1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 /*
  26  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
  27  */
  28 
  29 #include <sys/zfs_context.h>
  30 #include <sys/spa.h>
  31 #include <sys/dmu.h>
  32 #include <sys/dmu_tx.h>
  33 #include <sys/dnode.h>
  34 #include <sys/dsl_pool.h>
  35 #include <sys/zio.h>
  36 #include <sys/space_map.h>
  37 #include <sys/refcount.h>
  38 #include <sys/zfeature.h>
  39 
  40 /*
  41  * Note on space map block size:
  42  *
  43  * The data for a given space map can be kept on blocks of any size.
  44  * Larger blocks entail fewer I/O operations, but they also cause the
  45  * DMU to keep more data in-core, and also to waste more I/O bandwidth
  46  * when only a few blocks have changed since the last transaction group.
  47  */
  48 
  49 /*
  50  * Enabled whenever we want to stress test the use of double-word
  51  * space map entries.
  52  */
  53 boolean_t zfs_force_some_double_word_sm_entries = B_FALSE;
  54 
  55 /*
  56  * Override the default indirect block size of 128K, instead using 16K for
  57  * spacemaps (2^14 bytes).  This dramatically reduces write inflation since
  58  * appending to a spacemap typically has to write one data block (4KB) and one
  59  * or two indirect blocks (16K-32K, rather than 128K).
  60  */
  61 int space_map_ibs = 14;
  62 
  63 boolean_t
  64 sm_entry_is_debug(uint64_t e)
  65 {
  66         return (SM_PREFIX_DECODE(e) == SM_DEBUG_PREFIX);
  67 }
  68 
  69 boolean_t
  70 sm_entry_is_single_word(uint64_t e)
  71 {
  72         uint8_t prefix = SM_PREFIX_DECODE(e);
  73         return (prefix != SM_DEBUG_PREFIX && prefix != SM2_PREFIX);
  74 }
  75 
  76 boolean_t
  77 sm_entry_is_double_word(uint64_t e)
  78 {
  79         return (SM_PREFIX_DECODE(e) == SM2_PREFIX);
  80 }
  81 
  82 /*
  83  * Iterate through the space map, invoking the callback on each (non-debug)
  84  * space map entry.
  85  */
  86 int
  87 space_map_iterate(space_map_t *sm, sm_cb_t callback, void *arg)
  88 {
  89         uint64_t sm_len = space_map_length(sm);
  90         ASSERT3U(sm->sm_blksz, !=, 0);
  91 
  92         dmu_prefetch(sm->sm_os, space_map_object(sm), 0, 0, sm_len,
  93             ZIO_PRIORITY_SYNC_READ);
  94 
  95         uint64_t blksz = sm->sm_blksz;
  96         int error = 0;
  97         for (uint64_t block_base = 0; block_base < sm_len && error == 0;
  98             block_base += blksz) {
  99                 dmu_buf_t *db;
 100                 error = dmu_buf_hold(sm->sm_os, space_map_object(sm),
 101                     block_base, FTAG, &db, DMU_READ_PREFETCH);
 102                 if (error != 0)
 103                         return (error);
 104 
 105                 uint64_t *block_start = db->db_data;
 106                 uint64_t block_length = MIN(sm_len - block_base, blksz);
 107                 uint64_t *block_end = block_start +
 108                     (block_length / sizeof (uint64_t));
 109 
 110                 VERIFY0(P2PHASE(block_length, sizeof (uint64_t)));
 111                 VERIFY3U(block_length, !=, 0);
 112                 ASSERT3U(blksz, ==, db->db_size);
 113 
 114                 for (uint64_t *block_cursor = block_start;
 115                     block_cursor < block_end && error == 0; block_cursor++) {
 116                         uint64_t e = *block_cursor;
 117 
 118                         if (sm_entry_is_debug(e)) /* Skip debug entries */
 119                                 continue;
 120 
 121                         uint64_t raw_offset, raw_run, vdev_id;
 122                         maptype_t type;
 123                         if (sm_entry_is_single_word(e)) {
 124                                 type = SM_TYPE_DECODE(e);
 125                                 vdev_id = SM_NO_VDEVID;
 126                                 raw_offset = SM_OFFSET_DECODE(e);
 127                                 raw_run = SM_RUN_DECODE(e);
 128                         } else {
 129                                 /* it is a two-word entry */
 130                                 ASSERT(sm_entry_is_double_word(e));
 131                                 raw_run = SM2_RUN_DECODE(e);
 132                                 vdev_id = SM2_VDEV_DECODE(e);
 133 
 134                                 /* move on to the second word */
 135                                 block_cursor++;
 136                                 e = *block_cursor;
 137                                 VERIFY3P(block_cursor, <=, block_end);
 138 
 139                                 type = SM2_TYPE_DECODE(e);
 140                                 raw_offset = SM2_OFFSET_DECODE(e);
 141                         }
 142 
 143                         uint64_t entry_offset = (raw_offset << sm->sm_shift) +
 144                             sm->sm_start;
 145                         uint64_t entry_run = raw_run << sm->sm_shift;
 146 
 147                         VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
 148                         VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift));
 149                         ASSERT3U(entry_offset, >=, sm->sm_start);
 150                         ASSERT3U(entry_offset, <, sm->sm_start + sm->sm_size);
 151                         ASSERT3U(entry_run, <=, sm->sm_size);
 152                         ASSERT3U(entry_offset + entry_run, <=,
 153                             sm->sm_start + sm->sm_size);
 154 
 155                         space_map_entry_t sme = {
 156                             .sme_type = type,
 157                             .sme_vdev = vdev_id,
 158                             .sme_offset = entry_offset,
 159                             .sme_run = entry_run
 160                         };
 161                         error = callback(&sme, arg);
 162                 }
 163                 dmu_buf_rele(db, FTAG);
 164         }
 165         return (error);
 166 }
 167 
 168 /*
 169  * Reads the entries from the last block of the space map into
 170  * buf in reverse order. Populates nwords with number of words
 171  * in the last block.
