1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 /*
  26  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
  27  */
  28 
  29 #include <sys/zfs_context.h>
  30 #include <sys/spa.h>
  31 #include <sys/dmu.h>
  32 #include <sys/dmu_tx.h>
  33 #include <sys/dnode.h>
  34 #include <sys/dsl_pool.h>
  35 #include <sys/zio.h>
  36 #include <sys/space_map.h>
  37 #include <sys/refcount.h>
  38 #include <sys/zfeature.h>
  39 
  40 /*
  41  * Note on space map block size:
  42  *
  43  * The data for a given space map can be kept on blocks of any size.
  44  * Larger blocks entail fewer I/O operations, but they also cause the
  45  * DMU to keep more data in-core, and also to waste more I/O bandwidth
  46  * when only a few blocks have changed since the last transaction group.
  47  */
  48 
  49 /*
  50  * Enabled whenever we want to stress test the use of double-word
  51  * space map entries.
  52  */
  53 boolean_t zfs_force_some_double_word_sm_entries = B_FALSE;
  54 
  55 /*
  56  * Override the default indirect block size of 128K, instead using 16K for
  57  * spacemaps (2^14 bytes).  This dramatically reduces write inflation since
  58  * appending to a spacemap typically has to write one data block (4KB) and one
  59  * or two indirect blocks (16K-32K, rather than 128K).
  60  */
  61 int space_map_ibs = 14;
  62 
  63 boolean_t
  64 sm_entry_is_debug(uint64_t e)
  65 {
  66         return (SM_PREFIX_DECODE(e) == SM_DEBUG_PREFIX);
  67 }
  68 
  69 boolean_t
  70 sm_entry_is_single_word(uint64_t e)
  71 {
  72         uint8_t prefix = SM_PREFIX_DECODE(e);
  73         return (prefix != SM_DEBUG_PREFIX && prefix != SM2_PREFIX);
  74 }
  75 
  76 boolean_t
  77 sm_entry_is_double_word(uint64_t e)
  78 {
  79         return (SM_PREFIX_DECODE(e) == SM2_PREFIX);
  80 }
  81 
  82 /*
  83  * Iterate through the space map, invoking the callback on each (non-debug)
  84  * space map entry. Stop after reading 'end' bytes of the space map.
  85  */
  86 int
  87 space_map_iterate(space_map_t *sm, uint64_t end, sm_cb_t callback, void *arg)
  88 {
  89         uint64_t blksz = sm->sm_blksz;
  90 
  91         ASSERT3U(blksz, !=, 0);
  92         ASSERT3U(end, <=, space_map_length(sm));
  93         ASSERT0(P2PHASE(end, sizeof (uint64_t)));
  94 
  95         dmu_prefetch(sm->sm_os, space_map_object(sm), 0, 0, end,
  96             ZIO_PRIORITY_SYNC_READ);
  97 
  98         int error = 0;
  99         for (uint64_t block_base = 0; block_base < end && error == 0;
 100             block_base += blksz) {
 101                 dmu_buf_t *db;
 102                 error = dmu_buf_hold(sm->sm_os, space_map_object(sm),
 103                     block_base, FTAG, &db, DMU_READ_PREFETCH);
 104                 if (error != 0)
 105                         return (error);
 106 
 107                 uint64_t *block_start = db->db_data;
 108                 uint64_t block_length = MIN(end - block_base, blksz);
 109                 uint64_t *block_end = block_start +
 110                     (block_length / sizeof (uint64_t));
 111 
 112                 VERIFY0(P2PHASE(block_length, sizeof (uint64_t)));
 113                 VERIFY3U(block_length, !=, 0);
 114                 ASSERT3U(blksz, ==, db->db_size);
 115 
 116                 for (uint64_t *block_cursor = block_start;
 117                     block_cursor < block_end && error == 0; block_cursor++) {
 118                         uint64_t e = *block_cursor;
 119 
 120                         if (sm_entry_is_debug(e)) /* Skip debug entries */
 121                                 continue;
 122 
 123                         uint64_t raw_offset, raw_run, vdev_id;
 124                         maptype_t type;
 125                         if (sm_entry_is_single_word(e)) {
 126                                 type = SM_TYPE_DECODE(e);
 127                                 vdev_id = SM_NO_VDEVID;
 128                                 raw_offset = SM_OFFSET_DECODE(e);
 129                                 raw_run = SM_RUN_DECODE(e);
 130                         } else {
 131                                 /* it is a two-word entry */
 132                                 ASSERT(sm_entry_is_double_word(e));
 133                                 raw_run = SM2_RUN_DECODE(e);
 134                                 vdev_id = SM2_VDEV_DECODE(e);
 135 
 136                                 /* move on to the second word */
 137                                 block_cursor++;
 138                                 e = *block_cursor;
 139                                 VERIFY3P(block_cursor, <=, block_end);
 140 
 141                                 type = SM2_TYPE_DECODE(e);
 142                                 raw_offset = SM2_OFFSET_DECODE(e);
 143                         }
 144 
 145                         uint64_t entry_offset = (raw_offset << sm->sm_shift) +
 146                             sm->sm_start;
 147                         uint64_t entry_run = raw_run << sm->sm_shift;
 148 
 149                         VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
 150                         VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift));
 151                         ASSERT3U(entry_offset, >=, sm->sm_start);
 152                         ASSERT3U(entry_offset, <, sm->sm_start + sm->sm_size);
 153                         ASSERT3U(entry_run, <=, sm->sm_size);
 154                         ASSERT3U(entry_offset + entry_run, <=,
 155                             sm->sm_start + sm->sm_size);
 156 
 157                         space_map_entry_t sme = {
 158                             .sme_type = type,
 159                             .sme_vdev = vdev_id,
 160                             .sme_offset = entry_offset,
 161                             .sme_run = entry_run
 162                         };
 163                         error = callback(&sme, arg);
 164                 }
 165                 dmu_buf_rele(db, FTAG);
 166         }
 167         return (error);
 168 }
 169 
 170 /*
 171  * Reads the entries from the last block of the space map into
 172  * buf in reverse order. Populates nwords with number of words
 173  * in the last block.
