1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
  25  */
  26 
  27 #include <sys/zfs_context.h>
  28 #include <sys/spa_impl.h>
  29 #include <sys/dmu.h>
  30 #include <sys/dmu_tx.h>
  31 #include <sys/zap.h>
  32 #include <sys/vdev_impl.h>
  33 #include <sys/metaslab.h>
  34 #include <sys/metaslab_impl.h>
  35 #include <sys/uberblock_impl.h>
  36 #include <sys/txg.h>
  37 #include <sys/avl.h>
  38 #include <sys/bpobj.h>
  39 #include <sys/dsl_pool.h>
  40 #include <sys/dsl_synctask.h>
  41 #include <sys/dsl_dir.h>
  42 #include <sys/arc.h>
  43 #include <sys/zfeature.h>
  44 #include <sys/vdev_indirect_births.h>
  45 #include <sys/vdev_indirect_mapping.h>
  46 #include <sys/abd.h>
  47 #include <sys/vdev_initialize.h>
  48 
  49 /*
  50  * This file contains the necessary logic to remove vdevs from a
  51  * storage pool.  Currently, the only devices that can be removed
  52  * are log, cache, and spare devices; and top level vdevs from a pool
  53  * w/o raidz.  (Note that members of a mirror can also be removed
  54  * by the detach operation.)
  55  *
  56  * Log vdevs are removed by evacuating them and then turning the vdev
  57  * into a hole vdev while holding spa config locks.
  58  *
  59  * Top level vdevs are removed and converted into an indirect vdev via
  60  * a multi-step process:
  61  *
  62  *  - Disable allocations from this device (spa_vdev_remove_top).
  63  *
  64  *  - From a new thread (spa_vdev_remove_thread), copy data from
  65  *    the removing vdev to a different vdev.  The copy happens in open
  66  *    context (spa_vdev_copy_impl) and issues a sync task
  67  *    (vdev_mapping_sync) so the sync thread can update the partial
  68  *    indirect mappings in core and on disk.
  69  *
  70  *  - If a free happens during a removal, it is freed from the
  71  *    removing vdev, and if it has already been copied, from the new
  72  *    location as well (free_from_removing_vdev).
  73  *
  74  *  - After the removal is completed, the copy thread converts the vdev
  75  *    into an indirect vdev (vdev_remove_complete) before instructing
  76  *    the sync thread to destroy the space maps and finish the removal
  77  *    (spa_finish_removal).
  78  */
  79 
  80 typedef struct vdev_copy_arg {
  81         metaslab_t      *vca_msp;
  82         uint64_t        vca_outstanding_bytes;
  83         kcondvar_t      vca_cv;
  84         kmutex_t        vca_lock;
  85 } vdev_copy_arg_t;
  86 
  87 /*
  88  * The maximum amount of memory we can use for outstanding i/o while
  89  * doing a device removal.  This determines how much i/o we can have
  90  * in flight concurrently.
  91  */
  92 int zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
  93 
  94 /*
  95  * The largest contiguous segment that we will attempt to allocate when
  96  * removing a device.  This can be no larger than SPA_MAXBLOCKSIZE.  If
  97  * there is a performance problem with attempting to allocate large blocks,
  98  * consider decreasing this.
  99  *
 100  * Note: we will issue I/Os of up to this size.  The mpt driver does not
 101  * respond well to I/Os larger than 1MB, so we set this to 1MB.  (When
 102  * mpt processes an I/O larger than 1MB, it needs to do an allocation of
 103  * 2 physically contiguous pages; if this allocation fails, mpt will drop
 104  * the I/O and hang the device.)
 105  */
 106 int zfs_remove_max_segment = 1024 * 1024;
 107 
 108 /*
 109  * Allow a remap segment to span free chunks of at most this size. The main
 110  * impact of a larger span is that we will read and write larger, more
 111  * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
 112  * for iops.  The value here was chosen to align with
 113  * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
 114  * reads (but there's no reason it has to be the same).
 115  *
 116  * Additionally, a higher span will have the following relatively minor
 117  * effects:
 118  *  - the mapping will be smaller, since one entry can cover more allocated
 119  *    segments
 120  *  - more of the fragmentation in the removing device will be preserved
 121  *  - we'll do larger allocations, which may fail and fall back on smaller
 122  *    allocations
 123  */
 124 int vdev_removal_max_span = 32 * 1024;
 125 
 126 /*
 127  * This is used by the test suite so that it can ensure that certain
 128  * actions happen while in the middle of a removal.
 129  */
 130 uint64_t zfs_remove_max_bytes_pause = UINT64_MAX;
 131 
 132 #define VDEV_REMOVAL_ZAP_OBJS   "lzap"
 133 
 134 static void spa_vdev_remove_thread(void *arg);
 135 
 136 static void
 137 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
 138 {
 139         VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
 140             DMU_POOL_DIRECTORY_OBJECT,
 141             DMU_POOL_REMOVING, sizeof (uint64_t),
 142             sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
 143             &spa->spa_removing_phys, tx));
 144 }
 145 
 146 static nvlist_t *
 147 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
 148 {
 149         for (int i = 0; i < count; i++) {
 150                 uint64_t guid =
 151                     fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
 152 
 153                 if (guid == target_guid)
 154                         return (nvpp[i]);
 155         }
 156 
 157         return (NULL);
 158 }
 159 
 160 static void
 161 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
 162     nvlist_t *dev_to_remove)
 163 {
 164         nvlist_t **newdev = NULL;
 165 
 166         if (count > 1)
 167                 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
 168 
 169         for (int i = 0, j = 0; i < count; i++) {
 170                 if (dev[i] == dev_to_remove)
 171                         continue;
 172                 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
 173         }
 174 
 175         VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
 176         VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
 177 
 178         for (int i = 0; i < count - 1; i++)
 179                 nvlist_free(newdev[i]);
 180 
 181         if (count > 1)
 182                 kmem_free(newdev, (count - 1) * sizeof (void *));
 183 }
 184 
 185 static spa_vdev_removal_t *
 186 spa_vdev_removal_create(vdev_t *vd)
 187 {
 188         spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
 189         mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
 190         cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
 191         svr->svr_allocd_segs = range_tree_create(NULL, NULL);
 192         svr->svr_vdev_id = vd->vdev_id;
 193 
 194         for (int i = 0; i < TXG_SIZE; i++) {
 195                 svr->svr_frees[i] = range_tree_create(NULL, NULL);
 196                 list_create(&svr->svr_new_segments[i],
 197                     sizeof (vdev_indirect_mapping_entry_t),
 198                     offsetof(vdev_indirect_mapping_entry_t, vime_node));
 199         }
 200 
 201         return (svr);
 202 }
 203 
 204 void
 205 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
 206 {
 207         for (int i = 0; i < TXG_SIZE; i++) {
 208                 ASSERT0(svr->svr_bytes_done[i]);
 209                 ASSERT0(svr->svr_max_offset_to_sync[i]);
 210                 range_tree_destroy(svr->svr_frees[i]);
 211                 list_destroy(&svr->svr_new_segments[i]);
 212         }
 213 
 214         range_tree_destroy(svr->svr_allocd_segs);
 215         mutex_destroy(&svr->svr_lock);
 216         cv_destroy(&svr->svr_cv);
 217         kmem_free(svr, sizeof (*svr));
 218 }
 219 
 220 /*
 221  * This is called as a synctask in the txg in which we will mark this vdev
 222  * as removing (in the config stored in the MOS).
 223  *
 224  * It begins the evacuation of a toplevel vdev by:
 225  * - initializing the spa_removing_phys which tracks this removal
 226  * - computing the amount of space to remove for accounting purposes
 227  * - dirtying all dbufs in the spa_config_object
 228  * - creating the spa_vdev_removal
 229  * - starting the spa_vdev_remove_thread
 230  */
 231 static void
 232 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
 233 {
 234         int vdev_id = (uintptr_t)arg;
 235         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 236         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
 237         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
 238         objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
 239         spa_vdev_removal_t *svr = NULL;
 240         uint64_t txg = dmu_tx_get_txg(tx);
 241 
 242         ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
 243         svr = spa_vdev_removal_create(vd);
 244 
 245         ASSERT(vd->vdev_removing);
 246         ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
 247 
 248         spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
 249         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
 250                 /*
 251                  * By activating the OBSOLETE_COUNTS feature, we prevent
 252                  * the pool from being downgraded and ensure that the
 253                  * refcounts are precise.
 254                  */
 255                 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
 256                 uint64_t one = 1;
 257                 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
 258                     VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
 259                     &one, tx));
 260                 ASSERT3U(vdev_obsolete_counts_are_precise(vd), !=, 0);
 261         }
 262 
 263         vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
 264         vd->vdev_indirect_mapping =
 265             vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
 266         vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
 267         vd->vdev_indirect_births =
 268             vdev_indirect_births_open(mos, vic->vic_births_object);
 269         spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
 270         spa->spa_removing_phys.sr_start_time = gethrestime_sec();
 271         spa->spa_removing_phys.sr_end_time = 0;
 272         spa->spa_removing_phys.sr_state = DSS_SCANNING;
 273         spa->spa_removing_phys.sr_to_copy = 0;
 274         spa->spa_removing_phys.sr_copied = 0;
 275 
 276         /*
 277          * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
 278          * there may be space in the defer tree, which is free, but still
 279          * counted in vs_alloc.
 280          */
 281         for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
 282                 metaslab_t *ms = vd->vdev_ms[i];
 283                 if (ms->ms_sm == NULL)
 284                         continue;
 285 
 286                 /*
 287                  * Sync tasks happen before metaslab_sync(), therefore
 288                  * smp_alloc and sm_alloc must be the same.
