Print this page
    
10592 misc. metaslab and vdev related ZoL bug fixes
Portions contributed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Giuseppe Di Natale <guss80@gmail.com>
Reviewed by: George Melikov <mail@gmelikov.ru>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Tony Hutter <hutter2@llnl.gov>
Reviewed by: Kody Kantor <kody.kantor@joyent.com>
Approved by: Dan McDonald <danmcd@joyent.com>
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/fs/zfs/vdev_indirect.c
          +++ new/usr/src/uts/common/fs/zfs/vdev_indirect.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * This file and its contents are supplied under the terms of the
   5    5   * Common Development and Distribution License ("CDDL"), version 1.0.
   6    6   * You may only use this file in accordance with the terms of version
   7    7   * 1.0 of the CDDL.
   8    8   *
   9    9   * A full copy of the text of the CDDL should have accompanied this
  10   10   * source.  A copy of the CDDL is also available via the Internet at
  11   11   * http://www.illumos.org/license/CDDL.
  12   12   *
  13   13   * CDDL HEADER END
  14   14   */
  15   15  
  16   16  /*
  17   17   * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
  18   18   */
  19   19  
  20   20  #include <sys/zfs_context.h>
  21   21  #include <sys/spa.h>
  22   22  #include <sys/spa_impl.h>
  23   23  #include <sys/vdev_impl.h>
  24   24  #include <sys/fs/zfs.h>
  25   25  #include <sys/zio.h>
  26   26  #include <sys/zio_checksum.h>
  27   27  #include <sys/metaslab.h>
  28   28  #include <sys/refcount.h>
  29   29  #include <sys/dmu.h>
  30   30  #include <sys/vdev_indirect_mapping.h>
  31   31  #include <sys/dmu_tx.h>
  32   32  #include <sys/dsl_synctask.h>
  33   33  #include <sys/zap.h>
  34   34  #include <sys/abd.h>
  35   35  #include <sys/zthr.h>
  36   36  
  37   37  /*
  38   38   * An indirect vdev corresponds to a vdev that has been removed.  Since
  39   39   * we cannot rewrite block pointers of snapshots, etc., we keep a
  40   40   * mapping from old location on the removed device to the new location
  41   41   * on another device in the pool and use this mapping whenever we need
  42   42   * to access the DVA.  Unfortunately, this mapping did not respect
  43   43   * logical block boundaries when it was first created, and so a DVA on
  44   44   * this indirect vdev may be "split" into multiple sections that each
  45   45   * map to a different location.  As a consequence, not all DVAs can be
  46   46   * translated to an equivalent new DVA.  Instead we must provide a
  47   47   * "vdev_remap" operation that executes a callback on each contiguous
  48   48   * segment of the new location.  This function is used in multiple ways:
  49   49   *
  50   50   *  - i/os to this vdev use the callback to determine where the
  51   51   *    data is now located, and issue child i/os for each segment's new
  52   52   *    location.
  53   53   *
  54   54   *  - frees and claims to this vdev use the callback to free or claim
  55   55   *    each mapped segment.  (Note that we don't actually need to claim
  56   56   *    log blocks on indirect vdevs, because we don't allocate to
  57   57   *    removing vdevs.  However, zdb uses zio_claim() for its leak
  58   58   *    detection.)
  59   59   */
  60   60  
  61   61  /*
  62   62   * "Big theory statement" for how we mark blocks obsolete.
  63   63   *
  64   64   * When a block on an indirect vdev is freed or remapped, a section of
  65   65   * that vdev's mapping may no longer be referenced (aka "obsolete").  We
  66   66   * keep track of how much of each mapping entry is obsolete.  When
  67   67   * an entry becomes completely obsolete, we can remove it, thus reducing
  68   68   * the memory used by the mapping.  The complete picture of obsolescence
  69   69   * is given by the following data structures, described below:
  70   70   *  - the entry-specific obsolete count
  71   71   *  - the vdev-specific obsolete spacemap
  72   72   *  - the pool-specific obsolete bpobj
  73   73   *
  74   74   * == On disk data structures used ==
  75   75   *
  76   76   * We track the obsolete space for the pool using several objects.  Each
  77   77   * of these objects is created on demand and freed when no longer
  78   78   * needed, and is assumed to be empty if it does not exist.
  79   79   * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
  80   80   *
  81   81   *  - Each vic_mapping_object (associated with an indirect vdev) can
  82   82   *    have a vimp_counts_object.  This is an array of uint32_t's
  83   83   *    with the same number of entries as the vic_mapping_object.  When
  84   84   *    the mapping is condensed, entries from the vic_obsolete_sm_object
  85   85   *    (see below) are folded into the counts.  Therefore, each
  86   86   *    obsolete_counts entry tells us the number of bytes in the
  87   87   *    corresponding mapping entry that were not referenced when the
  88   88   *    mapping was last condensed.
  89   89   *
  90   90   *  - Each indirect or removing vdev can have a vic_obsolete_sm_object.
  91   91   *    This is a space map containing an alloc entry for every DVA that
  92   92   *    has been obsoleted since the last time this indirect vdev was
  93   93   *    condensed.  We use this object in order to improve performance
  94   94   *    when marking a DVA as obsolete.  Instead of modifying an arbitrary
  95   95   *    offset of the vimp_counts_object, we only need to append an entry
  96   96   *    to the end of this object.  When a DVA becomes obsolete, it is
  97   97   *    added to the obsolete space map.  This happens when the DVA is
  98   98   *    freed, remapped and not referenced by a snapshot, or the last
  99   99   *    snapshot referencing it is destroyed.
 100  100   *
 101  101   *  - Each dataset can have a ds_remap_deadlist object.  This is a
 102  102   *    deadlist object containing all blocks that were remapped in this
 103  103   *    dataset but referenced in a previous snapshot.  Blocks can *only*
 104  104   *    appear on this list if they were remapped (dsl_dataset_block_remapped);
 105  105   *    blocks that were killed in a head dataset are put on the normal
 106  106   *    ds_deadlist and marked obsolete when they are freed.
 107  107   *
 108  108   *  - The pool can have a dp_obsolete_bpobj.  This is a list of blocks
 109  109   *    in the pool that need to be marked obsolete.  When a snapshot is
 110  110   *    destroyed, we move some of the ds_remap_deadlist to the obsolete
 111  111   *    bpobj (see dsl_destroy_snapshot_handle_remaps()).  We then
 112  112   *    asynchronously process the obsolete bpobj, moving its entries to
 113  113   *    the specific vdevs' obsolete space maps.
 114  114   *
 115  115   * == Summary of how we mark blocks as obsolete ==
 116  116   *
 117  117   * - When freeing a block: if any DVA is on an indirect vdev, append to
 118  118   *   vic_obsolete_sm_object.
 119  119   * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
 120  120   *   references; otherwise append to vic_obsolete_sm_object).
 121  121   * - When freeing a snapshot: move parts of ds_remap_deadlist to
 122  122   *   dp_obsolete_bpobj (same algorithm as ds_deadlist).
 123  123   * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
 124  124   *   individual vdev's vic_obsolete_sm_object.
 125  125   */
 126  126  
 127  127  /*
 128  128   * "Big theory statement" for how we condense indirect vdevs.
 129  129   *
 130  130   * Condensing an indirect vdev's mapping is the process of determining
 131  131   * the precise counts of obsolete space for each mapping entry (by
 132  132   * integrating the obsolete spacemap into the obsolete counts) and
 133  133   * writing out a new mapping that contains only referenced entries.
 134  134   *
 135  135   * We condense a vdev when we expect the mapping to shrink (see
 136  136   * vdev_indirect_should_condense()), but only perform one condense at a
 137  137   * time to limit the memory usage.  In addition, we use a separate
 138  138   * open-context thread (spa_condense_indirect_thread) to incrementally
 139  139   * create the new mapping object in a way that minimizes the impact on
 140  140   * the rest of the system.
 141  141   *
 142  142   * == Generating a new mapping ==
 143  143   *
 144  144   * To generate a new mapping, we follow these steps:
 145  145   *
 146  146   * 1. Save the old obsolete space map and create a new mapping object
 147  147   *    (see spa_condense_indirect_start_sync()).  This initializes the
 148  148   *    spa_condensing_indirect_phys with the "previous obsolete space map",
 149  149   *    which is now read only.  Newly obsolete DVAs will be added to a
 150  150   *    new (initially empty) obsolete space map, and will not be
 151  151   *    considered as part of this condense operation.
 152  152   *
 153  153   * 2. Construct in memory the precise counts of obsolete space for each
 154  154   *    mapping entry, by incorporating the obsolete space map into the
 155  155   *    counts.  (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
 156  156   *
 157  157   * 3. Iterate through each mapping entry, writing to the new mapping any
 158  158   *    entries that are not completely obsolete (i.e. which don't have
 159  159   *    obsolete count == mapping length).  (See
 160  160   *    spa_condense_indirect_generate_new_mapping().)
 161  161   *
 162  162   * 4. Destroy the old mapping object and switch over to the new one
 163  163   *    (spa_condense_indirect_complete_sync).
 164  164   *
 165  165   * == Restarting from failure ==
 166  166   *
 167  167   * To restart the condense when we import/open the pool, we must start
 168  168   * at the 2nd step above: reconstruct the precise counts in memory,
 169  169   * based on the space map + counts.  Then in the 3rd step, we start
 170  170   * iterating where we left off: at vimp_max_offset of the new mapping
 171  171   * object.
 172  172   */
 173  173  
 174  174  boolean_t zfs_condense_indirect_vdevs_enable = B_TRUE;
 175  175  
 176  176  /*
 177  177   * Condense if at least this percent of the bytes in the mapping is
 178  178   * obsolete.  With the default of 25%, the amount of space mapped
 179  179   * will be reduced to 1% of its original size after at most 16
 180  180   * condenses.  Higher values will condense less often (causing less
 181  181   * i/o); lower values will reduce the mapping size more quickly.
 182  182   */
 183  183  int zfs_indirect_condense_obsolete_pct = 25;
 184  184  
 185  185  /*
 186  186   * Condense if the obsolete space map takes up more than this amount of
 187  187   * space on disk (logically).  This limits the amount of disk space
 188  188   * consumed by the obsolete space map; the default of 1GB is small enough
 189  189   * that we typically don't mind "wasting" it.
