1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2016 by Delphix. All rights reserved.
24 */
25
26 #include <sys/spa.h>
27 #include <sys/spa_impl.h>
28 #include <sys/txg.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/refcount.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/dsl_synctask.h>
33 #include <sys/zap.h>
34 #include <sys/dmu_tx.h>
35
36 /*
37 * Maximum number of metaslabs per group that can be initialized
38 * simultaneously.
39 */
40 int max_initialize_ms = 3;
41
42 /*
43 * Value that is written to disk during initialization.
44 */
45 uint64_t zfs_initialize_value = 0xdeadbeefdeadbeefULL;
46
47 /* maximum number of I/Os outstanding per leaf vdev */
48 int zfs_initialize_limit = 1;
49
50 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
51 uint64_t zfs_initialize_chunk_size = 1024 * 1024;
52
53 static boolean_t
54 vdev_initialize_should_stop(vdev_t *vd)
55 {
56 return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
57 vd->vdev_detached || vd->vdev_top->vdev_removing);
58 }
59
60 static void
61 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
62 {
63 /*
64 * We pass in the guid instead of the vdev_t since the vdev may
65 * have been freed prior to the sync task being processed. This
66 * happens when a vdev is detached as we call spa_config_vdev_exit(),
67 * stop the intializing thread, schedule the sync task, and free
68 * the vdev. Later when the scheduled sync task is invoked, it would
69 * find that the vdev has been freed.
70 */
71 uint64_t guid = *(uint64_t *)arg;
72 uint64_t txg = dmu_tx_get_txg(tx);
73 kmem_free(arg, sizeof (uint64_t));
74
75 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
76 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
77 return;
78
79 uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
80 vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
81
82 VERIFY(vd->vdev_leaf_zap != 0);
83
84 objset_t *mos = vd->vdev_spa->spa_meta_objset;
85
86 if (last_offset > 0) {
87 vd->vdev_initialize_last_offset = last_offset;
88 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
89 VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
90 sizeof (last_offset), 1, &last_offset, tx));
91 }
92 if (vd->vdev_initialize_action_time > 0) {
93 uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
94 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
95 VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
96 1, &val, tx));
97 }
98
99 uint64_t initialize_state = vd->vdev_initialize_state;
100 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
101 VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
102 &initialize_state, tx));
103 }
104
105 static void
106 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
107 {
108 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
109 spa_t *spa = vd->vdev_spa;
110
111 if (new_state == vd->vdev_initialize_state)
112 return;
113
114 /*
115 * Copy the vd's guid, this will be freed by the sync task.
116 */
117 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
118 *guid = vd->vdev_guid;
119
120 /*
121 * If we're suspending, then preserving the original start time.
122 */
123 if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
124 vd->vdev_initialize_action_time = gethrestime_sec();
125 }
126 vd->vdev_initialize_state = new_state;
127
128 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
129 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
130 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync,
131 guid, 2, ZFS_SPACE_CHECK_RESERVED, tx);
132
133 switch (new_state) {
134 case VDEV_INITIALIZE_ACTIVE:
135 spa_history_log_internal(spa, "initialize", tx,
136 "vdev=%s activated", vd->vdev_path);
137 break;
138 case VDEV_INITIALIZE_SUSPENDED:
139 spa_history_log_internal(spa, "initialize", tx,
140 "vdev=%s suspended", vd->vdev_path);
141 break;
142 case VDEV_INITIALIZE_CANCELED:
143 spa_history_log_internal(spa, "initialize", tx,
144 "vdev=%s canceled", vd->vdev_path);
145 break;
146 case VDEV_INITIALIZE_COMPLETE:
147 spa_history_log_internal(spa, "initialize", tx,
148 "vdev=%s complete", vd->vdev_path);
149 break;
150 default:
151 panic("invalid state %llu", (unsigned long long)new_state);
152 }
153
154 dmu_tx_commit(tx);
155 }
156
157 static void
158 vdev_initialize_cb(zio_t *zio)
159 {
160 vdev_t *vd = zio->io_vd;
161 mutex_enter(&vd->vdev_initialize_io_lock);
162 if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
163 /*
164 * The I/O failed because the vdev was unavailable; roll the
165 * last offset back. (This works because spa_sync waits on
166 * spa_txg_zio before it runs sync tasks.)