 289                  */
 290                 ASSERT3U(space_map_allocated(ms->ms_sm), ==,
 291                     ms->ms_sm->sm_phys->smp_alloc);
 292 
 293                 spa->spa_removing_phys.sr_to_copy +=
 294                     space_map_allocated(ms->ms_sm);
 295 
 296                 /*
 297                  * Space which we are freeing this txg does not need to
 298                  * be copied.
 299                  */
 300                 spa->spa_removing_phys.sr_to_copy -=
 301                     range_tree_space(ms->ms_freeing);
 302 
 303                 ASSERT0(range_tree_space(ms->ms_freed));
 304                 for (int t = 0; t < TXG_SIZE; t++)
 305                         ASSERT0(range_tree_space(ms->ms_allocating[t]));
 306         }
 307 
 308         /*
 309          * Sync tasks are called before metaslab_sync(), so there should
 310          * be no already-synced metaslabs in the TXG_CLEAN list.
 311          */
 312         ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
 313 
 314         spa_sync_removing_state(spa, tx);
 315 
 316         /*
 317          * All blocks that we need to read the most recent mapping must be
 318          * stored on concrete vdevs.  Therefore, we must dirty anything that
 319          * is read before spa_remove_init().  Specifically, the
 320          * spa_config_object.  (Note that although we already modified the
 321          * spa_config_object in spa_sync_removing_state, that may not have
 322          * modified all blocks of the object.)
 323          */
 324         dmu_object_info_t doi;
 325         VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
 326         for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
 327                 dmu_buf_t *dbuf;
 328                 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
 329                     offset, FTAG, &dbuf, 0));
 330                 dmu_buf_will_dirty(dbuf, tx);
 331                 offset += dbuf->db_size;
 332                 dmu_buf_rele(dbuf, FTAG);
 333         }
 334 
 335         /*
 336          * Now that we've allocated the im_object, dirty the vdev to ensure
 337          * that the object gets written to the config on disk.
 338          */
 339         vdev_config_dirty(vd);
 340 
 341         zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu "
 342             "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
 343             vic->vic_mapping_object);
 344 
 345         spa_history_log_internal(spa, "vdev remove started", tx,
 346             "%s vdev %llu %s", spa_name(spa), vd->vdev_id,
 347             (vd->vdev_path != NULL) ? vd->vdev_path : "-");
 348         /*
 349          * Setting spa_vdev_removal causes subsequent frees to call
 350          * free_from_removing_vdev().  Note that we don't need any locking
 351          * because we are the sync thread, and metaslab_free_impl() is only
 352          * called from syncing context (potentially from a zio taskq thread,
 353          * but in any case only when there are outstanding free i/os, which
 354          * there are not).
 355          */
 356         ASSERT3P(spa->spa_vdev_removal, ==, NULL);
 357         spa->spa_vdev_removal = svr;
 358         svr->svr_thread = thread_create(NULL, 0,
 359             spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
 360 }
 361 
 362 /*
 363  * When we are opening a pool, we must read the mapping for each
 364  * indirect vdev in order from most recently removed to least
 365  * recently removed.  We do this because the blocks for the mapping
 366  * of older indirect vdevs may be stored on more recently removed vdevs.
 367  * In order to read each indirect mapping object, we must have
 368  * initialized all more recently removed vdevs.
 369  */
 370 int
 371 spa_remove_init(spa_t *spa)
 372 {
 373         int error;
 374 
 375         error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
 376             DMU_POOL_DIRECTORY_OBJECT,
 377             DMU_POOL_REMOVING, sizeof (uint64_t),
 378             sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
 379             &spa->spa_removing_phys);
 380 
 381         if (error == ENOENT) {
 382                 spa->spa_removing_phys.sr_state = DSS_NONE;
 383                 spa->spa_removing_phys.sr_removing_vdev = -1;
 384                 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
 385                 spa->spa_indirect_vdevs_loaded = B_TRUE;
 386                 return (0);
 387         } else if (error != 0) {
 388                 return (error);
 389         }
 390 
 391         if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
 392                 /*
 393                  * We are currently removing a vdev.  Create and
 394                  * initialize a spa_vdev_removal_t from the bonus
 395                  * buffer of the removing vdevs vdev_im_object, and
 396                  * initialize its partial mapping.
 397                  */
 398                 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 399                 vdev_t *vd = vdev_lookup_top(spa,
 400                     spa->spa_removing_phys.sr_removing_vdev);
 401 
 402                 if (vd == NULL) {
 403                         spa_config_exit(spa, SCL_STATE, FTAG);
 404                         return (EINVAL);
 405                 }
 406 
 407                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
 408 
 409                 ASSERT(vdev_is_concrete(vd));
 410                 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
 411                 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
 412                 ASSERT(vd->vdev_removing);
 413 
 414                 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
 415                     spa->spa_meta_objset, vic->vic_mapping_object);
 416                 vd->vdev_indirect_births = vdev_indirect_births_open(
 417                     spa->spa_meta_objset, vic->vic_births_object);
 418                 spa_config_exit(spa, SCL_STATE, FTAG);
 419 
 420                 spa->spa_vdev_removal = svr;
 421         }
 422 
 423         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 424         uint64_t indirect_vdev_id =
 425             spa->spa_removing_phys.sr_prev_indirect_vdev;
 426         while (indirect_vdev_id != UINT64_MAX) {
 427                 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
 428                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
 429 
 430                 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
 431                 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
 432                     spa->spa_meta_objset, vic->vic_mapping_object);
 433                 vd->vdev_indirect_births = vdev_indirect_births_open(
 434                     spa->spa_meta_objset, vic->vic_births_object);
 435 
 436                 indirect_vdev_id = vic->vic_prev_indirect_vdev;
 437         }
 438         spa_config_exit(spa, SCL_STATE, FTAG);
 439 
 440         /*
 441          * Now that we've loaded all the indirect mappings, we can allow
 442          * reads from other blocks (e.g. via predictive prefetch).
 443          */
 444         spa->spa_indirect_vdevs_loaded = B_TRUE;
 445         return (0);
 446 }
 447 
 448 void
 449 spa_restart_removal(spa_t *spa)
 450 {
 451         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
 452 
 453         if (svr == NULL)
 454                 return;
 455 
 456         /*
 457          * In general when this function is called there is no
 458          * removal thread running. The only scenario where this
 459          * is not true is during spa_import() where this function
 460          * is called twice [once from spa_import_impl() and
 461          * spa_async_resume()]. Thus, in the scenario where we
 462          * import a pool that has an ongoing removal we don't
 463          * want to spawn a second thread.
 464          */
 465         if (svr->svr_thread != NULL)
 466                 return;
 467 
 468         if (!spa_writeable(spa))
 469                 return;
 470 
 471         zfs_dbgmsg("restarting removal of %llu", svr->svr_vdev_id);
 472         svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
 473             0, &p0, TS_RUN, minclsyspri);
 474 }
 475 
 476 /*
 477  * Process freeing from a device which is in the middle of being removed.
 478  * We must handle this carefully so that we attempt to copy freed data,
 479  * and we correctly free already-copied data.
 480  */
 481 void
 482 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
 483 {
 484         spa_t *spa = vd->vdev_spa;
 485         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
 486         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
 487         uint64_t txg = spa_syncing_txg(spa);
 488         uint64_t max_offset_yet = 0;
 489 
 490         ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
 491         ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
 492             vdev_indirect_mapping_object(vim));
 493         ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
 494 
 495         mutex_enter(&svr->svr_lock);
 496 
 497         /*
 498          * Remove the segment from the removing vdev's spacemap.  This
 499          * ensures that we will not attempt to copy this space (if the
 500          * removal thread has not yet visited it), and also ensures
 501          * that we know what is actually allocated on the new vdevs
 502          * (needed if we cancel the removal).
 503          *
 504          * Note: we must do the metaslab_free_concrete() with the svr_lock
 505          * held, so that the remove_thread can not load this metaslab and then
 506          * visit this offset between the time that we metaslab_free_concrete()
 507          * and when we check to see if it has been visited.
 508          *
 509          * Note: The checkpoint flag is set to false as having/taking
 510          * a checkpoint and removing a device can't happen at the same
 511          * time.
 512          */
 513         ASSERT(!spa_has_checkpoint(spa));
 514         metaslab_free_concrete(vd, offset, size, B_FALSE);
 515 
 516         uint64_t synced_size = 0;
 517         uint64_t synced_offset = 0;
 518         uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
 519         if (offset < max_offset_synced) {
 520                 /*
 521                  * The mapping for this offset is already on disk.
 522                  * Free from the new location.
 523                  *
 524                  * Note that we use svr_max_synced_offset because it is
 525                  * updated atomically with respect to the in-core mapping.
 526                  * By contrast, vim_max_offset is not.
 527                  *
 528                  * This block may be split between a synced entry and an
 529                  * in-flight or unvisited entry.  Only process the synced
 530                  * portion of it here.
 531                  */
 532                 synced_size = MIN(size, max_offset_synced - offset);
 533                 synced_offset = offset;
 534 
 535                 ASSERT3U(max_offset_yet, <=, max_offset_synced);
 536                 max_offset_yet = max_offset_synced;
 537 
 538                 DTRACE_PROBE3(remove__free__synced,
 539                     spa_t *, spa,
 540                     uint64_t, offset,
 541                     uint64_t, synced_size);
 542 
 543                 size -= synced_size;
 544                 offset += synced_size;
 545         }
 546 
 547         /*
 548          * Look at all in-flight txgs starting from the currently syncing one
 549          * and see if a section of this free is being copied. By starting from
 550          * this txg and iterating forward, we might find that this region
 551          * was copied in two different txgs and handle it appropriately.