 190  190   */
 191  191  uint64_t zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;
 192  192  
 193  193  /*
 194  194   * Don't bother condensing if the mapping uses less than this amount of
 195  195   * memory.  The default of 128KB is considered a "trivial" amount of
 196  196   * memory and not worth reducing.
 197  197   */
 198  198  uint64_t zfs_condense_min_mapping_bytes = 128 * 1024;
 199  199  
 200  200  /*
 201  201   * This is used by the test suite so that it can ensure that certain
 202  202   * actions happen while in the middle of a condense (which might otherwise
 203  203   * complete too quickly).  If used to reduce the performance impact of
 204  204   * condensing in production, a maximum value of 1 should be sufficient.
 205  205   */
 206  206  int zfs_condense_indirect_commit_entry_delay_ticks = 0;
 207  207  
 208  208  /*
 209  209   * If an indirect split block contains more than this many possible unique
 210  210   * combinations when being reconstructed, consider it too computationally
 211  211   * expensive to check them all. Instead, try at most 100 randomly-selected
 212  212   * combinations each time the block is accessed.  This allows all segment
 213  213   * copies to participate fairly in the reconstruction when all combinations
 214  214   * cannot be checked and prevents repeated use of one bad copy.
 215  215   */
 216  216  int zfs_reconstruct_indirect_combinations_max = 256;
 217  217  
 218  218  
 219  219  /*
 220  220   * Enable to simulate damaged segments and validate reconstruction.
 221  221   * Used by ztest
 222  222   */
 223  223  unsigned long zfs_reconstruct_indirect_damage_fraction = 0;
 224  224  
 225  225  /*
 226  226   * The indirect_child_t represents the vdev that we will read from, when we
 227  227   * need to read all copies of the data (e.g. for scrub or reconstruction).
 228  228   * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
 229  229   * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
 230  230   * ic_vdev is a child of the mirror.
 231  231   */
 232  232  typedef struct indirect_child {
 233  233          abd_t *ic_data;
 234  234          vdev_t *ic_vdev;
 235  235  
 236  236          /*
 237  237           * ic_duplicate is NULL when the ic_data contents are unique, when it
 238  238           * is determined to be a duplicate it references the primary child.
 239  239           */
 240  240          struct indirect_child *ic_duplicate;
 241  241          list_node_t ic_node; /* node on is_unique_child */
 242  242  } indirect_child_t;
 243  243  
 244  244  /*
 245  245   * The indirect_split_t represents one mapped segment of an i/o to the
 246  246   * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
 247  247   * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
 248  248   * For split blocks, there will be several of these.
 249  249   */
 250  250  typedef struct indirect_split {
 251  251          list_node_t is_node; /* link on iv_splits */
 252  252  
 253  253          /*
 254  254           * is_split_offset is the offset into the i/o.
 255  255           * This is the sum of the previous splits' is_size's.
 256  256           */
 257  257          uint64_t is_split_offset;
 258  258  
 259  259          vdev_t *is_vdev; /* top-level vdev */
 260  260          uint64_t is_target_offset; /* offset on is_vdev */
 261  261          uint64_t is_size;
 262  262          int is_children; /* number of entries in is_child[] */
 263  263          int is_unique_children; /* number of entries in is_unique_child */
 264  264          list_t is_unique_child;
 265  265  
 266  266          /*
 267  267           * is_good_child is the child that we are currently using to
 268  268           * attempt reconstruction.
 269  269           */
 270  270          indirect_child_t *is_good_child;
 271  271  
 272  272          indirect_child_t is_child[1]; /* variable-length */
 273  273  } indirect_split_t;
 274  274  
 275  275  /*
 276  276   * The indirect_vsd_t is associated with each i/o to the indirect vdev.
 277  277   * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
 278  278   */
 279  279  typedef struct indirect_vsd {
 280  280          boolean_t iv_split_block;
 281  281          boolean_t iv_reconstruct;
 282  282          uint64_t iv_unique_combinations;
 283  283          uint64_t iv_attempts;
 284  284          uint64_t iv_attempts_max;
 285  285  
 286  286          list_t iv_splits; /* list of indirect_split_t's */
 287  287  } indirect_vsd_t;
 288  288  
 289  289  static void
 290  290  vdev_indirect_map_free(zio_t *zio)
 291  291  {
 292  292          indirect_vsd_t *iv = zio->io_vsd;
 293  293  
 294  294          indirect_split_t *is;
 295  295          while ((is = list_head(&iv->iv_splits)) != NULL) {
 296  296                  for (int c = 0; c < is->is_children; c++) {
 297  297                          indirect_child_t *ic = &is->is_child[c];
 298  298                          if (ic->ic_data != NULL)
 299  299                                  abd_free(ic->ic_data);
 300  300                  }
 301  301                  list_remove(&iv->iv_splits, is);
 302  302  
 303  303                  indirect_child_t *ic;
 304  304                  while ((ic = list_head(&is->is_unique_child)) != NULL)
 305  305                          list_remove(&is->is_unique_child, ic);
 306  306  
 307  307                  list_destroy(&is->is_unique_child);
 308  308  
 309  309                  kmem_free(is,
 310  310                      offsetof(indirect_split_t, is_child[is->is_children]));
 311  311          }
 312  312          kmem_free(iv, sizeof (*iv));
 313  313  }
 314  314  
 315  315  static const zio_vsd_ops_t vdev_indirect_vsd_ops = {
 316  316          vdev_indirect_map_free,
 317  317          zio_vsd_default_cksum_report
 318  318  };
 319  319  /*
 320  320   * Mark the given offset and size as being obsolete.
 321  321   */
 322  322  void
 323  323  vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size)
 324  324  {
 325  325          spa_t *spa = vd->vdev_spa;
 326  326  
 327  327          ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
 328  328          ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
 329  329          ASSERT(size > 0);
 330  330          VERIFY(vdev_indirect_mapping_entry_for_offset(
 331  331              vd->vdev_indirect_mapping, offset) != NULL);
 332  332  
 333  333          if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
 334  334                  mutex_enter(&vd->vdev_obsolete_lock);
 335  335                  range_tree_add(vd->vdev_obsolete_segments, offset, size);
 336  336                  mutex_exit(&vd->vdev_obsolete_lock);
 337  337                  vdev_dirty(vd, 0, NULL, spa_syncing_txg(spa));
 338  338          }
 339  339  }
 340  340  
 341  341  /*
 342  342   * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
 343  343   * wrapper is provided because the DMU does not know about vdev_t's and
 344  344   * cannot directly call vdev_indirect_mark_obsolete.
 345  345   */
 346  346  void
 347  347  spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
 348  348      uint64_t size, dmu_tx_t *tx)
 349  349  {
 350  350          vdev_t *vd = vdev_lookup_top(spa, vdev_id);
 351  351          ASSERT(dmu_tx_is_syncing(tx));
 352  352  
 353  353          /* The DMU can only remap indirect vdevs. */
 354  354          ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
 355  355          vdev_indirect_mark_obsolete(vd, offset, size);
 356  356  }
 357  357  
 358  358  static spa_condensing_indirect_t *
 359  359  spa_condensing_indirect_create(spa_t *spa)
 360  360  {
 361  361          spa_condensing_indirect_phys_t *scip =
 362  362              &spa->spa_condensing_indirect_phys;
 363  363          spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
 364  364          objset_t *mos = spa->spa_meta_objset;
 365  365  
 366  366          for (int i = 0; i < TXG_SIZE; i++) {
 367  367                  list_create(&sci->sci_new_mapping_entries[i],
 368  368                      sizeof (vdev_indirect_mapping_entry_t),
 369  369                      offsetof(vdev_indirect_mapping_entry_t, vime_node));
 370  370          }
 371  371  
 372  372          sci->sci_new_mapping =
 373  373              vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);
 374  374  
 375  375          return (sci);
 376  376  }
 377  377  
 378  378  static void
 379  379  spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
 380  380  {
 381  381          for (int i = 0; i < TXG_SIZE; i++)
 382  382                  list_destroy(&sci->sci_new_mapping_entries[i]);
 383  383  
 384  384          if (sci->sci_new_mapping != NULL)
 385  385                  vdev_indirect_mapping_close(sci->sci_new_mapping);
 386  386  
 387  387          kmem_free(sci, sizeof (*sci));
 388  388  }
 389  389  
 390  390  boolean_t
 391  391  vdev_indirect_should_condense(vdev_t *vd)
 392  392  {
 393  393          vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
 394  394          spa_t *spa = vd->vdev_spa;
 395  395  
 396  396          ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));
 397  397  
 398  398          if (!zfs_condense_indirect_vdevs_enable)
 399  399                  return (B_FALSE);
 400  400  
 401  401          /*
 402  402           * We can only condense one indirect vdev at a time.
 403  403           */
 404  404          if (spa->spa_condensing_indirect != NULL)
 405  405                  return (B_FALSE);
 406  406  
 407  407          if (spa_shutting_down(spa))
 408  408                  return (B_FALSE);
 409  409  
 410  410          /*
 411  411           * The mapping object size must not change while we are
 412  412           * condensing, so we can only condense indirect vdevs
 413  413           * (not vdevs that are still in the middle of being removed).
 414  414           */
 415  415          if (vd->vdev_ops != &vdev_indirect_ops)
 416  416                  return (B_FALSE);
 417  417  
 418  418          /*
 419  419           * If nothing new has been marked obsolete, there is no
 420  420           * point in condensing.
 421  421           */
 422  422          if (vd->vdev_obsolete_sm == NULL) {
 423  423                  ASSERT0(vdev_obsolete_sm_object(vd));
 424  424                  return (B_FALSE);
 425  425          }
 426  426  
 427  427          ASSERT(vd->vdev_obsolete_sm != NULL);
 428  428  
 429  429          ASSERT3U(vdev_obsolete_sm_object(vd), ==,
 430  430              space_map_object(vd->vdev_obsolete_sm));
 431  431  
 432  432          uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
 433  433          uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
 434  434          uint64_t mapping_size = vdev_indirect_mapping_size(vim);
 435  435          uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);
 436  436  
 437  437          ASSERT3U(bytes_obsolete, <=, bytes_mapped);
 438  438  
 439  439          /*
 440  440           * If a high percentage of the bytes that are mapped have become
 441  441           * obsolete, condense (unless the mapping is already small enough).
