1 /*
   2  * CDDL HEADER START
   3  *
   4  * This file and its contents are supplied under the terms of the
   5  * Common Development and Distribution License ("CDDL"), version 1.0.
   6  * You may only use this file in accordance with the terms of version
   7  * 1.0 of the CDDL.
   8  *
   9  * A full copy of the text of the CDDL should have accompanied this
  10  * source.  A copy of the CDDL is also available via the Internet at
  11  * http://www.illumos.org/license/CDDL.
  12  *
  13  * CDDL HEADER END
  14  */
  15 
  16 /*
  17  * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
  18  */
  19 
  20 #include <sys/zfs_context.h>
  21 #include <sys/spa.h>
  22 #include <sys/spa_impl.h>
  23 #include <sys/vdev_impl.h>
  24 #include <sys/fs/zfs.h>
  25 #include <sys/zio.h>
  26 #include <sys/zio_checksum.h>
  27 #include <sys/metaslab.h>
  28 #include <sys/refcount.h>
  29 #include <sys/dmu.h>
  30 #include <sys/vdev_indirect_mapping.h>
  31 #include <sys/dmu_tx.h>
  32 #include <sys/dsl_synctask.h>
  33 #include <sys/zap.h>
  34 #include <sys/abd.h>
  35 #include <sys/zthr.h>
  36 
  37 /*
  38  * An indirect vdev corresponds to a vdev that has been removed.  Since
  39  * we cannot rewrite block pointers of snapshots, etc., we keep a
  40  * mapping from old location on the removed device to the new location
  41  * on another device in the pool and use this mapping whenever we need
  42  * to access the DVA.  Unfortunately, this mapping did not respect
  43  * logical block boundaries when it was first created, and so a DVA on
  44  * this indirect vdev may be "split" into multiple sections that each
  45  * map to a different location.  As a consequence, not all DVAs can be
  46  * translated to an equivalent new DVA.  Instead we must provide a
  47  * "vdev_remap" operation that executes a callback on each contiguous
  48  * segment of the new location.  This function is used in multiple ways:
  49  *
  50  *  - i/os to this vdev use the callback to determine where the
  51  *    data is now located, and issue child i/os for each segment's new
  52  *    location.
  53  *
  54  *  - frees and claims to this vdev use the callback to free or claim
  55  *    each mapped segment.  (Note that we don't actually need to claim
  56  *    log blocks on indirect vdevs, because we don't allocate to
  57  *    removing vdevs.  However, zdb uses zio_claim() for its leak
  58  *    detection.)
  59  */
  60 
  61 /*
  62  * "Big theory statement" for how we mark blocks obsolete.
  63  *
  64  * When a block on an indirect vdev is freed or remapped, a section of
  65  * that vdev's mapping may no longer be referenced (aka "obsolete").  We
  66  * keep track of how much of each mapping entry is obsolete.  When
  67  * an entry becomes completely obsolete, we can remove it, thus reducing
  68  * the memory used by the mapping.  The complete picture of obsolescence
  69  * is given by the following data structures, described below:
  70  *  - the entry-specific obsolete count
  71  *  - the vdev-specific obsolete spacemap
  72  *  - the pool-specific obsolete bpobj
  73  *
  74  * == On disk data structures used ==
  75  *
  76  * We track the obsolete space for the pool using several objects.  Each
  77  * of these objects is created on demand and freed when no longer
  78  * needed, and is assumed to be empty if it does not exist.
  79  * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
  80  *
  81  *  - Each vic_mapping_object (associated with an indirect vdev) can
  82  *    have a vimp_counts_object.  This is an array of uint32_t's
  83  *    with the same number of entries as the vic_mapping_object.  When
  84  *    the mapping is condensed, entries from the vic_obsolete_sm_object
  85  *    (see below) are folded into the counts.  Therefore, each
  86  *    obsolete_counts entry tells us the number of bytes in the
  87  *    corresponding mapping entry that were not referenced when the
  88  *    mapping was last condensed.
  89  *
  90  *  - Each indirect or removing vdev can have a vic_obsolete_sm_object.
  91  *    This is a space map containing an alloc entry for every DVA that
  92  *    has been obsoleted since the last time this indirect vdev was
  93  *    condensed.  We use this object in order to improve performance
  94  *    when marking a DVA as obsolete.  Instead of modifying an arbitrary
  95  *    offset of the vimp_counts_object, we only need to append an entry
  96  *    to the end of this object.  When a DVA becomes obsolete, it is
  97  *    added to the obsolete space map.  This happens when the DVA is
  98  *    freed, remapped and not referenced by a snapshot, or the last
  99  *    snapshot referencing it is destroyed.
 100  *
 101  *  - Each dataset can have a ds_remap_deadlist object.  This is a
 102  *    deadlist object containing all blocks that were remapped in this
 103  *    dataset but referenced in a previous snapshot.  Blocks can *only*
 104  *    appear on this list if they were remapped (dsl_dataset_block_remapped);
 105  *    blocks that were killed in a head dataset are put on the normal
 106  *    ds_deadlist and marked obsolete when they are freed.
 107  *
 108  *  - The pool can have a dp_obsolete_bpobj.  This is a list of blocks
 109  *    in the pool that need to be marked obsolete.  When a snapshot is
 110  *    destroyed, we move some of the ds_remap_deadlist to the obsolete
 111  *    bpobj (see dsl_destroy_snapshot_handle_remaps()).  We then
 112  *    asynchronously process the obsolete bpobj, moving its entries to
 113  *    the specific vdevs' obsolete space maps.
 114  *
 115  * == Summary of how we mark blocks as obsolete ==
 116  *
 117  * - When freeing a block: if any DVA is on an indirect vdev, append to
 118  *   vic_obsolete_sm_object.
 119  * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
 120  *   references; otherwise append to vic_obsolete_sm_object).
 121  * - When freeing a snapshot: move parts of ds_remap_deadlist to
 122  *   dp_obsolete_bpobj (same algorithm as ds_deadlist).
 123  * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
 124  *   individual vdev's vic_obsolete_sm_object.
 125  */
 126 
 127 /*
 128  * "Big theory statement" for how we condense indirect vdevs.
 129  *
 130  * Condensing an indirect vdev's mapping is the process of determining
 131  * the precise counts of obsolete space for each mapping entry (by
 132  * integrating the obsolete spacemap into the obsolete counts) and
 133  * writing out a new mapping that contains only referenced entries.
 134  *
 135  * We condense a vdev when we expect the mapping to shrink (see
 136  * vdev_indirect_should_condense()), but only perform one condense at a
 137  * time to limit the memory usage.  In addition, we use a separate
 138  * open-context thread (spa_condense_indirect_thread) to incrementally
 139  * create the new mapping object in a way that minimizes the impact on
 140  * the rest of the system.
 141  *
 142  * == Generating a new mapping ==
 143  *
 144  * To generate a new mapping, we follow these steps:
 145  *
 146  * 1. Save the old obsolete space map and create a new mapping object
 147  *    (see spa_condense_indirect_start_sync()).  This initializes the
 148  *    spa_condensing_indirect_phys with the "previous obsolete space map",
 149  *    which is now read only.  Newly obsolete DVAs will be added to a
 150  *    new (initially empty) obsolete space map, and will not be
 151  *    considered as part of this condense operation.
 152  *
 153  * 2. Construct in memory the precise counts of obsolete space for each
 154  *    mapping entry, by incorporating the obsolete space map into the
 155  *    counts.  (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
 156  *
 157  * 3. Iterate through each mapping entry, writing to the new mapping any
 158  *    entries that are not completely obsolete (i.e. which don't have
 159  *    obsolete count == mapping length).  (See
 160  *    spa_condense_indirect_generate_new_mapping().)
 161  *
 162  * 4. Destroy the old mapping object and switch over to the new one
 163  *    (spa_condense_indirect_complete_sync).
 164  *
 165  * == Restarting from failure ==
 166  *
 167  * To restart the condense when we import/open the pool, we must start
 168  * at the 2nd step above: reconstruct the precise counts in memory,
 169  * based on the space map + counts.  Then in the 3rd step, we start
 170  * iterating where we left off: at vimp_max_offset of the new mapping
 171  * object.
 172  */
 173 
 174 boolean_t zfs_condense_indirect_vdevs_enable = B_TRUE;
 175 
 176 /*
 177  * Condense if at least this percent of the bytes in the mapping is
 178  * obsolete.  With the default of 25%, the amount of space mapped
 179  * will be reduced to 1% of its original size after at most 16
 180  * condenses.  Higher values will condense less often (causing less
 181  * i/o); lower values will reduce the mapping size more quickly.