 552          */
 553         for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
 554                 int txgoff = (txg + i) & TXG_MASK;
 555                 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
 556                         /*
 557                          * The mapping for this offset is in flight, and
 558                          * will be synced in txg+i.
 559                          */
 560                         uint64_t inflight_size = MIN(size,
 561                             svr->svr_max_offset_to_sync[txgoff] - offset);
 562 
 563                         DTRACE_PROBE4(remove__free__inflight,
 564                             spa_t *, spa,
 565                             uint64_t, offset,
 566                             uint64_t, inflight_size,
 567                             uint64_t, txg + i);
 568 
 569                         /*
 570                          * We copy data in order of increasing offset.
 571                          * Therefore the max_offset_to_sync[] must increase
 572                          * (or be zero, indicating that nothing is being
 573                          * copied in that txg).
 574                          */
 575                         if (svr->svr_max_offset_to_sync[txgoff] != 0) {
 576                                 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
 577                                     >=, max_offset_yet);
 578                                 max_offset_yet =
 579                                     svr->svr_max_offset_to_sync[txgoff];
 580                         }
 581 
 582                         /*
 583                          * We've already committed to copying this segment:
 584                          * we have allocated space elsewhere in the pool for
 585                          * it and have an IO outstanding to copy the data. We
 586                          * cannot free the space before the copy has
 587                          * completed, or else the copy IO might overwrite any
 588                          * new data. To free that space, we record the
 589                          * segment in the appropriate svr_frees tree and free
 590                          * the mapped space later, in the txg where we have
 591                          * completed the copy and synced the mapping (see
 592                          * vdev_mapping_sync).
 593                          */
 594                         range_tree_add(svr->svr_frees[txgoff],
 595                             offset, inflight_size);
 596                         size -= inflight_size;
 597                         offset += inflight_size;
 598 
 599                         /*
 600                          * This space is already accounted for as being
 601                          * done, because it is being copied in txg+i.
 602                          * However, if i!=0, then it is being copied in
 603                          * a future txg.  If we crash after this txg
 604                          * syncs but before txg+i syncs, then the space
 605                          * will be free.  Therefore we must account
 606                          * for the space being done in *this* txg
 607                          * (when it is freed) rather than the future txg
 608                          * (when it will be copied).
 609                          */
 610                         ASSERT3U(svr->svr_bytes_done[txgoff], >=,
 611                             inflight_size);
 612                         svr->svr_bytes_done[txgoff] -= inflight_size;
 613                         svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
 614                 }
 615         }
 616         ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
 617 
 618         if (size > 0) {
 619                 /*
 620                  * The copy thread has not yet visited this offset.  Ensure
 621                  * that it doesn't.
 622                  */
 623 
 624                 DTRACE_PROBE3(remove__free__unvisited,
 625                     spa_t *, spa,
 626                     uint64_t, offset,
 627                     uint64_t, size);
 628 
 629                 if (svr->svr_allocd_segs != NULL)
 630                         range_tree_clear(svr->svr_allocd_segs, offset, size);
 631 
 632                 /*
 633                  * Since we now do not need to copy this data, for
 634                  * accounting purposes we have done our job and can count
 635                  * it as completed.
 636                  */
 637                 svr->svr_bytes_done[txg & TXG_MASK] += size;
 638         }
 639         mutex_exit(&svr->svr_lock);
 640 
 641         /*
 642          * Now that we have dropped svr_lock, process the synced portion
 643          * of this free.
 644          */
 645         if (synced_size > 0) {
 646                 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
 647 
 648                 /*
 649                  * Note: this can only be called from syncing context,
 650                  * and the vdev_indirect_mapping is only changed from the
 651                  * sync thread, so we don't need svr_lock while doing
 652                  * metaslab_free_impl_cb.
 653                  */
 654                 boolean_t checkpoint = B_FALSE;
 655                 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
 656                     metaslab_free_impl_cb, &checkpoint);
 657         }
 658 }
 659 
 660 /*
 661  * Stop an active removal and update the spa_removing phys.
 662  */
 663 static void
 664 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
 665 {
 666         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
 667         ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
 668 
 669         /* Ensure the removal thread has completed before we free the svr. */
 670         spa_vdev_remove_suspend(spa);
 671 
 672         ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
 673 
 674         if (state == DSS_FINISHED) {
 675                 spa_removing_phys_t *srp = &spa->spa_removing_phys;
 676                 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
 677                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
 678 
 679                 if (srp->sr_prev_indirect_vdev != UINT64_MAX) {
 680                         vdev_t *pvd = vdev_lookup_top(spa,
 681                             srp->sr_prev_indirect_vdev);
 682                         ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
 683                 }
 684 
 685                 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
 686                 srp->sr_prev_indirect_vdev = vd->vdev_id;
 687         }
 688         spa->spa_removing_phys.sr_state = state;
 689         spa->spa_removing_phys.sr_end_time = gethrestime_sec();
 690 
 691         spa->spa_vdev_removal = NULL;
 692         spa_vdev_removal_destroy(svr);
 693 
 694         spa_sync_removing_state(spa, tx);
 695 
 696         vdev_config_dirty(spa->spa_root_vdev);
 697 }
 698 
 699 static void
 700 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
 701 {
 702         vdev_t *vd = arg;
 703         vdev_indirect_mark_obsolete(vd, offset, size);
 704         boolean_t checkpoint = B_FALSE;
 705         vdev_indirect_ops.vdev_op_remap(vd, offset, size,
 706             metaslab_free_impl_cb, &checkpoint);
 707 }
 708 
 709 /*
 710  * On behalf of the removal thread, syncs an incremental bit more of
 711  * the indirect mapping to disk and updates the in-memory mapping.
 712  * Called as a sync task in every txg that the removal thread makes progress.
 713  */
 714 static void
 715 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
 716 {
 717         spa_vdev_removal_t *svr = arg;
 718         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 719         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
 720         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
 721         uint64_t txg = dmu_tx_get_txg(tx);
 722         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
 723 
 724         ASSERT(vic->vic_mapping_object != 0);
 725         ASSERT3U(txg, ==, spa_syncing_txg(spa));
 726 
 727         vdev_indirect_mapping_add_entries(vim,
 728             &svr->svr_new_segments[txg & TXG_MASK], tx);
 729         vdev_indirect_births_add_entry(vd->vdev_indirect_births,
 730             vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
 731 
 732         /*
 733          * Free the copied data for anything that was freed while the
 734          * mapping entries were in flight.
 735          */
 736         mutex_enter(&svr->svr_lock);
 737         range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
 738             free_mapped_segment_cb, vd);
 739         ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
 740             vdev_indirect_mapping_max_offset(vim));
 741         svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
 742         mutex_exit(&svr->svr_lock);
 743 
 744         spa_sync_removing_state(spa, tx);
 745 }
 746 
 747 typedef struct vdev_copy_segment_arg {
 748         spa_t *vcsa_spa;
 749         dva_t *vcsa_dest_dva;
 750         uint64_t vcsa_txg;
 751         range_tree_t *vcsa_obsolete_segs;
 752 } vdev_copy_segment_arg_t;
 753 
 754 static void
 755 unalloc_seg(void *arg, uint64_t start, uint64_t size)
 756 {
 757         vdev_copy_segment_arg_t *vcsa = arg;
 758         spa_t *spa = vcsa->vcsa_spa;
 759         blkptr_t bp = { 0 };
 760 
 761         BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
 762         BP_SET_LSIZE(&bp, size);
 763         BP_SET_PSIZE(&bp, size);
 764         BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
 765         BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
 766         BP_SET_TYPE(&bp, DMU_OT_NONE);
 767         BP_SET_LEVEL(&bp, 0);
 768         BP_SET_DEDUP(&bp, 0);
 769         BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
 770 
 771         DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
 772         DVA_SET_OFFSET(&bp.blk_dva[0],
 773             DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
 774         DVA_SET_ASIZE(&bp.blk_dva[0], size);
 775 
 776         zio_free(spa, vcsa->vcsa_txg, &bp);
 777 }
 778 
 779 /*
 780  * All reads and writes associated with a call to spa_vdev_copy_segment()
 781  * are done.
 782  */
 783 static void
 784 spa_vdev_copy_segment_done(zio_t *zio)
 785 {
 786         vdev_copy_segment_arg_t *vcsa = zio->io_private;
 787 
 788         range_tree_vacate(vcsa->vcsa_obsolete_segs,
 789             unalloc_seg, vcsa);
 790         range_tree_destroy(vcsa->vcsa_obsolete_segs);
 791         kmem_free(vcsa, sizeof (*vcsa));
 792 
 793         spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
 794 }
 795 
 796 /*
 797  * The write of the new location is done.
 798  */
 799 static void
 800 spa_vdev_copy_segment_write_done(zio_t *zio)
 801 {
 802         vdev_copy_arg_t *vca = zio->io_private;
 803 
 804         abd_free(zio->io_abd);
 805 
 806         mutex_enter(&vca->vca_lock);
 807         vca->vca_outstanding_bytes -= zio->io_size;
 808         cv_signal(&vca->vca_cv);
 809         mutex_exit(&vca->vca_lock);
 810 }
 811 
 812 /*
 813  * The read of the old location is done.  The parent zio is the write to
 814  * the new location.  Allow it to start.