 442  442           * This has a good chance of reducing the amount of memory used
 443  443           * by the mapping.
 444  444           */
 445  445          if (bytes_obsolete * 100 / bytes_mapped >=
 446  446              zfs_indirect_condense_obsolete_pct &&
 447  447              mapping_size > zfs_condense_min_mapping_bytes) {
 448  448                  zfs_dbgmsg("should condense vdev %llu because obsolete "
 449  449                      "spacemap covers %d%% of %lluMB mapping",
 450  450                      (u_longlong_t)vd->vdev_id,
 451  451                      (int)(bytes_obsolete * 100 / bytes_mapped),
 452  452                      (u_longlong_t)bytes_mapped / 1024 / 1024);
 453  453                  return (B_TRUE);
 454  454          }
 455  455  
 456  456          /*
 457  457           * If the obsolete space map takes up too much space on disk,
 458  458           * condense in order to free up this disk space.
 459  459           */
 460  460          if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
 461  461                  zfs_dbgmsg("should condense vdev %llu because obsolete sm "
 462  462                      "length %lluMB >= max size %lluMB",
 463  463                      (u_longlong_t)vd->vdev_id,
 464  464                      (u_longlong_t)obsolete_sm_size / 1024 / 1024,
 465  465                      (u_longlong_t)zfs_condense_max_obsolete_bytes /
 466  466                      1024 / 1024);
 467  467                  return (B_TRUE);
 468  468          }
 469  469  
 470  470          return (B_FALSE);
 471  471  }
 472  472  
 473  473  /*
 474  474   * This sync task completes (finishes) a condense, deleting the old
 475  475   * mapping and replacing it with the new one.
 476  476   */
 477  477  static void
 478  478  spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
 479  479  {
 480  480          spa_condensing_indirect_t *sci = arg;
 481  481          spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 482  482          spa_condensing_indirect_phys_t *scip =
 483  483              &spa->spa_condensing_indirect_phys;
 484  484          vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
 485  485          vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
 486  486          objset_t *mos = spa->spa_meta_objset;
 487  487          vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
 488  488          uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
 489  489          uint64_t new_count =
 490  490              vdev_indirect_mapping_num_entries(sci->sci_new_mapping);
 491  491  
 492  492          ASSERT(dmu_tx_is_syncing(tx));
 493  493          ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
 494  494          ASSERT3P(sci, ==, spa->spa_condensing_indirect);
 495  495          for (int i = 0; i < TXG_SIZE; i++) {
 496  496                  ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
 497  497          }
 498  498          ASSERT(vic->vic_mapping_object != 0);
 499  499          ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
 500  500          ASSERT(scip->scip_next_mapping_object != 0);
 501  501          ASSERT(scip->scip_prev_obsolete_sm_object != 0);
 502  502  
 503  503          /*
 504  504           * Reset vdev_indirect_mapping to refer to the new object.
 505  505           */
 506  506          rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
 507  507          vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
 508  508          vd->vdev_indirect_mapping = sci->sci_new_mapping;
 509  509          rw_exit(&vd->vdev_indirect_rwlock);
 510  510  
 511  511          sci->sci_new_mapping = NULL;
 512  512          vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
 513  513          vic->vic_mapping_object = scip->scip_next_mapping_object;
 514  514          scip->scip_next_mapping_object = 0;
 515  515  
 516  516          space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
 517  517          spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
 518  518          scip->scip_prev_obsolete_sm_object = 0;
 519  519  
 520  520          scip->scip_vdev = 0;
 521  521  
 522  522          VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
 523  523              DMU_POOL_CONDENSING_INDIRECT, tx));
 524  524          spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
 525  525          spa->spa_condensing_indirect = NULL;
 526  526  
 527  527          zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
 528  528              "new mapping object %llu has %llu entries "
 529  529              "(was %llu entries)",
 530  530              vd->vdev_id, dmu_tx_get_txg(tx), vic->vic_mapping_object,
 531  531              new_count, old_count);
 532  532  
 533  533          vdev_config_dirty(spa->spa_root_vdev);
 534  534  }
 535  535  
 536  536  /*
 537  537   * This sync task appends entries to the new mapping object.
 538  538   */
 539  539  static void
 540  540  spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
 541  541  {
 542  542          spa_condensing_indirect_t *sci = arg;
 543  543          uint64_t txg = dmu_tx_get_txg(tx);
 544  544          spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 545  545  
 546  546          ASSERT(dmu_tx_is_syncing(tx));
 547  547          ASSERT3P(sci, ==, spa->spa_condensing_indirect);
 548  548  
 549  549          vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
 550  550              &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
 551  551          ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
 552  552  }
 553  553  
 554  554  /*
 555  555   * Open-context function to add one entry to the new mapping.  The new
 556  556   * entry will be remembered and written from syncing context.
 557  557   */
 558  558  static void
 559  559  spa_condense_indirect_commit_entry(spa_t *spa,
 560  560      vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
 561  561  {
 562  562          spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
 563  563  
 564  564          ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));
 565  565  
 566  566          dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
 567  567          dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
 568  568          VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
 569  569          int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
 570  570  
 571  571          /*
 572  572           * If we are the first entry committed this txg, kick off the sync
 573  573           * task to write to the MOS on our behalf.
 574  574           */
 575  575          if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
 576  576                  dsl_sync_task_nowait(dmu_tx_pool(tx),
 577  577                      spa_condense_indirect_commit_sync, sci,
 578  578                      0, ZFS_SPACE_CHECK_NONE, tx);
 579  579          }
 580  580  
 581  581          vdev_indirect_mapping_entry_t *vime =
 582  582              kmem_alloc(sizeof (*vime), KM_SLEEP);
 583  583          vime->vime_mapping = *vimep;
 584  584          vime->vime_obsolete_count = count;
 585  585          list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);
 586  586  
 587  587          dmu_tx_commit(tx);
 588  588  }
 589  589  
 590  590  static void
 591  591  spa_condense_indirect_generate_new_mapping(vdev_t *vd,
 592  592      uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr)
 593  593  {
 594  594          spa_t *spa = vd->vdev_spa;
 595  595          uint64_t mapi = start_index;
 596  596          vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
 597  597          uint64_t old_num_entries =
 598  598              vdev_indirect_mapping_num_entries(old_mapping);
 599  599  
 600  600          ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
 601  601          ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);
 602  602  
 603  603          zfs_dbgmsg("starting condense of vdev %llu from index %llu",
 604  604              (u_longlong_t)vd->vdev_id,
 605  605              (u_longlong_t)mapi);
 606  606  
 607  607          while (mapi < old_num_entries) {
 608  608  
 609  609                  if (zthr_iscancelled(zthr)) {
 610  610                          zfs_dbgmsg("pausing condense of vdev %llu "
 611  611                              "at index %llu", (u_longlong_t)vd->vdev_id,
 612  612                              (u_longlong_t)mapi);
 613  613                          break;
 614  614                  }
 615  615  
 616  616                  vdev_indirect_mapping_entry_phys_t *entry =
 617  617                      &old_mapping->vim_entries[mapi];
 618  618                  uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
 619  619                  ASSERT3U(obsolete_counts[mapi], <=, entry_size);
 620  620                  if (obsolete_counts[mapi] < entry_size) {
 621  621                          spa_condense_indirect_commit_entry(spa, entry,
 622  622                              obsolete_counts[mapi]);
 623  623  
 624  624                          /*
 625  625                           * This delay may be requested for testing, debugging,
 626  626                           * or performance reasons.
 627  627                           */
 628  628                          delay(zfs_condense_indirect_commit_entry_delay_ticks);
 629  629                  }
 630  630  
 631  631                  mapi++;
 632  632          }
 633  633  }
 634  634  
 635  635  /* ARGSUSED */
 636  636  static boolean_t
 637  637  spa_condense_indirect_thread_check(void *arg, zthr_t *zthr)
 638  638  {
 639  639          spa_t *spa = arg;
 640  640  
 641  641          return (spa->spa_condensing_indirect != NULL);
 642  642  }
 643  643  
 644  644  /* ARGSUSED */
 645  645  static int
 646  646  spa_condense_indirect_thread(void *arg, zthr_t *zthr)
 647  647  {
 648  648          spa_t *spa = arg;
 649  649          vdev_t *vd;
 650  650  
 651  651          ASSERT3P(spa->spa_condensing_indirect, !=, NULL);
 652  652          spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 653  653          vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev);
 654  654          ASSERT3P(vd, !=, NULL);
 655  655          spa_config_exit(spa, SCL_VDEV, FTAG);
 656  656  
 657  657          spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
 658  658          spa_condensing_indirect_phys_t *scip =
 659  659              &spa->spa_condensing_indirect_phys;
 660  660          uint32_t *counts;
 661  661          uint64_t start_index;
 662  662          vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
 663  663          space_map_t *prev_obsolete_sm = NULL;
 664  664  
 665  665          ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
 666  666          ASSERT(scip->scip_next_mapping_object != 0);
 667  667          ASSERT(scip->scip_prev_obsolete_sm_object != 0);
 668  668          ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
 669  669  
 670  670          for (int i = 0; i < TXG_SIZE; i++) {
 671  671                  /*
 672  672                   * The list must start out empty in order for the
  
    | 
      ↓ open down ↓ | 
    672 lines elided | 
    
      ↑ open up ↑ | 
  
 673  673                   * _commit_sync() sync task to be properly registered
 674  674                   * on the first call to _commit_entry(); so it's wise
 675  675                   * to double check and ensure we actually are starting
 676  676                   * with empty lists.
 677  677                   */
 678  678                  ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
 679  679          }
 680  680  
 681  681          VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
 682  682              scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
 683      -        space_map_update(prev_obsolete_sm);
 684  683          counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
 685  684          if (prev_obsolete_sm != NULL) {
 686  685                  vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
 687  686                      counts, prev_obsolete_sm);
 688  687          }
 689  688          space_map_close(prev_obsolete_sm);
 690  689  
 691  690          /*
 692  691           * Generate new mapping.  Determine what index to continue from
 693  692           * based on the max offset that we've already written in the
 694  693           * new mapping.