 174  *
 175  * Refer to block comment within space_map_incremental_destroy()
 176  * to understand why this function is needed.
 177  */
 178 static int
 179 space_map_reversed_last_block_entries(space_map_t *sm, uint64_t *buf,
 180     uint64_t bufsz, uint64_t *nwords)
 181 {
 182         int error = 0;
 183         dmu_buf_t *db;
 184 
 185         /*
 186          * Find the offset of the last word in the space map and use
 187          * that to read the last block of the space map with
 188          * dmu_buf_hold().
 189          */
 190         uint64_t last_word_offset =
 191             sm->sm_phys->smp_length - sizeof (uint64_t);
 192         error = dmu_buf_hold(sm->sm_os, space_map_object(sm), last_word_offset,
 193             FTAG, &db, DMU_READ_NO_PREFETCH);
 194         if (error != 0)
 195                 return (error);
 196 
 197         ASSERT3U(sm->sm_object, ==, db->db_object);
 198         ASSERT3U(sm->sm_blksz, ==, db->db_size);
 199         ASSERT3U(bufsz, >=, db->db_size);
 200         ASSERT(nwords != NULL);
 201 
 202         uint64_t *words = db->db_data;
 203         *nwords =
 204             (sm->sm_phys->smp_length - db->db_offset) / sizeof (uint64_t);
 205 
 206         ASSERT3U(*nwords, <=, bufsz / sizeof (uint64_t));
 207 
 208         uint64_t n = *nwords;
 209         uint64_t j = n - 1;
 210         for (uint64_t i = 0; i < n; i++) {
 211                 uint64_t entry = words[i];
 212                 if (sm_entry_is_double_word(entry)) {
 213                         /*
 214                          * Since we are populating the buffer backwards
 215                          * we have to be extra careful and add the two
 216                          * words of the double-word entry in the right
 217                          * order.
 218                          */
 219                         ASSERT3U(j, >, 0);
 220                         buf[j - 1] = entry;
 221 
 222                         i++;
 223                         ASSERT3U(i, <, n);
 224                         entry = words[i];
 225                         buf[j] = entry;
 226                         j -= 2;
 227                 } else {
 228                         ASSERT(sm_entry_is_debug(entry) ||
 229                             sm_entry_is_single_word(entry));
 230                         buf[j] = entry;
 231                         j--;
 232                 }
 233         }
 234 
 235         /*
 236          * Assert that we wrote backwards all the
 237          * way to the beginning of the buffer.
 238          */
 239         ASSERT3S(j, ==, -1);
 240 
 241         dmu_buf_rele(db, FTAG);
 242         return (error);
 243 }
 244 
 245 /*
 246  * Note: This function performs destructive actions - specifically
 247  * it deletes entries from the end of the space map. Thus, callers
 248  * should ensure that they are holding the appropriate locks for
 249  * the space map that they provide.
 250  */
 251 int
 252 space_map_incremental_destroy(space_map_t *sm, sm_cb_t callback, void *arg,
 253     dmu_tx_t *tx)
 254 {
 255         uint64_t bufsz = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
 256         uint64_t *buf = zio_buf_alloc(bufsz);
 257 
 258         dmu_buf_will_dirty(sm->sm_dbuf, tx);
 259 
 260         /*
 261          * Ideally we would want to iterate from the beginning of the
 262          * space map to the end in incremental steps. The issue with this
 263          * approach is that we don't have any field on-disk that points
 264          * us where to start between each step. We could try zeroing out
 265          * entries that we've destroyed, but this doesn't work either as
 266          * an entry that is 0 is a valid one (ALLOC for range [0x0:0x200]).
 267          *
 268          * As a result, we destroy its entries incrementally starting from
 269          * the end after applying the callback to each of them.
 270          *
 271          * The problem with this approach is that we cannot literally
 272          * iterate through the words in the space map backwards as we
 273          * can't distinguish two-word space map entries from their second
 274          * word. Thus we do the following:
 275          *
 276          * 1] We get all the entries from the last block of the space map
 277          *    and put them into a buffer in reverse order. This way the
 278          *    last entry comes first in the buffer, the second to last is
 279          *    second, etc.