167 */
168 uint64_t *off =
169 &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
170 *off = MIN(*off, zio->io_offset);
171 } else {
172 /*
173 * Since initializing is best-effort, we ignore I/O errors and
174 * rely on vdev_probe to determine if the errors are more
175 * critical.
176 */
177 if (zio->io_error != 0)
178 vd->vdev_stat.vs_initialize_errors++;
179
180 vd->vdev_initialize_bytes_done += zio->io_orig_size;
181 }
182 ASSERT3U(vd->vdev_initialize_inflight, >, 0);
183 vd->vdev_initialize_inflight--;
184 cv_broadcast(&vd->vdev_initialize_io_cv);
185 mutex_exit(&vd->vdev_initialize_io_lock);
186
187 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
188 }
189
190 /* Takes care of physical writing and limiting # of concurrent ZIOs. */
191 static int
192 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
193 {
194 spa_t *spa = vd->vdev_spa;
195
196 /* Limit inflight initializing I/Os */
197 mutex_enter(&vd->vdev_initialize_io_lock);
198 while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
199 cv_wait(&vd->vdev_initialize_io_cv,
200 &vd->vdev_initialize_io_lock);
201 }
202 vd->vdev_initialize_inflight++;
203 mutex_exit(&vd->vdev_initialize_io_lock);
204
205 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
206 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
207 uint64_t txg = dmu_tx_get_txg(tx);
208
209 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
210 mutex_enter(&vd->vdev_initialize_lock);
211
212 if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
213 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
214 *guid = vd->vdev_guid;
215
216 /* This is the first write of this txg. */
217 dsl_sync_task_nowait(spa_get_dsl(spa),
218 vdev_initialize_zap_update_sync, guid, 2,
219 ZFS_SPACE_CHECK_RESERVED, tx);
220 }
221
222 /*
223 * We know the vdev struct will still be around since all
224 * consumers of vdev_free must stop the initialization first.
225 */
226 if (vdev_initialize_should_stop(vd)) {
227 mutex_enter(&vd->vdev_initialize_io_lock);
228 ASSERT3U(vd->vdev_initialize_inflight, >, 0);
229 vd->vdev_initialize_inflight--;
230 mutex_exit(&vd->vdev_initialize_io_lock);
231 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
232 mutex_exit(&vd->vdev_initialize_lock);
233 dmu_tx_commit(tx);
234 return (SET_ERROR(EINTR));
235 }
236 mutex_exit(&vd->vdev_initialize_lock);
237
238 vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
239 zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
240 size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
241 ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
242 /* vdev_initialize_cb releases SCL_STATE_ALL */
243
244 dmu_tx_commit(tx);
245
246 return (0);
247 }
248
249 /*
250 * Translate a logical range to the physical range for the specified vdev_t.
251 * This function is initially called with a leaf vdev and will walk each
252 * parent vdev until it reaches a top-level vdev. Once the top-level is
253 * reached the physical range is initialized and the recursive function
254 * begins to unwind. As it unwinds it calls the parent's vdev specific
255 * translation function to do the real conversion.
256 */
257 void
258 vdev_xlate(vdev_t *vd, const range_seg_t *logical_rs, range_seg_t *physical_rs)
259 {
260 /*
261 * Walk up the vdev tree
262 */
263 if (vd != vd->vdev_top) {
264 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs);
265 } else {
266 /*
267 * We've reached the top-level vdev, initialize the
268 * physical range to the logical range and start to
269 * unwind.
270 */
271 physical_rs->rs_start = logical_rs->rs_start;
272 physical_rs->rs_end = logical_rs->rs_end;
273 return;
274 }
275
276 vdev_t *pvd = vd->vdev_parent;
277 ASSERT3P(pvd, !=, NULL);
278 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
279
280 /*
281 * As this recursive function unwinds, translate the logical
282 * range into its physical components by calling the
283 * vdev specific translate function.
284 */
285 range_seg_t intermediate = { 0 };
286 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate);
287
288 physical_rs->rs_start = intermediate.rs_start;
289 physical_rs->rs_end = intermediate.rs_end;
290 }
291
292 /*
293 * Callback to fill each ABD chunk with zfs_initialize_value. len must be
294 * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
295 * allocation will guarantee these for us.