 695  694           */
 696  695          uint64_t max_offset =
 697  696              vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
 698  697          if (max_offset == 0) {
 699  698                  /* We haven't written anything to the new mapping yet. */
 700  699                  start_index = 0;
 701  700          } else {
 702  701                  /*
 703  702                   * Pick up from where we left off. _entry_for_offset()
 704  703                   * returns a pointer into the vim_entries array. If
 705  704                   * max_offset is greater than any of the mappings
 706  705                   * contained in the table  NULL will be returned and
 707  706                   * that indicates we've exhausted our iteration of the
 708  707                   * old_mapping.
 709  708                   */
 710  709  
 711  710                  vdev_indirect_mapping_entry_phys_t *entry =
 712  711                      vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
 713  712                      max_offset);
 714  713  
 715  714                  if (entry == NULL) {
 716  715                          /*
 717  716                           * We've already written the whole new mapping.
 718  717                           * This special value will cause us to skip the
 719  718                           * generate_new_mapping step and just do the sync
 720  719                           * task to complete the condense.
 721  720                           */
 722  721                          start_index = UINT64_MAX;
 723  722                  } else {
 724  723                          start_index = entry - old_mapping->vim_entries;
 725  724                          ASSERT3U(start_index, <,
 726  725                              vdev_indirect_mapping_num_entries(old_mapping));
 727  726                  }
 728  727          }
 729  728  
 730  729          spa_condense_indirect_generate_new_mapping(vd, counts,
 731  730              start_index, zthr);
 732  731  
 733  732          vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);
 734  733  
 735  734          /*
 736  735           * If the zthr has received a cancellation signal while running
 737  736           * in generate_new_mapping() or at any point after that, then bail
 738  737           * early. We don't want to complete the condense if the spa is
 739  738           * shutting down.
 740  739           */
 741  740          if (zthr_iscancelled(zthr))
 742  741                  return (0);
 743  742  
 744  743          VERIFY0(dsl_sync_task(spa_name(spa), NULL,
 745  744              spa_condense_indirect_complete_sync, sci, 0,
 746  745              ZFS_SPACE_CHECK_EXTRA_RESERVED));
 747  746  
 748  747          return (0);
 749  748  }
 750  749  
 751  750  /*
 752  751   * Sync task to begin the condensing process.
 753  752   */
 754  753  void
 755  754  spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
 756  755  {
 757  756          spa_t *spa = vd->vdev_spa;
 758  757          spa_condensing_indirect_phys_t *scip =
 759  758              &spa->spa_condensing_indirect_phys;
 760  759  
 761  760          ASSERT0(scip->scip_next_mapping_object);
 762  761          ASSERT0(scip->scip_prev_obsolete_sm_object);
 763  762          ASSERT0(scip->scip_vdev);
 764  763          ASSERT(dmu_tx_is_syncing(tx));
 765  764          ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
 766  765          ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
 767  766          ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));
 768  767  
 769  768          uint64_t obsolete_sm_obj = vdev_obsolete_sm_object(vd);
 770  769          ASSERT(obsolete_sm_obj != 0);
 771  770  
 772  771          scip->scip_vdev = vd->vdev_id;
 773  772          scip->scip_next_mapping_object =
 774  773              vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);
 775  774  
 776  775          scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;
 777  776  
 778  777          /*
 779  778           * We don't need to allocate a new space map object, since
 780  779           * vdev_indirect_sync_obsolete will allocate one when needed.
 781  780           */
 782  781          space_map_close(vd->vdev_obsolete_sm);
 783  782          vd->vdev_obsolete_sm = NULL;
 784  783          VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
 785  784              VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
 786  785  
 787  786          VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
 788  787              DMU_POOL_DIRECTORY_OBJECT,
 789  788              DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
 790  789              sizeof (*scip) / sizeof (uint64_t), scip, tx));
 791  790  
 792  791          ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
 793  792          spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);
 794  793  
 795  794          zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
 796  795              "posm=%llu nm=%llu",
 797  796              vd->vdev_id, dmu_tx_get_txg(tx),
 798  797              (u_longlong_t)scip->scip_prev_obsolete_sm_object,
 799  798              (u_longlong_t)scip->scip_next_mapping_object);
 800  799  
 801  800          zthr_wakeup(spa->spa_condense_zthr);
 802  801  }
 803  802  
 804  803  /*
 805  804   * Sync to the given vdev's obsolete space map any segments that are no longer
 806  805   * referenced as of the given txg.
 807  806   *
 808  807   * If the obsolete space map doesn't exist yet, create and open it.
 809  808   */
 810  809  void
 811  810  vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
 812  811  {
 813  812          spa_t *spa = vd->vdev_spa;
 814  813          vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
 815  814  
 816  815          ASSERT3U(vic->vic_mapping_object, !=, 0);
 817  816          ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
 818  817          ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
 819  818          ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));
 820  819  
 821  820          if (vdev_obsolete_sm_object(vd) == 0) {
 822  821                  uint64_t obsolete_sm_object =
 823  822                      space_map_alloc(spa->spa_meta_objset,
 824  823                      vdev_standard_sm_blksz, tx);
 825  824  
  
    | 
      ↓ open down ↓ | 
    132 lines elided | 
    
      ↑ open up ↑ | 
  
 826  825                  ASSERT(vd->vdev_top_zap != 0);
 827  826                  VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
 828  827                      VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
 829  828                      sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
 830  829                  ASSERT3U(vdev_obsolete_sm_object(vd), !=, 0);
 831  830  
 832  831                  spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
 833  832                  VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
 834  833                      spa->spa_meta_objset, obsolete_sm_object,
 835  834                      0, vd->vdev_asize, 0));
 836      -                space_map_update(vd->vdev_obsolete_sm);
 837  835          }
 838  836  
 839  837          ASSERT(vd->vdev_obsolete_sm != NULL);
 840  838          ASSERT3U(vdev_obsolete_sm_object(vd), ==,
 841  839              space_map_object(vd->vdev_obsolete_sm));
 842  840  
 843  841          space_map_write(vd->vdev_obsolete_sm,
 844  842              vd->vdev_obsolete_segments, SM_ALLOC, SM_NO_VDEVID, tx);
 845      -        space_map_update(vd->vdev_obsolete_sm);
 846  843          range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
 847  844  }
 848  845  
 849  846  int
 850  847  spa_condense_init(spa_t *spa)
 851  848  {
 852  849          int error = zap_lookup(spa->spa_meta_objset,
 853  850              DMU_POOL_DIRECTORY_OBJECT,
 854  851              DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
 855  852              sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
 856  853              &spa->spa_condensing_indirect_phys);
 857  854          if (error == 0) {
 858  855                  if (spa_writeable(spa)) {
 859  856                          spa->spa_condensing_indirect =
 860  857                              spa_condensing_indirect_create(spa);
 861  858                  }
 862  859                  return (0);
 863  860          } else if (error == ENOENT) {
 864  861                  return (0);
 865  862          } else {
 866  863                  return (error);
 867  864          }
 868  865  }
 869  866  
 870  867  void
 871  868  spa_condense_fini(spa_t *spa)
 872  869  {
 873  870          if (spa->spa_condensing_indirect != NULL) {
 874  871                  spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
 875  872                  spa->spa_condensing_indirect = NULL;
 876  873          }
 877  874  }
 878  875  
 879  876  void
 880  877  spa_start_indirect_condensing_thread(spa_t *spa)
 881  878  {
 882  879          ASSERT3P(spa->spa_condense_zthr, ==, NULL);
 883  880          spa->spa_condense_zthr = zthr_create(spa_condense_indirect_thread_check,
 884  881              spa_condense_indirect_thread, spa);
 885  882  }
 886  883  
 887  884  /*
 888  885   * Gets the obsolete spacemap object from the vdev's ZAP.
 889  886   * Returns the spacemap object, or 0 if it wasn't in the ZAP or the ZAP doesn't
 890  887   * exist yet.
 891  888   */
 892  889  int
 893  890  vdev_obsolete_sm_object(vdev_t *vd)
 894  891  {
 895  892          ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
 896  893          if (vd->vdev_top_zap == 0) {
 897  894                  return (0);
 898  895          }
 899  896  
 900  897          uint64_t sm_obj = 0;
 901  898          int err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
 902  899              VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (sm_obj), 1, &sm_obj);
 903  900  
 904  901          ASSERT(err == 0 || err == ENOENT);
 905  902  
 906  903          return (sm_obj);
 907  904  }
 908  905  
 909  906  boolean_t
 910  907  vdev_obsolete_counts_are_precise(vdev_t *vd)
 911  908  {
 912  909          ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
 913  910          if (vd->vdev_top_zap == 0) {
 914  911                  return (B_FALSE);
 915  912          }
 916  913  
 917  914          uint64_t val = 0;
 918  915          int err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
 919  916              VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
 920  917  
 921  918          ASSERT(err == 0 || err == ENOENT);
 922  919  
 923  920          return (val != 0);
 924  921  }
 925  922  
 926  923  /* ARGSUSED */
 927  924  static void
 928  925  vdev_indirect_close(vdev_t *vd)
 929  926  {
 930  927  }
 931  928  
 932  929  /* ARGSUSED */
 933  930  static int
 934  931  vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
 935  932      uint64_t *ashift)
 936  933  {
 937  934          *psize = *max_psize = vd->vdev_asize +
 938  935              VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
 939  936          *ashift = vd->vdev_ashift;
 940  937          return (0);
 941  938  }
 942  939  
 943  940  typedef struct remap_segment {
 944  941          vdev_t *rs_vd;
 945  942          uint64_t rs_offset;
 946  943          uint64_t rs_asize;
 947  944          uint64_t rs_split_offset;
 948  945          list_node_t rs_node;
 949  946  } remap_segment_t;
 950  947  
 951  948  remap_segment_t *
 952  949  rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
 953  950  {
 954  951          remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
 955  952          rs->rs_vd = vd;
 956  953          rs->rs_offset = offset;
 957  954          rs->rs_asize = asize;
 958  955          rs->rs_split_offset = split_offset;
 959  956          return (rs);
 960  957  }
 961  958  
 962  959  /*
 963  960   * Given an indirect vdev and an extent on that vdev, it duplicates the
 964  961   * physical entries of the indirect mapping that correspond to the extent
 965  962   * to a new array and returns a pointer to it. In addition, copied_entries
 966  963   * is populated with the number of mapping entries that were duplicated.
