1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
  25  */
  26 
  27 #include <sys/zfs_context.h>
  28 #include <sys/spa_impl.h>
  29 #include <sys/dmu.h>
  30 #include <sys/dmu_tx.h>
  31 #include <sys/zap.h>
  32 #include <sys/vdev_impl.h>
  33 #include <sys/metaslab.h>
  34 #include <sys/metaslab_impl.h>
  35 #include <sys/uberblock_impl.h>
  36 #include <sys/txg.h>
  37 #include <sys/avl.h>
  38 #include <sys/bpobj.h>
  39 #include <sys/dsl_pool.h>
  40 #include <sys/dsl_synctask.h>
  41 #include <sys/dsl_dir.h>
  42 #include <sys/arc.h>
  43 #include <sys/zfeature.h>
  44 #include <sys/vdev_indirect_births.h>
  45 #include <sys/vdev_indirect_mapping.h>
  46 #include <sys/abd.h>
  47 #include <sys/vdev_initialize.h>
  48 
  49 /*
  50  * This file contains the necessary logic to remove vdevs from a
  51  * storage pool.  Currently, the only devices that can be removed
  52  * are log, cache, and spare devices; and top level vdevs from a pool
  53  * w/o raidz.  (Note that members of a mirror can also be removed
  54  * by the detach operation.)
  55  *
  56  * Log vdevs are removed by evacuating them and then turning the vdev
  57  * into a hole vdev while holding spa config locks.
  58  *
  59  * Top level vdevs are removed and converted into an indirect vdev via
  60  * a multi-step process:
  61  *
  62  *  - Disable allocations from this device (spa_vdev_remove_top).
  63  *
  64  *  - From a new thread (spa_vdev_remove_thread), copy data from
  65  *    the removing vdev to a different vdev.  The copy happens in open
  66  *    context (spa_vdev_copy_impl) and issues a sync task
  67  *    (vdev_mapping_sync) so the sync thread can update the partial
  68  *    indirect mappings in core and on disk.
  69  *
  70  *  - If a free happens during a removal, it is freed from the
  71  *    removing vdev, and if it has already been copied, from the new
  72  *    location as well (free_from_removing_vdev).
  73  *
  74  *  - After the removal is completed, the copy thread converts the vdev
  75  *    into an indirect vdev (vdev_remove_complete) before instructing
  76  *    the sync thread to destroy the space maps and finish the removal
  77  *    (spa_finish_removal).
  78  */
  79 
  80 typedef struct vdev_copy_arg {
  81         metaslab_t      *vca_msp;
  82         uint64_t        vca_outstanding_bytes;
  83         kcondvar_t      vca_cv;
  84         kmutex_t        vca_lock;
  85 } vdev_copy_arg_t;
  86 
  87 /*
  88  * The maximum amount of memory we can use for outstanding i/o while
  89  * doing a device removal.  This determines how much i/o we can have
  90  * in flight concurrently.
  91  */
  92 int zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
  93 
  94 /*
  95  * The largest contiguous segment that we will attempt to allocate when
  96  * removing a device.  This can be no larger than SPA_MAXBLOCKSIZE.  If
  97  * there is a performance problem with attempting to allocate large blocks,
  98  * consider decreasing this.
  99  *
 100  * Note: we will issue I/Os of up to this size.  The mpt driver does not
 101  * respond well to I/Os larger than 1MB, so we set this to 1MB.  (When
 102  * mpt processes an I/O larger than 1MB, it needs to do an allocation of
 103  * 2 physically contiguous pages; if this allocation fails, mpt will drop
 104  * the I/O and hang the device.)
 105  */
 106 int zfs_remove_max_segment = 1024 * 1024;
 107 
 108 /*
 109  * Allow a remap segment to span free chunks of at most this size. The main
 110  * impact of a larger span is that we will read and write larger, more
 111  * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
 112  * for iops.  The value here was chosen to align with
 113  * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
 114  * reads (but there's no reason it has to be the same).
 115  *
 116  * Additionally, a higher span will have the following relatively minor
 117  * effects:
 118  *  - the mapping will be smaller, since one entry can cover more allocated
 119  *    segments
 120  *  - more of the fragmentation in the removing device will be preserved
 121  *  - we'll do larger allocations, which may fail and fall back on smaller
 122  *    allocations
 123  */
 124 int vdev_removal_max_span = 32 * 1024;
 125 
 126 /*
 127  * This is used by the test suite so that it can ensure that certain
 128  * actions happen while in the middle of a removal.
 129  */
 130 uint64_t zfs_remove_max_bytes_pause = UINT64_MAX;
 131 
 132 #define VDEV_REMOVAL_ZAP_OBJS   "lzap"
 133 
 134 static void spa_vdev_remove_thread(void *arg);
 135 
 136 static void
 137 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
 138 {
 139         VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
 140             DMU_POOL_DIRECTORY_OBJECT,
 141             DMU_POOL_REMOVING, sizeof (uint64_t),
 142             sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
 143             &spa->spa_removing_phys, tx));
 144 }
 145 
 146 static nvlist_t *
 147 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
 148 {
 149         for (int i = 0; i < count; i++) {
 150                 uint64_t guid =
 151                     fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
 152 
 153                 if (guid == target_guid)
 154                         return (nvpp[i]);
 155         }
 156 
 157         return (NULL);
 158 }
 159 
 160 static void
 161 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
 162     nvlist_t *dev_to_remove)
 163 {
 164         nvlist_t **newdev = NULL;
 165 
 166         if (count > 1)
 167                 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
 168 
 169         for (int i = 0, j = 0; i < count; i++) {
 170                 if (dev[i] == dev_to_remove)
 171                         continue;
 172                 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
 173         }
 174 
 175         VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
 176         VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
 177 
 178         for (int i = 0; i < count - 1; i++)
 179                 nvlist_free(newdev[i]);
 180 
 181         if (count > 1)
 182                 kmem_free(newdev, (count - 1) * sizeof (void *));
 183 }
 184 
 185 static spa_vdev_removal_t *
 186 spa_vdev_removal_create(vdev_t *vd)
 187 {
 188         spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
 189         mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
 190         cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
 191         svr->svr_allocd_segs = range_tree_create(NULL, NULL);
 192         svr->svr_vdev_id = vd->vdev_id;
 193 
 194         for (int i = 0; i < TXG_SIZE; i++) {
 195                 svr->svr_frees[i] = range_tree_create(NULL, NULL);
 196                 list_create(&svr->svr_new_segments[i],
 197                     sizeof (vdev_indirect_mapping_entry_t),
 198                     offsetof(vdev_indirect_mapping_entry_t, vime_node));
 199         }
 200 
 201         return (svr);
 202 }
 203 
 204 void
 205 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
 206 {
 207         for (int i = 0; i < TXG_SIZE; i++) {
 208                 ASSERT0(svr->svr_bytes_done[i]);
 209                 ASSERT0(svr->svr_max_offset_to_sync[i]);
 210                 range_tree_destroy(svr->svr_frees[i]);
 211                 list_destroy(&svr->svr_new_segments[i]);
 212         }
 213 
 214         range_tree_destroy(svr->svr_allocd_segs);
 215         mutex_destroy(&svr->svr_lock);
 216         cv_destroy(&svr->svr_cv);
 217         kmem_free(svr, sizeof (*svr));
 218 }
 219 
 220 /*
 221  * This is called as a synctask in the txg in which we will mark this vdev
 222  * as removing (in the config stored in the MOS).
 223  *
 224  * It begins the evacuation of a toplevel vdev by:
 225  * - initializing the spa_removing_phys which tracks this removal
 226  * - computing the amount of space to remove for accounting purposes
 227  * - dirtying all dbufs in the spa_config_object
 228  * - creating the spa_vdev_removal
 229  * - starting the spa_vdev_remove_thread
 230  */
 231 static void
 232 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
 233 {
 234         int vdev_id = (uintptr_t)arg;
 235         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 236         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
 237         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
 238         objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
 239         spa_vdev_removal_t *svr = NULL;
 240         uint64_t txg = dmu_tx_get_txg(tx);
 241 
 242         ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
 243         svr = spa_vdev_removal_create(vd);
 244 
 245         ASSERT(vd->vdev_removing);
 246         ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
 247 
 248         spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
 249         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
 250                 /*
 251                  * By activating the OBSOLETE_COUNTS feature, we prevent
 252                  * the pool from being downgraded and ensure that the
 253                  * refcounts are precise.
 254                  */
 255                 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
 256                 uint64_t one = 1;
 257                 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
 258                     VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
 259                     &one, tx));
 260                 ASSERT3U(vdev_obsolete_counts_are_precise(vd), !=, 0);
 261         }
 262 
 263         vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
 264         vd->vdev_indirect_mapping =
 265             vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
 266         vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
 267         vd->vdev_indirect_births =
 268             vdev_indirect_births_open(mos, vic->vic_births_object);
 269         spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
 270         spa->spa_removing_phys.sr_start_time = gethrestime_sec();
 271         spa->spa_removing_phys.sr_end_time = 0;
 272         spa->spa_removing_phys.sr_state = DSS_SCANNING;
 273         spa->spa_removing_phys.sr_to_copy = 0;
 274         spa->spa_removing_phys.sr_copied = 0;
 275 
 276         /*
 277          * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
 278          * there may be space in the defer tree, which is free, but still
 279          * counted in vs_alloc.