 280          * 2] We iterate through the entries in the buffer and we apply
 281          *    the callback to each one. As we move from entry to entry we
 282          *    we decrease the size of the space map, deleting effectively
 283          *    each entry.
 284          * 3] If there are no more entries in the space map or the callback
 285          *    returns a value other than 0, we stop iterating over the
 286          *    space map. If there are entries remaining and the callback
 287          *    returned 0, we go back to step [1].
 288          */
 289         int error = 0;
 290         while (space_map_length(sm) > 0 && error == 0) {
 291                 uint64_t nwords = 0;
 292                 error = space_map_reversed_last_block_entries(sm, buf, bufsz,
 293                     &nwords);
 294                 if (error != 0)
 295                         break;
 296 
 297                 ASSERT3U(nwords, <=, bufsz / sizeof (uint64_t));
 298 
 299                 for (uint64_t i = 0; i < nwords; i++) {
 300                         uint64_t e = buf[i];
 301 
 302                         if (sm_entry_is_debug(e)) {
 303                                 sm->sm_phys->smp_length -= sizeof (uint64_t);
 304                                 continue;
 305                         }
 306 
 307                         int words = 1;
 308                         uint64_t raw_offset, raw_run, vdev_id;
 309                         maptype_t type;
 310                         if (sm_entry_is_single_word(e)) {
 311                                 type = SM_TYPE_DECODE(e);
 312                                 vdev_id = SM_NO_VDEVID;
 313                                 raw_offset = SM_OFFSET_DECODE(e);
 314                                 raw_run = SM_RUN_DECODE(e);
 315                         } else {
 316                                 ASSERT(sm_entry_is_double_word(e));
 317                                 words = 2;
 318 
 319                                 raw_run = SM2_RUN_DECODE(e);
 320                                 vdev_id = SM2_VDEV_DECODE(e);
 321 
 322                                 /* move to the second word */
 323                                 i++;
 324                                 e = buf[i];
 325 
 326                                 ASSERT3P(i, <=, nwords);
 327 
 328                                 type = SM2_TYPE_DECODE(e);
 329                                 raw_offset = SM2_OFFSET_DECODE(e);
 330                         }
 331 
 332                         uint64_t entry_offset =
 333                             (raw_offset << sm->sm_shift) + sm->sm_start;
 334                         uint64_t entry_run = raw_run << sm->sm_shift;
 335 
 336                         VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
 337                         VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift));
 338                         VERIFY3U(entry_offset, >=, sm->sm_start);
 339                         VERIFY3U(entry_offset, <, sm->sm_start + sm->sm_size);
 340                         VERIFY3U(entry_run, <=, sm->sm_size);
 341                         VERIFY3U(entry_offset + entry_run, <=,
 342                             sm->sm_start + sm->sm_size);
 343 
 344                         space_map_entry_t sme = {
 345                             .sme_type = type,
 346                             .sme_vdev = vdev_id,
 347                             .sme_offset = entry_offset,
 348                             .sme_run = entry_run
 349                         };
 350                         error = callback(&sme, arg);
 351                         if (error != 0)
 352                                 break;
 353 
 354                         if (type == SM_ALLOC)
 355                                 sm->sm_phys->smp_alloc -= entry_run;
 356                         else
 357                                 sm->sm_phys->smp_alloc += entry_run;
 358                         sm->sm_phys->smp_length -= words * sizeof (uint64_t);
 359                 }
 360         }
 361 
 362         if (space_map_length(sm) == 0) {
 363                 ASSERT0(error);
 364                 ASSERT0(space_map_allocated(sm));
 365         }
 366 
 367         zio_buf_free(buf, bufsz);
 368         return (error);
 369 }
 370 
 371 typedef struct space_map_load_arg {
 372         space_map_t     *smla_sm;
 373         range_tree_t    *smla_rt;
 374         maptype_t       smla_type;
 375 } space_map_load_arg_t;
 376 
 377 static int
 378 space_map_load_callback(space_map_entry_t *sme, void *arg)
 379 {
 380         space_map_load_arg_t *smla = arg;
 381         if (sme->sme_type == smla->smla_type) {
 382                 VERIFY3U(range_tree_space(smla->smla_rt) + sme->sme_run, <=,
 383                     smla->smla_sm->sm_size);
 384                 range_tree_add(smla->smla_rt, sme->sme_offset, sme->sme_run);
 385         } else {
 386                 range_tree_remove(smla->smla_rt, sme->sme_offset, sme->sme_run);
 387         }
 388 
 389         return (0);
 390 }
 391 
 392 /*
 393  * Load the spacemap into the rangetree, like space_map_load. But only
 394  * read the first 'length' bytes of the spacemap.
 395  */
 396 int
 397 space_map_load_length(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
 398     uint64_t length)
 399 {
 400         space_map_load_arg_t smla;
 401 
 402         VERIFY0(range_tree_space(rt));
 403 
 404         if (maptype == SM_FREE)
 405                 range_tree_add(rt, sm->sm_start, sm->sm_size);
 406 
 407         smla.smla_rt = rt;
 408         smla.smla_sm = sm;
 409         smla.smla_type = maptype;
 410         int err = space_map_iterate(sm, length,
 411             space_map_load_callback, &smla);
 412 
 413         if (err != 0)
 414                 range_tree_vacate(rt, NULL, NULL);
 415 
 416         return (err);
 417 }
 418 
 419 /*
 420  * Load the space map disk into the specified range tree. Segments of maptype
 421  * are added to the range tree, other segment types are removed.