 172  *
 173  * Refer to block comment within space_map_incremental_destroy()
 174  * to understand why this function is needed.
 175  */
 176 static int
 177 space_map_reversed_last_block_entries(space_map_t *sm, uint64_t *buf,
 178     uint64_t bufsz, uint64_t *nwords)
 179 {
 180         int error = 0;
 181         dmu_buf_t *db;
 182 
 183         /*
 184          * Find the offset of the last word in the space map and use
 185          * that to read the last block of the space map with
 186          * dmu_buf_hold().
 187          */
 188         uint64_t last_word_offset =
 189             sm->sm_phys->smp_objsize - sizeof (uint64_t);
 190         error = dmu_buf_hold(sm->sm_os, space_map_object(sm), last_word_offset,
 191             FTAG, &db, DMU_READ_NO_PREFETCH);
 192         if (error != 0)
 193                 return (error);
 194 
 195         ASSERT3U(sm->sm_object, ==, db->db_object);
 196         ASSERT3U(sm->sm_blksz, ==, db->db_size);
 197         ASSERT3U(bufsz, >=, db->db_size);
 198         ASSERT(nwords != NULL);
 199 
 200         uint64_t *words = db->db_data;
 201         *nwords =
 202             (sm->sm_phys->smp_objsize - db->db_offset) / sizeof (uint64_t);
 203 
 204         ASSERT3U(*nwords, <=, bufsz / sizeof (uint64_t));
 205 
 206         uint64_t n = *nwords;
 207         uint64_t j = n - 1;
 208         for (uint64_t i = 0; i < n; i++) {
 209                 uint64_t entry = words[i];
 210                 if (sm_entry_is_double_word(entry)) {
 211                         /*
 212                          * Since we are populating the buffer backwards
 213                          * we have to be extra careful and add the two
 214                          * words of the double-word entry in the right
 215                          * order.
 216                          */
 217                         ASSERT3U(j, >, 0);
 218                         buf[j - 1] = entry;
 219 
 220                         i++;
 221                         ASSERT3U(i, <, n);
 222                         entry = words[i];
 223                         buf[j] = entry;
 224                         j -= 2;
 225                 } else {
 226                         ASSERT(sm_entry_is_debug(entry) ||
 227                             sm_entry_is_single_word(entry));
 228                         buf[j] = entry;
 229                         j--;
 230                 }
 231         }
 232 
 233         /*
 234          * Assert that we wrote backwards all the
 235          * way to the beginning of the buffer.
 236          */
 237         ASSERT3S(j, ==, -1);
 238 
 239         dmu_buf_rele(db, FTAG);
 240         return (error);
 241 }
 242 
 243 /*
 244  * Note: This function performs destructive actions - specifically
 245  * it deletes entries from the end of the space map. Thus, callers
 246  * should ensure that they are holding the appropriate locks for
 247  * the space map that they provide.
 248  */
 249 int
 250 space_map_incremental_destroy(space_map_t *sm, sm_cb_t callback, void *arg,
 251     dmu_tx_t *tx)
 252 {
 253         uint64_t bufsz = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
 254         uint64_t *buf = zio_buf_alloc(bufsz);
 255 
 256         dmu_buf_will_dirty(sm->sm_dbuf, tx);
 257 
 258         /*
 259          * Ideally we would want to iterate from the beginning of the
 260          * space map to the end in incremental steps. The issue with this
 261          * approach is that we don't have any field on-disk that points
 262          * us where to start between each step. We could try zeroing out
 263          * entries that we've destroyed, but this doesn't work either as
 264          * an entry that is 0 is a valid one (ALLOC for range [0x0:0x200]).
 265          *
 266          * As a result, we destroy its entries incrementally starting from
 267          * the end after applying the callback to each of them.
 268          *
 269          * The problem with this approach is that we cannot literally
 270          * iterate through the words in the space map backwards as we
 271          * can't distinguish two-word space map entries from their second
 272          * word. Thus we do the following:
 273          *
 274          * 1] We get all the entries from the last block of the space map
 275          *    and put them into a buffer in reverse order. This way the
 276          *    last entry comes first in the buffer, the second to last is
 277          *    second, etc.
 278          * 2] We iterate through the entries in the buffer and we apply
 279          *    the callback to each one. As we move from entry to entry we
 280          *    we decrease the size of the space map, deleting effectively
 281          *    each entry.