 280          */
 281         for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
 282                 metaslab_t *ms = vd->vdev_ms[i];
 283                 if (ms->ms_sm == NULL)
 284                         continue;
 285 
 286                 spa->spa_removing_phys.sr_to_copy +=
 287                     metaslab_allocated_space(ms);
 288 
 289                 /*
 290                  * Space which we are freeing this txg does not need to
 291                  * be copied.
 292                  */
 293                 spa->spa_removing_phys.sr_to_copy -=
 294                     range_tree_space(ms->ms_freeing);
 295 
 296                 ASSERT0(range_tree_space(ms->ms_freed));
 297                 for (int t = 0; t < TXG_SIZE; t++)
 298                         ASSERT0(range_tree_space(ms->ms_allocating[t]));
 299         }
 300 
 301         /*
 302          * Sync tasks are called before metaslab_sync(), so there should
 303          * be no already-synced metaslabs in the TXG_CLEAN list.
 304          */
 305         ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
 306 
 307         spa_sync_removing_state(spa, tx);
 308 
 309         /*
 310          * All blocks that we need to read the most recent mapping must be
 311          * stored on concrete vdevs.  Therefore, we must dirty anything that
 312          * is read before spa_remove_init().  Specifically, the
 313          * spa_config_object.  (Note that although we already modified the
 314          * spa_config_object in spa_sync_removing_state, that may not have
 315          * modified all blocks of the object.)
 316          */
 317         dmu_object_info_t doi;
 318         VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
 319         for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
 320                 dmu_buf_t *dbuf;
 321                 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
 322                     offset, FTAG, &dbuf, 0));
 323                 dmu_buf_will_dirty(dbuf, tx);
 324                 offset += dbuf->db_size;
 325                 dmu_buf_rele(dbuf, FTAG);
 326         }
 327 
 328         /*
 329          * Now that we've allocated the im_object, dirty the vdev to ensure
 330          * that the object gets written to the config on disk.
 331          */
 332         vdev_config_dirty(vd);
 333 
 334         zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu "
 335             "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
 336             vic->vic_mapping_object);
 337 
 338         spa_history_log_internal(spa, "vdev remove started", tx,
 339             "%s vdev %llu %s", spa_name(spa), vd->vdev_id,
 340             (vd->vdev_path != NULL) ? vd->vdev_path : "-");
 341         /*
 342          * Setting spa_vdev_removal causes subsequent frees to call
 343          * free_from_removing_vdev().  Note that we don't need any locking
 344          * because we are the sync thread, and metaslab_free_impl() is only
 345          * called from syncing context (potentially from a zio taskq thread,
 346          * but in any case only when there are outstanding free i/os, which
 347          * there are not).
 348          */
 349         ASSERT3P(spa->spa_vdev_removal, ==, NULL);
 350         spa->spa_vdev_removal = svr;
 351         svr->svr_thread = thread_create(NULL, 0,
 352             spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
 353 }
 354 
 355 /*
 356  * When we are opening a pool, we must read the mapping for each
 357  * indirect vdev in order from most recently removed to least
 358  * recently removed.  We do this because the blocks for the mapping
 359  * of older indirect vdevs may be stored on more recently removed vdevs.
 360  * In order to read each indirect mapping object, we must have
 361  * initialized all more recently removed vdevs.
 362  */
 363 int
 364 spa_remove_init(spa_t *spa)
 365 {
 366         int error;
 367 
 368         error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
 369             DMU_POOL_DIRECTORY_OBJECT,
 370             DMU_POOL_REMOVING, sizeof (uint64_t),
 371             sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
 372             &spa->spa_removing_phys);
 373 
 374         if (error == ENOENT) {
 375                 spa->spa_removing_phys.sr_state = DSS_NONE;
 376                 spa->spa_removing_phys.sr_removing_vdev = -1;
 377                 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
 378                 spa->spa_indirect_vdevs_loaded = B_TRUE;
 379                 return (0);
 380         } else if (error != 0) {
 381                 return (error);
 382         }
 383 
 384         if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
 385                 /*
 386                  * We are currently removing a vdev.  Create and
 387                  * initialize a spa_vdev_removal_t from the bonus
 388                  * buffer of the removing vdevs vdev_im_object, and
 389                  * initialize its partial mapping.
 390                  */
 391                 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 392                 vdev_t *vd = vdev_lookup_top(spa,
 393                     spa->spa_removing_phys.sr_removing_vdev);
 394 
 395                 if (vd == NULL) {
 396                         spa_config_exit(spa, SCL_STATE, FTAG);
 397                         return (EINVAL);
 398                 }
 399 
 400                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
 401 
 402                 ASSERT(vdev_is_concrete(vd));
 403                 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
 404                 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
 405                 ASSERT(vd->vdev_removing);
 406 
 407                 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
 408                     spa->spa_meta_objset, vic->vic_mapping_object);
 409                 vd->vdev_indirect_births = vdev_indirect_births_open(
 410                     spa->spa_meta_objset, vic->vic_births_object);
 411                 spa_config_exit(spa, SCL_STATE, FTAG);
 412 
 413                 spa->spa_vdev_removal = svr;
 414         }
 415 
 416         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 417         uint64_t indirect_vdev_id =
 418             spa->spa_removing_phys.sr_prev_indirect_vdev;
 419         while (indirect_vdev_id != UINT64_MAX) {
 420                 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
 421                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
 422 
 423                 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
 424                 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
 425                     spa->spa_meta_objset, vic->vic_mapping_object);
 426                 vd->vdev_indirect_births = vdev_indirect_births_open(
 427                     spa->spa_meta_objset, vic->vic_births_object);
 428 
 429                 indirect_vdev_id = vic->vic_prev_indirect_vdev;
 430         }
 431         spa_config_exit(spa, SCL_STATE, FTAG);
 432 
 433         /*
 434          * Now that we've loaded all the indirect mappings, we can allow
 435          * reads from other blocks (e.g. via predictive prefetch).
 436          */
 437         spa->spa_indirect_vdevs_loaded = B_TRUE;
 438         return (0);
 439 }
 440 
 441 void
 442 spa_restart_removal(spa_t *spa)
 443 {
 444         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
 445 
 446         if (svr == NULL)
 447                 return;
 448 
 449         /*
 450          * In general when this function is called there is no
 451          * removal thread running. The only scenario where this
 452          * is not true is during spa_import() where this function
 453          * is called twice [once from spa_import_impl() and
 454          * spa_async_resume()]. Thus, in the scenario where we
 455          * import a pool that has an ongoing removal we don't
 456          * want to spawn a second thread.
 457          */
 458         if (svr->svr_thread != NULL)
 459                 return;
 460 
 461         if (!spa_writeable(spa))
 462                 return;
 463 
 464         zfs_dbgmsg("restarting removal of %llu", svr->svr_vdev_id);
 465         svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
 466             0, &p0, TS_RUN, minclsyspri);
 467 }
 468 
 469 /*
 470  * Process freeing from a device which is in the middle of being removed.
 471  * We must handle this carefully so that we attempt to copy freed data,
 472  * and we correctly free already-copied data.
 473  */
 474 void
 475 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
 476 {
 477         spa_t *spa = vd->vdev_spa;
 478         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
 479         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
 480         uint64_t txg = spa_syncing_txg(spa);
 481         uint64_t max_offset_yet = 0;
 482 
 483         ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
 484         ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
 485             vdev_indirect_mapping_object(vim));
 486         ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
 487 
 488         mutex_enter(&svr->svr_lock);
 489 
 490         /*
 491          * Remove the segment from the removing vdev's spacemap.  This
 492          * ensures that we will not attempt to copy this space (if the
 493          * removal thread has not yet visited it), and also ensures
 494          * that we know what is actually allocated on the new vdevs
 495          * (needed if we cancel the removal).
 496          *
 497          * Note: we must do the metaslab_free_concrete() with the svr_lock
 498          * held, so that the remove_thread can not load this metaslab and then
 499          * visit this offset between the time that we metaslab_free_concrete()
 500          * and when we check to see if it has been visited.
 501          *
 502          * Note: The checkpoint flag is set to false as having/taking
 503          * a checkpoint and removing a device can't happen at the same
 504          * time.
 505          */
 506         ASSERT(!spa_has_checkpoint(spa));
 507         metaslab_free_concrete(vd, offset, size, B_FALSE);
 508 
 509         uint64_t synced_size = 0;
 510         uint64_t synced_offset = 0;
 511         uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
 512         if (offset < max_offset_synced) {
 513                 /*
 514                  * The mapping for this offset is already on disk.
 515                  * Free from the new location.
 516                  *
 517                  * Note that we use svr_max_synced_offset because it is
 518                  * updated atomically with respect to the in-core mapping.
 519                  * By contrast, vim_max_offset is not.
 520                  *
 521                  * This block may be split between a synced entry and an
 522                  * in-flight or unvisited entry.  Only process the synced
 523                  * portion of it here.
 524                  */
 525                 synced_size = MIN(size, max_offset_synced - offset);
 526                 synced_offset = offset;
 527 
 528                 ASSERT3U(max_offset_yet, <=, max_offset_synced);
 529                 max_offset_yet = max_offset_synced;
 530 
 531                 DTRACE_PROBE3(remove__free__synced,
 532                     spa_t *, spa,
 533                     uint64_t, offset,
 534                     uint64_t, synced_size);
 535 
 536                 size -= synced_size;
 537                 offset += synced_size;
 538         }
 539 
 540         /*
 541          * Look at all in-flight txgs starting from the currently syncing one
 542          * and see if a section of this free is being copied. By starting from
 543          * this txg and iterating forward, we might find that this region
 544          * was copied in two different txgs and handle it appropriately.