 967  964   *
 968  965   * Note that the function assumes that the caller holds vdev_indirect_rwlock.
 969  966   * This ensures that the mapping won't change due to condensing as we
 970  967   * copy over its contents.
 971  968   *
 972  969   * Finally, since we are doing an allocation, it is up to the caller to
 973  970   * free the array allocated in this function.
 974  971   */
 975  972  vdev_indirect_mapping_entry_phys_t *
 976  973  vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
 977  974      uint64_t asize, uint64_t *copied_entries)
 978  975  {
 979  976          vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
 980  977          vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
 981  978          uint64_t entries = 0;
 982  979  
 983  980          ASSERT(RW_READ_HELD(&vd->vdev_indirect_rwlock));
 984  981  
 985  982          vdev_indirect_mapping_entry_phys_t *first_mapping =
 986  983              vdev_indirect_mapping_entry_for_offset(vim, offset);
 987  984          ASSERT3P(first_mapping, !=, NULL);
 988  985  
 989  986          vdev_indirect_mapping_entry_phys_t *m = first_mapping;
 990  987          while (asize > 0) {
 991  988                  uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
 992  989  
 993  990                  ASSERT3U(offset, >=, DVA_MAPPING_GET_SRC_OFFSET(m));
 994  991                  ASSERT3U(offset, <, DVA_MAPPING_GET_SRC_OFFSET(m) + size);
 995  992  
 996  993                  uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
 997  994                  uint64_t inner_size = MIN(asize, size - inner_offset);
 998  995  
 999  996                  offset += inner_size;
1000  997                  asize -= inner_size;
1001  998                  entries++;
1002  999                  m++;
1003 1000          }
1004 1001  
1005 1002          size_t copy_length = entries * sizeof (*first_mapping);
1006 1003          duplicate_mappings = kmem_alloc(copy_length, KM_SLEEP);
1007 1004          bcopy(first_mapping, duplicate_mappings, copy_length);
1008 1005          *copied_entries = entries;
1009 1006  
1010 1007          return (duplicate_mappings);
1011 1008  }
1012 1009  
1013 1010  /*
1014 1011   * Goes through the relevant indirect mappings until it hits a concrete vdev
1015 1012   * and issues the callback. On the way to the concrete vdev, if any other
1016 1013   * indirect vdevs are encountered, then the callback will also be called on
1017 1014   * each of those indirect vdevs. For example, if the segment is mapped to
1018 1015   * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
1019 1016   * mapped to segment B on concrete vdev 2, then the callback will be called on
1020 1017   * both vdev 1 and vdev 2.
1021 1018   *
1022 1019   * While the callback passed to vdev_indirect_remap() is called on every vdev
1023 1020   * the function encounters, certain callbacks only care about concrete vdevs.
1024 1021   * These types of callbacks should return immediately and explicitly when they
1025 1022   * are called on an indirect vdev.
1026 1023   *
1027 1024   * Because there is a possibility that a DVA section in the indirect device
1028 1025   * has been split into multiple sections in our mapping, we keep track
1029 1026   * of the relevant contiguous segments of the new location (remap_segment_t)
1030 1027   * in a stack. This way we can call the callback for each of the new sections
1031 1028   * created by a single section of the indirect device. Note though, that in
1032 1029   * this scenario the callbacks in each split block won't occur in-order in
1033 1030   * terms of offset, so callers should not make any assumptions about that.
1034 1031   *
1035 1032   * For callbacks that don't handle split blocks and immediately return when
1036 1033   * they encounter them (as is the case for remap_blkptr_cb), the caller can
1037 1034   * assume that its callback will be applied from the first indirect vdev
1038 1035   * encountered to the last one and then the concrete vdev, in that order.
1039 1036   */
1040 1037  static void
1041 1038  vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
1042 1039      void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
1043 1040  {
1044 1041          list_t stack;
1045 1042          spa_t *spa = vd->vdev_spa;
1046 1043  
1047 1044          list_create(&stack, sizeof (remap_segment_t),
1048 1045              offsetof(remap_segment_t, rs_node));
1049 1046  
1050 1047          for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
1051 1048              rs != NULL; rs = list_remove_head(&stack)) {
1052 1049                  vdev_t *v = rs->rs_vd;
1053 1050                  uint64_t num_entries = 0;
1054 1051  
1055 1052                  ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1056 1053                  ASSERT(rs->rs_asize > 0);
1057 1054  
1058 1055                  /*
1059 1056                   * Note: As this function can be called from open context
1060 1057                   * (e.g. zio_read()), we need the following rwlock to
1061 1058                   * prevent the mapping from being changed by condensing.
1062 1059                   *
1063 1060                   * So we grab the lock and we make a copy of the entries
1064 1061                   * that are relevant to the extent that we are working on.
1065 1062                   * Once that is done, we drop the lock and iterate over
1066 1063                   * our copy of the mapping. Once we are done with the with
1067 1064                   * the remap segment and we free it, we also free our copy
1068 1065                   * of the indirect mapping entries that are relevant to it.
1069 1066                   *
1070 1067                   * This way we don't need to wait until the function is
1071 1068                   * finished with a segment, to condense it. In addition, we
1072 1069                   * don't need a recursive rwlock for the case that a call to
1073 1070                   * vdev_indirect_remap() needs to call itself (through the
1074 1071                   * codepath of its callback) for the same vdev in the middle
1075 1072                   * of its execution.
1076 1073                   */
1077 1074                  rw_enter(&v->vdev_indirect_rwlock, RW_READER);
1078 1075                  vdev_indirect_mapping_t *vim = v->vdev_indirect_mapping;
1079 1076                  ASSERT3P(vim, !=, NULL);
1080 1077  
1081 1078                  vdev_indirect_mapping_entry_phys_t *mapping =
1082 1079                      vdev_indirect_mapping_duplicate_adjacent_entries(v,
1083 1080                      rs->rs_offset, rs->rs_asize, &num_entries);
1084 1081                  ASSERT3P(mapping, !=, NULL);
1085 1082                  ASSERT3U(num_entries, >, 0);
1086 1083                  rw_exit(&v->vdev_indirect_rwlock);
1087 1084  
1088 1085                  for (uint64_t i = 0; i < num_entries; i++) {
1089 1086                          /*
1090 1087                           * Note: the vdev_indirect_mapping can not change
1091 1088                           * while we are running.  It only changes while the
1092 1089                           * removal is in progress, and then only from syncing
1093 1090                           * context. While a removal is in progress, this
1094 1091                           * function is only called for frees, which also only
1095 1092                           * happen from syncing context.
1096 1093                           */
1097 1094                          vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
1098 1095  
1099 1096                          ASSERT3P(m, !=, NULL);
1100 1097                          ASSERT3U(rs->rs_asize, >, 0);
1101 1098  
1102 1099                          uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1103 1100                          uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
1104 1101                          uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
1105 1102  
1106 1103                          ASSERT3U(rs->rs_offset, >=,
1107 1104                              DVA_MAPPING_GET_SRC_OFFSET(m));
1108 1105                          ASSERT3U(rs->rs_offset, <,
1109 1106                              DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1110 1107                          ASSERT3U(dst_vdev, !=, v->vdev_id);
1111 1108  
1112 1109                          uint64_t inner_offset = rs->rs_offset -
1113 1110                              DVA_MAPPING_GET_SRC_OFFSET(m);
1114 1111                          uint64_t inner_size =
1115 1112                              MIN(rs->rs_asize, size - inner_offset);
1116 1113  
1117 1114                          vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
1118 1115                          ASSERT3P(dst_v, !=, NULL);
1119 1116  
1120 1117                          if (dst_v->vdev_ops == &vdev_indirect_ops) {
1121 1118                                  list_insert_head(&stack,
1122 1119                                      rs_alloc(dst_v, dst_offset + inner_offset,
1123 1120                                      inner_size, rs->rs_split_offset));
1124 1121  
1125 1122                          }
1126 1123  
1127 1124                          if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
1128 1125                              IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
1129 1126                                  /*
1130 1127                                   * Note: This clause exists only solely for
1131 1128                                   * testing purposes. We use it to ensure that
1132 1129                                   * split blocks work and that the callbacks
1133 1130                                   * using them yield the same result if issued
1134 1131                                   * in reverse order.
1135 1132                                   */
1136 1133                                  uint64_t inner_half = inner_size / 2;
1137 1134  
1138 1135                                  func(rs->rs_split_offset + inner_half, dst_v,
1139 1136                                      dst_offset + inner_offset + inner_half,
1140 1137                                      inner_half, arg);
1141 1138  
1142 1139                                  func(rs->rs_split_offset, dst_v,
1143 1140                                      dst_offset + inner_offset,
1144 1141                                      inner_half, arg);
1145 1142                          } else {
1146 1143                                  func(rs->rs_split_offset, dst_v,
1147 1144                                      dst_offset + inner_offset,
1148 1145                                      inner_size, arg);
1149 1146                          }
1150 1147  
1151 1148                          rs->rs_offset += inner_size;
1152 1149                          rs->rs_asize -= inner_size;
1153 1150                          rs->rs_split_offset += inner_size;
1154 1151                  }
1155 1152                  VERIFY0(rs->rs_asize);
1156 1153  
1157 1154                  kmem_free(mapping, num_entries * sizeof (*mapping));
1158 1155                  kmem_free(rs, sizeof (remap_segment_t));
1159 1156          }
1160 1157          list_destroy(&stack);
1161 1158  }
1162 1159  
1163 1160  static void
1164 1161  vdev_indirect_child_io_done(zio_t *zio)
1165 1162  {
1166 1163          zio_t *pio = zio->io_private;
1167 1164  
1168 1165          mutex_enter(&pio->io_lock);
1169 1166          pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
1170 1167          mutex_exit(&pio->io_lock);
1171 1168  
1172 1169          abd_put(zio->io_abd);
1173 1170  }
1174 1171  
1175 1172  /*
1176 1173   * This is a callback for vdev_indirect_remap() which allocates an
1177 1174   * indirect_split_t for each split segment and adds it to iv_splits.