 422  */
 423 int
 424 space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
 425 {
 426         return (space_map_load_length(sm, rt, maptype, space_map_length(sm)));
 427 }
 428 
 429 void
 430 space_map_histogram_clear(space_map_t *sm)
 431 {
 432         if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
 433                 return;
 434 
 435         bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram));
 436 }
 437 
 438 boolean_t
 439 space_map_histogram_verify(space_map_t *sm, range_tree_t *rt)
 440 {
 441         /*
 442          * Verify that the in-core range tree does not have any
 443          * ranges smaller than our sm_shift size.
 444          */
 445         for (int i = 0; i < sm->sm_shift; i++) {
 446                 if (rt->rt_histogram[i] != 0)
 447                         return (B_FALSE);
 448         }
 449         return (B_TRUE);
 450 }
 451 
 452 void
 453 space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
 454 {
 455         int idx = 0;
 456 
 457         ASSERT(dmu_tx_is_syncing(tx));
 458         VERIFY3U(space_map_object(sm), !=, 0);
 459 
 460         if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
 461                 return;
 462 
 463         dmu_buf_will_dirty(sm->sm_dbuf, tx);
 464 
 465         ASSERT(space_map_histogram_verify(sm, rt));
 466         /*
 467          * Transfer the content of the range tree histogram to the space
 468          * map histogram. The space map histogram contains 32 buckets ranging
 469          * between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
 470          * however, can represent ranges from 2^0 to 2^63. Since the space
 471          * map only cares about allocatable blocks (minimum of sm_shift) we
 472          * can safely ignore all ranges in the range tree smaller than sm_shift.
 473          */
 474         for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
 475 
 476                 /*
 477                  * Since the largest histogram bucket in the space map is
 478                  * 2^(32+sm_shift-1), we need to normalize the values in
 479                  * the range tree for any bucket larger than that size. For
 480                  * example given an sm_shift of 9, ranges larger than 2^40
 481                  * would get normalized as if they were 1TB ranges. Assume
 482                  * the range tree had a count of 5 in the 2^44 (16TB) bucket,
 483                  * the calculation below would normalize this to 5 * 2^4 (16).
 484                  */
 485                 ASSERT3U(i, >=, idx + sm->sm_shift);
 486                 sm->sm_phys->smp_histogram[idx] +=
 487                     rt->rt_histogram[i] << (i - idx - sm->sm_shift);
 488 
 489                 /*
 490                  * Increment the space map's index as long as we haven't
 491                  * reached the maximum bucket size. Accumulate all ranges
 492                  * larger than the max bucket size into the last bucket.
 493                  */
 494                 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
 495                         ASSERT3U(idx + sm->sm_shift, ==, i);
 496                         idx++;
 497                         ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
 498                 }
 499         }
 500 }
 501 
 502 static void
 503 space_map_write_intro_debug(space_map_t *sm, maptype_t maptype, dmu_tx_t *tx)
 504 {
 505         dmu_buf_will_dirty(sm->sm_dbuf, tx);
 506 
 507         uint64_t dentry = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) |
 508             SM_DEBUG_ACTION_ENCODE(maptype) |
 509             SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(tx->tx_pool->dp_spa)) |
 510             SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
 511 
 512         dmu_write(sm->sm_os, space_map_object(sm), sm->sm_phys->smp_length,
 513             sizeof (dentry), &dentry, tx);
 514 
 515         sm->sm_phys->smp_length += sizeof (dentry);
 516 }
 517 
 518 /*
 519  * Writes one or more entries given a segment.
 520  *
 521  * Note: The function may release the dbuf from the pointer initially
 522  * passed to it, and return a different dbuf. Also, the space map's
 523  * dbuf must be dirty for the changes in sm_phys to take effect.
 524  */
 525 static void
 526 space_map_write_seg(space_map_t *sm, range_seg_t *rs, maptype_t maptype,
 527     uint64_t vdev_id, uint8_t words, dmu_buf_t **dbp, void *tag, dmu_tx_t *tx)
 528 {
 529         ASSERT3U(words, !=, 0);
 530         ASSERT3U(words, <=, 2);
 531 
 532         /* ensure the vdev_id can be represented by the space map */
 533         ASSERT3U(vdev_id, <=, SM_NO_VDEVID);
 534 
 535         /*
 536          * if this is a single word entry, ensure that no vdev was
 537          * specified.