 182  */
 183 int zfs_indirect_condense_obsolete_pct = 25;
 184 
 185 /*
 186  * Condense if the obsolete space map takes up more than this amount of
 187  * space on disk (logically).  This limits the amount of disk space
 188  * consumed by the obsolete space map; the default of 1GB is small enough
 189  * that we typically don't mind "wasting" it.
 190  */
 191 uint64_t zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;
 192 
 193 /*
 194  * Don't bother condensing if the mapping uses less than this amount of
 195  * memory.  The default of 128KB is considered a "trivial" amount of
 196  * memory and not worth reducing.
 197  */
 198 uint64_t zfs_condense_min_mapping_bytes = 128 * 1024;
 199 
 200 /*
 201  * This is used by the test suite so that it can ensure that certain
 202  * actions happen while in the middle of a condense (which might otherwise
 203  * complete too quickly).  If used to reduce the performance impact of
 204  * condensing in production, a maximum value of 1 should be sufficient.
 205  */
 206 int zfs_condense_indirect_commit_entry_delay_ticks = 0;
 207 
 208 /*
 209  * If an indirect split block contains more than this many possible unique
 210  * combinations when being reconstructed, consider it too computationally
 211  * expensive to check them all. Instead, try at most 100 randomly-selected
 212  * combinations each time the block is accessed.  This allows all segment
 213  * copies to participate fairly in the reconstruction when all combinations
 214  * cannot be checked and prevents repeated use of one bad copy.
 215  */
 216 int zfs_reconstruct_indirect_combinations_max = 256;
 217 
 218 
 219 /*
 220  * Enable to simulate damaged segments and validate reconstruction.
 221  * Used by ztest
 222  */
 223 unsigned long zfs_reconstruct_indirect_damage_fraction = 0;
 224 
 225 /*
 226  * The indirect_child_t represents the vdev that we will read from, when we
 227  * need to read all copies of the data (e.g. for scrub or reconstruction).
 228  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
 229  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
 230  * ic_vdev is a child of the mirror.
 231  */
 232 typedef struct indirect_child {
 233         abd_t *ic_data;
 234         vdev_t *ic_vdev;
 235 
 236         /*
 237          * ic_duplicate is NULL when the ic_data contents are unique, when it
 238          * is determined to be a duplicate it references the primary child.
 239          */
 240         struct indirect_child *ic_duplicate;
 241         list_node_t ic_node; /* node on is_unique_child */
 242 } indirect_child_t;
 243 
 244 /*
 245  * The indirect_split_t represents one mapped segment of an i/o to the
 246  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
 247  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
 248  * For split blocks, there will be several of these.
 249  */
 250 typedef struct indirect_split {
 251         list_node_t is_node; /* link on iv_splits */
 252 
 253         /*
 254          * is_split_offset is the offset into the i/o.
 255          * This is the sum of the previous splits' is_size's.
 256          */
 257         uint64_t is_split_offset;
 258 
 259         vdev_t *is_vdev; /* top-level vdev */
 260         uint64_t is_target_offset; /* offset on is_vdev */
 261         uint64_t is_size;
 262         int is_children; /* number of entries in is_child[] */
 263         int is_unique_children; /* number of entries in is_unique_child */
 264         list_t is_unique_child;
 265 
 266         /*
 267          * is_good_child is the child that we are currently using to
 268          * attempt reconstruction.
 269          */
 270         indirect_child_t *is_good_child;
 271 
 272         indirect_child_t is_child[1]; /* variable-length */
 273 } indirect_split_t;
 274 
 275 /*
 276  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
 277  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
 278  */
 279 typedef struct indirect_vsd {
 280         boolean_t iv_split_block;
 281         boolean_t iv_reconstruct;
 282         uint64_t iv_unique_combinations;
 283         uint64_t iv_attempts;
 284         uint64_t iv_attempts_max;
 285 
 286         list_t iv_splits; /* list of indirect_split_t's */
 287 } indirect_vsd_t;
 288 
 289 static void
 290 vdev_indirect_map_free(zio_t *zio)
 291 {
 292         indirect_vsd_t *iv = zio->io_vsd;
 293 
 294         indirect_split_t *is;
 295         while ((is = list_head(&iv->iv_splits)) != NULL) {
 296                 for (int c = 0; c < is->is_children; c++) {
 297                         indirect_child_t *ic = &is->is_child[c];
 298                         if (ic->ic_data != NULL)
 299                                 abd_free(ic->ic_data);
 300                 }
 301                 list_remove(&iv->iv_splits, is);
 302 
 303                 indirect_child_t *ic;
 304                 while ((ic = list_head(&is->is_unique_child)) != NULL)
 305                         list_remove(&is->is_unique_child, ic);
 306 
 307                 list_destroy(&is->is_unique_child);
 308 
 309                 kmem_free(is,
 310                     offsetof(indirect_split_t, is_child[is->is_children]));
 311         }
 312         kmem_free(iv, sizeof (*iv));
 313 }
 314 
 315 static const zio_vsd_ops_t vdev_indirect_vsd_ops = {
 316         vdev_indirect_map_free,
 317         zio_vsd_default_cksum_report
 318 };
 319 /*
 320  * Mark the given offset and size as being obsolete.
 321  */
 322 void
 323 vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size)
 324 {
 325         spa_t *spa = vd->vdev_spa;
 326 
 327         ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
 328         ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
 329         ASSERT(size > 0);
 330         VERIFY(vdev_indirect_mapping_entry_for_offset(
 331             vd->vdev_indirect_mapping, offset) != NULL);
 332 
 333         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
 334                 mutex_enter(&vd->vdev_obsolete_lock);
 335                 range_tree_add(vd->vdev_obsolete_segments, offset, size);
 336                 mutex_exit(&vd->vdev_obsolete_lock);
 337                 vdev_dirty(vd, 0, NULL, spa_syncing_txg(spa));
 338         }
 339 }
 340 
 341 /*
 342  * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
 343  * wrapper is provided because the DMU does not know about vdev_t's and
 344  * cannot directly call vdev_indirect_mark_obsolete.
 345  */
 346 void
 347 spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
 348     uint64_t size, dmu_tx_t *tx)
 349 {
 350         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
 351         ASSERT(dmu_tx_is_syncing(tx));
 352 
 353         /* The DMU can only remap indirect vdevs. */
 354         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
 355         vdev_indirect_mark_obsolete(vd, offset, size);
 356 }
 357 
 358 static spa_condensing_indirect_t *
 359 spa_condensing_indirect_create(spa_t *spa)
 360 {
 361         spa_condensing_indirect_phys_t *scip =
 362             &spa->spa_condensing_indirect_phys;
 363         spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
 364         objset_t *mos = spa->spa_meta_objset;
 365 
 366         for (int i = 0; i < TXG_SIZE; i++) {
 367                 list_create(&sci->sci_new_mapping_entries[i],
 368                     sizeof (vdev_indirect_mapping_entry_t),
 369                     offsetof(vdev_indirect_mapping_entry_t, vime_node));
 370         }
 371 
 372         sci->sci_new_mapping =
 373             vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);
 374 
 375         return (sci);
 376 }
 377 
 378 static void
 379 spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
 380 {
 381         for (int i = 0; i < TXG_SIZE; i++)
 382                 list_destroy(&sci->sci_new_mapping_entries[i]);
 383 
 384         if (sci->sci_new_mapping != NULL)
 385                 vdev_indirect_mapping_close(sci->sci_new_mapping);
 386 
 387         kmem_free(sci, sizeof (*sci));
 388 }
 389 
 390 boolean_t
 391 vdev_indirect_should_condense(vdev_t *vd)
 392 {
 393         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
 394         spa_t *spa = vd->vdev_spa;
 395 
 396         ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));
 397 
 398         if (!zfs_condense_indirect_vdevs_enable)
 399                 return (B_FALSE);
 400 
 401         /*
 402          * We can only condense one indirect vdev at a time.
 403          */
 404         if (spa->spa_condensing_indirect != NULL)
 405                 return (B_FALSE);
 406 
 407         if (spa_shutting_down(spa))
 408                 return (B_FALSE);
 409 
 410         /*
 411          * The mapping object size must not change while we are
 412          * condensing, so we can only condense indirect vdevs
 413          * (not vdevs that are still in the middle of being removed).
 414          */
 415         if (vd->vdev_ops != &vdev_indirect_ops)
 416                 return (B_FALSE);
 417 
 418         /*
 419          * If nothing new has been marked obsolete, there is no
 420          * point in condensing.
 421          */
 422         if (vd->vdev_obsolete_sm == NULL) {
 423                 ASSERT0(vdev_obsolete_sm_object(vd));
 424                 return (B_FALSE);
 425         }
 426 
 427         ASSERT(vd->vdev_obsolete_sm != NULL);
 428 
 429         ASSERT3U(vdev_obsolete_sm_object(vd), ==,
 430             space_map_object(vd->vdev_obsolete_sm));
 431 
 432         uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
 433         uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
 434         uint64_t mapping_size = vdev_indirect_mapping_size(vim);
 435         uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);
 436 
 437         ASSERT3U(bytes_obsolete, <=, bytes_mapped);
 438 
 439         /*
 440          * If a high percentage of the bytes that are mapped have become
 441          * obsolete, condense (unless the mapping is already small enough).
 442          * This has a good chance of reducing the amount of memory used
 443          * by the mapping.
 444          */
 445         if (bytes_obsolete * 100 / bytes_mapped >=
 446             zfs_indirect_condense_obsolete_pct &&
 447             mapping_size > zfs_condense_min_mapping_bytes) {
 448                 zfs_dbgmsg("should condense vdev %llu because obsolete "
 449                     "spacemap covers %d%% of %lluMB mapping",
 450                     (u_longlong_t)vd->vdev_id,
 451                     (int)(bytes_obsolete * 100 / bytes_mapped),
 452                     (u_longlong_t)bytes_mapped / 1024 / 1024);
 453                 return (B_TRUE);
 454         }
 455 
 456         /*
 457          * If the obsolete space map takes up too much space on disk,
 458          * condense in order to free up this disk space.
 459          */
 460         if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
 461                 zfs_dbgmsg("should condense vdev %llu because obsolete sm "
 462                     "length %lluMB >= max size %lluMB",
 463                     (u_longlong_t)vd->vdev_id,
 464                     (u_longlong_t)obsolete_sm_size / 1024 / 1024,
 465                     (u_longlong_t)zfs_condense_max_obsolete_bytes /
 466                     1024 / 1024);
 467                 return (B_TRUE);
 468         }
 469 
 470         return (B_FALSE);
 471 }
 472 
 473 /*
 474  * This sync task completes (finishes) a condense, deleting the old
 475  * mapping and replacing it with the new one.
 476  */
 477 static void
 478 spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
 479 {
 480         spa_condensing_indirect_t *sci = arg;
 481         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 482         spa_condensing_indirect_phys_t *scip =
 483             &spa->spa_condensing_indirect_phys;
 484         vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
 485         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
 486         objset_t *mos = spa->spa_meta_objset;
 487         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
 488         uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
 489         uint64_t new_count =
 490             vdev_indirect_mapping_num_entries(sci->sci_new_mapping);
 491 
 492         ASSERT(dmu_tx_is_syncing(tx));
 493         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
 494         ASSERT3P(sci, ==, spa->spa_condensing_indirect);
 495         for (int i = 0; i < TXG_SIZE; i++) {
 496                 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
 497         }
 498         ASSERT(vic->vic_mapping_object != 0);
 499         ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
 500         ASSERT(scip->scip_next_mapping_object != 0);
 501         ASSERT(scip->scip_prev_obsolete_sm_object != 0);
 502 
 503         /*
 504          * Reset vdev_indirect_mapping to refer to the new object.
 505          */
 506         rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
 507         vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
 508         vd->vdev_indirect_mapping = sci->sci_new_mapping;
 509         rw_exit(&vd->vdev_indirect_rwlock);
 510 
 511         sci->sci_new_mapping = NULL;
 512         vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
 513         vic->vic_mapping_object = scip->scip_next_mapping_object;
 514         scip->scip_next_mapping_object = 0;
 515 
 516         space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
 517         spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
 518         scip->scip_prev_obsolete_sm_object = 0;
 519 
 520         scip->scip_vdev = 0;
 521 
 522         VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
 523             DMU_POOL_CONDENSING_INDIRECT, tx));
 524         spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
 525         spa->spa_condensing_indirect = NULL;
 526 
 527         zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
 528             "new mapping object %llu has %llu entries "
 529             "(was %llu entries)",
 530             vd->vdev_id, dmu_tx_get_txg(tx), vic->vic_mapping_object,
 531             new_count, old_count);
 532 
 533         vdev_config_dirty(spa->spa_root_vdev);
 534 }
 535 
 536 /*
 537  * This sync task appends entries to the new mapping object.
 538  */
 539 static void
 540 spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
 541 {
 542         spa_condensing_indirect_t *sci = arg;
 543         uint64_t txg = dmu_tx_get_txg(tx);
 544         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 545 
 546         ASSERT(dmu_tx_is_syncing(tx));
 547         ASSERT3P(sci, ==, spa->spa_condensing_indirect);
 548 
 549         vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
 550             &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
 551         ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
 552 }
 553 
 554 /*
 555  * Open-context function to add one entry to the new mapping.  The new
 556  * entry will be remembered and written from syncing context.
 557  */
 558 static void
 559 spa_condense_indirect_commit_entry(spa_t *spa,
 560     vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
 561 {
 562         spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
 563 
 564         ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));
 565 
 566         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
 567         dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
 568         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
 569         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
 570 
 571         /*
 572          * If we are the first entry committed this txg, kick off the sync
 573          * task to write to the MOS on our behalf.
 574          */
 575         if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
 576                 dsl_sync_task_nowait(dmu_tx_pool(tx),
 577                     spa_condense_indirect_commit_sync, sci,
 578                     0, ZFS_SPACE_CHECK_NONE, tx);
 579         }
 580 
 581         vdev_indirect_mapping_entry_t *vime =
 582             kmem_alloc(sizeof (*vime), KM_SLEEP);
 583         vime->vime_mapping = *vimep;
 584         vime->vime_obsolete_count = count;
 585         list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);
 586 
 587         dmu_tx_commit(tx);
 588 }
 589 
 590 static void
 591 spa_condense_indirect_generate_new_mapping(vdev_t *vd,
 592     uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr)
 593 {
 594         spa_t *spa = vd->vdev_spa;
 595         uint64_t mapi = start_index;
 596         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
 597         uint64_t old_num_entries =
 598             vdev_indirect_mapping_num_entries(old_mapping);
 599 
 600         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
 601         ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);
 602 
 603         zfs_dbgmsg("starting condense of vdev %llu from index %llu",
 604             (u_longlong_t)vd->vdev_id,
 605             (u_longlong_t)mapi);
 606 
 607         while (mapi < old_num_entries) {
 608 
 609                 if (zthr_iscancelled(zthr)) {
 610                         zfs_dbgmsg("pausing condense of vdev %llu "
 611                             "at index %llu", (u_longlong_t)vd->vdev_id,
 612                             (u_longlong_t)mapi);
 613                         break;
 614                 }
 615 
 616                 vdev_indirect_mapping_entry_phys_t *entry =
 617                     &old_mapping->vim_entries[mapi];
 618                 uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
 619                 ASSERT3U(obsolete_counts[mapi], <=, entry_size);
 620                 if (obsolete_counts[mapi] < entry_size) {
 621                         spa_condense_indirect_commit_entry(spa, entry,
 622                             obsolete_counts[mapi]);
 623 
 624                         /*
 625                          * This delay may be requested for testing, debugging,
 626                          * or performance reasons.
 627                          */
 628                         delay(zfs_condense_indirect_commit_entry_delay_ticks);
 629                 }
 630 
 631                 mapi++;
 632         }
 633 }
 634 
 635 /* ARGSUSED */
 636 static boolean_t
 637 spa_condense_indirect_thread_check(void *arg, zthr_t *zthr)
 638 {
 639         spa_t *spa = arg;
 640 
 641         return (spa->spa_condensing_indirect != NULL);
 642 }
 643 
 644 /* ARGSUSED */
 645 static int
 646 spa_condense_indirect_thread(void *arg, zthr_t *zthr)
 647 {
 648         spa_t *spa = arg;
 649         vdev_t *vd;
 650 
 651         ASSERT3P(spa->spa_condensing_indirect, !=, NULL);
 652         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 653         vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev);
 654         ASSERT3P(vd, !=, NULL);
 655         spa_config_exit(spa, SCL_VDEV, FTAG);
 656 
 657         spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
 658         spa_condensing_indirect_phys_t *scip =
 659             &spa->spa_condensing_indirect_phys;
 660         uint32_t *counts;
 661         uint64_t start_index;
 662         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
 663         space_map_t *prev_obsolete_sm = NULL;
 664 
 665         ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
 666         ASSERT(scip->scip_next_mapping_object != 0);
 667         ASSERT(scip->scip_prev_obsolete_sm_object != 0);
 668         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
 669 
 670         for (int i = 0; i < TXG_SIZE; i++) {
 671                 /*
 672                  * The list must start out empty in order for the
 673                  * _commit_sync() sync task to be properly registered
 674                  * on the first call to _commit_entry(); so it's wise
 675                  * to double check and ensure we actually are starting
 676                  * with empty lists.
 677                  */
 678                 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
 679         }
 680 
 681         VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
 682             scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
 683         space_map_update(prev_obsolete_sm);
 684         counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
 685         if (prev_obsolete_sm != NULL) {
 686                 vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
 687                     counts, prev_obsolete_sm);
 688         }
 689         space_map_close(prev_obsolete_sm);
 690 
 691         /*
 692          * Generate new mapping.  Determine what index to continue from
 693          * based on the max offset that we've already written in the
 694          * new mapping.
 695          */
 696         uint64_t max_offset =
 697             vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
 698         if (max_offset == 0) {
 699                 /* We haven't written anything to the new mapping yet. */
 700                 start_index = 0;
 701         } else {
 702                 /*
 703                  * Pick up from where we left off. _entry_for_offset()
 704                  * returns a pointer into the vim_entries array. If
 705                  * max_offset is greater than any of the mappings
 706                  * contained in the table  NULL will be returned and
 707                  * that indicates we've exhausted our iteration of the
 708                  * old_mapping.
 709                  */
 710 
 711                 vdev_indirect_mapping_entry_phys_t *entry =
 712                     vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
 713                     max_offset);
 714 
 715                 if (entry == NULL) {
 716                         /*
 717                          * We've already written the whole new mapping.
 718                          * This special value will cause us to skip the
 719                          * generate_new_mapping step and just do the sync
 720                          * task to complete the condense.
 721                          */
 722                         start_index = UINT64_MAX;
 723                 } else {
 724                         start_index = entry - old_mapping->vim_entries;
 725                         ASSERT3U(start_index, <,
 726                             vdev_indirect_mapping_num_entries(old_mapping));
 727                 }
 728         }
 729 
 730         spa_condense_indirect_generate_new_mapping(vd, counts,
 731             start_index, zthr);
 732 
 733         vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);
 734 
 735         /*
 736          * If the zthr has received a cancellation signal while running
 737          * in generate_new_mapping() or at any point after that, then bail
 738          * early. We don't want to complete the condense if the spa is
 739          * shutting down.
 740          */
 741         if (zthr_iscancelled(zthr))
 742                 return (0);
 743 
 744         VERIFY0(dsl_sync_task(spa_name(spa), NULL,
 745             spa_condense_indirect_complete_sync, sci, 0,
 746             ZFS_SPACE_CHECK_EXTRA_RESERVED));
 747 
 748         return (0);
 749 }
 750 
 751 /*
 752  * Sync task to begin the condensing process.
 753  */
 754 void
 755 spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
 756 {
 757         spa_t *spa = vd->vdev_spa;
 758         spa_condensing_indirect_phys_t *scip =
 759             &spa->spa_condensing_indirect_phys;
 760 
 761         ASSERT0(scip->scip_next_mapping_object);
 762         ASSERT0(scip->scip_prev_obsolete_sm_object);
 763         ASSERT0(scip->scip_vdev);
 764         ASSERT(dmu_tx_is_syncing(tx));
 765         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
 766         ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
 767         ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));
 768 
 769         uint64_t obsolete_sm_obj = vdev_obsolete_sm_object(vd);
 770         ASSERT(obsolete_sm_obj != 0);
 771 
 772         scip->scip_vdev = vd->vdev_id;
 773         scip->scip_next_mapping_object =
 774             vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);
 775 
 776         scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;
 777 
 778         /*
 779          * We don't need to allocate a new space map object, since
 780          * vdev_indirect_sync_obsolete will allocate one when needed.
 781          */
 782         space_map_close(vd->vdev_obsolete_sm);
 783         vd->vdev_obsolete_sm = NULL;
 784         VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
 785             VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
 786 
 787         VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
 788             DMU_POOL_DIRECTORY_OBJECT,
 789             DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
 790             sizeof (*scip) / sizeof (uint64_t), scip, tx));
 791 
 792         ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
 793         spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);
 794 
 795         zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
 796             "posm=%llu nm=%llu",
 797             vd->vdev_id, dmu_tx_get_txg(tx),
 798             (u_longlong_t)scip->scip_prev_obsolete_sm_object,
 799             (u_longlong_t)scip->scip_next_mapping_object);
 800 
 801         zthr_wakeup(spa->spa_condense_zthr);
 802 }
 803 
 804 /*
 805  * Sync to the given vdev's obsolete space map any segments that are no longer
 806  * referenced as of the given txg.
 807  *
 808  * If the obsolete space map doesn't exist yet, create and open it.
 809  */
 810 void
 811 vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
 812 {
 813         spa_t *spa = vd->vdev_spa;
 814         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
 815 
 816         ASSERT3U(vic->vic_mapping_object, !=, 0);
 817         ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
 818         ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
 819         ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));
 820 
 821         if (vdev_obsolete_sm_object(vd) == 0) {
 822                 uint64_t obsolete_sm_object =
 823                     space_map_alloc(spa->spa_meta_objset,
 824                     vdev_standard_sm_blksz, tx);
 825 
 826                 ASSERT(vd->vdev_top_zap != 0);
 827                 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
 828                     VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
 829                     sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
 830                 ASSERT3U(vdev_obsolete_sm_object(vd), !=, 0);
 831 
 832                 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
 833                 VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
 834                     spa->spa_meta_objset, obsolete_sm_object,
 835                     0, vd->vdev_asize, 0));
 836                 space_map_update(vd->vdev_obsolete_sm);
 837         }
 838 
 839         ASSERT(vd->vdev_obsolete_sm != NULL);
 840         ASSERT3U(vdev_obsolete_sm_object(vd), ==,
 841             space_map_object(vd->vdev_obsolete_sm));
 842 
 843         space_map_write(vd->vdev_obsolete_sm,
 844             vd->vdev_obsolete_segments, SM_ALLOC, SM_NO_VDEVID, tx);
 845         space_map_update(vd->vdev_obsolete_sm);
 846         range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
 847 }
 848 
 849 int
 850 spa_condense_init(spa_t *spa)
 851 {
 852         int error = zap_lookup(spa->spa_meta_objset,
 853             DMU_POOL_DIRECTORY_OBJECT,
 854             DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
 855             sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
 856             &spa->spa_condensing_indirect_phys);
 857         if (error == 0) {
 858                 if (spa_writeable(spa)) {
 859                         spa->spa_condensing_indirect =
 860                             spa_condensing_indirect_create(spa);
 861                 }
 862                 return (0);
 863         } else if (error == ENOENT) {
 864                 return (0);
 865         } else {
 866                 return (error);
 867         }
 868 }
 869 
 870 void
 871 spa_condense_fini(spa_t *spa)
 872 {
 873         if (spa->spa_condensing_indirect != NULL) {
 874                 spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
 875                 spa->spa_condensing_indirect = NULL;
 876         }
 877 }
 878 
 879 void
 880 spa_start_indirect_condensing_thread(spa_t *spa)
 881 {
 882         ASSERT3P(spa->spa_condense_zthr, ==, NULL);
 883         spa->spa_condense_zthr = zthr_create(spa_condense_indirect_thread_check,
 884             spa_condense_indirect_thread, spa);
 885 }
 886 
 887 /*
 888  * Gets the obsolete spacemap object from the vdev's ZAP.
 889  * Returns the spacemap object, or 0 if it wasn't in the ZAP or the ZAP doesn't
 890  * exist yet.
 891  */
 892 int
 893 vdev_obsolete_sm_object(vdev_t *vd)
 894 {
 895         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
 896         if (vd->vdev_top_zap == 0) {
 897                 return (0);
 898         }
 899 
 900         uint64_t sm_obj = 0;
 901         int err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
 902             VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (sm_obj), 1, &sm_obj);
 903 
 904         ASSERT(err == 0 || err == ENOENT);
 905 
 906         return (sm_obj);
 907 }
 908 
 909 boolean_t
 910 vdev_obsolete_counts_are_precise(vdev_t *vd)
 911 {
 912         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
 913         if (vd->vdev_top_zap == 0) {
 914                 return (B_FALSE);
 915         }
 916 
 917         uint64_t val = 0;
 918         int err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
 919             VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
 920 
 921         ASSERT(err == 0 || err == ENOENT);
 922 
 923         return (val != 0);
 924 }
 925 
 926 /* ARGSUSED */
 927 static void
 928 vdev_indirect_close(vdev_t *vd)
 929 {
 930 }
 931 
 932 /* ARGSUSED */
 933 static int
 934 vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
 935     uint64_t *ashift)
 936 {
 937         *psize = *max_psize = vd->vdev_asize +
 938             VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
 939         *ashift = vd->vdev_ashift;
 940         return (0);
 941 }
 942 
 943 typedef struct remap_segment {
 944         vdev_t *rs_vd;
 945         uint64_t rs_offset;
 946         uint64_t rs_asize;
 947         uint64_t rs_split_offset;
 948         list_node_t rs_node;
 949 } remap_segment_t;
 950 
 951 remap_segment_t *
 952 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
 953 {
 954         remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
 955         rs->rs_vd = vd;
 956         rs->rs_offset = offset;
 957         rs->rs_asize = asize;
 958         rs->rs_split_offset = split_offset;
 959         return (rs);
 960 }
 961 
 962 /*
 963  * Given an indirect vdev and an extent on that vdev, it duplicates the
 964  * physical entries of the indirect mapping that correspond to the extent
 965  * to a new array and returns a pointer to it. In addition, copied_entries
 966  * is populated with the number of mapping entries that were duplicated.
 967  *
 968  * Note that the function assumes that the caller holds vdev_indirect_rwlock.
 969  * This ensures that the mapping won't change due to condensing as we
 970  * copy over its contents.
 971  *
 972  * Finally, since we are doing an allocation, it is up to the caller to
 973  * free the array allocated in this function.
 974  */
 975 vdev_indirect_mapping_entry_phys_t *
 976 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
 977     uint64_t asize, uint64_t *copied_entries)
 978 {
 979         vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
 980         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
 981         uint64_t entries = 0;
 982 
 983         ASSERT(RW_READ_HELD(&vd->vdev_indirect_rwlock));
 984 
 985         vdev_indirect_mapping_entry_phys_t *first_mapping =
 986             vdev_indirect_mapping_entry_for_offset(vim, offset);
 987         ASSERT3P(first_mapping, !=, NULL);
 988 
 989         vdev_indirect_mapping_entry_phys_t *m = first_mapping;
 990         while (asize > 0) {
 991                 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
 992 
 993                 ASSERT3U(offset, >=, DVA_MAPPING_GET_SRC_OFFSET(m));
 994                 ASSERT3U(offset, <, DVA_MAPPING_GET_SRC_OFFSET(m) + size);
 995 
 996                 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
 997                 uint64_t inner_size = MIN(asize, size - inner_offset);
 998 
 999                 offset += inner_size;
1000                 asize -= inner_size;
1001                 entries++;
1002                 m++;
1003         }
1004 
1005         size_t copy_length = entries * sizeof (*first_mapping);
1006         duplicate_mappings = kmem_alloc(copy_length, KM_SLEEP);
1007         bcopy(first_mapping, duplicate_mappings, copy_length);
1008         *copied_entries = entries;
1009 
1010         return (duplicate_mappings);
1011 }
1012 
1013 /*
1014  * Goes through the relevant indirect mappings until it hits a concrete vdev
1015  * and issues the callback. On the way to the concrete vdev, if any other
1016  * indirect vdevs are encountered, then the callback will also be called on
1017  * each of those indirect vdevs. For example, if the segment is mapped to
1018  * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
1019  * mapped to segment B on concrete vdev 2, then the callback will be called on
1020  * both vdev 1 and vdev 2.
1021  *
1022  * While the callback passed to vdev_indirect_remap() is called on every vdev
1023  * the function encounters, certain callbacks only care about concrete vdevs.
1024  * These types of callbacks should return immediately and explicitly when they
1025  * are called on an indirect vdev.
1026  *
1027  * Because there is a possibility that a DVA section in the indirect device
1028  * has been split into multiple sections in our mapping, we keep track
1029  * of the relevant contiguous segments of the new location (remap_segment_t)
1030  * in a stack. This way we can call the callback for each of the new sections
1031  * created by a single section of the indirect device. Note though, that in
1032  * this scenario the callbacks in each split block won't occur in-order in
1033  * terms of offset, so callers should not make any assumptions about that.
1034  *
1035  * For callbacks that don't handle split blocks and immediately return when
1036  * they encounter them (as is the case for remap_blkptr_cb), the caller can
1037  * assume that its callback will be applied from the first indirect vdev
1038  * encountered to the last one and then the concrete vdev, in that order.
1039  */
1040 static void
1041 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
1042     void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
1043 {
1044         list_t stack;
1045         spa_t *spa = vd->vdev_spa;
1046 
1047         list_create(&stack, sizeof (remap_segment_t),
1048             offsetof(remap_segment_t, rs_node));
1049 
1050         for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
1051             rs != NULL; rs = list_remove_head(&stack)) {
1052                 vdev_t *v = rs->rs_vd;
1053                 uint64_t num_entries = 0;
1054 
1055                 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1056                 ASSERT(rs->rs_asize > 0);
1057 
1058                 /*
1059                  * Note: As this function can be called from open context
1060                  * (e.g. zio_read()), we need the following rwlock to
1061                  * prevent the mapping from being changed by condensing.
1062                  *
1063                  * So we grab the lock and we make a copy of the entries
1064                  * that are relevant to the extent that we are working on.
1065                  * Once that is done, we drop the lock and iterate over
1066                  * our copy of the mapping. Once we are done with the with
1067                  * the remap segment and we free it, we also free our copy
1068                  * of the indirect mapping entries that are relevant to it.
1069                  *
1070                  * This way we don't need to wait until the function is
1071                  * finished with a segment, to condense it. In addition, we
1072                  * don't need a recursive rwlock for the case that a call to
1073                  * vdev_indirect_remap() needs to call itself (through the
1074                  * codepath of its callback) for the same vdev in the middle
1075                  * of its execution.
1076                  */
1077                 rw_enter(&v->vdev_indirect_rwlock, RW_READER);
1078                 vdev_indirect_mapping_t *vim = v->vdev_indirect_mapping;
1079                 ASSERT3P(vim, !=, NULL);
1080 
1081                 vdev_indirect_mapping_entry_phys_t *mapping =
1082                     vdev_indirect_mapping_duplicate_adjacent_entries(v,
1083                     rs->rs_offset, rs->rs_asize, &num_entries);
1084                 ASSERT3P(mapping, !=, NULL);
1085                 ASSERT3U(num_entries, >, 0);
1086                 rw_exit(&v->vdev_indirect_rwlock);
1087 
1088                 for (uint64_t i = 0; i < num_entries; i++) {
1089                         /*
1090                          * Note: the vdev_indirect_mapping can not change
1091                          * while we are running.  It only changes while the
1092                          * removal is in progress, and then only from syncing
1093                          * context. While a removal is in progress, this
1094                          * function is only called for frees, which also only
1095                          * happen from syncing context.
1096                          */
1097                         vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
1098 
1099                         ASSERT3P(m, !=, NULL);
1100                         ASSERT3U(rs->rs_asize, >, 0);
1101 
1102                         uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1103                         uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
1104                         uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
1105 
1106                         ASSERT3U(rs->rs_offset, >=,
1107                             DVA_MAPPING_GET_SRC_OFFSET(m));
1108                         ASSERT3U(rs->rs_offset, <,
1109                             DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1110                         ASSERT3U(dst_vdev, !=, v->vdev_id);
1111 
1112                         uint64_t inner_offset = rs->rs_offset -
1113                             DVA_MAPPING_GET_SRC_OFFSET(m);
1114                         uint64_t inner_size =
1115                             MIN(rs->rs_asize, size - inner_offset);
1116 
1117                         vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
1118                         ASSERT3P(dst_v, !=, NULL);
1119 
1120                         if (dst_v->vdev_ops == &vdev_indirect_ops) {
1121                                 list_insert_head(&stack,
1122                                     rs_alloc(dst_v, dst_offset + inner_offset,
1123                                     inner_size, rs->rs_split_offset));
1124 
1125                         }
1126 
1127                         if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
1128                             IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
1129                                 /*
1130                                  * Note: This clause exists only solely for
1131                                  * testing purposes. We use it to ensure that
1132                                  * split blocks work and that the callbacks
1133                                  * using them yield the same result if issued
1134                                  * in reverse order.
1135                                  */
1136                                 uint64_t inner_half = inner_size / 2;
1137 
1138                                 func(rs->rs_split_offset + inner_half, dst_v,
1139                                     dst_offset + inner_offset + inner_half,
1140                                     inner_half, arg);
1141 
1142                                 func(rs->rs_split_offset, dst_v,
1143                                     dst_offset + inner_offset,
1144                                     inner_half, arg);
1145                         } else {
1146                                 func(rs->rs_split_offset, dst_v,
1147                                     dst_offset + inner_offset,
1148                                     inner_size, arg);
1149                         }
1150 
1151                         rs->rs_offset += inner_size;
1152                         rs->rs_asize -= inner_size;
1153                         rs->rs_split_offset += inner_size;
1154                 }
1155                 VERIFY0(rs->rs_asize);
1156 
1157                 kmem_free(mapping, num_entries * sizeof (*mapping));
1158                 kmem_free(rs, sizeof (remap_segment_t));
1159         }
1160         list_destroy(&stack);
1161 }
1162 
1163 static void
1164 vdev_indirect_child_io_done(zio_t *zio)
1165 {
1166         zio_t *pio = zio->io_private;
1167 
1168         mutex_enter(&pio->io_lock);
1169         pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
1170         mutex_exit(&pio->io_lock);
1171 
1172         abd_put(zio->io_abd);
1173 }
1174 
1175 /*
1176  * This is a callback for vdev_indirect_remap() which allocates an
1177  * indirect_split_t for each split segment and adds it to iv_splits.
1178  */
1179 static void
1180 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
1181     uint64_t size, void *arg)
1182 {
1183         zio_t *zio = arg;
1184         indirect_vsd_t *iv = zio->io_vsd;
1185 
1186         ASSERT3P(vd, !=, NULL);
1187 
1188         if (vd->vdev_ops == &vdev_indirect_ops)
1189                 return;
1190 
1191         int n = 1;
1192         if (vd->vdev_ops == &vdev_mirror_ops)
1193                 n = vd->vdev_children;
1194 
1195         indirect_split_t *is =
1196             kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP);
1197 
1198         is->is_children = n;
1199         is->is_size = size;
1200         is->is_split_offset = split_offset;
1201         is->is_target_offset = offset;
1202         is->is_vdev = vd;
1203         list_create(&is->is_unique_child, sizeof (indirect_child_t),
1204             offsetof(indirect_child_t, ic_node));
1205 
1206         /*
1207          * Note that we only consider multiple copies of the data for
1208          * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
1209          * though they use the same ops as mirror, because there's only one
1210          * "good" copy under the replacing/spare.
1211          */
1212         if (vd->vdev_ops == &vdev_mirror_ops) {
1213                 for (int i = 0; i < n; i++) {
1214                         is->is_child[i].ic_vdev = vd->vdev_child[i];
1215                         list_link_init(&is->is_child[i].ic_node);
1216                 }
1217         } else {
1218                 is->is_child[0].ic_vdev = vd;
1219         }
1220 
1221         list_insert_tail(&iv->iv_splits, is);
1222 }
1223 
1224 static void
1225 vdev_indirect_read_split_done(zio_t *zio)
1226 {
1227         indirect_child_t *ic = zio->io_private;
1228 
1229         if (zio->io_error != 0) {
1230                 /*
1231                  * Clear ic_data to indicate that we do not have data for this
1232                  * child.
1233                  */
1234                 abd_free(ic->ic_data);
1235                 ic->ic_data = NULL;
1236         }
1237 }
1238 
1239 /*
1240  * Issue reads for all copies (mirror children) of all splits.
1241  */
1242 static void
1243 vdev_indirect_read_all(zio_t *zio)
1244 {
1245         indirect_vsd_t *iv = zio->io_vsd;
1246 
1247         for (indirect_split_t *is = list_head(&iv->iv_splits);
1248             is != NULL; is = list_next(&iv->iv_splits, is)) {
1249                 for (int i = 0; i < is->is_children; i++) {
1250                         indirect_child_t *ic = &is->is_child[i];
1251 
1252                         if (!vdev_readable(ic->ic_vdev))
1253                                 continue;
1254 
1255                         /*
1256                          * Note, we may read from a child whose DTL
1257                          * indicates that the data may not be present here.
1258                          * While this might result in a few i/os that will
1259                          * likely return incorrect data, it simplifies the
1260                          * code since we can treat scrub and resilver
1261                          * identically.  (The incorrect data will be
1262                          * detected and ignored when we verify the
1263                          * checksum.)
1264                          */
1265 
1266                         ic->ic_data = abd_alloc_sametype(zio->io_abd,
1267                             is->is_size);
1268                         ic->ic_duplicate = NULL;
1269 
1270                         zio_nowait(zio_vdev_child_io(zio, NULL,
1271                             ic->ic_vdev, is->is_target_offset, ic->ic_data,
1272                             is->is_size, zio->io_type, zio->io_priority, 0,
1273                             vdev_indirect_read_split_done, ic));
1274                 }
1275         }
1276         iv->iv_reconstruct = B_TRUE;
1277 }
1278 
1279 static void
1280 vdev_indirect_io_start(zio_t *zio)
1281 {
1282         spa_t *spa = zio->io_spa;
1283         indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP);
1284         list_create(&iv->iv_splits,
1285             sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
1286 
1287         zio->io_vsd = iv;
1288         zio->io_vsd_ops = &vdev_indirect_vsd_ops;
1289 
1290         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1291         if (zio->io_type != ZIO_TYPE_READ) {
1292                 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
1293                 /*
1294                  * Note: this code can handle other kinds of writes,
1295                  * but we don't expect them.
1296                  */
1297                 ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL |
1298                     ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
1299         }
1300 
1301         vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
1302             vdev_indirect_gather_splits, zio);
1303 
1304         indirect_split_t *first = list_head(&iv->iv_splits);
1305         if (first->is_size == zio->io_size) {
1306                 /*
1307                  * This is not a split block; we are pointing to the entire
1308                  * data, which will checksum the same as the original data.
1309                  * Pass the BP down so that the child i/o can verify the
1310                  * checksum, and try a different location if available
1311                  * (e.g. on a mirror).
1312                  *
1313                  * While this special case could be handled the same as the
1314                  * general (split block) case, doing it this way ensures
1315                  * that the vast majority of blocks on indirect vdevs
1316                  * (which are not split) are handled identically to blocks
1317                  * on non-indirect vdevs.  This allows us to be less strict
1318                  * about performance in the general (but rare) case.
1319                  */
1320                 ASSERT0(first->is_split_offset);
1321                 ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL);
1322                 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
1323                     first->is_vdev, first->is_target_offset,
1324                     abd_get_offset(zio->io_abd, 0),
1325                     zio->io_size, zio->io_type, zio->io_priority, 0,
1326                     vdev_indirect_child_io_done, zio));
1327         } else {
1328                 iv->iv_split_block = B_TRUE;
1329                 if (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
1330                         /*
1331                          * Read all copies.  Note that for simplicity,
1332                          * we don't bother consulting the DTL in the
1333                          * resilver case.
1334                          */
1335                         vdev_indirect_read_all(zio);
1336                 } else {
1337                         /*
1338                          * Read one copy of each split segment, from the
1339                          * top-level vdev.  Since we don't know the
1340                          * checksum of each split individually, the child
1341                          * zio can't ensure that we get the right data.
1342                          * E.g. if it's a mirror, it will just read from a
1343                          * random (healthy) leaf vdev.  We have to verify
1344                          * the checksum in vdev_indirect_io_done().
1345                          */
1346                         for (indirect_split_t *is = list_head(&iv->iv_splits);
1347                             is != NULL; is = list_next(&iv->iv_splits, is)) {
1348                                 zio_nowait(zio_vdev_child_io(zio, NULL,
1349                                     is->is_vdev, is->is_target_offset,
1350                                     abd_get_offset(zio->io_abd,
1351                                     is->is_split_offset),
1352                                     is->is_size, zio->io_type,
1353                                     zio->io_priority, 0,
1354                                     vdev_indirect_child_io_done, zio));
1355                         }
1356                 }
1357         }
1358 
1359         zio_execute(zio);
1360 }
1361 
1362 /*
1363  * Report a checksum error for a child.
1364  */
1365 static void
1366 vdev_indirect_checksum_error(zio_t *zio,
1367     indirect_split_t *is, indirect_child_t *ic)
1368 {
1369         vdev_t *vd = ic->ic_vdev;
1370 
1371         if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1372                 return;
1373 
1374         mutex_enter(&vd->vdev_stat_lock);
1375         vd->vdev_stat.vs_checksum_errors++;
1376         mutex_exit(&vd->vdev_stat_lock);
1377 
1378         zio_bad_cksum_t zbc = { 0 };
1379         void *bad_buf = abd_borrow_buf_copy(ic->ic_data, is->is_size);
1380         abd_t *good_abd = is->is_good_child->ic_data;
1381         void *good_buf = abd_borrow_buf_copy(good_abd, is->is_size);
1382         zfs_ereport_post_checksum(zio->io_spa, vd, zio,
1383             is->is_target_offset, is->is_size, good_buf, bad_buf, &zbc);
1384         abd_return_buf(ic->ic_data, bad_buf, is->is_size);
1385         abd_return_buf(good_abd, good_buf, is->is_size);
1386 }
1387 
1388 /*
1389  * Issue repair i/os for any incorrect copies.  We do this by comparing
1390  * each split segment's correct data (is_good_child's ic_data) with each
1391  * other copy of the data.  If they differ, then we overwrite the bad data
1392  * with the good copy.  Note that we do this without regard for the DTL's,
1393  * which simplifies this code and also issues the optimal number of writes
1394  * (based on which copies actually read bad data, as opposed to which we
1395  * think might be wrong).  For the same reason, we always use
1396  * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start().
1397  */
1398 static void
1399 vdev_indirect_repair(zio_t *zio)
1400 {
1401         indirect_vsd_t *iv = zio->io_vsd;
1402 
1403         enum zio_flag flags = ZIO_FLAG_IO_REPAIR;
1404 
1405         if (!(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)))
1406                 flags |= ZIO_FLAG_SELF_HEAL;
1407 
1408         if (!spa_writeable(zio->io_spa))
1409                 return;
1410 
1411         for (indirect_split_t *is = list_head(&iv->iv_splits);
1412             is != NULL; is = list_next(&iv->iv_splits, is)) {
1413                 for (int c = 0; c < is->is_children; c++) {
1414                         indirect_child_t *ic = &is->is_child[c];
1415                         if (ic == is->is_good_child)
1416                                 continue;
1417                         if (ic->ic_data == NULL)
1418                                 continue;
1419                         if (ic->ic_duplicate == is->is_good_child)
1420                                 continue;
1421 
1422                         zio_nowait(zio_vdev_child_io(zio, NULL,
1423                             ic->ic_vdev, is->is_target_offset,
1424                             is->is_good_child->ic_data, is->is_size,
1425                             ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
1426                             ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
1427                             NULL, NULL));
1428 
1429                         vdev_indirect_checksum_error(zio, is, ic);
1430                 }
1431         }
1432 }
1433 
1434 /*
1435  * Report checksum errors on all children that we read from.
1436  */
1437 static void
1438 vdev_indirect_all_checksum_errors(zio_t *zio)
1439 {
1440         indirect_vsd_t *iv = zio->io_vsd;
1441 
1442         if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1443                 return;
1444 
1445         for (indirect_split_t *is = list_head(&iv->iv_splits);
1446             is != NULL; is = list_next(&iv->iv_splits, is)) {
1447                 for (int c = 0; c < is->is_children; c++) {
1448                         indirect_child_t *ic = &is->is_child[c];
1449 
1450                         if (ic->ic_data == NULL)
1451                                 continue;
1452 
1453                         vdev_t *vd = ic->ic_vdev;
1454 
1455                         mutex_enter(&vd->vdev_stat_lock);
1456                         vd->vdev_stat.vs_checksum_errors++;
1457                         mutex_exit(&vd->vdev_stat_lock);
1458 
1459                         zfs_ereport_post_checksum(zio->io_spa, vd, zio,
1460                             is->is_target_offset, is->is_size,
1461                             NULL, NULL, NULL);
1462                 }
1463         }
1464 }
1465 
1466 /*
1467  * Copy data from all the splits to a main zio then validate the checksum.
1468  * If then checksum is successfully validated return success.
1469  */
1470 static int
1471 vdev_indirect_splits_checksum_validate(indirect_vsd_t *iv, zio_t *zio)
1472 {
1473         zio_bad_cksum_t zbc;
1474 
1475         for (indirect_split_t *is = list_head(&iv->iv_splits);
1476             is != NULL; is = list_next(&iv->iv_splits, is)) {
1477 
1478                 ASSERT3P(is->is_good_child->ic_data, !=, NULL);
1479                 ASSERT3P(is->is_good_child->ic_duplicate, ==, NULL);
1480 
1481                 abd_copy_off(zio->io_abd, is->is_good_child->ic_data,
1482                     is->is_split_offset, 0, is->is_size);
1483         }
1484 
1485         return (zio_checksum_error(zio, &zbc));
1486 }
1487 
1488 /*
1489  * There are relatively few possible combinations making it feasible to
1490  * deterministically check them all.  We do this by setting the good_child
1491  * to the next unique split version.  If we reach the end of the list then
1492  * "carry over" to the next unique split version (like counting in base
1493  * is_unique_children, but each digit can have a different base).
1494  */
1495 static int
1496 vdev_indirect_splits_enumerate_all(indirect_vsd_t *iv, zio_t *zio)
1497 {
1498         boolean_t more = B_TRUE;
1499 
1500         iv->iv_attempts = 0;
1501 
1502         for (indirect_split_t *is = list_head(&iv->iv_splits);
1503             is != NULL; is = list_next(&iv->iv_splits, is))
1504                 is->is_good_child = list_head(&is->is_unique_child);
1505 
1506         while (more == B_TRUE) {
1507                 iv->iv_attempts++;
1508                 more = B_FALSE;
1509 
1510                 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1511                         return (0);
1512 
1513                 for (indirect_split_t *is = list_head(&iv->iv_splits);
1514                     is != NULL; is = list_next(&iv->iv_splits, is)) {
1515                         is->is_good_child = list_next(&is->is_unique_child,
1516                             is->is_good_child);
1517                         if (is->is_good_child != NULL) {
1518                                 more = B_TRUE;
1519                                 break;
1520                         }
1521 
1522                         is->is_good_child = list_head(&is->is_unique_child);
1523                 }
1524         }
1525 
1526         ASSERT3S(iv->iv_attempts, <=, iv->iv_unique_combinations);
1527 
1528         return (SET_ERROR(ECKSUM));
1529 }
1530 
1531 /*
1532  * There are too many combinations to try all of them in a reasonable amount
1533  * of time.  So try a fixed number of random combinations from the unique
1534  * split versions, after which we'll consider the block unrecoverable.
1535  */
1536 static int
1537 vdev_indirect_splits_enumerate_randomly(indirect_vsd_t *iv, zio_t *zio)
1538 {
1539         iv->iv_attempts = 0;
1540 
1541         while (iv->iv_attempts < iv->iv_attempts_max) {
1542                 iv->iv_attempts++;
1543 
1544                 for (indirect_split_t *is = list_head(&iv->iv_splits);
1545                     is != NULL; is = list_next(&iv->iv_splits, is)) {
1546                         indirect_child_t *ic = list_head(&is->is_unique_child);
1547                         int children = is->is_unique_children;
1548 
1549                         for (int i = spa_get_random(children); i > 0; i--)
1550                                 ic = list_next(&is->is_unique_child, ic);
1551 
1552                         ASSERT3P(ic, !=, NULL);
1553                         is->is_good_child = ic;
1554                 }
1555 
1556                 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1557                         return (0);
1558         }
1559 
1560         return (SET_ERROR(ECKSUM));
1561 }
1562 
1563 /*
1564  * This is a validation function for reconstruction.  It randomly selects
1565  * a good combination, if one can be found, and then it intentionally
1566  * damages all other segment copes by zeroing them.  This forces the
1567  * reconstruction algorithm to locate the one remaining known good copy.
1568  */
1569 static int
1570 vdev_indirect_splits_damage(indirect_vsd_t *iv, zio_t *zio)
1571 {
1572         /* Presume all the copies are unique for initial selection. */
1573         for (indirect_split_t *is = list_head(&iv->iv_splits);
1574             is != NULL; is = list_next(&iv->iv_splits, is)) {
1575                 is->is_unique_children = 0;
1576 
1577                 for (int i = 0; i < is->is_children; i++) {
1578                         indirect_child_t *ic = &is->is_child[i];
1579                         if (ic->ic_data != NULL) {
1580                                 is->is_unique_children++;
1581                                 list_insert_tail(&is->is_unique_child, ic);
1582                         }
1583                 }
1584         }
1585 
1586         /*
1587          * Set each is_good_child to a randomly-selected child which
1588          * is known to contain validated data.
1589          */
1590         int error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1591         if (error)
1592                 goto out;
1593 
1594         /*
1595          * Damage all but the known good copy by zeroing it.  This will
1596          * result in two or less unique copies per indirect_child_t.
1597          * Both may need to be checked in order to reconstruct the block.
1598          * Set iv->iv_attempts_max such that all unique combinations will
1599          * enumerated, but limit the damage to at most 16 indirect splits.
1600          */
1601         iv->iv_attempts_max = 1;
1602 
1603         for (indirect_split_t *is = list_head(&iv->iv_splits);
1604             is != NULL; is = list_next(&iv->iv_splits, is)) {
1605                 for (int c = 0; c < is->is_children; c++) {
1606                         indirect_child_t *ic = &is->is_child[c];
1607 
1608                         if (ic == is->is_good_child)
1609                                 continue;
1610                         if (ic->ic_data == NULL)
1611                                 continue;
1612 
1613                         abd_zero(ic->ic_data, ic->ic_data->abd_size);
1614                 }
1615 
1616                 iv->iv_attempts_max *= 2;
1617                 if (iv->iv_attempts_max > (1ULL << 16)) {
1618                         iv->iv_attempts_max = UINT64_MAX;
1619                         break;
1620                 }
1621         }
1622 
1623 out:
1624         /* Empty the unique children lists so they can be reconstructed. */
1625         for (indirect_split_t *is = list_head(&iv->iv_splits);
1626             is != NULL; is = list_next(&iv->iv_splits, is)) {
1627                 indirect_child_t *ic;
1628                 while ((ic = list_head(&is->is_unique_child)) != NULL)
1629                         list_remove(&is->is_unique_child, ic);
1630 
1631                 is->is_unique_children = 0;
1632         }
1633 
1634         return (error);
1635 }
1636 
1637 /*
1638  * This function is called when we have read all copies of the data and need
1639  * to try to find a combination of copies that gives us the right checksum.
1640  *
1641  * If we pointed to any mirror vdevs, this effectively does the job of the
1642  * mirror.  The mirror vdev code can't do its own job because we don't know
1643  * the checksum of each split segment individually.
1644  *
1645  * We have to try every unique combination of copies of split segments, until
1646  * we find one that checksums correctly.  Duplicate segment copies are first
1647  * identified and latter skipped during reconstruction.  This optimization
1648  * reduces the search space and ensures that of the remaining combinations
1649  * at most one is correct.
1650  *
1651  * When the total number of combinations is small they can all be checked.
1652  * For example, if we have 3 segments in the split, and each points to a
1653  * 2-way mirror with unique copies, we will have the following pieces of data:
1654  *
1655  *       |     mirror child
1656  * split |     [0]        [1]
1657  * ======|=====================
1658  *   A   |  data_A_0   data_A_1
1659  *   B   |  data_B_0   data_B_1
1660  *   C   |  data_C_0   data_C_1
1661  *
1662  * We will try the following (mirror children)^(number of splits) (2^3=8)
1663  * combinations, which is similar to bitwise-little-endian counting in
1664  * binary.  In general each "digit" corresponds to a split segment, and the
1665  * base of each digit is is_children, which can be different for each
1666  * digit.
1667  *
1668  * "low bit"        "high bit"
1669  *        v                 v
1670  * data_A_0 data_B_0 data_C_0
1671  * data_A_1 data_B_0 data_C_0
1672  * data_A_0 data_B_1 data_C_0
1673  * data_A_1 data_B_1 data_C_0
1674  * data_A_0 data_B_0 data_C_1
1675  * data_A_1 data_B_0 data_C_1
1676  * data_A_0 data_B_1 data_C_1
1677  * data_A_1 data_B_1 data_C_1
1678  *
1679  * Note that the split segments may be on the same or different top-level
1680  * vdevs. In either case, we may need to try lots of combinations (see
1681  * zfs_reconstruct_indirect_combinations_max).  This ensures that if a mirror
1682  * has small silent errors on all of its children, we can still reconstruct
1683  * the correct data, as long as those errors are at sufficiently-separated
1684  * offsets (specifically, separated by the largest block size - default of
1685  * 128KB, but up to 16MB).
1686  */
1687 static void
1688 vdev_indirect_reconstruct_io_done(zio_t *zio)
1689 {
1690         indirect_vsd_t *iv = zio->io_vsd;
1691         boolean_t known_good = B_FALSE;
1692         int error;
1693 
1694         iv->iv_unique_combinations = 1;
1695         iv->iv_attempts_max = UINT64_MAX;
1696 
1697         if (zfs_reconstruct_indirect_combinations_max > 0)
1698                 iv->iv_attempts_max = zfs_reconstruct_indirect_combinations_max;
1699 
1700         /*
1701          * If nonzero, every 1/x blocks will be damaged, in order to validate
1702          * reconstruction when there are split segments with damaged copies.
1703          * Known_good will TRUE when reconstruction is known to be possible.
1704          */
1705         if (zfs_reconstruct_indirect_damage_fraction != 0 &&
1706             spa_get_random(zfs_reconstruct_indirect_damage_fraction) == 0)
1707                 known_good = (vdev_indirect_splits_damage(iv, zio) == 0);
1708 
1709         /*
1710          * Determine the unique children for a split segment and add them
1711          * to the is_unique_child list.  By restricting reconstruction
1712          * to these children, only unique combinations will be considered.
1713          * This can vastly reduce the search space when there are a large
1714          * number of indirect splits.
1715          */
1716         for (indirect_split_t *is = list_head(&iv->iv_splits);
1717             is != NULL; is = list_next(&iv->iv_splits, is)) {
1718                 is->is_unique_children = 0;
1719 
1720                 for (int i = 0; i < is->is_children; i++) {
1721                         indirect_child_t *ic_i = &is->is_child[i];
1722 
1723                         if (ic_i->ic_data == NULL ||
1724                             ic_i->ic_duplicate != NULL)
1725                                 continue;
1726 
1727                         for (int j = i + 1; j < is->is_children; j++) {
1728                                 indirect_child_t *ic_j = &is->is_child[j];
1729 
1730                                 if (ic_j->ic_data == NULL ||
1731                                     ic_j->ic_duplicate != NULL)
1732                                         continue;
1733 
1734                                 if (abd_cmp(ic_i->ic_data, ic_j->ic_data,
1735                                     is->is_size) == 0) {
1736                                         ic_j->ic_duplicate = ic_i;
1737                                 }
1738                         }
1739 
1740                         is->is_unique_children++;
1741                         list_insert_tail(&is->is_unique_child, ic_i);
1742                 }
1743 
1744                 /* Reconstruction is impossible, no valid children */
1745                 EQUIV(list_is_empty(&is->is_unique_child),
1746                     is->is_unique_children == 0);
1747                 if (list_is_empty(&is->is_unique_child)) {
1748                         zio->io_error = EIO;
1749                         vdev_indirect_all_checksum_errors(zio);
1750                         zio_checksum_verified(zio);
1751                         return;
1752                 }
1753 
1754                 iv->iv_unique_combinations *= is->is_unique_children;
1755         }
1756 
1757         if (iv->iv_unique_combinations <= iv->iv_attempts_max)
1758                 error = vdev_indirect_splits_enumerate_all(iv, zio);
1759         else
1760                 error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1761 
1762         if (error != 0) {
1763                 /* All attempted combinations failed. */
1764                 ASSERT3B(known_good, ==, B_FALSE);
1765                 zio->io_error = error;
1766                 vdev_indirect_all_checksum_errors(zio);
1767         } else {
1768                 /*
1769                  * The checksum has been successfully validated.  Issue
1770                  * repair I/Os to any copies of splits which don't match
1771                  * the validated version.
1772                  */
1773                 ASSERT0(vdev_indirect_splits_checksum_validate(iv, zio));
1774                 vdev_indirect_repair(zio);
1775                 zio_checksum_verified(zio);
1776         }
1777 }
1778 
1779 static void
1780 vdev_indirect_io_done(zio_t *zio)
1781 {
1782         indirect_vsd_t *iv = zio->io_vsd;
1783 
1784         if (iv->iv_reconstruct) {
1785                 /*
1786                  * We have read all copies of the data (e.g. from mirrors),
1787                  * either because this was a scrub/resilver, or because the
1788                  * one-copy read didn't checksum correctly.
1789                  */
1790                 vdev_indirect_reconstruct_io_done(zio);
1791                 return;
1792         }
1793 
1794         if (!iv->iv_split_block) {
1795                 /*
1796                  * This was not a split block, so we passed the BP down,
1797                  * and the checksum was handled by the (one) child zio.
1798                  */
1799                 return;
1800         }
1801 
1802         zio_bad_cksum_t zbc;
1803         int ret = zio_checksum_error(zio, &zbc);
1804         if (ret == 0) {
1805                 zio_checksum_verified(zio);
1806                 return;
1807         }
1808 
1809         /*
1810          * The checksum didn't match.  Read all copies of all splits, and
1811          * then we will try to reconstruct.  The next time
1812          * vdev_indirect_io_done() is called, iv_reconstruct will be set.
1813          */
1814         vdev_indirect_read_all(zio);
1815 
1816         zio_vdev_io_redone(zio);
1817 }
1818 
1819 vdev_ops_t vdev_indirect_ops = {
1820         vdev_indirect_open,
1821         vdev_indirect_close,
1822         vdev_default_asize,
1823         vdev_indirect_io_start,
1824         vdev_indirect_io_done,
1825         NULL,
1826         NULL,
1827         NULL,
1828         vdev_indirect_remap,
1829         NULL,
1830         VDEV_TYPE_INDIRECT,     /* name of this vdev type */
1831         B_FALSE                 /* leaf vdev */
1832 };