296 */
297 /* ARGSUSED */
298 static int
299 vdev_initialize_block_fill(void *buf, size_t len, void *unused)
300 {
301 ASSERT0(len % sizeof (uint64_t));
302 for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
303 *(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
304 }
305 return (0);
306 }
307
308 static abd_t *
309 vdev_initialize_block_alloc()
310 {
311 /* Allocate ABD for filler data */
312 abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
313
314 ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
315 (void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
316 vdev_initialize_block_fill, NULL);
317
318 return (data);
319 }
320
321 static void
322 vdev_initialize_block_free(abd_t *data)
323 {
324 abd_free(data);
325 }
326
327 static int
328 vdev_initialize_ranges(vdev_t *vd, abd_t *data)
329 {
330 avl_tree_t *rt = &vd->vdev_initialize_tree->rt_root;
331
332 for (range_seg_t *rs = avl_first(rt); rs != NULL;
333 rs = AVL_NEXT(rt, rs)) {
334 uint64_t size = rs->rs_end - rs->rs_start;
335
336 /* Split range into legally-sized physical chunks */
337 uint64_t writes_required =
338 ((size - 1) / zfs_initialize_chunk_size) + 1;
339
340 for (uint64_t w = 0; w < writes_required; w++) {
341 int error;
342
343 error = vdev_initialize_write(vd,
344 VDEV_LABEL_START_SIZE + rs->rs_start +
345 (w * zfs_initialize_chunk_size),
346 MIN(size - (w * zfs_initialize_chunk_size),
347 zfs_initialize_chunk_size), data);
348 if (error != 0)
349 return (error);
350 }
351 }
352 return (0);
353 }
354
355 static void
356 vdev_initialize_mg_wait(metaslab_group_t *mg)
357 {
358 ASSERT(MUTEX_HELD(&mg->mg_ms_initialize_lock));
359 while (mg->mg_initialize_updating) {
360 cv_wait(&mg->mg_ms_initialize_cv, &mg->mg_ms_initialize_lock);
361 }
362 }
363
364 static void
365 vdev_initialize_mg_mark(metaslab_group_t *mg)
366 {
367 ASSERT(MUTEX_HELD(&mg->mg_ms_initialize_lock));
368 ASSERT(mg->mg_initialize_updating);
369
370 while (mg->mg_ms_initializing >= max_initialize_ms) {
371 cv_wait(&mg->mg_ms_initialize_cv, &mg->mg_ms_initialize_lock);
372 }
373 mg->mg_ms_initializing++;
374 ASSERT3U(mg->mg_ms_initializing, <=, max_initialize_ms);
375 }
376
377 /*
378 * Mark the metaslab as being initialized to prevent any allocations
379 * on this metaslab. We must also track how many metaslabs are currently
380 * being initialized within a metaslab group and limit them to prevent
381 * allocation failures from occurring because all metaslabs are being
382 * initialized.
383 */
384 static void
385 vdev_initialize_ms_mark(metaslab_t *msp)
386 {
387 ASSERT(!MUTEX_HELD(&msp->ms_lock));
388 metaslab_group_t *mg = msp->ms_group;
389
390 mutex_enter(&mg->mg_ms_initialize_lock);
391
392 /*
393 * To keep an accurate count of how many threads are initializing
394 * a specific metaslab group, we only allow one thread to mark
395 * the metaslab group at a time. This ensures that the value of
396 * ms_initializing will be accurate when we decide to mark a metaslab
397 * group as being initialized. To do this we force all other threads
398 * to wait till the metaslab's mg_initialize_updating flag is no
399 * longer set.
