PAGESIZE level from the file system side and end up in page_free() or
5301  * page_destroy() (we also allow only part of the large page to be SOFTLOCKed
5302  * and therefore pageout should be able to demote a large page by EXCL locking
5303  * any constituent page that is not under SOFTLOCK). In those cases we cannot
5304  * rely on being able to lock EXCL all constituent pages.
5305  *
5306  * To prevent szc changes on file system pages one has to lock all constituent
5307  * pages at least SHARED (or call page_szc_lock()). The only subsystem that
5308  * doesn't rely on locking all constituent pages (or using page_szc_lock()) to
5309  * prevent szc changes is hat layer that uses its own page level mlist
5310  * locks. hat assumes that szc doesn't change after mlist lock for a page is
5311  * taken. Therefore we need to change szc under hat level locks if we only
5312  * have an EXCL lock on a single constituent page and hat still references any
5313  * of constituent pages.  (Note we can't "ignore" hat layer by simply
5314  * hat_pageunload() all constituent pages without having EXCL locks on all of
5315  * constituent pages). We use hat_page_demote() call to safely demote szc of
5316  * all constituent pages under hat locks when we only have an EXCL lock on one
5317  * of constituent pages.
5318  *
5319  * This routine calls page_szc_lock() before calling hat_page_demote() to
5320  * allow segvn in one special case not to lock all constituent pages SHARED
5321  * before calling hat_memload_array() that relies on p_szc not changing even
5322  * before hat level mlist lock is taken.  In that case segvn uses
5323  * page_szc_lock() to prevent hat_page_demote() changing p_szc values.
5324  *
5325  * Anonymous or kernel page demotion still has to lock all pages exclusively
5326  * and do hat_pageunload() on all constituent pages before demoting the page
5327  * therefore there's no need for anonymous or kernel page demotion to use
5328  * hat_page_demote() mechanism.
5329  *
5330  * hat_page_demote() removes all large mappings that map pp and then decreases
5331  * p_szc starting from the last constituent page of the large page. By working
5332  * from the tail of a large page in pfn decreasing order allows one looking at
5333  * the root page to know that hat_page_demote() is done for root's szc area.
5334  * e.g. if a root page has szc 1 one knows it only has to lock all constituent
5335  * pages within szc 1 area to prevent szc changes because hat_page_demote()
5336  * that started on this page when it had szc > 1 is done for this szc 1 area.
5337  *
5338  * We are guaranteed that all constituent pages of pp's large page belong to
5339  * the same vnode with the consecutive offsets increasing in the direction of
5340  * the pfn i.e. the identity of constituent pages can't change until their
5341  * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove
5342  * large mappings to pp even though we don't lock any constituent page except
5343  * pp (i.e. we won't unload e.g. kernel locked page).
5344  */
5345 static void
5346 page_demote_vp_pages(page_t *pp)
5347 {
5348         kmutex_t *mtx;
5349 
5350         ASSERT(PAGE_EXCL(pp));
5351         ASSERT(!PP_ISFREE(pp));
5352         ASSERT(pp->p_vnode != NULL);
5353         ASSERT(!IS_SWAPFSVP(pp->p_vnode));
5354         ASSERT(!PP_ISKAS(pp));
5355 
5356         VM_STAT_ADD(pagecnt.pc_demote_pages[0]);
5357 
5358         mtx = page_szc_lock(pp);
5359         if (mtx != NULL) {
5360                 hat_page_demote(pp);
5361                 mutex_exit(mtx);
5362         }
5363         ASSERT(pp->p_szc == 0);
5364 }
5365 
5366 /*
5367  * Mark any existing pages for migration in the given range
5368  */
5369 void
5370 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len,
5371     struct anon_map *amp, ulong_t anon_index, vnode_t *vp,
5372     u_offset_t vnoff, int rflag)
5373 {
5374         struct anon     *ap;
5375         vnode_t         *curvp;
5376         lgrp_t          *from;
5377         pgcnt_t         nlocked;
5378         u_offset_t      off;
5379         pfn_t           pfn;
5380         size_t          pgsz;
5381         size_t          segpgsz;
5382         pgcnt_t         pages;
5383         uint_t          pszc;
5384         page_t          *pp0, *pp;
5385         caddr_t         va;
5386         ulong_t         an_idx;
5387         anon_sync_obj_t cookie;
5388 
5389         ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5390 
5391         /*
5392          * Don't do anything if don't need to do lgroup optimizations
5393          * on this system
5394          */
5395         if (!lgrp_optimizations())
5396                 return;
5397 
5398         /*
5399          * Align address and length to (potentially large) page boundary
5400          */
5401         segpgsz = page_get_pagesize(seg->s_szc);
5402         addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz);
5403         if (rflag)
5404                 len = P2ROUNDUP(len, segpgsz);
5405 
5406         /*
5407          * Do one (large) page at a time
5408          */
5409         va = addr;
5410         while (va < addr + len) {
5411                 /*
5412                  * Lookup (root) page for vnode and offset corresponding to
5413                  * this virtual address
5414                  * Try anonmap first since there may be copy-on-write
5415                  * pages, but initialize vnode pointer and offset using
5416                  * vnode arguments just in case there isn't an amp.
5417                  */
5418                 curvp = vp;
5419                 off = vnoff + va - seg->s_base;
5420                 if (amp) {
5421                         ANON_LOCK_ENTER(&->a_rwlock, RW_READER);
5422                         an_idx = anon_index + seg_page(seg, va);
5423                         anon_array_enter(amp, an_idx, &cookie);
5424                         ap = anon_get_ptr(amp->ahp, an_idx);
5425                         if (ap)
5426                                 swap_xlate(ap, &curvp, &off);
5427                         anon_array_exit(&cookie);
5428                         ANON_LOCK_EXIT(&->a_rwlock);
5429                 }
5430 
5431                 pp = NULL;
5432                 if (curvp)
5433                         pp = page_lookup(curvp, off, SE_SHARED);
5434 
5435                 /*
5436                  * If there isn't a page at this virtual address,
5437                  * skip to next page
5438                  */
5439                 if (pp == NULL) {
5440                         va += PAGESIZE;
5441                         continue;
5442                 }
5443 
5444                 /*
5445                  * Figure out which lgroup this page is in for kstats
5446                  */
5447                 pfn = page_pptonum(pp);
5448                 from = lgrp_pfn_to_lgrp(pfn);
5449 
5450                 /*
5451                  * Get page size, and round up and skip to next page boundary
5452                  * if unaligned address
5453                  */
5454                 pszc = pp->p_szc;
5455                 pgsz = page_get_pagesize(pszc);
5456                 pages = btop(pgsz);
5457                 if (!IS_P2ALIGNED(va, pgsz) ||
5458                     !IS_P2ALIGNED(pfn, pages) ||
5459                     pgsz > segpgsz) {
5460                         pgsz = MIN(pgsz, segpgsz);
5461                         page_unlock(pp);
5462                         pages = btop(P2END((uintptr_t)va, pgsz) -
5463                             (uintptr_t)va);
5464                         va = (caddr_t)P2END((uintptr_t)va, pgsz);
5465                         lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, pages);
5466                         continue;
5467                 }
5468 
5469                 /*
5470                  * Upgrade to exclusive lock on page
5471                  */
5472                 if (!page_tryupgrade(pp)) {
5473                         page_unlock(pp);
5474                         va += pgsz;
5475                         lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5476                             btop(pgsz));
5477                         continue;
5478                 }
5479 
5480                 pp0 = pp++;
5481                 nlocked = 1;
5482 
5483                 /*
5484                  * Lock constituent pages if this is large page
5485                  */
5486                 if (pages > 1) {
5487                         /*
5488                          * Lock all constituents except root page, since it
5489                          * should be locked already.
5490                          */
5491                         for (; nlocked < pages; nlocked++) {
5492                                 if (!page_trylock(pp, SE_EXCL)) {
5493                                         break;
5494                                 }
5495                                 if (PP_ISFREE(pp) ||
5496                                     pp->p_szc != pszc) {
5497                                         /*
5498                                          * hat_page_demote() raced in with us.
5499                                          */
5500                                         ASSERT(!IS_SWAPFSVP(curvp));
5501                                         page_unlock(pp);
5502                                         break;
5503                                 }
5504                                 pp++;
5505                         }
5506                 }
5507 
5508                 /*
5509                  * If all constituent pages couldn't be locked,
5510                  * unlock pages locked so far and skip to next page.
5511                  */
5512                 if (nlocked < pages) {
5513                         while (pp0 < pp) {
5514                                 page_unlock(pp0++);
5515                         }
5516                         va += pgsz;
5517                         lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5518                             btop(pgsz));
5519                         continue;
5520                 }
5521 
5522                 /*
5523                  * hat_page_demote() can no longer happen
5524                  * since last cons page had the right p_szc after
5525                  * all cons pages were locked. all cons pages
5526                  * should now have the same p_szc.
5527                  */
5528 
5529                 /*
5530                  * All constituent pages locked successfully, so mark
5531                  * large page for migration and unload the mappings of
5532                  * constituent pages, so a fault will occur on any part of the
5533                  * large page
5534                  */
5535                 PP_SETMIGRATE(pp0);
5536                 while (pp0 < pp) {
5537                         (void) hat_pageunload(pp0, HAT_FORCE_PGUNLOAD);
5538                         ASSERT(hat_page_getshare(pp0) == 0);
5539                         page_unlock(pp0++);
5540                 }
5541                 lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked);
5542 
5543                 va += pgsz;
5544         }
5545 }
5546 
5547 /*
5548  * Migrate any pages that have been marked for migration in the given range
5549  */
5550 void
5551 page_migrate(
5552         struct seg      *seg,
5553         caddr_t         addr,
5554         page_t          **ppa,
5555         pgcnt_t         npages)
5556 {
5557         lgrp_t          *from;
5558         lgrp_t          *to;
5559         page_t          *newpp;
5560         page_t          *pp;
5561         pfn_t           pfn;
5562         size_t          pgsz;
5563         spgcnt_t        page_cnt;
5564         spgcnt_t        i;
5565         uint_t          pszc;
5566 
5567         ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5568 
5569         while (npages > 0) {
5570                 pp = *ppa;
5571                 pszc = pp->p_szc;
5572                 pgsz = page_get_pagesize(pszc);
5573                 page_cnt = btop(pgsz);
5574 
5575                 /*
5576                  * Check to see whether this page is marked for migration
5577                  *
5578                  * Assume that root page of large page is marked for
5579                  * migration and none of the other constituent pages
5580                  * are marked.  This really simplifies clearing the
5581                  * migrate bit by not having to clear it from each
5582                  * constituent page.