 538          */
 539         IMPLY(words == 1, vdev_id == SM_NO_VDEVID);
 540 
 541         dmu_buf_t *db = *dbp;
 542         ASSERT3U(db->db_size, ==, sm->sm_blksz);
 543 
 544         uint64_t *block_base = db->db_data;
 545         uint64_t *block_end = block_base + (sm->sm_blksz / sizeof (uint64_t));
 546         uint64_t *block_cursor = block_base +
 547             (sm->sm_phys->smp_length - db->db_offset) / sizeof (uint64_t);
 548 
 549         ASSERT3P(block_cursor, <=, block_end);
 550 
 551         uint64_t size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
 552         uint64_t start = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
 553         uint64_t run_max = (words == 2) ? SM2_RUN_MAX : SM_RUN_MAX;
 554 
 555         ASSERT3U(rs->rs_start, >=, sm->sm_start);
 556         ASSERT3U(rs->rs_start, <, sm->sm_start + sm->sm_size);
 557         ASSERT3U(rs->rs_end - rs->rs_start, <=, sm->sm_size);
 558         ASSERT3U(rs->rs_end, <=, sm->sm_start + sm->sm_size);
 559 
 560         while (size != 0) {
 561                 ASSERT3P(block_cursor, <=, block_end);
 562 
 563                 /*
 564                  * If we are at the end of this block, flush it and start
 565                  * writing again from the beginning.
 566                  */
 567                 if (block_cursor == block_end) {
 568                         dmu_buf_rele(db, tag);
 569 
 570                         uint64_t next_word_offset = sm->sm_phys->smp_length;
 571                         VERIFY0(dmu_buf_hold(sm->sm_os,
 572                             space_map_object(sm), next_word_offset,
 573                             tag, &db, DMU_READ_PREFETCH));
 574                         dmu_buf_will_dirty(db, tx);
 575 
 576                         /* update caller's dbuf */
 577                         *dbp = db;
 578 
 579                         ASSERT3U(db->db_size, ==, sm->sm_blksz);
 580 
 581                         block_base = db->db_data;
 582                         block_cursor = block_base;
 583                         block_end = block_base +
 584                             (db->db_size / sizeof (uint64_t));
 585                 }
 586 
 587                 /*
 588                  * If we are writing a two-word entry and we only have one
 589                  * word left on this block, just pad it with an empty debug
 590                  * entry and write the two-word entry in the next block.
 591                  */
 592                 uint64_t *next_entry = block_cursor + 1;
 593                 if (next_entry == block_end && words > 1) {
 594                         ASSERT3U(words, ==, 2);
 595                         *block_cursor = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) |
 596                             SM_DEBUG_ACTION_ENCODE(0) |
 597                             SM_DEBUG_SYNCPASS_ENCODE(0) |
 598                             SM_DEBUG_TXG_ENCODE(0);
 599                         block_cursor++;
 600                         sm->sm_phys->smp_length += sizeof (uint64_t);
 601                         ASSERT3P(block_cursor, ==, block_end);
 602                         continue;
 603                 }
 604 
 605                 uint64_t run_len = MIN(size, run_max);
 606                 switch (words) {
 607                 case 1:
 608                         *block_cursor = SM_OFFSET_ENCODE(start) |
 609                             SM_TYPE_ENCODE(maptype) |
 610                             SM_RUN_ENCODE(run_len);
 611                         block_cursor++;
 612                         break;
 613                 case 2:
 614                         /* write the first word of the entry */
 615                         *block_cursor = SM_PREFIX_ENCODE(SM2_PREFIX) |
 616                             SM2_RUN_ENCODE(run_len) |
 617                             SM2_VDEV_ENCODE(vdev_id);
 618                         block_cursor++;
 619 
 620                         /* move on to the second word of the entry */
 621                         ASSERT3P(block_cursor, <, block_end);
 622                         *block_cursor = SM2_TYPE_ENCODE(maptype) |
 623                             SM2_OFFSET_ENCODE(start);
 624                         block_cursor++;
 625                         break;
 626                 default:
 627                         panic("%d-word space map entries are not supported",
 628                             words);
 629                         break;
 630                 }
 631                 sm->sm_phys->smp_length += words * sizeof (uint64_t);
 632 
 633                 start += run_len;
 634                 size -= run_len;
 635         }
 636         ASSERT0(size);
 637 
 638 }
 639 
 640 /*
 641  * Note: The space map's dbuf must be dirty for the changes in sm_phys to
 642  * take effect.
 643  */
 644 static void
 645 space_map_write_impl(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
 646     uint64_t vdev_id, dmu_tx_t *tx)
 647 {
 648         spa_t *spa = tx->tx_pool->dp_spa;
 649         dmu_buf_t *db;
 650 
 651         space_map_write_intro_debug(sm, maptype, tx);
 652 
 653 #ifdef DEBUG
 654         /*
 655          * We do this right after we write the intro debug entry
 656          * because the estimate does not take it into account.
 657          */
 658         uint64_t initial_objsize = sm->sm_phys->smp_length;
 659         uint64_t estimated_growth =
 660             space_map_estimate_optimal_size(sm, rt, SM_NO_VDEVID);
 661         uint64_t estimated_final_objsize = initial_objsize + estimated_growth;
 662 #endif
 663 
 664         /*
 665          * Find the offset right after the last word in the space map
 666          * and use that to get a hold of the last block, so we can
 667          * start appending to it.