 815  */
 816 static void
 817 spa_vdev_copy_segment_read_done(zio_t *zio)
 818 {
 819         zio_nowait(zio_unique_parent(zio));
 820 }
 821 
 822 /*
 823  * If the old and new vdevs are mirrors, we will read both sides of the old
 824  * mirror, and write each copy to the corresponding side of the new mirror.
 825  * If the old and new vdevs have a different number of children, we will do
 826  * this as best as possible.  Since we aren't verifying checksums, this
 827  * ensures that as long as there's a good copy of the data, we'll have a
 828  * good copy after the removal, even if there's silent damage to one side
 829  * of the mirror. If we're removing a mirror that has some silent damage,
 830  * we'll have exactly the same damage in the new location (assuming that
 831  * the new location is also a mirror).
 832  *
 833  * We accomplish this by creating a tree of zio_t's, with as many writes as
 834  * there are "children" of the new vdev (a non-redundant vdev counts as one
 835  * child, a 2-way mirror has 2 children, etc). Each write has an associated
 836  * read from a child of the old vdev. Typically there will be the same
 837  * number of children of the old and new vdevs.  However, if there are more
 838  * children of the new vdev, some child(ren) of the old vdev will be issued
 839  * multiple reads.  If there are more children of the old vdev, some copies
 840  * will be dropped.
 841  *
 842  * For example, the tree of zio_t's for a 2-way mirror is:
 843  *
 844  *                            null
 845  *                           /    \
 846  *    write(new vdev, child 0)      write(new vdev, child 1)
 847  *      |                             |
 848  *    read(old vdev, child 0)       read(old vdev, child 1)
 849  *
 850  * Child zio's complete before their parents complete.  However, zio's
 851  * created with zio_vdev_child_io() may be issued before their children
 852  * complete.  In this case we need to make sure that the children (reads)
 853  * complete before the parents (writes) are *issued*.  We do this by not
 854  * calling zio_nowait() on each write until its corresponding read has
 855  * completed.
 856  *
 857  * The spa_config_lock must be held while zio's created by
 858  * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
 859  * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
 860  * zio is needed to release the spa_config_lock after all the reads and
 861  * writes complete. (Note that we can't grab the config lock for each read,
 862  * because it is not reentrant - we could deadlock with a thread waiting
 863  * for a write lock.)
 864  */
 865 static void
 866 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
 867     vdev_t *source_vd, uint64_t source_offset,
 868     vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
 869 {
 870         ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
 871 
 872         mutex_enter(&vca->vca_lock);
 873         vca->vca_outstanding_bytes += size;
 874         mutex_exit(&vca->vca_lock);
 875 
 876         abd_t *abd = abd_alloc_for_io(size, B_FALSE);
 877 
 878         vdev_t *source_child_vd;
 879         if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
 880                 /*
 881                  * Source and dest are both mirrors.  Copy from the same
 882                  * child id as we are copying to (wrapping around if there
 883                  * are more dest children than source children).
 884                  */
 885                 source_child_vd =
 886                     source_vd->vdev_child[dest_id % source_vd->vdev_children];
 887         } else {
 888                 source_child_vd = source_vd;
 889         }
 890 
 891         zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
 892             dest_child_vd, dest_offset, abd, size,
 893             ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
 894             ZIO_FLAG_CANFAIL,
 895             spa_vdev_copy_segment_write_done, vca);
 896 
 897         zio_nowait(zio_vdev_child_io(write_zio, NULL,
 898             source_child_vd, source_offset, abd, size,
 899             ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
 900             ZIO_FLAG_CANFAIL,
 901             spa_vdev_copy_segment_read_done, vca));
 902 }
 903 
 904 /*
 905  * Allocate a new location for this segment, and create the zio_t's to
 906  * read from the old location and write to the new location.
 907  */
 908 static int
 909 spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs,
 910     uint64_t maxalloc, uint64_t txg,
 911     vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
 912 {
 913         metaslab_group_t *mg = vd->vdev_mg;
 914         spa_t *spa = vd->vdev_spa;
 915         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
 916         vdev_indirect_mapping_entry_t *entry;
 917         dva_t dst = { 0 };
 918         uint64_t start = range_tree_min(segs);
 919 
 920         ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
 921 
 922         uint64_t size = range_tree_span(segs);
 923         if (range_tree_span(segs) > maxalloc) {
 924                 /*
 925                  * We can't allocate all the segments.  Prefer to end
 926                  * the allocation at the end of a segment, thus avoiding
 927                  * additional split blocks.
 928                  */
 929                 range_seg_t search;
 930                 avl_index_t where;
 931                 search.rs_start = start + maxalloc;
 932                 search.rs_end = search.rs_start;
 933                 range_seg_t *rs = avl_find(&segs->rt_root, &search, &where);
 934                 if (rs == NULL) {
 935                         rs = avl_nearest(&segs->rt_root, where, AVL_BEFORE);
 936                 } else {
 937                         rs = AVL_PREV(&segs->rt_root, rs);
 938                 }
 939                 if (rs != NULL) {
 940                         size = rs->rs_end - start;
 941                 } else {
 942                         /*
 943                          * There are no segments that end before maxalloc.
 944                          * I.e. the first segment is larger than maxalloc,
 945                          * so we must split it.
 946                          */
 947                         size = maxalloc;
 948                 }
 949         }
 950         ASSERT3U(size, <=, maxalloc);
 951 
 952         /*
 953          * An allocation class might not have any remaining vdevs or space
 954          */
 955         metaslab_class_t *mc = mg->mg_class;
 956         if (mc != spa_normal_class(spa) && mc->mc_groups <= 1)
 957                 mc = spa_normal_class(spa);
 958         int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 0,
 959             zal, 0);
 960         if (error == ENOSPC && mc != spa_normal_class(spa)) {
 961                 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
 962                     &dst, 0, NULL, txg, 0, zal, 0);
 963         }
 964         if (error != 0)
 965                 return (error);
 966 
 967         /*
 968          * Determine the ranges that are not actually needed.  Offsets are
 969          * relative to the start of the range to be copied (i.e. relative to the
 970          * local variable "start").
 971          */
 972         range_tree_t *obsolete_segs = range_tree_create(NULL, NULL);
 973 
 974         range_seg_t *rs = avl_first(&segs->rt_root);
 975         ASSERT3U(rs->rs_start, ==, start);
 976         uint64_t prev_seg_end = rs->rs_end;
 977         while ((rs = AVL_NEXT(&segs->rt_root, rs)) != NULL) {
 978                 if (rs->rs_start >= start + size) {
 979                         break;
 980                 } else {
 981                         range_tree_add(obsolete_segs,
 982                             prev_seg_end - start,
 983                             rs->rs_start - prev_seg_end);
 984                 }
 985                 prev_seg_end = rs->rs_end;
 986         }
 987         /* We don't end in the middle of an obsolete range */
 988         ASSERT3U(start + size, <=, prev_seg_end);
 989 
 990         range_tree_clear(segs, start, size);
 991 
 992         /*
 993          * We can't have any padding of the allocated size, otherwise we will
 994          * misunderstand what's allocated, and the size of the mapping.
 995          * The caller ensures this will be true by passing in a size that is
 996          * aligned to the worst (highest) ashift in the pool.
 997          */
 998         ASSERT3U(DVA_GET_ASIZE(&dst), ==, size);
 999 
1000         entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
1001         DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
1002         entry->vime_mapping.vimep_dst = dst;
1003         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
1004                 entry->vime_obsolete_count = range_tree_space(obsolete_segs);
1005         }
1006 
1007         vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1008         vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1009         vcsa->vcsa_obsolete_segs = obsolete_segs;
1010         vcsa->vcsa_spa = spa;
1011         vcsa->vcsa_txg = txg;
1012 
1013         /*
1014          * See comment before spa_vdev_copy_one_child().
1015          */
1016         spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1017         zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1018             spa_vdev_copy_segment_done, vcsa, 0);
1019         vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1020         if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1021                 for (int i = 0; i < dest_vd->vdev_children; i++) {
1022                         vdev_t *child = dest_vd->vdev_child[i];
1023                         spa_vdev_copy_one_child(vca, nzio, vd, start,
1024                             child, DVA_GET_OFFSET(&dst), i, size);
1025                 }
1026         } else {
1027                 spa_vdev_copy_one_child(vca, nzio, vd, start,
1028                     dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1029         }
1030         zio_nowait(nzio);
1031 
1032         list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1033         ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1034         vdev_dirty(vd, 0, NULL, txg);
1035 
1036         return (0);
1037 }
1038 
1039 /*
1040  * Complete the removal of a toplevel vdev. This is called as a
1041  * synctask in the same txg that we will sync out the new config (to the
1042  * MOS object) which indicates that this vdev is indirect.
1043  */
1044 static void
1045 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1046 {
1047         spa_vdev_removal_t *svr = arg;
1048         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1049         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1050 
1051         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1052 
1053         for (int i = 0; i < TXG_SIZE; i++) {
1054                 ASSERT0(svr->svr_bytes_done[i]);
1055         }
1056 
1057         ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1058             spa->spa_removing_phys.sr_to_copy);
1059 
1060         vdev_destroy_spacemaps(vd, tx);
1061 
1062         /* destroy leaf zaps, if any */
1063         ASSERT3P(svr->svr_zaplist, !=, NULL);
1064         for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1065             pair != NULL;
1066             pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1067                 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1068         }
1069         fnvlist_free(svr->svr_zaplist);
1070 
1071         spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1072         /* vd->vdev_path is not available here */
1073         spa_history_log_internal(spa, "vdev remove completed",  tx,
1074             "%s vdev %llu", spa_name(spa), vd->vdev_id);
1075 }
1076 
1077 static void
1078 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1079 {
1080         ASSERT3P(zlist, !=, NULL);
1081         ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
1082 
1083         if (vd->vdev_leaf_zap != 0) {
1084                 char zkey[32];
1085                 (void) snprintf(zkey, sizeof (zkey), "%s-%"PRIu64,
1086                     VDEV_REMOVAL_ZAP_OBJS, vd->vdev_leaf_zap);
1087                 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1088         }
1089 
1090         for (uint64_t id = 0; id < vd->vdev_children; id++) {
1091                 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1092         }
1093 }
1094 
1095 static void
1096 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1097 {
1098         vdev_t *ivd;
1099         dmu_tx_t *tx;
1100         spa_t *spa = vd->vdev_spa;
1101         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1102 
1103         /*
1104          * First, build a list of leaf zaps to be destroyed.