 545          */
 546         for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
 547                 int txgoff = (txg + i) & TXG_MASK;
 548                 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
 549                         /*
 550                          * The mapping for this offset is in flight, and
 551                          * will be synced in txg+i.
 552                          */
 553                         uint64_t inflight_size = MIN(size,
 554                             svr->svr_max_offset_to_sync[txgoff] - offset);
 555 
 556                         DTRACE_PROBE4(remove__free__inflight,
 557                             spa_t *, spa,
 558                             uint64_t, offset,
 559                             uint64_t, inflight_size,
 560                             uint64_t, txg + i);
 561 
 562                         /*
 563                          * We copy data in order of increasing offset.
 564                          * Therefore the max_offset_to_sync[] must increase
 565                          * (or be zero, indicating that nothing is being
 566                          * copied in that txg).
 567                          */
 568                         if (svr->svr_max_offset_to_sync[txgoff] != 0) {
 569                                 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
 570                                     >=, max_offset_yet);
 571                                 max_offset_yet =
 572                                     svr->svr_max_offset_to_sync[txgoff];
 573                         }
 574 
 575                         /*
 576                          * We've already committed to copying this segment:
 577                          * we have allocated space elsewhere in the pool for
 578                          * it and have an IO outstanding to copy the data. We
 579                          * cannot free the space before the copy has
 580                          * completed, or else the copy IO might overwrite any
 581                          * new data. To free that space, we record the
 582                          * segment in the appropriate svr_frees tree and free
 583                          * the mapped space later, in the txg where we have
 584                          * completed the copy and synced the mapping (see
 585                          * vdev_mapping_sync).
 586                          */
 587                         range_tree_add(svr->svr_frees[txgoff],
 588                             offset, inflight_size);
 589                         size -= inflight_size;
 590                         offset += inflight_size;
 591 
 592                         /*
 593                          * This space is already accounted for as being
 594                          * done, because it is being copied in txg+i.
 595                          * However, if i!=0, then it is being copied in
 596                          * a future txg.  If we crash after this txg
 597                          * syncs but before txg+i syncs, then the space
 598                          * will be free.  Therefore we must account
 599                          * for the space being done in *this* txg
 600                          * (when it is freed) rather than the future txg
 601                          * (when it will be copied).
 602                          */
 603                         ASSERT3U(svr->svr_bytes_done[txgoff], >=,
 604                             inflight_size);
 605                         svr->svr_bytes_done[txgoff] -= inflight_size;
 606                         svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
 607                 }
 608         }
 609         ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
 610 
 611         if (size > 0) {
 612                 /*
 613                  * The copy thread has not yet visited this offset.  Ensure
 614                  * that it doesn't.
 615                  */
 616 
 617                 DTRACE_PROBE3(remove__free__unvisited,
 618                     spa_t *, spa,
 619                     uint64_t, offset,
 620                     uint64_t, size);
 621 
 622                 if (svr->svr_allocd_segs != NULL)
 623                         range_tree_clear(svr->svr_allocd_segs, offset, size);
 624 
 625                 /*
 626                  * Since we now do not need to copy this data, for
 627                  * accounting purposes we have done our job and can count
 628                  * it as completed.
 629                  */
 630                 svr->svr_bytes_done[txg & TXG_MASK] += size;
 631         }
 632         mutex_exit(&svr->svr_lock);
 633 
 634         /*
 635          * Now that we have dropped svr_lock, process the synced portion
 636          * of this free.
 637          */
 638         if (synced_size > 0) {
 639                 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
 640 
 641                 /*
 642                  * Note: this can only be called from syncing context,
 643                  * and the vdev_indirect_mapping is only changed from the
 644                  * sync thread, so we don't need svr_lock while doing
 645                  * metaslab_free_impl_cb.
 646                  */
 647                 boolean_t checkpoint = B_FALSE;
 648                 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
 649                     metaslab_free_impl_cb, &checkpoint);
 650         }
 651 }
 652 
 653 /*
 654  * Stop an active removal and update the spa_removing phys.
 655  */
 656 static void
 657 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
 658 {
 659         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
 660         ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
 661 
 662         /* Ensure the removal thread has completed before we free the svr. */
 663         spa_vdev_remove_suspend(spa);
 664 
 665         ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
 666 
 667         if (state == DSS_FINISHED) {
 668                 spa_removing_phys_t *srp = &spa->spa_removing_phys;
 669                 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
 670                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
 671 
 672                 if (srp->sr_prev_indirect_vdev != UINT64_MAX) {
 673                         vdev_t *pvd = vdev_lookup_top(spa,
 674                             srp->sr_prev_indirect_vdev);
 675                         ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
 676                 }
 677 
 678                 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
 679                 srp->sr_prev_indirect_vdev = vd->vdev_id;
 680         }
 681         spa->spa_removing_phys.sr_state = state;
 682         spa->spa_removing_phys.sr_end_time = gethrestime_sec();
 683 
 684         spa->spa_vdev_removal = NULL;
 685         spa_vdev_removal_destroy(svr);
 686 
 687         spa_sync_removing_state(spa, tx);
 688 
 689         vdev_config_dirty(spa->spa_root_vdev);
 690 }
 691 
 692 static void
 693 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
 694 {
 695         vdev_t *vd = arg;
 696         vdev_indirect_mark_obsolete(vd, offset, size);
 697         boolean_t checkpoint = B_FALSE;
 698         vdev_indirect_ops.vdev_op_remap(vd, offset, size,
 699             metaslab_free_impl_cb, &checkpoint);
 700 }
 701 
 702 /*
 703  * On behalf of the removal thread, syncs an incremental bit more of
 704  * the indirect mapping to disk and updates the in-memory mapping.
 705  * Called as a sync task in every txg that the removal thread makes progress.
 706  */
 707 static void
 708 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
 709 {
 710         spa_vdev_removal_t *svr = arg;
 711         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 712         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
 713         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
 714         uint64_t txg = dmu_tx_get_txg(tx);
 715         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
 716 
 717         ASSERT(vic->vic_mapping_object != 0);
 718         ASSERT3U(txg, ==, spa_syncing_txg(spa));
 719 
 720         vdev_indirect_mapping_add_entries(vim,
 721             &svr->svr_new_segments[txg & TXG_MASK], tx);
 722         vdev_indirect_births_add_entry(vd->vdev_indirect_births,
 723             vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
 724 
 725         /*
 726          * Free the copied data for anything that was freed while the
 727          * mapping entries were in flight.
 728          */
 729         mutex_enter(&svr->svr_lock);
 730         range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
 731             free_mapped_segment_cb, vd);
 732         ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
 733             vdev_indirect_mapping_max_offset(vim));
 734         svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
 735         mutex_exit(&svr->svr_lock);
 736 
 737         spa_sync_removing_state(spa, tx);
 738 }
 739 
 740 typedef struct vdev_copy_segment_arg {
 741         spa_t *vcsa_spa;
 742         dva_t *vcsa_dest_dva;
 743         uint64_t vcsa_txg;
 744         range_tree_t *vcsa_obsolete_segs;
 745 } vdev_copy_segment_arg_t;
 746 
 747 static void
 748 unalloc_seg(void *arg, uint64_t start, uint64_t size)
 749 {
 750         vdev_copy_segment_arg_t *vcsa = arg;
 751         spa_t *spa = vcsa->vcsa_spa;
 752         blkptr_t bp = { 0 };
 753 
 754         BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
 755         BP_SET_LSIZE(&bp, size);
 756         BP_SET_PSIZE(&bp, size);
 757         BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
 758         BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
 759         BP_SET_TYPE(&bp, DMU_OT_NONE);
 760         BP_SET_LEVEL(&bp, 0);
 761         BP_SET_DEDUP(&bp, 0);
 762         BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
 763 
 764         DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
 765         DVA_SET_OFFSET(&bp.blk_dva[0],
 766             DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
 767         DVA_SET_ASIZE(&bp.blk_dva[0], size);
 768 
 769         zio_free(spa, vcsa->vcsa_txg, &bp);
 770 }
 771 
 772 /*
 773  * All reads and writes associated with a call to spa_vdev_copy_segment()
 774  * are done.
 775  */
 776 static void
 777 spa_vdev_copy_segment_done(zio_t *zio)
 778 {
 779         vdev_copy_segment_arg_t *vcsa = zio->io_private;
 780 
 781         range_tree_vacate(vcsa->vcsa_obsolete_segs,
 782             unalloc_seg, vcsa);
 783         range_tree_destroy(vcsa->vcsa_obsolete_segs);
 784         kmem_free(vcsa, sizeof (*vcsa));
 785 
 786         spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
 787 }
 788 
 789 /*
 790  * The write of the new location is done.
 791  */
 792 static void
 793 spa_vdev_copy_segment_write_done(zio_t *zio)
 794 {
 795         vdev_copy_arg_t *vca = zio->io_private;
 796 
 797         abd_free(zio->io_abd);
 798 
 799         mutex_enter(&vca->vca_lock);
 800         vca->vca_outstanding_bytes -= zio->io_size;
 801         cv_signal(&vca->vca_cv);
 802         mutex_exit(&vca->vca_lock);
 803 }
 804 
 805 /*
 806  * The read of the old location is done.  The parent zio is the write to
 807  * the new location.  Allow it to start.