 668          */
 669         uint64_t next_word_offset = sm->sm_phys->smp_length;
 670         VERIFY0(dmu_buf_hold(sm->sm_os, space_map_object(sm),
 671             next_word_offset, FTAG, &db, DMU_READ_PREFETCH));
 672         ASSERT3U(db->db_size, ==, sm->sm_blksz);
 673 
 674         dmu_buf_will_dirty(db, tx);
 675 
 676         avl_tree_t *t = &rt->rt_root;
 677         for (range_seg_t *rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
 678                 uint64_t offset = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
 679                 uint64_t length = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
 680                 uint8_t words = 1;
 681 
 682                 /*
 683                  * We only write two-word entries when both of the following
 684                  * are true:
 685                  *
 686                  * [1] The feature is enabled.
 687                  * [2] The offset or run is too big for a single-word entry,
 688                  *      or the vdev_id is set (meaning not equal to
 689                  *      SM_NO_VDEVID).
 690                  *
 691                  * Note that for purposes of testing we've added the case that
 692                  * we write two-word entries occasionally when the feature is
 693                  * enabled and zfs_force_some_double_word_sm_entries has been
 694                  * set.
 695                  */
 696                 if (spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_V2) &&
 697                     (offset >= (1ULL << SM_OFFSET_BITS) ||
 698                     length > SM_RUN_MAX ||
 699                     vdev_id != SM_NO_VDEVID ||
 700                     (zfs_force_some_double_word_sm_entries &&
 701                     spa_get_random(100) == 0)))
 702                         words = 2;
 703 
 704                 space_map_write_seg(sm, rs, maptype, vdev_id, words,
 705                     &db, FTAG, tx);
 706         }
 707 
 708         dmu_buf_rele(db, FTAG);
 709 
 710 #ifdef DEBUG
 711         /*
 712          * We expect our estimation to be based on the worst case
 713          * scenario [see comment in space_map_estimate_optimal_size()].
 714          * Therefore we expect the actual objsize to be equal or less
 715          * than whatever we estimated it to be.
 716          */
 717         ASSERT3U(estimated_final_objsize, >=, sm->sm_phys->smp_length);
 718 #endif
 719 }
 720 
 721 /*
 722  * Note: This function manipulates the state of the given space map but
 723  * does not hold any locks implicitly. Thus the caller is responsible
 724  * for synchronizing writes to the space map.
 725  */
 726 void
 727 space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
 728     uint64_t vdev_id, dmu_tx_t *tx)
 729 {
 730         objset_t *os = sm->sm_os;
 731 
 732         ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
 733         VERIFY3U(space_map_object(sm), !=, 0);
 734 
 735         dmu_buf_will_dirty(sm->sm_dbuf, tx);
 736 
 737         /*
 738          * This field is no longer necessary since the in-core space map
 739          * now contains the object number but is maintained for backwards
 740          * compatibility.
 741          */
 742         sm->sm_phys->smp_object = sm->sm_object;
 743 
 744         if (range_tree_is_empty(rt)) {
 745                 VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
 746                 return;
 747         }
 748 
 749         if (maptype == SM_ALLOC)
 750                 sm->sm_phys->smp_alloc += range_tree_space(rt);
 751         else
 752                 sm->sm_phys->smp_alloc -= range_tree_space(rt);
 753 
 754         uint64_t nodes = avl_numnodes(&rt->rt_root);
 755         uint64_t rt_space = range_tree_space(rt);
 756 
 757         space_map_write_impl(sm, rt, maptype, vdev_id, tx);
 758 
 759         /*
 760          * Ensure that the space_map's accounting wasn't changed
 761          * while we were in the middle of writing it out.
 762          */
 763         VERIFY3U(nodes, ==, avl_numnodes(&rt->rt_root));
 764         VERIFY3U(range_tree_space(rt), ==, rt_space);
 765 }
 766 
 767 static int
 768 space_map_open_impl(space_map_t *sm)
 769 {
 770         int error;
 771         u_longlong_t blocks;
 772 
 773         error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
 774         if (error)
 775                 return (error);
 776 
 777         dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
 778         sm->sm_phys = sm->sm_dbuf->db_data;
 779         return (0);
 780 }
 781 
 782 int
 783 space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
 784     uint64_t start, uint64_t size, uint8_t shift)
 785 {
 786         space_map_t *sm;
 787         int error;
 788 
 789         ASSERT(*smp == NULL);
 790         ASSERT(os != NULL);
 791         ASSERT(object != 0);
 792 
 793         sm = kmem_zalloc(sizeof (space_map_t), KM_SLEEP);
 794 
 795         sm->sm_start = start;
 796         sm->sm_size = size;
 797         sm->sm_shift = shift;
 798         sm->sm_os = os;
 799         sm->sm_object = object;
 800 
 801         error = space_map_open_impl(sm);
 802         if (error != 0) {
 803                 space_map_close(sm);
 804                 return (error);
 805         }
 806         *smp = sm;
 807 
 808         return (0);
 809 }
 810 
 811 void
 812 space_map_close(space_map_t *sm)
 813 {
 814         if (sm == NULL)
 815                 return;
 816 
 817         if (sm->sm_dbuf != NULL)
 818                 dmu_buf_rele(sm->sm_dbuf, sm);
 819         sm->sm_dbuf = NULL;
 820         sm->sm_phys = NULL;
 821 
 822         kmem_free(sm, sizeof (*sm));
 823 }
 824 
 825 void
 826 space_map_truncate(space_map_t *sm, int blocksize, dmu_tx_t *tx)
 827 {
 828         objset_t *os = sm->sm_os;
 829         spa_t *spa = dmu_objset_spa(os);
 830         dmu_object_info_t doi;
 831 
 832         ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
 833         ASSERT(dmu_tx_is_syncing(tx));
 834         VERIFY3U(dmu_tx_get_txg(tx), <=, spa_final_dirty_txg(spa));
 835 
 836         dmu_object_info_from_db(sm->sm_dbuf, &doi);
 837 
 838         /*
 839          * If the space map has the wrong bonus size (because
 840          * SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or
 841          * the wrong block size (because space_map_blksz has changed),
 842          * free and re-allocate its object with the updated sizes.
 843          *
 844          * Otherwise, just truncate the current object.
 845          */
 846         if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
 847             doi.doi_bonus_size != sizeof (space_map_phys_t)) ||
 848             doi.doi_data_block_size != blocksize ||
 849             doi.doi_metadata_block_size != 1 << space_map_ibs) {
 850                 zfs_dbgmsg("txg %llu, spa %s, sm %p, reallocating "
 851                     "object[%llu]: old bonus %u, old blocksz %u",
 852                     dmu_tx_get_txg(tx), spa_name(spa), sm, sm->sm_object,
 853                     doi.doi_bonus_size, doi.doi_data_block_size);
 854 
 855                 space_map_free(sm, tx);
 856                 dmu_buf_rele(sm->sm_dbuf, sm);
 857 
 858                 sm->sm_object = space_map_alloc(sm->sm_os, blocksize, tx);
 859                 VERIFY0(space_map_open_impl(sm));
 860         } else {
 861                 VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));
 862 
 863                 /*
 864                  * If the spacemap is reallocated, its histogram
 865                  * will be reset.  Do the same in the common case so that
 866                  * bugs related to the uncommon case do not go unnoticed.
 867                  */
 868                 bzero(sm->sm_phys->smp_histogram,
 869                     sizeof (sm->sm_phys->smp_histogram));
 870         }
 871 
 872         dmu_buf_will_dirty(sm->sm_dbuf, tx);
 873         sm->sm_phys->smp_length = 0;
 874         sm->sm_phys->smp_alloc = 0;
 875 }
 876 
 877 uint64_t
 878 space_map_alloc(objset_t *os, int blocksize, dmu_tx_t *tx)
 879 {
 880         spa_t *spa = dmu_objset_spa(os);
 881         uint64_t object;
 882         int bonuslen;
 883 
 884         if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
 885                 spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
 886                 bonuslen = sizeof (space_map_phys_t);
 887                 ASSERT3U(bonuslen, <=, dmu_bonus_max());
 888         } else {
 889                 bonuslen = SPACE_MAP_SIZE_V0;
 890         }
 891 
 892         object = dmu_object_alloc_ibs(os, DMU_OT_SPACE_MAP, blocksize,
 893             space_map_ibs, DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);
 894 
 895         return (object);
 896 }
 897 
 898 void
 899 space_map_free_obj(objset_t *os, uint64_t smobj, dmu_tx_t *tx)
 900 {
 901         spa_t *spa = dmu_objset_spa(os);
 902         if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
 903                 dmu_object_info_t doi;
 904 
 905                 VERIFY0(dmu_object_info(os, smobj, &doi));
 906                 if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
 907                         spa_feature_decr(spa,
 908                             SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
 909                 }
 910         }
 911 
 912         VERIFY0(dmu_object_free(os, smobj, tx));
 913 }
 914 
 915 void
 916 space_map_free(space_map_t *sm, dmu_tx_t *tx)
 917 {
 918         if (sm == NULL)
 919                 return;
 920 
 921         space_map_free_obj(sm->sm_os, space_map_object(sm), tx);
 922         sm->sm_object = 0;
 923 }
 924 
 925 /*
 926  * Given a range tree, it makes a worst-case estimate of how much
 927  * space would the tree's segments take if they were written to
 928  * the given space map.
 929  */
 930 uint64_t
 931 space_map_estimate_optimal_size(space_map_t *sm, range_tree_t *rt,
 932     uint64_t vdev_id)
 933 {
 934         spa_t *spa = dmu_objset_spa(sm->sm_os);
 935         uint64_t shift = sm->sm_shift;
 936         uint64_t *histogram = rt->rt_histogram;
 937         uint64_t entries_for_seg = 0;
 938 
 939         /*
 940          * In order to get a quick estimate of the optimal size that this
 941          * range tree would have on-disk as a space map, we iterate through
 942          * its histogram buckets instead of iterating through its nodes.
 943          *
 944          * Note that this is a highest-bound/worst-case estimate for the
 945          * following reasons:
 946          *
 947          * 1] We assume that we always add a debug padding for each block
 948          *    we write and we also assume that we start at the last word
 949          *    of a block attempting to write a two-word entry.