400 */
401 vdev_initialize_mg_wait(mg);
402 mg->mg_initialize_updating = B_TRUE;
403 if (msp->ms_initializing == 0) {
404 vdev_initialize_mg_mark(mg);
405 }
406 mutex_enter(&msp->ms_lock);
407 msp->ms_initializing++;
408 mutex_exit(&msp->ms_lock);
409
410 mg->mg_initialize_updating = B_FALSE;
411 cv_broadcast(&mg->mg_ms_initialize_cv);
412 mutex_exit(&mg->mg_ms_initialize_lock);
413 }
414
415 static void
416 vdev_initialize_ms_unmark(metaslab_t *msp)
417 {
418 ASSERT(!MUTEX_HELD(&msp->ms_lock));
419 metaslab_group_t *mg = msp->ms_group;
420 mutex_enter(&mg->mg_ms_initialize_lock);
421 mutex_enter(&msp->ms_lock);
422 if (--msp->ms_initializing == 0) {
423 mg->mg_ms_initializing--;
424 cv_broadcast(&mg->mg_ms_initialize_cv);
425 }
426 mutex_exit(&msp->ms_lock);
427 mutex_exit(&mg->mg_ms_initialize_lock);
428 }
429
430 static void
431 vdev_initialize_calculate_progress(vdev_t *vd)
432 {
433 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
434 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
435 ASSERT(vd->vdev_leaf_zap != 0);
436
437 vd->vdev_initialize_bytes_est = 0;
438 vd->vdev_initialize_bytes_done = 0;
439
440 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
441 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
442 mutex_enter(&msp->ms_lock);
443
444 uint64_t ms_free = msp->ms_size -
445 space_map_allocated(msp->ms_sm);
446
447 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
448 ms_free /= vd->vdev_top->vdev_children;
449
450 /*
451 * Convert the metaslab range to a physical range
452 * on our vdev. We use this to determine if we are
453 * in the middle of this metaslab range.
454 */
455 range_seg_t logical_rs, physical_rs;
456 logical_rs.rs_start = msp->ms_start;
457 logical_rs.rs_end = msp->ms_start + msp->ms_size;
458 vdev_xlate(vd, &logical_rs, &physical_rs);
459
460 if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
461 vd->vdev_initialize_bytes_est += ms_free;
462 mutex_exit(&msp->ms_lock);
463 continue;
464 } else if (vd->vdev_initialize_last_offset >
465 physical_rs.rs_end) {
466 vd->vdev_initialize_bytes_done += ms_free;
467 vd->vdev_initialize_bytes_est += ms_free;
468 mutex_exit(&msp->ms_lock);
469 continue;
470 }
471
472 /*
473 * If we get here, we're in the middle of initializing this
474 * metaslab. Load it and walk the free tree for more accurate
475 * progress estimation.
476 */
477 VERIFY0(metaslab_load(msp));
478
479 for (range_seg_t *rs = avl_first(&msp->ms_allocatable->rt_root);
480 rs; rs = AVL_NEXT(&msp->ms_allocatable->rt_root, rs)) {
481 logical_rs.rs_start = rs->rs_start;
482 logical_rs.rs_end = rs->rs_end;
483 vdev_xlate(vd, &logical_rs, &physical_rs);
484
485 uint64_t size = physical_rs.rs_end -
486 physical_rs.rs_start;
487 vd->vdev_initialize_bytes_est += size;
488 if (vd->vdev_initialize_last_offset >
489 physical_rs.rs_end) {
490 vd->vdev_initialize_bytes_done += size;
491 } else if (vd->vdev_initialize_last_offset >
492 physical_rs.rs_start &&
493 vd->vdev_initialize_last_offset <
494 physical_rs.rs_end) {
495 vd->vdev_initialize_bytes_done +=
496 vd->vdev_initialize_last_offset -
497 physical_rs.rs_start;
498 }
499 }
500 mutex_exit(&msp->ms_lock);
501 }
502 }
503
504 static void
505 vdev_initialize_load(vdev_t *vd)
506 {
507 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
508 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
509 ASSERT(vd->vdev_leaf_zap != 0);
510
511 if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
512 vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
513 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
514 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
515 sizeof (vd->vdev_initialize_last_offset), 1,
516 &vd->vdev_initialize_last_offset);
517 ASSERT(err == 0 || err == ENOENT);
518 }
519
520 vdev_initialize_calculate_progress(vd);
521 }
522
523
524 /*
525 * Convert the logical range into a physcial range and add it to our
526 * avl tree.
527 */
528 void
529 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
530 {
531 vdev_t *vd = arg;
532 range_seg_t logical_rs, physical_rs;
533 logical_rs.rs_start = start;
534 logical_rs.rs_end = start + size;
535
536 ASSERT(vd->vdev_ops->vdev_op_leaf);
537 vdev_xlate(vd, &logical_rs, &physical_rs);
538
539 IMPLY(vd->vdev_top == vd,
540 logical_rs.rs_start == physical_rs.rs_start);
541 IMPLY(vd->vdev_top == vd,
542 logical_rs.rs_end == physical_rs.rs_end);
543
544 /* Only add segments that we have not visited yet */
545 if (physical_rs.rs_end <= vd->vdev_initialize_last_offset)
546 return;
547
548 /* Pick up where we left off mid-range. */
549 if (vd->vdev_initialize_last_offset > physical_rs.rs_start) {
550 zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
551 "(%llu, %llu)", vd->vdev_path,
552 (u_longlong_t)physical_rs.rs_start,
553 (u_longlong_t)physical_rs.rs_end,
554 (u_longlong_t)vd->vdev_initialize_last_offset,
555 (u_longlong_t)physical_rs.rs_end);
556 ASSERT3U(physical_rs.rs_end, >,
557 vd->vdev_initialize_last_offset);
558 physical_rs.rs_start = vd->vdev_initialize_last_offset;
559 }
560 ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
561
562 /*
563 * With raidz, it's possible that the logical range does not live on
564 * this leaf vdev. We only add the physical range to this vdev's if it
565 * has a length greater than 0.
566 */
567 if (physical_rs.rs_end > physical_rs.rs_start) {
568 range_tree_add(vd->vdev_initialize_tree, physical_rs.rs_start,
569 physical_rs.rs_end - physical_rs.rs_start);
570 } else {
571 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
572 }
573 }
574
575 static void
576 vdev_initialize_thread(void *arg)
577 {
578 vdev_t *vd = arg;
579 spa_t *spa = vd->vdev_spa;
580 int error = 0;
581 uint64_t ms_count = 0;
582
583 ASSERT(vdev_is_concrete(vd));
584 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
585
586 vd->vdev_initialize_last_offset = 0;
587 vdev_initialize_load(vd);
588
589 abd_t *deadbeef = vdev_initialize_block_alloc();
590
591 vd->vdev_initialize_tree = range_tree_create(NULL, NULL);
592
593 for (uint64_t i = 0; !vd->vdev_detached &&
594 i < vd->vdev_top->vdev_ms_count; i++) {
595 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
596
597 /*
598 * If we've expanded the top-level vdev or it's our
599 * first pass, calculate our progress.
600 */
601 if (vd->vdev_top->vdev_ms_count != ms_count) {
602 vdev_initialize_calculate_progress(vd);
603 ms_count = vd->vdev_top->vdev_ms_count;
604 }
605
606 vdev_initialize_ms_mark(msp);
607 mutex_enter(&msp->ms_lock);
608 VERIFY0(metaslab_load(msp));
609
610 range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
611 vd);
612 mutex_exit(&msp->ms_lock);
613
614 spa_config_exit(spa, SCL_CONFIG, FTAG);
615 error = vdev_initialize_ranges(vd, deadbeef);
616 vdev_initialize_ms_unmark(msp);
617 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
618
619 range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
620 if (error != 0)
621 break;
622 }
623
624 spa_config_exit(spa, SCL_CONFIG, FTAG);
625 mutex_enter(&vd->vdev_initialize_io_lock);
626 while (vd->vdev_initialize_inflight > 0) {
627 cv_wait(&vd->vdev_initialize_io_cv,
628 &vd->vdev_initialize_io_lock);
629 }
630 mutex_exit(&vd->vdev_initialize_io_lock);
631
632 range_tree_destroy(vd->vdev_initialize_tree);
633 vdev_initialize_block_free(deadbeef);
634 vd->vdev_initialize_tree = NULL;
635
636 mutex_enter(&vd->vdev_initialize_lock);
637 if (!vd->vdev_initialize_exit_wanted && vdev_writeable(vd)) {
638 vdev_initialize_change_state(vd, VDEV_INITIALIZE_COMPLETE);
639 }
640 ASSERT(vd->vdev_initialize_thread != NULL ||
641 vd->vdev_initialize_inflight == 0);
642
643 /*
644 * Drop the vdev_initialize_lock while we sync out the
645 * txg since it's possible that a device might be trying to
646 * come online and must check to see if it needs to restart an
647 * initialization. That thread will be holding the spa_config_lock
648 * which would prevent the txg_wait_synced from completing.
649 */
650 mutex_exit(&vd->vdev_initialize_lock);
651 txg_wait_synced(spa_get_dsl(spa), 0);
652 mutex_enter(&vd->vdev_initialize_lock);
653
654 vd->vdev_initialize_thread = NULL;
655 cv_broadcast(&vd->vdev_initialize_cv);
656 mutex_exit(&vd->vdev_initialize_lock);
657 }
658
659 /*
660 * Initiates a device. Caller must hold vdev_initialize_lock.
661 * Device must be a leaf and not already be initializing.
662 */
663 void
664 vdev_initialize(vdev_t *vd)
665 {
666 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
667 ASSERT(vd->vdev_ops->vdev_op_leaf);
668 ASSERT(vdev_is_concrete(vd));
669 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
670 ASSERT(!vd->vdev_detached);
671 ASSERT(!vd->vdev_initialize_exit_wanted);
672 ASSERT(!vd->vdev_top->vdev_removing);
673
674 vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
675 vd->vdev_initialize_thread = thread_create(NULL, 0,
676 vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
677 }
678
679 /*
680 * Stop initializng a device, with the resultant initialing state being
681 * tgt_state. Blocks until the initializing thread has exited.
682 * Caller must hold vdev_initialize_lock and must not be writing to the spa
683 * config, as the initializing thread may try to enter the config as a reader
684 * before exiting.
685 */
686 void
687 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state)
688 {
689 spa_t *spa = vd->vdev_spa;
690 ASSERT(!spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_WRITER));
691
692 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
693 ASSERT(vd->vdev_ops->vdev_op_leaf);
694 ASSERT(vdev_is_concrete(vd));
695
696 /*
697 * Allow cancel requests to proceed even if the initialize thread
698 * has stopped.
699 */
700 if (vd->vdev_initialize_thread == NULL &&
701 tgt_state != VDEV_INITIALIZE_CANCELED) {
702 return;
703 }
704
705 vdev_initialize_change_state(vd, tgt_state);
706 vd->vdev_initialize_exit_wanted = B_TRUE;
707 while (vd->vdev_initialize_thread != NULL)
708 cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
709
710 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
711 vd->vdev_initialize_exit_wanted = B_FALSE;
712 }
713
714 static void
715 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state)
716 {
717 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
718 mutex_enter(&vd->vdev_initialize_lock);
719 vdev_initialize_stop(vd, tgt_state);
720 mutex_exit(&vd->vdev_initialize_lock);
721 return;
722 }
723
724 for (uint64_t i = 0; i < vd->vdev_children; i++) {
725 vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state);
726 }
727 }
728
729 /*
730 * Convenience function to stop initializing of a vdev tree and set all
731 * initialize thread pointers to NULL.
732 */
733 void
734 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
735 {
736 vdev_initialize_stop_all_impl(vd, tgt_state);
737
738 if (vd->vdev_spa->spa_sync_on) {
739 /* Make sure that our state has been synced to disk */
740 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
741 }
742 }
743
744 void
745 vdev_initialize_restart(vdev_t *vd)
746 {
747 ASSERT(MUTEX_HELD(&spa_namespace_lock));
748 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
749
750 if (vd->vdev_leaf_zap != 0) {
751 mutex_enter(&vd->vdev_initialize_lock);
752 uint64_t initialize_state = VDEV_INITIALIZE_NONE;
753 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
754 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
755 sizeof (initialize_state), 1, &initialize_state);
756 ASSERT(err == 0 || err == ENOENT);
757 vd->vdev_initialize_state = initialize_state;
758
759 uint64_t timestamp = 0;
760 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
761 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
762 sizeof (timestamp), 1, ×tamp);
763 ASSERT(err == 0 || err == ENOENT);
764 vd->vdev_initialize_action_time = (time_t)timestamp;
765
766 if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
767 vd->vdev_offline) {
768 /* load progress for reporting, but don't resume */
769 vdev_initialize_load(vd);
770 } else if (vd->vdev_initialize_state ==
771 VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd)) {
772 vdev_initialize(vd);
773 }
774
775 mutex_exit(&vd->vdev_initialize_lock);
776 }
777
778 for (uint64_t i = 0; i < vd->vdev_children; i++) {
779 vdev_initialize_restart(vd->vdev_child[i]);
780 }
781 }