 282          * 3] If there are no more entries in the space map or the callback
 283          *    returns a value other than 0, we stop iterating over the
 284          *    space map. If there are entries remaining and the callback
 285          *    returned 0, we go back to step [1].
 286          */
 287         int error = 0;
 288         while (space_map_length(sm) > 0 && error == 0) {
 289                 uint64_t nwords = 0;
 290                 error = space_map_reversed_last_block_entries(sm, buf, bufsz,
 291                     &nwords);
 292                 if (error != 0)
 293                         break;
 294 
 295                 ASSERT3U(nwords, <=, bufsz / sizeof (uint64_t));
 296 
 297                 for (uint64_t i = 0; i < nwords; i++) {
 298                         uint64_t e = buf[i];
 299 
 300                         if (sm_entry_is_debug(e)) {
 301                                 sm->sm_phys->smp_objsize -= sizeof (uint64_t);
 302                                 space_map_update(sm);
 303                                 continue;
 304                         }
 305 
 306                         int words = 1;
 307                         uint64_t raw_offset, raw_run, vdev_id;
 308                         maptype_t type;
 309                         if (sm_entry_is_single_word(e)) {
 310                                 type = SM_TYPE_DECODE(e);
 311                                 vdev_id = SM_NO_VDEVID;
 312                                 raw_offset = SM_OFFSET_DECODE(e);
 313                                 raw_run = SM_RUN_DECODE(e);
 314                         } else {
 315                                 ASSERT(sm_entry_is_double_word(e));
 316                                 words = 2;
 317 
 318                                 raw_run = SM2_RUN_DECODE(e);
 319                                 vdev_id = SM2_VDEV_DECODE(e);
 320 
 321                                 /* move to the second word */
 322                                 i++;
 323                                 e = buf[i];
 324 
 325                                 ASSERT3P(i, <=, nwords);
 326 
 327                                 type = SM2_TYPE_DECODE(e);
 328                                 raw_offset = SM2_OFFSET_DECODE(e);
 329                         }
 330 
 331                         uint64_t entry_offset =
 332                             (raw_offset << sm->sm_shift) + sm->sm_start;
 333                         uint64_t entry_run = raw_run << sm->sm_shift;
 334 
 335                         VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
 336                         VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift));
 337                         VERIFY3U(entry_offset, >=, sm->sm_start);
 338                         VERIFY3U(entry_offset, <, sm->sm_start + sm->sm_size);
 339                         VERIFY3U(entry_run, <=, sm->sm_size);
 340                         VERIFY3U(entry_offset + entry_run, <=,
 341                             sm->sm_start + sm->sm_size);
 342 
 343                         space_map_entry_t sme = {
 344                             .sme_type = type,
 345                             .sme_vdev = vdev_id,
 346                             .sme_offset = entry_offset,
 347                             .sme_run = entry_run
 348                         };
 349                         error = callback(&sme, arg);
 350                         if (error != 0)
 351                                 break;
 352 
 353                         if (type == SM_ALLOC)
 354                                 sm->sm_phys->smp_alloc -= entry_run;
 355                         else
 356                                 sm->sm_phys->smp_alloc += entry_run;
 357                         sm->sm_phys->smp_objsize -= words * sizeof (uint64_t);
 358                         space_map_update(sm);
 359                 }
 360         }
 361 
 362         if (space_map_length(sm) == 0) {
 363                 ASSERT0(error);
 364                 ASSERT0(sm->sm_phys->smp_objsize);
 365                 ASSERT0(sm->sm_alloc);
 366         }
 367 
 368         zio_buf_free(buf, bufsz);
 369         return (error);
 370 }
 371 
 372 typedef struct space_map_load_arg {
 373         space_map_t     *smla_sm;
 374         range_tree_t    *smla_rt;
 375         maptype_t       smla_type;
 376 } space_map_load_arg_t;
 377 
 378 static int
 379 space_map_load_callback(space_map_entry_t *sme, void *arg)
 380 {
 381         space_map_load_arg_t *smla = arg;
 382         if (sme->sme_type == smla->smla_type) {
 383                 VERIFY3U(range_tree_space(smla->smla_rt) + sme->sme_run, <=,
 384                     smla->smla_sm->sm_size);
 385                 range_tree_add(smla->smla_rt, sme->sme_offset, sme->sme_run);
 386         } else {
 387                 range_tree_remove(smla->smla_rt, sme->sme_offset, sme->sme_run);
 388         }
 389 
 390         return (0);
 391 }
 392 
 393 /*
 394  * Load the space map disk into the specified range tree. Segments of maptype
 395  * are added to the range tree, other segment types are removed.
 396  */
 397 int
 398 space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
 399 {
 400         uint64_t space;
 401         int err;
 402         space_map_load_arg_t smla;
 403 
 404         VERIFY0(range_tree_space(rt));
 405         space = space_map_allocated(sm);
 406 
 407         if (maptype == SM_FREE) {
 408                 range_tree_add(rt, sm->sm_start, sm->sm_size);
 409                 space = sm->sm_size - space;
 410         }
 411 
 412         smla.smla_rt = rt;
 413         smla.smla_sm = sm;
 414         smla.smla_type = maptype;
 415         err = space_map_iterate(sm, space_map_load_callback, &smla);
 416 
 417         if (err == 0) {
 418                 VERIFY3U(range_tree_space(rt), ==, space);
 419         } else {
 420                 range_tree_vacate(rt, NULL, NULL);
 421         }
 422 
 423         return (err);
 424 }
 425 
 426 void
 427 space_map_histogram_clear(space_map_t *sm)
 428 {
 429         if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
 430                 return;
 431 
 432         bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram));
 433 }
 434 
 435 boolean_t
 436 space_map_histogram_verify(space_map_t *sm, range_tree_t *rt)
 437 {
 438         /*
 439          * Verify that the in-core range tree does not have any
 440          * ranges smaller than our sm_shift size.
 441          */
 442         for (int i = 0; i < sm->sm_shift; i++) {
 443                 if (rt->rt_histogram[i] != 0)
 444                         return (B_FALSE);
 445         }
 446         return (B_TRUE);
 447 }
 448 
 449 void
 450 space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
 451 {
 452         int idx = 0;
 453 
 454         ASSERT(dmu_tx_is_syncing(tx));
 455         VERIFY3U(space_map_object(sm), !=, 0);
 456 
 457         if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
 458                 return;
 459 
 460         dmu_buf_will_dirty(sm->sm_dbuf, tx);
 461 
 462         ASSERT(space_map_histogram_verify(sm, rt));
 463         /*
 464          * Transfer the content of the range tree histogram to the space
 465          * map histogram. The space map histogram contains 32 buckets ranging
 466          * between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
 467          * however, can represent ranges from 2^0 to 2^63. Since the space
 468          * map only cares about allocatable blocks (minimum of sm_shift) we
 469          * can safely ignore all ranges in the range tree smaller than sm_shift.
 470          */
 471         for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
 472 
 473                 /*
 474                  * Since the largest histogram bucket in the space map is
 475                  * 2^(32+sm_shift-1), we need to normalize the values in
 476                  * the range tree for any bucket larger than that size. For
 477                  * example given an sm_shift of 9, ranges larger than 2^40
 478                  * would get normalized as if they were 1TB ranges. Assume
 479                  * the range tree had a count of 5 in the 2^44 (16TB) bucket,
 480                  * the calculation below would normalize this to 5 * 2^4 (16).
 481                  */
 482                 ASSERT3U(i, >=, idx + sm->sm_shift);
 483                 sm->sm_phys->smp_histogram[idx] +=
 484                     rt->rt_histogram[i] << (i - idx - sm->sm_shift);
 485 
 486                 /*
 487                  * Increment the space map's index as long as we haven't
 488                  * reached the maximum bucket size. Accumulate all ranges
 489                  * larger than the max bucket size into the last bucket.
 490                  */
 491                 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
 492                         ASSERT3U(idx + sm->sm_shift, ==, i);
 493                         idx++;
 494                         ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
 495                 }
 496         }
 497 }
 498 
 499 static void
 500 space_map_write_intro_debug(space_map_t *sm, maptype_t maptype, dmu_tx_t *tx)
 501 {
 502         dmu_buf_will_dirty(sm->sm_dbuf, tx);
 503 
 504         uint64_t dentry = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) |
 505             SM_DEBUG_ACTION_ENCODE(maptype) |
 506             SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(tx->tx_pool->dp_spa)) |
 507             SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
 508 
 509         dmu_write(sm->sm_os, space_map_object(sm), sm->sm_phys->smp_objsize,
 510             sizeof (dentry), &dentry, tx);
 511 
 512         sm->sm_phys->smp_objsize += sizeof (dentry);
 513 }
 514 
 515 /*
 516  * Writes one or more entries given a segment.
 517  *
 518  * Note: The function may release the dbuf from the pointer initially
 519  * passed to it, and return a different dbuf. Also, the space map's
 520  * dbuf must be dirty for the changes in sm_phys to take effect.
 521  */
 522 static void
 523 space_map_write_seg(space_map_t *sm, range_seg_t *rs, maptype_t maptype,
 524     uint64_t vdev_id, uint8_t words, dmu_buf_t **dbp, void *tag, dmu_tx_t *tx)
 525 {
 526         ASSERT3U(words, !=, 0);
 527         ASSERT3U(words, <=, 2);
 528 
 529         /* ensure the vdev_id can be represented by the space map */
 530         ASSERT3U(vdev_id, <=, SM_NO_VDEVID);
 531 
 532         /*
 533          * if this is a single word entry, ensure that no vdev was
 534          * specified.
 535          */
 536         IMPLY(words == 1, vdev_id == SM_NO_VDEVID);
 537 
 538         dmu_buf_t *db = *dbp;
 539         ASSERT3U(db->db_size, ==, sm->sm_blksz);
 540 
 541         uint64_t *block_base = db->db_data;
 542         uint64_t *block_end = block_base + (sm->sm_blksz / sizeof (uint64_t));
 543         uint64_t *block_cursor = block_base +
 544             (sm->sm_phys->smp_objsize - db->db_offset) / sizeof (uint64_t);
 545 
 546         ASSERT3P(block_cursor, <=, block_end);
 547 
 548         uint64_t size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
 549         uint64_t start = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
 550         uint64_t run_max = (words == 2) ? SM2_RUN_MAX : SM_RUN_MAX;
 551 
 552         ASSERT3U(rs->rs_start, >=, sm->sm_start);
 553         ASSERT3U(rs->rs_start, <, sm->sm_start + sm->sm_size);
 554         ASSERT3U(rs->rs_end - rs->rs_start, <=, sm->sm_size);
 555         ASSERT3U(rs->rs_end, <=, sm->sm_start + sm->sm_size);
 556 
 557         while (size != 0) {
 558                 ASSERT3P(block_cursor, <=, block_end);
 559 
 560                 /*
 561                  * If we are at the end of this block, flush it and start
 562                  * writing again from the beginning.