1178 1175   */
1179 1176  static void
1180 1177  vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
1181 1178      uint64_t size, void *arg)
1182 1179  {
1183 1180          zio_t *zio = arg;
1184 1181          indirect_vsd_t *iv = zio->io_vsd;
1185 1182  
1186 1183          ASSERT3P(vd, !=, NULL);
1187 1184  
1188 1185          if (vd->vdev_ops == &vdev_indirect_ops)
1189 1186                  return;
1190 1187  
1191 1188          int n = 1;
1192 1189          if (vd->vdev_ops == &vdev_mirror_ops)
1193 1190                  n = vd->vdev_children;
1194 1191  
1195 1192          indirect_split_t *is =
1196 1193              kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP);
1197 1194  
1198 1195          is->is_children = n;
1199 1196          is->is_size = size;
1200 1197          is->is_split_offset = split_offset;
1201 1198          is->is_target_offset = offset;
1202 1199          is->is_vdev = vd;
1203 1200          list_create(&is->is_unique_child, sizeof (indirect_child_t),
1204 1201              offsetof(indirect_child_t, ic_node));
1205 1202  
1206 1203          /*
1207 1204           * Note that we only consider multiple copies of the data for
1208 1205           * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
1209 1206           * though they use the same ops as mirror, because there's only one
1210 1207           * "good" copy under the replacing/spare.
1211 1208           */
1212 1209          if (vd->vdev_ops == &vdev_mirror_ops) {
1213 1210                  for (int i = 0; i < n; i++) {
1214 1211                          is->is_child[i].ic_vdev = vd->vdev_child[i];
1215 1212                          list_link_init(&is->is_child[i].ic_node);
1216 1213                  }
1217 1214          } else {
1218 1215                  is->is_child[0].ic_vdev = vd;
1219 1216          }
1220 1217  
1221 1218          list_insert_tail(&iv->iv_splits, is);
1222 1219  }
1223 1220  
1224 1221  static void
1225 1222  vdev_indirect_read_split_done(zio_t *zio)
1226 1223  {
1227 1224          indirect_child_t *ic = zio->io_private;
1228 1225  
1229 1226          if (zio->io_error != 0) {
1230 1227                  /*
1231 1228                   * Clear ic_data to indicate that we do not have data for this
1232 1229                   * child.
1233 1230                   */
1234 1231                  abd_free(ic->ic_data);
1235 1232                  ic->ic_data = NULL;
1236 1233          }
1237 1234  }
1238 1235  
1239 1236  /*
1240 1237   * Issue reads for all copies (mirror children) of all splits.
1241 1238   */
1242 1239  static void
1243 1240  vdev_indirect_read_all(zio_t *zio)
1244 1241  {
1245 1242          indirect_vsd_t *iv = zio->io_vsd;
1246 1243  
1247 1244          for (indirect_split_t *is = list_head(&iv->iv_splits);
1248 1245              is != NULL; is = list_next(&iv->iv_splits, is)) {
1249 1246                  for (int i = 0; i < is->is_children; i++) {
1250 1247                          indirect_child_t *ic = &is->is_child[i];
1251 1248  
1252 1249                          if (!vdev_readable(ic->ic_vdev))
1253 1250                                  continue;
1254 1251  
1255 1252                          /*
1256 1253                           * Note, we may read from a child whose DTL
1257 1254                           * indicates that the data may not be present here.
1258 1255                           * While this might result in a few i/os that will
1259 1256                           * likely return incorrect data, it simplifies the
1260 1257                           * code since we can treat scrub and resilver
1261 1258                           * identically.  (The incorrect data will be
1262 1259                           * detected and ignored when we verify the
1263 1260                           * checksum.)
1264 1261                           */
1265 1262  
1266 1263                          ic->ic_data = abd_alloc_sametype(zio->io_abd,
1267 1264                              is->is_size);
1268 1265                          ic->ic_duplicate = NULL;
1269 1266  
1270 1267                          zio_nowait(zio_vdev_child_io(zio, NULL,
1271 1268                              ic->ic_vdev, is->is_target_offset, ic->ic_data,
1272 1269                              is->is_size, zio->io_type, zio->io_priority, 0,
1273 1270                              vdev_indirect_read_split_done, ic));
1274 1271                  }
1275 1272          }
1276 1273          iv->iv_reconstruct = B_TRUE;
1277 1274  }
1278 1275  
1279 1276  static void
1280 1277  vdev_indirect_io_start(zio_t *zio)
1281 1278  {
1282 1279          spa_t *spa = zio->io_spa;
1283 1280          indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP);
1284 1281          list_create(&iv->iv_splits,
1285 1282              sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
1286 1283  
1287 1284          zio->io_vsd = iv;
1288 1285          zio->io_vsd_ops = &vdev_indirect_vsd_ops;
1289 1286  
1290 1287          ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1291 1288          if (zio->io_type != ZIO_TYPE_READ) {
1292 1289                  ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
1293 1290                  /*
1294 1291                   * Note: this code can handle other kinds of writes,
1295 1292                   * but we don't expect them.
1296 1293                   */
1297 1294                  ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL |
1298 1295                      ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
1299 1296          }
1300 1297  
1301 1298          vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
1302 1299              vdev_indirect_gather_splits, zio);
1303 1300  
1304 1301          indirect_split_t *first = list_head(&iv->iv_splits);
1305 1302          if (first->is_size == zio->io_size) {
1306 1303                  /*
1307 1304                   * This is not a split block; we are pointing to the entire
1308 1305                   * data, which will checksum the same as the original data.
1309 1306                   * Pass the BP down so that the child i/o can verify the
1310 1307                   * checksum, and try a different location if available
1311 1308                   * (e.g. on a mirror).
1312 1309                   *
1313 1310                   * While this special case could be handled the same as the
1314 1311                   * general (split block) case, doing it this way ensures
1315 1312                   * that the vast majority of blocks on indirect vdevs
1316 1313                   * (which are not split) are handled identically to blocks
1317 1314                   * on non-indirect vdevs.  This allows us to be less strict
1318 1315                   * about performance in the general (but rare) case.
1319 1316                   */
1320 1317                  ASSERT0(first->is_split_offset);
1321 1318                  ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL);
1322 1319                  zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
1323 1320                      first->is_vdev, first->is_target_offset,
1324 1321                      abd_get_offset(zio->io_abd, 0),
1325 1322                      zio->io_size, zio->io_type, zio->io_priority, 0,
1326 1323                      vdev_indirect_child_io_done, zio));
1327 1324          } else {
1328 1325                  iv->iv_split_block = B_TRUE;
1329 1326                  if (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
1330 1327                          /*
1331 1328                           * Read all copies.  Note that for simplicity,
1332 1329                           * we don't bother consulting the DTL in the
1333 1330                           * resilver case.
1334 1331                           */
1335 1332                          vdev_indirect_read_all(zio);
1336 1333                  } else {
1337 1334                          /*
1338 1335                           * Read one copy of each split segment, from the
1339 1336                           * top-level vdev.  Since we don't know the
1340 1337                           * checksum of each split individually, the child
1341 1338                           * zio can't ensure that we get the right data.
1342 1339                           * E.g. if it's a mirror, it will just read from a
1343 1340                           * random (healthy) leaf vdev.  We have to verify
1344 1341                           * the checksum in vdev_indirect_io_done().
1345 1342                           */
1346 1343                          for (indirect_split_t *is = list_head(&iv->iv_splits);
1347 1344                              is != NULL; is = list_next(&iv->iv_splits, is)) {
1348 1345                                  zio_nowait(zio_vdev_child_io(zio, NULL,
1349 1346                                      is->is_vdev, is->is_target_offset,
1350 1347                                      abd_get_offset(zio->io_abd,
1351 1348                                      is->is_split_offset),
1352 1349                                      is->is_size, zio->io_type,
1353 1350                                      zio->io_priority, 0,
1354 1351                                      vdev_indirect_child_io_done, zio));
1355 1352                          }
1356 1353                  }
1357 1354          }
1358 1355  
1359 1356          zio_execute(zio);
1360 1357  }
1361 1358  
1362 1359  /*
1363 1360   * Report a checksum error for a child.
1364 1361   */
1365 1362  static void
1366 1363  vdev_indirect_checksum_error(zio_t *zio,
1367 1364      indirect_split_t *is, indirect_child_t *ic)
1368 1365  {
1369 1366          vdev_t *vd = ic->ic_vdev;
1370 1367  
1371 1368          if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1372 1369                  return;
1373 1370  
1374 1371          mutex_enter(&vd->vdev_stat_lock);
1375 1372          vd->vdev_stat.vs_checksum_errors++;
1376 1373          mutex_exit(&vd->vdev_stat_lock);
1377 1374  
1378 1375          zio_bad_cksum_t zbc = { 0 };
1379 1376          void *bad_buf = abd_borrow_buf_copy(ic->ic_data, is->is_size);
1380 1377          abd_t *good_abd = is->is_good_child->ic_data;
1381 1378          void *good_buf = abd_borrow_buf_copy(good_abd, is->is_size);
1382 1379          zfs_ereport_post_checksum(zio->io_spa, vd, zio,
1383 1380              is->is_target_offset, is->is_size, good_buf, bad_buf, &zbc);
1384 1381          abd_return_buf(ic->ic_data, bad_buf, is->is_size);
1385 1382          abd_return_buf(good_abd, good_buf, is->is_size);
1386 1383  }
1387 1384  
1388 1385  /*
1389 1386   * Issue repair i/os for any incorrect copies.  We do this by comparing
1390 1387   * each split segment's correct data (is_good_child's ic_data) with each
1391 1388   * other copy of the data.  If they differ, then we overwrite the bad data
1392 1389   * with the good copy.  Note that we do this without regard for the DTL's,
1393 1390   * which simplifies this code and also issues the optimal number of writes
1394 1391   * (based on which copies actually read bad data, as opposed to which we
1395 1392   * think might be wrong).  For the same reason, we always use
1396 1393   * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start().