 808  */
 809 static void
 810 spa_vdev_copy_segment_read_done(zio_t *zio)
 811 {
 812         zio_nowait(zio_unique_parent(zio));
 813 }
 814 
 815 /*
 816  * If the old and new vdevs are mirrors, we will read both sides of the old
 817  * mirror, and write each copy to the corresponding side of the new mirror.
 818  * If the old and new vdevs have a different number of children, we will do
 819  * this as best as possible.  Since we aren't verifying checksums, this
 820  * ensures that as long as there's a good copy of the data, we'll have a
 821  * good copy after the removal, even if there's silent damage to one side
 822  * of the mirror. If we're removing a mirror that has some silent damage,
 823  * we'll have exactly the same damage in the new location (assuming that
 824  * the new location is also a mirror).
 825  *
 826  * We accomplish this by creating a tree of zio_t's, with as many writes as
 827  * there are "children" of the new vdev (a non-redundant vdev counts as one
 828  * child, a 2-way mirror has 2 children, etc). Each write has an associated
 829  * read from a child of the old vdev. Typically there will be the same
 830  * number of children of the old and new vdevs.  However, if there are more
 831  * children of the new vdev, some child(ren) of the old vdev will be issued
 832  * multiple reads.  If there are more children of the old vdev, some copies
 833  * will be dropped.
 834  *
 835  * For example, the tree of zio_t's for a 2-way mirror is:
 836  *
 837  *                            null
 838  *                           /    \
 839  *    write(new vdev, child 0)      write(new vdev, child 1)
 840  *      |                             |
 841  *    read(old vdev, child 0)       read(old vdev, child 1)
 842  *
 843  * Child zio's complete before their parents complete.  However, zio's
 844  * created with zio_vdev_child_io() may be issued before their children
 845  * complete.  In this case we need to make sure that the children (reads)
 846  * complete before the parents (writes) are *issued*.  We do this by not
 847  * calling zio_nowait() on each write until its corresponding read has
 848  * completed.
 849  *
 850  * The spa_config_lock must be held while zio's created by
 851  * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
 852  * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
 853  * zio is needed to release the spa_config_lock after all the reads and
 854  * writes complete. (Note that we can't grab the config lock for each read,
 855  * because it is not reentrant - we could deadlock with a thread waiting
 856  * for a write lock.)
 857  */
 858 static void
 859 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
 860     vdev_t *source_vd, uint64_t source_offset,
 861     vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
 862 {
 863         ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
 864 
 865         mutex_enter(&vca->vca_lock);
 866         vca->vca_outstanding_bytes += size;
 867         mutex_exit(&vca->vca_lock);
 868 
 869         abd_t *abd = abd_alloc_for_io(size, B_FALSE);
 870 
 871         vdev_t *source_child_vd;
 872         if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
 873                 /*
 874                  * Source and dest are both mirrors.  Copy from the same
 875                  * child id as we are copying to (wrapping around if there
 876                  * are more dest children than source children).
 877                  */
 878                 source_child_vd =
 879                     source_vd->vdev_child[dest_id % source_vd->vdev_children];
 880         } else {
 881                 source_child_vd = source_vd;
 882         }
 883 
 884         zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
 885             dest_child_vd, dest_offset, abd, size,
 886             ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
 887             ZIO_FLAG_CANFAIL,
 888             spa_vdev_copy_segment_write_done, vca);
 889 
 890         zio_nowait(zio_vdev_child_io(write_zio, NULL,
 891             source_child_vd, source_offset, abd, size,
 892             ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
 893             ZIO_FLAG_CANFAIL,
 894             spa_vdev_copy_segment_read_done, vca));
 895 }
 896 
 897 /*
 898  * Allocate a new location for this segment, and create the zio_t's to
 899  * read from the old location and write to the new location.
 900  */
 901 static int
 902 spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs,
 903     uint64_t maxalloc, uint64_t txg,
 904     vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
 905 {
 906         metaslab_group_t *mg = vd->vdev_mg;
 907         spa_t *spa = vd->vdev_spa;
 908         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
 909         vdev_indirect_mapping_entry_t *entry;
 910         dva_t dst = { 0 };
 911         uint64_t start = range_tree_min(segs);
 912 
 913         ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
 914 
 915         uint64_t size = range_tree_span(segs);
 916         if (range_tree_span(segs) > maxalloc) {
 917                 /*
 918                  * We can't allocate all the segments.  Prefer to end
 919                  * the allocation at the end of a segment, thus avoiding
 920                  * additional split blocks.
 921                  */
 922                 range_seg_t search;
 923                 avl_index_t where;
 924                 search.rs_start = start + maxalloc;
 925                 search.rs_end = search.rs_start;
 926                 range_seg_t *rs = avl_find(&segs->rt_root, &search, &where);
 927                 if (rs == NULL) {
 928                         rs = avl_nearest(&segs->rt_root, where, AVL_BEFORE);
 929                 } else {
 930                         rs = AVL_PREV(&segs->rt_root, rs);
 931                 }
 932                 if (rs != NULL) {
 933                         size = rs->rs_end - start;
 934                 } else {
 935                         /*
 936                          * There are no segments that end before maxalloc.
 937                          * I.e. the first segment is larger than maxalloc,
 938                          * so we must split it.
 939                          */
 940                         size = maxalloc;
 941                 }
 942         }
 943         ASSERT3U(size, <=, maxalloc);
 944 
 945         /*
 946          * An allocation class might not have any remaining vdevs or space
 947          */
 948         metaslab_class_t *mc = mg->mg_class;
 949         if (mc != spa_normal_class(spa) && mc->mc_groups <= 1)
 950                 mc = spa_normal_class(spa);
 951         int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 0,
 952             zal, 0);
 953         if (error == ENOSPC && mc != spa_normal_class(spa)) {
 954                 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
 955                     &dst, 0, NULL, txg, 0, zal, 0);
 956         }
 957         if (error != 0)
 958                 return (error);
 959 
 960         /*
 961          * Determine the ranges that are not actually needed.  Offsets are
 962          * relative to the start of the range to be copied (i.e. relative to the
 963          * local variable "start").
 964          */
 965         range_tree_t *obsolete_segs = range_tree_create(NULL, NULL);
 966 
 967         range_seg_t *rs = avl_first(&segs->rt_root);
 968         ASSERT3U(rs->rs_start, ==, start);
 969         uint64_t prev_seg_end = rs->rs_end;
 970         while ((rs = AVL_NEXT(&segs->rt_root, rs)) != NULL) {
 971                 if (rs->rs_start >= start + size) {
 972                         break;
 973                 } else {
 974                         range_tree_add(obsolete_segs,
 975                             prev_seg_end - start,
 976                             rs->rs_start - prev_seg_end);
 977                 }
 978                 prev_seg_end = rs->rs_end;
 979         }
 980         /* We don't end in the middle of an obsolete range */
 981         ASSERT3U(start + size, <=, prev_seg_end);
 982 
 983         range_tree_clear(segs, start, size);
 984 
 985         /*
 986          * We can't have any padding of the allocated size, otherwise we will
 987          * misunderstand what's allocated, and the size of the mapping.
 988          * The caller ensures this will be true by passing in a size that is
 989          * aligned to the worst (highest) ashift in the pool.
 990          */
 991         ASSERT3U(DVA_GET_ASIZE(&dst), ==, size);
 992 
 993         entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
 994         DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
 995         entry->vime_mapping.vimep_dst = dst;
 996         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
 997                 entry->vime_obsolete_count = range_tree_space(obsolete_segs);
 998         }
 999 
1000         vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1001         vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1002         vcsa->vcsa_obsolete_segs = obsolete_segs;
1003         vcsa->vcsa_spa = spa;
1004         vcsa->vcsa_txg = txg;
1005 
1006         /*
1007          * See comment before spa_vdev_copy_one_child().
1008          */
1009         spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1010         zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1011             spa_vdev_copy_segment_done, vcsa, 0);
1012         vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1013         if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1014                 for (int i = 0; i < dest_vd->vdev_children; i++) {
1015                         vdev_t *child = dest_vd->vdev_child[i];
1016                         spa_vdev_copy_one_child(vca, nzio, vd, start,
1017                             child, DVA_GET_OFFSET(&dst), i, size);
1018                 }
1019         } else {
1020                 spa_vdev_copy_one_child(vca, nzio, vd, start,
1021                     dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1022         }
1023         zio_nowait(nzio);
1024 
1025         list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1026         ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1027         vdev_dirty(vd, 0, NULL, txg);
1028 
1029         return (0);
1030 }
1031 
1032 /*
1033  * Complete the removal of a toplevel vdev. This is called as a
1034  * synctask in the same txg that we will sync out the new config (to the
1035  * MOS object) which indicates that this vdev is indirect.