1105          * This is passed to the sync context thread,
1106          * which does the actual unlinking.
1107          */
1108         svr->svr_zaplist = fnvlist_alloc();
1109         vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1110 
1111         ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1112         ivd->vdev_removing = 0;
1113 
1114         vd->vdev_leaf_zap = 0;
1115 
1116         vdev_remove_child(ivd, vd);
1117         vdev_compact_children(ivd);
1118 
1119         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1120 
1121         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1122         dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr,
1123             0, ZFS_SPACE_CHECK_NONE, tx);
1124         dmu_tx_commit(tx);
1125 
1126         /*
1127          * Indicate that this thread has exited.
1128          * After this, we can not use svr.
1129          */
1130         mutex_enter(&svr->svr_lock);
1131         svr->svr_thread = NULL;
1132         cv_broadcast(&svr->svr_cv);
1133         mutex_exit(&svr->svr_lock);
1134 }
1135 
1136 /*
1137  * Complete the removal of a toplevel vdev. This is called in open
1138  * context by the removal thread after we have copied all vdev's data.
1139  */
1140 static void
1141 vdev_remove_complete(spa_t *spa)
1142 {
1143         uint64_t txg;
1144 
1145         /*
1146          * Wait for any deferred frees to be synced before we call
1147          * vdev_metaslab_fini()
1148          */
1149         txg_wait_synced(spa->spa_dsl_pool, 0);
1150         txg = spa_vdev_enter(spa);
1151         vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1152         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1153 
1154         sysevent_t *ev = spa_event_create(spa, vd, NULL,
1155             ESC_ZFS_VDEV_REMOVE_DEV);
1156 
1157         zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1158             vd->vdev_id, txg);
1159 
1160         /*
1161          * Discard allocation state.
1162          */
1163         if (vd->vdev_mg != NULL) {
1164                 vdev_metaslab_fini(vd);
1165                 metaslab_group_destroy(vd->vdev_mg);
1166                 vd->vdev_mg = NULL;
1167         }
1168         ASSERT0(vd->vdev_stat.vs_space);
1169         ASSERT0(vd->vdev_stat.vs_dspace);
1170 
1171         vdev_remove_replace_with_indirect(vd, txg);
1172 
1173         /*
1174          * We now release the locks, allowing spa_sync to run and finish the
1175          * removal via vdev_remove_complete_sync in syncing context.
1176          *
1177          * Note that we hold on to the vdev_t that has been replaced.  Since
1178          * it isn't part of the vdev tree any longer, it can't be concurrently
1179          * manipulated, even while we don't have the config lock.
1180          */
1181         (void) spa_vdev_exit(spa, NULL, txg, 0);
1182 
1183         /*
1184          * Top ZAP should have been transferred to the indirect vdev in
1185          * vdev_remove_replace_with_indirect.
1186          */
1187         ASSERT0(vd->vdev_top_zap);
1188 
1189         /*
1190          * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1191          */
1192         ASSERT0(vd->vdev_leaf_zap);
1193 
1194         txg = spa_vdev_enter(spa);
1195         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1196         /*
1197          * Request to update the config and the config cachefile.
1198          */
1199         vdev_config_dirty(spa->spa_root_vdev);
1200         (void) spa_vdev_exit(spa, vd, txg, 0);
1201 
1202         spa_event_post(ev);
1203 }
1204 
1205 /*
1206  * Evacuates a segment of size at most max_alloc from the vdev
1207  * via repeated calls to spa_vdev_copy_segment. If an allocation
1208  * fails, the pool is probably too fragmented to handle such a
1209  * large size, so decrease max_alloc so that the caller will not try
1210  * this size again this txg.
1211  */
1212 static void
1213 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1214     uint64_t *max_alloc, dmu_tx_t *tx)
1215 {
1216         uint64_t txg = dmu_tx_get_txg(tx);
1217         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1218 
1219         mutex_enter(&svr->svr_lock);
1220 
1221         /*
1222          * Determine how big of a chunk to copy.  We can allocate up
1223          * to max_alloc bytes, and we can span up to vdev_removal_max_span
1224          * bytes of unallocated space at a time.  "segs" will track the
1225          * allocated segments that we are copying.  We may also be copying
1226          * free segments (of up to vdev_removal_max_span bytes).
1227          */
1228         range_tree_t *segs = range_tree_create(NULL, NULL);
1229         for (;;) {
1230                 range_seg_t *rs = avl_first(&svr->svr_allocd_segs->rt_root);
1231                 if (rs == NULL)
1232                         break;
1233 
1234                 uint64_t seg_length;
1235 
1236                 if (range_tree_is_empty(segs)) {
1237                         /* need to truncate the first seg based on max_alloc */
1238                         seg_length =
1239                             MIN(rs->rs_end - rs->rs_start, *max_alloc);
1240                 } else {
1241                         if (rs->rs_start - range_tree_max(segs) >
1242                             vdev_removal_max_span) {
1243                                 /*
1244                                  * Including this segment would cause us to
1245                                  * copy a larger unneeded chunk than is allowed.
1246                                  */
1247                                 break;
1248                         } else if (rs->rs_end - range_tree_min(segs) >
1249                             *max_alloc) {
1250                                 /*
1251                                  * This additional segment would extend past
1252                                  * max_alloc. Rather than splitting this
1253                                  * segment, leave it for the next mapping.
1254                                  */
1255                                 break;
1256                         } else {
1257                                 seg_length = rs->rs_end - rs->rs_start;
1258                         }
1259                 }
1260 
1261                 range_tree_add(segs, rs->rs_start, seg_length);
1262                 range_tree_remove(svr->svr_allocd_segs,
1263                     rs->rs_start, seg_length);
1264         }
1265 
1266         if (range_tree_is_empty(segs)) {
1267                 mutex_exit(&svr->svr_lock);
1268                 range_tree_destroy(segs);
1269                 return;
1270         }
1271 
1272         if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1273                 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1274                     svr, 0, ZFS_SPACE_CHECK_NONE, tx);
1275         }
1276 
1277         svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs);
1278 
1279         /*
1280          * Note: this is the amount of *allocated* space
1281          * that we are taking care of each txg.
1282          */
1283         svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs);
1284 
1285         mutex_exit(&svr->svr_lock);
1286 
1287         zio_alloc_list_t zal;
1288         metaslab_trace_init(&zal);
1289         uint64_t thismax = SPA_MAXBLOCKSIZE;
1290         while (!range_tree_is_empty(segs)) {
1291                 int error = spa_vdev_copy_segment(vd,
1292                     segs, thismax, txg, vca, &zal);
1293 
1294                 if (error == ENOSPC) {
1295                         /*
1296                          * Cut our segment in half, and don't try this
1297                          * segment size again this txg.  Note that the
1298                          * allocation size must be aligned to the highest
1299                          * ashift in the pool, so that the allocation will
1300                          * not be padded out to a multiple of the ashift,
1301                          * which could cause us to think that this mapping
1302                          * is larger than we intended.
1303                          */
1304                         ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1305                         ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1306                         uint64_t attempted =
1307                             MIN(range_tree_span(segs), thismax);
1308                         thismax = P2ROUNDUP(attempted / 2,
1309                             1 << spa->spa_max_ashift);
1310                         /*
1311                          * The minimum-size allocation can not fail.
1312                          */
1313                         ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1314                         *max_alloc = attempted - (1 << spa->spa_max_ashift);
1315                 } else {
1316                         ASSERT0(error);
1317 
1318                         /*
1319                          * We've performed an allocation, so reset the
1320                          * alloc trace list.
1321                          */
1322                         metaslab_trace_fini(&zal);
1323                         metaslab_trace_init(&zal);
1324                 }
1325         }
1326         metaslab_trace_fini(&zal);
1327         range_tree_destroy(segs);
1328 }
1329 
1330 /*
1331  * The removal thread operates in open context.  It iterates over all
1332  * allocated space in the vdev, by loading each metaslab's spacemap.
1333  * For each contiguous segment of allocated space (capping the segment
1334  * size at SPA_MAXBLOCKSIZE), we:
1335  *    - Allocate space for it on another vdev.
1336  *    - Create a new mapping from the old location to the new location
1337  *      (as a record in svr_new_segments).
1338  *    - Initiate a logical read zio to get the data off the removing disk.
1339  *    - In the read zio's done callback, initiate a logical write zio to
1340  *      write it to the new vdev.
1341  * Note that all of this will take effect when a particular TXG syncs.
1342  * The sync thread ensures that all the phys reads and writes for the syncing
1343  * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1344  * (see vdev_mapping_sync()).