5583                  *
5584                  * note we don't want to relocate an entire large page if
5585                  * someone is only using one subpage.
5586                  */
5587                 if (npages < page_cnt)
5588                         break;
5589 
5590                 /*
5591                  * Is it marked for migration?
5592                  */
5593                 if (!PP_ISMIGRATE(pp))
5594                         goto next;
5595 
5596                 /*
5597                  * Determine lgroups that page is being migrated between
5598                  */
5599                 pfn = page_pptonum(pp);
5600                 if (!IS_P2ALIGNED(pfn, page_cnt)) {
5601                         break;
5602                 }
5603                 from = lgrp_pfn_to_lgrp(pfn);
5604                 to = lgrp_mem_choose(seg, addr, pgsz);
5605 
5606                 /*
5607                  * Need to get exclusive lock's to migrate
5608                  */
5609                 for (i = 0; i < page_cnt; i++) {
5610                         ASSERT(PAGE_LOCKED(ppa[i]));
5611                         if (page_pptonum(ppa[i]) != pfn + i ||
5612                             ppa[i]->p_szc != pszc) {
5613                                 break;
5614                         }
5615                         if (!page_tryupgrade(ppa[i])) {
5616                                 lgrp_stat_add(from->lgrp_id,
5617                                     LGRP_PM_FAIL_LOCK_PGS,
5618                                     page_cnt);
5619                                 break;
5620                         }
5621 
5622                         /*
5623                          * Check to see whether we are trying to migrate
5624                          * page to lgroup where it is allocated already.
5625                          * If so, clear the migrate bit and skip to next
5626                          * page.
5627                          */
5628                         if (i == 0 && to == from) {
5629                                 PP_CLRMIGRATE(ppa[0]);
5630                                 page_downgrade(ppa[0]);
5631                                 goto next;
5632                         }
5633                 }
5634 
5635                 /*
5636                  * If all constituent pages couldn't be locked,
5637                  * unlock pages locked so far and skip to next page.
5638                  */
5639                 if (i != page_cnt) {
5640                         while (--i != -1) {
5641                                 page_downgrade(ppa[i]);
5642                         }
5643                         goto next;
5644                 }
5645 
5646                 (void) page_create_wait(page_cnt, PG_WAIT);
5647                 newpp = page_get_replacement_page(pp, to, PGR_SAMESZC);
5648                 if (newpp == NULL) {
5649                         page_create_putback(page_cnt);
5650                         for (i = 0; i < page_cnt; i++) {
5651                                 page_downgrade(ppa[i]);
5652                         }
5653                         lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS,
5654                             page_cnt);
5655                         goto next;
5656                 }
5657                 ASSERT(newpp->p_szc == pszc);
5658                 /*
5659                  * Clear migrate bit and relocate page
5660                  */
5661                 PP_CLRMIGRATE(pp);
5662                 if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) {
5663                         panic("page_migrate: page_relocate failed");
5664                 }
5665                 ASSERT(page_cnt * PAGESIZE == pgsz);
5666 
5667                 /*
5668                  * Keep stats for number of pages migrated from and to
5669                  * each lgroup
5670                  */
5671                 lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt);
5672                 lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt);
5673                 /*
5674                  * update the page_t array we were passed in and
5675                  * unlink constituent pages of a large page.
5676                  */
5677                 for (i = 0; i < page_cnt; ++i, ++pp) {
5678                         ASSERT(PAGE_EXCL(newpp));
5679                         ASSERT(newpp->p_szc == pszc);
5680                         ppa[i] = newpp;
5681                         pp = newpp;
5682                         page_sub(&newpp, pp);
5683                         page_downgrade(pp);
5684                 }
5685                 ASSERT(newpp == NULL);
5686 next:
5687                 addr += pgsz;
5688                 ppa += page_cnt;
5689                 npages -= page_cnt;
5690         }
5691 }
5692 
5693 uint_t page_reclaim_maxcnt = 60; /* max total iterations */
5694 uint_t page_reclaim_nofree_maxcnt = 3; /* max iterations without progress */
5695 /*
5696  * Reclaim/reserve availrmem for npages.
5697  * If there is not enough memory start reaping seg, kmem caches.
5698  * Start pageout scanner (via page_needfree()).
5699  * Exit after ~ MAX_CNT s regardless of how much memory has been released.
5700  * Note: There is no guarantee that any availrmem will be freed as
5701  * this memory typically is locked (kernel heap) or reserved for swap.
5702  * Also due to memory fragmentation kmem allocator may not be able
5703  * to free any memory (single user allocated buffer will prevent
5704  * freeing slab or a page).
5705  */
5706 int
5707 page_reclaim_mem(pgcnt_t npages, pgcnt_t epages, int adjust)
5708 {
5709         int     i = 0;
5710         int     i_nofree = 0;
5711         int     ret = 0;
5712         pgcnt_t deficit;
5713         pgcnt_t old_availrmem = 0;
5714 
5715         mutex_enter(&freemem_lock);
5716         while (availrmem < tune.t_minarmem + npages + epages &&
5717             i++ < page_reclaim_maxcnt) {
5718                 /* ensure we made some progress in the last few iterations */
5719                 if (old_availrmem < availrmem) {
5720                         old_availrmem = availrmem;
5721                         i_nofree = 0;
5722                 } else if (i_nofree++ >= page_reclaim_nofree_maxcnt) {
5723                         break;
5724                 }
5725 
5726                 deficit = tune.t_minarmem + npages + epages - availrmem;
5727                 mutex_exit(&freemem_lock);
5728                 page_needfree(deficit);
5729                 kmem_reap();
5730                 delay(hz);
5731                 page_needfree(-(spgcnt_t)deficit);
5732                 mutex_enter(&freemem_lock);
5733         }
5734 
5735         if (adjust && (availrmem >= tune.t_minarmem + npages + epages)) {
5736                 availrmem -= npages;
5737                 ret = 1;
5738         }
5739 
5740         mutex_exit(&freemem_lock);
5741 
5742         return (ret);
5743 }
5744 
5745 /*
5746  * Search the memory segments to locate the desired page.  Within a
5747  * segment, pages increase linearly with one page structure per
5748  * physical page frame (size PAGESIZE).  The search begins
5749  * with the segment that was accessed last, to take advantage of locality.
5750  * If the hint misses, we start from the beginning of the sorted memseg list
5751  */
5752 
5753 
5754 /*
5755  * Some data structures for pfn to pp lookup.
5756  */
5757 ulong_t mhash_per_slot;
5758 struct memseg *memseg_hash[N_MEM_SLOTS];
5759 
5760 page_t *
5761 page_numtopp_nolock(pfn_t pfnum)
5762 {
5763         struct memseg *seg;
5764         page_t *pp;
5765         vm_cpu_data_t *vc;
5766 
5767         /*
5768          * We need to disable kernel preemption while referencing the
5769          * cpu_vm_data field in order to prevent us from being switched to
5770          * another cpu and trying to reference it after it has been freed.
5771          * This will keep us on cpu and prevent it from being removed while
5772          * we are still on it.
5773          *
5774          * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5775          * which is being resued by DR who will flush those references
5776          * before modifying the reused memseg.  See memseg_cpu_vm_flush().
5777          */
5778         kpreempt_disable();
5779         vc = CPU->cpu_vm_data;
5780         ASSERT(vc != NULL);
5781 
5782         MEMSEG_STAT_INCR(nsearch);
5783 
5784         /* Try last winner first */
5785         if (((seg = vc->vc_pnum_memseg) != NULL) &&
5786             (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5787                 MEMSEG_STAT_INCR(nlastwon);
5788                 pp = seg->pages + (pfnum - seg->pages_base);
5789                 if (pp->p_pagenum == pfnum) {
5790                         kpreempt_enable();
5791                         return ((page_t *)pp);
5792                 }
5793         }
5794 
5795         /* Else Try hash */
5796         if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5797             (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5798                 MEMSEG_STAT_INCR(nhashwon);
5799                 vc->vc_pnum_memseg = seg;
5800                 pp = seg->pages + (pfnum - seg->pages_base);
5801                 if (pp->p_pagenum == pfnum) {
5802                         kpreempt_enable();
5803                         return ((page_t *)pp);
5804                 }
5805         }
5806 
5807         /* Else Brute force */
5808         for (seg = memsegs; seg != NULL; seg = seg->next) {
5809                 if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5810                         vc->vc_pnum_memseg = seg;
5811                         pp = seg->pages + (pfnum - seg->pages_base);
5812                         if (pp->p_pagenum == pfnum) {
5813                                 kpreempt_enable();
5814                                 return ((page_t *)pp);
5815                         }
5816                 }
5817         }
5818         vc->vc_pnum_memseg = NULL;
5819         kpreempt_enable();
5820         MEMSEG_STAT_INCR(nnotfound);
5821         return ((page_t *)NULL);
5822 
5823 }
5824 
5825 struct memseg *
5826 page_numtomemseg_nolock(pfn_t pfnum)
5827 {
5828         struct memseg *seg;
5829         page_t *pp;
5830 
5831         /*
5832          * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5833          * which is being resued by DR who will flush those references
5834          * before modifying the reused memseg.  See memseg_cpu_vm_flush().
5835          */
5836         kpreempt_disable();
5837         /* Try hash */
5838         if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5839             (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5840                 pp = seg->pages + (pfnum - seg->pages_base);
5841                 if (pp->p_pagenum == pfnum) {
5842                         kpreempt_enable();
5843                         return (seg);
5844                 }
5845         }
5846 
5847         /* Else Brute force */
5848         for (seg = memsegs; seg != NULL; seg = seg->next) {
5849                 if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5850                         pp = seg->pages + (pfnum - seg->pages_base);
5851                         if (pp->p_pagenum == pfnum) {
5852                                 kpreempt_enable();
5853                                 return (seg);
5854                         }
5855                 }
5856         }
5857         kpreempt_enable();
5858         return ((struct memseg *)NULL);
5859 }
5860 
5861 /*
5862  * Given a page and a count return the page struct that is
5863  * n structs away from the current one in the global page
5864  * list.