1036  */
1037 static void
1038 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1039 {
1040         spa_vdev_removal_t *svr = arg;
1041         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1042         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1043 
1044         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1045 
1046         for (int i = 0; i < TXG_SIZE; i++) {
1047                 ASSERT0(svr->svr_bytes_done[i]);
1048         }
1049 
1050         ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1051             spa->spa_removing_phys.sr_to_copy);
1052 
1053         vdev_destroy_spacemaps(vd, tx);
1054 
1055         /* destroy leaf zaps, if any */
1056         ASSERT3P(svr->svr_zaplist, !=, NULL);
1057         for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1058             pair != NULL;
1059             pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1060                 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1061         }
1062         fnvlist_free(svr->svr_zaplist);
1063 
1064         spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1065         /* vd->vdev_path is not available here */
1066         spa_history_log_internal(spa, "vdev remove completed",  tx,
1067             "%s vdev %llu", spa_name(spa), vd->vdev_id);
1068 }
1069 
1070 static void
1071 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1072 {
1073         ASSERT3P(zlist, !=, NULL);
1074         ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
1075 
1076         if (vd->vdev_leaf_zap != 0) {
1077                 char zkey[32];
1078                 (void) snprintf(zkey, sizeof (zkey), "%s-%"PRIu64,
1079                     VDEV_REMOVAL_ZAP_OBJS, vd->vdev_leaf_zap);
1080                 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1081         }
1082 
1083         for (uint64_t id = 0; id < vd->vdev_children; id++) {
1084                 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1085         }
1086 }
1087 
1088 static void
1089 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1090 {
1091         vdev_t *ivd;
1092         dmu_tx_t *tx;
1093         spa_t *spa = vd->vdev_spa;
1094         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1095 
1096         /*
1097          * First, build a list of leaf zaps to be destroyed.
1098          * This is passed to the sync context thread,
1099          * which does the actual unlinking.
1100          */
1101         svr->svr_zaplist = fnvlist_alloc();
1102         vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1103 
1104         ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1105         ivd->vdev_removing = 0;
1106 
1107         vd->vdev_leaf_zap = 0;
1108 
1109         vdev_remove_child(ivd, vd);
1110         vdev_compact_children(ivd);
1111 
1112         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1113 
1114         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1115         dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr,
1116             0, ZFS_SPACE_CHECK_NONE, tx);
1117         dmu_tx_commit(tx);
1118 
1119         /*
1120          * Indicate that this thread has exited.
1121          * After this, we can not use svr.
1122          */
1123         mutex_enter(&svr->svr_lock);
1124         svr->svr_thread = NULL;
1125         cv_broadcast(&svr->svr_cv);
1126         mutex_exit(&svr->svr_lock);
1127 }
1128 
1129 /*
1130  * Complete the removal of a toplevel vdev. This is called in open
1131  * context by the removal thread after we have copied all vdev's data.
1132  */
1133 static void
1134 vdev_remove_complete(spa_t *spa)
1135 {
1136         uint64_t txg;
1137 
1138         /*
1139          * Wait for any deferred frees to be synced before we call
1140          * vdev_metaslab_fini()
1141          */
1142         txg_wait_synced(spa->spa_dsl_pool, 0);
1143         txg = spa_vdev_enter(spa);
1144         vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1145         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1146 
1147         sysevent_t *ev = spa_event_create(spa, vd, NULL,
1148             ESC_ZFS_VDEV_REMOVE_DEV);
1149 
1150         zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1151             vd->vdev_id, txg);
1152 
1153         /*
1154          * Discard allocation state.
1155          */
1156         if (vd->vdev_mg != NULL) {
1157                 vdev_metaslab_fini(vd);
1158                 metaslab_group_destroy(vd->vdev_mg);
1159                 vd->vdev_mg = NULL;
1160         }
1161         ASSERT0(vd->vdev_stat.vs_space);
1162         ASSERT0(vd->vdev_stat.vs_dspace);
1163 
1164         vdev_remove_replace_with_indirect(vd, txg);
1165 
1166         /*
1167          * We now release the locks, allowing spa_sync to run and finish the
1168          * removal via vdev_remove_complete_sync in syncing context.
1169          *
1170          * Note that we hold on to the vdev_t that has been replaced.  Since
1171          * it isn't part of the vdev tree any longer, it can't be concurrently
1172          * manipulated, even while we don't have the config lock.
1173          */
1174         (void) spa_vdev_exit(spa, NULL, txg, 0);
1175 
1176         /*
1177          * Top ZAP should have been transferred to the indirect vdev in
1178          * vdev_remove_replace_with_indirect.
1179          */
1180         ASSERT0(vd->vdev_top_zap);
1181 
1182         /*
1183          * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1184          */
1185         ASSERT0(vd->vdev_leaf_zap);
1186 
1187         txg = spa_vdev_enter(spa);
1188         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1189         /*
1190          * Request to update the config and the config cachefile.
1191          */
1192         vdev_config_dirty(spa->spa_root_vdev);
1193         (void) spa_vdev_exit(spa, vd, txg, 0);
1194 
1195         spa_event_post(ev);
1196 }
1197 
1198 /*
1199  * Evacuates a segment of size at most max_alloc from the vdev
1200  * via repeated calls to spa_vdev_copy_segment. If an allocation
1201  * fails, the pool is probably too fragmented to handle such a
1202  * large size, so decrease max_alloc so that the caller will not try
1203  * this size again this txg.
1204  */
1205 static void
1206 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1207     uint64_t *max_alloc, dmu_tx_t *tx)
1208 {
1209         uint64_t txg = dmu_tx_get_txg(tx);
1210         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1211 
1212         mutex_enter(&svr->svr_lock);
1213 
1214         /*
1215          * Determine how big of a chunk to copy.  We can allocate up
1216          * to max_alloc bytes, and we can span up to vdev_removal_max_span
1217          * bytes of unallocated space at a time.  "segs" will track the
1218          * allocated segments that we are copying.  We may also be copying
1219          * free segments (of up to vdev_removal_max_span bytes).
1220          */
1221         range_tree_t *segs = range_tree_create(NULL, NULL);
1222         for (;;) {
1223                 range_seg_t *rs = avl_first(&svr->svr_allocd_segs->rt_root);
1224                 if (rs == NULL)
1225                         break;
1226 
1227                 uint64_t seg_length;
1228 
1229                 if (range_tree_is_empty(segs)) {
1230                         /* need to truncate the first seg based on max_alloc */
1231                         seg_length =
1232                             MIN(rs->rs_end - rs->rs_start, *max_alloc);
1233                 } else {
1234                         if (rs->rs_start - range_tree_max(segs) >
1235                             vdev_removal_max_span) {
1236                                 /*
1237                                  * Including this segment would cause us to
1238                                  * copy a larger unneeded chunk than is allowed.
1239                                  */
1240                                 break;
1241                         } else if (rs->rs_end - range_tree_min(segs) >
1242                             *max_alloc) {
1243                                 /*
1244                                  * This additional segment would extend past
1245                                  * max_alloc. Rather than splitting this
1246                                  * segment, leave it for the next mapping.
1247                                  */
1248                                 break;
1249                         } else {
1250                                 seg_length = rs->rs_end - rs->rs_start;
1251                         }
1252                 }
1253 
1254                 range_tree_add(segs, rs->rs_start, seg_length);
1255                 range_tree_remove(svr->svr_allocd_segs,
1256                     rs->rs_start, seg_length);
1257         }
1258 
1259         if (range_tree_is_empty(segs)) {
1260                 mutex_exit(&svr->svr_lock);
1261                 range_tree_destroy(segs);
1262                 return;
1263         }
1264 
1265         if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1266                 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1267                     svr, 0, ZFS_SPACE_CHECK_NONE, tx);
1268         }
1269 
1270         svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs);
1271 
1272         /*
1273          * Note: this is the amount of *allocated* space
1274          * that we are taking care of each txg.
1275          */
1276         svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs);
1277 
1278         mutex_exit(&svr->svr_lock);
1279 
1280         zio_alloc_list_t zal;
1281         metaslab_trace_init(&zal);
1282         uint64_t thismax = SPA_MAXBLOCKSIZE;
1283         while (!range_tree_is_empty(segs)) {
1284                 int error = spa_vdev_copy_segment(vd,
1285                     segs, thismax, txg, vca, &zal);
1286 
1287                 if (error == ENOSPC) {
1288                         /*
1289                          * Cut our segment in half, and don't try this
1290                          * segment size again this txg.  Note that the
1291                          * allocation size must be aligned to the highest
1292                          * ashift in the pool, so that the allocation will
1293                          * not be padded out to a multiple of the ashift,
1294                          * which could cause us to think that this mapping
1295                          * is larger than we intended.
1296                          */
1297                         ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1298                         ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1299                         uint64_t attempted =
1300                             MIN(range_tree_span(segs), thismax);
1301                         thismax = P2ROUNDUP(attempted / 2,
1302                             1 << spa->spa_max_ashift);
1303                         /*
1304                          * The minimum-size allocation can not fail.
1305                          */
1306                         ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1307                         *max_alloc = attempted - (1 << spa->spa_max_ashift);
1308                 } else {
1309                         ASSERT0(error);
1310 
1311                         /*
1312                          * We've performed an allocation, so reset the
1313                          * alloc trace list.
1314                          */
1315                         metaslab_trace_fini(&zal);
1316                         metaslab_trace_init(&zal);
1317                 }
1318         }
1319         metaslab_trace_fini(&zal);
1320         range_tree_destroy(segs);
1321 }
1322 
1323 /*
1324  * The removal thread operates in open context.  It iterates over all
1325  * allocated space in the vdev, by loading each metaslab's spacemap.
1326  * For each contiguous segment of allocated space (capping the segment
1327  * size at SPA_MAXBLOCKSIZE), we:
1328  *    - Allocate space for it on another vdev.