1345  */
1346 static void
1347 spa_vdev_remove_thread(void *arg)
1348 {
1349         spa_t *spa = arg;
1350         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1351         vdev_copy_arg_t vca;
1352         uint64_t max_alloc = zfs_remove_max_segment;
1353         uint64_t last_txg = 0;
1354 
1355         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1356         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1357         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1358         uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1359 
1360         ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1361         ASSERT(vdev_is_concrete(vd));
1362         ASSERT(vd->vdev_removing);
1363         ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1364         ASSERT(vim != NULL);
1365 
1366         mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1367         cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1368         vca.vca_outstanding_bytes = 0;
1369 
1370         mutex_enter(&svr->svr_lock);
1371 
1372         /*
1373          * Start from vim_max_offset so we pick up where we left off
1374          * if we are restarting the removal after opening the pool.
1375          */
1376         uint64_t msi;
1377         for (msi = start_offset >> vd->vdev_ms_shift;
1378             msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1379                 metaslab_t *msp = vd->vdev_ms[msi];
1380                 ASSERT3U(msi, <=, vd->vdev_ms_count);
1381 
1382                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1383 
1384                 mutex_enter(&msp->ms_sync_lock);
1385                 mutex_enter(&msp->ms_lock);
1386 
1387                 /*
1388                  * Assert nothing in flight -- ms_*tree is empty.
1389                  */
1390                 for (int i = 0; i < TXG_SIZE; i++) {
1391                         ASSERT0(range_tree_space(msp->ms_allocating[i]));
1392                 }
1393 
1394                 /*
1395                  * If the metaslab has ever been allocated from (ms_sm!=NULL),
1396                  * read the allocated segments from the space map object
1397                  * into svr_allocd_segs. Since we do this while holding
1398                  * svr_lock and ms_sync_lock, concurrent frees (which
1399                  * would have modified the space map) will wait for us
1400                  * to finish loading the spacemap, and then take the
1401                  * appropriate action (see free_from_removing_vdev()).
1402                  */
1403                 if (msp->ms_sm != NULL) {
1404                         space_map_t *sm = NULL;
1405 
1406                         /*
1407                          * We have to open a new space map here, because
1408                          * ms_sm's sm_length and sm_alloc may not reflect
1409                          * what's in the object contents, if we are in between
1410                          * metaslab_sync() and metaslab_sync_done().
1411                          */
1412                         VERIFY0(space_map_open(&sm,
1413                             spa->spa_dsl_pool->dp_meta_objset,
1414                             msp->ms_sm->sm_object, msp->ms_sm->sm_start,
1415                             msp->ms_sm->sm_size, msp->ms_sm->sm_shift));
1416                         space_map_update(sm);
1417                         VERIFY0(space_map_load(sm, svr->svr_allocd_segs,
1418                             SM_ALLOC));
1419                         space_map_close(sm);
1420 
1421                         range_tree_walk(msp->ms_freeing,
1422                             range_tree_remove, svr->svr_allocd_segs);
1423 
1424                         /*
1425                          * When we are resuming from a paused removal (i.e.
1426                          * when importing a pool with a removal in progress),
1427                          * discard any state that we have already processed.
1428                          */
1429                         range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1430                 }
1431                 mutex_exit(&msp->ms_lock);
1432                 mutex_exit(&msp->ms_sync_lock);
1433 
1434                 vca.vca_msp = msp;
1435                 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1436                     avl_numnodes(&svr->svr_allocd_segs->rt_root),
1437                     msp->ms_id);
1438 
1439                 while (!svr->svr_thread_exit &&
1440                     !range_tree_is_empty(svr->svr_allocd_segs)) {
1441 
1442                         mutex_exit(&svr->svr_lock);
1443 
1444                         /*
1445                          * We need to periodically drop the config lock so that
1446                          * writers can get in.  Additionally, we can't wait
1447                          * for a txg to sync while holding a config lock
1448                          * (since a waiting writer could cause a 3-way deadlock
1449                          * with the sync thread, which also gets a config
1450                          * lock for reader).  So we can't hold the config lock
1451                          * while calling dmu_tx_assign().
1452                          */
1453                         spa_config_exit(spa, SCL_CONFIG, FTAG);
1454 
1455                         /*
1456                          * This delay will pause the removal around the point
1457                          * specified by zfs_remove_max_bytes_pause. We do this
1458                          * solely from the test suite or during debugging.
1459                          */
1460                         uint64_t bytes_copied =
1461                             spa->spa_removing_phys.sr_copied;
1462                         for (int i = 0; i < TXG_SIZE; i++)
1463                                 bytes_copied += svr->svr_bytes_done[i];
1464                         while (zfs_remove_max_bytes_pause <= bytes_copied &&
1465                             !svr->svr_thread_exit)
1466                                 delay(hz);
1467 
1468                         mutex_enter(&vca.vca_lock);
1469                         while (vca.vca_outstanding_bytes >
1470                             zfs_remove_max_copy_bytes) {
1471                                 cv_wait(&vca.vca_cv, &vca.vca_lock);
1472                         }
1473                         mutex_exit(&vca.vca_lock);
1474 
1475                         dmu_tx_t *tx =
1476                             dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1477 
1478                         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1479                         uint64_t txg = dmu_tx_get_txg(tx);
1480 
1481                         /*
1482                          * Reacquire the vdev_config lock.  The vdev_t
1483                          * that we're removing may have changed, e.g. due
1484                          * to a vdev_attach or vdev_detach.
1485                          */
1486                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1487                         vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1488 
1489                         if (txg != last_txg)
1490                                 max_alloc = zfs_remove_max_segment;
1491                         last_txg = txg;
1492 
1493                         spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1494 
1495                         dmu_tx_commit(tx);
1496                         mutex_enter(&svr->svr_lock);
1497                 }
1498         }
1499 
1500         mutex_exit(&svr->svr_lock);
1501 
1502         spa_config_exit(spa, SCL_CONFIG, FTAG);
1503 
1504         /*
1505          * Wait for all copies to finish before cleaning up the vca.
1506          */
1507         txg_wait_synced(spa->spa_dsl_pool, 0);
1508         ASSERT0(vca.vca_outstanding_bytes);
1509 
1510         mutex_destroy(&vca.vca_lock);
1511         cv_destroy(&vca.vca_cv);
1512 
1513         if (svr->svr_thread_exit) {
1514                 mutex_enter(&svr->svr_lock);
1515                 range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1516                 svr->svr_thread = NULL;
1517                 cv_broadcast(&svr->svr_cv);
1518                 mutex_exit(&svr->svr_lock);
1519         } else {
1520                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1521                 vdev_remove_complete(spa);
1522         }
1523 }
1524 
1525 void
1526 spa_vdev_remove_suspend(spa_t *spa)
1527 {
1528         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1529 
1530         if (svr == NULL)
1531                 return;
1532 
1533         mutex_enter(&svr->svr_lock);
1534         svr->svr_thread_exit = B_TRUE;
1535         while (svr->svr_thread != NULL)
1536                 cv_wait(&svr->svr_cv, &svr->svr_lock);
1537         svr->svr_thread_exit = B_FALSE;
1538         mutex_exit(&svr->svr_lock);
1539 }
1540 
1541 /* ARGSUSED */
1542 static int
1543 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1544 {
1545         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1546 
1547         if (spa->spa_vdev_removal == NULL)
1548                 return (ENOTACTIVE);
1549         return (0);
1550 }
1551 
1552 /*
1553  * Cancel a removal by freeing all entries from the partial mapping
1554  * and marking the vdev as no longer being removing.
1555  */
1556 /* ARGSUSED */
1557 static void
1558 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1559 {
1560         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1561         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1562         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1563         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1564         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1565         objset_t *mos = spa->spa_meta_objset;
1566 
1567         ASSERT3P(svr->svr_thread, ==, NULL);
1568 
1569         spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1570         if (vdev_obsolete_counts_are_precise(vd)) {
1571                 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1572                 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1573                     VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1574         }
1575 
1576         if (vdev_obsolete_sm_object(vd) != 0) {
1577                 ASSERT(vd->vdev_obsolete_sm != NULL);
1578                 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
1579                     space_map_object(vd->vdev_obsolete_sm));
1580 
1581                 space_map_free(vd->vdev_obsolete_sm, tx);
1582                 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1583                     VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1584                 space_map_close(vd->vdev_obsolete_sm);
1585                 vd->vdev_obsolete_sm = NULL;
1586                 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1587         }
1588         for (int i = 0; i < TXG_SIZE; i++) {
1589                 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1590                 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1591                     vdev_indirect_mapping_max_offset(vim));
1592         }
1593 
1594         for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1595                 metaslab_t *msp = vd->vdev_ms[msi];
1596 
1597                 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1598                         break;
1599 
1600                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1601 
1602                 mutex_enter(&msp->ms_lock);
1603 
1604                 /*
1605                  * Assert nothing in flight -- ms_*tree is empty.
1606                  */
1607                 for (int i = 0; i < TXG_SIZE; i++)
1608                         ASSERT0(range_tree_space(msp->ms_allocating[i]));
1609                 for (int i = 0; i < TXG_DEFER_SIZE; i++)
1610                         ASSERT0(range_tree_space(msp->ms_defer[i]));
1611                 ASSERT0(range_tree_space(msp->ms_freed));
1612 
1613                 if (msp->ms_sm != NULL) {
1614                         /*
1615                          * Assert that the in-core spacemap has the same
1616                          * length as the on-disk one, so we can use the
1617                          * existing in-core spacemap to load it from disk.