5865  *
5866  * This function wraps to the first page upon
5867  * reaching the end of the memseg list.
5868  */
5869 page_t *
5870 page_nextn(page_t *pp, ulong_t n)
5871 {
5872         struct memseg *seg;
5873         page_t *ppn;
5874         vm_cpu_data_t *vc;
5875 
5876         /*
5877          * We need to disable kernel preemption while referencing the
5878          * cpu_vm_data field in order to prevent us from being switched to
5879          * another cpu and trying to reference it after it has been freed.
5880          * This will keep us on cpu and prevent it from being removed while
5881          * we are still on it.
5882          *
5883          * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5884          * which is being resued by DR who will flush those references
5885          * before modifying the reused memseg.  See memseg_cpu_vm_flush().
5886          */
5887         kpreempt_disable();
5888         vc = (vm_cpu_data_t *)CPU->cpu_vm_data;
5889 
5890         ASSERT(vc != NULL);
5891 
5892         if (((seg = vc->vc_pnext_memseg) == NULL) ||
5893             (seg->pages_base == seg->pages_end) ||
5894             !(pp >= seg->pages && pp < seg->epages)) {
5895 
5896                 for (seg = memsegs; seg; seg = seg->next) {
5897                         if (pp >= seg->pages && pp < seg->epages)
5898                                 break;
5899                 }
5900 
5901                 if (seg == NULL) {
5902                         /* Memory delete got in, return something valid. */
5903                         /* TODO: fix me. */
5904                         seg = memsegs;
5905                         pp = seg->pages;
5906                 }
5907         }
5908 
5909         /* check for wraparound - possible if n is large */
5910         while ((ppn = (pp + n)) >= seg->epages || ppn < pp) {
5911                 n -= seg->epages - pp;
5912                 seg = seg->next;
5913                 if (seg == NULL)
5914                         seg = memsegs;
5915                 pp = seg->pages;
5916         }
5917         vc->vc_pnext_memseg = seg;
5918         kpreempt_enable();
5919         return (ppn);
5920 }
5921 
5922 /*
5923  * Initialize for a loop using page_next_scan_large().
5924  */
5925 page_t *
5926 page_next_scan_init(void **cookie)
5927 {
5928         ASSERT(cookie != NULL);
5929         *cookie = (void *)memsegs;
5930         return ((page_t *)memsegs->pages);
5931 }
5932 
5933 /*
5934  * Return the next page in a scan of page_t's, assuming we want
5935  * to skip over sub-pages within larger page sizes.
5936  *
5937  * The cookie is used to keep track of the current memseg.
5938  */
5939 page_t *
5940 page_next_scan_large(
5941         page_t          *pp,
5942         ulong_t         *n,
5943         void            **cookie)
5944 {
5945         struct memseg   *seg = (struct memseg *)*cookie;
5946         page_t          *new_pp;
5947         ulong_t         cnt;
5948         pfn_t           pfn;
5949 
5950 
5951         /*
5952          * get the count of page_t's to skip based on the page size
5953          */
5954         ASSERT(pp != NULL);
5955         if (pp->p_szc == 0) {
5956                 cnt = 1;
5957         } else {
5958                 pfn = page_pptonum(pp);
5959                 cnt = page_get_pagecnt(pp->p_szc);
5960                 cnt -= pfn & (cnt - 1);
5961         }
5962         *n += cnt;
5963         new_pp = pp + cnt;
5964 
5965         /*
5966          * Catch if we went past the end of the current memory segment. If so,
5967          * just move to the next segment with pages.
5968          */
5969         if (new_pp >= seg->epages || seg->pages_base == seg->pages_end) {
5970                 do {
5971                         seg = seg->next;
5972                         if (seg == NULL)
5973                                 seg = memsegs;
5974                 } while (seg->pages_base == seg->pages_end);
5975                 new_pp = seg->pages;
5976                 *cookie = (void *)seg;
5977         }
5978 
5979         return (new_pp);
5980 }
5981 
5982 
5983 /*
5984  * Returns next page in list. Note: this function wraps
5985  * to the first page in the list upon reaching the end
5986  * of the list. Callers should be aware of this fact.
5987  */
5988 
5989 /* We should change this be a #define */
5990 
5991 page_t *
5992 page_next(page_t *pp)
5993 {
5994         return (page_nextn(pp, 1));
5995 }
5996 
5997 page_t *
5998 page_first()
5999 {
6000         return ((page_t *)memsegs->pages);
6001 }
6002 
6003 
6004 /*
6005  * This routine is called at boot with the initial memory configuration
6006  * and when memory is added or removed.
6007  */
6008 void
6009 build_pfn_hash()
6010 {
6011         pfn_t cur;
6012         pgcnt_t index;
6013         struct memseg *pseg;
6014         int     i;
6015 
6016         /*
6017          * Clear memseg_hash array.
6018          * Since memory add/delete is designed to operate concurrently
6019          * with normal operation, the hash rebuild must be able to run
6020          * concurrently with page_numtopp_nolock(). To support this
6021          * functionality, assignments to memseg_hash array members must
6022          * be done atomically.
6023          *
6024          * NOTE: bzero() does not currently guarantee this for kernel
6025          * threads, and cannot be used here.
6026          */
6027         for (i = 0; i < N_MEM_SLOTS; i++)
6028                 memseg_hash[i] = NULL;
6029 
6030         hat_kpm_mseghash_clear(N_MEM_SLOTS);
6031 
6032         /*
6033          * Physmax is the last valid pfn.
6034          */
6035         mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT;
6036         for (pseg = memsegs; pseg != NULL; pseg = pseg->next) {
6037                 index = MEMSEG_PFN_HASH(pseg->pages_base);
6038                 cur = pseg->pages_base;
6039                 do {
6040                         if (index >= N_MEM_SLOTS)
6041                                 index = MEMSEG_PFN_HASH(cur);
6042 
6043                         if (memseg_hash[index] == NULL ||
6044                             memseg_hash[index]->pages_base > pseg->pages_base) {
6045                                 memseg_hash[index] = pseg;
6046                                 hat_kpm_mseghash_update(index, pseg);
6047                         }
6048                         cur += mhash_per_slot;
6049                         index++;
6050                 } while (cur < pseg->pages_end);
6051         }
6052 }
6053 
6054 /*
6055  * Return the pagenum for the pp
6056  */
6057 pfn_t
6058 page_pptonum(page_t *pp)
6059 {
6060         return (pp->p_pagenum);
6061 }
6062 
6063 /*
6064  * interface to the referenced and modified etc bits
6065  * in the PSM part of the page struct
6066  * when no locking is desired.
6067  */
6068 void
6069 page_set_props(page_t *pp, uint_t flags)
6070 {
6071         ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0);
6072         pp->p_nrm |= (uchar_t)flags;
6073 }
6074 
6075 void
6076 page_clr_all_props(page_t *pp)
6077 {
6078         pp->p_nrm = 0;
6079 }
6080 
6081 /*
6082  * Clear p_lckcnt and p_cowcnt, adjusting freemem if required.
6083  */
6084 int
6085 page_clear_lck_cow(page_t *pp, int adjust)
6086 {
6087         int     f_amount;
6088 
6089         ASSERT(PAGE_EXCL(pp));
6090 
6091         /*
6092          * The page_struct_lock need not be acquired here since
6093          * we require the caller hold the page exclusively locked.
6094          */
6095         f_amount = 0;
6096         if (pp->p_lckcnt) {
6097                 f_amount = 1;
6098                 pp->p_lckcnt = 0;
6099         }
6100         if (pp->p_cowcnt) {
6101                 f_amount += pp->p_cowcnt;
6102                 pp->p_cowcnt = 0;
6103         }
6104 
6105         if (adjust && f_amount) {
6106                 mutex_enter(&freemem_lock);
6107                 availrmem += f_amount;
6108                 mutex_exit(&freemem_lock);
6109         }
6110 
6111         return (f_amount);
6112 }
6113 
6114 /*
6115  * The following functions is called from free_vp_pages()
6116  * for an inexact estimate of a newly free'd page...
6117  */
6118 ulong_t
6119 page_share_cnt(page_t *pp)
6120 {
6121         return (hat_page_getshare(pp));
6122 }
6123 
6124 int
6125 page_isshared(page_t *pp)
6126 {
6127         return (hat_page_checkshare(pp, 1));
6128 }
6129 
6130 int
6131 page_isfree(page_t *pp)
6132 {
6133         return (PP_ISFREE(pp));
6134 }
6135 
6136 int
6137 page_isref(page_t *pp)
6138 {
6139         return (hat_page_getattr(pp, P_REF));
6140 }
6141 
6142 int
6143 page_ismod(page_t *pp)
6144 {
6145         return (hat_page_getattr(pp, P_MOD));
6146 }
6147 
6148 /*
6149  * The following code all currently relates to the page capture logic:
6150  *
6151  * This logic is used for cases where there is a desire to claim a certain
6152  * physical page in the system for the caller.  As it may not be possible
6153  * to capture the page immediately, the p_toxic bits are used in the page
6154  * structure to indicate that someone wants to capture this page.  When the
6155  * page gets unlocked, the toxic flag will be noted and an attempt to capture
6156  * the page will be made.  If it is successful, the original callers callback
6157  * will be called with the page to do with it what they please.
6158  *
6159  * There is also an async thread which wakes up to attempt to capture
6160  * pages occasionally which have the capture bit set.  All of the pages which
6161  * need to be captured asynchronously have been inserted into the
6162  * page_capture_hash and thus this thread walks that hash list.  Items in the
6163  * hash have an expiration time so this thread handles that as well by removing
6164  * the item from the hash if it has expired.
6165  *
6166  * Some important things to note are:
6167  * - if the PR_CAPTURE bit is set on a page, then the page is in the
6168  *   page_capture_hash.  The page_capture_hash_head.pchh_mutex is needed
6169  *   to set and clear this bit, and while the lock is held is the only time
6170  *   you can add or remove an entry from the hash.
6171  * - the PR_CAPTURE bit can only be set and cleared while holding the
6172  *   page_capture_hash_head.pchh_mutex
6173  * - the t_flag field of the thread struct is used with the T_CAPTURING
6174  *   flag to prevent recursion while dealing with large pages.
6175  * - pages which need to be retired never expire on the page_capture_hash.
6176  */
6177 
6178 static void page_capture_thread(void);
6179 static kthread_t *pc_thread_id;
6180 kcondvar_t pc_cv;
6181 static kmutex_t pc_thread_mutex;
6182 static clock_t pc_thread_shortwait;
6183 static clock_t pc_thread_longwait;
6184 static int pc_thread_retry;
6185 
6186 struct page_capture_callback pc_cb[PC_NUM_CALLBACKS];
6187 
6188 /* Note that this is a circular linked list */
6189 typedef struct page_capture_hash_bucket {
6190         page_t *pp;
6191         uchar_t szc;
6192         uchar_t pri;
6193         uint_t flags;
6194         clock_t expires;        /* lbolt at which this request expires. */
6195         void *datap;            /* Cached data passed in for callback */
6196         struct page_capture_hash_bucket *next;
6197         struct page_capture_hash_bucket *prev;
6198 } page_capture_hash_bucket_t;
6199 
6200 #define PC_PRI_HI       0       /* capture now */
6201 #define PC_PRI_LO       1       /* capture later */
6202 #define PC_NUM_PRI      2
6203 
6204 #define PAGE_CAPTURE_PRIO(pp) (PP_ISRAF(pp) ? PC_PRI_LO : PC_PRI_HI)
6205 
6206 
6207 /*
6208  * Each hash bucket will have it's own mutex and two lists which are:
6209  * active (0):  represents requests which have not been processed by
6210  *              the page_capture async thread yet.
6211  * walked (1):  represents requests which have been processed by the
6212  *              page_capture async thread within it's given walk of this bucket.
6213  *
6214  * These are all needed so that we can synchronize all async page_capture
6215  * events.  When the async thread moves to a new bucket, it will append the
6216  * walked list to the active list and walk each item one at a time, moving it
6217  * from the active list to the walked list.  Thus if there is an async request
6218  * outstanding for a given page, it will always be in one of the two lists.
6219  * New requests will always be added to the active list.
6220  * If we were not able to capture a page before the request expired, we'd free
6221  * up the request structure which would indicate to page_capture that there is
6222  * no longer a need for the given page, and clear the PR_CAPTURE flag if
6223  * possible.
6224  */
6225 typedef struct page_capture_hash_head {
6226         kmutex_t pchh_mutex;
6227         uint_t num_pages[PC_NUM_PRI];
6228         page_capture_hash_bucket_t lists[2]; /* sentinel nodes */
6229 } page_capture_hash_head_t;
6230 
6231 #ifdef DEBUG
6232 #define NUM_PAGE_CAPTURE_BUCKETS 4
6233 #else
6234 #define NUM_PAGE_CAPTURE_BUCKETS 64
6235 #endif
6236 
6237 page_capture_hash_head_t page_capture_hash[NUM_PAGE_CAPTURE_BUCKETS];
6238 
6239 /* for now use a very simple hash based upon the size of a page struct */
6240 #define PAGE_CAPTURE_HASH(pp)   \
6241         ((int)(((uintptr_t)pp >> 7) & (NUM_PAGE_CAPTURE_BUCKETS - 1)))
6242 
6243 extern pgcnt_t swapfs_minfree;
6244 
6245 int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap);
6246 
6247 /*
6248  * a callback function is required for page capture requests.
6249  */
6250 void
6251 page_capture_register_callback(uint_t index, clock_t duration,
6252     int (*cb_func)(page_t *, void *, uint_t))
6253 {
6254         ASSERT(pc_cb[index].cb_active == 0);
6255         ASSERT(cb_func != NULL);
6256         rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6257         pc_cb[index].duration = duration;
6258         pc_cb[index].cb_func = cb_func;
6259         pc_cb[index].cb_active = 1;
6260         rw_exit(&pc_cb[index].cb_rwlock);
6261 }
6262 
6263 void
6264 page_capture_unregister_callback(uint_t index)
6265 {
6266         int i, j;
6267         struct page_capture_hash_bucket *bp1;
6268         struct page_capture_hash_bucket *bp2;
6269         struct page_capture_hash_bucket *head = NULL;
6270         uint_t flags = (1 << index);
6271 
6272         rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6273         ASSERT(pc_cb[index].cb_active == 1);
6274         pc_cb[index].duration = 0;      /* Paranoia */
6275         pc_cb[index].cb_func = NULL;    /* Paranoia */
6276         pc_cb[index].cb_active = 0;
6277         rw_exit(&pc_cb[index].cb_rwlock);
6278 
6279         /*
6280          * Just move all the entries to a private list which we can walk
6281          * through without the need to hold any locks.
6282          * No more requests can get added to the hash lists for this consumer
6283          * as the cb_active field for the callback has been cleared.
6284          */
6285         for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
6286                 mutex_enter(&page_capture_hash[i].pchh_mutex);
6287                 for (j = 0; j < 2; j++) {
6288                         bp1 = page_capture_hash[i].lists[j].next;
6289                         /* walk through all but first (sentinel) element */
6290                         while (bp1 != &page_capture_hash[i].lists[j]) {
6291                                 bp2 = bp1;
6292                                 if (bp2->flags & flags) {
6293                                         bp1 = bp2->next;
6294                                         bp1->prev = bp2->prev;
6295                                         bp2->prev->next = bp1;
6296                                         bp2->next = head;
6297                                         head = bp2;
6298                                         /*
6299                                          * Clear the PR_CAPTURE bit as we
6300                                          * hold appropriate locks here.
6301                                          */
6302                                         page_clrtoxic(head->pp, PR_CAPTURE);
6303                                         page_capture_hash[i].
6304                                             num_pages[bp2->pri]--;
6305                                         continue;
6306                                 }
6307                                 bp1 = bp1->next;
6308                         }
6309                 }
6310                 mutex_exit(&page_capture_hash[i].pchh_mutex);
6311         }
6312 
6313         while (head != NULL) {
6314                 bp1 = head;
6315                 head = head->next;
6316                 kmem_free(bp1, sizeof (*bp1));
6317         }
6318 }
6319 
6320 
6321 /*
6322  * Find pp in the active list and move it to the walked list if it
6323  * exists.
6324  * Note that most often pp should be at the front of the active list
6325  * as it is currently used and thus there is no other sort of optimization
6326  * being done here as this is a linked list data structure.
6327  * Returns 1 on successful move or 0 if page could not be found.
6328  */
6329 static int
6330 page_capture_move_to_walked(page_t *pp)
6331 {
6332         page_capture_hash_bucket_t *bp;
6333         int index;
6334 
6335         index = PAGE_CAPTURE_HASH(pp);
6336 
6337         mutex_enter(&page_capture_hash[index].pchh_mutex);
6338         bp = page_capture_hash[index].lists[0].next;
6339         while (bp != &page_capture_hash[index].lists[0]) {
6340                 if (bp->pp == pp) {
6341                         /* Remove from old list */
6342                         bp->next->prev = bp->prev;
6343                         bp->prev->next = bp->next;
6344 
6345                         /* Add to new list */
6346                         bp->next = page_capture_hash[index].lists[1].next;
6347                         bp->prev = &page_capture_hash[index].lists[1];
6348                         page_capture_hash[index].lists[1].next = bp;
6349                         bp->next->prev = bp;
6350 
6351                         /*
6352                          * There is a small probability of page on a free
6353                          * list being retired while being allocated
6354                          * and before P_RAF is set on it. The page may
6355                          * end up marked as high priority request instead
6356                          * of low priority request.
6357                          * If P_RAF page is not marked as low priority request
6358                          * change it to low priority request.
6359                          */
6360                         page_capture_hash[index].num_pages[bp->pri]--;
6361                         bp->pri = PAGE_CAPTURE_PRIO(pp);
6362                         page_capture_hash[index].num_pages[bp->pri]++;
6363                         mutex_exit(&page_capture_hash[index].pchh_mutex);
6364                         return (1);
6365                 }
6366                 bp = bp->next;
6367         }
6368         mutex_exit(&page_capture_hash[index].pchh_mutex);
6369         return (0);
6370 }
6371 
6372 /*
6373  * Add a new entry to the page capture hash.  The only case where a new
6374  * entry is not added is when the page capture consumer is no longer registered.
6375  * In this case, we'll silently not add the page to the hash.  We know that
6376  * page retire will always be registered for the case where we are currently
6377  * unretiring a page and thus there are no conflicts.
6378  */
6379 static void
6380 page_capture_add_hash(page_t *pp, uint_t szc, uint_t flags, void *datap)
6381 {
6382         page_capture_hash_bucket_t *bp1;
6383         page_capture_hash_bucket_t *bp2;
6384         int index;
6385         int cb_index;
6386         int i;
6387         uchar_t pri;
6388 #ifdef DEBUG
6389         page_capture_hash_bucket_t *tp1;
6390         int l;
6391 #endif
6392 
6393         ASSERT(!(flags & CAPTURE_ASYNC));
6394 
6395         bp1 = kmem_alloc(sizeof (struct page_capture_hash_bucket), KM_SLEEP);
6396 
6397         bp1->pp = pp;
6398         bp1->szc = szc;
6399         bp1->flags = flags;
6400         bp1->datap = datap;
6401 
6402         for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6403                 if ((flags >> cb_index) & 1) {
6404                         break;
6405                 }
6406         }
6407 
6408         ASSERT(cb_index != PC_NUM_CALLBACKS);
6409 
6410         rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6411         if (pc_cb[cb_index].cb_active) {
6412                 if (pc_cb[cb_index].duration == -1) {
6413                         bp1->expires = (clock_t)-1;
6414                 } else {
6415                         bp1->expires = ddi_get_lbolt() +
6416                             pc_cb[cb_index].duration;
6417                 }
6418         } else {
6419                 /* There's no callback registered so don't add to the hash */
6420                 rw_exit(&pc_cb[cb_index].cb_rwlock);
6421                 kmem_free(bp1, sizeof (*bp1));
6422                 return;
6423         }
6424 
6425         index = PAGE_CAPTURE_HASH(pp);
6426 
6427         /*
6428          * Only allow capture flag to be modified under this mutex.
6429          * Prevents multiple entries for same page getting added.
6430          */
6431         mutex_enter(&page_capture_hash[index].pchh_mutex);
6432 
6433         /*
6434          * if not already on the hash, set capture bit and add to the hash
6435          */
6436         if (!(pp->p_toxic & PR_CAPTURE)) {
6437 #ifdef DEBUG
6438                 /* Check for duplicate entries */
6439                 for (l = 0; l < 2; l++) {
6440                         tp1 = page_capture_hash[index].lists[l].next;
6441                         while (tp1 != &page_capture_hash[index].lists[l]) {
6442                                 if (tp1->pp == pp) {
6443                                         panic("page pp 0x%p already on hash "
6444                                             "at 0x%p\n",
6445                                             (void *)pp, (void *)tp1);
6446                                 }
6447                                 tp1 = tp1->next;
6448                         }
6449                 }
6450 
6451 #endif
6452                 page_settoxic(pp, PR_CAPTURE);
6453                 pri = PAGE_CAPTURE_PRIO(pp);
6454                 bp1->pri = pri;
6455                 bp1->next = page_capture_hash[index].lists[0].next;
6456                 bp1->prev = &page_capture_hash[index].lists[0];
6457                 bp1->next->prev = bp1;
6458                 page_capture_hash[index].lists[0].next = bp1;
6459                 page_capture_hash[index].num_pages[pri]++;
6460                 if (flags & CAPTURE_RETIRE) {
6461                         page_retire_incr_pend_count(datap);
6462                 }
6463                 mutex_exit(&page_capture_hash[index].pchh_mutex);
6464                 rw_exit(&pc_cb[cb_index].cb_rwlock);
6465                 cv_signal(&pc_cv);
6466                 return;
6467         }
6468 
6469         /*
6470          * A page retire request will replace any other request.
6471          * A second physmem request which is for a different process than
6472          * the currently registered one will be dropped as there is
6473          * no way to hold the private data for both calls.
6474          * In the future, once there are more callers, this will have to
6475          * be worked out better as there needs to be private storage for
6476          * at least each type of caller (maybe have datap be an array of
6477          * *void's so that we can index based upon callers index).
6478          */
6479 
6480         /* walk hash list to update expire time */
6481         for (i = 0; i < 2; i++) {
6482                 bp2 = page_capture_hash[index].lists[i].next;
6483                 while (bp2 != &page_capture_hash[index].lists[i]) {
6484                         if (bp2->pp == pp) {
6485                                 if (flags & CAPTURE_RETIRE) {
6486                                         if (!(bp2->flags & CAPTURE_RETIRE)) {
6487                                                 page_retire_incr_pend_count(
6488                                                     datap);
6489                                                 bp2->flags = flags;
6490                                                 bp2->expires = bp1->expires;
6491                                                 bp2->datap = datap;
6492                                         }
6493                                 } else {
6494                                         ASSERT(flags & CAPTURE_PHYSMEM);
6495                                         if (!(bp2->flags & CAPTURE_RETIRE) &&
6496                                             (datap == bp2->datap)) {
6497                                                 bp2->expires = bp1->expires;
6498                                         }
6499                                 }
6500                                 mutex_exit(&page_capture_hash[index].
6501                                     pchh_mutex);
6502                                 rw_exit(&pc_cb[cb_index].cb_rwlock);
6503                                 kmem_free(bp1, sizeof (*bp1));
6504                                 return;
6505                         }
6506                         bp2 = bp2->next;
6507                 }
6508         }
6509 
6510         /*
6511          * the PR_CAPTURE flag is protected by the page_capture_hash mutexes
6512          * and thus it either has to be set or not set and can't change
6513          * while holding the mutex above.
6514          */
6515         panic("page_capture_add_hash, PR_CAPTURE flag set on pp %p\n",
6516             (void *)pp);
6517 }
6518 
6519 /*
6520  * We have a page in our hands, lets try and make it ours by turning
6521  * it into a clean page like it had just come off the freelists.
6522  *
6523  * Returns 0 on success, with the page still EXCL locked.
6524  * On failure, the page will be unlocked, and returns EAGAIN
6525  */
6526 static int
6527 page_capture_clean_page(page_t *pp)
6528 {
6529         page_t *newpp;
6530         int skip_unlock = 0;
6531         spgcnt_t count;
6532         page_t *tpp;
6533         int ret = 0;
6534         int extra;
6535 
6536         ASSERT(PAGE_EXCL(pp));
6537         ASSERT(!PP_RETIRED(pp));
6538         ASSERT(curthread->t_flag & T_CAPTURING);
6539 
6540         if (PP_ISFREE(pp)) {
6541                 if (!page_reclaim(pp, NULL)) {
6542                         skip_unlock = 1;
6543                         ret = EAGAIN;
6544                         goto cleanup;
6545                 }
6546                 ASSERT(pp->p_szc == 0);
6547                 if (pp->p_vnode != NULL) {
6548                         /*
6549                          * Since this page came from the
6550                          * cachelist, we must destroy the
6551                          * old vnode association.
6552                          */
6553                         page_hashout(pp, NULL);
6554                 }
6555                 goto cleanup;
6556         }
6557 
6558         /*
6559          * If we know page_relocate will fail, skip it
6560          * It could still fail due to a UE on another page but we
6561          * can't do anything about that.
6562          */
6563         if (pp->p_toxic & PR_UE) {
6564                 goto skip_relocate;
6565         }
6566 
6567         /*
6568          * It's possible that pages can not have a vnode as fsflush comes
6569          * through and cleans up these pages.  It's ugly but that's how it is.
6570          */
6571         if (pp->p_vnode == NULL) {
6572                 goto skip_relocate;
6573         }
6574 
6575         /*
6576          * Page was not free, so lets try to relocate it.
6577          * page_relocate only works with root pages, so if this is not a root
6578          * page, we need to demote it to try and relocate it.
6579          * Unfortunately this is the best we can do right now.
6580          */
6581         newpp = NULL;
6582         if ((pp->p_szc > 0) && (pp != PP_PAGEROOT(pp))) {
6583                 if (page_try_demote_pages(pp) == 0) {
6584                         ret = EAGAIN;
6585                         goto cleanup;
6586                 }
6587         }
6588         ret = page_relocate(&pp, &newpp, 1, 0, &count, NULL);
6589         if (ret == 0) {
6590                 page_t *npp;
6591                 /* unlock the new page(s) */
6592                 while (count-- > 0) {
6593                         ASSERT(newpp != NULL);
6594                         npp = newpp;
6595                         page_sub(&newpp, npp);
6596                         page_unlock(npp);
6597                 }
6598                 ASSERT(newpp == NULL);
6599                 /*
6600                  * Check to see if the page we have is too large.
6601                  * If so, demote it freeing up the extra pages.
6602                  */
6603                 if (pp->p_szc > 0) {
6604                         /* For now demote extra pages to szc == 0 */
6605                         extra = page_get_pagecnt(pp->p_szc) - 1;
6606                         while (extra > 0) {
6607                                 tpp = pp->p_next;
6608                                 page_sub(&pp, tpp);
6609                                 tpp->p_szc = 0;
6610                                 page_free(tpp, 1);
6611                                 extra--;
6612                         }
6613                         /* Make sure to set our page to szc 0 as well */
6614                         ASSERT(pp->p_next == pp && pp->p_prev == pp);
6615                         pp->p_szc = 0;
6616                 }
6617                 goto cleanup;
6618         } else if (ret == EIO) {
6619                 ret = EAGAIN;
6620                 goto cleanup;
6621         } else {
6622                 /*
6623                  * Need to reset return type as we failed to relocate the page
6624                  * but that does not mean that some of the next steps will not
6625                  * work.
6626                  */
6627                 ret = 0;
6628         }
6629 
6630 skip_relocate:
6631 
6632         if (pp->p_szc > 0) {
6633                 if (page_try_demote_pages(pp) == 0) {
6634                         ret = EAGAIN;
6635                         goto cleanup;
6636                 }
6637         }
6638 
6639         ASSERT(pp->p_szc == 0);
6640 
6641         if (hat_ismod(pp)) {
6642                 ret = EAGAIN;
6643                 goto cleanup;
6644         }
6645         if (PP_ISKAS(pp)) {
6646                 ret = EAGAIN;
6647                 goto cleanup;
6648         }
6649         if (pp->p_lckcnt || pp->p_cowcnt) {
6650                 ret = EAGAIN;
6651                 goto cleanup;
6652         }
6653 
6654         (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
6655         ASSERT(!hat_page_is_mapped(pp));
6656 
6657         if (hat_ismod(pp)) {
6658                 /*
6659                  * This is a semi-odd case as the page is now modified but not
6660                  * mapped as we just unloaded the mappings above.
6661                  */
6662                 ret = EAGAIN;
6663                 goto cleanup;
6664         }
6665         if (pp->p_vnode != NULL) {
6666                 page_hashout(pp, NULL);
6667         }
6668 
6669         /*
6670          * At this point, the page should be in a clean state and
6671          * we can do whatever we want with it.
6672          */
6673 
6674 cleanup:
6675         if (ret != 0) {
6676                 if (!skip_unlock) {
6677                         page_unlock(pp);
6678                 }
6679         } else {
6680                 ASSERT(pp->p_szc == 0);
6681                 ASSERT(PAGE_EXCL(pp));
6682 
6683                 pp->p_next = pp;
6684                 pp->p_prev = pp;
6685         }
6686         return (ret);
6687 }
6688 
6689 /*
6690  * Various callers of page_trycapture() can have different restrictions upon
6691  * what memory they have access to.
6692  * Returns 0 on success, with the following error codes on failure:
6693  *      EPERM - The requested page is long term locked, and thus repeated
6694  *              requests to capture this page will likely fail.