1329  *    - Create a new mapping from the old location to the new location
1330  *      (as a record in svr_new_segments).
1331  *    - Initiate a logical read zio to get the data off the removing disk.
1332  *    - In the read zio's done callback, initiate a logical write zio to
1333  *      write it to the new vdev.
1334  * Note that all of this will take effect when a particular TXG syncs.
1335  * The sync thread ensures that all the phys reads and writes for the syncing
1336  * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1337  * (see vdev_mapping_sync()).
1338  */
1339 static void
1340 spa_vdev_remove_thread(void *arg)
1341 {
1342         spa_t *spa = arg;
1343         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1344         vdev_copy_arg_t vca;
1345         uint64_t max_alloc = zfs_remove_max_segment;
1346         uint64_t last_txg = 0;
1347 
1348         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1349         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1350         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1351         uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1352 
1353         ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1354         ASSERT(vdev_is_concrete(vd));
1355         ASSERT(vd->vdev_removing);
1356         ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1357         ASSERT(vim != NULL);
1358 
1359         mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1360         cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1361         vca.vca_outstanding_bytes = 0;
1362 
1363         mutex_enter(&svr->svr_lock);
1364 
1365         /*
1366          * Start from vim_max_offset so we pick up where we left off
1367          * if we are restarting the removal after opening the pool.
1368          */
1369         uint64_t msi;
1370         for (msi = start_offset >> vd->vdev_ms_shift;
1371             msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1372                 metaslab_t *msp = vd->vdev_ms[msi];
1373                 ASSERT3U(msi, <=, vd->vdev_ms_count);
1374 
1375                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1376 
1377                 mutex_enter(&msp->ms_sync_lock);
1378                 mutex_enter(&msp->ms_lock);
1379 
1380                 /*
1381                  * Assert nothing in flight -- ms_*tree is empty.
1382                  */
1383                 for (int i = 0; i < TXG_SIZE; i++) {
1384                         ASSERT0(range_tree_space(msp->ms_allocating[i]));
1385                 }
1386 
1387                 /*
1388                  * If the metaslab has ever been allocated from (ms_sm!=NULL),
1389                  * read the allocated segments from the space map object
1390                  * into svr_allocd_segs. Since we do this while holding
1391                  * svr_lock and ms_sync_lock, concurrent frees (which
1392                  * would have modified the space map) will wait for us
1393                  * to finish loading the spacemap, and then take the
1394                  * appropriate action (see free_from_removing_vdev()).
1395                  */
1396                 if (msp->ms_sm != NULL) {
1397                         VERIFY0(space_map_load(msp->ms_sm,
1398                             svr->svr_allocd_segs, SM_ALLOC));
1399 
1400                         range_tree_walk(msp->ms_freeing,
1401                             range_tree_remove, svr->svr_allocd_segs);
1402 
1403                         /*
1404                          * When we are resuming from a paused removal (i.e.
1405                          * when importing a pool with a removal in progress),
1406                          * discard any state that we have already processed.
1407                          */
1408                         range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1409                 }
1410                 mutex_exit(&msp->ms_lock);
1411                 mutex_exit(&msp->ms_sync_lock);
1412 
1413                 vca.vca_msp = msp;
1414                 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1415                     avl_numnodes(&svr->svr_allocd_segs->rt_root),
1416                     msp->ms_id);
1417 
1418                 while (!svr->svr_thread_exit &&
1419                     !range_tree_is_empty(svr->svr_allocd_segs)) {
1420 
1421                         mutex_exit(&svr->svr_lock);
1422 
1423                         /*
1424                          * We need to periodically drop the config lock so that
1425                          * writers can get in.  Additionally, we can't wait
1426                          * for a txg to sync while holding a config lock
1427                          * (since a waiting writer could cause a 3-way deadlock
1428                          * with the sync thread, which also gets a config
1429                          * lock for reader).  So we can't hold the config lock
1430                          * while calling dmu_tx_assign().
1431                          */
1432                         spa_config_exit(spa, SCL_CONFIG, FTAG);
1433 
1434                         /*
1435                          * This delay will pause the removal around the point
1436                          * specified by zfs_remove_max_bytes_pause. We do this
1437                          * solely from the test suite or during debugging.
1438                          */
1439                         uint64_t bytes_copied =
1440                             spa->spa_removing_phys.sr_copied;
1441                         for (int i = 0; i < TXG_SIZE; i++)
1442                                 bytes_copied += svr->svr_bytes_done[i];
1443                         while (zfs_remove_max_bytes_pause <= bytes_copied &&
1444                             !svr->svr_thread_exit)
1445                                 delay(hz);
1446 
1447                         mutex_enter(&vca.vca_lock);
1448                         while (vca.vca_outstanding_bytes >
1449                             zfs_remove_max_copy_bytes) {
1450                                 cv_wait(&vca.vca_cv, &vca.vca_lock);
1451                         }
1452                         mutex_exit(&vca.vca_lock);
1453 
1454                         dmu_tx_t *tx =
1455                             dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1456 
1457                         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1458                         uint64_t txg = dmu_tx_get_txg(tx);
1459 
1460                         /*
1461                          * Reacquire the vdev_config lock.  The vdev_t
1462                          * that we're removing may have changed, e.g. due
1463                          * to a vdev_attach or vdev_detach.
1464                          */
1465                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1466                         vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1467 
1468                         if (txg != last_txg)
1469                                 max_alloc = zfs_remove_max_segment;
1470                         last_txg = txg;
1471 
1472                         spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1473 
1474                         dmu_tx_commit(tx);
1475                         mutex_enter(&svr->svr_lock);
1476                 }
1477         }
1478 
1479         mutex_exit(&svr->svr_lock);
1480 
1481         spa_config_exit(spa, SCL_CONFIG, FTAG);
1482 
1483         /*
1484          * Wait for all copies to finish before cleaning up the vca.
1485          */
1486         txg_wait_synced(spa->spa_dsl_pool, 0);
1487         ASSERT0(vca.vca_outstanding_bytes);
1488 
1489         mutex_destroy(&vca.vca_lock);
1490         cv_destroy(&vca.vca_cv);
1491 
1492         if (svr->svr_thread_exit) {
1493                 mutex_enter(&svr->svr_lock);
1494                 range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1495                 svr->svr_thread = NULL;
1496                 cv_broadcast(&svr->svr_cv);
1497                 mutex_exit(&svr->svr_lock);
1498         } else {
1499                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1500                 vdev_remove_complete(spa);
1501         }
1502 }
1503 
1504 void
1505 spa_vdev_remove_suspend(spa_t *spa)
1506 {
1507         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1508 
1509         if (svr == NULL)
1510                 return;
1511 
1512         mutex_enter(&svr->svr_lock);
1513         svr->svr_thread_exit = B_TRUE;
1514         while (svr->svr_thread != NULL)
1515                 cv_wait(&svr->svr_cv, &svr->svr_lock);
1516         svr->svr_thread_exit = B_FALSE;
1517         mutex_exit(&svr->svr_lock);
1518 }
1519 
1520 /* ARGSUSED */
1521 static int
1522 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1523 {
1524         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1525 
1526         if (spa->spa_vdev_removal == NULL)
1527                 return (ENOTACTIVE);
1528         return (0);
1529 }
1530 
1531 /*
1532  * Cancel a removal by freeing all entries from the partial mapping
1533  * and marking the vdev as no longer being removing.
1534  */
1535 /* ARGSUSED */
1536 static void
1537 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1538 {
1539         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1540         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1541         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1542         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1543         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1544         objset_t *mos = spa->spa_meta_objset;
1545 
1546         ASSERT3P(svr->svr_thread, ==, NULL);
1547 
1548         spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1549         if (vdev_obsolete_counts_are_precise(vd)) {
1550                 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1551                 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1552                     VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1553         }
1554 
1555         if (vdev_obsolete_sm_object(vd) != 0) {
1556                 ASSERT(vd->vdev_obsolete_sm != NULL);
1557                 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
1558                     space_map_object(vd->vdev_obsolete_sm));
1559 
1560                 space_map_free(vd->vdev_obsolete_sm, tx);
1561                 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1562                     VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1563                 space_map_close(vd->vdev_obsolete_sm);
1564                 vd->vdev_obsolete_sm = NULL;
1565                 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1566         }
1567         for (int i = 0; i < TXG_SIZE; i++) {
1568                 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1569                 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1570                     vdev_indirect_mapping_max_offset(vim));
1571         }
1572 
1573         for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1574                 metaslab_t *msp = vd->vdev_ms[msi];
1575 
1576                 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1577                         break;
1578 
1579                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1580 
1581                 mutex_enter(&msp->ms_lock);
1582 
1583                 /*
1584                  * Assert nothing in flight -- ms_*tree is empty.
1585                  */
1586                 for (int i = 0; i < TXG_SIZE; i++)
1587                         ASSERT0(range_tree_space(msp->ms_allocating[i]));
1588                 for (int i = 0; i < TXG_DEFER_SIZE; i++)
1589                         ASSERT0(range_tree_space(msp->ms_defer[i]));
1590                 ASSERT0(range_tree_space(msp->ms_freed));
1591 
1592                 if (msp->ms_sm != NULL) {
1593                         mutex_enter(&svr->svr_lock);
1594                         VERIFY0(space_map_load(msp->ms_sm,
1595                             svr->svr_allocd_segs, SM_ALLOC));
1596                         range_tree_walk(msp->ms_freeing,
1597                             range_tree_remove, svr->svr_allocd_segs);
1598 
1599                         /*
1600                          * Clear everything past what has been synced,
1601                          * because we have not allocated mappings for it yet.