1618                          */
1619                         ASSERT3U(msp->ms_sm->sm_alloc, ==,
1620                             msp->ms_sm->sm_phys->smp_alloc);
1621                         ASSERT3U(msp->ms_sm->sm_length, ==,
1622                             msp->ms_sm->sm_phys->smp_objsize);
1623 
1624                         mutex_enter(&svr->svr_lock);
1625                         VERIFY0(space_map_load(msp->ms_sm,
1626                             svr->svr_allocd_segs, SM_ALLOC));
1627                         range_tree_walk(msp->ms_freeing,
1628                             range_tree_remove, svr->svr_allocd_segs);
1629 
1630                         /*
1631                          * Clear everything past what has been synced,
1632                          * because we have not allocated mappings for it yet.
1633                          */
1634                         uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1635                         uint64_t sm_end = msp->ms_sm->sm_start +
1636                             msp->ms_sm->sm_size;
1637                         if (sm_end > syncd)
1638                                 range_tree_clear(svr->svr_allocd_segs,
1639                                     syncd, sm_end - syncd);
1640 
1641                         mutex_exit(&svr->svr_lock);
1642                 }
1643                 mutex_exit(&msp->ms_lock);
1644 
1645                 mutex_enter(&svr->svr_lock);
1646                 range_tree_vacate(svr->svr_allocd_segs,
1647                     free_mapped_segment_cb, vd);
1648                 mutex_exit(&svr->svr_lock);
1649         }
1650 
1651         /*
1652          * Note: this must happen after we invoke free_mapped_segment_cb,
1653          * because it adds to the obsolete_segments.
1654          */
1655         range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1656 
1657         ASSERT3U(vic->vic_mapping_object, ==,
1658             vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1659         vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1660         vd->vdev_indirect_mapping = NULL;
1661         vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1662         vic->vic_mapping_object = 0;
1663 
1664         ASSERT3U(vic->vic_births_object, ==,
1665             vdev_indirect_births_object(vd->vdev_indirect_births));
1666         vdev_indirect_births_close(vd->vdev_indirect_births);
1667         vd->vdev_indirect_births = NULL;
1668         vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1669         vic->vic_births_object = 0;
1670 
1671         /*
1672          * We may have processed some frees from the removing vdev in this
1673          * txg, thus increasing svr_bytes_done; discard that here to
1674          * satisfy the assertions in spa_vdev_removal_destroy().
1675          * Note that future txg's can not have any bytes_done, because
1676          * future TXG's are only modified from open context, and we have
1677          * already shut down the copying thread.
1678          */
1679         svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1680         spa_finish_removal(spa, DSS_CANCELED, tx);
1681 
1682         vd->vdev_removing = B_FALSE;
1683         vdev_config_dirty(vd);
1684 
1685         zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1686             vd->vdev_id, dmu_tx_get_txg(tx));
1687         spa_history_log_internal(spa, "vdev remove canceled", tx,
1688             "%s vdev %llu %s", spa_name(spa),
1689             vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1690 }
1691 
1692 int
1693 spa_vdev_remove_cancel(spa_t *spa)
1694 {
1695         spa_vdev_remove_suspend(spa);
1696 
1697         if (spa->spa_vdev_removal == NULL)
1698                 return (ENOTACTIVE);
1699 
1700         uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id;
1701 
1702         int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1703             spa_vdev_remove_cancel_sync, NULL, 0,
1704             ZFS_SPACE_CHECK_EXTRA_RESERVED);
1705 
1706         if (error == 0) {
1707                 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1708                 vdev_t *vd = vdev_lookup_top(spa, vdid);
1709                 metaslab_group_activate(vd->vdev_mg);
1710                 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1711         }
1712 
1713         return (error);
1714 }
1715 
1716 /*
1717  * Called every sync pass of every txg if there's a svr.
1718  */
1719 void
1720 svr_sync(spa_t *spa, dmu_tx_t *tx)
1721 {
1722         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1723         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1724 
1725         /*
1726          * This check is necessary so that we do not dirty the
1727          * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1728          * is nothing to do.  Dirtying it every time would prevent us
1729          * from syncing-to-convergence.
1730          */
1731         if (svr->svr_bytes_done[txgoff] == 0)
1732                 return;
1733 
1734         /*
1735          * Update progress accounting.
1736          */
1737         spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1738         svr->svr_bytes_done[txgoff] = 0;
1739 
1740         spa_sync_removing_state(spa, tx);
1741 }
1742 
1743 static void
1744 vdev_remove_make_hole_and_free(vdev_t *vd)
1745 {
1746         uint64_t id = vd->vdev_id;
1747         spa_t *spa = vd->vdev_spa;
1748         vdev_t *rvd = spa->spa_root_vdev;
1749         boolean_t last_vdev = (id == (rvd->vdev_children - 1));
1750 
1751         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1752         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1753 
1754         vdev_free(vd);
1755 
1756         if (last_vdev) {
1757                 vdev_compact_children(rvd);
1758         } else {
1759                 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1760                 vdev_add_child(rvd, vd);
1761         }
1762         vdev_config_dirty(rvd);
1763 
1764         /*
1765          * Reassess the health of our root vdev.
1766          */
1767         vdev_reopen(rvd);
1768 }
1769 
1770 /*
1771  * Remove a log device.  The config lock is held for the specified TXG.
1772  */
1773 static int
1774 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1775 {
1776         metaslab_group_t *mg = vd->vdev_mg;
1777         spa_t *spa = vd->vdev_spa;
1778         int error = 0;
1779 
1780         ASSERT(vd->vdev_islog);
1781         ASSERT(vd == vd->vdev_top);
1782 
1783         /*
1784          * Stop allocating from this vdev.
1785          */
1786         metaslab_group_passivate(mg);
1787 
1788         /*
1789          * Wait for the youngest allocations and frees to sync,
1790          * and then wait for the deferral of those frees to finish.
1791          */
1792         spa_vdev_config_exit(spa, NULL,
1793             *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1794 
1795         /*
1796          * Evacuate the device.  We don't hold the config lock as writer
1797          * since we need to do I/O but we do keep the
1798          * spa_namespace_lock held.  Once this completes the device
1799          * should no longer have any blocks allocated on it.
1800          */
1801         if (vd->vdev_islog) {
1802                 if (vd->vdev_stat.vs_alloc != 0)
1803                         error = spa_reset_logs(spa);
1804         }
1805 
1806         *txg = spa_vdev_config_enter(spa);
1807 
1808         if (error != 0) {
1809                 metaslab_group_activate(mg);
1810                 return (error);
1811         }
1812         ASSERT0(vd->vdev_stat.vs_alloc);
1813 
1814         /*
1815          * The evacuation succeeded.  Remove any remaining MOS metadata
1816          * associated with this vdev, and wait for these changes to sync.
1817          */
1818         vd->vdev_removing = B_TRUE;
1819 
1820         vdev_dirty_leaves(vd, VDD_DTL, *txg);
1821         vdev_config_dirty(vd);
1822 
1823         spa_history_log_internal(spa, "vdev remove", NULL,
1824             "%s vdev %llu (log) %s", spa_name(spa), vd->vdev_id,
1825             (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1826 
1827         /* Make sure these changes are sync'ed */
1828         spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1829 
1830         /* Stop initializing */
1831         (void) vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
1832 
1833         *txg = spa_vdev_config_enter(spa);
1834 
1835         sysevent_t *ev = spa_event_create(spa, vd, NULL,
1836             ESC_ZFS_VDEV_REMOVE_DEV);
1837         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1838         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1839 
1840         /* The top ZAP should have been destroyed by vdev_remove_empty. */
1841         ASSERT0(vd->vdev_top_zap);
1842         /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1843         ASSERT0(vd->vdev_leaf_zap);
1844 
1845         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1846 
1847         if (list_link_active(&vd->vdev_state_dirty_node))
1848                 vdev_state_clean(vd);
1849         if (list_link_active(&vd->vdev_config_dirty_node))
1850                 vdev_config_clean(vd);
1851 
1852         /*
1853          * Clean up the vdev namespace.
1854          */
1855         vdev_remove_make_hole_and_free(vd);
1856 
1857         if (ev != NULL)
1858                 spa_event_post(ev);
1859 
1860         return (0);
1861 }
1862 
1863 static int
1864 spa_vdev_remove_top_check(vdev_t *vd)
1865 {
1866         spa_t *spa = vd->vdev_spa;
1867 
1868         if (vd != vd->vdev_top)
1869                 return (SET_ERROR(ENOTSUP));
1870 
1871         if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1872                 return (SET_ERROR(ENOTSUP));
1873 
1874         /* available space in the pool's normal class */
1875         uint64_t available = dsl_dir_space_available(
1876             spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
1877 
1878         metaslab_class_t *mc = vd->vdev_mg->mg_class;
1879 
1880         /*
1881          * When removing a vdev from an allocation class that has
1882          * remaining vdevs, include available space from the class.
1883          */
1884         if (mc != spa_normal_class(spa) && mc->mc_groups > 1) {
1885                 uint64_t class_avail = metaslab_class_get_space(mc) -
1886                     metaslab_class_get_alloc(mc);
1887 
1888                 /* add class space, adjusted for overhead */
1889                 available += (class_avail * 94) / 100;
1890         }
1891 
1892         /*
1893          * There has to be enough free space to remove the
1894          * device and leave double the "slop" space (i.e. we
1895          * must leave at least 3% of the pool free, in addition to
1896          * the normal slop space).
1897          */
1898         if (available < vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
1899                 return (SET_ERROR(ENOSPC));
1900         }
1901 
1902         /*
1903          * There can not be a removal in progress.
1904          */
1905         if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
1906                 return (SET_ERROR(EBUSY));
1907 
1908         /*
1909          * The device must have all its data.