1397 1394   */
1398 1395  static void
1399 1396  vdev_indirect_repair(zio_t *zio)
1400 1397  {
1401 1398          indirect_vsd_t *iv = zio->io_vsd;
1402 1399  
1403 1400          enum zio_flag flags = ZIO_FLAG_IO_REPAIR;
1404 1401  
1405 1402          if (!(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)))
1406 1403                  flags |= ZIO_FLAG_SELF_HEAL;
1407 1404  
1408 1405          if (!spa_writeable(zio->io_spa))
1409 1406                  return;
1410 1407  
1411 1408          for (indirect_split_t *is = list_head(&iv->iv_splits);
1412 1409              is != NULL; is = list_next(&iv->iv_splits, is)) {
1413 1410                  for (int c = 0; c < is->is_children; c++) {
1414 1411                          indirect_child_t *ic = &is->is_child[c];
1415 1412                          if (ic == is->is_good_child)
1416 1413                                  continue;
1417 1414                          if (ic->ic_data == NULL)
1418 1415                                  continue;
1419 1416                          if (ic->ic_duplicate == is->is_good_child)
1420 1417                                  continue;
1421 1418  
1422 1419                          zio_nowait(zio_vdev_child_io(zio, NULL,
1423 1420                              ic->ic_vdev, is->is_target_offset,
1424 1421                              is->is_good_child->ic_data, is->is_size,
1425 1422                              ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
1426 1423                              ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
1427 1424                              NULL, NULL));
1428 1425  
1429 1426                          vdev_indirect_checksum_error(zio, is, ic);
1430 1427                  }
1431 1428          }
1432 1429  }
1433 1430  
1434 1431  /*
1435 1432   * Report checksum errors on all children that we read from.
1436 1433   */
1437 1434  static void
1438 1435  vdev_indirect_all_checksum_errors(zio_t *zio)
1439 1436  {
1440 1437          indirect_vsd_t *iv = zio->io_vsd;
1441 1438  
1442 1439          if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1443 1440                  return;
1444 1441  
1445 1442          for (indirect_split_t *is = list_head(&iv->iv_splits);
1446 1443              is != NULL; is = list_next(&iv->iv_splits, is)) {
1447 1444                  for (int c = 0; c < is->is_children; c++) {
1448 1445                          indirect_child_t *ic = &is->is_child[c];
1449 1446  
1450 1447                          if (ic->ic_data == NULL)
1451 1448                                  continue;
1452 1449  
1453 1450                          vdev_t *vd = ic->ic_vdev;
1454 1451  
1455 1452                          mutex_enter(&vd->vdev_stat_lock);
1456 1453                          vd->vdev_stat.vs_checksum_errors++;
1457 1454                          mutex_exit(&vd->vdev_stat_lock);
1458 1455  
1459 1456                          zfs_ereport_post_checksum(zio->io_spa, vd, zio,
1460 1457                              is->is_target_offset, is->is_size,
1461 1458                              NULL, NULL, NULL);
1462 1459                  }
1463 1460          }
1464 1461  }
1465 1462  
1466 1463  /*
1467 1464   * Copy data from all the splits to a main zio then validate the checksum.
1468 1465   * If then checksum is successfully validated return success.
1469 1466   */
1470 1467  static int
1471 1468  vdev_indirect_splits_checksum_validate(indirect_vsd_t *iv, zio_t *zio)
1472 1469  {
1473 1470          zio_bad_cksum_t zbc;
1474 1471  
1475 1472          for (indirect_split_t *is = list_head(&iv->iv_splits);
1476 1473              is != NULL; is = list_next(&iv->iv_splits, is)) {
1477 1474  
1478 1475                  ASSERT3P(is->is_good_child->ic_data, !=, NULL);
1479 1476                  ASSERT3P(is->is_good_child->ic_duplicate, ==, NULL);
1480 1477  
1481 1478                  abd_copy_off(zio->io_abd, is->is_good_child->ic_data,
1482 1479                      is->is_split_offset, 0, is->is_size);
1483 1480          }
1484 1481  
1485 1482          return (zio_checksum_error(zio, &zbc));
1486 1483  }
1487 1484  
1488 1485  /*
1489 1486   * There are relatively few possible combinations making it feasible to
1490 1487   * deterministically check them all.  We do this by setting the good_child
1491 1488   * to the next unique split version.  If we reach the end of the list then
1492 1489   * "carry over" to the next unique split version (like counting in base
1493 1490   * is_unique_children, but each digit can have a different base).
1494 1491   */
1495 1492  static int
1496 1493  vdev_indirect_splits_enumerate_all(indirect_vsd_t *iv, zio_t *zio)
1497 1494  {
1498 1495          boolean_t more = B_TRUE;
1499 1496  
1500 1497          iv->iv_attempts = 0;
1501 1498  
1502 1499          for (indirect_split_t *is = list_head(&iv->iv_splits);
1503 1500              is != NULL; is = list_next(&iv->iv_splits, is))
1504 1501                  is->is_good_child = list_head(&is->is_unique_child);
1505 1502  
1506 1503          while (more == B_TRUE) {
1507 1504                  iv->iv_attempts++;
1508 1505                  more = B_FALSE;
1509 1506  
1510 1507                  if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1511 1508                          return (0);
1512 1509  
1513 1510                  for (indirect_split_t *is = list_head(&iv->iv_splits);
1514 1511                      is != NULL; is = list_next(&iv->iv_splits, is)) {
1515 1512                          is->is_good_child = list_next(&is->is_unique_child,
1516 1513                              is->is_good_child);
1517 1514                          if (is->is_good_child != NULL) {
1518 1515                                  more = B_TRUE;
1519 1516                                  break;
1520 1517                          }
1521 1518  
1522 1519                          is->is_good_child = list_head(&is->is_unique_child);
1523 1520                  }
1524 1521          }
1525 1522  
1526 1523          ASSERT3S(iv->iv_attempts, <=, iv->iv_unique_combinations);
1527 1524  
1528 1525          return (SET_ERROR(ECKSUM));
1529 1526  }
1530 1527  
1531 1528  /*
1532 1529   * There are too many combinations to try all of them in a reasonable amount
1533 1530   * of time.  So try a fixed number of random combinations from the unique
1534 1531   * split versions, after which we'll consider the block unrecoverable.
1535 1532   */
1536 1533  static int
1537 1534  vdev_indirect_splits_enumerate_randomly(indirect_vsd_t *iv, zio_t *zio)
1538 1535  {
1539 1536          iv->iv_attempts = 0;
1540 1537  
1541 1538          while (iv->iv_attempts < iv->iv_attempts_max) {
1542 1539                  iv->iv_attempts++;
1543 1540  
1544 1541                  for (indirect_split_t *is = list_head(&iv->iv_splits);
1545 1542                      is != NULL; is = list_next(&iv->iv_splits, is)) {
1546 1543                          indirect_child_t *ic = list_head(&is->is_unique_child);
1547 1544                          int children = is->is_unique_children;
1548 1545  
1549 1546                          for (int i = spa_get_random(children); i > 0; i--)
1550 1547                                  ic = list_next(&is->is_unique_child, ic);
1551 1548  
1552 1549                          ASSERT3P(ic, !=, NULL);
1553 1550                          is->is_good_child = ic;
1554 1551                  }
1555 1552  
1556 1553                  if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1557 1554                          return (0);
1558 1555          }
1559 1556  
1560 1557          return (SET_ERROR(ECKSUM));
1561 1558  }
1562 1559  
1563 1560  /*
1564 1561   * This is a validation function for reconstruction.  It randomly selects
1565 1562   * a good combination, if one can be found, and then it intentionally
1566 1563   * damages all other segment copes by zeroing them.  This forces the
1567 1564   * reconstruction algorithm to locate the one remaining known good copy.
1568 1565   */
1569 1566  static int
1570 1567  vdev_indirect_splits_damage(indirect_vsd_t *iv, zio_t *zio)
1571 1568  {
1572 1569          /* Presume all the copies are unique for initial selection. */
1573 1570          for (indirect_split_t *is = list_head(&iv->iv_splits);
1574 1571              is != NULL; is = list_next(&iv->iv_splits, is)) {
1575 1572                  is->is_unique_children = 0;
1576 1573  
1577 1574                  for (int i = 0; i < is->is_children; i++) {
1578 1575                          indirect_child_t *ic = &is->is_child[i];
1579 1576                          if (ic->ic_data != NULL) {
1580 1577                                  is->is_unique_children++;
1581 1578                                  list_insert_tail(&is->is_unique_child, ic);
1582 1579                          }
1583 1580                  }
1584 1581          }
1585 1582  
1586 1583          /*
1587 1584           * Set each is_good_child to a randomly-selected child which
1588 1585           * is known to contain validated data.
1589 1586           */
1590 1587          int error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1591 1588          if (error)
1592 1589                  goto out;
1593 1590  
1594 1591          /*
1595 1592           * Damage all but the known good copy by zeroing it.  This will
1596 1593           * result in two or less unique copies per indirect_child_t.
1597 1594           * Both may need to be checked in order to reconstruct the block.
1598 1595           * Set iv->iv_attempts_max such that all unique combinations will
1599 1596           * enumerated, but limit the damage to at most 16 indirect splits.
1600 1597           */
1601 1598          iv->iv_attempts_max = 1;
1602 1599  
1603 1600          for (indirect_split_t *is = list_head(&iv->iv_splits);
1604 1601              is != NULL; is = list_next(&iv->iv_splits, is)) {
1605 1602                  for (int c = 0; c < is->is_children; c++) {
1606 1603                          indirect_child_t *ic = &is->is_child[c];
1607 1604  
1608 1605                          if (ic == is->is_good_child)
1609 1606                                  continue;
1610 1607                          if (ic->ic_data == NULL)
1611 1608                                  continue;
1612 1609  
1613 1610                          abd_zero(ic->ic_data, ic->ic_data->abd_size);
1614 1611                  }
1615 1612  
1616 1613                  iv->iv_attempts_max *= 2;
1617 1614                  if (iv->iv_attempts_max > (1ULL << 16)) {
1618 1615                          iv->iv_attempts_max = UINT64_MAX;
1619 1616                          break;
1620 1617                  }
1621 1618          }
1622 1619  
1623 1620  out:
1624 1621          /* Empty the unique children lists so they can be reconstructed. */
1625 1622          for (indirect_split_t *is = list_head(&iv->iv_splits);
1626 1623              is != NULL; is = list_next(&iv->iv_splits, is)) {
1627 1624                  indirect_child_t *ic;
1628 1625                  while ((ic = list_head(&is->is_unique_child)) != NULL)
1629 1626                          list_remove(&is->is_unique_child, ic);
1630 1627  
1631 1628                  is->is_unique_children = 0;
1632 1629          }
1633 1630  
1634 1631          return (error);
1635 1632  }
1636 1633  
1637 1634  /*
1638 1635   * This function is called when we have read all copies of the data and need
1639 1636   * to try to find a combination of copies that gives us the right checksum.