1602                          */
1603                         uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1604                         uint64_t sm_end = msp->ms_sm->sm_start +
1605                             msp->ms_sm->sm_size;
1606                         if (sm_end > syncd)
1607                                 range_tree_clear(svr->svr_allocd_segs,
1608                                     syncd, sm_end - syncd);
1609 
1610                         mutex_exit(&svr->svr_lock);
1611                 }
1612                 mutex_exit(&msp->ms_lock);
1613 
1614                 mutex_enter(&svr->svr_lock);
1615                 range_tree_vacate(svr->svr_allocd_segs,
1616                     free_mapped_segment_cb, vd);
1617                 mutex_exit(&svr->svr_lock);
1618         }
1619 
1620         /*
1621          * Note: this must happen after we invoke free_mapped_segment_cb,
1622          * because it adds to the obsolete_segments.
1623          */
1624         range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1625 
1626         ASSERT3U(vic->vic_mapping_object, ==,
1627             vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1628         vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1629         vd->vdev_indirect_mapping = NULL;
1630         vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1631         vic->vic_mapping_object = 0;
1632 
1633         ASSERT3U(vic->vic_births_object, ==,
1634             vdev_indirect_births_object(vd->vdev_indirect_births));
1635         vdev_indirect_births_close(vd->vdev_indirect_births);
1636         vd->vdev_indirect_births = NULL;
1637         vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1638         vic->vic_births_object = 0;
1639 
1640         /*
1641          * We may have processed some frees from the removing vdev in this
1642          * txg, thus increasing svr_bytes_done; discard that here to
1643          * satisfy the assertions in spa_vdev_removal_destroy().
1644          * Note that future txg's can not have any bytes_done, because
1645          * future TXG's are only modified from open context, and we have
1646          * already shut down the copying thread.
1647          */
1648         svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1649         spa_finish_removal(spa, DSS_CANCELED, tx);
1650 
1651         vd->vdev_removing = B_FALSE;
1652         vdev_config_dirty(vd);
1653 
1654         zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1655             vd->vdev_id, dmu_tx_get_txg(tx));
1656         spa_history_log_internal(spa, "vdev remove canceled", tx,
1657             "%s vdev %llu %s", spa_name(spa),
1658             vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1659 }
1660 
1661 int
1662 spa_vdev_remove_cancel(spa_t *spa)
1663 {
1664         spa_vdev_remove_suspend(spa);
1665 
1666         if (spa->spa_vdev_removal == NULL)
1667                 return (ENOTACTIVE);
1668 
1669         uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id;
1670 
1671         int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1672             spa_vdev_remove_cancel_sync, NULL, 0,
1673             ZFS_SPACE_CHECK_EXTRA_RESERVED);
1674 
1675         if (error == 0) {
1676                 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1677                 vdev_t *vd = vdev_lookup_top(spa, vdid);
1678                 metaslab_group_activate(vd->vdev_mg);
1679                 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1680         }
1681 
1682         return (error);
1683 }
1684 
1685 void
1686 svr_sync(spa_t *spa, dmu_tx_t *tx)
1687 {
1688         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1689         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1690 
1691         /*
1692          * This check is necessary so that we do not dirty the
1693          * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1694          * is nothing to do.  Dirtying it every time would prevent us
1695          * from syncing-to-convergence.
1696          */
1697         if (svr->svr_bytes_done[txgoff] == 0)
1698                 return;
1699 
1700         /*
1701          * Update progress accounting.
1702          */
1703         spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1704         svr->svr_bytes_done[txgoff] = 0;
1705 
1706         spa_sync_removing_state(spa, tx);
1707 }
1708 
1709 static void
1710 vdev_remove_make_hole_and_free(vdev_t *vd)
1711 {
1712         uint64_t id = vd->vdev_id;
1713         spa_t *spa = vd->vdev_spa;
1714         vdev_t *rvd = spa->spa_root_vdev;
1715         boolean_t last_vdev = (id == (rvd->vdev_children - 1));
1716 
1717         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1718         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1719 
1720         vdev_free(vd);
1721 
1722         if (last_vdev) {
1723                 vdev_compact_children(rvd);
1724         } else {
1725                 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1726                 vdev_add_child(rvd, vd);
1727         }
1728         vdev_config_dirty(rvd);
1729 
1730         /*
1731          * Reassess the health of our root vdev.
1732          */
1733         vdev_reopen(rvd);
1734 }
1735 
1736 /*
1737  * Remove a log device.  The config lock is held for the specified TXG.
1738  */
1739 static int
1740 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1741 {
1742         metaslab_group_t *mg = vd->vdev_mg;
1743         spa_t *spa = vd->vdev_spa;
1744         int error = 0;
1745 
1746         ASSERT(vd->vdev_islog);
1747         ASSERT(vd == vd->vdev_top);
1748         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1749 
1750         /*
1751          * Stop allocating from this vdev.
1752          */
1753         metaslab_group_passivate(mg);
1754 
1755         /*
1756          * Wait for the youngest allocations and frees to sync,
1757          * and then wait for the deferral of those frees to finish.
1758          */
1759         spa_vdev_config_exit(spa, NULL,
1760             *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1761 
1762         /*
1763          * Evacuate the device.  We don't hold the config lock as
1764          * writer since we need to do I/O but we do keep the
1765          * spa_namespace_lock held.  Once this completes the device
1766          * should no longer have any blocks allocated on it.
1767          */
1768         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1769         if (vd->vdev_stat.vs_alloc != 0)
1770                 error = spa_reset_logs(spa);
1771 
1772         *txg = spa_vdev_config_enter(spa);
1773 
1774         if (error != 0) {
1775                 metaslab_group_activate(mg);
1776                 return (error);
1777         }
1778         ASSERT0(vd->vdev_stat.vs_alloc);
1779 
1780         /*
1781          * The evacuation succeeded.  Remove any remaining MOS metadata
1782          * associated with this vdev, and wait for these changes to sync.
1783          */
1784         vd->vdev_removing = B_TRUE;
1785 
1786         vdev_dirty_leaves(vd, VDD_DTL, *txg);
1787         vdev_config_dirty(vd);
1788 
1789         vdev_metaslab_fini(vd);
1790 
1791         spa_history_log_internal(spa, "vdev remove", NULL,
1792             "%s vdev %llu (log) %s", spa_name(spa), vd->vdev_id,
1793             (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1794 
1795         /* Make sure these changes are sync'ed */
1796         spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1797 
1798         /* Stop initializing */
1799         (void) vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
1800 
1801         *txg = spa_vdev_config_enter(spa);
1802 
1803         sysevent_t *ev = spa_event_create(spa, vd, NULL,
1804             ESC_ZFS_VDEV_REMOVE_DEV);
1805         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1806         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1807 
1808         /* The top ZAP should have been destroyed by vdev_remove_empty. */
1809         ASSERT0(vd->vdev_top_zap);
1810         /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1811         ASSERT0(vd->vdev_leaf_zap);
1812 
1813         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1814 
1815         if (list_link_active(&vd->vdev_state_dirty_node))
1816                 vdev_state_clean(vd);
1817         if (list_link_active(&vd->vdev_config_dirty_node))
1818                 vdev_config_clean(vd);
1819 
1820         ASSERT0(vd->vdev_stat.vs_alloc);
1821 
1822         /*
1823          * Clean up the vdev namespace.
1824          */
1825         vdev_remove_make_hole_and_free(vd);
1826 
1827         if (ev != NULL)
1828                 spa_event_post(ev);
1829 
1830         return (0);
1831 }
1832 
1833 static int
1834 spa_vdev_remove_top_check(vdev_t *vd)
1835 {
1836         spa_t *spa = vd->vdev_spa;
1837 
1838         if (vd != vd->vdev_top)
1839                 return (SET_ERROR(ENOTSUP));
1840 
1841         if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1842                 return (SET_ERROR(ENOTSUP));
1843 
1844         /* available space in the pool's normal class */
1845         uint64_t available = dsl_dir_space_available(
1846             spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
1847 
1848         metaslab_class_t *mc = vd->vdev_mg->mg_class;
1849 
1850         /*
1851          * When removing a vdev from an allocation class that has
1852          * remaining vdevs, include available space from the class.
1853          */
1854         if (mc != spa_normal_class(spa) && mc->mc_groups > 1) {
1855                 uint64_t class_avail = metaslab_class_get_space(mc) -
1856                     metaslab_class_get_alloc(mc);
1857 
1858                 /* add class space, adjusted for overhead */
1859                 available += (class_avail * 94) / 100;
1860         }
1861 
1862         /*
1863          * There has to be enough free space to remove the
1864          * device and leave double the "slop" space (i.e. we
1865          * must leave at least 3% of the pool free, in addition to
1866          * the normal slop space).
1867          */
1868         if (available < vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
1869                 return (SET_ERROR(ENOSPC));
1870         }
1871 
1872         /*
1873          * There can not be a removal in progress.
1874          */
1875         if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
1876                 return (SET_ERROR(EBUSY));
1877 
1878         /*
1879          * The device must have all its data.
1880          */
1881         if (!vdev_dtl_empty(vd, DTL_MISSING) ||
1882             !vdev_dtl_empty(vd, DTL_OUTAGE))
1883                 return (SET_ERROR(EBUSY));
1884 
1885         /*
1886          * The device must be healthy.