1910          */
1911         if (!vdev_dtl_empty(vd, DTL_MISSING) ||
1912             !vdev_dtl_empty(vd, DTL_OUTAGE))
1913                 return (SET_ERROR(EBUSY));
1914 
1915         /*
1916          * The device must be healthy.
1917          */
1918         if (!vdev_readable(vd))
1919                 return (SET_ERROR(EIO));
1920 
1921         /*
1922          * All vdevs in normal class must have the same ashift.
1923          */
1924         if (spa->spa_max_ashift != spa->spa_min_ashift) {
1925                 return (SET_ERROR(EINVAL));
1926         }
1927 
1928         /*
1929          * All vdevs in normal class must have the same ashift
1930          * and not be raidz.
1931          */
1932         vdev_t *rvd = spa->spa_root_vdev;
1933         int num_indirect = 0;
1934         for (uint64_t id = 0; id < rvd->vdev_children; id++) {
1935                 vdev_t *cvd = rvd->vdev_child[id];
1936                 if (cvd->vdev_ashift != 0 && !cvd->vdev_islog)
1937                         ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
1938                 if (cvd->vdev_ops == &vdev_indirect_ops)
1939                         num_indirect++;
1940                 if (!vdev_is_concrete(cvd))
1941                         continue;
1942                 if (cvd->vdev_ops == &vdev_raidz_ops)
1943                         return (SET_ERROR(EINVAL));
1944                 /*
1945                  * Need the mirror to be mirror of leaf vdevs only
1946                  */
1947                 if (cvd->vdev_ops == &vdev_mirror_ops) {
1948                         for (uint64_t cid = 0;
1949                             cid < cvd->vdev_children; cid++) {
1950                                 vdev_t *tmp = cvd->vdev_child[cid];
1951                                 if (!tmp->vdev_ops->vdev_op_leaf)
1952                                         return (SET_ERROR(EINVAL));
1953                         }
1954                 }
1955         }
1956 
1957         return (0);
1958 }
1959 
1960 /*
1961  * Initiate removal of a top-level vdev, reducing the total space in the pool.
1962  * The config lock is held for the specified TXG.  Once initiated,
1963  * evacuation of all allocated space (copying it to other vdevs) happens
1964  * in the background (see spa_vdev_remove_thread()), and can be canceled
1965  * (see spa_vdev_remove_cancel()).  If successful, the vdev will
1966  * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
1967  */
1968 static int
1969 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
1970 {
1971         spa_t *spa = vd->vdev_spa;
1972         int error;
1973 
1974         /*
1975          * Check for errors up-front, so that we don't waste time
1976          * passivating the metaslab group and clearing the ZIL if there
1977          * are errors.
1978          */
1979         error = spa_vdev_remove_top_check(vd);
1980         if (error != 0)
1981                 return (error);
1982 
1983         /*
1984          * Stop allocating from this vdev.  Note that we must check
1985          * that this is not the only device in the pool before
1986          * passivating, otherwise we will not be able to make
1987          * progress because we can't allocate from any vdevs.
1988          * The above check for sufficient free space serves this
1989          * purpose.
1990          */
1991         metaslab_group_t *mg = vd->vdev_mg;
1992         metaslab_group_passivate(mg);
1993 
1994         /*
1995          * Wait for the youngest allocations and frees to sync,
1996          * and then wait for the deferral of those frees to finish.
1997          */
1998         spa_vdev_config_exit(spa, NULL,
1999             *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2000 
2001         /*
2002          * We must ensure that no "stubby" log blocks are allocated
2003          * on the device to be removed.  These blocks could be
2004          * written at any time, including while we are in the middle
2005          * of copying them.
2006          */
2007         error = spa_reset_logs(spa);
2008 
2009         /*
2010          * We stop any initializing that is currently in progress but leave
2011          * the state as "active". This will allow the initializing to resume
2012          * if the removal is canceled sometime later.
2013          */
2014         vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
2015 
2016         *txg = spa_vdev_config_enter(spa);
2017 
2018         /*
2019          * Things might have changed while the config lock was dropped
2020          * (e.g. space usage).  Check for errors again.
2021          */
2022         if (error == 0)
2023                 error = spa_vdev_remove_top_check(vd);
2024 
2025         if (error != 0) {
2026                 metaslab_group_activate(mg);
2027                 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2028                 return (error);
2029         }
2030 
2031         vd->vdev_removing = B_TRUE;
2032 
2033         vdev_dirty_leaves(vd, VDD_DTL, *txg);
2034         vdev_config_dirty(vd);
2035         dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2036         dsl_sync_task_nowait(spa->spa_dsl_pool,
2037             vdev_remove_initiate_sync,
2038             (void *)(uintptr_t)vd->vdev_id, 0, ZFS_SPACE_CHECK_NONE, tx);
2039         dmu_tx_commit(tx);
2040 
2041         return (0);
2042 }
2043 
2044 /*
2045  * Remove a device from the pool.
2046  *
2047  * Removing a device from the vdev namespace requires several steps
2048  * and can take a significant amount of time.  As a result we use
2049  * the spa_vdev_config_[enter/exit] functions which allow us to
2050  * grab and release the spa_config_lock while still holding the namespace
2051  * lock.  During each step the configuration is synced out.
2052  */
2053 int
2054 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2055 {
2056         vdev_t *vd;
2057         nvlist_t **spares, **l2cache, *nv;
2058         uint64_t txg = 0;
2059         uint_t nspares, nl2cache;
2060         int error = 0;
2061         boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2062         sysevent_t *ev = NULL;
2063 
2064         ASSERT(spa_writeable(spa));
2065 
2066         if (!locked)
2067                 txg = spa_vdev_enter(spa);
2068 
2069         ASSERT(MUTEX_HELD(&spa_namespace_lock));
2070         if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2071                 error = (spa_has_checkpoint(spa)) ?
2072                     ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2073 
2074                 if (!locked)
2075                         return (spa_vdev_exit(spa, NULL, txg, error));
2076 
2077                 return (error);
2078         }
2079 
2080         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2081 
2082         if (spa->spa_spares.sav_vdevs != NULL &&
2083             nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2084             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2085             (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2086                 /*
2087                  * Only remove the hot spare if it's not currently in use
2088                  * in this pool.
2089                  */
2090                 if (vd == NULL || unspare) {
2091                         char *nvstr = fnvlist_lookup_string(nv,
2092                             ZPOOL_CONFIG_PATH);
2093                         spa_history_log_internal(spa, "vdev remove", NULL,
2094                             "%s vdev (%s) %s", spa_name(spa),
2095                             VDEV_TYPE_SPARE, nvstr);
2096                         if (vd == NULL)
2097                                 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2098                         ev = spa_event_create(spa, vd, NULL,
2099                             ESC_ZFS_VDEV_REMOVE_AUX);
2100                         spa_vdev_remove_aux(spa->spa_spares.sav_config,
2101                             ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2102                         spa_load_spares(spa);
2103                         spa->spa_spares.sav_sync = B_TRUE;
2104                 } else {
2105                         error = SET_ERROR(EBUSY);
2106                 }
2107         } else if (spa->spa_l2cache.sav_vdevs != NULL &&
2108             nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2109             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2110             (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2111                 char *nvstr = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
2112                 spa_history_log_internal(spa, "vdev remove", NULL,
2113                     "%s vdev (%s) %s", spa_name(spa), VDEV_TYPE_L2CACHE, nvstr);
2114                 /*
2115                  * Cache devices can always be removed.
2116                  */
2117                 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2118                 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2119                 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2120                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2121                 spa_load_l2cache(spa);
2122                 spa->spa_l2cache.sav_sync = B_TRUE;
2123         } else if (vd != NULL && vd->vdev_islog) {
2124                 ASSERT(!locked);
2125                 error = spa_vdev_remove_log(vd, &txg);
2126         } else if (vd != NULL) {
2127                 ASSERT(!locked);
2128                 error = spa_vdev_remove_top(vd, &txg);
2129         } else {
2130                 /*
2131                  * There is no vdev of any kind with the specified guid.
2132                  */
2133                 error = SET_ERROR(ENOENT);
2134         }
2135 
2136         if (!locked)
2137                 error = spa_vdev_exit(spa, NULL, txg, error);
2138 
2139         if (ev != NULL) {
2140                 if (error != 0) {
2141                         spa_event_discard(ev);
2142                 } else {
2143                         spa_event_post(ev);
2144                 }
2145         }
2146 
2147         return (error);
2148 }
2149 
2150 int
2151 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2152 {
2153         prs->prs_state = spa->spa_removing_phys.sr_state;
2154 
2155         if (prs->prs_state == DSS_NONE)
2156                 return (SET_ERROR(ENOENT));
2157 
2158         prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2159         prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2160         prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2161         prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2162         prs->prs_copied = spa->spa_removing_phys.sr_copied;
2163 
2164         if (spa->spa_vdev_removal != NULL) {
2165                 for (int i = 0; i < TXG_SIZE; i++) {
2166                         prs->prs_copied +=
2167                             spa->spa_vdev_removal->svr_bytes_done[i];
2168                 }
2169         }
2170 
2171         prs->prs_mapping_memory = 0;
2172         uint64_t indirect_vdev_id =
2173             spa->spa_removing_phys.sr_prev_indirect_vdev;
2174         while (indirect_vdev_id != -1) {
2175                 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2176                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2177                 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2178 
2179                 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2180                 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2181                 indirect_vdev_id = vic->vic_prev_indirect_vdev;
2182         }
2183 
2184         return (0);
2185 }