1640 1637   *
1641 1638   * If we pointed to any mirror vdevs, this effectively does the job of the
1642 1639   * mirror.  The mirror vdev code can't do its own job because we don't know
1643 1640   * the checksum of each split segment individually.
1644 1641   *
1645 1642   * We have to try every unique combination of copies of split segments, until
1646 1643   * we find one that checksums correctly.  Duplicate segment copies are first
1647 1644   * identified and latter skipped during reconstruction.  This optimization
1648 1645   * reduces the search space and ensures that of the remaining combinations
1649 1646   * at most one is correct.
1650 1647   *
1651 1648   * When the total number of combinations is small they can all be checked.
1652 1649   * For example, if we have 3 segments in the split, and each points to a
1653 1650   * 2-way mirror with unique copies, we will have the following pieces of data:
1654 1651   *
1655 1652   *       |     mirror child
1656 1653   * split |     [0]        [1]
1657 1654   * ======|=====================
1658 1655   *   A   |  data_A_0   data_A_1
1659 1656   *   B   |  data_B_0   data_B_1
1660 1657   *   C   |  data_C_0   data_C_1
1661 1658   *
1662 1659   * We will try the following (mirror children)^(number of splits) (2^3=8)
1663 1660   * combinations, which is similar to bitwise-little-endian counting in
1664 1661   * binary.  In general each "digit" corresponds to a split segment, and the
1665 1662   * base of each digit is is_children, which can be different for each
1666 1663   * digit.
1667 1664   *
1668 1665   * "low bit"        "high bit"
1669 1666   *        v                 v
1670 1667   * data_A_0 data_B_0 data_C_0
1671 1668   * data_A_1 data_B_0 data_C_0
1672 1669   * data_A_0 data_B_1 data_C_0
1673 1670   * data_A_1 data_B_1 data_C_0
1674 1671   * data_A_0 data_B_0 data_C_1
1675 1672   * data_A_1 data_B_0 data_C_1
1676 1673   * data_A_0 data_B_1 data_C_1
1677 1674   * data_A_1 data_B_1 data_C_1
1678 1675   *
1679 1676   * Note that the split segments may be on the same or different top-level
1680 1677   * vdevs. In either case, we may need to try lots of combinations (see
1681 1678   * zfs_reconstruct_indirect_combinations_max).  This ensures that if a mirror
1682 1679   * has small silent errors on all of its children, we can still reconstruct
1683 1680   * the correct data, as long as those errors are at sufficiently-separated
1684 1681   * offsets (specifically, separated by the largest block size - default of
1685 1682   * 128KB, but up to 16MB).
1686 1683   */
1687 1684  static void
1688 1685  vdev_indirect_reconstruct_io_done(zio_t *zio)
1689 1686  {
1690 1687          indirect_vsd_t *iv = zio->io_vsd;
1691 1688          boolean_t known_good = B_FALSE;
1692 1689          int error;
1693 1690  
1694 1691          iv->iv_unique_combinations = 1;
1695 1692          iv->iv_attempts_max = UINT64_MAX;
1696 1693  
1697 1694          if (zfs_reconstruct_indirect_combinations_max > 0)
1698 1695                  iv->iv_attempts_max = zfs_reconstruct_indirect_combinations_max;
1699 1696  
1700 1697          /*
1701 1698           * If nonzero, every 1/x blocks will be damaged, in order to validate
1702 1699           * reconstruction when there are split segments with damaged copies.
1703 1700           * Known_good will TRUE when reconstruction is known to be possible.
1704 1701           */
1705 1702          if (zfs_reconstruct_indirect_damage_fraction != 0 &&
1706 1703              spa_get_random(zfs_reconstruct_indirect_damage_fraction) == 0)
1707 1704                  known_good = (vdev_indirect_splits_damage(iv, zio) == 0);
1708 1705  
1709 1706          /*
1710 1707           * Determine the unique children for a split segment and add them
1711 1708           * to the is_unique_child list.  By restricting reconstruction
1712 1709           * to these children, only unique combinations will be considered.
1713 1710           * This can vastly reduce the search space when there are a large
1714 1711           * number of indirect splits.
1715 1712           */
1716 1713          for (indirect_split_t *is = list_head(&iv->iv_splits);
1717 1714              is != NULL; is = list_next(&iv->iv_splits, is)) {
1718 1715                  is->is_unique_children = 0;
1719 1716  
1720 1717                  for (int i = 0; i < is->is_children; i++) {
1721 1718                          indirect_child_t *ic_i = &is->is_child[i];
1722 1719  
1723 1720                          if (ic_i->ic_data == NULL ||
1724 1721                              ic_i->ic_duplicate != NULL)
1725 1722                                  continue;
1726 1723  
1727 1724                          for (int j = i + 1; j < is->is_children; j++) {
1728 1725                                  indirect_child_t *ic_j = &is->is_child[j];
1729 1726  
1730 1727                                  if (ic_j->ic_data == NULL ||
1731 1728                                      ic_j->ic_duplicate != NULL)
1732 1729                                          continue;
1733 1730  
1734 1731                                  if (abd_cmp(ic_i->ic_data, ic_j->ic_data,
1735 1732                                      is->is_size) == 0) {
1736 1733                                          ic_j->ic_duplicate = ic_i;
1737 1734                                  }
1738 1735                          }
1739 1736  
1740 1737                          is->is_unique_children++;
1741 1738                          list_insert_tail(&is->is_unique_child, ic_i);
1742 1739                  }
1743 1740  
1744 1741                  /* Reconstruction is impossible, no valid children */
1745 1742                  EQUIV(list_is_empty(&is->is_unique_child),
1746 1743                      is->is_unique_children == 0);
1747 1744                  if (list_is_empty(&is->is_unique_child)) {
1748 1745                          zio->io_error = EIO;
1749 1746                          vdev_indirect_all_checksum_errors(zio);
1750 1747                          zio_checksum_verified(zio);
1751 1748                          return;
1752 1749                  }
1753 1750  
1754 1751                  iv->iv_unique_combinations *= is->is_unique_children;
1755 1752          }
1756 1753  
1757 1754          if (iv->iv_unique_combinations <= iv->iv_attempts_max)
1758 1755                  error = vdev_indirect_splits_enumerate_all(iv, zio);
1759 1756          else
1760 1757                  error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1761 1758  
1762 1759          if (error != 0) {
1763 1760                  /* All attempted combinations failed. */
1764 1761                  ASSERT3B(known_good, ==, B_FALSE);
1765 1762                  zio->io_error = error;
1766 1763                  vdev_indirect_all_checksum_errors(zio);
1767 1764          } else {
1768 1765                  /*
1769 1766                   * The checksum has been successfully validated.  Issue
1770 1767                   * repair I/Os to any copies of splits which don't match
1771 1768                   * the validated version.
1772 1769                   */
1773 1770                  ASSERT0(vdev_indirect_splits_checksum_validate(iv, zio));
1774 1771                  vdev_indirect_repair(zio);
1775 1772                  zio_checksum_verified(zio);
1776 1773          }
1777 1774  }
1778 1775  
1779 1776  static void
1780 1777  vdev_indirect_io_done(zio_t *zio)
1781 1778  {
1782 1779          indirect_vsd_t *iv = zio->io_vsd;
1783 1780  
1784 1781          if (iv->iv_reconstruct) {
1785 1782                  /*
1786 1783                   * We have read all copies of the data (e.g. from mirrors),
1787 1784                   * either because this was a scrub/resilver, or because the
1788 1785                   * one-copy read didn't checksum correctly.
1789 1786                   */
1790 1787                  vdev_indirect_reconstruct_io_done(zio);
1791 1788                  return;
1792 1789          }
1793 1790  
1794 1791          if (!iv->iv_split_block) {
1795 1792                  /*
1796 1793                   * This was not a split block, so we passed the BP down,
1797 1794                   * and the checksum was handled by the (one) child zio.
1798 1795                   */
1799 1796                  return;
1800 1797          }
1801 1798  
1802 1799          zio_bad_cksum_t zbc;
1803 1800          int ret = zio_checksum_error(zio, &zbc);
1804 1801          if (ret == 0) {
1805 1802                  zio_checksum_verified(zio);
1806 1803                  return;
1807 1804          }
1808 1805  
1809 1806          /*
1810 1807           * The checksum didn't match.  Read all copies of all splits, and
1811 1808           * then we will try to reconstruct.  The next time
1812 1809           * vdev_indirect_io_done() is called, iv_reconstruct will be set.
1813 1810           */
1814 1811          vdev_indirect_read_all(zio);
1815 1812  
1816 1813          zio_vdev_io_redone(zio);
1817 1814  }
1818 1815  
1819 1816  vdev_ops_t vdev_indirect_ops = {
1820 1817          vdev_indirect_open,
1821 1818          vdev_indirect_close,
1822 1819          vdev_default_asize,
1823 1820          vdev_indirect_io_start,
1824 1821          vdev_indirect_io_done,
1825 1822          NULL,
1826 1823          NULL,
1827 1824          NULL,
1828 1825          vdev_indirect_remap,
1829 1826          NULL,
1830 1827          VDEV_TYPE_INDIRECT,     /* name of this vdev type */
1831 1828          B_FALSE                 /* leaf vdev */
1832 1829  };
  
    | 
      ↓ open down ↓ | 
    977 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX