Print this page
    
11969 Attempting to attach an invalid nvme namespace will cause a panic
Reviewed by: Robert Mustacchi <rm+illumos@fingolfin.org>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/io/nvme/nvme.c
          +++ new/usr/src/uts/common/io/nvme/nvme.c
   1    1  /*
   2    2   * This file and its contents are supplied under the terms of the
   3    3   * Common Development and Distribution License ("CDDL"), version 1.0.
   4    4   * You may only use this file in accordance with the terms of version
   5    5   * 1.0 of the CDDL.
   6    6   *
   7    7   * A full copy of the text of the CDDL should have accompanied this
   8    8   * source.  A copy of the CDDL is also available via the Internet at
   9    9   * http://www.illumos.org/license/CDDL.
  10   10   */
  11   11  
  12   12  /*
  13   13   * Copyright 2018 Nexenta Systems, Inc.
  14   14   * Copyright 2016 Tegile Systems, Inc. All rights reserved.
  15   15   * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
  16   16   * Copyright 2020 Joyent, Inc.
  17   17   * Copyright 2019 Western Digital Corporation.
  18   18   * Copyright 2020 Racktop Systems.
  19   19   */
  20   20  
  21   21  /*
  22   22   * blkdev driver for NVMe compliant storage devices
  23   23   *
  24   24   * This driver was written to conform to version 1.2.1 of the NVMe
  25   25   * specification.  It may work with newer versions, but that is completely
  26   26   * untested and disabled by default.
  27   27   *
  28   28   * The driver has only been tested on x86 systems and will not work on big-
  29   29   * endian systems without changes to the code accessing registers and data
  30   30   * structures used by the hardware.
  31   31   *
  32   32   *
  33   33   * Interrupt Usage:
  34   34   *
  35   35   * The driver will use a single interrupt while configuring the device as the
  36   36   * specification requires, but contrary to the specification it will try to use
  37   37   * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
  38   38   * will switch to multiple-message MSI(-X) if supported. The driver wants to
  39   39   * have one interrupt vector per CPU, but it will work correctly if less are
  40   40   * available. Interrupts can be shared by queues, the interrupt handler will
  41   41   * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
  42   42   * the admin queue will share an interrupt with one I/O queue. The interrupt
  43   43   * handler will retrieve completed commands from all queues sharing an interrupt
  44   44   * vector and will post them to a taskq for completion processing.
  45   45   *
  46   46   *
  47   47   * Command Processing:
  48   48   *
  49   49   * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
  50   50   * to 65536 I/O commands. The driver will configure one I/O queue pair per
  51   51   * available interrupt vector, with the queue length usually much smaller than
  52   52   * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
  53   53   * interrupt vectors will be used.
  54   54   *
  55   55   * Additionally the hardware provides a single special admin queue pair that can
  56   56   * hold up to 4096 admin commands.
  57   57   *
  58   58   * From the hardware perspective both queues of a queue pair are independent,
  59   59   * but they share some driver state: the command array (holding pointers to
  60   60   * commands currently being processed by the hardware) and the active command
  61   61   * counter. Access to a submission queue and the shared state is protected by
  62   62   * nq_mutex, completion queue is protected by ncq_mutex.
  63   63   *
  64   64   * When a command is submitted to a queue pair the active command counter is
  65   65   * incremented and a pointer to the command is stored in the command array. The
  66   66   * array index is used as command identifier (CID) in the submission queue
  67   67   * entry. Some commands may take a very long time to complete, and if the queue
  68   68   * wraps around in that time a submission may find the next array slot to still
  69   69   * be used by a long-running command. In this case the array is sequentially
  70   70   * searched for the next free slot. The length of the command array is the same
  71   71   * as the configured queue length. Queue overrun is prevented by the semaphore,
  72   72   * so a command submission may block if the queue is full.
  73   73   *
  74   74   *
  75   75   * Polled I/O Support:
  76   76   *
  77   77   * For kernel core dump support the driver can do polled I/O. As interrupts are
  78   78   * turned off while dumping the driver will just submit a command in the regular
  79   79   * way, and then repeatedly attempt a command retrieval until it gets the
  80   80   * command back.
  81   81   *
  82   82   *
  83   83   * Namespace Support:
  84   84   *
  85   85   * NVMe devices can have multiple namespaces, each being a independent data
  86   86   * store. The driver supports multiple namespaces and creates a blkdev interface
  87   87   * for each namespace found. Namespaces can have various attributes to support
  88   88   * protection information. This driver does not support any of this and ignores
  89   89   * namespaces that have these attributes.
  90   90   *
  91   91   * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
  92   92   * (EUI64). This driver uses the EUI64 if present to generate the devid and
  93   93   * passes it to blkdev to use it in the device node names. As this is currently
  94   94   * untested namespaces with EUI64 are ignored by default.
  95   95   *
  96   96   * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
  97   97   * single controller. This is an artificial limit imposed by the driver to be
  98   98   * able to address a reasonable number of controllers and namespaces using a
  99   99   * 32bit minor node number.
 100  100   *
 101  101   *
 102  102   * Minor nodes:
 103  103   *
 104  104   * For each NVMe device the driver exposes one minor node for the controller and
 105  105   * one minor node for each namespace. The only operations supported by those
 106  106   * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
 107  107   * interface for the nvmeadm(1M) utility.
 108  108   *
 109  109   *
 110  110   * Blkdev Interface:
 111  111   *
 112  112   * This driver uses blkdev to do all the heavy lifting involved with presenting
 113  113   * a disk device to the system. As a result, the processing of I/O requests is
 114  114   * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
 115  115   * setup, and splitting of transfers into manageable chunks.
 116  116   *
 117  117   * I/O requests coming in from blkdev are turned into NVM commands and posted to
 118  118   * an I/O queue. The queue is selected by taking the CPU id modulo the number of
 119  119   * queues. There is currently no timeout handling of I/O commands.
 120  120   *
 121  121   * Blkdev also supports querying device/media information and generating a
 122  122   * devid. The driver reports the best block size as determined by the namespace
 123  123   * format back to blkdev as physical block size to support partition and block
 124  124   * alignment. The devid is either based on the namespace EUI64, if present, or
 125  125   * composed using the device vendor ID, model number, serial number, and the
 126  126   * namespace ID.
 127  127   *
 128  128   *
 129  129   * Error Handling:
 130  130   *
 131  131   * Error handling is currently limited to detecting fatal hardware errors,
 132  132   * either by asynchronous events, or synchronously through command status or
 133  133   * admin command timeouts. In case of severe errors the device is fenced off,
 134  134   * all further requests will return EIO. FMA is then called to fault the device.
 135  135   *
 136  136   * The hardware has a limit for outstanding asynchronous event requests. Before
 137  137   * this limit is known the driver assumes it is at least 1 and posts a single
 138  138   * asynchronous request. Later when the limit is known more asynchronous event
 139  139   * requests are posted to allow quicker reception of error information. When an
 140  140   * asynchronous event is posted by the hardware the driver will parse the error
 141  141   * status fields and log information or fault the device, depending on the
 142  142   * severity of the asynchronous event. The asynchronous event request is then
 143  143   * reused and posted to the admin queue again.
 144  144   *
 145  145   * On command completion the command status is checked for errors. In case of
 146  146   * errors indicating a driver bug the driver panics. Almost all other error
 147  147   * status values just cause EIO to be returned.
 148  148   *
 149  149   * Command timeouts are currently detected for all admin commands except
 150  150   * asynchronous event requests. If a command times out and the hardware appears
 151  151   * to be healthy the driver attempts to abort the command. The original command
 152  152   * timeout is also applied to the abort command. If the abort times out too the
 153  153   * driver assumes the device to be dead, fences it off, and calls FMA to retire
 154  154   * it. In all other cases the aborted command should return immediately with a
 155  155   * status indicating it was aborted, and the driver will wait indefinitely for
 156  156   * that to happen. No timeout handling of normal I/O commands is presently done.
 157  157   *
 158  158   * Any command that times out due to the controller dropping dead will be put on
 159  159   * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
 160  160   * memory being reused by the system and later be written to by a "dead" NVMe
 161  161   * controller.
 162  162   *
 163  163   *
 164  164   * Locking:
 165  165   *
 166  166   * Each queue pair has a nq_mutex and ncq_mutex. The nq_mutex must be held
 167  167   * when accessing shared state and submission queue registers, ncq_mutex
 168  168   * is held when accessing completion queue state and registers.
 169  169   * Callers of nvme_unqueue_cmd() must make sure that nq_mutex is held, while
 170  170   * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of both
 171  171   * mutexes themselves.
 172  172   *
 173  173   * Each command also has its own nc_mutex, which is associated with the
 174  174   * condition variable nc_cv. It is only used on admin commands which are run
 175  175   * synchronously. In that case it must be held across calls to
 176  176   * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
 177  177   * nvme_admin_cmd(). It must also be held whenever the completion state of the
 178  178   * command is changed or while a admin command timeout is handled.
 179  179   *
 180  180   * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
 181  181   * More than one nc_mutex may only be held when aborting commands. In this case,
 182  182   * the nc_mutex of the command to be aborted must be held across the call to
 183  183   * nvme_abort_cmd() to prevent the command from completing while the abort is in
 184  184   * progress.
 185  185   *
 186  186   * If both nq_mutex and ncq_mutex need to be held, ncq_mutex must be
 187  187   * acquired first. More than one nq_mutex is never held by a single thread.
 188  188   * The ncq_mutex is only held by nvme_retrieve_cmd() and
 189  189   * nvme_process_iocq(). nvme_process_iocq() is only called from the
 190  190   * interrupt thread and nvme_retrieve_cmd() during polled I/O, so the
 191  191   * mutex is non-contentious but is required for implementation completeness
 192  192   * and safety.
 193  193   *
 194  194   * Each minor node has its own nm_mutex, which protects the open count nm_ocnt
 195  195   * and exclusive-open flag nm_oexcl.
 196  196   *
 197  197   *
 198  198   * Quiesce / Fast Reboot:
 199  199   *
 200  200   * The driver currently does not support fast reboot. A quiesce(9E) entry point
 201  201   * is still provided which is used to send a shutdown notification to the
 202  202   * device.
 203  203   *
 204  204   *
 205  205   * DDI UFM Support
 206  206   *
 207  207   * The driver supports the DDI UFM framework for reporting information about
 208  208   * the device's firmware image and slot configuration. This data can be
 209  209   * queried by userland software via ioctls to the ufm driver. For more
 210  210   * information, see ddi_ufm(9E).
 211  211   *
 212  212   *
 213  213   * Driver Configuration:
 214  214   *
 215  215   * The following driver properties can be changed to control some aspects of the
 216  216   * drivers operation:
 217  217   * - strict-version: can be set to 0 to allow devices conforming to newer
 218  218   *   major versions to be used
 219  219   * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
 220  220   *   specific command status as a fatal error leading device faulting
 221  221   * - admin-queue-len: the maximum length of the admin queue (16-4096)
 222  222   * - io-squeue-len: the maximum length of the I/O submission queues (16-65536)
 223  223   * - io-cqueue-len: the maximum length of the I/O completion queues (16-65536)
 224  224   * - async-event-limit: the maximum number of asynchronous event requests to be
 225  225   *   posted by the driver
 226  226   * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
 227  227   *   cache
 228  228   * - min-phys-block-size: the minimum physical block size to report to blkdev,
 229  229   *   which is among other things the basis for ZFS vdev ashift
 230  230   * - max-submission-queues: the maximum number of I/O submission queues.
 231  231   * - max-completion-queues: the maximum number of I/O completion queues,
 232  232   *   can be less than max-submission-queues, in which case the completion
 233  233   *   queues are shared.
 234  234   *
 235  235   *
 236  236   * TODO:
 237  237   * - figure out sane default for I/O queue depth reported to blkdev
 238  238   * - FMA handling of media errors
 239  239   * - support for devices supporting very large I/O requests using chained PRPs
 240  240   * - support for configuring hardware parameters like interrupt coalescing
 241  241   * - support for media formatting and hard partitioning into namespaces
 242  242   * - support for big-endian systems
 243  243   * - support for fast reboot
 244  244   * - support for NVMe Subsystem Reset (1.1)
 245  245   * - support for Scatter/Gather lists (1.1)
 246  246   * - support for Reservations (1.1)
 247  247   * - support for power management
 248  248   */
 249  249  
 250  250  #include <sys/byteorder.h>
 251  251  #ifdef _BIG_ENDIAN
 252  252  #error nvme driver needs porting for big-endian platforms
 253  253  #endif
 254  254  
 255  255  #include <sys/modctl.h>
 256  256  #include <sys/conf.h>
 257  257  #include <sys/devops.h>
 258  258  #include <sys/ddi.h>
 259  259  #include <sys/ddi_ufm.h>
 260  260  #include <sys/sunddi.h>
 261  261  #include <sys/sunndi.h>
 262  262  #include <sys/bitmap.h>
 263  263  #include <sys/sysmacros.h>
 264  264  #include <sys/param.h>
 265  265  #include <sys/varargs.h>
 266  266  #include <sys/cpuvar.h>
 267  267  #include <sys/disp.h>
 268  268  #include <sys/blkdev.h>
 269  269  #include <sys/atomic.h>
 270  270  #include <sys/archsystm.h>
 271  271  #include <sys/sata/sata_hba.h>
 272  272  #include <sys/stat.h>
 273  273  #include <sys/policy.h>
 274  274  #include <sys/list.h>
 275  275  #include <sys/dkio.h>
 276  276  
 277  277  #include <sys/nvme.h>
 278  278  
 279  279  #ifdef __x86
 280  280  #include <sys/x86_archext.h>
 281  281  #endif
 282  282  
 283  283  #include "nvme_reg.h"
 284  284  #include "nvme_var.h"
 285  285  
 286  286  /*
 287  287   * Assertions to make sure that we've properly captured various aspects of the
 288  288   * packed structures and haven't broken them during updates.
 289  289   */
 290  290  CTASSERT(sizeof (nvme_identify_ctrl_t) == 0x1000);
 291  291  CTASSERT(offsetof(nvme_identify_ctrl_t, id_oacs) == 256);
 292  292  CTASSERT(offsetof(nvme_identify_ctrl_t, id_sqes) == 512);
 293  293  CTASSERT(offsetof(nvme_identify_ctrl_t, id_oncs) == 520);
 294  294  CTASSERT(offsetof(nvme_identify_ctrl_t, id_subnqn) == 768);
 295  295  CTASSERT(offsetof(nvme_identify_ctrl_t, id_nvmof) == 1792);
 296  296  CTASSERT(offsetof(nvme_identify_ctrl_t, id_psd) == 2048);
 297  297  CTASSERT(offsetof(nvme_identify_ctrl_t, id_vs) == 3072);
 298  298  
 299  299  CTASSERT(sizeof (nvme_identify_nsid_t) == 0x1000);
 300  300  CTASSERT(offsetof(nvme_identify_nsid_t, id_fpi) == 32);
 301  301  CTASSERT(offsetof(nvme_identify_nsid_t, id_anagrpid) == 92);
 302  302  CTASSERT(offsetof(nvme_identify_nsid_t, id_nguid) == 104);
 303  303  CTASSERT(offsetof(nvme_identify_nsid_t, id_lbaf) == 128);
 304  304  CTASSERT(offsetof(nvme_identify_nsid_t, id_vs) == 384);
 305  305  
 306  306  CTASSERT(sizeof (nvme_identify_primary_caps_t) == 0x1000);
 307  307  CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vqfrt) == 32);
 308  308  CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vifrt) == 64);
 309  309  
 310  310  
 311  311  /* NVMe spec version supported */
 312  312  static const int nvme_version_major = 1;
 313  313  
 314  314  /* tunable for admin command timeout in seconds, default is 1s */
 315  315  int nvme_admin_cmd_timeout = 1;
 316  316  
 317  317  /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
 318  318  int nvme_format_cmd_timeout = 600;
 319  319  
 320  320  /* tunable for firmware commit with NVME_FWC_SAVE, default is 15s */
 321  321  int nvme_commit_save_cmd_timeout = 15;
 322  322  
 323  323  static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
 324  324  static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
 325  325  static int nvme_quiesce(dev_info_t *);
 326  326  static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
 327  327  static int nvme_setup_interrupts(nvme_t *, int, int);
 328  328  static void nvme_release_interrupts(nvme_t *);
 329  329  static uint_t nvme_intr(caddr_t, caddr_t);
 330  330  
 331  331  static void nvme_shutdown(nvme_t *, int, boolean_t);
 332  332  static boolean_t nvme_reset(nvme_t *, boolean_t);
 333  333  static int nvme_init(nvme_t *);
 334  334  static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
 335  335  static void nvme_free_cmd(nvme_cmd_t *);
 336  336  static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
 337  337      bd_xfer_t *);
 338  338  static void nvme_admin_cmd(nvme_cmd_t *, int);
 339  339  static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
 340  340  static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
 341  341  static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
 342  342  static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
 343  343  static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
 344  344  static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
 345  345  static void nvme_wakeup_cmd(void *);
 346  346  static void nvme_async_event_task(void *);
 347  347  
 348  348  static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
 349  349  static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
 350  350  static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
 351  351  static int nvme_check_specific_cmd_status(nvme_cmd_t *);
 352  352  static int nvme_check_generic_cmd_status(nvme_cmd_t *);
 353  353  static inline int nvme_check_cmd_status(nvme_cmd_t *);
 354  354  
 355  355  static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
 356  356  static void nvme_async_event(nvme_t *);
 357  357  static int nvme_format_nvm(nvme_t *, boolean_t, uint32_t, uint8_t, boolean_t,
 358  358      uint8_t, boolean_t, uint8_t);
 359  359  static int nvme_get_logpage(nvme_t *, boolean_t, void **, size_t *, uint8_t,
 360  360      ...);
 361  361  static int nvme_identify(nvme_t *, boolean_t, uint32_t, void **);
 362  362  static int nvme_set_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t,
 363  363      uint32_t *);
 364  364  static int nvme_get_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t *,
 365  365      void **, size_t *);
 366  366  static int nvme_write_cache_set(nvme_t *, boolean_t);
 367  367  static int nvme_set_nqueues(nvme_t *);
 368  368  
 369  369  static void nvme_free_dma(nvme_dma_t *);
 370  370  static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
 371  371      nvme_dma_t **);
 372  372  static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
 373  373      nvme_dma_t **);
 374  374  static void nvme_free_qpair(nvme_qpair_t *);
 375  375  static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, uint_t);
 376  376  static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
 377  377  
 378  378  static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
 379  379  static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
 380  380  static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
 381  381  static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
 382  382  
 383  383  static boolean_t nvme_check_regs_hdl(nvme_t *);
 384  384  static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
 385  385  
 386  386  static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
 387  387  
 388  388  static void nvme_bd_xfer_done(void *);
 389  389  static void nvme_bd_driveinfo(void *, bd_drive_t *);
 390  390  static int nvme_bd_mediainfo(void *, bd_media_t *);
 391  391  static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
 392  392  static int nvme_bd_read(void *, bd_xfer_t *);
 393  393  static int nvme_bd_write(void *, bd_xfer_t *);
 394  394  static int nvme_bd_sync(void *, bd_xfer_t *);
 395  395  static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
 396  396  static int nvme_bd_free_space(void *, bd_xfer_t *);
 397  397  
 398  398  static int nvme_prp_dma_constructor(void *, void *, int);
 399  399  static void nvme_prp_dma_destructor(void *, void *);
 400  400  
 401  401  static void nvme_prepare_devid(nvme_t *, uint32_t);
 402  402  
 403  403  /* DDI UFM callbacks */
 404  404  static int nvme_ufm_fill_image(ddi_ufm_handle_t *, void *, uint_t,
 405  405      ddi_ufm_image_t *);
 406  406  static int nvme_ufm_fill_slot(ddi_ufm_handle_t *, void *, uint_t, uint_t,
 407  407      ddi_ufm_slot_t *);
 408  408  static int nvme_ufm_getcaps(ddi_ufm_handle_t *, void *, ddi_ufm_cap_t *);
 409  409  
 410  410  static int nvme_open(dev_t *, int, int, cred_t *);
 411  411  static int nvme_close(dev_t, int, int, cred_t *);
 412  412  static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
 413  413  
 414  414  static ddi_ufm_ops_t nvme_ufm_ops = {
 415  415          NULL,
 416  416          nvme_ufm_fill_image,
 417  417          nvme_ufm_fill_slot,
 418  418          nvme_ufm_getcaps
 419  419  };
 420  420  
 421  421  #define NVME_MINOR_INST_SHIFT   9
 422  422  #define NVME_MINOR(inst, nsid)  (((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
 423  423  #define NVME_MINOR_INST(minor)  ((minor) >> NVME_MINOR_INST_SHIFT)
 424  424  #define NVME_MINOR_NSID(minor)  ((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
 425  425  #define NVME_MINOR_MAX          (NVME_MINOR(1, 0) - 2)
 426  426  
 427  427  static void *nvme_state;
 428  428  static kmem_cache_t *nvme_cmd_cache;
 429  429  
 430  430  /*
 431  431   * DMA attributes for queue DMA memory
 432  432   *
 433  433   * Queue DMA memory must be page aligned. The maximum length of a queue is
 434  434   * 65536 entries, and an entry can be 64 bytes long.
 435  435   */
 436  436  static ddi_dma_attr_t nvme_queue_dma_attr = {
 437  437          .dma_attr_version       = DMA_ATTR_V0,
 438  438          .dma_attr_addr_lo       = 0,
 439  439          .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 440  440          .dma_attr_count_max     = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
 441  441          .dma_attr_align         = 0x1000,
 442  442          .dma_attr_burstsizes    = 0x7ff,
 443  443          .dma_attr_minxfer       = 0x1000,
 444  444          .dma_attr_maxxfer       = (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
 445  445          .dma_attr_seg           = 0xffffffffffffffffULL,
 446  446          .dma_attr_sgllen        = 1,
 447  447          .dma_attr_granular      = 1,
 448  448          .dma_attr_flags         = 0,
 449  449  };
 450  450  
 451  451  /*
 452  452   * DMA attributes for transfers using Physical Region Page (PRP) entries
 453  453   *
 454  454   * A PRP entry describes one page of DMA memory using the page size specified
 455  455   * in the controller configuration's memory page size register (CC.MPS). It uses
 456  456   * a 64bit base address aligned to this page size. There is no limitation on
 457  457   * chaining PRPs together for arbitrarily large DMA transfers.
 458  458   */
 459  459  static ddi_dma_attr_t nvme_prp_dma_attr = {
 460  460          .dma_attr_version       = DMA_ATTR_V0,
 461  461          .dma_attr_addr_lo       = 0,
 462  462          .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 463  463          .dma_attr_count_max     = 0xfff,
 464  464          .dma_attr_align         = 0x1000,
 465  465          .dma_attr_burstsizes    = 0x7ff,
 466  466          .dma_attr_minxfer       = 0x1000,
 467  467          .dma_attr_maxxfer       = 0x1000,
 468  468          .dma_attr_seg           = 0xfff,
 469  469          .dma_attr_sgllen        = -1,
 470  470          .dma_attr_granular      = 1,
 471  471          .dma_attr_flags         = 0,
 472  472  };
 473  473  
 474  474  /*
 475  475   * DMA attributes for transfers using scatter/gather lists
 476  476   *
 477  477   * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
 478  478   * 32bit length field. SGL Segment and SGL Last Segment entries require the
 479  479   * length to be a multiple of 16 bytes.
 480  480   */
 481  481  static ddi_dma_attr_t nvme_sgl_dma_attr = {
 482  482          .dma_attr_version       = DMA_ATTR_V0,
 483  483          .dma_attr_addr_lo       = 0,
 484  484          .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 485  485          .dma_attr_count_max     = 0xffffffffUL,
 486  486          .dma_attr_align         = 1,
 487  487          .dma_attr_burstsizes    = 0x7ff,
 488  488          .dma_attr_minxfer       = 0x10,
 489  489          .dma_attr_maxxfer       = 0xfffffffffULL,
 490  490          .dma_attr_seg           = 0xffffffffffffffffULL,
 491  491          .dma_attr_sgllen        = -1,
 492  492          .dma_attr_granular      = 0x10,
 493  493          .dma_attr_flags         = 0
 494  494  };
 495  495  
 496  496  static ddi_device_acc_attr_t nvme_reg_acc_attr = {
 497  497          .devacc_attr_version    = DDI_DEVICE_ATTR_V0,
 498  498          .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
 499  499          .devacc_attr_dataorder  = DDI_STRICTORDER_ACC
 500  500  };
 501  501  
 502  502  static struct cb_ops nvme_cb_ops = {
 503  503          .cb_open        = nvme_open,
 504  504          .cb_close       = nvme_close,
 505  505          .cb_strategy    = nodev,
 506  506          .cb_print       = nodev,
 507  507          .cb_dump        = nodev,
 508  508          .cb_read        = nodev,
 509  509          .cb_write       = nodev,
 510  510          .cb_ioctl       = nvme_ioctl,
 511  511          .cb_devmap      = nodev,
 512  512          .cb_mmap        = nodev,
 513  513          .cb_segmap      = nodev,
 514  514          .cb_chpoll      = nochpoll,
 515  515          .cb_prop_op     = ddi_prop_op,
 516  516          .cb_str         = 0,
 517  517          .cb_flag        = D_NEW | D_MP,
 518  518          .cb_rev         = CB_REV,
 519  519          .cb_aread       = nodev,
 520  520          .cb_awrite      = nodev
 521  521  };
 522  522  
 523  523  static struct dev_ops nvme_dev_ops = {
 524  524          .devo_rev       = DEVO_REV,
 525  525          .devo_refcnt    = 0,
 526  526          .devo_getinfo   = ddi_no_info,
 527  527          .devo_identify  = nulldev,
 528  528          .devo_probe     = nulldev,
 529  529          .devo_attach    = nvme_attach,
 530  530          .devo_detach    = nvme_detach,
 531  531          .devo_reset     = nodev,
 532  532          .devo_cb_ops    = &nvme_cb_ops,
 533  533          .devo_bus_ops   = NULL,
 534  534          .devo_power     = NULL,
 535  535          .devo_quiesce   = nvme_quiesce,
 536  536  };
 537  537  
 538  538  static struct modldrv nvme_modldrv = {
 539  539          .drv_modops     = &mod_driverops,
 540  540          .drv_linkinfo   = "NVMe v1.1b",
 541  541          .drv_dev_ops    = &nvme_dev_ops
 542  542  };
 543  543  
 544  544  static struct modlinkage nvme_modlinkage = {
 545  545          .ml_rev         = MODREV_1,
 546  546          .ml_linkage     = { &nvme_modldrv, NULL }
 547  547  };
 548  548  
 549  549  static bd_ops_t nvme_bd_ops = {
 550  550          .o_version      = BD_OPS_CURRENT_VERSION,
 551  551          .o_drive_info   = nvme_bd_driveinfo,
 552  552          .o_media_info   = nvme_bd_mediainfo,
 553  553          .o_devid_init   = nvme_bd_devid,
 554  554          .o_sync_cache   = nvme_bd_sync,
 555  555          .o_read         = nvme_bd_read,
 556  556          .o_write        = nvme_bd_write,
 557  557          .o_free_space   = nvme_bd_free_space,
 558  558  };
 559  559  
 560  560  /*
 561  561   * This list will hold commands that have timed out and couldn't be aborted.
 562  562   * As we don't know what the hardware may still do with the DMA memory we can't
 563  563   * free them, so we'll keep them forever on this list where we can easily look
 564  564   * at them with mdb.
 565  565   */
 566  566  static struct list nvme_lost_cmds;
 567  567  static kmutex_t nvme_lc_mutex;
 568  568  
 569  569  int
 570  570  _init(void)
 571  571  {
 572  572          int error;
 573  573  
 574  574          error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
 575  575          if (error != DDI_SUCCESS)
 576  576                  return (error);
 577  577  
 578  578          nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
 579  579              sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
 580  580  
 581  581          mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
 582  582          list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
 583  583              offsetof(nvme_cmd_t, nc_list));
 584  584  
 585  585          bd_mod_init(&nvme_dev_ops);
 586  586  
 587  587          error = mod_install(&nvme_modlinkage);
 588  588          if (error != DDI_SUCCESS) {
 589  589                  ddi_soft_state_fini(&nvme_state);
 590  590                  mutex_destroy(&nvme_lc_mutex);
 591  591                  list_destroy(&nvme_lost_cmds);
 592  592                  bd_mod_fini(&nvme_dev_ops);
 593  593          }
 594  594  
 595  595          return (error);
 596  596  }
 597  597  
 598  598  int
 599  599  _fini(void)
 600  600  {
 601  601          int error;
 602  602  
 603  603          if (!list_is_empty(&nvme_lost_cmds))
 604  604                  return (DDI_FAILURE);
 605  605  
 606  606          error = mod_remove(&nvme_modlinkage);
 607  607          if (error == DDI_SUCCESS) {
 608  608                  ddi_soft_state_fini(&nvme_state);
 609  609                  kmem_cache_destroy(nvme_cmd_cache);
 610  610                  mutex_destroy(&nvme_lc_mutex);
 611  611                  list_destroy(&nvme_lost_cmds);
 612  612                  bd_mod_fini(&nvme_dev_ops);
 613  613          }
 614  614  
 615  615          return (error);
 616  616  }
 617  617  
 618  618  int
 619  619  _info(struct modinfo *modinfop)
 620  620  {
 621  621          return (mod_info(&nvme_modlinkage, modinfop));
 622  622  }
 623  623  
 624  624  static inline void
 625  625  nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
 626  626  {
 627  627          ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
 628  628  
 629  629          /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 630  630          ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
 631  631  }
 632  632  
 633  633  static inline void
 634  634  nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
 635  635  {
 636  636          ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
 637  637  
 638  638          /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 639  639          ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
 640  640  }
 641  641  
 642  642  static inline uint64_t
 643  643  nvme_get64(nvme_t *nvme, uintptr_t reg)
 644  644  {
 645  645          uint64_t val;
 646  646  
 647  647          ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
 648  648  
 649  649          /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 650  650          val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
 651  651  
 652  652          return (val);
 653  653  }
 654  654  
 655  655  static inline uint32_t
 656  656  nvme_get32(nvme_t *nvme, uintptr_t reg)
 657  657  {
 658  658          uint32_t val;
 659  659  
 660  660          ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
 661  661  
 662  662          /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 663  663          val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
 664  664  
 665  665          return (val);
 666  666  }
 667  667  
 668  668  static boolean_t
 669  669  nvme_check_regs_hdl(nvme_t *nvme)
 670  670  {
 671  671          ddi_fm_error_t error;
 672  672  
 673  673          ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
 674  674  
 675  675          if (error.fme_status != DDI_FM_OK)
 676  676                  return (B_TRUE);
 677  677  
 678  678          return (B_FALSE);
 679  679  }
 680  680  
 681  681  static boolean_t
 682  682  nvme_check_dma_hdl(nvme_dma_t *dma)
 683  683  {
 684  684          ddi_fm_error_t error;
 685  685  
 686  686          if (dma == NULL)
 687  687                  return (B_FALSE);
 688  688  
 689  689          ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
 690  690  
 691  691          if (error.fme_status != DDI_FM_OK)
 692  692                  return (B_TRUE);
 693  693  
 694  694          return (B_FALSE);
 695  695  }
 696  696  
 697  697  static void
 698  698  nvme_free_dma_common(nvme_dma_t *dma)
 699  699  {
 700  700          if (dma->nd_dmah != NULL)
 701  701                  (void) ddi_dma_unbind_handle(dma->nd_dmah);
 702  702          if (dma->nd_acch != NULL)
 703  703                  ddi_dma_mem_free(&dma->nd_acch);
 704  704          if (dma->nd_dmah != NULL)
 705  705                  ddi_dma_free_handle(&dma->nd_dmah);
 706  706  }
 707  707  
 708  708  static void
 709  709  nvme_free_dma(nvme_dma_t *dma)
 710  710  {
 711  711          nvme_free_dma_common(dma);
 712  712          kmem_free(dma, sizeof (*dma));
 713  713  }
 714  714  
 715  715  /* ARGSUSED */
 716  716  static void
 717  717  nvme_prp_dma_destructor(void *buf, void *private)
 718  718  {
 719  719          nvme_dma_t *dma = (nvme_dma_t *)buf;
 720  720  
 721  721          nvme_free_dma_common(dma);
 722  722  }
 723  723  
 724  724  static int
 725  725  nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
 726  726      size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
 727  727  {
 728  728          if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
 729  729              &dma->nd_dmah) != DDI_SUCCESS) {
 730  730                  /*
 731  731                   * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
 732  732                   * the only other possible error is DDI_DMA_BADATTR which
 733  733                   * indicates a driver bug which should cause a panic.
 734  734                   */
 735  735                  dev_err(nvme->n_dip, CE_PANIC,
 736  736                      "!failed to get DMA handle, check DMA attributes");
 737  737                  return (DDI_FAILURE);
 738  738          }
 739  739  
 740  740          /*
 741  741           * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
 742  742           * or the flags are conflicting, which isn't the case here.
 743  743           */
 744  744          (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
 745  745              DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
 746  746              &dma->nd_len, &dma->nd_acch);
 747  747  
 748  748          if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
 749  749              dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
 750  750              &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
 751  751                  dev_err(nvme->n_dip, CE_WARN,
 752  752                      "!failed to bind DMA memory");
 753  753                  atomic_inc_32(&nvme->n_dma_bind_err);
 754  754                  nvme_free_dma_common(dma);
 755  755                  return (DDI_FAILURE);
 756  756          }
 757  757  
 758  758          return (DDI_SUCCESS);
 759  759  }
 760  760  
 761  761  static int
 762  762  nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
 763  763      ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
 764  764  {
 765  765          nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
 766  766  
 767  767          if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
 768  768              DDI_SUCCESS) {
 769  769                  *ret = NULL;
 770  770                  kmem_free(dma, sizeof (nvme_dma_t));
 771  771                  return (DDI_FAILURE);
 772  772          }
 773  773  
 774  774          bzero(dma->nd_memp, dma->nd_len);
 775  775  
 776  776          *ret = dma;
 777  777          return (DDI_SUCCESS);
 778  778  }
 779  779  
 780  780  /* ARGSUSED */
 781  781  static int
 782  782  nvme_prp_dma_constructor(void *buf, void *private, int flags)
 783  783  {
 784  784          nvme_dma_t *dma = (nvme_dma_t *)buf;
 785  785          nvme_t *nvme = (nvme_t *)private;
 786  786  
 787  787          dma->nd_dmah = NULL;
 788  788          dma->nd_acch = NULL;
 789  789  
 790  790          if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
 791  791              DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
 792  792                  return (-1);
 793  793          }
 794  794  
 795  795          ASSERT(dma->nd_ncookie == 1);
 796  796  
 797  797          dma->nd_cached = B_TRUE;
 798  798  
 799  799          return (0);
 800  800  }
 801  801  
 802  802  static int
 803  803  nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
 804  804      uint_t flags, nvme_dma_t **dma)
 805  805  {
 806  806          uint32_t len = nentry * qe_len;
 807  807          ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
 808  808  
 809  809          len = roundup(len, nvme->n_pagesize);
 810  810  
 811  811          if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
 812  812              != DDI_SUCCESS) {
 813  813                  dev_err(nvme->n_dip, CE_WARN,
 814  814                      "!failed to get DMA memory for queue");
 815  815                  goto fail;
 816  816          }
 817  817  
 818  818          if ((*dma)->nd_ncookie != 1) {
 819  819                  dev_err(nvme->n_dip, CE_WARN,
 820  820                      "!got too many cookies for queue DMA");
 821  821                  goto fail;
 822  822          }
 823  823  
 824  824          return (DDI_SUCCESS);
 825  825  
 826  826  fail:
 827  827          if (*dma) {
 828  828                  nvme_free_dma(*dma);
 829  829                  *dma = NULL;
 830  830          }
 831  831  
 832  832          return (DDI_FAILURE);
 833  833  }
 834  834  
 835  835  static void
 836  836  nvme_free_cq(nvme_cq_t *cq)
 837  837  {
 838  838          mutex_destroy(&cq->ncq_mutex);
 839  839  
 840  840          if (cq->ncq_cmd_taskq != NULL)
 841  841                  taskq_destroy(cq->ncq_cmd_taskq);
 842  842  
 843  843          if (cq->ncq_dma != NULL)
 844  844                  nvme_free_dma(cq->ncq_dma);
 845  845  
 846  846          kmem_free(cq, sizeof (*cq));
 847  847  }
 848  848  
 849  849  static void
 850  850  nvme_free_qpair(nvme_qpair_t *qp)
 851  851  {
 852  852          int i;
 853  853  
 854  854          mutex_destroy(&qp->nq_mutex);
 855  855          sema_destroy(&qp->nq_sema);
 856  856  
 857  857          if (qp->nq_sqdma != NULL)
 858  858                  nvme_free_dma(qp->nq_sqdma);
 859  859  
 860  860          if (qp->nq_active_cmds > 0)
 861  861                  for (i = 0; i != qp->nq_nentry; i++)
 862  862                          if (qp->nq_cmd[i] != NULL)
 863  863                                  nvme_free_cmd(qp->nq_cmd[i]);
 864  864  
 865  865          if (qp->nq_cmd != NULL)
 866  866                  kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
 867  867  
 868  868          kmem_free(qp, sizeof (nvme_qpair_t));
 869  869  }
 870  870  
 871  871  /*
 872  872   * Destroy the pre-allocated cq array, but only free individual completion
 873  873   * queues from the given starting index.
 874  874   */
 875  875  static void
 876  876  nvme_destroy_cq_array(nvme_t *nvme, uint_t start)
 877  877  {
 878  878          uint_t i;
 879  879  
 880  880          for (i = start; i < nvme->n_cq_count; i++)
 881  881                  if (nvme->n_cq[i] != NULL)
 882  882                          nvme_free_cq(nvme->n_cq[i]);
 883  883  
 884  884          kmem_free(nvme->n_cq, sizeof (*nvme->n_cq) * nvme->n_cq_count);
 885  885  }
 886  886  
 887  887  static int
 888  888  nvme_alloc_cq(nvme_t *nvme, uint32_t nentry, nvme_cq_t **cqp, uint16_t idx,
 889  889      uint_t nthr)
 890  890  {
 891  891          nvme_cq_t *cq = kmem_zalloc(sizeof (*cq), KM_SLEEP);
 892  892          char name[64];          /* large enough for the taskq name */
 893  893  
 894  894          mutex_init(&cq->ncq_mutex, NULL, MUTEX_DRIVER,
 895  895              DDI_INTR_PRI(nvme->n_intr_pri));
 896  896  
 897  897          if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
 898  898              DDI_DMA_READ, &cq->ncq_dma) != DDI_SUCCESS)
 899  899                  goto fail;
 900  900  
 901  901          cq->ncq_cq = (nvme_cqe_t *)cq->ncq_dma->nd_memp;
 902  902          cq->ncq_nentry = nentry;
 903  903          cq->ncq_id = idx;
 904  904          cq->ncq_hdbl = NVME_REG_CQHDBL(nvme, idx);
 905  905  
 906  906          /*
 907  907           * Each completion queue has its own command taskq.
 908  908           */
 909  909          (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq%u",
 910  910              ddi_driver_name(nvme->n_dip), ddi_get_instance(nvme->n_dip), idx);
 911  911  
 912  912          cq->ncq_cmd_taskq = taskq_create(name, nthr, minclsyspri, 64, INT_MAX,
 913  913              TASKQ_PREPOPULATE);
 914  914  
 915  915          if (cq->ncq_cmd_taskq == NULL) {
 916  916                  dev_err(nvme->n_dip, CE_WARN, "!failed to create cmd "
 917  917                      "taskq for cq %u", idx);
 918  918                  goto fail;
 919  919          }
 920  920  
 921  921          *cqp = cq;
 922  922          return (DDI_SUCCESS);
 923  923  
 924  924  fail:
 925  925          nvme_free_cq(cq);
 926  926          *cqp = NULL;
 927  927  
 928  928          return (DDI_FAILURE);
 929  929  }
 930  930  
 931  931  /*
 932  932   * Create the n_cq array big enough to hold "ncq" completion queues.
 933  933   * If the array already exists it will be re-sized (but only larger).
 934  934   * The admin queue is included in this array, which boosts the
 935  935   * max number of entries to UINT16_MAX + 1.
 936  936   */
 937  937  static int
 938  938  nvme_create_cq_array(nvme_t *nvme, uint_t ncq, uint32_t nentry, uint_t nthr)
 939  939  {
 940  940          nvme_cq_t **cq;
 941  941          uint_t i, cq_count;
 942  942  
 943  943          ASSERT3U(ncq, >, nvme->n_cq_count);
 944  944  
 945  945          cq = nvme->n_cq;
 946  946          cq_count = nvme->n_cq_count;
 947  947  
 948  948          nvme->n_cq = kmem_zalloc(sizeof (*nvme->n_cq) * ncq, KM_SLEEP);
 949  949          nvme->n_cq_count = ncq;
 950  950  
 951  951          for (i = 0; i < cq_count; i++)
 952  952                  nvme->n_cq[i] = cq[i];
 953  953  
 954  954          for (; i < nvme->n_cq_count; i++)
 955  955                  if (nvme_alloc_cq(nvme, nentry, &nvme->n_cq[i], i, nthr) !=
 956  956                      DDI_SUCCESS)
 957  957                          goto fail;
 958  958  
 959  959          if (cq != NULL)
 960  960                  kmem_free(cq, sizeof (*cq) * cq_count);
 961  961  
 962  962          return (DDI_SUCCESS);
 963  963  
 964  964  fail:
 965  965          nvme_destroy_cq_array(nvme, cq_count);
 966  966          /*
 967  967           * Restore the original array
 968  968           */
 969  969          nvme->n_cq_count = cq_count;
 970  970          nvme->n_cq = cq;
 971  971  
 972  972          return (DDI_FAILURE);
 973  973  }
 974  974  
 975  975  static int
 976  976  nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
 977  977      uint_t idx)
 978  978  {
 979  979          nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
 980  980          uint_t cq_idx;
 981  981  
 982  982          mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
 983  983              DDI_INTR_PRI(nvme->n_intr_pri));
 984  984  
 985  985          /*
 986  986           * The NVMe spec defines that a full queue has one empty (unused) slot;
 987  987           * initialize the semaphore accordingly.
 988  988           */
 989  989          sema_init(&qp->nq_sema, nentry - 1, NULL, SEMA_DRIVER, NULL);
 990  990  
 991  991          if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
 992  992              DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
 993  993                  goto fail;
 994  994  
 995  995          /*
 996  996           * idx == 0 is adminq, those above 0 are shared io completion queues.
 997  997           */
 998  998          cq_idx = idx == 0 ? 0 : 1 + (idx - 1) % (nvme->n_cq_count - 1);
 999  999          qp->nq_cq = nvme->n_cq[cq_idx];
1000 1000          qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
1001 1001          qp->nq_nentry = nentry;
1002 1002  
1003 1003          qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
1004 1004  
1005 1005          qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
1006 1006          qp->nq_next_cmd = 0;
1007 1007  
1008 1008          *nqp = qp;
1009 1009          return (DDI_SUCCESS);
1010 1010  
1011 1011  fail:
1012 1012          nvme_free_qpair(qp);
1013 1013          *nqp = NULL;
1014 1014  
1015 1015          return (DDI_FAILURE);
1016 1016  }
1017 1017  
1018 1018  static nvme_cmd_t *
1019 1019  nvme_alloc_cmd(nvme_t *nvme, int kmflag)
1020 1020  {
1021 1021          nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
1022 1022  
1023 1023          if (cmd == NULL)
1024 1024                  return (cmd);
1025 1025  
1026 1026          bzero(cmd, sizeof (nvme_cmd_t));
1027 1027  
1028 1028          cmd->nc_nvme = nvme;
1029 1029  
1030 1030          mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
1031 1031              DDI_INTR_PRI(nvme->n_intr_pri));
1032 1032          cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
1033 1033  
1034 1034          return (cmd);
1035 1035  }
1036 1036  
1037 1037  static void
1038 1038  nvme_free_cmd(nvme_cmd_t *cmd)
1039 1039  {
1040 1040          /* Don't free commands on the lost commands list. */
1041 1041          if (list_link_active(&cmd->nc_list))
1042 1042                  return;
1043 1043  
1044 1044          if (cmd->nc_dma) {
1045 1045                  if (cmd->nc_dma->nd_cached)
1046 1046                          kmem_cache_free(cmd->nc_nvme->n_prp_cache,
1047 1047                              cmd->nc_dma);
1048 1048                  else
1049 1049                          nvme_free_dma(cmd->nc_dma);
1050 1050                  cmd->nc_dma = NULL;
1051 1051          }
1052 1052  
1053 1053          cv_destroy(&cmd->nc_cv);
1054 1054          mutex_destroy(&cmd->nc_mutex);
1055 1055  
1056 1056          kmem_cache_free(nvme_cmd_cache, cmd);
1057 1057  }
1058 1058  
1059 1059  static void
1060 1060  nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1061 1061  {
1062 1062          sema_p(&qp->nq_sema);
1063 1063          nvme_submit_cmd_common(qp, cmd);
1064 1064  }
1065 1065  
1066 1066  static int
1067 1067  nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1068 1068  {
1069 1069          if (sema_tryp(&qp->nq_sema) == 0)
1070 1070                  return (EAGAIN);
1071 1071  
1072 1072          nvme_submit_cmd_common(qp, cmd);
1073 1073          return (0);
1074 1074  }
1075 1075  
1076 1076  static void
1077 1077  nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1078 1078  {
1079 1079          nvme_reg_sqtdbl_t tail = { 0 };
1080 1080  
1081 1081          mutex_enter(&qp->nq_mutex);
1082 1082          cmd->nc_completed = B_FALSE;
1083 1083  
1084 1084          /*
1085 1085           * Try to insert the cmd into the active cmd array at the nq_next_cmd
1086 1086           * slot. If the slot is already occupied advance to the next slot and
1087 1087           * try again. This can happen for long running commands like async event
1088 1088           * requests.
1089 1089           */
1090 1090          while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
1091 1091                  qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1092 1092          qp->nq_cmd[qp->nq_next_cmd] = cmd;
1093 1093  
1094 1094          qp->nq_active_cmds++;
1095 1095  
1096 1096          cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
1097 1097          bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
1098 1098          (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
1099 1099              sizeof (nvme_sqe_t) * qp->nq_sqtail,
1100 1100              sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
1101 1101          qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1102 1102  
1103 1103          tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
1104 1104          nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
1105 1105  
1106 1106          mutex_exit(&qp->nq_mutex);
1107 1107  }
1108 1108  
1109 1109  static nvme_cmd_t *
1110 1110  nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
1111 1111  {
1112 1112          nvme_cmd_t *cmd;
1113 1113  
1114 1114          ASSERT(mutex_owned(&qp->nq_mutex));
1115 1115          ASSERT3S(cid, <, qp->nq_nentry);
1116 1116  
1117 1117          cmd = qp->nq_cmd[cid];
1118 1118          qp->nq_cmd[cid] = NULL;
1119 1119          ASSERT3U(qp->nq_active_cmds, >, 0);
1120 1120          qp->nq_active_cmds--;
1121 1121          sema_v(&qp->nq_sema);
1122 1122  
1123 1123          ASSERT3P(cmd, !=, NULL);
1124 1124          ASSERT3P(cmd->nc_nvme, ==, nvme);
1125 1125          ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
1126 1126  
1127 1127          return (cmd);
1128 1128  }
1129 1129  
1130 1130  /*
1131 1131   * Get the command tied to the next completed cqe and bump along completion
1132 1132   * queue head counter.
1133 1133   */
1134 1134  static nvme_cmd_t *
1135 1135  nvme_get_completed(nvme_t *nvme, nvme_cq_t *cq)
1136 1136  {
1137 1137          nvme_qpair_t *qp;
1138 1138          nvme_cqe_t *cqe;
1139 1139          nvme_cmd_t *cmd;
1140 1140  
1141 1141          ASSERT(mutex_owned(&cq->ncq_mutex));
1142 1142  
1143 1143          cqe = &cq->ncq_cq[cq->ncq_head];
1144 1144  
1145 1145          /* Check phase tag of CQE. Hardware inverts it for new entries. */
1146 1146          if (cqe->cqe_sf.sf_p == cq->ncq_phase)
1147 1147                  return (NULL);
1148 1148  
1149 1149          qp = nvme->n_ioq[cqe->cqe_sqid];
1150 1150  
1151 1151          mutex_enter(&qp->nq_mutex);
1152 1152          cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
1153 1153          mutex_exit(&qp->nq_mutex);
1154 1154  
1155 1155          ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
1156 1156          bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
1157 1157  
1158 1158          qp->nq_sqhead = cqe->cqe_sqhd;
1159 1159  
1160 1160          cq->ncq_head = (cq->ncq_head + 1) % cq->ncq_nentry;
1161 1161  
1162 1162          /* Toggle phase on wrap-around. */
1163 1163          if (cq->ncq_head == 0)
1164 1164                  cq->ncq_phase = cq->ncq_phase ? 0 : 1;
1165 1165  
1166 1166          return (cmd);
1167 1167  }
1168 1168  
1169 1169  /*
1170 1170   * Process all completed commands on the io completion queue.
1171 1171   */
1172 1172  static uint_t
1173 1173  nvme_process_iocq(nvme_t *nvme, nvme_cq_t *cq)
1174 1174  {
1175 1175          nvme_reg_cqhdbl_t head = { 0 };
1176 1176          nvme_cmd_t *cmd;
1177 1177          uint_t completed = 0;
1178 1178  
1179 1179          if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1180 1180              DDI_SUCCESS)
1181 1181                  dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1182 1182                      __func__);
1183 1183  
1184 1184          mutex_enter(&cq->ncq_mutex);
1185 1185  
1186 1186          while ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1187 1187                  taskq_dispatch_ent(cq->ncq_cmd_taskq, cmd->nc_callback, cmd,
1188 1188                      TQ_NOSLEEP, &cmd->nc_tqent);
1189 1189  
1190 1190                  completed++;
1191 1191          }
1192 1192  
1193 1193          if (completed > 0) {
1194 1194                  /*
1195 1195                   * Update the completion queue head doorbell.
1196 1196                   */
1197 1197                  head.b.cqhdbl_cqh = cq->ncq_head;
1198 1198                  nvme_put32(nvme, cq->ncq_hdbl, head.r);
1199 1199          }
1200 1200  
1201 1201          mutex_exit(&cq->ncq_mutex);
1202 1202  
1203 1203          return (completed);
1204 1204  }
1205 1205  
1206 1206  static nvme_cmd_t *
1207 1207  nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
1208 1208  {
1209 1209          nvme_cq_t *cq = qp->nq_cq;
1210 1210          nvme_reg_cqhdbl_t head = { 0 };
1211 1211          nvme_cmd_t *cmd;
1212 1212  
1213 1213          if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1214 1214              DDI_SUCCESS)
1215 1215                  dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1216 1216                      __func__);
1217 1217  
1218 1218          mutex_enter(&cq->ncq_mutex);
1219 1219  
1220 1220          if ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1221 1221                  head.b.cqhdbl_cqh = cq->ncq_head;
1222 1222                  nvme_put32(nvme, cq->ncq_hdbl, head.r);
1223 1223          }
1224 1224  
1225 1225          mutex_exit(&cq->ncq_mutex);
1226 1226  
1227 1227          return (cmd);
1228 1228  }
1229 1229  
1230 1230  static int
1231 1231  nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
1232 1232  {
1233 1233          nvme_cqe_t *cqe = &cmd->nc_cqe;
1234 1234  
1235 1235          dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1236 1236              "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1237 1237              "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1238 1238              cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1239 1239              cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1240 1240  
1241 1241          if (cmd->nc_xfer != NULL)
1242 1242                  bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1243 1243  
1244 1244          if (cmd->nc_nvme->n_strict_version) {
1245 1245                  cmd->nc_nvme->n_dead = B_TRUE;
1246 1246                  ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1247 1247          }
1248 1248  
1249 1249          return (EIO);
1250 1250  }
1251 1251  
1252 1252  static int
1253 1253  nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
1254 1254  {
1255 1255          nvme_cqe_t *cqe = &cmd->nc_cqe;
1256 1256  
1257 1257          dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1258 1258              "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1259 1259              "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1260 1260              cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1261 1261              cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1262 1262          if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
1263 1263                  cmd->nc_nvme->n_dead = B_TRUE;
1264 1264                  ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1265 1265          }
1266 1266  
1267 1267          return (EIO);
1268 1268  }
1269 1269  
1270 1270  static int
1271 1271  nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
1272 1272  {
1273 1273          nvme_cqe_t *cqe = &cmd->nc_cqe;
1274 1274  
1275 1275          switch (cqe->cqe_sf.sf_sc) {
1276 1276          case NVME_CQE_SC_INT_NVM_WRITE:
1277 1277                  /* write fail */
1278 1278                  /* TODO: post ereport */
1279 1279                  if (cmd->nc_xfer != NULL)
1280 1280                          bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1281 1281                  return (EIO);
1282 1282  
1283 1283          case NVME_CQE_SC_INT_NVM_READ:
1284 1284                  /* read fail */
1285 1285                  /* TODO: post ereport */
1286 1286                  if (cmd->nc_xfer != NULL)
1287 1287                          bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1288 1288                  return (EIO);
1289 1289  
1290 1290          default:
1291 1291                  return (nvme_check_unknown_cmd_status(cmd));
1292 1292          }
1293 1293  }
1294 1294  
1295 1295  static int
1296 1296  nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
1297 1297  {
1298 1298          nvme_cqe_t *cqe = &cmd->nc_cqe;
1299 1299  
1300 1300          switch (cqe->cqe_sf.sf_sc) {
1301 1301          case NVME_CQE_SC_GEN_SUCCESS:
1302 1302                  return (0);
1303 1303  
1304 1304          /*
1305 1305           * Errors indicating a bug in the driver should cause a panic.
1306 1306           */
1307 1307          case NVME_CQE_SC_GEN_INV_OPC:
1308 1308                  /* Invalid Command Opcode */
1309 1309                  if (!cmd->nc_dontpanic)
1310 1310                          dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1311 1311                              "programming error: invalid opcode in cmd %p",
1312 1312                              (void *)cmd);
1313 1313                  return (EINVAL);
1314 1314  
1315 1315          case NVME_CQE_SC_GEN_INV_FLD:
1316 1316                  /* Invalid Field in Command */
1317 1317                  if (!cmd->nc_dontpanic)
1318 1318                          dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1319 1319                              "programming error: invalid field in cmd %p",
1320 1320                              (void *)cmd);
1321 1321                  return (EIO);
1322 1322  
1323 1323          case NVME_CQE_SC_GEN_ID_CNFL:
1324 1324                  /* Command ID Conflict */
1325 1325                  dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1326 1326                      "cmd ID conflict in cmd %p", (void *)cmd);
1327 1327                  return (0);
1328 1328  
1329 1329          case NVME_CQE_SC_GEN_INV_NS:
1330 1330                  /* Invalid Namespace or Format */
1331 1331                  if (!cmd->nc_dontpanic)
1332 1332                          dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1333 1333                              "programming error: invalid NS/format in cmd %p",
1334 1334                              (void *)cmd);
1335 1335                  return (EINVAL);
1336 1336  
1337 1337          case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1338 1338                  /* LBA Out Of Range */
1339 1339                  dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1340 1340                      "LBA out of range in cmd %p", (void *)cmd);
1341 1341                  return (0);
1342 1342  
1343 1343          /*
1344 1344           * Non-fatal errors, handle gracefully.
1345 1345           */
1346 1346          case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1347 1347                  /* Data Transfer Error (DMA) */
1348 1348                  /* TODO: post ereport */
1349 1349                  atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1350 1350                  if (cmd->nc_xfer != NULL)
1351 1351                          bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1352 1352                  return (EIO);
1353 1353  
1354 1354          case NVME_CQE_SC_GEN_INTERNAL_ERR:
1355 1355                  /*
1356 1356                   * Internal Error. The spec (v1.0, section 4.5.1.2) says
1357 1357                   * detailed error information is returned as async event,
1358 1358                   * so we pretty much ignore the error here and handle it
1359 1359                   * in the async event handler.
1360 1360                   */
1361 1361                  atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1362 1362                  if (cmd->nc_xfer != NULL)
1363 1363                          bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1364 1364                  return (EIO);
1365 1365  
1366 1366          case NVME_CQE_SC_GEN_ABORT_REQUEST:
1367 1367                  /*
1368 1368                   * Command Abort Requested. This normally happens only when a
1369 1369                   * command times out.
1370 1370                   */
1371 1371                  /* TODO: post ereport or change blkdev to handle this? */
1372 1372                  atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1373 1373                  return (ECANCELED);
1374 1374  
1375 1375          case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1376 1376                  /* Command Aborted due to Power Loss Notification */
1377 1377                  ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1378 1378                  cmd->nc_nvme->n_dead = B_TRUE;
1379 1379                  return (EIO);
1380 1380  
1381 1381          case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1382 1382                  /* Command Aborted due to SQ Deletion */
1383 1383                  atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1384 1384                  return (EIO);
1385 1385  
1386 1386          case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1387 1387                  /* Capacity Exceeded */
1388 1388                  atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1389 1389                  if (cmd->nc_xfer != NULL)
1390 1390                          bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1391 1391                  return (EIO);
1392 1392  
1393 1393          case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1394 1394                  /* Namespace Not Ready */
1395 1395                  atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1396 1396                  if (cmd->nc_xfer != NULL)
1397 1397                          bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1398 1398                  return (EIO);
1399 1399  
1400 1400          default:
1401 1401                  return (nvme_check_unknown_cmd_status(cmd));
1402 1402          }
1403 1403  }
1404 1404  
1405 1405  static int
1406 1406  nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1407 1407  {
1408 1408          nvme_cqe_t *cqe = &cmd->nc_cqe;
1409 1409  
1410 1410          switch (cqe->cqe_sf.sf_sc) {
1411 1411          case NVME_CQE_SC_SPC_INV_CQ:
1412 1412                  /* Completion Queue Invalid */
1413 1413                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1414 1414                  atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1415 1415                  return (EINVAL);
1416 1416  
1417 1417          case NVME_CQE_SC_SPC_INV_QID:
1418 1418                  /* Invalid Queue Identifier */
1419 1419                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1420 1420                      cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1421 1421                      cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1422 1422                      cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1423 1423                  atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1424 1424                  return (EINVAL);
1425 1425  
1426 1426          case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1427 1427                  /* Max Queue Size Exceeded */
1428 1428                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1429 1429                      cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1430 1430                  atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1431 1431                  return (EINVAL);
1432 1432  
1433 1433          case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1434 1434                  /* Abort Command Limit Exceeded */
1435 1435                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1436 1436                  dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1437 1437                      "abort command limit exceeded in cmd %p", (void *)cmd);
1438 1438                  return (0);
1439 1439  
1440 1440          case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1441 1441                  /* Async Event Request Limit Exceeded */
1442 1442                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1443 1443                  dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1444 1444                      "async event request limit exceeded in cmd %p",
1445 1445                      (void *)cmd);
1446 1446                  return (0);
1447 1447  
1448 1448          case NVME_CQE_SC_SPC_INV_INT_VECT:
1449 1449                  /* Invalid Interrupt Vector */
1450 1450                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1451 1451                  atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1452 1452                  return (EINVAL);
1453 1453  
1454 1454          case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1455 1455                  /* Invalid Log Page */
1456 1456                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1457 1457                  atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1458 1458                  return (EINVAL);
1459 1459  
1460 1460          case NVME_CQE_SC_SPC_INV_FORMAT:
1461 1461                  /* Invalid Format */
1462 1462                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1463 1463                  atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1464 1464                  if (cmd->nc_xfer != NULL)
1465 1465                          bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1466 1466                  return (EINVAL);
1467 1467  
1468 1468          case NVME_CQE_SC_SPC_INV_Q_DEL:
1469 1469                  /* Invalid Queue Deletion */
1470 1470                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1471 1471                  atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1472 1472                  return (EINVAL);
1473 1473  
1474 1474          case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1475 1475                  /* Conflicting Attributes */
1476 1476                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1477 1477                      cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1478 1478                      cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1479 1479                  atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1480 1480                  if (cmd->nc_xfer != NULL)
1481 1481                          bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1482 1482                  return (EINVAL);
1483 1483  
1484 1484          case NVME_CQE_SC_SPC_NVM_INV_PROT:
1485 1485                  /* Invalid Protection Information */
1486 1486                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1487 1487                      cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1488 1488                      cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1489 1489                  atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1490 1490                  if (cmd->nc_xfer != NULL)
1491 1491                          bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1492 1492                  return (EINVAL);
1493 1493  
1494 1494          case NVME_CQE_SC_SPC_NVM_READONLY:
1495 1495                  /* Write to Read Only Range */
1496 1496                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1497 1497                  atomic_inc_32(&cmd->nc_nvme->n_readonly);
1498 1498                  if (cmd->nc_xfer != NULL)
1499 1499                          bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1500 1500                  return (EROFS);
1501 1501  
1502 1502          case NVME_CQE_SC_SPC_INV_FW_SLOT:
1503 1503                  /* Invalid Firmware Slot */
1504 1504                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1505 1505                  return (EINVAL);
1506 1506  
1507 1507          case NVME_CQE_SC_SPC_INV_FW_IMG:
1508 1508                  /* Invalid Firmware Image */
1509 1509                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1510 1510                  return (EINVAL);
1511 1511  
1512 1512          case NVME_CQE_SC_SPC_FW_RESET:
1513 1513                  /* Conventional Reset Required */
1514 1514                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1515 1515                  return (0);
1516 1516  
1517 1517          case NVME_CQE_SC_SPC_FW_NSSR:
1518 1518                  /* NVMe Subsystem Reset Required */
1519 1519                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1520 1520                  return (0);
1521 1521  
1522 1522          case NVME_CQE_SC_SPC_FW_NEXT_RESET:
1523 1523                  /* Activation Requires Reset */
1524 1524                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1525 1525                  return (0);
1526 1526  
1527 1527          case NVME_CQE_SC_SPC_FW_MTFA:
1528 1528                  /* Activation Requires Maximum Time Violation */
1529 1529                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1530 1530                  return (EAGAIN);
1531 1531  
1532 1532          case NVME_CQE_SC_SPC_FW_PROHIBITED:
1533 1533                  /* Activation Prohibited */
1534 1534                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1535 1535                  return (EINVAL);
1536 1536  
1537 1537          case NVME_CQE_SC_SPC_FW_OVERLAP:
1538 1538                  /* Overlapping Firmware Ranges */
1539 1539                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_IMAGE_LOAD);
1540 1540                  return (EINVAL);
1541 1541  
1542 1542          default:
1543 1543                  return (nvme_check_unknown_cmd_status(cmd));
1544 1544          }
1545 1545  }
1546 1546  
1547 1547  static inline int
1548 1548  nvme_check_cmd_status(nvme_cmd_t *cmd)
1549 1549  {
1550 1550          nvme_cqe_t *cqe = &cmd->nc_cqe;
1551 1551  
1552 1552          /*
1553 1553           * Take a shortcut if the controller is dead, or if
1554 1554           * command status indicates no error.
1555 1555           */
1556 1556          if (cmd->nc_nvme->n_dead)
1557 1557                  return (EIO);
1558 1558  
1559 1559          if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1560 1560              cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1561 1561                  return (0);
1562 1562  
1563 1563          if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1564 1564                  return (nvme_check_generic_cmd_status(cmd));
1565 1565          else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1566 1566                  return (nvme_check_specific_cmd_status(cmd));
1567 1567          else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1568 1568                  return (nvme_check_integrity_cmd_status(cmd));
1569 1569          else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1570 1570                  return (nvme_check_vendor_cmd_status(cmd));
1571 1571  
1572 1572          return (nvme_check_unknown_cmd_status(cmd));
1573 1573  }
1574 1574  
1575 1575  static int
1576 1576  nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
1577 1577  {
1578 1578          nvme_t *nvme = abort_cmd->nc_nvme;
1579 1579          nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1580 1580          nvme_abort_cmd_t ac = { 0 };
1581 1581          int ret = 0;
1582 1582  
1583 1583          sema_p(&nvme->n_abort_sema);
1584 1584  
1585 1585          ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1586 1586          ac.b.ac_sqid = abort_cmd->nc_sqid;
1587 1587  
1588 1588          cmd->nc_sqid = 0;
1589 1589          cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1590 1590          cmd->nc_callback = nvme_wakeup_cmd;
1591 1591          cmd->nc_sqe.sqe_cdw10 = ac.r;
1592 1592  
1593 1593          /*
1594 1594           * Send the ABORT to the hardware. The ABORT command will return _after_
1595 1595           * the aborted command has completed (aborted or otherwise), but since
1596 1596           * we still hold the aborted command's mutex its callback hasn't been
1597 1597           * processed yet.
1598 1598           */
1599 1599          nvme_admin_cmd(cmd, sec);
1600 1600          sema_v(&nvme->n_abort_sema);
1601 1601  
1602 1602          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1603 1603                  dev_err(nvme->n_dip, CE_WARN,
1604 1604                      "!ABORT failed with sct = %x, sc = %x",
1605 1605                      cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1606 1606                  atomic_inc_32(&nvme->n_abort_failed);
1607 1607          } else {
1608 1608                  dev_err(nvme->n_dip, CE_WARN,
1609 1609                      "!ABORT of command %d/%d %ssuccessful",
1610 1610                      abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
1611 1611                      cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
1612 1612                  if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
1613 1613                          atomic_inc_32(&nvme->n_cmd_aborted);
1614 1614          }
1615 1615  
1616 1616          nvme_free_cmd(cmd);
1617 1617          return (ret);
1618 1618  }
1619 1619  
1620 1620  /*
1621 1621   * nvme_wait_cmd -- wait for command completion or timeout
1622 1622   *
1623 1623   * In case of a serious error or a timeout of the abort command the hardware
1624 1624   * will be declared dead and FMA will be notified.
1625 1625   */
1626 1626  static void
1627 1627  nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1628 1628  {
1629 1629          clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1630 1630          nvme_t *nvme = cmd->nc_nvme;
1631 1631          nvme_reg_csts_t csts;
1632 1632          nvme_qpair_t *qp;
1633 1633  
1634 1634          ASSERT(mutex_owned(&cmd->nc_mutex));
1635 1635  
1636 1636          while (!cmd->nc_completed) {
1637 1637                  if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1638 1638                          break;
1639 1639          }
1640 1640  
1641 1641          if (cmd->nc_completed)
1642 1642                  return;
1643 1643  
1644 1644          /*
1645 1645           * The command timed out.
1646 1646           *
1647 1647           * Check controller for fatal status, any errors associated with the
1648 1648           * register or DMA handle, or for a double timeout (abort command timed
1649 1649           * out). If necessary log a warning and call FMA.
1650 1650           */
1651 1651          csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1652 1652          dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
1653 1653              "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
1654 1654              cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1655 1655          atomic_inc_32(&nvme->n_cmd_timeout);
1656 1656  
1657 1657          if (csts.b.csts_cfs ||
1658 1658              nvme_check_regs_hdl(nvme) ||
1659 1659              nvme_check_dma_hdl(cmd->nc_dma) ||
1660 1660              cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1661 1661                  ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1662 1662                  nvme->n_dead = B_TRUE;
1663 1663          } else if (nvme_abort_cmd(cmd, sec) == 0) {
1664 1664                  /*
1665 1665                   * If the abort succeeded the command should complete
1666 1666                   * immediately with an appropriate status.
1667 1667                   */
1668 1668                  while (!cmd->nc_completed)
1669 1669                          cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1670 1670  
1671 1671                  return;
1672 1672          }
1673 1673  
1674 1674          qp = nvme->n_ioq[cmd->nc_sqid];
1675 1675  
1676 1676          mutex_enter(&qp->nq_mutex);
1677 1677          (void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1678 1678          mutex_exit(&qp->nq_mutex);
1679 1679  
1680 1680          /*
1681 1681           * As we don't know what the presumed dead hardware might still do with
1682 1682           * the DMA memory, we'll put the command on the lost commands list if it
1683 1683           * has any DMA memory.
1684 1684           */
1685 1685          if (cmd->nc_dma != NULL) {
1686 1686                  mutex_enter(&nvme_lc_mutex);
1687 1687                  list_insert_head(&nvme_lost_cmds, cmd);
1688 1688                  mutex_exit(&nvme_lc_mutex);
1689 1689          }
1690 1690  }
1691 1691  
1692 1692  static void
1693 1693  nvme_wakeup_cmd(void *arg)
1694 1694  {
1695 1695          nvme_cmd_t *cmd = arg;
1696 1696  
1697 1697          mutex_enter(&cmd->nc_mutex);
1698 1698          cmd->nc_completed = B_TRUE;
1699 1699          cv_signal(&cmd->nc_cv);
1700 1700          mutex_exit(&cmd->nc_mutex);
1701 1701  }
1702 1702  
1703 1703  static void
1704 1704  nvme_async_event_task(void *arg)
1705 1705  {
1706 1706          nvme_cmd_t *cmd = arg;
1707 1707          nvme_t *nvme = cmd->nc_nvme;
1708 1708          nvme_error_log_entry_t *error_log = NULL;
1709 1709          nvme_health_log_t *health_log = NULL;
1710 1710          size_t logsize = 0;
1711 1711          nvme_async_event_t event;
1712 1712  
1713 1713          /*
1714 1714           * Check for errors associated with the async request itself. The only
1715 1715           * command-specific error is "async event limit exceeded", which
1716 1716           * indicates a programming error in the driver and causes a panic in
1717 1717           * nvme_check_cmd_status().
1718 1718           *
1719 1719           * Other possible errors are various scenarios where the async request
1720 1720           * was aborted, or internal errors in the device. Internal errors are
1721 1721           * reported to FMA, the command aborts need no special handling here.
1722 1722           *
1723 1723           * And finally, at least qemu nvme does not support async events,
1724 1724           * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we
1725 1725           * will avoid posting async events.
1726 1726           */
1727 1727  
1728 1728          if (nvme_check_cmd_status(cmd) != 0) {
1729 1729                  dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1730 1730                      "!async event request returned failure, sct = %x, "
1731 1731                      "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1732 1732                      cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1733 1733                      cmd->nc_cqe.cqe_sf.sf_m);
1734 1734  
1735 1735                  if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1736 1736                      cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1737 1737                          cmd->nc_nvme->n_dead = B_TRUE;
1738 1738                          ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1739 1739                              DDI_SERVICE_LOST);
1740 1740                  }
1741 1741  
1742 1742                  if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1743 1743                      cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC &&
1744 1744                      cmd->nc_cqe.cqe_sf.sf_dnr == 1) {
1745 1745                          nvme->n_async_event_supported = B_FALSE;
1746 1746                  }
1747 1747  
1748 1748                  nvme_free_cmd(cmd);
1749 1749                  return;
1750 1750          }
1751 1751  
1752 1752  
1753 1753          event.r = cmd->nc_cqe.cqe_dw0;
1754 1754  
1755 1755          /* Clear CQE and re-submit the async request. */
1756 1756          bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1757 1757          nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1758 1758  
1759 1759          switch (event.b.ae_type) {
1760 1760          case NVME_ASYNC_TYPE_ERROR:
1761 1761                  if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1762 1762                          (void) nvme_get_logpage(nvme, B_FALSE,
1763 1763                              (void **)&error_log, &logsize, event.b.ae_logpage);
1764 1764                  } else {
1765 1765                          dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1766 1766                              "async event reply: %d", event.b.ae_logpage);
1767 1767                          atomic_inc_32(&nvme->n_wrong_logpage);
1768 1768                  }
1769 1769  
1770 1770                  switch (event.b.ae_info) {
1771 1771                  case NVME_ASYNC_ERROR_INV_SQ:
1772 1772                          dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1773 1773                              "invalid submission queue");
1774 1774                          return;
1775 1775  
1776 1776                  case NVME_ASYNC_ERROR_INV_DBL:
1777 1777                          dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1778 1778                              "invalid doorbell write value");
1779 1779                          return;
1780 1780  
1781 1781                  case NVME_ASYNC_ERROR_DIAGFAIL:
1782 1782                          dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1783 1783                          ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1784 1784                          nvme->n_dead = B_TRUE;
1785 1785                          atomic_inc_32(&nvme->n_diagfail_event);
1786 1786                          break;
1787 1787  
1788 1788                  case NVME_ASYNC_ERROR_PERSISTENT:
1789 1789                          dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1790 1790                              "device error");
1791 1791                          ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1792 1792                          nvme->n_dead = B_TRUE;
1793 1793                          atomic_inc_32(&nvme->n_persistent_event);
1794 1794                          break;
1795 1795  
1796 1796                  case NVME_ASYNC_ERROR_TRANSIENT:
1797 1797                          dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1798 1798                              "device error");
1799 1799                          /* TODO: send ereport */
1800 1800                          atomic_inc_32(&nvme->n_transient_event);
1801 1801                          break;
1802 1802  
1803 1803                  case NVME_ASYNC_ERROR_FW_LOAD:
1804 1804                          dev_err(nvme->n_dip, CE_WARN,
1805 1805                              "!firmware image load error");
1806 1806                          atomic_inc_32(&nvme->n_fw_load_event);
1807 1807                          break;
1808 1808                  }
1809 1809                  break;
1810 1810  
1811 1811          case NVME_ASYNC_TYPE_HEALTH:
1812 1812                  if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1813 1813                          (void) nvme_get_logpage(nvme, B_FALSE,
1814 1814                              (void **)&health_log, &logsize, event.b.ae_logpage,
1815 1815                              -1);
1816 1816                  } else {
1817 1817                          dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1818 1818                              "async event reply: %d", event.b.ae_logpage);
1819 1819                          atomic_inc_32(&nvme->n_wrong_logpage);
1820 1820                  }
1821 1821  
1822 1822                  switch (event.b.ae_info) {
1823 1823                  case NVME_ASYNC_HEALTH_RELIABILITY:
1824 1824                          dev_err(nvme->n_dip, CE_WARN,
1825 1825                              "!device reliability compromised");
1826 1826                          /* TODO: send ereport */
1827 1827                          atomic_inc_32(&nvme->n_reliability_event);
1828 1828                          break;
1829 1829  
1830 1830                  case NVME_ASYNC_HEALTH_TEMPERATURE:
1831 1831                          dev_err(nvme->n_dip, CE_WARN,
1832 1832                              "!temperature above threshold");
1833 1833                          /* TODO: send ereport */
1834 1834                          atomic_inc_32(&nvme->n_temperature_event);
1835 1835                          break;
1836 1836  
1837 1837                  case NVME_ASYNC_HEALTH_SPARE:
1838 1838                          dev_err(nvme->n_dip, CE_WARN,
1839 1839                              "!spare space below threshold");
1840 1840                          /* TODO: send ereport */
1841 1841                          atomic_inc_32(&nvme->n_spare_event);
1842 1842                          break;
1843 1843                  }
1844 1844                  break;
1845 1845  
1846 1846          case NVME_ASYNC_TYPE_VENDOR:
1847 1847                  dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1848 1848                      "received, info = %x, logpage = %x", event.b.ae_info,
1849 1849                      event.b.ae_logpage);
1850 1850                  atomic_inc_32(&nvme->n_vendor_event);
1851 1851                  break;
1852 1852  
1853 1853          default:
1854 1854                  dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1855 1855                      "type = %x, info = %x, logpage = %x", event.b.ae_type,
1856 1856                      event.b.ae_info, event.b.ae_logpage);
1857 1857                  atomic_inc_32(&nvme->n_unknown_event);
1858 1858                  break;
1859 1859          }
1860 1860  
1861 1861          if (error_log)
1862 1862                  kmem_free(error_log, logsize);
1863 1863  
1864 1864          if (health_log)
1865 1865                  kmem_free(health_log, logsize);
1866 1866  }
1867 1867  
1868 1868  static void
1869 1869  nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1870 1870  {
1871 1871          mutex_enter(&cmd->nc_mutex);
1872 1872          nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
1873 1873          nvme_wait_cmd(cmd, sec);
1874 1874          mutex_exit(&cmd->nc_mutex);
1875 1875  }
1876 1876  
1877 1877  static void
1878 1878  nvme_async_event(nvme_t *nvme)
1879 1879  {
1880 1880          nvme_cmd_t *cmd;
1881 1881  
1882 1882          cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1883 1883          cmd->nc_sqid = 0;
1884 1884          cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1885 1885          cmd->nc_callback = nvme_async_event_task;
1886 1886          cmd->nc_dontpanic = B_TRUE;
1887 1887  
1888 1888          nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1889 1889  }
1890 1890  
1891 1891  static int
1892 1892  nvme_format_nvm(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t lbaf,
1893 1893      boolean_t ms, uint8_t pi, boolean_t pil, uint8_t ses)
1894 1894  {
1895 1895          nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1896 1896          nvme_format_nvm_t format_nvm = { 0 };
1897 1897          int ret;
1898 1898  
1899 1899          format_nvm.b.fm_lbaf = lbaf & 0xf;
1900 1900          format_nvm.b.fm_ms = ms ? 1 : 0;
1901 1901          format_nvm.b.fm_pi = pi & 0x7;
1902 1902          format_nvm.b.fm_pil = pil ? 1 : 0;
1903 1903          format_nvm.b.fm_ses = ses & 0x7;
1904 1904  
1905 1905          cmd->nc_sqid = 0;
1906 1906          cmd->nc_callback = nvme_wakeup_cmd;
1907 1907          cmd->nc_sqe.sqe_nsid = nsid;
1908 1908          cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1909 1909          cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1910 1910  
1911 1911          /*
1912 1912           * Some devices like Samsung SM951 don't allow formatting of all
1913 1913           * namespaces in one command. Handle that gracefully.
1914 1914           */
1915 1915          if (nsid == (uint32_t)-1)
1916 1916                  cmd->nc_dontpanic = B_TRUE;
1917 1917          /*
1918 1918           * If this format request was initiated by the user, then don't allow a
1919 1919           * programmer error to panic the system.
1920 1920           */
1921 1921          if (user)
1922 1922                  cmd->nc_dontpanic = B_TRUE;
1923 1923  
1924 1924          nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
1925 1925  
1926 1926          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1927 1927                  dev_err(nvme->n_dip, CE_WARN,
1928 1928                      "!FORMAT failed with sct = %x, sc = %x",
1929 1929                      cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1930 1930          }
1931 1931  
1932 1932          nvme_free_cmd(cmd);
1933 1933          return (ret);
1934 1934  }
1935 1935  
1936 1936  static int
1937 1937  nvme_get_logpage(nvme_t *nvme, boolean_t user, void **buf, size_t *bufsize,
1938 1938      uint8_t logpage, ...)
1939 1939  {
1940 1940          nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1941 1941          nvme_getlogpage_t getlogpage = { 0 };
1942 1942          va_list ap;
1943 1943          int ret;
1944 1944  
1945 1945          va_start(ap, logpage);
1946 1946  
1947 1947          cmd->nc_sqid = 0;
1948 1948          cmd->nc_callback = nvme_wakeup_cmd;
1949 1949          cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1950 1950  
1951 1951          if (user)
1952 1952                  cmd->nc_dontpanic = B_TRUE;
1953 1953  
1954 1954          getlogpage.b.lp_lid = logpage;
1955 1955  
1956 1956          switch (logpage) {
1957 1957          case NVME_LOGPAGE_ERROR:
1958 1958                  cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1959 1959                  /*
1960 1960                   * The GET LOG PAGE command can use at most 2 pages to return
1961 1961                   * data, PRP lists are not supported.
1962 1962                   */
1963 1963                  *bufsize = MIN(2 * nvme->n_pagesize,
1964 1964                      nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
1965 1965                  break;
1966 1966  
1967 1967          case NVME_LOGPAGE_HEALTH:
1968 1968                  cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1969 1969                  *bufsize = sizeof (nvme_health_log_t);
1970 1970                  break;
1971 1971  
1972 1972          case NVME_LOGPAGE_FWSLOT:
1973 1973                  cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1974 1974                  *bufsize = sizeof (nvme_fwslot_log_t);
1975 1975                  break;
1976 1976  
1977 1977          default:
1978 1978                  dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1979 1979                      logpage);
1980 1980                  atomic_inc_32(&nvme->n_unknown_logpage);
1981 1981                  ret = EINVAL;
1982 1982                  goto fail;
1983 1983          }
1984 1984  
1985 1985          va_end(ap);
1986 1986  
1987 1987          getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
1988 1988  
1989 1989          cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1990 1990  
1991 1991          if (nvme_zalloc_dma(nvme, *bufsize,
1992 1992              DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1993 1993                  dev_err(nvme->n_dip, CE_WARN,
1994 1994                      "!nvme_zalloc_dma failed for GET LOG PAGE");
1995 1995                  ret = ENOMEM;
1996 1996                  goto fail;
1997 1997          }
1998 1998  
1999 1999          if (cmd->nc_dma->nd_ncookie > 2) {
2000 2000                  dev_err(nvme->n_dip, CE_WARN,
2001 2001                      "!too many DMA cookies for GET LOG PAGE");
2002 2002                  atomic_inc_32(&nvme->n_too_many_cookies);
2003 2003                  ret = ENOMEM;
2004 2004                  goto fail;
2005 2005          }
2006 2006  
2007 2007          cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
2008 2008          if (cmd->nc_dma->nd_ncookie > 1) {
2009 2009                  ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2010 2010                      &cmd->nc_dma->nd_cookie);
2011 2011                  cmd->nc_sqe.sqe_dptr.d_prp[1] =
2012 2012                      cmd->nc_dma->nd_cookie.dmac_laddress;
2013 2013          }
2014 2014  
2015 2015          nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2016 2016  
2017 2017          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2018 2018                  dev_err(nvme->n_dip, CE_WARN,
2019 2019                      "!GET LOG PAGE failed with sct = %x, sc = %x",
2020 2020                      cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2021 2021                  goto fail;
2022 2022          }
2023 2023  
2024 2024          *buf = kmem_alloc(*bufsize, KM_SLEEP);
2025 2025          bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2026 2026  
2027 2027  fail:
2028 2028          nvme_free_cmd(cmd);
2029 2029  
2030 2030          return (ret);
2031 2031  }
2032 2032  
2033 2033  static int
2034 2034  nvme_identify(nvme_t *nvme, boolean_t user, uint32_t nsid, void **buf)
2035 2035  {
2036 2036          nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2037 2037          int ret;
2038 2038  
2039 2039          if (buf == NULL)
2040 2040                  return (EINVAL);
2041 2041  
2042 2042          cmd->nc_sqid = 0;
2043 2043          cmd->nc_callback = nvme_wakeup_cmd;
2044 2044          cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
2045 2045          cmd->nc_sqe.sqe_nsid = nsid;
2046 2046          cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
2047 2047  
2048 2048          if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
2049 2049              &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2050 2050                  dev_err(nvme->n_dip, CE_WARN,
2051 2051                      "!nvme_zalloc_dma failed for IDENTIFY");
2052 2052                  ret = ENOMEM;
2053 2053                  goto fail;
2054 2054          }
2055 2055  
2056 2056          if (cmd->nc_dma->nd_ncookie > 2) {
2057 2057                  dev_err(nvme->n_dip, CE_WARN,
2058 2058                      "!too many DMA cookies for IDENTIFY");
2059 2059                  atomic_inc_32(&nvme->n_too_many_cookies);
2060 2060                  ret = ENOMEM;
2061 2061                  goto fail;
2062 2062          }
2063 2063  
2064 2064          cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
2065 2065          if (cmd->nc_dma->nd_ncookie > 1) {
2066 2066                  ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2067 2067                      &cmd->nc_dma->nd_cookie);
2068 2068                  cmd->nc_sqe.sqe_dptr.d_prp[1] =
2069 2069                      cmd->nc_dma->nd_cookie.dmac_laddress;
2070 2070          }
2071 2071  
2072 2072          if (user)
2073 2073                  cmd->nc_dontpanic = B_TRUE;
2074 2074  
2075 2075          nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2076 2076  
2077 2077          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2078 2078                  dev_err(nvme->n_dip, CE_WARN,
2079 2079                      "!IDENTIFY failed with sct = %x, sc = %x",
2080 2080                      cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2081 2081                  goto fail;
2082 2082          }
2083 2083  
2084 2084          *buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
2085 2085          bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
2086 2086  
2087 2087  fail:
2088 2088          nvme_free_cmd(cmd);
2089 2089  
2090 2090          return (ret);
2091 2091  }
2092 2092  
2093 2093  static int
2094 2094  nvme_set_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
2095 2095      uint32_t val, uint32_t *res)
2096 2096  {
2097 2097          _NOTE(ARGUNUSED(nsid));
2098 2098          nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2099 2099          int ret = EINVAL;
2100 2100  
2101 2101          ASSERT(res != NULL);
2102 2102  
2103 2103          cmd->nc_sqid = 0;
2104 2104          cmd->nc_callback = nvme_wakeup_cmd;
2105 2105          cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
2106 2106          cmd->nc_sqe.sqe_cdw10 = feature;
2107 2107          cmd->nc_sqe.sqe_cdw11 = val;
2108 2108  
2109 2109          if (user)
2110 2110                  cmd->nc_dontpanic = B_TRUE;
2111 2111  
2112 2112          switch (feature) {
2113 2113          case NVME_FEAT_WRITE_CACHE:
2114 2114                  if (!nvme->n_write_cache_present)
2115 2115                          goto fail;
2116 2116                  break;
2117 2117  
2118 2118          case NVME_FEAT_NQUEUES:
2119 2119                  break;
2120 2120  
2121 2121          default:
2122 2122                  goto fail;
2123 2123          }
2124 2124  
2125 2125          nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2126 2126  
2127 2127          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2128 2128                  dev_err(nvme->n_dip, CE_WARN,
2129 2129                      "!SET FEATURES %d failed with sct = %x, sc = %x",
2130 2130                      feature, cmd->nc_cqe.cqe_sf.sf_sct,
2131 2131                      cmd->nc_cqe.cqe_sf.sf_sc);
2132 2132                  goto fail;
2133 2133          }
2134 2134  
2135 2135          *res = cmd->nc_cqe.cqe_dw0;
2136 2136  
2137 2137  fail:
2138 2138          nvme_free_cmd(cmd);
2139 2139          return (ret);
2140 2140  }
2141 2141  
2142 2142  static int
2143 2143  nvme_get_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
2144 2144      uint32_t *res, void **buf, size_t *bufsize)
2145 2145  {
2146 2146          nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2147 2147          int ret = EINVAL;
2148 2148  
2149 2149          ASSERT(res != NULL);
2150 2150  
2151 2151          if (bufsize != NULL)
2152 2152                  *bufsize = 0;
2153 2153  
2154 2154          cmd->nc_sqid = 0;
2155 2155          cmd->nc_callback = nvme_wakeup_cmd;
2156 2156          cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
2157 2157          cmd->nc_sqe.sqe_cdw10 = feature;
2158 2158          cmd->nc_sqe.sqe_cdw11 = *res;
2159 2159  
2160 2160          /*
2161 2161           * For some of the optional features there doesn't seem to be a method
2162 2162           * of detecting whether it is supported other than using it.  This will
2163 2163           * cause "Invalid Field in Command" error, which is normally considered
2164 2164           * a programming error.  Set the nc_dontpanic flag to override the panic
2165 2165           * in nvme_check_generic_cmd_status().
2166 2166           */
2167 2167          switch (feature) {
2168 2168          case NVME_FEAT_ARBITRATION:
2169 2169          case NVME_FEAT_POWER_MGMT:
2170 2170          case NVME_FEAT_TEMPERATURE:
2171 2171          case NVME_FEAT_ERROR:
2172 2172          case NVME_FEAT_NQUEUES:
2173 2173          case NVME_FEAT_INTR_COAL:
2174 2174          case NVME_FEAT_INTR_VECT:
2175 2175          case NVME_FEAT_WRITE_ATOM:
2176 2176          case NVME_FEAT_ASYNC_EVENT:
2177 2177                  break;
2178 2178  
2179 2179          case NVME_FEAT_WRITE_CACHE:
2180 2180                  if (!nvme->n_write_cache_present)
2181 2181                          goto fail;
2182 2182                  break;
2183 2183  
2184 2184          case NVME_FEAT_LBA_RANGE:
2185 2185                  if (!nvme->n_lba_range_supported)
2186 2186                          goto fail;
2187 2187  
2188 2188                  cmd->nc_dontpanic = B_TRUE;
2189 2189                  cmd->nc_sqe.sqe_nsid = nsid;
2190 2190                  ASSERT(bufsize != NULL);
2191 2191                  *bufsize = NVME_LBA_RANGE_BUFSIZE;
2192 2192                  break;
2193 2193  
2194 2194          case NVME_FEAT_AUTO_PST:
2195 2195                  if (!nvme->n_auto_pst_supported)
2196 2196                          goto fail;
2197 2197  
2198 2198                  ASSERT(bufsize != NULL);
2199 2199                  *bufsize = NVME_AUTO_PST_BUFSIZE;
2200 2200                  break;
2201 2201  
2202 2202          case NVME_FEAT_PROGRESS:
2203 2203                  if (!nvme->n_progress_supported)
2204 2204                          goto fail;
2205 2205  
2206 2206                  cmd->nc_dontpanic = B_TRUE;
2207 2207                  break;
2208 2208  
2209 2209          default:
2210 2210                  goto fail;
2211 2211          }
2212 2212  
2213 2213          if (user)
2214 2214                  cmd->nc_dontpanic = B_TRUE;
2215 2215  
2216 2216          if (bufsize != NULL && *bufsize != 0) {
2217 2217                  if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
2218 2218                      &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2219 2219                          dev_err(nvme->n_dip, CE_WARN,
2220 2220                              "!nvme_zalloc_dma failed for GET FEATURES");
2221 2221                          ret = ENOMEM;
2222 2222                          goto fail;
2223 2223                  }
2224 2224  
2225 2225                  if (cmd->nc_dma->nd_ncookie > 2) {
2226 2226                          dev_err(nvme->n_dip, CE_WARN,
2227 2227                              "!too many DMA cookies for GET FEATURES");
2228 2228                          atomic_inc_32(&nvme->n_too_many_cookies);
2229 2229                          ret = ENOMEM;
2230 2230                          goto fail;
2231 2231                  }
2232 2232  
2233 2233                  cmd->nc_sqe.sqe_dptr.d_prp[0] =
2234 2234                      cmd->nc_dma->nd_cookie.dmac_laddress;
2235 2235                  if (cmd->nc_dma->nd_ncookie > 1) {
2236 2236                          ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2237 2237                              &cmd->nc_dma->nd_cookie);
2238 2238                          cmd->nc_sqe.sqe_dptr.d_prp[1] =
2239 2239                              cmd->nc_dma->nd_cookie.dmac_laddress;
2240 2240                  }
2241 2241          }
2242 2242  
2243 2243          nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2244 2244  
2245 2245          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2246 2246                  boolean_t known = B_TRUE;
2247 2247  
2248 2248                  /* Check if this is unsupported optional feature */
2249 2249                  if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
2250 2250                      cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) {
2251 2251                          switch (feature) {
2252 2252                          case NVME_FEAT_LBA_RANGE:
2253 2253                                  nvme->n_lba_range_supported = B_FALSE;
2254 2254                                  break;
2255 2255                          case NVME_FEAT_PROGRESS:
2256 2256                                  nvme->n_progress_supported = B_FALSE;
2257 2257                                  break;
2258 2258                          default:
2259 2259                                  known = B_FALSE;
2260 2260                                  break;
2261 2261                          }
2262 2262                  } else {
2263 2263                          known = B_FALSE;
2264 2264                  }
2265 2265  
2266 2266                  /* Report the error otherwise */
2267 2267                  if (!known) {
2268 2268                          dev_err(nvme->n_dip, CE_WARN,
2269 2269                              "!GET FEATURES %d failed with sct = %x, sc = %x",
2270 2270                              feature, cmd->nc_cqe.cqe_sf.sf_sct,
2271 2271                              cmd->nc_cqe.cqe_sf.sf_sc);
2272 2272                  }
2273 2273  
2274 2274                  goto fail;
2275 2275          }
2276 2276  
2277 2277          if (bufsize != NULL && *bufsize != 0) {
2278 2278                  ASSERT(buf != NULL);
2279 2279                  *buf = kmem_alloc(*bufsize, KM_SLEEP);
2280 2280                  bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2281 2281          }
2282 2282  
2283 2283          *res = cmd->nc_cqe.cqe_dw0;
2284 2284  
2285 2285  fail:
2286 2286          nvme_free_cmd(cmd);
2287 2287          return (ret);
2288 2288  }
2289 2289  
2290 2290  static int
2291 2291  nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
2292 2292  {
2293 2293          nvme_write_cache_t nwc = { 0 };
2294 2294  
2295 2295          if (enable)
2296 2296                  nwc.b.wc_wce = 1;
2297 2297  
2298 2298          return (nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_WRITE_CACHE,
2299 2299              nwc.r, &nwc.r));
2300 2300  }
2301 2301  
2302 2302  static int
2303 2303  nvme_set_nqueues(nvme_t *nvme)
2304 2304  {
2305 2305          nvme_nqueues_t nq = { 0 };
2306 2306          int ret;
2307 2307  
2308 2308          /*
2309 2309           * The default is to allocate one completion queue per vector.
2310 2310           */
2311 2311          if (nvme->n_completion_queues == -1)
2312 2312                  nvme->n_completion_queues = nvme->n_intr_cnt;
2313 2313  
2314 2314          /*
2315 2315           * There is no point in having more compeletion queues than
2316 2316           * interrupt vectors.
2317 2317           */
2318 2318          nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2319 2319              nvme->n_intr_cnt);
2320 2320  
2321 2321          /*
2322 2322           * The default is to use one submission queue per completion queue.
2323 2323           */
2324 2324          if (nvme->n_submission_queues == -1)
2325 2325                  nvme->n_submission_queues = nvme->n_completion_queues;
2326 2326  
2327 2327          /*
2328 2328           * There is no point in having more compeletion queues than
2329 2329           * submission queues.
2330 2330           */
2331 2331          nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2332 2332              nvme->n_submission_queues);
2333 2333  
2334 2334          ASSERT(nvme->n_submission_queues > 0);
2335 2335          ASSERT(nvme->n_completion_queues > 0);
2336 2336  
2337 2337          nq.b.nq_nsq = nvme->n_submission_queues - 1;
2338 2338          nq.b.nq_ncq = nvme->n_completion_queues - 1;
2339 2339  
2340 2340          ret = nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_NQUEUES, nq.r,
2341 2341              &nq.r);
2342 2342  
2343 2343          if (ret == 0) {
2344 2344                  /*
2345 2345                   * Never use more than the requested number of queues.
2346 2346                   */
2347 2347                  nvme->n_submission_queues = MIN(nvme->n_submission_queues,
2348 2348                      nq.b.nq_nsq + 1);
2349 2349                  nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2350 2350                      nq.b.nq_ncq + 1);
2351 2351          }
2352 2352  
2353 2353          return (ret);
2354 2354  }
2355 2355  
2356 2356  static int
2357 2357  nvme_create_completion_queue(nvme_t *nvme, nvme_cq_t *cq)
2358 2358  {
2359 2359          nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2360 2360          nvme_create_queue_dw10_t dw10 = { 0 };
2361 2361          nvme_create_cq_dw11_t c_dw11 = { 0 };
2362 2362          int ret;
2363 2363  
2364 2364          dw10.b.q_qid = cq->ncq_id;
2365 2365          dw10.b.q_qsize = cq->ncq_nentry - 1;
2366 2366  
2367 2367          c_dw11.b.cq_pc = 1;
2368 2368          c_dw11.b.cq_ien = 1;
2369 2369          c_dw11.b.cq_iv = cq->ncq_id % nvme->n_intr_cnt;
2370 2370  
2371 2371          cmd->nc_sqid = 0;
2372 2372          cmd->nc_callback = nvme_wakeup_cmd;
2373 2373          cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
2374 2374          cmd->nc_sqe.sqe_cdw10 = dw10.r;
2375 2375          cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
2376 2376          cmd->nc_sqe.sqe_dptr.d_prp[0] = cq->ncq_dma->nd_cookie.dmac_laddress;
2377 2377  
2378 2378          nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2379 2379  
2380 2380          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2381 2381                  dev_err(nvme->n_dip, CE_WARN,
2382 2382                      "!CREATE CQUEUE failed with sct = %x, sc = %x",
2383 2383                      cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2384 2384          }
2385 2385  
2386 2386          nvme_free_cmd(cmd);
2387 2387  
2388 2388          return (ret);
2389 2389  }
2390 2390  
2391 2391  static int
2392 2392  nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
2393 2393  {
2394 2394          nvme_cq_t *cq = qp->nq_cq;
2395 2395          nvme_cmd_t *cmd;
2396 2396          nvme_create_queue_dw10_t dw10 = { 0 };
2397 2397          nvme_create_sq_dw11_t s_dw11 = { 0 };
2398 2398          int ret;
2399 2399  
2400 2400          /*
2401 2401           * It is possible to have more qpairs than completion queues,
2402 2402           * and when the idx > ncq_id, that completion queue is shared
2403 2403           * and has already been created.
2404 2404           */
2405 2405          if (idx <= cq->ncq_id &&
2406 2406              nvme_create_completion_queue(nvme, cq) != DDI_SUCCESS)
2407 2407                  return (DDI_FAILURE);
2408 2408  
2409 2409          dw10.b.q_qid = idx;
2410 2410          dw10.b.q_qsize = qp->nq_nentry - 1;
2411 2411  
2412 2412          s_dw11.b.sq_pc = 1;
2413 2413          s_dw11.b.sq_cqid = cq->ncq_id;
2414 2414  
2415 2415          cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2416 2416          cmd->nc_sqid = 0;
2417 2417          cmd->nc_callback = nvme_wakeup_cmd;
2418 2418          cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2419 2419          cmd->nc_sqe.sqe_cdw10 = dw10.r;
2420 2420          cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2421 2421          cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2422 2422  
2423 2423          nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2424 2424  
2425 2425          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2426 2426                  dev_err(nvme->n_dip, CE_WARN,
2427 2427                      "!CREATE SQUEUE failed with sct = %x, sc = %x",
2428 2428                      cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2429 2429          }
2430 2430  
2431 2431          nvme_free_cmd(cmd);
2432 2432  
2433 2433          return (ret);
2434 2434  }
2435 2435  
2436 2436  static boolean_t
2437 2437  nvme_reset(nvme_t *nvme, boolean_t quiesce)
2438 2438  {
2439 2439          nvme_reg_csts_t csts;
2440 2440          int i;
2441 2441  
2442 2442          nvme_put32(nvme, NVME_REG_CC, 0);
2443 2443  
2444 2444          csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2445 2445          if (csts.b.csts_rdy == 1) {
2446 2446                  nvme_put32(nvme, NVME_REG_CC, 0);
2447 2447                  for (i = 0; i != nvme->n_timeout * 10; i++) {
2448 2448                          csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2449 2449                          if (csts.b.csts_rdy == 0)
2450 2450                                  break;
2451 2451  
2452 2452                          if (quiesce)
2453 2453                                  drv_usecwait(50000);
2454 2454                          else
2455 2455                                  delay(drv_usectohz(50000));
2456 2456                  }
2457 2457          }
2458 2458  
2459 2459          nvme_put32(nvme, NVME_REG_AQA, 0);
2460 2460          nvme_put32(nvme, NVME_REG_ASQ, 0);
2461 2461          nvme_put32(nvme, NVME_REG_ACQ, 0);
2462 2462  
2463 2463          csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2464 2464          return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2465 2465  }
2466 2466  
2467 2467  static void
2468 2468  nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2469 2469  {
2470 2470          nvme_reg_cc_t cc;
2471 2471          nvme_reg_csts_t csts;
2472 2472          int i;
2473 2473  
2474 2474          ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2475 2475  
2476 2476          cc.r = nvme_get32(nvme, NVME_REG_CC);
2477 2477          cc.b.cc_shn = mode & 0x3;
2478 2478          nvme_put32(nvme, NVME_REG_CC, cc.r);
2479 2479  
2480 2480          for (i = 0; i != 10; i++) {
2481 2481                  csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2482 2482                  if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2483 2483                          break;
2484 2484  
2485 2485                  if (quiesce)
2486 2486                          drv_usecwait(100000);
2487 2487                  else
2488 2488                          delay(drv_usectohz(100000));
2489 2489          }
2490 2490  }
2491 2491  
2492 2492  
2493 2493  static void
2494 2494  nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2495 2495  {
2496 2496          /*
2497 2497           * Section 7.7 of the spec describes how to get a unique ID for
2498 2498           * the controller: the vendor ID, the model name and the serial
2499 2499           * number shall be unique when combined.
2500 2500           *
2501 2501           * If a namespace has no EUI64 we use the above and add the hex
2502 2502           * namespace ID to get a unique ID for the namespace.
2503 2503           */
2504 2504          char model[sizeof (nvme->n_idctl->id_model) + 1];
2505 2505          char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2506 2506  
2507 2507          bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2508 2508          bcopy(nvme->n_idctl->id_serial, serial,
2509 2509              sizeof (nvme->n_idctl->id_serial));
2510 2510  
2511 2511          model[sizeof (nvme->n_idctl->id_model)] = '\0';
2512 2512          serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2513 2513  
2514 2514          nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2515 2515              nvme->n_idctl->id_vid, model, serial, nsid);
2516 2516  }
2517 2517  
2518 2518  static int
2519 2519  nvme_init_ns(nvme_t *nvme, int nsid)
2520 2520  {
2521 2521          nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2522 2522          nvme_identify_nsid_t *idns;
2523 2523          boolean_t was_ignored;
2524 2524          int last_rp;
2525 2525  
2526 2526          ns->ns_nvme = nvme;
2527 2527  
2528 2528          if (nvme_identify(nvme, B_FALSE, nsid, (void **)&idns) != 0) {
2529 2529                  dev_err(nvme->n_dip, CE_WARN,
2530 2530                      "!failed to identify namespace %d", nsid);
2531 2531                  return (DDI_FAILURE);
2532 2532          }
2533 2533  
2534 2534          ns->ns_idns = idns;
2535 2535          ns->ns_id = nsid;
2536 2536          ns->ns_block_count = idns->id_nsize;
2537 2537          ns->ns_block_size =
2538 2538              1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2539 2539          ns->ns_best_block_size = ns->ns_block_size;
2540 2540  
2541 2541          /*
2542 2542           * Get the EUI64 if present. Use it for devid and device node names.
2543 2543           */
2544 2544          if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2545 2545                  bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2546 2546  
2547 2547          /*LINTED: E_BAD_PTR_CAST_ALIGN*/
2548 2548          if (*(uint64_t *)ns->ns_eui64 != 0) {
2549 2549                  uint8_t *eui64 = ns->ns_eui64;
2550 2550  
2551 2551                  (void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2552 2552                      "%02x%02x%02x%02x%02x%02x%02x%02x",
2553 2553                      eui64[0], eui64[1], eui64[2], eui64[3],
2554 2554                      eui64[4], eui64[5], eui64[6], eui64[7]);
2555 2555          } else {
2556 2556                  (void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2557 2557                      ns->ns_id);
2558 2558  
2559 2559                  nvme_prepare_devid(nvme, ns->ns_id);
2560 2560          }
2561 2561  
2562 2562          /*
2563 2563           * Find the LBA format with no metadata and the best relative
2564 2564           * performance. A value of 3 means "degraded", 0 is best.
2565 2565           */
2566 2566          last_rp = 3;
2567 2567          for (int j = 0; j <= idns->id_nlbaf; j++) {
2568 2568                  if (idns->id_lbaf[j].lbaf_lbads == 0)
2569 2569                          break;
2570 2570                  if (idns->id_lbaf[j].lbaf_ms != 0)
2571 2571                          continue;
2572 2572                  if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2573 2573                          continue;
2574 2574                  last_rp = idns->id_lbaf[j].lbaf_rp;
2575 2575                  ns->ns_best_block_size =
2576 2576                      1 << idns->id_lbaf[j].lbaf_lbads;
2577 2577          }
2578 2578  
2579 2579          if (ns->ns_best_block_size < nvme->n_min_block_size)
2580 2580                  ns->ns_best_block_size = nvme->n_min_block_size;
2581 2581  
2582 2582          was_ignored = ns->ns_ignore;
2583 2583  
2584 2584          /*
2585 2585           * We currently don't support namespaces that use either:
2586 2586           * - protection information
2587 2587           * - illegal block size (< 512)
2588 2588           */
2589 2589          if (idns->id_dps.dp_pinfo) {
2590 2590                  dev_err(nvme->n_dip, CE_WARN,
2591 2591                      "!ignoring namespace %d, unsupported feature: "
2592 2592                      "pinfo = %d", nsid, idns->id_dps.dp_pinfo);
2593 2593                  ns->ns_ignore = B_TRUE;
2594 2594          } else if (ns->ns_block_size < 512) {
2595 2595                  dev_err(nvme->n_dip, CE_WARN,
2596 2596                      "!ignoring namespace %d, unsupported block size %"PRIu64,
2597 2597                      nsid, (uint64_t)ns->ns_block_size);
2598 2598                  ns->ns_ignore = B_TRUE;
2599 2599          } else {
2600 2600                  ns->ns_ignore = B_FALSE;
2601 2601          }
2602 2602  
2603 2603          /*
2604 2604           * Keep a count of namespaces which are attachable.
2605 2605           * See comments in nvme_bd_driveinfo() to understand its effect.
2606 2606           */
2607 2607          if (was_ignored) {
2608 2608                  /*
2609 2609                   * Previously ignored, but now not. Count it.
2610 2610                   */
2611 2611                  if (!ns->ns_ignore)
2612 2612                          nvme->n_namespaces_attachable++;
2613 2613          } else {
2614 2614                  /*
2615 2615                   * Wasn't ignored previously, but now needs to be.
2616 2616                   * Discount it.
2617 2617                   */
2618 2618                  if (ns->ns_ignore)
2619 2619                          nvme->n_namespaces_attachable--;
2620 2620          }
2621 2621  
2622 2622          return (DDI_SUCCESS);
2623 2623  }
2624 2624  
2625 2625  static int
2626 2626  nvme_init(nvme_t *nvme)
2627 2627  {
2628 2628          nvme_reg_cc_t cc = { 0 };
2629 2629          nvme_reg_aqa_t aqa = { 0 };
2630 2630          nvme_reg_asq_t asq = { 0 };
2631 2631          nvme_reg_acq_t acq = { 0 };
2632 2632          nvme_reg_cap_t cap;
2633 2633          nvme_reg_vs_t vs;
2634 2634          nvme_reg_csts_t csts;
2635 2635          int i = 0;
2636 2636          uint16_t nqueues;
2637 2637          uint_t tq_threads;
2638 2638          char model[sizeof (nvme->n_idctl->id_model) + 1];
2639 2639          char *vendor, *product;
2640 2640  
2641 2641          /* Check controller version */
2642 2642          vs.r = nvme_get32(nvme, NVME_REG_VS);
2643 2643          nvme->n_version.v_major = vs.b.vs_mjr;
2644 2644          nvme->n_version.v_minor = vs.b.vs_mnr;
2645 2645          dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2646 2646              nvme->n_version.v_major, nvme->n_version.v_minor);
2647 2647  
2648 2648          if (nvme->n_version.v_major > nvme_version_major) {
2649 2649                  dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.x",
2650 2650                      nvme_version_major);
2651 2651                  if (nvme->n_strict_version)
2652 2652                          goto fail;
2653 2653          }
2654 2654  
2655 2655          /* retrieve controller configuration */
2656 2656          cap.r = nvme_get64(nvme, NVME_REG_CAP);
2657 2657  
2658 2658          if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2659 2659                  dev_err(nvme->n_dip, CE_WARN,
2660 2660                      "!NVM command set not supported by hardware");
2661 2661                  goto fail;
2662 2662          }
2663 2663  
2664 2664          nvme->n_nssr_supported = cap.b.cap_nssrs;
2665 2665          nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2666 2666          nvme->n_timeout = cap.b.cap_to;
2667 2667          nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2668 2668          nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2669 2669          nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2670 2670  
2671 2671          /*
2672 2672           * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2673 2673           * the base page size of 4k (1<<12), so add 12 here to get the real
2674 2674           * page size value.
2675 2675           */
2676 2676          nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2677 2677              cap.b.cap_mpsmax + 12);
2678 2678          nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2679 2679  
2680 2680          /*
2681 2681           * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2682 2682           */
2683 2683          nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2684 2684          nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2685 2685  
2686 2686          /*
2687 2687           * Set up PRP DMA to transfer 1 page-aligned page at a time.
2688 2688           * Maxxfer may be increased after we identified the controller limits.
2689 2689           */
2690 2690          nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2691 2691          nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2692 2692          nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2693 2693          nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2694 2694  
2695 2695          /*
2696 2696           * Reset controller if it's still in ready state.
2697 2697           */
2698 2698          if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2699 2699                  dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2700 2700                  ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2701 2701                  nvme->n_dead = B_TRUE;
2702 2702                  goto fail;
2703 2703          }
2704 2704  
2705 2705          /*
2706 2706           * Create the cq array with one completion queue to be assigned
2707 2707           * to the admin queue pair and a limited number of taskqs (4).
2708 2708           */
2709 2709          if (nvme_create_cq_array(nvme, 1, nvme->n_admin_queue_len, 4) !=
2710 2710              DDI_SUCCESS) {
2711 2711                  dev_err(nvme->n_dip, CE_WARN,
2712 2712                      "!failed to pre-allocate admin completion queue");
2713 2713                  goto fail;
2714 2714          }
2715 2715          /*
2716 2716           * Create the admin queue pair.
2717 2717           */
2718 2718          if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2719 2719              != DDI_SUCCESS) {
2720 2720                  dev_err(nvme->n_dip, CE_WARN,
2721 2721                      "!unable to allocate admin qpair");
2722 2722                  goto fail;
2723 2723          }
2724 2724          nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2725 2725          nvme->n_ioq[0] = nvme->n_adminq;
2726 2726  
2727 2727          nvme->n_progress |= NVME_ADMIN_QUEUE;
2728 2728  
2729 2729          (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2730 2730              "admin-queue-len", nvme->n_admin_queue_len);
2731 2731  
2732 2732          aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2733 2733          asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2734 2734          acq = nvme->n_adminq->nq_cq->ncq_dma->nd_cookie.dmac_laddress;
2735 2735  
2736 2736          ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2737 2737          ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2738 2738  
2739 2739          nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2740 2740          nvme_put64(nvme, NVME_REG_ASQ, asq);
2741 2741          nvme_put64(nvme, NVME_REG_ACQ, acq);
2742 2742  
2743 2743          cc.b.cc_ams = 0;        /* use Round-Robin arbitration */
2744 2744          cc.b.cc_css = 0;        /* use NVM command set */
2745 2745          cc.b.cc_mps = nvme->n_pageshift - 12;
2746 2746          cc.b.cc_shn = 0;        /* no shutdown in progress */
2747 2747          cc.b.cc_en = 1;         /* enable controller */
2748 2748          cc.b.cc_iosqes = 6;     /* submission queue entry is 2^6 bytes long */
2749 2749          cc.b.cc_iocqes = 4;     /* completion queue entry is 2^4 bytes long */
2750 2750  
2751 2751          nvme_put32(nvme, NVME_REG_CC, cc.r);
2752 2752  
2753 2753          /*
2754 2754           * Wait for the controller to become ready.
2755 2755           */
2756 2756          csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2757 2757          if (csts.b.csts_rdy == 0) {
2758 2758                  for (i = 0; i != nvme->n_timeout * 10; i++) {
2759 2759                          delay(drv_usectohz(50000));
2760 2760                          csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2761 2761  
2762 2762                          if (csts.b.csts_cfs == 1) {
2763 2763                                  dev_err(nvme->n_dip, CE_WARN,
2764 2764                                      "!controller fatal status at init");
2765 2765                                  ddi_fm_service_impact(nvme->n_dip,
2766 2766                                      DDI_SERVICE_LOST);
2767 2767                                  nvme->n_dead = B_TRUE;
2768 2768                                  goto fail;
2769 2769                          }
2770 2770  
2771 2771                          if (csts.b.csts_rdy == 1)
2772 2772                                  break;
2773 2773                  }
2774 2774          }
2775 2775  
2776 2776          if (csts.b.csts_rdy == 0) {
2777 2777                  dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2778 2778                  ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2779 2779                  nvme->n_dead = B_TRUE;
2780 2780                  goto fail;
2781 2781          }
2782 2782  
2783 2783          /*
2784 2784           * Assume an abort command limit of 1. We'll destroy and re-init
2785 2785           * that later when we know the true abort command limit.
2786 2786           */
2787 2787          sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2788 2788  
2789 2789          /*
2790 2790           * Setup initial interrupt for admin queue.
2791 2791           */
2792 2792          if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2793 2793              != DDI_SUCCESS) &&
2794 2794              (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2795 2795              != DDI_SUCCESS) &&
2796 2796              (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2797 2797              != DDI_SUCCESS)) {
2798 2798                  dev_err(nvme->n_dip, CE_WARN,
2799 2799                      "!failed to setup initial interrupt");
2800 2800                  goto fail;
2801 2801          }
2802 2802  
2803 2803          /*
2804 2804           * Post an asynchronous event command to catch errors.
2805 2805           * We assume the asynchronous events are supported as required by
2806 2806           * specification (Figure 40 in section 5 of NVMe 1.2).
2807 2807           * However, since at least qemu does not follow the specification,
2808 2808           * we need a mechanism to protect ourselves.
2809 2809           */
2810 2810          nvme->n_async_event_supported = B_TRUE;
2811 2811          nvme_async_event(nvme);
2812 2812  
2813 2813          /*
2814 2814           * Identify Controller
2815 2815           */
2816 2816          if (nvme_identify(nvme, B_FALSE, 0, (void **)&nvme->n_idctl) != 0) {
2817 2817                  dev_err(nvme->n_dip, CE_WARN,
2818 2818                      "!failed to identify controller");
2819 2819                  goto fail;
2820 2820          }
2821 2821  
2822 2822          /*
2823 2823           * Get Vendor & Product ID
2824 2824           */
2825 2825          bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2826 2826          model[sizeof (nvme->n_idctl->id_model)] = '\0';
2827 2827          sata_split_model(model, &vendor, &product);
2828 2828  
2829 2829          if (vendor == NULL)
2830 2830                  nvme->n_vendor = strdup("NVMe");
2831 2831          else
2832 2832                  nvme->n_vendor = strdup(vendor);
2833 2833  
2834 2834          nvme->n_product = strdup(product);
2835 2835  
2836 2836          /*
2837 2837           * Get controller limits.
2838 2838           */
2839 2839          nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2840 2840              MIN(nvme->n_admin_queue_len / 10,
2841 2841              MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2842 2842  
2843 2843          (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2844 2844              "async-event-limit", nvme->n_async_event_limit);
2845 2845  
2846 2846          nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2847 2847  
2848 2848          /*
2849 2849           * Reinitialize the semaphore with the true abort command limit
2850 2850           * supported by the hardware. It's not necessary to disable interrupts
2851 2851           * as only command aborts use the semaphore, and no commands are
2852 2852           * executed or aborted while we're here.
2853 2853           */
2854 2854          sema_destroy(&nvme->n_abort_sema);
2855 2855          sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2856 2856              SEMA_DRIVER, NULL);
2857 2857  
2858 2858          nvme->n_progress |= NVME_CTRL_LIMITS;
2859 2859  
2860 2860          if (nvme->n_idctl->id_mdts == 0)
2861 2861                  nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2862 2862          else
2863 2863                  nvme->n_max_data_transfer_size =
2864 2864                      1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2865 2865  
2866 2866          nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2867 2867  
2868 2868          /*
2869 2869           * Limit n_max_data_transfer_size to what we can handle in one PRP.
2870 2870           * Chained PRPs are currently unsupported.
2871 2871           *
2872 2872           * This is a no-op on hardware which doesn't support a transfer size
2873 2873           * big enough to require chained PRPs.
2874 2874           */
2875 2875          nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2876 2876              (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2877 2877  
2878 2878          nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2879 2879  
2880 2880          /*
2881 2881           * Make sure the minimum/maximum queue entry sizes are not
2882 2882           * larger/smaller than the default.
2883 2883           */
2884 2884  
2885 2885          if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2886 2886              ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2887 2887              ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2888 2888              ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2889 2889                  goto fail;
2890 2890  
2891 2891          /*
2892 2892           * Check for the presence of a Volatile Write Cache. If present,
2893 2893           * enable or disable based on the value of the property
2894 2894           * volatile-write-cache-enable (default is enabled).
2895 2895           */
2896 2896          nvme->n_write_cache_present =
2897 2897              nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2898 2898  
2899 2899          (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2900 2900              "volatile-write-cache-present",
2901 2901              nvme->n_write_cache_present ? 1 : 0);
2902 2902  
2903 2903          if (!nvme->n_write_cache_present) {
2904 2904                  nvme->n_write_cache_enabled = B_FALSE;
2905 2905          } else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
2906 2906              != 0) {
2907 2907                  dev_err(nvme->n_dip, CE_WARN,
2908 2908                      "!failed to %sable volatile write cache",
2909 2909                      nvme->n_write_cache_enabled ? "en" : "dis");
2910 2910                  /*
2911 2911                   * Assume the cache is (still) enabled.
2912 2912                   */
2913 2913                  nvme->n_write_cache_enabled = B_TRUE;
2914 2914          }
2915 2915  
2916 2916          (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2917 2917              "volatile-write-cache-enable",
2918 2918              nvme->n_write_cache_enabled ? 1 : 0);
2919 2919  
2920 2920          /*
2921 2921           * Assume LBA Range Type feature is supported. If it isn't this
2922 2922           * will be set to B_FALSE by nvme_get_features().
2923 2923           */
2924 2924          nvme->n_lba_range_supported = B_TRUE;
2925 2925  
2926 2926          /*
2927 2927           * Check support for Autonomous Power State Transition.
2928 2928           */
2929 2929          if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2930 2930                  nvme->n_auto_pst_supported =
2931 2931                      nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
2932 2932  
2933 2933          /*
2934 2934           * Assume Software Progress Marker feature is supported.  If it isn't
2935 2935           * this will be set to B_FALSE by nvme_get_features().
2936 2936           */
2937 2937          nvme->n_progress_supported = B_TRUE;
2938 2938  
2939 2939          /*
2940 2940           * Identify Namespaces
2941 2941           */
2942 2942          nvme->n_namespace_count = nvme->n_idctl->id_nn;
2943 2943  
2944 2944          if (nvme->n_namespace_count == 0) {
2945 2945                  dev_err(nvme->n_dip, CE_WARN,
2946 2946                      "!controllers without namespaces are not supported");
2947 2947                  goto fail;
2948 2948          }
2949 2949  
2950 2950          if (nvme->n_namespace_count > NVME_MINOR_MAX) {
2951 2951                  dev_err(nvme->n_dip, CE_WARN,
2952 2952                      "!too many namespaces: %d, limiting to %d\n",
2953 2953                      nvme->n_namespace_count, NVME_MINOR_MAX);
2954 2954                  nvme->n_namespace_count = NVME_MINOR_MAX;
2955 2955          }
2956 2956  
2957 2957          nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2958 2958              nvme->n_namespace_count, KM_SLEEP);
2959 2959  
2960 2960          for (i = 0; i != nvme->n_namespace_count; i++) {
2961 2961                  mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
2962 2962                      NULL);
2963 2963                  nvme->n_ns[i].ns_ignore = B_TRUE;
2964 2964                  if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
2965 2965                          goto fail;
2966 2966          }
2967 2967  
2968 2968          /*
2969 2969           * Try to set up MSI/MSI-X interrupts.
2970 2970           */
2971 2971          if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2972 2972              != 0) {
2973 2973                  nvme_release_interrupts(nvme);
2974 2974  
2975 2975                  nqueues = MIN(UINT16_MAX, ncpus);
2976 2976  
2977 2977                  if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2978 2978                      nqueues) != DDI_SUCCESS) &&
2979 2979                      (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2980 2980                      nqueues) != DDI_SUCCESS)) {
2981 2981                          dev_err(nvme->n_dip, CE_WARN,
2982 2982                              "!failed to setup MSI/MSI-X interrupts");
2983 2983                          goto fail;
2984 2984                  }
2985 2985          }
2986 2986  
2987 2987          /*
2988 2988           * Create I/O queue pairs.
2989 2989           */
2990 2990  
2991 2991          if (nvme_set_nqueues(nvme) != 0) {
2992 2992                  dev_err(nvme->n_dip, CE_WARN,
2993 2993                      "!failed to set number of I/O queues to %d",
2994 2994                      nvme->n_intr_cnt);
2995 2995                  goto fail;
2996 2996          }
2997 2997  
2998 2998          /*
2999 2999           * Reallocate I/O queue array
3000 3000           */
3001 3001          kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
3002 3002          nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
3003 3003              (nvme->n_submission_queues + 1), KM_SLEEP);
3004 3004          nvme->n_ioq[0] = nvme->n_adminq;
3005 3005  
3006 3006          /*
3007 3007           * There should always be at least as many submission queues
3008 3008           * as completion queues.
3009 3009           */
3010 3010          ASSERT(nvme->n_submission_queues >= nvme->n_completion_queues);
3011 3011  
3012 3012          nvme->n_ioq_count = nvme->n_submission_queues;
3013 3013  
3014 3014          nvme->n_io_squeue_len =
3015 3015              MIN(nvme->n_io_squeue_len, nvme->n_max_queue_entries);
3016 3016  
3017 3017          (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-squeue-len",
3018 3018              nvme->n_io_squeue_len);
3019 3019  
3020 3020          /*
3021 3021           * Pre-allocate completion queues.
3022 3022           * When there are the same number of submission and completion
3023 3023           * queues there is no value in having a larger completion
3024 3024           * queue length.
3025 3025           */
3026 3026          if (nvme->n_submission_queues == nvme->n_completion_queues)
3027 3027                  nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
3028 3028                      nvme->n_io_squeue_len);
3029 3029  
3030 3030          nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
3031 3031              nvme->n_max_queue_entries);
3032 3032  
3033 3033          (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-cqueue-len",
3034 3034              nvme->n_io_cqueue_len);
3035 3035  
3036 3036          /*
3037 3037           * Assign the equal quantity of taskq threads to each completion
3038 3038           * queue, capping the total number of threads to the number
3039 3039           * of CPUs.
3040 3040           */
3041 3041          tq_threads = MIN(UINT16_MAX, ncpus) / nvme->n_completion_queues;
3042 3042  
3043 3043          /*
3044 3044           * In case the calculation above is zero, we need at least one
3045 3045           * thread per completion queue.
3046 3046           */
3047 3047          tq_threads = MAX(1, tq_threads);
3048 3048  
3049 3049          if (nvme_create_cq_array(nvme, nvme->n_completion_queues + 1,
3050 3050              nvme->n_io_cqueue_len, tq_threads) != DDI_SUCCESS) {
3051 3051                  dev_err(nvme->n_dip, CE_WARN,
3052 3052                      "!failed to pre-allocate completion queues");
3053 3053                  goto fail;
3054 3054          }
3055 3055  
3056 3056          /*
3057 3057           * If we use less completion queues than interrupt vectors return
3058 3058           * some of the interrupt vectors back to the system.
3059 3059           */
3060 3060          if (nvme->n_completion_queues + 1 < nvme->n_intr_cnt) {
3061 3061                  nvme_release_interrupts(nvme);
3062 3062  
3063 3063                  if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
3064 3064                      nvme->n_completion_queues + 1) != DDI_SUCCESS) {
3065 3065                          dev_err(nvme->n_dip, CE_WARN,
3066 3066                              "!failed to reduce number of interrupts");
3067 3067                          goto fail;
3068 3068                  }
3069 3069          }
3070 3070  
3071 3071          /*
3072 3072           * Alloc & register I/O queue pairs
3073 3073           */
3074 3074  
3075 3075          for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3076 3076                  if (nvme_alloc_qpair(nvme, nvme->n_io_squeue_len,
3077 3077                      &nvme->n_ioq[i], i) != DDI_SUCCESS) {
3078 3078                          dev_err(nvme->n_dip, CE_WARN,
3079 3079                              "!unable to allocate I/O qpair %d", i);
3080 3080                          goto fail;
3081 3081                  }
3082 3082  
3083 3083                  if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
3084 3084                          dev_err(nvme->n_dip, CE_WARN,
3085 3085                              "!unable to create I/O qpair %d", i);
3086 3086                          goto fail;
3087 3087                  }
3088 3088          }
3089 3089  
3090 3090          /*
3091 3091           * Post more asynchronous events commands to reduce event reporting
3092 3092           * latency as suggested by the spec.
3093 3093           */
3094 3094          if (nvme->n_async_event_supported) {
3095 3095                  for (i = 1; i != nvme->n_async_event_limit; i++)
3096 3096                          nvme_async_event(nvme);
3097 3097          }
3098 3098  
3099 3099          return (DDI_SUCCESS);
3100 3100  
3101 3101  fail:
3102 3102          (void) nvme_reset(nvme, B_FALSE);
3103 3103          return (DDI_FAILURE);
3104 3104  }
3105 3105  
3106 3106  static uint_t
3107 3107  nvme_intr(caddr_t arg1, caddr_t arg2)
3108 3108  {
3109 3109          /*LINTED: E_PTR_BAD_CAST_ALIGN*/
3110 3110          nvme_t *nvme = (nvme_t *)arg1;
3111 3111          int inum = (int)(uintptr_t)arg2;
3112 3112          int ccnt = 0;
3113 3113          int qnum;
3114 3114  
3115 3115          if (inum >= nvme->n_intr_cnt)
3116 3116                  return (DDI_INTR_UNCLAIMED);
3117 3117  
3118 3118          if (nvme->n_dead)
3119 3119                  return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
3120 3120                      DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
3121 3121  
3122 3122          /*
3123 3123           * The interrupt vector a queue uses is calculated as queue_idx %
3124 3124           * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
3125 3125           * in steps of n_intr_cnt to process all queues using this vector.
3126 3126           */
3127 3127          for (qnum = inum;
3128 3128              qnum < nvme->n_cq_count && nvme->n_cq[qnum] != NULL;
3129 3129              qnum += nvme->n_intr_cnt) {
3130 3130                  ccnt += nvme_process_iocq(nvme, nvme->n_cq[qnum]);
3131 3131          }
3132 3132  
3133 3133          return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
3134 3134  }
3135 3135  
3136 3136  static void
3137 3137  nvme_release_interrupts(nvme_t *nvme)
3138 3138  {
3139 3139          int i;
3140 3140  
3141 3141          for (i = 0; i < nvme->n_intr_cnt; i++) {
3142 3142                  if (nvme->n_inth[i] == NULL)
3143 3143                          break;
3144 3144  
3145 3145                  if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
3146 3146                          (void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
3147 3147                  else
3148 3148                          (void) ddi_intr_disable(nvme->n_inth[i]);
3149 3149  
3150 3150                  (void) ddi_intr_remove_handler(nvme->n_inth[i]);
3151 3151                  (void) ddi_intr_free(nvme->n_inth[i]);
3152 3152          }
3153 3153  
3154 3154          kmem_free(nvme->n_inth, nvme->n_inth_sz);
3155 3155          nvme->n_inth = NULL;
3156 3156          nvme->n_inth_sz = 0;
3157 3157  
3158 3158          nvme->n_progress &= ~NVME_INTERRUPTS;
3159 3159  }
3160 3160  
3161 3161  static int
3162 3162  nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
3163 3163  {
3164 3164          int nintrs, navail, count;
3165 3165          int ret;
3166 3166          int i;
3167 3167  
3168 3168          if (nvme->n_intr_types == 0) {
3169 3169                  ret = ddi_intr_get_supported_types(nvme->n_dip,
3170 3170                      &nvme->n_intr_types);
3171 3171                  if (ret != DDI_SUCCESS) {
3172 3172                          dev_err(nvme->n_dip, CE_WARN,
3173 3173                              "!%s: ddi_intr_get_supported types failed",
3174 3174                              __func__);
3175 3175                          return (ret);
3176 3176                  }
3177 3177  #ifdef __x86
3178 3178                  if (get_hwenv() == HW_VMWARE)
3179 3179                          nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
3180 3180  #endif
3181 3181          }
3182 3182  
3183 3183          if ((nvme->n_intr_types & intr_type) == 0)
3184 3184                  return (DDI_FAILURE);
3185 3185  
3186 3186          ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
3187 3187          if (ret != DDI_SUCCESS) {
3188 3188                  dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
3189 3189                      __func__);
3190 3190                  return (ret);
3191 3191          }
3192 3192  
3193 3193          ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
3194 3194          if (ret != DDI_SUCCESS) {
3195 3195                  dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
3196 3196                      __func__);
3197 3197                  return (ret);
3198 3198          }
3199 3199  
3200 3200          /* We want at most one interrupt per queue pair. */
3201 3201          if (navail > nqpairs)
3202 3202                  navail = nqpairs;
3203 3203  
3204 3204          nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
3205 3205          nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
3206 3206  
3207 3207          ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
3208 3208              &count, 0);
3209 3209          if (ret != DDI_SUCCESS) {
3210 3210                  dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
3211 3211                      __func__);
3212 3212                  goto fail;
3213 3213          }
3214 3214  
3215 3215          nvme->n_intr_cnt = count;
3216 3216  
3217 3217          ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
3218 3218          if (ret != DDI_SUCCESS) {
3219 3219                  dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
3220 3220                      __func__);
3221 3221                  goto fail;
3222 3222          }
3223 3223  
3224 3224          for (i = 0; i < count; i++) {
3225 3225                  ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
3226 3226                      (void *)nvme, (void *)(uintptr_t)i);
3227 3227                  if (ret != DDI_SUCCESS) {
3228 3228                          dev_err(nvme->n_dip, CE_WARN,
3229 3229                              "!%s: ddi_intr_add_handler failed", __func__);
3230 3230                          goto fail;
3231 3231                  }
3232 3232          }
3233 3233  
3234 3234          (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
3235 3235  
3236 3236          for (i = 0; i < count; i++) {
3237 3237                  if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
3238 3238                          ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
3239 3239                  else
3240 3240                          ret = ddi_intr_enable(nvme->n_inth[i]);
3241 3241  
3242 3242                  if (ret != DDI_SUCCESS) {
3243 3243                          dev_err(nvme->n_dip, CE_WARN,
3244 3244                              "!%s: enabling interrupt %d failed", __func__, i);
3245 3245                          goto fail;
3246 3246                  }
3247 3247          }
3248 3248  
3249 3249          nvme->n_intr_type = intr_type;
3250 3250  
3251 3251          nvme->n_progress |= NVME_INTERRUPTS;
3252 3252  
3253 3253          return (DDI_SUCCESS);
3254 3254  
3255 3255  fail:
3256 3256          nvme_release_interrupts(nvme);
3257 3257  
3258 3258          return (ret);
3259 3259  }
3260 3260  
3261 3261  static int
3262 3262  nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
3263 3263  {
3264 3264          _NOTE(ARGUNUSED(arg));
3265 3265  
3266 3266          pci_ereport_post(dip, fm_error, NULL);
3267 3267          return (fm_error->fme_status);
3268 3268  }
3269 3269  
3270 3270  static int
3271 3271  nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3272 3272  {
3273 3273          nvme_t *nvme;
3274 3274          int instance;
3275 3275          int nregs;
3276 3276          off_t regsize;
3277 3277          int i;
3278 3278          char name[32];
3279 3279          bd_ops_t ops = nvme_bd_ops;
3280 3280  
3281 3281          if (cmd != DDI_ATTACH)
3282 3282                  return (DDI_FAILURE);
3283 3283  
3284 3284          instance = ddi_get_instance(dip);
3285 3285  
3286 3286          if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
3287 3287                  return (DDI_FAILURE);
3288 3288  
3289 3289          nvme = ddi_get_soft_state(nvme_state, instance);
3290 3290          ddi_set_driver_private(dip, nvme);
3291 3291          nvme->n_dip = dip;
3292 3292  
3293 3293          mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
3294 3294  
3295 3295          nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3296 3296              DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
3297 3297          nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
3298 3298              dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
3299 3299              B_TRUE : B_FALSE;
3300 3300          nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3301 3301              DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
3302 3302          nvme->n_io_squeue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3303 3303              DDI_PROP_DONTPASS, "io-squeue-len", NVME_DEFAULT_IO_QUEUE_LEN);
3304 3304          /*
3305 3305           * Double up the default for completion queues in case of
3306 3306           * queue sharing.
3307 3307           */
3308 3308          nvme->n_io_cqueue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3309 3309              DDI_PROP_DONTPASS, "io-cqueue-len", 2 * NVME_DEFAULT_IO_QUEUE_LEN);
3310 3310          nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3311 3311              DDI_PROP_DONTPASS, "async-event-limit",
3312 3312              NVME_DEFAULT_ASYNC_EVENT_LIMIT);
3313 3313          nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3314 3314              DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
3315 3315              B_TRUE : B_FALSE;
3316 3316          nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3317 3317              DDI_PROP_DONTPASS, "min-phys-block-size",
3318 3318              NVME_DEFAULT_MIN_BLOCK_SIZE);
3319 3319          nvme->n_submission_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3320 3320              DDI_PROP_DONTPASS, "max-submission-queues", -1);
3321 3321          nvme->n_completion_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3322 3322              DDI_PROP_DONTPASS, "max-completion-queues", -1);
3323 3323  
3324 3324          if (!ISP2(nvme->n_min_block_size) ||
3325 3325              (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
3326 3326                  dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
3327 3327                      "using default %d", ISP2(nvme->n_min_block_size) ?
3328 3328                      "too low" : "not a power of 2",
3329 3329                      NVME_DEFAULT_MIN_BLOCK_SIZE);
3330 3330                  nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
3331 3331          }
3332 3332  
3333 3333          if (nvme->n_submission_queues != -1 &&
3334 3334              (nvme->n_submission_queues < 1 ||
3335 3335              nvme->n_submission_queues > UINT16_MAX)) {
3336 3336                  dev_err(dip, CE_WARN, "!\"submission-queues\"=%d is not "
3337 3337                      "valid. Must be [1..%d]", nvme->n_submission_queues,
3338 3338                      UINT16_MAX);
3339 3339                  nvme->n_submission_queues = -1;
3340 3340          }
3341 3341  
3342 3342          if (nvme->n_completion_queues != -1 &&
3343 3343              (nvme->n_completion_queues < 1 ||
3344 3344              nvme->n_completion_queues > UINT16_MAX)) {
3345 3345                  dev_err(dip, CE_WARN, "!\"completion-queues\"=%d is not "
3346 3346                      "valid. Must be [1..%d]", nvme->n_completion_queues,
3347 3347                      UINT16_MAX);
3348 3348                  nvme->n_completion_queues = -1;
3349 3349          }
3350 3350  
3351 3351          if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
3352 3352                  nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
3353 3353          else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
3354 3354                  nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
3355 3355  
3356 3356          if (nvme->n_io_squeue_len < NVME_MIN_IO_QUEUE_LEN)
3357 3357                  nvme->n_io_squeue_len = NVME_MIN_IO_QUEUE_LEN;
3358 3358          if (nvme->n_io_cqueue_len < NVME_MIN_IO_QUEUE_LEN)
3359 3359                  nvme->n_io_cqueue_len = NVME_MIN_IO_QUEUE_LEN;
3360 3360  
3361 3361          if (nvme->n_async_event_limit < 1)
3362 3362                  nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
3363 3363  
3364 3364          nvme->n_reg_acc_attr = nvme_reg_acc_attr;
3365 3365          nvme->n_queue_dma_attr = nvme_queue_dma_attr;
3366 3366          nvme->n_prp_dma_attr = nvme_prp_dma_attr;
3367 3367          nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
3368 3368  
3369 3369          /*
3370 3370           * Setup FMA support.
3371 3371           */
3372 3372          nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
3373 3373              DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
3374 3374              DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
3375 3375              DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
3376 3376  
3377 3377          ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
3378 3378  
3379 3379          if (nvme->n_fm_cap) {
3380 3380                  if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
3381 3381                          nvme->n_reg_acc_attr.devacc_attr_access =
3382 3382                              DDI_FLAGERR_ACC;
3383 3383  
3384 3384                  if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
3385 3385                          nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
3386 3386                          nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
3387 3387                  }
3388 3388  
3389 3389                  if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3390 3390                      DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3391 3391                          pci_ereport_setup(dip);
3392 3392  
3393 3393                  if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3394 3394                          ddi_fm_handler_register(dip, nvme_fm_errcb,
3395 3395                              (void *)nvme);
3396 3396          }
3397 3397  
3398 3398          nvme->n_progress |= NVME_FMA_INIT;
3399 3399  
3400 3400          /*
3401 3401           * The spec defines several register sets. Only the controller
3402 3402           * registers (set 1) are currently used.
3403 3403           */
3404 3404          if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
3405 3405              nregs < 2 ||
3406 3406              ddi_dev_regsize(dip, 1, ®size) == DDI_FAILURE)
3407 3407                  goto fail;
3408 3408  
3409 3409          if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
3410 3410              &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
3411 3411                  dev_err(dip, CE_WARN, "!failed to map regset 1");
3412 3412                  goto fail;
3413 3413          }
3414 3414  
3415 3415          nvme->n_progress |= NVME_REGS_MAPPED;
3416 3416  
3417 3417          /*
3418 3418           * Create PRP DMA cache
3419 3419           */
3420 3420          (void) snprintf(name, sizeof (name), "%s%d_prp_cache",
3421 3421              ddi_driver_name(dip), ddi_get_instance(dip));
3422 3422          nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
3423 3423              0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
3424 3424              NULL, (void *)nvme, NULL, 0);
3425 3425  
3426 3426          if (nvme_init(nvme) != DDI_SUCCESS)
3427 3427                  goto fail;
3428 3428  
3429 3429          if (!nvme->n_idctl->id_oncs.on_dset_mgmt)
3430 3430                  ops.o_free_space = NULL;
3431 3431  
3432 3432          /*
3433 3433           * Initialize the driver with the UFM subsystem
3434 3434           */
3435 3435          if (ddi_ufm_init(dip, DDI_UFM_CURRENT_VERSION, &nvme_ufm_ops,
3436 3436              &nvme->n_ufmh, nvme) != 0) {
3437 3437                  dev_err(dip, CE_WARN, "!failed to initialize UFM subsystem");
3438 3438                  goto fail;
3439 3439          }
3440 3440          mutex_init(&nvme->n_fwslot_mutex, NULL, MUTEX_DRIVER, NULL);
3441 3441          ddi_ufm_update(nvme->n_ufmh);
3442 3442          nvme->n_progress |= NVME_UFM_INIT;
3443 3443  
3444 3444          /*
3445 3445           * Attach the blkdev driver for each namespace.
3446 3446           */
3447 3447          for (i = 0; i != nvme->n_namespace_count; i++) {
3448 3448                  if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
3449 3449                      S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
3450 3450                      DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
3451 3451                          dev_err(dip, CE_WARN,
3452 3452                              "!failed to create minor node for namespace %d", i);
3453 3453                          goto fail;
3454 3454                  }
3455 3455  
3456 3456                  if (nvme->n_ns[i].ns_ignore)
3457 3457                          continue;
3458 3458  
3459 3459                  nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
3460 3460                      &ops, &nvme->n_prp_dma_attr, KM_SLEEP);
3461 3461  
3462 3462                  if (nvme->n_ns[i].ns_bd_hdl == NULL) {
3463 3463                          dev_err(dip, CE_WARN,
3464 3464                              "!failed to get blkdev handle for namespace %d", i);
3465 3465                          goto fail;
3466 3466                  }
3467 3467  
3468 3468                  if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
3469 3469                      != DDI_SUCCESS) {
3470 3470                          dev_err(dip, CE_WARN,
3471 3471                              "!failed to attach blkdev handle for namespace %d",
3472 3472                              i);
3473 3473                          goto fail;
3474 3474                  }
3475 3475          }
3476 3476  
3477 3477          if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
3478 3478              NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
3479 3479              != DDI_SUCCESS) {
3480 3480                  dev_err(dip, CE_WARN, "nvme_attach: "
3481 3481                      "cannot create devctl minor node");
3482 3482                  goto fail;
3483 3483          }
3484 3484  
3485 3485          return (DDI_SUCCESS);
3486 3486  
3487 3487  fail:
3488 3488          /* attach successful anyway so that FMA can retire the device */
3489 3489          if (nvme->n_dead)
3490 3490                  return (DDI_SUCCESS);
3491 3491  
3492 3492          (void) nvme_detach(dip, DDI_DETACH);
3493 3493  
3494 3494          return (DDI_FAILURE);
3495 3495  }
3496 3496  
3497 3497  static int
3498 3498  nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3499 3499  {
3500 3500          int instance, i;
3501 3501          nvme_t *nvme;
3502 3502  
3503 3503          if (cmd != DDI_DETACH)
3504 3504                  return (DDI_FAILURE);
3505 3505  
3506 3506          instance = ddi_get_instance(dip);
3507 3507  
3508 3508          nvme = ddi_get_soft_state(nvme_state, instance);
3509 3509  
3510 3510          if (nvme == NULL)
3511 3511                  return (DDI_FAILURE);
3512 3512  
3513 3513          ddi_remove_minor_node(dip, "devctl");
3514 3514          mutex_destroy(&nvme->n_minor.nm_mutex);
3515 3515  
3516 3516          if (nvme->n_ns) {
3517 3517                  for (i = 0; i != nvme->n_namespace_count; i++) {
3518 3518                          ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
3519 3519                          mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
3520 3520  
3521 3521                          if (nvme->n_ns[i].ns_bd_hdl) {
3522 3522                                  (void) bd_detach_handle(
3523 3523                                      nvme->n_ns[i].ns_bd_hdl);
3524 3524                                  bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
3525 3525                          }
3526 3526  
3527 3527                          if (nvme->n_ns[i].ns_idns)
3528 3528                                  kmem_free(nvme->n_ns[i].ns_idns,
3529 3529                                      sizeof (nvme_identify_nsid_t));
3530 3530                          if (nvme->n_ns[i].ns_devid)
3531 3531                                  strfree(nvme->n_ns[i].ns_devid);
3532 3532                  }
3533 3533  
3534 3534                  kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3535 3535                      nvme->n_namespace_count);
3536 3536          }
3537 3537          if (nvme->n_progress & NVME_UFM_INIT) {
3538 3538                  ddi_ufm_fini(nvme->n_ufmh);
3539 3539                  mutex_destroy(&nvme->n_fwslot_mutex);
3540 3540          }
3541 3541  
3542 3542          if (nvme->n_progress & NVME_INTERRUPTS)
3543 3543                  nvme_release_interrupts(nvme);
3544 3544  
3545 3545          for (i = 0; i < nvme->n_cq_count; i++) {
3546 3546                  if (nvme->n_cq[i]->ncq_cmd_taskq != NULL)
3547 3547                          taskq_wait(nvme->n_cq[i]->ncq_cmd_taskq);
3548 3548          }
3549 3549  
3550 3550          if (nvme->n_ioq_count > 0) {
3551 3551                  for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3552 3552                          if (nvme->n_ioq[i] != NULL) {
3553 3553                                  /* TODO: send destroy queue commands */
3554 3554                                  nvme_free_qpair(nvme->n_ioq[i]);
3555 3555                          }
3556 3556                  }
3557 3557  
3558 3558                  kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3559 3559                      (nvme->n_ioq_count + 1));
3560 3560          }
3561 3561  
3562 3562          if (nvme->n_prp_cache != NULL) {
3563 3563                  kmem_cache_destroy(nvme->n_prp_cache);
3564 3564          }
3565 3565  
3566 3566          if (nvme->n_progress & NVME_REGS_MAPPED) {
3567 3567                  nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3568 3568                  (void) nvme_reset(nvme, B_FALSE);
3569 3569          }
3570 3570  
3571 3571          if (nvme->n_progress & NVME_CTRL_LIMITS)
3572 3572                  sema_destroy(&nvme->n_abort_sema);
3573 3573  
3574 3574          if (nvme->n_progress & NVME_ADMIN_QUEUE)
3575 3575                  nvme_free_qpair(nvme->n_adminq);
3576 3576  
3577 3577          if (nvme->n_cq_count > 0) {
3578 3578                  nvme_destroy_cq_array(nvme, 0);
3579 3579                  nvme->n_cq = NULL;
3580 3580                  nvme->n_cq_count = 0;
3581 3581          }
3582 3582  
3583 3583          if (nvme->n_idctl)
3584 3584                  kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3585 3585  
3586 3586          if (nvme->n_progress & NVME_REGS_MAPPED)
3587 3587                  ddi_regs_map_free(&nvme->n_regh);
3588 3588  
3589 3589          if (nvme->n_progress & NVME_FMA_INIT) {
3590 3590                  if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3591 3591                          ddi_fm_handler_unregister(nvme->n_dip);
3592 3592  
3593 3593                  if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3594 3594                      DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3595 3595                          pci_ereport_teardown(nvme->n_dip);
3596 3596  
3597 3597                  ddi_fm_fini(nvme->n_dip);
3598 3598          }
3599 3599  
3600 3600          if (nvme->n_vendor != NULL)
3601 3601                  strfree(nvme->n_vendor);
3602 3602  
3603 3603          if (nvme->n_product != NULL)
3604 3604                  strfree(nvme->n_product);
3605 3605  
3606 3606          ddi_soft_state_free(nvme_state, instance);
3607 3607  
3608 3608          return (DDI_SUCCESS);
3609 3609  }
3610 3610  
3611 3611  static int
3612 3612  nvme_quiesce(dev_info_t *dip)
3613 3613  {
3614 3614          int instance;
3615 3615          nvme_t *nvme;
3616 3616  
3617 3617          instance = ddi_get_instance(dip);
3618 3618  
3619 3619          nvme = ddi_get_soft_state(nvme_state, instance);
3620 3620  
3621 3621          if (nvme == NULL)
3622 3622                  return (DDI_FAILURE);
3623 3623  
3624 3624          nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3625 3625  
3626 3626          (void) nvme_reset(nvme, B_TRUE);
3627 3627  
3628 3628          return (DDI_FAILURE);
3629 3629  }
3630 3630  
3631 3631  static int
3632 3632  nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
3633 3633  {
3634 3634          nvme_t *nvme = cmd->nc_nvme;
3635 3635          int nprp_page, nprp;
3636 3636          uint64_t *prp;
3637 3637  
3638 3638          if (xfer->x_ndmac == 0)
3639 3639                  return (DDI_FAILURE);
3640 3640  
3641 3641          cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
3642 3642  
3643 3643          if (xfer->x_ndmac == 1) {
3644 3644                  cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3645 3645                  return (DDI_SUCCESS);
3646 3646          } else if (xfer->x_ndmac == 2) {
3647 3647                  ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3648 3648                  cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
3649 3649                  return (DDI_SUCCESS);
3650 3650          }
3651 3651  
3652 3652          xfer->x_ndmac--;
3653 3653  
3654 3654          nprp_page = nvme->n_pagesize / sizeof (uint64_t);
3655 3655          ASSERT(nprp_page > 0);
3656 3656          nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
3657 3657  
3658 3658          /*
3659 3659           * We currently don't support chained PRPs and set up our DMA
3660 3660           * attributes to reflect that. If we still get an I/O request
3661 3661           * that needs a chained PRP something is very wrong.
3662 3662           */
3663 3663          VERIFY(nprp == 1);
3664 3664  
3665 3665          cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3666 3666          bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3667 3667  
3668 3668          cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
3669 3669  
3670 3670          /*LINTED: E_PTR_BAD_CAST_ALIGN*/
3671 3671          for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
3672 3672              xfer->x_ndmac > 0;
3673 3673              prp++, xfer->x_ndmac--) {
3674 3674                  ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3675 3675                  *prp = xfer->x_dmac.dmac_laddress;
3676 3676          }
3677 3677  
3678 3678          (void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3679 3679              DDI_DMA_SYNC_FORDEV);
3680 3680          return (DDI_SUCCESS);
3681 3681  }
3682 3682  
3683 3683  /*
3684 3684   * The maximum number of requests supported for a deallocate request is
3685 3685   * NVME_DSET_MGMT_MAX_RANGES (256) -- this is from the NVMe 1.1 spec (and
3686 3686   * unchanged through at least 1.4a). The definition of nvme_range_t is also
3687 3687   * from the NVMe 1.1 spec. Together, the result is that all of the ranges for
3688 3688   * a deallocate request will fit into the smallest supported namespace page
3689 3689   * (4k).
3690 3690   */
3691 3691  CTASSERT(sizeof (nvme_range_t) * NVME_DSET_MGMT_MAX_RANGES == 4096);
3692 3692  
3693 3693  static int
3694 3694  nvme_fill_ranges(nvme_cmd_t *cmd, bd_xfer_t *xfer, uint64_t blocksize,
3695 3695      int allocflag)
3696 3696  {
3697 3697          const dkioc_free_list_t *dfl = xfer->x_dfl;
3698 3698          const dkioc_free_list_ext_t *exts = dfl->dfl_exts;
3699 3699          nvme_t *nvme = cmd->nc_nvme;
3700 3700          nvme_range_t *ranges = NULL;
3701 3701          uint_t i;
3702 3702  
3703 3703          /*
3704 3704           * The number of ranges in the request is 0s based (that is
3705 3705           * word10 == 0 -> 1 range, word10 == 1 -> 2 ranges, ...,
3706 3706           * word10 == 255 -> 256 ranges). Therefore the allowed values are
3707 3707           * [1..NVME_DSET_MGMT_MAX_RANGES]. If blkdev gives us a bad request,
3708 3708           * we either provided bad info in nvme_bd_driveinfo() or there is a bug
3709 3709           * in blkdev.
3710 3710           */
3711 3711          VERIFY3U(dfl->dfl_num_exts, >, 0);
3712 3712          VERIFY3U(dfl->dfl_num_exts, <=, NVME_DSET_MGMT_MAX_RANGES);
3713 3713          cmd->nc_sqe.sqe_cdw10 = (dfl->dfl_num_exts - 1) & 0xff;
3714 3714  
3715 3715          cmd->nc_sqe.sqe_cdw11 = NVME_DSET_MGMT_ATTR_DEALLOCATE;
3716 3716  
3717 3717          cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, allocflag);
3718 3718          if (cmd->nc_dma == NULL)
3719 3719                  return (DDI_FAILURE);
3720 3720  
3721 3721          bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3722 3722          ranges = (nvme_range_t *)cmd->nc_dma->nd_memp;
3723 3723  
3724 3724          cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
3725 3725          cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3726 3726  
3727 3727          for (i = 0; i < dfl->dfl_num_exts; i++) {
3728 3728                  uint64_t lba, len;
3729 3729  
3730 3730                  lba = (dfl->dfl_offset + exts[i].dfle_start) / blocksize;
3731 3731                  len = exts[i].dfle_length / blocksize;
3732 3732  
3733 3733                  VERIFY3U(len, <=, UINT32_MAX);
3734 3734  
3735 3735                  /* No context attributes for a deallocate request */
3736 3736                  ranges[i].nr_ctxattr = 0;
3737 3737                  ranges[i].nr_len = len;
3738 3738                  ranges[i].nr_lba = lba;
3739 3739          }
3740 3740  
3741 3741          (void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3742 3742              DDI_DMA_SYNC_FORDEV);
3743 3743  
3744 3744          return (DDI_SUCCESS);
3745 3745  }
3746 3746  
3747 3747  static nvme_cmd_t *
3748 3748  nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3749 3749  {
3750 3750          nvme_t *nvme = ns->ns_nvme;
3751 3751          nvme_cmd_t *cmd;
3752 3752          int allocflag;
3753 3753  
3754 3754          /*
3755 3755           * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3756 3756           */
3757 3757          allocflag = (xfer->x_flags & BD_XFER_POLL) ? KM_NOSLEEP : KM_SLEEP;
3758 3758          cmd = nvme_alloc_cmd(nvme, allocflag);
3759 3759  
3760 3760          if (cmd == NULL)
3761 3761                  return (NULL);
3762 3762  
3763 3763          cmd->nc_sqe.sqe_opc = opc;
3764 3764          cmd->nc_callback = nvme_bd_xfer_done;
3765 3765          cmd->nc_xfer = xfer;
3766 3766  
3767 3767          switch (opc) {
3768 3768          case NVME_OPC_NVM_WRITE:
3769 3769          case NVME_OPC_NVM_READ:
3770 3770                  VERIFY(xfer->x_nblks <= 0x10000);
3771 3771  
3772 3772                  cmd->nc_sqe.sqe_nsid = ns->ns_id;
3773 3773  
3774 3774                  cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3775 3775                  cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3776 3776                  cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3777 3777  
3778 3778                  if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
3779 3779                          goto fail;
3780 3780                  break;
3781 3781  
3782 3782          case NVME_OPC_NVM_FLUSH:
3783 3783                  cmd->nc_sqe.sqe_nsid = ns->ns_id;
3784 3784                  break;
3785 3785  
3786 3786          case NVME_OPC_NVM_DSET_MGMT:
3787 3787                  cmd->nc_sqe.sqe_nsid = ns->ns_id;
3788 3788  
3789 3789                  if (nvme_fill_ranges(cmd, xfer,
3790 3790                      (uint64_t)ns->ns_block_size, allocflag) != DDI_SUCCESS)
3791 3791                          goto fail;
3792 3792                  break;
3793 3793  
3794 3794          default:
3795 3795                  goto fail;
3796 3796          }
3797 3797  
3798 3798          return (cmd);
3799 3799  
3800 3800  fail:
3801 3801          nvme_free_cmd(cmd);
3802 3802          return (NULL);
3803 3803  }
3804 3804  
3805 3805  static void
3806 3806  nvme_bd_xfer_done(void *arg)
3807 3807  {
3808 3808          nvme_cmd_t *cmd = arg;
3809 3809          bd_xfer_t *xfer = cmd->nc_xfer;
3810 3810          int error = 0;
3811 3811  
3812 3812          error = nvme_check_cmd_status(cmd);
3813 3813          nvme_free_cmd(cmd);
3814 3814  
3815 3815          bd_xfer_done(xfer, error);
3816 3816  }
3817 3817  
3818 3818  static void
3819 3819  nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3820 3820  {
3821 3821          nvme_namespace_t *ns = arg;
3822 3822          nvme_t *nvme = ns->ns_nvme;
3823 3823          uint_t ns_count = MAX(1, nvme->n_namespaces_attachable);
3824 3824  
3825 3825          /*
3826 3826           * Set the blkdev qcount to the number of submission queues.
3827 3827           * It will then create one waitq/runq pair for each submission
3828 3828           * queue and spread I/O requests across the queues.
3829 3829           */
3830 3830          drive->d_qcount = nvme->n_ioq_count;
3831 3831  
3832 3832          /*
3833 3833           * I/O activity to individual namespaces is distributed across
3834 3834           * each of the d_qcount blkdev queues (which has been set to
3835 3835           * the number of nvme submission queues). d_qsize is the number
3836 3836           * of submitted and not completed I/Os within each queue that blkdev
3837 3837           * will allow before it starts holding them in the waitq.
3838 3838           *
3839 3839           * Each namespace will create a child blkdev instance, for each one
3840 3840           * we try and set the d_qsize so that each namespace gets an
3841 3841           * equal portion of the submission queue.
3842 3842           *
3843 3843           * If post instantiation of the nvme drive, n_namespaces_attachable
3844 3844           * changes and a namespace is attached it could calculate a
3845 3845           * different d_qsize. It may even be that the sum of the d_qsizes is
3846 3846           * now beyond the submission queue size. Should that be the case
3847 3847           * and the I/O rate is such that blkdev attempts to submit more
3848 3848           * I/Os than the size of the submission queue, the excess I/Os
3849 3849           * will be held behind the semaphore nq_sema.
3850 3850           */
3851 3851          drive->d_qsize = nvme->n_io_squeue_len / ns_count;
3852 3852  
3853 3853          /*
3854 3854           * Don't let the queue size drop below the minimum, though.
3855 3855           */
3856 3856          drive->d_qsize = MAX(drive->d_qsize, NVME_MIN_IO_QUEUE_LEN);
3857 3857  
3858 3858          /*
3859 3859           * d_maxxfer is not set, which means the value is taken from the DMA
3860 3860           * attributes specified to bd_alloc_handle.
3861 3861           */
3862 3862  
3863 3863          drive->d_removable = B_FALSE;
3864 3864          drive->d_hotpluggable = B_FALSE;
3865 3865  
3866 3866          bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
3867 3867          drive->d_target = ns->ns_id;
3868 3868          drive->d_lun = 0;
3869 3869  
3870 3870          drive->d_model = nvme->n_idctl->id_model;
3871 3871          drive->d_model_len = sizeof (nvme->n_idctl->id_model);
3872 3872          drive->d_vendor = nvme->n_vendor;
3873 3873          drive->d_vendor_len = strlen(nvme->n_vendor);
3874 3874          drive->d_product = nvme->n_product;
3875 3875          drive->d_product_len = strlen(nvme->n_product);
3876 3876          drive->d_serial = nvme->n_idctl->id_serial;
3877 3877          drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
3878 3878          drive->d_revision = nvme->n_idctl->id_fwrev;
3879 3879          drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
3880 3880  
3881 3881          /*
3882 3882           * If we support the dataset management command, the only restrictions
3883 3883           * on a discard request are the maximum number of ranges (segments)
3884 3884           * per single request.
3885 3885           */
3886 3886          if (nvme->n_idctl->id_oncs.on_dset_mgmt)
3887 3887                  drive->d_max_free_seg = NVME_DSET_MGMT_MAX_RANGES;
3888 3888  }
3889 3889  
3890 3890  static int
3891 3891  nvme_bd_mediainfo(void *arg, bd_media_t *media)
3892 3892  {
3893 3893          nvme_namespace_t *ns = arg;
3894 3894  
3895 3895          media->m_nblks = ns->ns_block_count;
3896 3896          media->m_blksize = ns->ns_block_size;
3897 3897          media->m_readonly = B_FALSE;
3898 3898          media->m_solidstate = B_TRUE;
3899 3899  
3900 3900          media->m_pblksize = ns->ns_best_block_size;
3901 3901  
3902 3902          return (0);
3903 3903  }
3904 3904  
3905 3905  static int
3906 3906  nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
3907 3907  {
3908 3908          nvme_t *nvme = ns->ns_nvme;
3909 3909          nvme_cmd_t *cmd;
3910 3910          nvme_qpair_t *ioq;
3911 3911          boolean_t poll;
3912 3912          int ret;
3913 3913  
3914 3914          if (nvme->n_dead)
3915 3915                  return (EIO);
3916 3916  
3917 3917          cmd = nvme_create_nvm_cmd(ns, opc, xfer);
3918 3918          if (cmd == NULL)
3919 3919                  return (ENOMEM);
3920 3920  
3921 3921          cmd->nc_sqid = xfer->x_qnum + 1;
3922 3922          ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
3923 3923          ioq = nvme->n_ioq[cmd->nc_sqid];
3924 3924  
3925 3925          /*
3926 3926           * Get the polling flag before submitting the command. The command may
3927 3927           * complete immediately after it was submitted, which means we must
3928 3928           * treat both cmd and xfer as if they have been freed already.
3929 3929           */
3930 3930          poll = (xfer->x_flags & BD_XFER_POLL) != 0;
3931 3931  
3932 3932          ret = nvme_submit_io_cmd(ioq, cmd);
3933 3933  
3934 3934          if (ret != 0)
3935 3935                  return (ret);
3936 3936  
3937 3937          if (!poll)
3938 3938                  return (0);
3939 3939  
3940 3940          do {
3941 3941                  cmd = nvme_retrieve_cmd(nvme, ioq);
3942 3942                  if (cmd != NULL)
3943 3943                          cmd->nc_callback(cmd);
3944 3944                  else
3945 3945                          drv_usecwait(10);
3946 3946          } while (ioq->nq_active_cmds != 0);
3947 3947  
3948 3948          return (0);
3949 3949  }
3950 3950  
3951 3951  static int
3952 3952  nvme_bd_read(void *arg, bd_xfer_t *xfer)
3953 3953  {
3954 3954          nvme_namespace_t *ns = arg;
3955 3955  
3956 3956          return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
3957 3957  }
3958 3958  
3959 3959  static int
3960 3960  nvme_bd_write(void *arg, bd_xfer_t *xfer)
3961 3961  {
3962 3962          nvme_namespace_t *ns = arg;
3963 3963  
3964 3964          return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
3965 3965  }
3966 3966  
3967 3967  static int
3968 3968  nvme_bd_sync(void *arg, bd_xfer_t *xfer)
3969 3969  {
3970 3970          nvme_namespace_t *ns = arg;
3971 3971  
3972 3972          if (ns->ns_nvme->n_dead)
3973 3973                  return (EIO);
3974 3974  
3975 3975          /*
3976 3976           * If the volatile write cache is not present or not enabled the FLUSH
3977 3977           * command is a no-op, so we can take a shortcut here.
3978 3978           */
3979 3979          if (!ns->ns_nvme->n_write_cache_present) {
3980 3980                  bd_xfer_done(xfer, ENOTSUP);
3981 3981                  return (0);
3982 3982          }
3983 3983  
3984 3984          if (!ns->ns_nvme->n_write_cache_enabled) {
3985 3985                  bd_xfer_done(xfer, 0);
3986 3986                  return (0);
3987 3987          }
3988 3988  
3989 3989          return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
3990 3990  }
3991 3991  
3992 3992  static int
3993 3993  nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
3994 3994  {
3995 3995          nvme_namespace_t *ns = arg;
3996 3996  
3997 3997          /*LINTED: E_BAD_PTR_CAST_ALIGN*/
3998 3998          if (*(uint64_t *)ns->ns_eui64 != 0) {
3999 3999                  return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
4000 4000                      sizeof (ns->ns_eui64), ns->ns_eui64, devid));
4001 4001          } else {
4002 4002                  return (ddi_devid_init(devinfo, DEVID_ENCAP,
4003 4003                      strlen(ns->ns_devid), ns->ns_devid, devid));
4004 4004          }
4005 4005  }
4006 4006  
4007 4007  static int
4008 4008  nvme_bd_free_space(void *arg, bd_xfer_t *xfer)
4009 4009  {
4010 4010          nvme_namespace_t *ns = arg;
4011 4011  
4012 4012          if (xfer->x_dfl == NULL)
4013 4013                  return (EINVAL);
4014 4014  
4015 4015          if (!ns->ns_nvme->n_idctl->id_oncs.on_dset_mgmt)
4016 4016                  return (ENOTSUP);
4017 4017  
4018 4018          return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_DSET_MGMT));
4019 4019  }
4020 4020  
4021 4021  static int
4022 4022  nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
4023 4023  {
4024 4024  #ifndef __lock_lint
4025 4025          _NOTE(ARGUNUSED(cred_p));
4026 4026  #endif
4027 4027          minor_t minor = getminor(*devp);
4028 4028          nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
4029 4029          int nsid = NVME_MINOR_NSID(minor);
4030 4030          nvme_minor_state_t *nm;
4031 4031          int rv = 0;
4032 4032  
4033 4033          if (otyp != OTYP_CHR)
4034 4034                  return (EINVAL);
4035 4035  
4036 4036          if (nvme == NULL)
4037 4037                  return (ENXIO);
4038 4038  
4039 4039          if (nsid > nvme->n_namespace_count)
4040 4040                  return (ENXIO);
4041 4041  
4042 4042          if (nvme->n_dead)
4043 4043                  return (EIO);
4044 4044  
4045 4045          nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
4046 4046  
4047 4047          mutex_enter(&nm->nm_mutex);
4048 4048          if (nm->nm_oexcl) {
4049 4049                  rv = EBUSY;
4050 4050                  goto out;
4051 4051          }
4052 4052  
4053 4053          if (flag & FEXCL) {
4054 4054                  if (nm->nm_ocnt != 0) {
4055 4055                          rv = EBUSY;
4056 4056                          goto out;
4057 4057                  }
4058 4058                  nm->nm_oexcl = B_TRUE;
4059 4059          }
4060 4060  
4061 4061          nm->nm_ocnt++;
4062 4062  
4063 4063  out:
4064 4064          mutex_exit(&nm->nm_mutex);
4065 4065          return (rv);
4066 4066  
4067 4067  }
4068 4068  
4069 4069  static int
4070 4070  nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
4071 4071  {
4072 4072  #ifndef __lock_lint
4073 4073          _NOTE(ARGUNUSED(cred_p));
4074 4074          _NOTE(ARGUNUSED(flag));
4075 4075  #endif
4076 4076          minor_t minor = getminor(dev);
4077 4077          nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
4078 4078          int nsid = NVME_MINOR_NSID(minor);
4079 4079          nvme_minor_state_t *nm;
4080 4080  
4081 4081          if (otyp != OTYP_CHR)
4082 4082                  return (ENXIO);
4083 4083  
4084 4084          if (nvme == NULL)
4085 4085                  return (ENXIO);
4086 4086  
4087 4087          if (nsid > nvme->n_namespace_count)
4088 4088                  return (ENXIO);
4089 4089  
4090 4090          nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
4091 4091  
4092 4092          mutex_enter(&nm->nm_mutex);
4093 4093          if (nm->nm_oexcl)
4094 4094                  nm->nm_oexcl = B_FALSE;
4095 4095  
4096 4096          ASSERT(nm->nm_ocnt > 0);
4097 4097          nm->nm_ocnt--;
4098 4098          mutex_exit(&nm->nm_mutex);
4099 4099  
4100 4100          return (0);
4101 4101  }
4102 4102  
4103 4103  static int
4104 4104  nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4105 4105      cred_t *cred_p)
4106 4106  {
4107 4107          _NOTE(ARGUNUSED(cred_p));
4108 4108          int rv = 0;
4109 4109          void *idctl;
4110 4110  
4111 4111          if ((mode & FREAD) == 0)
4112 4112                  return (EPERM);
4113 4113  
4114 4114          if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
4115 4115                  return (EINVAL);
4116 4116  
4117 4117          if ((rv = nvme_identify(nvme, B_TRUE, nsid, (void **)&idctl)) != 0)
4118 4118                  return (rv);
4119 4119  
4120 4120          if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
4121 4121              != 0)
4122 4122                  rv = EFAULT;
4123 4123  
4124 4124          kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
4125 4125  
4126 4126          return (rv);
4127 4127  }
4128 4128  
4129 4129  /*
4130 4130   * Execute commands on behalf of the various ioctls.
4131 4131   */
4132 4132  static int
4133 4133  nvme_ioc_cmd(nvme_t *nvme, nvme_sqe_t *sqe, boolean_t is_admin, void *data_addr,
4134 4134      uint32_t data_len, int rwk, nvme_cqe_t *cqe, uint_t timeout)
4135 4135  {
4136 4136          nvme_cmd_t *cmd;
4137 4137          nvme_qpair_t *ioq;
4138 4138          int rv = 0;
4139 4139  
4140 4140          cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
4141 4141          if (is_admin) {
4142 4142                  cmd->nc_sqid = 0;
4143 4143                  ioq = nvme->n_adminq;
4144 4144          } else {
4145 4145                  cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
4146 4146                  ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
4147 4147                  ioq = nvme->n_ioq[cmd->nc_sqid];
4148 4148          }
4149 4149  
4150 4150          cmd->nc_callback = nvme_wakeup_cmd;
4151 4151          cmd->nc_sqe = *sqe;
4152 4152  
4153 4153          if ((rwk & (FREAD | FWRITE)) != 0) {
4154 4154                  if (data_addr == NULL) {
4155 4155                          rv = EINVAL;
4156 4156                          goto free_cmd;
4157 4157                  }
4158 4158  
4159 4159                  /*
4160 4160                   * Because we use PRPs and haven't implemented PRP
4161 4161                   * lists here, the maximum data size is restricted to
4162 4162                   * 2 pages.
4163 4163                   */
4164 4164                  if (data_len > 2 * nvme->n_pagesize) {
4165 4165                          dev_err(nvme->n_dip, CE_WARN, "!Data size %u is too "
4166 4166                              "large for nvme_ioc_cmd(). Limit is 2 pages "
4167 4167                              "(%u bytes)", data_len,  2 * nvme->n_pagesize);
4168 4168  
4169 4169                          rv = EINVAL;
4170 4170                          goto free_cmd;
4171 4171                  }
4172 4172  
4173 4173                  if (nvme_zalloc_dma(nvme, data_len, DDI_DMA_READ,
4174 4174                      &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
4175 4175                          dev_err(nvme->n_dip, CE_WARN,
4176 4176                              "!nvme_zalloc_dma failed for nvme_ioc_cmd()");
4177 4177  
4178 4178                          rv = ENOMEM;
4179 4179                          goto free_cmd;
4180 4180                  }
4181 4181  
4182 4182                  if (cmd->nc_dma->nd_ncookie > 2) {
4183 4183                          dev_err(nvme->n_dip, CE_WARN,
4184 4184                              "!too many DMA cookies for nvme_ioc_cmd()");
4185 4185                          atomic_inc_32(&nvme->n_too_many_cookies);
4186 4186  
4187 4187                          rv = E2BIG;
4188 4188                          goto free_cmd;
4189 4189                  }
4190 4190  
4191 4191                  cmd->nc_sqe.sqe_dptr.d_prp[0] =
4192 4192                      cmd->nc_dma->nd_cookie.dmac_laddress;
4193 4193  
4194 4194                  if (cmd->nc_dma->nd_ncookie > 1) {
4195 4195                          ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
4196 4196                              &cmd->nc_dma->nd_cookie);
4197 4197                          cmd->nc_sqe.sqe_dptr.d_prp[1] =
4198 4198                              cmd->nc_dma->nd_cookie.dmac_laddress;
4199 4199                  }
4200 4200  
4201 4201                  if ((rwk & FWRITE) != 0) {
4202 4202                          if (ddi_copyin(data_addr, cmd->nc_dma->nd_memp,
4203 4203                              data_len, rwk & FKIOCTL) != 0) {
4204 4204                                  rv = EFAULT;
4205 4205                                  goto free_cmd;
4206 4206                          }
4207 4207                  }
4208 4208          }
4209 4209  
4210 4210          if (is_admin) {
4211 4211                  nvme_admin_cmd(cmd, timeout);
4212 4212          } else {
4213 4213                  mutex_enter(&cmd->nc_mutex);
4214 4214  
4215 4215                  rv = nvme_submit_io_cmd(ioq, cmd);
4216 4216  
4217 4217                  if (rv == EAGAIN) {
4218 4218                          mutex_exit(&cmd->nc_mutex);
4219 4219                          dev_err(cmd->nc_nvme->n_dip, CE_WARN,
4220 4220                              "!nvme_ioc_cmd() failed, I/O Q full");
4221 4221                          goto free_cmd;
4222 4222                  }
4223 4223  
4224 4224                  nvme_wait_cmd(cmd, timeout);
4225 4225  
4226 4226                  mutex_exit(&cmd->nc_mutex);
4227 4227          }
4228 4228  
4229 4229          if (cqe != NULL)
4230 4230                  *cqe = cmd->nc_cqe;
4231 4231  
4232 4232          if ((rv = nvme_check_cmd_status(cmd)) != 0) {
4233 4233                  dev_err(nvme->n_dip, CE_WARN,
4234 4234                      "!nvme_ioc_cmd() failed with sct = %x, sc = %x",
4235 4235                      cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
4236 4236  
4237 4237                  goto free_cmd;
4238 4238          }
4239 4239  
4240 4240          if ((rwk & FREAD) != 0) {
4241 4241                  if (ddi_copyout(cmd->nc_dma->nd_memp,
4242 4242                      data_addr, data_len, rwk & FKIOCTL) != 0)
4243 4243                          rv = EFAULT;
4244 4244          }
4245 4245  
4246 4246  free_cmd:
4247 4247          nvme_free_cmd(cmd);
4248 4248  
4249 4249          return (rv);
4250 4250  }
4251 4251  
4252 4252  static int
4253 4253  nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4254 4254      int mode, cred_t *cred_p)
4255 4255  {
4256 4256          _NOTE(ARGUNUSED(nsid, cred_p));
4257 4257          int rv = 0;
4258 4258          nvme_reg_cap_t cap = { 0 };
4259 4259          nvme_capabilities_t nc;
4260 4260  
4261 4261          if ((mode & FREAD) == 0)
4262 4262                  return (EPERM);
4263 4263  
4264 4264          if (nioc->n_len < sizeof (nc))
4265 4265                  return (EINVAL);
4266 4266  
4267 4267          cap.r = nvme_get64(nvme, NVME_REG_CAP);
4268 4268  
4269 4269          /*
4270 4270           * The MPSMIN and MPSMAX fields in the CAP register use 0 to
4271 4271           * specify the base page size of 4k (1<<12), so add 12 here to
4272 4272           * get the real page size value.