1887          */
1888         if (!vdev_readable(vd))
1889                 return (SET_ERROR(EIO));
1890 
1891         /*
1892          * All vdevs in normal class must have the same ashift.
1893          */
1894         if (spa->spa_max_ashift != spa->spa_min_ashift) {
1895                 return (SET_ERROR(EINVAL));
1896         }
1897 
1898         /*
1899          * All vdevs in normal class must have the same ashift
1900          * and not be raidz.
1901          */
1902         vdev_t *rvd = spa->spa_root_vdev;
1903         int num_indirect = 0;
1904         for (uint64_t id = 0; id < rvd->vdev_children; id++) {
1905                 vdev_t *cvd = rvd->vdev_child[id];
1906                 if (cvd->vdev_ashift != 0 && !cvd->vdev_islog)
1907                         ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
1908                 if (cvd->vdev_ops == &vdev_indirect_ops)
1909                         num_indirect++;
1910                 if (!vdev_is_concrete(cvd))
1911                         continue;
1912                 if (cvd->vdev_ops == &vdev_raidz_ops)
1913                         return (SET_ERROR(EINVAL));
1914                 /*
1915                  * Need the mirror to be mirror of leaf vdevs only
1916                  */
1917                 if (cvd->vdev_ops == &vdev_mirror_ops) {
1918                         for (uint64_t cid = 0;
1919                             cid < cvd->vdev_children; cid++) {
1920                                 vdev_t *tmp = cvd->vdev_child[cid];
1921                                 if (!tmp->vdev_ops->vdev_op_leaf)
1922                                         return (SET_ERROR(EINVAL));
1923                         }
1924                 }
1925         }
1926 
1927         return (0);
1928 }
1929 
1930 /*
1931  * Initiate removal of a top-level vdev, reducing the total space in the pool.
1932  * The config lock is held for the specified TXG.  Once initiated,
1933  * evacuation of all allocated space (copying it to other vdevs) happens
1934  * in the background (see spa_vdev_remove_thread()), and can be canceled
1935  * (see spa_vdev_remove_cancel()).  If successful, the vdev will
1936  * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
1937  */
1938 static int
1939 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
1940 {
1941         spa_t *spa = vd->vdev_spa;
1942         int error;
1943 
1944         /*
1945          * Check for errors up-front, so that we don't waste time
1946          * passivating the metaslab group and clearing the ZIL if there
1947          * are errors.
1948          */
1949         error = spa_vdev_remove_top_check(vd);
1950         if (error != 0)
1951                 return (error);
1952 
1953         /*
1954          * Stop allocating from this vdev.  Note that we must check
1955          * that this is not the only device in the pool before
1956          * passivating, otherwise we will not be able to make
1957          * progress because we can't allocate from any vdevs.
1958          * The above check for sufficient free space serves this
1959          * purpose.
1960          */
1961         metaslab_group_t *mg = vd->vdev_mg;
1962         metaslab_group_passivate(mg);
1963 
1964         /*
1965          * Wait for the youngest allocations and frees to sync,
1966          * and then wait for the deferral of those frees to finish.
1967          */
1968         spa_vdev_config_exit(spa, NULL,
1969             *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1970 
1971         /*
1972          * We must ensure that no "stubby" log blocks are allocated
1973          * on the device to be removed.  These blocks could be
1974          * written at any time, including while we are in the middle
1975          * of copying them.
1976          */
1977         error = spa_reset_logs(spa);
1978 
1979         /*
1980          * We stop any initializing that is currently in progress but leave
1981          * the state as "active". This will allow the initializing to resume
1982          * if the removal is canceled sometime later.
1983          */
1984         vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
1985 
1986         *txg = spa_vdev_config_enter(spa);
1987 
1988         /*
1989          * Things might have changed while the config lock was dropped
1990          * (e.g. space usage).  Check for errors again.
1991          */
1992         if (error == 0)
1993                 error = spa_vdev_remove_top_check(vd);
1994 
1995         if (error != 0) {
1996                 metaslab_group_activate(mg);
1997                 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
1998                 return (error);
1999         }
2000 
2001         vd->vdev_removing = B_TRUE;
2002 
2003         vdev_dirty_leaves(vd, VDD_DTL, *txg);
2004         vdev_config_dirty(vd);
2005         dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2006         dsl_sync_task_nowait(spa->spa_dsl_pool,
2007             vdev_remove_initiate_sync,
2008             (void *)(uintptr_t)vd->vdev_id, 0, ZFS_SPACE_CHECK_NONE, tx);
2009         dmu_tx_commit(tx);
2010 
2011         return (0);
2012 }
2013 
2014 /*
2015  * Remove a device from the pool.
2016  *
2017  * Removing a device from the vdev namespace requires several steps
2018  * and can take a significant amount of time.  As a result we use
2019  * the spa_vdev_config_[enter/exit] functions which allow us to
2020  * grab and release the spa_config_lock while still holding the namespace
2021  * lock.  During each step the configuration is synced out.
2022  */
2023 int
2024 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2025 {
2026         vdev_t *vd;
2027         nvlist_t **spares, **l2cache, *nv;
2028         uint64_t txg = 0;
2029         uint_t nspares, nl2cache;
2030         int error = 0;
2031         boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2032         sysevent_t *ev = NULL;
2033 
2034         ASSERT(spa_writeable(spa));
2035 
2036         if (!locked)
2037                 txg = spa_vdev_enter(spa);
2038 
2039         ASSERT(MUTEX_HELD(&spa_namespace_lock));
2040         if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2041                 error = (spa_has_checkpoint(spa)) ?
2042                     ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2043 
2044                 if (!locked)
2045                         return (spa_vdev_exit(spa, NULL, txg, error));
2046 
2047                 return (error);
2048         }
2049 
2050         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2051 
2052         if (spa->spa_spares.sav_vdevs != NULL &&
2053             nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2054             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2055             (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2056                 /*
2057                  * Only remove the hot spare if it's not currently in use
2058                  * in this pool.
2059                  */
2060                 if (vd == NULL || unspare) {
2061                         char *nvstr = fnvlist_lookup_string(nv,
2062                             ZPOOL_CONFIG_PATH);
2063                         spa_history_log_internal(spa, "vdev remove", NULL,
2064                             "%s vdev (%s) %s", spa_name(spa),
2065                             VDEV_TYPE_SPARE, nvstr);
2066                         if (vd == NULL)
2067                                 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2068                         ev = spa_event_create(spa, vd, NULL,
2069                             ESC_ZFS_VDEV_REMOVE_AUX);
2070                         spa_vdev_remove_aux(spa->spa_spares.sav_config,
2071                             ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2072                         spa_load_spares(spa);
2073                         spa->spa_spares.sav_sync = B_TRUE;
2074                 } else {
2075                         error = SET_ERROR(EBUSY);
2076                 }
2077         } else if (spa->spa_l2cache.sav_vdevs != NULL &&
2078             nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2079             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2080             (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2081                 char *nvstr = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
2082                 spa_history_log_internal(spa, "vdev remove", NULL,
2083                     "%s vdev (%s) %s", spa_name(spa), VDEV_TYPE_L2CACHE, nvstr);
2084                 /*
2085                  * Cache devices can always be removed.
2086                  */
2087                 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2088                 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2089                 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2090                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2091                 spa_load_l2cache(spa);
2092                 spa->spa_l2cache.sav_sync = B_TRUE;
2093         } else if (vd != NULL && vd->vdev_islog) {
2094                 ASSERT(!locked);
2095                 error = spa_vdev_remove_log(vd, &txg);
2096         } else if (vd != NULL) {
2097                 ASSERT(!locked);
2098                 error = spa_vdev_remove_top(vd, &txg);
2099         } else {
2100                 /*
2101                  * There is no vdev of any kind with the specified guid.
2102                  */
2103                 error = SET_ERROR(ENOENT);
2104         }
2105 
2106         if (!locked)
2107                 error = spa_vdev_exit(spa, NULL, txg, error);
2108 
2109         if (ev != NULL) {
2110                 if (error != 0) {
2111                         spa_event_discard(ev);
2112                 } else {
2113                         spa_event_post(ev);
2114                 }
2115         }
2116 
2117         return (error);
2118 }
2119 
2120 int
2121 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2122 {
2123         prs->prs_state = spa->spa_removing_phys.sr_state;
2124 
2125         if (prs->prs_state == DSS_NONE)
2126                 return (SET_ERROR(ENOENT));
2127 
2128         prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2129         prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2130         prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2131         prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2132         prs->prs_copied = spa->spa_removing_phys.sr_copied;
2133 
2134         if (spa->spa_vdev_removal != NULL) {
2135                 for (int i = 0; i < TXG_SIZE; i++) {
2136                         prs->prs_copied +=
2137                             spa->spa_vdev_removal->svr_bytes_done[i];
2138                 }
2139         }
2140 
2141         prs->prs_mapping_memory = 0;
2142         uint64_t indirect_vdev_id =
2143             spa->spa_removing_phys.sr_prev_indirect_vdev;
2144         while (indirect_vdev_id != -1) {
2145                 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2146                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2147                 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2148 
2149                 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2150                 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2151                 indirect_vdev_id = vic->vic_prev_indirect_vdev;
2152         }
2153 
2154         return (0);
2155 }