6695  *      ENOMEM - There was not enough free memory in the system to safely
6696  *              map the requested page.
6697  *      ENOENT - The requested page was inside the kernel cage, and the
6698  *              PHYSMEM_CAGE flag was not set.
6699  */
6700 int
6701 page_capture_pre_checks(page_t *pp, uint_t flags)
6702 {
6703         ASSERT(pp != NULL);
6704 
6705 #if defined(__sparc)
6706         if (pp->p_vnode == &promvp) {
6707                 return (EPERM);
6708         }
6709 
6710         if (PP_ISNORELOC(pp) && !(flags & CAPTURE_GET_CAGE) &&
6711             (flags & CAPTURE_PHYSMEM)) {
6712                 return (ENOENT);
6713         }
6714 
6715         if (PP_ISNORELOCKERNEL(pp)) {
6716                 return (EPERM);
6717         }
6718 #else
6719         if (PP_ISKAS(pp)) {
6720                 return (EPERM);
6721         }
6722 #endif /* __sparc */
6723 
6724         /* only physmem currently has the restrictions checked below */
6725         if (!(flags & CAPTURE_PHYSMEM)) {
6726                 return (0);
6727         }
6728 
6729         if (availrmem < swapfs_minfree) {
6730                 /*
6731                  * We won't try to capture this page as we are
6732                  * running low on memory.
6733                  */
6734                 return (ENOMEM);
6735         }
6736         return (0);
6737 }
6738 
6739 /*
6740  * Once we have a page in our mits, go ahead and complete the capture
6741  * operation.
6742  * Returns 1 on failure where page is no longer needed
6743  * Returns 0 on success
6744  * Returns -1 if there was a transient failure.
6745  * Failure cases must release the SE_EXCL lock on pp (usually via page_free).
6746  */
6747 int
6748 page_capture_take_action(page_t *pp, uint_t flags, void *datap)
6749 {
6750         int cb_index;
6751         int ret = 0;
6752         page_capture_hash_bucket_t *bp1;
6753         page_capture_hash_bucket_t *bp2;
6754         int index;
6755         int found = 0;
6756         int i;
6757 
6758         ASSERT(PAGE_EXCL(pp));
6759         ASSERT(curthread->t_flag & T_CAPTURING);
6760 
6761         for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6762                 if ((flags >> cb_index) & 1) {
6763                         break;
6764                 }
6765         }
6766         ASSERT(cb_index < PC_NUM_CALLBACKS);
6767 
6768         /*
6769          * Remove the entry from the page_capture hash, but don't free it yet
6770          * as we may need to put it back.
6771          * Since we own the page at this point in time, we should find it
6772          * in the hash if this is an ASYNC call.  If we don't it's likely
6773          * that the page_capture_async() thread decided that this request
6774          * had expired, in which case we just continue on.
6775          */
6776         if (flags & CAPTURE_ASYNC) {
6777 
6778                 index = PAGE_CAPTURE_HASH(pp);
6779 
6780                 mutex_enter(&page_capture_hash[index].pchh_mutex);
6781                 for (i = 0; i < 2 && !found; i++) {
6782                         bp1 = page_capture_hash[index].lists[i].next;
6783                         while (bp1 != &page_capture_hash[index].lists[i]) {
6784                                 if (bp1->pp == pp) {
6785                                         bp1->next->prev = bp1->prev;
6786                                         bp1->prev->next = bp1->next;
6787                                         page_capture_hash[index].
6788                                             num_pages[bp1->pri]--;
6789                                         page_clrtoxic(pp, PR_CAPTURE);
6790                                         found = 1;
6791                                         break;
6792                                 }
6793                                 bp1 = bp1->next;
6794                         }
6795                 }
6796                 mutex_exit(&page_capture_hash[index].pchh_mutex);
6797         }
6798 
6799         /* Synchronize with the unregister func. */
6800         rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6801         if (!pc_cb[cb_index].cb_active) {
6802                 page_free(pp, 1);
6803                 rw_exit(&pc_cb[cb_index].cb_rwlock);
6804                 if (found) {
6805                         kmem_free(bp1, sizeof (*bp1));
6806                 }
6807                 return (1);
6808         }
6809 
6810         /*
6811          * We need to remove the entry from the page capture hash and turn off
6812          * the PR_CAPTURE bit before calling the callback.  We'll need to cache
6813          * the entry here, and then based upon the return value, cleanup
6814          * appropriately or re-add it to the hash, making sure that someone else
6815          * hasn't already done so.
6816          * It should be rare for the callback to fail and thus it's ok for
6817          * the failure path to be a bit complicated as the success path is
6818          * cleaner and the locking rules are easier to follow.
6819          */
6820 
6821         ret = pc_cb[cb_index].cb_func(pp, datap, flags);
6822 
6823         rw_exit(&pc_cb[cb_index].cb_rwlock);
6824 
6825         /*
6826          * If this was an ASYNC request, we need to cleanup the hash if the
6827          * callback was successful or if the request was no longer valid.
6828          * For non-ASYNC requests, we return failure to map and the caller
6829          * will take care of adding the request to the hash.
6830          * Note also that the callback itself is responsible for the page
6831          * at this point in time in terms of locking ...  The most common
6832          * case for the failure path should just be a page_free.
6833          */
6834         if (ret >= 0) {
6835                 if (found) {
6836                         if (bp1->flags & CAPTURE_RETIRE) {
6837                                 page_retire_decr_pend_count(datap);
6838                         }
6839                         kmem_free(bp1, sizeof (*bp1));
6840                 }
6841                 return (ret);
6842         }
6843         if (!found) {
6844                 return (ret);
6845         }
6846 
6847         ASSERT(flags & CAPTURE_ASYNC);
6848 
6849         /*
6850          * Check for expiration time first as we can just free it up if it's
6851          * expired.
6852          */
6853         if (ddi_get_lbolt() > bp1->expires && bp1->expires != -1) {
6854                 kmem_free(bp1, sizeof (*bp1));
6855                 return (ret);
6856         }
6857 
6858         /*
6859          * The callback failed and there used to be an entry in the hash for
6860          * this page, so we need to add it back to the hash.
6861          */
6862         mutex_enter(&page_capture_hash[index].pchh_mutex);
6863         if (!(pp->p_toxic & PR_CAPTURE)) {
6864                 /* just add bp1 back to head of walked list */
6865                 page_settoxic(pp, PR_CAPTURE);
6866                 bp1->next = page_capture_hash[index].lists[1].next;
6867                 bp1->prev = &page_capture_hash[index].lists[1];
6868                 bp1->next->prev = bp1;
6869                 bp1->pri = PAGE_CAPTURE_PRIO(pp);
6870                 page_capture_hash[index].lists[1].next = bp1;
6871                 page_capture_hash[index].num_pages[bp1->pri]++;
6872                 mutex_exit(&page_capture_hash[index].pchh_mutex);
6873                 return (ret);
6874         }
6875 
6876         /*
6877          * Otherwise there was a new capture request added to list
6878          * Need to make sure that our original data is represented if
6879          * appropriate.
6880          */
6881         for (i = 0; i < 2; i++) {
6882                 bp2 = page_capture_hash[index].lists[i].next;
6883                 while (bp2 != &page_capture_hash[index].lists[i]) {
6884                         if (bp2->pp == pp) {
6885                                 if (bp1->flags & CAPTURE_RETIRE) {
6886                                         if (!(bp2->flags & CAPTURE_RETIRE)) {
6887                                                 bp2->szc = bp1->szc;
6888                                                 bp2->flags = bp1->flags;
6889                                                 bp2->expires = bp1->expires;
6890                                                 bp2->datap = bp1->datap;
6891                                         }
6892                                 } else {
6893                                         ASSERT(bp1->flags & CAPTURE_PHYSMEM);
6894                                         if (!(bp2->flags & CAPTURE_RETIRE)) {
6895                                                 bp2->szc = bp1->szc;
6896                                                 bp2->flags = bp1->flags;
6897                                                 bp2->expires = bp1->expires;
6898                                                 bp2->datap = bp1->datap;
6899                                         }
6900                                 }
6901                                 page_capture_hash[index].num_pages[bp2->pri]--;
6902                                 bp2->pri = PAGE_CAPTURE_PRIO(pp);
6903                                 page_capture_hash[index].num_pages[bp2->pri]++;
6904                                 mutex_exit(&page_capture_hash[index].
6905                                     pchh_mutex);
6906                                 kmem_free(bp1, sizeof (*bp1));
6907                                 return (ret);
6908                         }
6909                         bp2 = bp2->next;
6910                 }
6911         }
6912         panic("PR_CAPTURE set but not on hash for pp 0x%p\n", (void *)pp);
6913         /*NOTREACHED*/
6914 }
6915 
6916 /*
6917  * Try to capture the given page for the caller specified in the flags
6918  * parameter.  The page will either be captured and handed over to the
6919  * appropriate callback, or will be queued up in the page capture hash
6920  * to be captured asynchronously.
6921  * If the current request is due to an async capture, the page must be
6922  * exclusively locked before calling this function.
6923  * Currently szc must be 0 but in the future this should be expandable to
6924  * other page sizes.
6925  * Returns 0 on success, with the following error codes on failure:
6926  *      EPERM - The requested page is long term locked, and thus repeated
6927  *              requests to capture this page will likely fail.
6928  *      ENOMEM - There was not enough free memory in the system to safely
6929  *              map the requested page.
6930  *      ENOENT - The requested page was inside the kernel cage, and the
6931  *              CAPTURE_GET_CAGE flag was not set.
6932  *      EAGAIN - The requested page could not be capturead at this point in
6933  *              time but future requests will likely work.
6934  *      EBUSY - The requested page is retired and the CAPTURE_GET_RETIRED flag
6935  *              was not set.
6936  */
6937 int
6938 page_itrycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
6939 {
6940         int ret;
6941         int cb_index;
6942 
6943         if (flags & CAPTURE_ASYNC) {
6944                 ASSERT(PAGE_EXCL(pp));
6945                 goto async;
6946         }
6947 
6948         /* Make sure there's enough availrmem ... */
6949         ret = page_capture_pre_checks(pp, flags);
6950         if (ret != 0) {
6951                 return (ret);
6952         }
6953 
6954         if (!page_trylock(pp, SE_EXCL)) {
6955                 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6956                         if ((flags >> cb_index) & 1) {
6957                                 break;
6958                         }
6959                 }
6960                 ASSERT(cb_index < PC_NUM_CALLBACKS);
6961                 ret = EAGAIN;
6962                 /* Special case for retired pages */
6963                 if (PP_RETIRED(pp)) {
6964                         if (flags & CAPTURE_GET_RETIRED) {
6965                                 if (!page_unretire_pp(pp, PR_UNR_TEMP)) {
6966                                         /*
6967                                          * Need to set capture bit and add to
6968                                          * hash so that the page will be
6969                                          * retired when freed.
6970                                          */
6971                                         page_capture_add_hash(pp, szc,
6972                                             CAPTURE_RETIRE, NULL);
6973                                         ret = 0;
6974                                         goto own_page;
6975                                 }
6976                         } else {
6977                                 return (EBUSY);
6978                         }
6979                 }
6980                 page_capture_add_hash(pp, szc, flags, datap);
6981                 return (ret);
6982         }
6983 
6984 async:
6985         ASSERT(PAGE_EXCL(pp));
6986 
6987         /* Need to check for physmem async requests that availrmem is sane */
6988         if ((flags & (CAPTURE_ASYNC | CAPTURE_PHYSMEM)) ==
6989             (CAPTURE_ASYNC | CAPTURE_PHYSMEM) &&
6990             (availrmem < swapfs_minfree)) {
6991                 page_unlock(pp);
6992                 return (ENOMEM);
6993         }
6994 
6995         ret = page_capture_clean_page(pp);
6996 
6997         if (ret != 0) {
6998                 /* We failed to get the page, so lets add it to the hash */
6999                 if (!(flags & CAPTURE_ASYNC)) {
7000                         page_capture_add_hash(pp, szc, flags, datap);
7001                 }
7002                 return (ret);
7003         }
7004 
7005 own_page:
7006         ASSERT(PAGE_EXCL(pp));
7007         ASSERT(pp->p_szc == 0);
7008 
7009         /* Call the callback */
7010         ret = page_capture_take_action(pp, flags, datap);
7011 
7012         if (ret == 0) {
7013                 return (0);
7014         }
7015 
7016         /*
7017          * Note that in the failure cases from page_capture_take_action, the
7018          * EXCL lock will have already been dropped.
7019          */
7020         if ((ret == -1) && (!(flags & CAPTURE_ASYNC))) {
7021                 page_capture_add_hash(pp, szc, flags, datap);
7022         }
7023         return (EAGAIN);
7024 }
7025 
7026 int
7027 page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
7028 {
7029         int ret;
7030 
7031         curthread->t_flag |= T_CAPTURING;
7032         ret = page_itrycapture(pp, szc, flags, datap);
7033         curthread->t_flag &= ~T_CAPTURING; /* xor works as we know its set */
7034         return (ret);
7035 }
7036 
7037 /*
7038  * When unlocking a page which has the PR_CAPTURE bit set, this routine
7039  * gets called to try and capture the page.
7040  */
7041 void
7042 page_unlock_capture(page_t *pp)
7043 {
7044         page_capture_hash_bucket_t *bp;
7045         int index;
7046         int i;
7047         uint_t szc;
7048         uint_t flags = 0;
7049         void *datap;
7050         kmutex_t *mp;
7051         extern vnode_t retired_pages;
7052 
7053         /*
7054          * We need to protect against a possible deadlock here where we own
7055          * the vnode page hash mutex and want to acquire it again as there
7056          * are locations in the code, where we unlock a page while holding
7057          * the mutex which can lead to the page being captured and eventually
7058          * end up here.  As we may be hashing out the old page and hashing into
7059          * the retire vnode, we need to make sure we don't own them.
7060          * Other callbacks who do hash operations also need to make sure that
7061          * before they hashin to a vnode that they do not currently own the
7062          * vphm mutex otherwise there will be a panic.
7063          */
7064         if (mutex_owned(page_vnode_mutex(&retired_pages))) {
7065                 page_unlock_nocapture(pp);
7066                 return;
7067         }
7068         if (pp->p_vnode != NULL && mutex_owned(page_vnode_mutex(pp->p_vnode))) {
7069                 page_unlock_nocapture(pp);
7070                 return;
7071         }
7072 
7073         index = PAGE_CAPTURE_HASH(pp);
7074 
7075         mp = &page_capture_hash[index].pchh_mutex;
7076         mutex_enter(mp);
7077         for (i = 0; i < 2; i++) {
7078                 bp = page_capture_hash[index].lists[i].next;
7079                 while (bp != &page_capture_hash[index].lists[i]) {
7080                         if (bp->pp == pp) {
7081                                 szc = bp->szc;
7082                                 flags = bp->flags | CAPTURE_ASYNC;
7083                                 datap = bp->datap;
7084                                 mutex_exit(mp);
7085                                 (void) page_trycapture(pp, szc, flags, datap);
7086                                 return;
7087                         }
7088                         bp = bp->next;
7089                 }
7090         }
7091 
7092         /* Failed to find page in hash so clear flags and unlock it. */
7093         page_clrtoxic(pp, PR_CAPTURE);
7094         page_unlock(pp);
7095 
7096         mutex_exit(mp);
7097 }
7098 
7099 void
7100 page_capture_init()
7101 {
7102         int i;
7103         for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7104                 page_capture_hash[i].lists[0].next =
7105                     &page_capture_hash[i].lists[0];
7106                 page_capture_hash[i].lists[0].prev =
7107                     &page_capture_hash[i].lists[0];
7108                 page_capture_hash[i].lists[1].next =
7109                     &page_capture_hash[i].lists[1];
7110                 page_capture_hash[i].lists[1].prev =
7111                     &page_capture_hash[i].lists[1];
7112         }
7113 
7114         pc_thread_shortwait = 23 * hz;
7115         pc_thread_longwait = 1201 * hz;
7116         pc_thread_retry = 3;
7117         mutex_init(&pc_thread_mutex, NULL, MUTEX_DEFAULT, NULL);
7118         cv_init(&pc_cv, NULL, CV_DEFAULT, NULL);
7119         pc_thread_id = thread_create(NULL, 0, page_capture_thread, NULL, 0, &p0,
7120             TS_RUN, minclsyspri);
7121 }
7122 
7123 /*
7124  * It is necessary to scrub any failing pages prior to reboot in order to
7125  * prevent a latent error trap from occurring on the next boot.
7126  */
7127 void
7128 page_retire_mdboot()
7129 {
7130         page_t *pp;
7131         int i, j;
7132         page_capture_hash_bucket_t *bp;
7133         uchar_t pri;
7134 
7135         /* walk lists looking for pages to scrub */
7136         for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7137                 for (pri = 0; pri < PC_NUM_PRI; pri++) {
7138                         if (page_capture_hash[i].num_pages[pri] != 0) {
7139                                 break;
7140                         }
7141                 }
7142                 if (pri == PC_NUM_PRI)
7143                         continue;
7144 
7145                 mutex_enter(&page_capture_hash[i].pchh_mutex);
7146 
7147                 for (j = 0; j < 2; j++) {
7148                         bp = page_capture_hash[i].lists[j].next;
7149                         while (bp != &page_capture_hash[i].lists[j]) {
7150                                 pp = bp->pp;
7151                                 if (PP_TOXIC(pp)) {
7152                                         if (page_trylock(pp, SE_EXCL)) {
7153                                                 PP_CLRFREE(pp);
7154                                                 pagescrub(pp, 0, PAGESIZE);
7155                                                 page_unlock(pp);
7156                                         }
7157                                 }
7158                                 bp = bp->next;
7159                         }
7160                 }
7161                 mutex_exit(&page_capture_hash[i].pchh_mutex);
7162         }
7163 }
7164 
7165 /*
7166  * Walk the page_capture_hash trying to capture pages and also cleanup old
7167  * entries which have expired.
7168  */
7169 void
7170 page_capture_async()
7171 {
7172         page_t *pp;
7173         int i;
7174         int ret;
7175         page_capture_hash_bucket_t *bp1, *bp2;
7176         uint_t szc;
7177         uint_t flags;
7178         void *datap;
7179         uchar_t pri;
7180 
7181         /* If there are outstanding pages to be captured, get to work */
7182         for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7183                 for (pri = 0; pri < PC_NUM_PRI; pri++) {
7184                         if (page_capture_hash[i].num_pages[pri] != 0)
7185                                 break;
7186                 }
7187                 if (pri == PC_NUM_PRI)
7188                         continue;
7189 
7190                 /* Append list 1 to list 0 and then walk through list 0 */
7191                 mutex_enter(&page_capture_hash[i].pchh_mutex);
7192                 bp1 = &page_capture_hash[i].lists[1];
7193                 bp2 = bp1->next;
7194                 if (bp1 != bp2) {
7195                         bp1->prev->next = page_capture_hash[i].lists[0].next;
7196                         bp2->prev = &page_capture_hash[i].lists[0];
7197                         page_capture_hash[i].lists[0].next->prev = bp1->prev;
7198                         page_capture_hash[i].lists[0].next = bp2;
7199                         bp1->next = bp1;
7200                         bp1->prev = bp1;
7201                 }
7202 
7203                 /* list[1] will be empty now */
7204 
7205                 bp1 = page_capture_hash[i].lists[0].next;
7206                 while (bp1 != &page_capture_hash[i].lists[0]) {
7207                         /* Check expiration time */
7208                         if ((ddi_get_lbolt() > bp1->expires &&
7209                             bp1->expires != -1) ||
7210                             page_deleted(bp1->pp)) {
7211                                 page_capture_hash[i].lists[0].next = bp1->next;
7212                                 bp1->next->prev =
7213                                     &page_capture_hash[i].lists[0];
7214                                 page_capture_hash[i].num_pages[bp1->pri]--;
7215 
7216                                 /*
7217                                  * We can safely remove the PR_CAPTURE bit
7218                                  * without holding the EXCL lock on the page
7219                                  * as the PR_CAPTURE bit requres that the
7220                                  * page_capture_hash[].pchh_mutex be held
7221                                  * to modify it.
7222                                  */
7223                                 page_clrtoxic(bp1->pp, PR_CAPTURE);
7224                                 mutex_exit(&page_capture_hash[i].pchh_mutex);
7225                                 kmem_free(bp1, sizeof (*bp1));
7226                                 mutex_enter(&page_capture_hash[i].pchh_mutex);
7227                                 bp1 = page_capture_hash[i].lists[0].next;
7228                                 continue;
7229                         }
7230                         pp = bp1->pp;
7231                         szc = bp1->szc;
7232                         flags = bp1->flags;
7233                         datap = bp1->datap;
7234                         mutex_exit(&page_capture_hash[i].pchh_mutex);
7235                         if (page_trylock(pp, SE_EXCL)) {
7236                                 ret = page_trycapture(pp, szc,
7237                                     flags | CAPTURE_ASYNC, datap);
7238                         } else {
7239                                 ret = 1;        /* move to walked hash */
7240                         }
7241 
7242                         if (ret != 0) {
7243                                 /* Move to walked hash */
7244                                 (void) page_capture_move_to_walked(pp);
7245                         }
7246                         mutex_enter(&page_capture_hash[i].pchh_mutex);
7247                         bp1 = page_capture_hash[i].lists[0].next;
7248                 }
7249 
7250                 mutex_exit(&page_capture_hash[i].pchh_mutex);
7251         }
7252 }
7253 
7254 /*
7255  * This function is called by the page_capture_thread, and is needed in
7256  * in order to initiate aio cleanup, so that pages used in aio
7257  * will be unlocked and subsequently retired by page_capture_thread.
7258  */
7259 static int
7260 do_aio_cleanup(void)
7261 {
7262         proc_t *procp;
7263         int (*aio_cleanup_dr_delete_memory)(proc_t *);
7264         int cleaned = 0;
7265 
7266         if (modload("sys", "kaio") == -1) {
7267                 cmn_err(CE_WARN, "do_aio_cleanup: cannot load kaio");
7268                 return (0);
7269         }
7270         /*
7271          * We use the aio_cleanup_dr_delete_memory function to
7272          * initiate the actual clean up; this function will wake
7273          * up the per-process aio_cleanup_thread.
7274          */
7275         aio_cleanup_dr_delete_memory = (int (*)(proc_t *))
7276             modgetsymvalue("aio_cleanup_dr_delete_memory", 0);
7277         if (aio_cleanup_dr_delete_memory == NULL) {
7278                 cmn_err(CE_WARN,
7279             "aio_cleanup_dr_delete_memory not found in kaio");
7280                 return (0);
7281         }
7282         mutex_enter(&pidlock);
7283         for (procp = practive; (procp != NULL); procp = procp->p_next) {
7284                 mutex_enter(&procp->p_lock);
7285                 if (procp->p_aio != NULL) {
7286                         /* cleanup proc's outstanding kaio */
7287                         cleaned += (*aio_cleanup_dr_delete_memory)(procp);
7288                 }
7289                 mutex_exit(&procp->p_lock);
7290         }
7291         mutex_exit(&pidlock);
7292         return (cleaned);
7293 }
7294 
7295 /*
7296  * helper function for page_capture_thread
7297  */
7298 static void
7299 page_capture_handle_outstanding(void)
7300 {
7301         int ntry;
7302 
7303         /* Reap pages before attempting capture pages */
7304         kmem_reap();
7305 
7306         if ((page_retire_pend_count() > page_retire_pend_kas_count()) &&
7307             hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
7308                 /*
7309                  * Note: Purging only for platforms that support
7310                  * ISM hat_pageunload() - mainly SPARC. On x86/x64
7311                  * platforms ISM pages SE_SHARED locked until destroyed.
7312                  */
7313 
7314                 /* disable and purge seg_pcache */
7315                 (void) seg_p_disable();
7316                 for (ntry = 0; ntry < pc_thread_retry; ntry++) {
7317                         if (!page_retire_pend_count())
7318                                 break;
7319                         if (do_aio_cleanup()) {
7320                                 /*
7321                                  * allow the apps cleanup threads
7322                                  * to run
7323                                  */
7324                                 delay(pc_thread_shortwait);
7325                         }
7326                         page_capture_async();
7327                 }
7328                 /* reenable seg_pcache */
7329                 seg_p_enable();
7330 
7331                 /* completed what can be done.  break out */
7332                 return;
7333         }
7334 
7335         /*
7336          * For kernel pages and/or unsupported HAT_DYNAMIC_ISM_UNMAP, reap
7337          * and then attempt to capture.
7338          */
7339         seg_preap();
7340         page_capture_async();
7341 }
7342 
7343 /*
7344  * The page_capture_thread loops forever, looking to see if there are
7345  * pages still waiting to be captured.
7346  */
7347 static void
7348 page_capture_thread(void)
7349 {
7350         callb_cpr_t c;
7351         int i;
7352         int high_pri_pages;
7353         int low_pri_pages;
7354         clock_t timeout;
7355 
7356         CALLB_CPR_INIT(&c, &pc_thread_mutex, callb_generic_cpr, "page_capture");
7357 
7358         mutex_enter(&pc_thread_mutex);
7359         for (;;) {
7360                 high_pri_pages = 0;
7361                 low_pri_pages = 0;
7362                 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7363                         high_pri_pages +=
7364                             page_capture_hash[i].num_pages[PC_PRI_HI];
7365                         low_pri_pages +=
7366                             page_capture_hash[i].num_pages[PC_PRI_LO];
7367                 }
7368 
7369                 timeout = pc_thread_longwait;
7370                 if (high_pri_pages != 0) {
7371                         timeout = pc_thread_shortwait;
7372                         page_capture_handle_outstanding();
7373                 } else if (low_pri_pages != 0) {
7374                         page_capture_async();
7375                 }
7376                 CALLB_CPR_SAFE_BEGIN(&c);
7377                 (void) cv_reltimedwait(&pc_cv, &pc_thread_mutex,
7378                     timeout, TR_CLOCK_TICK);
7379                 CALLB_CPR_SAFE_END(&c, &pc_thread_mutex);
7380         }
7381         /*NOTREACHED*/
7382 }
7383 /*
7384  * Attempt to locate a bucket that has enough pages to satisfy the request.
7385  * The initial check is done without the lock to avoid unneeded contention.
7386  * The function returns 1 if enough pages were found, else 0 if it could not
7387  * find enough pages in a bucket.
7388  */
7389 static int
7390 pcf_decrement_bucket(pgcnt_t npages)
7391 {
7392         struct pcf      *p;
7393         struct pcf      *q;
7394         int i;
7395 
7396         p = &pcf[PCF_INDEX()];
7397         q = &pcf[pcf_fanout];
7398         for (i = 0; i < pcf_fanout; i++) {
7399                 if (p->pcf_count > npages) {
7400                         /*
7401                          * a good one to try.
7402                          */
7403                         mutex_enter(&p->pcf_lock);
7404                         if (p->pcf_count > npages) {
7405                                 p->pcf_count -= (uint_t)npages;
7406                                 /*
7407                                  * freemem is not protected by any lock.
7408                                  * Thus, we cannot have any assertion
7409                                  * containing freemem here.
7410                                  */
7411                                 freemem -= npages;
7412                                 mutex_exit(&p->pcf_lock);
7413                                 return (1);
7414                         }
7415                         mutex_exit(&p->pcf_lock);
7416                 }
7417                 p++;
7418                 if (p >= q) {
7419                         p = pcf;
7420                 }
7421         }
7422         return (0);
7423 }
7424 
7425 /*
7426  * Arguments:
7427  *      pcftotal_ret:   If the value is not NULL and we have walked all the
7428  *                      buckets but did not find enough pages then it will
7429  *                      be set to the total number of pages in all the pcf
7430  *                      buckets.
7431  *      npages:         Is the number of pages we have been requested to
7432  *                      find.
7433  *      unlock:         If set to 0 we will leave the buckets locked if the
7434  *                      requested number of pages are not found.
7435  *
7436  * Go and try to satisfy the page request  from any number of buckets.
7437  * This can be a very expensive operation as we have to lock the buckets
7438  * we are checking (and keep them locked), starting at bucket 0.
7439  *
7440  * The function returns 1 if enough pages were found, else 0 if it could not
7441  * find enough pages in the buckets.
7442  *
7443  */
7444 static int
7445 pcf_decrement_multiple(pgcnt_t *pcftotal_ret, pgcnt_t npages, int unlock)
7446 {
7447         struct pcf      *p;
7448         pgcnt_t pcftotal;
7449         int i;
7450 
7451         p = pcf;
7452         /* try to collect pages from several pcf bins */
7453         for (pcftotal = 0, i = 0; i < pcf_fanout; i++) {
7454                 mutex_enter(&p->pcf_lock);
7455                 pcftotal += p->pcf_count;
7456                 if (pcftotal >= npages) {
7457                         /*
7458                          * Wow!  There are enough pages laying around
7459                          * to satisfy the request.  Do the accounting,
7460                          * drop the locks we acquired, and go back.
7461                          *
7462                          * freemem is not protected by any lock. So,
7463                          * we cannot have any assertion containing
7464                          * freemem.
7465                          */
7466                         freemem -= npages;
7467                         while (p >= pcf) {
7468                                 if (p->pcf_count <= npages) {
7469                                         npages -= p->pcf_count;
7470                                         p->pcf_count = 0;
7471                                 } else {
7472                                         p->pcf_count -= (uint_t)npages;
7473                                         npages = 0;
7474                                 }
7475                                 mutex_exit(&p->pcf_lock);
7476                                 p--;
7477                         }
7478                         ASSERT(npages == 0);
7479                         return (1);
7480                 }
7481                 p++;
7482         }
7483         if (unlock) {
7484                 /* failed to collect pages - release the locks */
7485                 while (--p >= pcf) {
7486                         mutex_exit(&p->pcf_lock);
7487                 }
7488         }
7489         if (pcftotal_ret != NULL)
7490                 *pcftotal_ret = pcftotal;
7491         return (0);
7492 }