 950          * 2] Rounding up errors due to the way segments are distributed
 951          *    in the buckets of the range tree's histogram.
 952          * 3] The activation of zfs_force_some_double_word_sm_entries
 953          *    (tunable) when testing.
 954          *
 955          * = Math and Rounding Errors =
 956          *
 957          * rt_histogram[i] bucket of a range tree represents the number
 958          * of entries in [2^i, (2^(i+1))-1] of that range_tree. Given
 959          * that, we want to divide the buckets into groups: Buckets that
 960          * can be represented using a single-word entry, ones that can
 961          * be represented with a double-word entry, and ones that can
 962          * only be represented with multiple two-word entries.
 963          *
 964          * [Note that if the new encoding feature is not enabled there
 965          * are only two groups: single-word entry buckets and multiple
 966          * single-word entry buckets. The information below assumes
 967          * two-word entries enabled, but it can easily applied when
 968          * the feature is not enabled]
 969          *
 970          * To find the highest bucket that can be represented with a
 971          * single-word entry we look at the maximum run that such entry
 972          * can have, which is 2^(SM_RUN_BITS + sm_shift) [remember that
 973          * the run of a space map entry is shifted by sm_shift, thus we
 974          * add it to the exponent]. This way, excluding the value of the
 975          * maximum run that can be represented by a single-word entry,
 976          * all runs that are smaller exist in buckets 0 to
 977          * SM_RUN_BITS + shift - 1.
 978          *
 979          * To find the highest bucket that can be represented with a
 980          * double-word entry, we follow the same approach. Finally, any
 981          * bucket higher than that are represented with multiple two-word
 982          * entries. To be more specific, if the highest bucket whose
 983          * segments can be represented with a single two-word entry is X,
 984          * then bucket X+1 will need 2 two-word entries for each of its
 985          * segments, X+2 will need 4, X+3 will need 8, ...etc.
 986          *
 987          * With all of the above we make our estimation based on bucket
 988          * groups. There is a rounding error though. As we mentioned in
 989          * the example with the one-word entry, the maximum run that can
 990          * be represented in a one-word entry 2^(SM_RUN_BITS + shift) is
 991          * not part of bucket SM_RUN_BITS + shift - 1. Thus, segments of
 992          * that length fall into the next bucket (and bucket group) where
 993          * we start counting two-word entries and this is one more reason
 994          * why the estimated size may end up being bigger than the actual
 995          * size written.
 996          */
 997         uint64_t size = 0;
 998         uint64_t idx = 0;
 999 
1000         if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) ||
1001             (vdev_id == SM_NO_VDEVID && sm->sm_size < SM_OFFSET_MAX)) {
1002 
1003                 /*
1004                  * If we are trying to force some double word entries just
1005                  * assume the worst-case of every single word entry being
1006                  * written as a double word entry.
1007                  */
1008                 uint64_t entry_size =
1009                     (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) &&
1010                     zfs_force_some_double_word_sm_entries) ?
1011                     (2 * sizeof (uint64_t)) : sizeof (uint64_t);
1012 
1013                 uint64_t single_entry_max_bucket = SM_RUN_BITS + shift - 1;
1014                 for (; idx <= single_entry_max_bucket; idx++)
1015                         size += histogram[idx] * entry_size;
1016 
1017                 if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2)) {
1018                         for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) {
1019                                 ASSERT3U(idx, >=, single_entry_max_bucket);
1020                                 entries_for_seg =
1021                                     1ULL << (idx - single_entry_max_bucket);
1022                                 size += histogram[idx] *
1023                                     entries_for_seg * entry_size;
1024                         }
1025                         return (size);
1026                 }
1027         }
1028 
1029         ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2));
1030 
1031         uint64_t double_entry_max_bucket = SM2_RUN_BITS + shift - 1;
1032         for (; idx <= double_entry_max_bucket; idx++)
1033                 size += histogram[idx] * 2 * sizeof (uint64_t);
1034 
1035         for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) {
1036                 ASSERT3U(idx, >=, double_entry_max_bucket);
1037                 entries_for_seg = 1ULL << (idx - double_entry_max_bucket);
1038                 size += histogram[idx] *
1039                     entries_for_seg * 2 * sizeof (uint64_t);
1040         }
1041 
1042         /*
1043          * Assume the worst case where we start with the padding at the end
1044          * of the current block and we add an extra padding entry at the end
1045          * of all subsequent blocks.
1046          */
1047         size += ((size / sm->sm_blksz) + 1) * sizeof (uint64_t);
1048 
1049         return (size);
1050 }
1051 
1052 uint64_t
1053 space_map_object(space_map_t *sm)
1054 {
1055         return (sm != NULL ? sm->sm_object : 0);
1056 }
1057 
1058 int64_t
1059 space_map_allocated(space_map_t *sm)
1060 {
1061         return (sm != NULL ? sm->sm_phys->smp_alloc : 0);
1062 }
1063 
1064 uint64_t
1065 space_map_length(space_map_t *sm)
1066 {
1067         return (sm != NULL ? sm->sm_phys->smp_length : 0);
1068 }