 563                  */
 564                 if (block_cursor == block_end) {
 565                         dmu_buf_rele(db, tag);
 566 
 567                         uint64_t next_word_offset = sm->sm_phys->smp_objsize;
 568                         VERIFY0(dmu_buf_hold(sm->sm_os,
 569                             space_map_object(sm), next_word_offset,
 570                             tag, &db, DMU_READ_PREFETCH));
 571                         dmu_buf_will_dirty(db, tx);
 572 
 573                         /* update caller's dbuf */
 574                         *dbp = db;
 575 
 576                         ASSERT3U(db->db_size, ==, sm->sm_blksz);
 577 
 578                         block_base = db->db_data;
 579                         block_cursor = block_base;
 580                         block_end = block_base +
 581                             (db->db_size / sizeof (uint64_t));
 582                 }
 583 
 584                 /*
 585                  * If we are writing a two-word entry and we only have one
 586                  * word left on this block, just pad it with an empty debug
 587                  * entry and write the two-word entry in the next block.
 588                  */
 589                 uint64_t *next_entry = block_cursor + 1;
 590                 if (next_entry == block_end && words > 1) {
 591                         ASSERT3U(words, ==, 2);
 592                         *block_cursor = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) |
 593                             SM_DEBUG_ACTION_ENCODE(0) |
 594                             SM_DEBUG_SYNCPASS_ENCODE(0) |
 595                             SM_DEBUG_TXG_ENCODE(0);
 596                         block_cursor++;
 597                         sm->sm_phys->smp_objsize += sizeof (uint64_t);
 598                         ASSERT3P(block_cursor, ==, block_end);
 599                         continue;
 600                 }
 601 
 602                 uint64_t run_len = MIN(size, run_max);
 603                 switch (words) {
 604                 case 1:
 605                         *block_cursor = SM_OFFSET_ENCODE(start) |
 606                             SM_TYPE_ENCODE(maptype) |
 607                             SM_RUN_ENCODE(run_len);
 608                         block_cursor++;
 609                         break;
 610                 case 2:
 611                         /* write the first word of the entry */
 612                         *block_cursor = SM_PREFIX_ENCODE(SM2_PREFIX) |
 613                             SM2_RUN_ENCODE(run_len) |
 614                             SM2_VDEV_ENCODE(vdev_id);
 615                         block_cursor++;
 616 
 617                         /* move on to the second word of the entry */
 618                         ASSERT3P(block_cursor, <, block_end);
 619                         *block_cursor = SM2_TYPE_ENCODE(maptype) |
 620                             SM2_OFFSET_ENCODE(start);
 621                         block_cursor++;
 622                         break;
 623                 default:
 624                         panic("%d-word space map entries are not supported",
 625                             words);
 626                         break;
 627                 }
 628                 sm->sm_phys->smp_objsize += words * sizeof (uint64_t);
 629 
 630                 start += run_len;
 631                 size -= run_len;
 632         }
 633         ASSERT0(size);
 634 
 635 }
 636 
 637 /*
 638  * Note: The space map's dbuf must be dirty for the changes in sm_phys to
 639  * take effect.
 640  */
 641 static void
 642 space_map_write_impl(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
 643     uint64_t vdev_id, dmu_tx_t *tx)
 644 {
 645         spa_t *spa = tx->tx_pool->dp_spa;
 646         dmu_buf_t *db;
 647 
 648         space_map_write_intro_debug(sm, maptype, tx);
 649 
 650 #ifdef DEBUG
 651         /*
 652          * We do this right after we write the intro debug entry
 653          * because the estimate does not take it into account.
 654          */
 655         uint64_t initial_objsize = sm->sm_phys->smp_objsize;
 656         uint64_t estimated_growth =
 657             space_map_estimate_optimal_size(sm, rt, SM_NO_VDEVID);
 658         uint64_t estimated_final_objsize = initial_objsize + estimated_growth;
 659 #endif
 660 
 661         /*
 662          * Find the offset right after the last word in the space map
 663          * and use that to get a hold of the last block, so we can
 664          * start appending to it.
 665          */
 666         uint64_t next_word_offset = sm->sm_phys->smp_objsize;
 667         VERIFY0(dmu_buf_hold(sm->sm_os, space_map_object(sm),
 668             next_word_offset, FTAG, &db, DMU_READ_PREFETCH));
 669         ASSERT3U(db->db_size, ==, sm->sm_blksz);
 670 
 671         dmu_buf_will_dirty(db, tx);
 672 
 673         avl_tree_t *t = &rt->rt_root;
 674         for (range_seg_t *rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
 675                 uint64_t offset = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
 676                 uint64_t length = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
 677                 uint8_t words = 1;
 678 
 679                 /*
 680                  * We only write two-word entries when both of the following
 681                  * are true:
 682                  *
 683                  * [1] The feature is enabled.
 684                  * [2] The offset or run is too big for a single-word entry,
 685                  *      or the vdev_id is set (meaning not equal to
 686                  *      SM_NO_VDEVID).
 687                  *
 688                  * Note that for purposes of testing we've added the case that
 689                  * we write two-word entries occasionally when the feature is
 690                  * enabled and zfs_force_some_double_word_sm_entries has been
 691                  * set.
 692                  */
 693                 if (spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_V2) &&
 694                     (offset >= (1ULL << SM_OFFSET_BITS) ||
 695                     length > SM_RUN_MAX ||
 696                     vdev_id != SM_NO_VDEVID ||
 697                     (zfs_force_some_double_word_sm_entries &&
 698                     spa_get_random(100) == 0)))
 699                         words = 2;
 700 
 701                 space_map_write_seg(sm, rs, maptype, vdev_id, words,
 702                     &db, FTAG, tx);
 703         }
 704 
 705         dmu_buf_rele(db, FTAG);
 706 
 707 #ifdef DEBUG
 708         /*
 709          * We expect our estimation to be based on the worst case
 710          * scenario [see comment in space_map_estimate_optimal_size()].
 711          * Therefore we expect the actual objsize to be equal or less
 712          * than whatever we estimated it to be.
 713          */
 714         ASSERT3U(estimated_final_objsize, >=, sm->sm_phys->smp_objsize);
 715 #endif
 716 }
 717 
 718 /*
 719  * Note: This function manipulates the state of the given space map but
 720  * does not hold any locks implicitly. Thus the caller is responsible
 721  * for synchronizing writes to the space map.
 722  */
 723 void
 724 space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
 725     uint64_t vdev_id, dmu_tx_t *tx)
 726 {
 727         objset_t *os = sm->sm_os;
 728 
 729         ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
 730         VERIFY3U(space_map_object(sm), !=, 0);
 731 
 732         dmu_buf_will_dirty(sm->sm_dbuf, tx);
 733 
 734         /*
 735          * This field is no longer necessary since the in-core space map
 736          * now contains the object number but is maintained for backwards
 737          * compatibility.
 738          */
 739         sm->sm_phys->smp_object = sm->sm_object;
 740 
 741         if (range_tree_is_empty(rt)) {
 742                 VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
 743                 return;
 744         }
 745 
 746         if (maptype == SM_ALLOC)
 747                 sm->sm_phys->smp_alloc += range_tree_space(rt);
 748         else
 749                 sm->sm_phys->smp_alloc -= range_tree_space(rt);
 750 
 751         uint64_t nodes = avl_numnodes(&rt->rt_root);
 752         uint64_t rt_space = range_tree_space(rt);
 753 
 754         space_map_write_impl(sm, rt, maptype, vdev_id, tx);
 755 
 756         /*
 757          * Ensure that the space_map's accounting wasn't changed
 758          * while we were in the middle of writing it out.
 759          */
 760         VERIFY3U(nodes, ==, avl_numnodes(&rt->rt_root));
 761         VERIFY3U(range_tree_space(rt), ==, rt_space);
 762 }
 763 
 764 static int
 765 space_map_open_impl(space_map_t *sm)
 766 {
 767         int error;
 768         u_longlong_t blocks;
 769 
 770         error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
 771         if (error)
 772                 return (error);
 773 
 774         dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
 775         sm->sm_phys = sm->sm_dbuf->db_data;
 776         return (0);
 777 }
 778 
 779 int
 780 space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
 781     uint64_t start, uint64_t size, uint8_t shift)
 782 {
 783         space_map_t *sm;
 784         int error;
 785 
 786         ASSERT(*smp == NULL);
 787         ASSERT(os != NULL);
 788         ASSERT(object != 0);
 789 
 790         sm = kmem_zalloc(sizeof (space_map_t), KM_SLEEP);
 791 
 792         sm->sm_start = start;
 793         sm->sm_size = size;
 794         sm->sm_shift = shift;
 795         sm->sm_os = os;
 796         sm->sm_object = object;
 797 
 798         error = space_map_open_impl(sm);
 799         if (error != 0) {
 800                 space_map_close(sm);
 801                 return (error);
 802         }
 803         *smp = sm;
 804 
 805         return (0);
 806 }
 807 
 808 void
 809 space_map_close(space_map_t *sm)
 810 {
 811         if (sm == NULL)
 812                 return;
 813 
 814         if (sm->sm_dbuf != NULL)
 815                 dmu_buf_rele(sm->sm_dbuf, sm);
 816         sm->sm_dbuf = NULL;
 817         sm->sm_phys = NULL;
 818 
 819         kmem_free(sm, sizeof (*sm));
 820 }
 821 
 822 void
 823 space_map_truncate(space_map_t *sm, int blocksize, dmu_tx_t *tx)
 824 {
 825         objset_t *os = sm->sm_os;
 826         spa_t *spa = dmu_objset_spa(os);
 827         dmu_object_info_t doi;
 828 
 829         ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
 830         ASSERT(dmu_tx_is_syncing(tx));
 831         VERIFY3U(dmu_tx_get_txg(tx), <=, spa_final_dirty_txg(spa));
 832 
 833         dmu_object_info_from_db(sm->sm_dbuf, &doi);
 834 
 835         /*
 836          * If the space map has the wrong bonus size (because
 837          * SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or
 838          * the wrong block size (because space_map_blksz has changed),
 839          * free and re-allocate its object with the updated sizes.
 840          *
 841          * Otherwise, just truncate the current object.
 842          */
 843         if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
 844             doi.doi_bonus_size != sizeof (space_map_phys_t)) ||
 845             doi.doi_data_block_size != blocksize ||
 846             doi.doi_metadata_block_size != 1 << space_map_ibs) {
 847                 zfs_dbgmsg("txg %llu, spa %s, sm %p, reallocating "
 848                     "object[%llu]: old bonus %u, old blocksz %u",
 849                     dmu_tx_get_txg(tx), spa_name(spa), sm, sm->sm_object,
 850                     doi.doi_bonus_size, doi.doi_data_block_size);
 851 
 852                 space_map_free(sm, tx);
 853                 dmu_buf_rele(sm->sm_dbuf, sm);
 854 
 855                 sm->sm_object = space_map_alloc(sm->sm_os, blocksize, tx);
 856                 VERIFY0(space_map_open_impl(sm));
 857         } else {
 858                 VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));
 859 
 860                 /*
 861                  * If the spacemap is reallocated, its histogram
 862                  * will be reset.  Do the same in the common case so that
 863                  * bugs related to the uncommon case do not go unnoticed.
 864                  */
 865                 bzero(sm->sm_phys->smp_histogram,
 866                     sizeof (sm->sm_phys->smp_histogram));
 867         }
 868 
 869         dmu_buf_will_dirty(sm->sm_dbuf, tx);
 870         sm->sm_phys->smp_objsize = 0;
 871         sm->sm_phys->smp_alloc = 0;
 872 }
 873 
 874 /*
 875  * Update the in-core space_map allocation and length values.
 876  */
 877 void
 878 space_map_update(space_map_t *sm)
 879 {
 880         if (sm == NULL)
 881                 return;
 882 
 883         sm->sm_alloc = sm->sm_phys->smp_alloc;
 884         sm->sm_length = sm->sm_phys->smp_objsize;
 885 }
 886 
 887 uint64_t
 888 space_map_alloc(objset_t *os, int blocksize, dmu_tx_t *tx)
 889 {
 890         spa_t *spa = dmu_objset_spa(os);
 891         uint64_t object;
 892         int bonuslen;
 893 
 894         if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
 895                 spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
 896                 bonuslen = sizeof (space_map_phys_t);
 897                 ASSERT3U(bonuslen, <=, dmu_bonus_max());
 898         } else {
 899                 bonuslen = SPACE_MAP_SIZE_V0;
 900         }
 901 
 902         object = dmu_object_alloc_ibs(os, DMU_OT_SPACE_MAP, blocksize,
 903             space_map_ibs, DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);
 904 
 905         return (object);
 906 }
 907 
 908 void
 909 space_map_free_obj(objset_t *os, uint64_t smobj, dmu_tx_t *tx)
 910 {
 911         spa_t *spa = dmu_objset_spa(os);
 912         if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
 913                 dmu_object_info_t doi;
 914 
 915                 VERIFY0(dmu_object_info(os, smobj, &doi));
 916                 if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
 917                         spa_feature_decr(spa,
 918                             SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
 919                 }
 920         }
 921 
 922         VERIFY0(dmu_object_free(os, smobj, tx));
 923 }
 924 
 925 void
 926 space_map_free(space_map_t *sm, dmu_tx_t *tx)
 927 {
 928         if (sm == NULL)
 929                 return;
 930 
 931         space_map_free_obj(sm->sm_os, space_map_object(sm), tx);
 932         sm->sm_object = 0;
 933 }
 934 
 935 /*
 936  * Given a range tree, it makes a worst-case estimate of how much
 937  * space would the tree's segments take if they were written to
 938  * the given space map.
 939  */
 940 uint64_t
 941 space_map_estimate_optimal_size(space_map_t *sm, range_tree_t *rt,
 942     uint64_t vdev_id)
 943 {
 944         spa_t *spa = dmu_objset_spa(sm->sm_os);
 945         uint64_t shift = sm->sm_shift;
 946         uint64_t *histogram = rt->rt_histogram;
 947         uint64_t entries_for_seg = 0;
 948 
 949         /*
 950          * In order to get a quick estimate of the optimal size that this
 951          * range tree would have on-disk as a space map, we iterate through
 952          * its histogram buckets instead of iterating through its nodes.
 953          *
 954          * Note that this is a highest-bound/worst-case estimate for the
 955          * following reasons:
 956          *
 957          * 1] We assume that we always add a debug padding for each block
 958          *    we write and we also assume that we start at the last word
 959          *    of a block attempting to write a two-word entry.
 960          * 2] Rounding up errors due to the way segments are distributed
 961          *    in the buckets of the range tree's histogram.
 962          * 3] The activation of zfs_force_some_double_word_sm_entries
 963          *    (tunable) when testing.
 964          *
 965          * = Math and Rounding Errors =
 966          *
 967          * rt_histogram[i] bucket of a range tree represents the number
 968          * of entries in [2^i, (2^(i+1))-1] of that range_tree. Given
 969          * that, we want to divide the buckets into groups: Buckets that
 970          * can be represented using a single-word entry, ones that can
 971          * be represented with a double-word entry, and ones that can
 972          * only be represented with multiple two-word entries.
 973          *
 974          * [Note that if the new encoding feature is not enabled there
 975          * are only two groups: single-word entry buckets and multiple
 976          * single-word entry buckets. The information below assumes
 977          * two-word entries enabled, but it can easily applied when
 978          * the feature is not enabled]
 979          *
 980          * To find the highest bucket that can be represented with a
 981          * single-word entry we look at the maximum run that such entry
 982          * can have, which is 2^(SM_RUN_BITS + sm_shift) [remember that
 983          * the run of a space map entry is shifted by sm_shift, thus we
 984          * add it to the exponent]. This way, excluding the value of the
 985          * maximum run that can be represented by a single-word entry,
 986          * all runs that are smaller exist in buckets 0 to
 987          * SM_RUN_BITS + shift - 1.
 988          *
 989          * To find the highest bucket that can be represented with a
 990          * double-word entry, we follow the same approach. Finally, any
 991          * bucket higher than that are represented with multiple two-word
 992          * entries. To be more specific, if the highest bucket whose
 993          * segments can be represented with a single two-word entry is X,
 994          * then bucket X+1 will need 2 two-word entries for each of its
 995          * segments, X+2 will need 4, X+3 will need 8, ...etc.
 996          *
 997          * With all of the above we make our estimation based on bucket
 998          * groups. There is a rounding error though. As we mentioned in
 999          * the example with the one-word entry, the maximum run that can
1000          * be represented in a one-word entry 2^(SM_RUN_BITS + shift) is
1001          * not part of bucket SM_RUN_BITS + shift - 1. Thus, segments of
1002          * that length fall into the next bucket (and bucket group) where
1003          * we start counting two-word entries and this is one more reason
1004          * why the estimated size may end up being bigger than the actual
1005          * size written.
1006          */
1007         uint64_t size = 0;
1008         uint64_t idx = 0;
1009 
1010         if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) ||
1011             (vdev_id == SM_NO_VDEVID && sm->sm_size < SM_OFFSET_MAX)) {
1012 
1013                 /*
1014                  * If we are trying to force some double word entries just
1015                  * assume the worst-case of every single word entry being
1016                  * written as a double word entry.
1017                  */
1018                 uint64_t entry_size =
1019                     (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) &&
1020                     zfs_force_some_double_word_sm_entries) ?
1021                     (2 * sizeof (uint64_t)) : sizeof (uint64_t);
1022 
1023                 uint64_t single_entry_max_bucket = SM_RUN_BITS + shift - 1;
1024                 for (; idx <= single_entry_max_bucket; idx++)
1025                         size += histogram[idx] * entry_size;
1026 
1027                 if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2)) {
1028                         for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) {
1029                                 ASSERT3U(idx, >=, single_entry_max_bucket);
1030                                 entries_for_seg =
1031                                     1ULL << (idx - single_entry_max_bucket);
1032                                 size += histogram[idx] *
1033                                     entries_for_seg * entry_size;
1034                         }
1035                         return (size);
1036                 }
1037         }
1038 
1039         ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2));
1040 
1041         uint64_t double_entry_max_bucket = SM2_RUN_BITS + shift - 1;
1042         for (; idx <= double_entry_max_bucket; idx++)
1043                 size += histogram[idx] * 2 * sizeof (uint64_t);
1044 
1045         for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) {
1046                 ASSERT3U(idx, >=, double_entry_max_bucket);
1047                 entries_for_seg = 1ULL << (idx - double_entry_max_bucket);
1048                 size += histogram[idx] *
1049                     entries_for_seg * 2 * sizeof (uint64_t);
1050         }
1051 
1052         /*
1053          * Assume the worst case where we start with the padding at the end
1054          * of the current block and we add an extra padding entry at the end
1055          * of all subsequent blocks.
1056          */
1057         size += ((size / sm->sm_blksz) + 1) * sizeof (uint64_t);
1058 
1059         return (size);
1060 }
1061 
1062 uint64_t
1063 space_map_object(space_map_t *sm)
1064 {
1065         return (sm != NULL ? sm->sm_object : 0);
1066 }
1067 
1068 /*
1069  * Returns the already synced, on-disk allocated space.
1070  */
1071 uint64_t
1072 space_map_allocated(space_map_t *sm)
1073 {
1074         return (sm != NULL ? sm->sm_alloc : 0);
1075 }
1076 
1077 /*
1078  * Returns the already synced, on-disk length;
1079  */
1080 uint64_t
1081 space_map_length(space_map_t *sm)
1082 {
1083         return (sm != NULL ? sm->sm_length : 0);
1084 }
1085 
1086 /*
1087  * Returns the allocated space that is currently syncing.
1088  */
1089 int64_t
1090 space_map_alloc_delta(space_map_t *sm)
1091 {
1092         if (sm == NULL)
1093                 return (0);
1094         ASSERT(sm->sm_dbuf != NULL);
1095         return (sm->sm_phys->smp_alloc - space_map_allocated(sm));
1096 }