4273 4273           */
4274 4274          nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
4275 4275          nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
4276 4276  
4277 4277          if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
4278 4278                  rv = EFAULT;
4279 4279  
4280 4280          return (rv);
4281 4281  }
4282 4282  
4283 4283  static int
4284 4284  nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4285 4285      int mode, cred_t *cred_p)
4286 4286  {
4287 4287          _NOTE(ARGUNUSED(cred_p));
4288 4288          void *log = NULL;
4289 4289          size_t bufsize = 0;
4290 4290          int rv = 0;
4291 4291  
4292 4292          if ((mode & FREAD) == 0)
4293 4293                  return (EPERM);
4294 4294  
4295 4295          switch (nioc->n_arg) {
4296 4296          case NVME_LOGPAGE_ERROR:
4297 4297                  if (nsid != 0)
4298 4298                          return (EINVAL);
4299 4299                  break;
4300 4300          case NVME_LOGPAGE_HEALTH:
4301 4301                  if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
4302 4302                          return (EINVAL);
4303 4303  
4304 4304                  if (nsid == 0)
4305 4305                          nsid = (uint32_t)-1;
4306 4306  
4307 4307                  break;
4308 4308          case NVME_LOGPAGE_FWSLOT:
4309 4309                  if (nsid != 0)
4310 4310                          return (EINVAL);
4311 4311                  break;
4312 4312          default:
4313 4313                  return (EINVAL);
4314 4314          }
4315 4315  
4316 4316          if (nvme_get_logpage(nvme, B_TRUE, &log, &bufsize, nioc->n_arg, nsid)
4317 4317              != DDI_SUCCESS)
4318 4318                  return (EIO);
4319 4319  
4320 4320          if (nioc->n_len < bufsize) {
4321 4321                  kmem_free(log, bufsize);
4322 4322                  return (EINVAL);
4323 4323          }
4324 4324  
4325 4325          if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
4326 4326                  rv = EFAULT;
4327 4327  
4328 4328          nioc->n_len = bufsize;
4329 4329          kmem_free(log, bufsize);
4330 4330  
4331 4331          return (rv);
4332 4332  }
4333 4333  
4334 4334  static int
4335 4335  nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4336 4336      int mode, cred_t *cred_p)
4337 4337  {
4338 4338          _NOTE(ARGUNUSED(cred_p));
4339 4339          void *buf = NULL;
4340 4340          size_t bufsize = 0;
4341 4341          uint32_t res = 0;
4342 4342          uint8_t feature;
4343 4343          int rv = 0;
4344 4344  
4345 4345          if ((mode & FREAD) == 0)
4346 4346                  return (EPERM);
4347 4347  
4348 4348          if ((nioc->n_arg >> 32) > 0xff)
4349 4349                  return (EINVAL);
4350 4350  
4351 4351          feature = (uint8_t)(nioc->n_arg >> 32);
4352 4352  
4353 4353          switch (feature) {
4354 4354          case NVME_FEAT_ARBITRATION:
4355 4355          case NVME_FEAT_POWER_MGMT:
4356 4356          case NVME_FEAT_ERROR:
4357 4357          case NVME_FEAT_NQUEUES:
4358 4358          case NVME_FEAT_INTR_COAL:
4359 4359          case NVME_FEAT_WRITE_ATOM:
4360 4360          case NVME_FEAT_ASYNC_EVENT:
4361 4361          case NVME_FEAT_PROGRESS:
4362 4362                  if (nsid != 0)
4363 4363                          return (EINVAL);
4364 4364                  break;
4365 4365  
4366 4366          case NVME_FEAT_TEMPERATURE:
4367 4367                  if (nsid != 0)
4368 4368                          return (EINVAL);
4369 4369                  res = nioc->n_arg & 0xffffffffUL;
4370 4370                  if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2)) {
4371 4371                          nvme_temp_threshold_t tt;
4372 4372  
4373 4373                          tt.r = res;
4374 4374                          if (tt.b.tt_thsel != NVME_TEMP_THRESH_OVER &&
4375 4375                              tt.b.tt_thsel != NVME_TEMP_THRESH_UNDER) {
4376 4376                                  return (EINVAL);
4377 4377                          }
4378 4378  
4379 4379                          if (tt.b.tt_tmpsel > NVME_TEMP_THRESH_MAX_SENSOR) {
4380 4380                                  return (EINVAL);
4381 4381                          }
4382 4382                  } else if (res != 0) {
4383 4383                          return (EINVAL);
4384 4384                  }
4385 4385                  break;
4386 4386  
4387 4387          case NVME_FEAT_INTR_VECT:
4388 4388                  if (nsid != 0)
4389 4389                          return (EINVAL);
4390 4390  
4391 4391                  res = nioc->n_arg & 0xffffffffUL;
4392 4392                  if (res >= nvme->n_intr_cnt)
4393 4393                          return (EINVAL);
4394 4394                  break;
4395 4395  
4396 4396          case NVME_FEAT_LBA_RANGE:
4397 4397                  if (nvme->n_lba_range_supported == B_FALSE)
4398 4398                          return (EINVAL);
4399 4399  
4400 4400                  if (nsid == 0 ||
4401 4401                      nsid > nvme->n_namespace_count)
4402 4402                          return (EINVAL);
4403 4403  
4404 4404                  break;
4405 4405  
4406 4406          case NVME_FEAT_WRITE_CACHE:
4407 4407                  if (nsid != 0)
4408 4408                          return (EINVAL);
4409 4409  
4410 4410                  if (!nvme->n_write_cache_present)
4411 4411                          return (EINVAL);
4412 4412  
4413 4413                  break;
4414 4414  
4415 4415          case NVME_FEAT_AUTO_PST:
4416 4416                  if (nsid != 0)
4417 4417                          return (EINVAL);
4418 4418  
4419 4419                  if (!nvme->n_auto_pst_supported)
4420 4420                          return (EINVAL);
4421 4421  
4422 4422                  break;
4423 4423  
4424 4424          default:
4425 4425                  return (EINVAL);
4426 4426          }
4427 4427  
4428 4428          rv = nvme_get_features(nvme, B_TRUE, nsid, feature, &res, &buf,
4429 4429              &bufsize);
4430 4430          if (rv != 0)
4431 4431                  return (rv);
4432 4432  
4433 4433          if (nioc->n_len < bufsize) {
4434 4434                  kmem_free(buf, bufsize);
4435 4435                  return (EINVAL);
4436 4436          }
4437 4437  
4438 4438          if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
4439 4439                  rv = EFAULT;
4440 4440  
4441 4441          kmem_free(buf, bufsize);
4442 4442          nioc->n_arg = res;
4443 4443          nioc->n_len = bufsize;
4444 4444  
4445 4445          return (rv);
4446 4446  }
4447 4447  
4448 4448  static int
4449 4449  nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4450 4450      cred_t *cred_p)
4451 4451  {
4452 4452          _NOTE(ARGUNUSED(nsid, mode, cred_p));
4453 4453  
4454 4454          if ((mode & FREAD) == 0)
4455 4455                  return (EPERM);
4456 4456  
4457 4457          nioc->n_arg = nvme->n_intr_cnt;
4458 4458          return (0);
4459 4459  }
4460 4460  
4461 4461  static int
4462 4462  nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4463 4463      cred_t *cred_p)
4464 4464  {
4465 4465          _NOTE(ARGUNUSED(nsid, cred_p));
4466 4466          int rv = 0;
4467 4467  
4468 4468          if ((mode & FREAD) == 0)
4469 4469                  return (EPERM);
4470 4470  
4471 4471          if (nioc->n_len < sizeof (nvme->n_version))
4472 4472                  return (ENOMEM);
4473 4473  
4474 4474          if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
4475 4475              sizeof (nvme->n_version), mode) != 0)
4476 4476                  rv = EFAULT;
4477 4477  
4478 4478          return (rv);
4479 4479  }
4480 4480  
4481 4481  static int
4482 4482  nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4483 4483      cred_t *cred_p)
4484 4484  {
4485 4485          _NOTE(ARGUNUSED(mode));
4486 4486          nvme_format_nvm_t frmt = { 0 };
4487 4487          int c_nsid = nsid != 0 ? nsid - 1 : 0;
4488 4488  
4489 4489          if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4490 4490                  return (EPERM);
4491 4491  
4492 4492          frmt.r = nioc->n_arg & 0xffffffff;
4493 4493  
4494 4494          /*
4495 4495           * Check whether the FORMAT NVM command is supported.
4496 4496           */
4497 4497          if (nvme->n_idctl->id_oacs.oa_format == 0)
4498 4498                  return (EINVAL);
4499 4499  
4500 4500          /*
4501 4501           * Don't allow format or secure erase of individual namespace if that
4502 4502           * would cause a format or secure erase of all namespaces.
4503 4503           */
4504 4504          if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
4505 4505                  return (EINVAL);
4506 4506  
4507 4507          if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
4508 4508              nvme->n_idctl->id_fna.fn_sec_erase != 0)
4509 4509                  return (EINVAL);
4510 4510  
4511 4511          /*
4512 4512           * Don't allow formatting with Protection Information.
4513 4513           */
4514 4514          if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
4515 4515                  return (EINVAL);
4516 4516  
4517 4517          /*
4518 4518           * Don't allow formatting using an illegal LBA format, or any LBA format
4519 4519           * that uses metadata.
4520 4520           */
4521 4521          if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
4522 4522              nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
4523 4523                  return (EINVAL);
4524 4524  
4525 4525          /*
4526 4526           * Don't allow formatting using an illegal Secure Erase setting.
4527 4527           */
4528 4528          if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
4529 4529              (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
4530 4530              nvme->n_idctl->id_fna.fn_crypt_erase == 0))
4531 4531                  return (EINVAL);
4532 4532  
4533 4533          if (nsid == 0)
4534 4534                  nsid = (uint32_t)-1;
4535 4535  
4536 4536          return (nvme_format_nvm(nvme, B_TRUE, nsid, frmt.b.fm_lbaf, B_FALSE, 0,
4537 4537              B_FALSE, frmt.b.fm_ses));
4538 4538  }
4539 4539  
4540 4540  static int
4541 4541  nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4542 4542      cred_t *cred_p)
  
    | 
      ↓ open down ↓ | 
    4542 lines elided | 
    
      ↑ open up ↑ | 
  
4543 4543  {
4544 4544          _NOTE(ARGUNUSED(nioc, mode));
4545 4545          int rv = 0;
4546 4546  
4547 4547          if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4548 4548                  return (EPERM);
4549 4549  
4550 4550          if (nsid == 0)
4551 4551                  return (EINVAL);
4552 4552  
     4553 +        if (nvme->n_ns[nsid - 1].ns_ignore)
     4554 +                return (0);
     4555 +
4553 4556          rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
4554 4557          if (rv != DDI_SUCCESS)
4555 4558                  rv = EBUSY;
4556 4559  
4557 4560          return (rv);
4558 4561  }
4559 4562  
4560 4563  static int
4561 4564  nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4562 4565      cred_t *cred_p)
4563 4566  {
4564 4567          _NOTE(ARGUNUSED(nioc, mode));
4565 4568          nvme_identify_nsid_t *idns;
4566 4569          int rv = 0;
4567 4570  
4568 4571          if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4569 4572                  return (EPERM);
4570 4573  
4571 4574          if (nsid == 0)
4572 4575                  return (EINVAL);
  
    | 
      ↓ open down ↓ | 
    10 lines elided | 
    
      ↑ open up ↑ | 
  
4573 4576  
4574 4577          /*
4575 4578           * Identify namespace again, free old identify data.
4576 4579           */
4577 4580          idns = nvme->n_ns[nsid - 1].ns_idns;
4578 4581          if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
4579 4582                  return (EIO);
4580 4583  
4581 4584          kmem_free(idns, sizeof (nvme_identify_nsid_t));
4582 4585  
     4586 +        if (nvme->n_ns[nsid - 1].ns_ignore)
     4587 +                return (ENOTSUP);
     4588 +
     4589 +        if (nvme->n_ns[nsid - 1].ns_bd_hdl == NULL)
     4590 +                nvme->n_ns[nsid - 1].ns_bd_hdl = bd_alloc_handle(
     4591 +                    &nvme->n_ns[nsid - 1], &nvme_bd_ops, &nvme->n_prp_dma_attr,
     4592 +                    KM_SLEEP);
     4593 +
4583 4594          rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
4584 4595          if (rv != DDI_SUCCESS)
4585 4596                  rv = EBUSY;
4586 4597  
4587 4598          return (rv);
4588 4599  }
4589 4600  
4590 4601  static void
4591 4602  nvme_ufm_update(nvme_t *nvme)
4592 4603  {
4593 4604          mutex_enter(&nvme->n_fwslot_mutex);
4594 4605          ddi_ufm_update(nvme->n_ufmh);
4595 4606          if (nvme->n_fwslot != NULL) {
4596 4607                  kmem_free(nvme->n_fwslot, sizeof (nvme_fwslot_log_t));
4597 4608                  nvme->n_fwslot = NULL;
4598 4609          }
4599 4610          mutex_exit(&nvme->n_fwslot_mutex);
4600 4611  }
4601 4612  
4602 4613  static int
4603 4614  nvme_ioctl_firmware_download(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4604 4615      int mode, cred_t *cred_p)
4605 4616  {
4606 4617          int rv = 0;
4607 4618          size_t len, copylen;
4608 4619          offset_t offset;
4609 4620          uintptr_t buf;
4610 4621          nvme_sqe_t sqe = {
4611 4622              .sqe_opc    = NVME_OPC_FW_IMAGE_LOAD
4612 4623          };
4613 4624  
4614 4625          if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4615 4626                  return (EPERM);
4616 4627  
4617 4628          if (nsid != 0)
4618 4629                  return (EINVAL);
4619 4630  
4620 4631          /*
4621 4632           * The offset (in n_len) is restricted to the number of DWORDs in
4622 4633           * 32 bits.
4623 4634           */
4624 4635          if (nioc->n_len > NVME_FW_OFFSETB_MAX)
4625 4636                  return (EINVAL);
4626 4637  
4627 4638          /* Confirm that both offset and length are a multiple of DWORD bytes */
4628 4639          if ((nioc->n_len & NVME_DWORD_MASK) != 0 ||
4629 4640              (nioc->n_arg & NVME_DWORD_MASK) != 0)
4630 4641                  return (EINVAL);
4631 4642  
4632 4643          len = nioc->n_len;
4633 4644          offset = nioc->n_arg;
4634 4645          buf = (uintptr_t)nioc->n_buf;
4635 4646          while (len > 0 && rv == 0) {
4636 4647                  /*
4637 4648                   * nvme_ioc_cmd() does not use SGLs or PRP lists.
4638 4649                   * It is limited to 2 PRPs per NVM command, so limit
4639 4650                   * the size of the data to 2 pages.
4640 4651                   */
4641 4652                  copylen = MIN(2 * nvme->n_pagesize, len);
4642 4653  
4643 4654                  sqe.sqe_cdw10 = (uint32_t)(copylen >> NVME_DWORD_SHIFT) - 1;
4644 4655                  sqe.sqe_cdw11 = (uint32_t)(offset >> NVME_DWORD_SHIFT);
4645 4656  
4646 4657                  rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, (void *)buf, copylen,
4647 4658                      FWRITE, NULL, nvme_admin_cmd_timeout);
4648 4659  
4649 4660                  buf += copylen;
4650 4661                  offset += copylen;
4651 4662                  len -= copylen;
4652 4663          }
4653 4664  
4654 4665          /*
4655 4666           * Let the DDI UFM subsystem know that the firmware information for
4656 4667           * this device has changed.
4657 4668           */
4658 4669          nvme_ufm_update(nvme);
4659 4670  
4660 4671          return (rv);
4661 4672  }
4662 4673  
4663 4674  static int
4664 4675  nvme_ioctl_firmware_commit(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4665 4676      int mode, cred_t *cred_p)
4666 4677  {
4667 4678          nvme_firmware_commit_dw10_t fc_dw10 = { 0 };
4668 4679          uint32_t slot = nioc->n_arg & 0xffffffff;
4669 4680          uint32_t action = nioc->n_arg >> 32;
4670 4681          nvme_cqe_t cqe = { 0 };
4671 4682          nvme_sqe_t sqe = {
4672 4683              .sqe_opc    = NVME_OPC_FW_ACTIVATE
4673 4684          };
4674 4685          int timeout;
4675 4686          int rv;
4676 4687  
4677 4688          if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4678 4689                  return (EPERM);
4679 4690  
4680 4691          if (nsid != 0)
4681 4692                  return (EINVAL);
4682 4693  
4683 4694          /* Validate slot is in range. */
4684 4695          if (slot < NVME_FW_SLOT_MIN || slot > NVME_FW_SLOT_MAX)
4685 4696                  return (EINVAL);
4686 4697  
4687 4698          switch (action) {
4688 4699          case NVME_FWC_SAVE:
4689 4700          case NVME_FWC_SAVE_ACTIVATE:
4690 4701                  timeout = nvme_commit_save_cmd_timeout;
4691 4702                  break;
4692 4703          case NVME_FWC_ACTIVATE:
4693 4704          case NVME_FWC_ACTIVATE_IMMED:
4694 4705                  timeout = nvme_admin_cmd_timeout;
4695 4706                  break;
4696 4707          default:
4697 4708                  return (EINVAL);
4698 4709          }
4699 4710  
4700 4711          fc_dw10.b.fc_slot = slot;
4701 4712          fc_dw10.b.fc_action = action;
4702 4713          sqe.sqe_cdw10 = fc_dw10.r;
4703 4714  
4704 4715          rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, NULL, 0, 0, &cqe, timeout);
4705 4716  
4706 4717          nioc->n_arg = ((uint64_t)cqe.cqe_sf.sf_sct << 16) | cqe.cqe_sf.sf_sc;
4707 4718  
4708 4719          /*
4709 4720           * Let the DDI UFM subsystem know that the firmware information for
4710 4721           * this device has changed.
4711 4722           */
4712 4723          nvme_ufm_update(nvme);
4713 4724  
4714 4725          return (rv);
4715 4726  }
4716 4727  
4717 4728  static int
4718 4729  nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
4719 4730      int *rval_p)
4720 4731  {
4721 4732  #ifndef __lock_lint
4722 4733          _NOTE(ARGUNUSED(rval_p));
4723 4734  #endif
4724 4735          minor_t minor = getminor(dev);
4725 4736          nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
4726 4737          int nsid = NVME_MINOR_NSID(minor);
4727 4738          int rv = 0;
4728 4739          nvme_ioctl_t nioc;
4729 4740  
4730 4741          int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
4731 4742                  NULL,
4732 4743                  nvme_ioctl_identify,
4733 4744                  nvme_ioctl_identify,
4734 4745                  nvme_ioctl_capabilities,
4735 4746                  nvme_ioctl_get_logpage,
4736 4747                  nvme_ioctl_get_features,
4737 4748                  nvme_ioctl_intr_cnt,
4738 4749                  nvme_ioctl_version,
4739 4750                  nvme_ioctl_format,
4740 4751                  nvme_ioctl_detach,
4741 4752                  nvme_ioctl_attach,
4742 4753                  nvme_ioctl_firmware_download,
4743 4754                  nvme_ioctl_firmware_commit
4744 4755          };
4745 4756  
4746 4757          if (nvme == NULL)
4747 4758                  return (ENXIO);
4748 4759  
4749 4760          if (nsid > nvme->n_namespace_count)
4750 4761                  return (ENXIO);
4751 4762  
4752 4763          if (IS_DEVCTL(cmd))
4753 4764                  return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
4754 4765  
4755 4766  #ifdef _MULTI_DATAMODEL
4756 4767          switch (ddi_model_convert_from(mode & FMODELS)) {
4757 4768          case DDI_MODEL_ILP32: {
4758 4769                  nvme_ioctl32_t nioc32;
4759 4770                  if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
4760 4771                      mode) != 0)
4761 4772                          return (EFAULT);
4762 4773                  nioc.n_len = nioc32.n_len;
4763 4774                  nioc.n_buf = nioc32.n_buf;
4764 4775                  nioc.n_arg = nioc32.n_arg;
4765 4776                  break;
4766 4777          }
4767 4778          case DDI_MODEL_NONE:
4768 4779  #endif
4769 4780                  if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
4770 4781                      != 0)
4771 4782                          return (EFAULT);
4772 4783  #ifdef _MULTI_DATAMODEL
4773 4784                  break;
4774 4785          }
4775 4786  #endif
4776 4787  
4777 4788          if (nvme->n_dead && cmd != NVME_IOC_DETACH)
4778 4789                  return (EIO);
4779 4790  
4780 4791  
4781 4792          if (cmd == NVME_IOC_IDENTIFY_CTRL) {
4782 4793                  /*
4783 4794                   * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
4784 4795                   * attachment point nodes.
4785 4796                   */
4786 4797                  nsid = 0;
4787 4798          } else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
4788 4799                  /*
4789 4800                   * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
4790 4801                   * will always return identify data for namespace 1.
4791 4802                   */
4792 4803                  nsid = 1;
4793 4804          }
4794 4805  
4795 4806          if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
4796 4807                  rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
4797 4808                      cred_p);
4798 4809          else
4799 4810                  rv = EINVAL;
4800 4811  
4801 4812  #ifdef _MULTI_DATAMODEL
4802 4813          switch (ddi_model_convert_from(mode & FMODELS)) {
4803 4814          case DDI_MODEL_ILP32: {
4804 4815                  nvme_ioctl32_t nioc32;
4805 4816  
4806 4817                  nioc32.n_len = (size32_t)nioc.n_len;
4807 4818                  nioc32.n_buf = (uintptr32_t)nioc.n_buf;
4808 4819                  nioc32.n_arg = nioc.n_arg;
4809 4820  
4810 4821                  if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
4811 4822                      mode) != 0)
4812 4823                          return (EFAULT);
4813 4824                  break;
4814 4825          }
4815 4826          case DDI_MODEL_NONE:
4816 4827  #endif
4817 4828                  if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
4818 4829                      != 0)
4819 4830                          return (EFAULT);
4820 4831  #ifdef _MULTI_DATAMODEL
4821 4832                  break;
4822 4833          }
4823 4834  #endif
4824 4835  
4825 4836          return (rv);
4826 4837  }
4827 4838  
4828 4839  /*
4829 4840   * DDI UFM Callbacks
4830 4841   */
4831 4842  static int
4832 4843  nvme_ufm_fill_image(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
4833 4844      ddi_ufm_image_t *img)
4834 4845  {
4835 4846          nvme_t *nvme = arg;
4836 4847  
4837 4848          if (imgno != 0)
4838 4849                  return (EINVAL);
4839 4850  
4840 4851          ddi_ufm_image_set_desc(img, "Firmware");
4841 4852          ddi_ufm_image_set_nslots(img, nvme->n_idctl->id_frmw.fw_nslot);
4842 4853  
4843 4854          return (0);
4844 4855  }
4845 4856  
4846 4857  /*
4847 4858   * Fill out firmware slot information for the requested slot.  The firmware
4848 4859   * slot information is gathered by requesting the Firmware Slot Information log
4849 4860   * page.  The format of the page is described in section 5.10.1.3.
4850 4861   *
4851 4862   * We lazily cache the log page on the first call and then invalidate the cache
4852 4863   * data after a successful firmware download or firmware commit command.
4853 4864   * The cached data is protected by a mutex as the state can change
4854 4865   * asynchronous to this callback.
4855 4866   */
4856 4867  static int
4857 4868  nvme_ufm_fill_slot(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
4858 4869      uint_t slotno, ddi_ufm_slot_t *slot)
4859 4870  {
4860 4871          nvme_t *nvme = arg;
4861 4872          void *log = NULL;
4862 4873          size_t bufsize;
4863 4874          ddi_ufm_attr_t attr = 0;
4864 4875          char fw_ver[NVME_FWVER_SZ + 1];
4865 4876          int ret;
4866 4877  
4867 4878          if (imgno > 0 || slotno > (nvme->n_idctl->id_frmw.fw_nslot - 1))
4868 4879                  return (EINVAL);
4869 4880  
4870 4881          mutex_enter(&nvme->n_fwslot_mutex);
4871 4882          if (nvme->n_fwslot == NULL) {
4872 4883                  ret = nvme_get_logpage(nvme, B_TRUE, &log, &bufsize,
4873 4884                      NVME_LOGPAGE_FWSLOT, 0);
4874 4885                  if (ret != DDI_SUCCESS ||
4875 4886                      bufsize != sizeof (nvme_fwslot_log_t)) {
4876 4887                          if (log != NULL)
4877 4888                                  kmem_free(log, bufsize);
4878 4889                          mutex_exit(&nvme->n_fwslot_mutex);
4879 4890                          return (EIO);
4880 4891                  }
4881 4892                  nvme->n_fwslot = (nvme_fwslot_log_t *)log;
4882 4893          }
4883 4894  
4884 4895          /*
4885 4896           * NVMe numbers firmware slots starting at 1
4886 4897           */
4887 4898          if (slotno == (nvme->n_fwslot->fw_afi - 1))
4888 4899                  attr |= DDI_UFM_ATTR_ACTIVE;
4889 4900  
4890 4901          if (slotno != 0 || nvme->n_idctl->id_frmw.fw_readonly == 0)
4891 4902                  attr |= DDI_UFM_ATTR_WRITEABLE;
4892 4903  
4893 4904          if (nvme->n_fwslot->fw_frs[slotno][0] == '\0') {
4894 4905                  attr |= DDI_UFM_ATTR_EMPTY;
4895 4906          } else {
4896 4907                  (void) strncpy(fw_ver, nvme->n_fwslot->fw_frs[slotno],
4897 4908                      NVME_FWVER_SZ);
4898 4909                  fw_ver[NVME_FWVER_SZ] = '\0';
4899 4910                  ddi_ufm_slot_set_version(slot, fw_ver);
4900 4911          }
4901 4912          mutex_exit(&nvme->n_fwslot_mutex);
4902 4913  
4903 4914          ddi_ufm_slot_set_attrs(slot, attr);
4904 4915  
4905 4916          return (0);
4906 4917  }
4907 4918  
4908 4919  static int
4909 4920  nvme_ufm_getcaps(ddi_ufm_handle_t *ufmh, void *arg, ddi_ufm_cap_t *caps)
4910 4921  {
4911 4922          *caps = DDI_UFM_CAP_REPORT;
4912 4923          return (0);
4913 4924  }
  
    | 
      ↓ open down ↓ | 
    321 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX