Print this page
Zone ID only matches once, don't loop after a match
Fix nlm_unexport
| Split |
Close |
| Expand all |
| Collapse all |
--- old/usr/src/uts/common/klm/nlm_impl.c
+++ new/usr/src/uts/common/klm/nlm_impl.c
1 1 /*
2 2 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3 3 * Authors: Doug Rabson <dfr@rabson.org>
4 4 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
5 5 *
6 6 * Redistribution and use in source and binary forms, with or without
7 7 * modification, are permitted provided that the following conditions
8 8 * are met:
9 9 * 1. Redistributions of source code must retain the above copyright
10 10 * notice, this list of conditions and the following disclaimer.
11 11 * 2. Redistributions in binary form must reproduce the above copyright
12 12 * notice, this list of conditions and the following disclaimer in the
13 13 * documentation and/or other materials provided with the distribution.
14 14 *
15 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 25 * SUCH DAMAGE.
26 26 */
27 27
28 28 /*
29 29 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
30 30 * Copyright (c) 2012 by Delphix. All rights reserved.
31 31 */
32 32
33 33 /*
34 34 * NFS LockManager, start/stop, support functions, etc.
35 35 * Most of the interesting code is here.
36 36 *
37 37 * Source code derived from FreeBSD nlm_prot_impl.c
38 38 */
39 39
40 40 #include <sys/param.h>
41 41 #include <sys/systm.h>
42 42 #include <sys/thread.h>
43 43 #include <sys/fcntl.h>
44 44 #include <sys/flock.h>
45 45 #include <sys/mount.h>
46 46 #include <sys/priv.h>
47 47 #include <sys/proc.h>
48 48 #include <sys/share.h>
49 49 #include <sys/socket.h>
50 50 #include <sys/syscall.h>
51 51 #include <sys/syslog.h>
52 52 #include <sys/systm.h>
53 53 #include <sys/class.h>
54 54 #include <sys/unistd.h>
55 55 #include <sys/vnode.h>
56 56 #include <sys/vfs.h>
57 57 #include <sys/queue.h>
58 58 #include <sys/bitmap.h>
59 59 #include <sys/sdt.h>
60 60 #include <netinet/in.h>
61 61
62 62 #include <rpc/rpc.h>
63 63 #include <rpc/xdr.h>
64 64 #include <rpc/pmap_prot.h>
65 65 #include <rpc/pmap_clnt.h>
66 66 #include <rpc/rpcb_prot.h>
67 67
68 68 #include <rpcsvc/nlm_prot.h>
69 69 #include <rpcsvc/sm_inter.h>
70 70 #include <rpcsvc/nsm_addr.h>
71 71
72 72 #include <nfs/nfs.h>
73 73 #include <nfs/nfs_clnt.h>
74 74 #include <nfs/export.h>
75 75 #include <nfs/rnode.h>
76 76 #include <nfs/lm.h>
77 77
78 78 #include "nlm_impl.h"
79 79
80 80 struct nlm_knc {
81 81 struct knetconfig n_knc;
82 82 const char *n_netid;
83 83 };
84 84
85 85 /*
86 86 * Number of attempts NLM tries to obtain RPC binding
87 87 * of local statd.
88 88 */
89 89 #define NLM_NSM_RPCBIND_RETRIES 10
90 90
91 91 /*
92 92 * Timeout (in seconds) NLM waits before making another
93 93 * attempt to obtain RPC binding of local statd.
94 94 */
95 95 #define NLM_NSM_RPCBIND_TIMEOUT 5
96 96
97 97 /*
98 98 * Total number of sysids in NLM sysid bitmap
99 99 */
100 100 #define NLM_BMAP_NITEMS (LM_SYSID_MAX + 1)
101 101
102 102 /*
103 103 * Number of ulong_t words in bitmap that is used
104 104 * for allocation of sysid numbers.
105 105 */
106 106 #define NLM_BMAP_WORDS (NLM_BMAP_NITEMS / BT_NBIPUL)
107 107
108 108 /*
109 109 * Given an integer x, the macro returns
110 110 * -1 if x is negative,
111 111 * 0 if x is zero
112 112 * 1 if x is positive
113 113 */
114 114 #define SIGN(x) (((x) > 0) - ((x) < 0))
115 115
116 116 #define ARRSIZE(arr) (sizeof (arr) / sizeof ((arr)[0]))
117 117 #define NLM_KNCS ARRSIZE(nlm_netconfigs)
118 118
119 119 krwlock_t lm_lck;
120 120
121 121 /*
122 122 * Zero timeout for asynchronous NLM RPC operations
123 123 */
124 124 static const struct timeval nlm_rpctv_zero = { 0, 0 };
125 125
126 126 /*
127 127 * List of all Zone globals nlm_globals instences
128 128 * linked together.
129 129 */
130 130 static struct nlm_globals_list nlm_zones_list; /* (g) */
131 131
132 132 /*
133 133 * NLM kmem caches
134 134 */
135 135 static struct kmem_cache *nlm_hosts_cache = NULL;
136 136 static struct kmem_cache *nlm_vhold_cache = NULL;
137 137
138 138 /*
139 139 * A bitmap for allocation of new sysids.
140 140 * Sysid is a unique number between LM_SYSID
141 141 * and LM_SYSID_MAX. Sysid represents unique remote
142 142 * host that does file locks on the given host.
143 143 */
144 144 static ulong_t nlm_sysid_bmap[NLM_BMAP_WORDS]; /* (g) */
145 145 static int nlm_sysid_nidx; /* (g) */
146 146
147 147 /*
148 148 * RPC service registration for all transports
149 149 */
150 150 static SVC_CALLOUT nlm_svcs[] = {
151 151 { NLM_PROG, 4, 4, nlm_prog_4 }, /* NLM4_VERS */
152 152 { NLM_PROG, 1, 3, nlm_prog_3 } /* NLM_VERS - NLM_VERSX */
153 153 };
154 154
155 155 static SVC_CALLOUT_TABLE nlm_sct = {
156 156 ARRSIZE(nlm_svcs),
157 157 FALSE,
158 158 nlm_svcs
159 159 };
160 160
161 161 /*
162 162 * Static table of all netid/knetconfig network
163 163 * lock manager can work with. nlm_netconfigs table
164 164 * is used when we need to get valid knetconfig by
165 165 * netid and vice versa.
166 166 *
167 167 * Knetconfigs are activated either by the call from
168 168 * user-space lockd daemon (server side) or by taking
169 169 * knetconfig from NFS mountinfo (client side)
170 170 */
171 171 static struct nlm_knc nlm_netconfigs[] = { /* (g) */
172 172 /* UDP */
173 173 {
174 174 { NC_TPI_CLTS, NC_INET, NC_UDP, NODEV },
175 175 "udp",
176 176 },
177 177 /* TCP */
178 178 {
179 179 { NC_TPI_COTS_ORD, NC_INET, NC_TCP, NODEV },
180 180 "tcp",
181 181 },
182 182 /* UDP over IPv6 */
183 183 {
184 184 { NC_TPI_CLTS, NC_INET6, NC_UDP, NODEV },
185 185 "udp6",
186 186 },
187 187 /* TCP over IPv6 */
188 188 {
189 189 { NC_TPI_COTS_ORD, NC_INET6, NC_TCP, NODEV },
190 190 "tcp6",
191 191 },
192 192 /* ticlts (loopback over UDP) */
193 193 {
194 194 { NC_TPI_CLTS, NC_LOOPBACK, NC_NOPROTO, NODEV },
195 195 "ticlts",
196 196 },
197 197 /* ticotsord (loopback over TCP) */
198 198 {
199 199 { NC_TPI_COTS_ORD, NC_LOOPBACK, NC_NOPROTO, NODEV },
200 200 "ticotsord",
201 201 },
202 202 };
203 203
204 204 /*
205 205 * NLM misc. function
206 206 */
207 207 static void nlm_copy_netbuf(struct netbuf *, struct netbuf *);
208 208 static int nlm_netbuf_addrs_cmp(struct netbuf *, struct netbuf *);
209 209 static void nlm_kmem_reclaim(void *);
210 210 static void nlm_pool_shutdown(void);
211 211 static void nlm_suspend_zone(struct nlm_globals *);
212 212 static void nlm_resume_zone(struct nlm_globals *);
213 213 static void nlm_nsm_clnt_init(CLIENT *, struct nlm_nsm *);
214 214 static void nlm_netbuf_to_netobj(struct netbuf *, int *, netobj *);
215 215
216 216 /*
217 217 * NLM thread functions
218 218 */
219 219 static void nlm_gc(struct nlm_globals *);
220 220 static void nlm_reclaimer(struct nlm_host *);
221 221
222 222 /*
223 223 * NLM NSM functions
224 224 */
225 225 static int nlm_init_local_knc(struct knetconfig *);
226 226 static int nlm_nsm_init_local(struct nlm_nsm *);
227 227 static int nlm_nsm_init(struct nlm_nsm *, struct knetconfig *, struct netbuf *);
228 228 static void nlm_nsm_fini(struct nlm_nsm *);
229 229 static enum clnt_stat nlm_nsm_simu_crash(struct nlm_nsm *);
230 230 static enum clnt_stat nlm_nsm_stat(struct nlm_nsm *, int32_t *);
231 231 static enum clnt_stat nlm_nsm_mon(struct nlm_nsm *, char *, uint16_t);
232 232 static enum clnt_stat nlm_nsm_unmon(struct nlm_nsm *, char *);
233 233
234 234 /*
235 235 * NLM host functions
236 236 */
237 237 static int nlm_host_ctor(void *, void *, int);
238 238 static void nlm_host_dtor(void *, void *);
239 239 static void nlm_host_destroy(struct nlm_host *);
240 240 static struct nlm_host *nlm_host_create(char *, const char *,
241 241 struct knetconfig *, struct netbuf *);
242 242 static struct nlm_host *nlm_host_find_locked(struct nlm_globals *,
243 243 const char *, struct netbuf *, avl_index_t *);
244 244 static void nlm_host_unregister(struct nlm_globals *, struct nlm_host *);
245 245 static void nlm_host_gc_vholds(struct nlm_host *);
246 246 static bool_t nlm_host_has_srv_locks(struct nlm_host *);
247 247 static bool_t nlm_host_has_cli_locks(struct nlm_host *);
248 248 static bool_t nlm_host_has_locks(struct nlm_host *);
249 249
250 250 /*
251 251 * NLM vhold functions
252 252 */
253 253 static int nlm_vhold_ctor(void *, void *, int);
254 254 static void nlm_vhold_dtor(void *, void *);
255 255 static void nlm_vhold_destroy(struct nlm_host *,
256 256 struct nlm_vhold *);
257 257 static bool_t nlm_vhold_busy(struct nlm_host *, struct nlm_vhold *);
258 258 static void nlm_vhold_clean(struct nlm_vhold *, int);
259 259
260 260 /*
261 261 * NLM client/server sleeping locks/share reservation functions
262 262 */
263 263 struct nlm_slreq *nlm_slreq_find_locked(struct nlm_host *,
264 264 struct nlm_vhold *, struct flock64 *);
265 265 static struct nlm_shres *nlm_shres_create_item(struct shrlock *, vnode_t *);
266 266 static void nlm_shres_destroy_item(struct nlm_shres *);
267 267 static bool_t nlm_shres_equal(struct shrlock *, struct shrlock *);
268 268
269 269 /*
270 270 * NLM initialization functions.
271 271 */
272 272 void
273 273 nlm_init(void)
274 274 {
275 275 nlm_hosts_cache = kmem_cache_create("nlm_host_cache",
276 276 sizeof (struct nlm_host), 0, nlm_host_ctor, nlm_host_dtor,
277 277 nlm_kmem_reclaim, NULL, NULL, 0);
278 278
279 279 nlm_vhold_cache = kmem_cache_create("nlm_vhold_cache",
280 280 sizeof (struct nlm_vhold), 0, nlm_vhold_ctor, nlm_vhold_dtor,
281 281 NULL, NULL, NULL, 0);
282 282
283 283 nlm_rpc_init();
284 284 TAILQ_INIT(&nlm_zones_list);
285 285
286 286 /* initialize sysids bitmap */
287 287 bzero(nlm_sysid_bmap, sizeof (nlm_sysid_bmap));
288 288 nlm_sysid_nidx = 1;
289 289
290 290 /*
291 291 * Reserv the sysid #0, because it's associated
292 292 * with local locks only. Don't let to allocate
293 293 * it for remote locks.
294 294 */
295 295 BT_SET(nlm_sysid_bmap, 0);
296 296 }
297 297
298 298 void
299 299 nlm_globals_register(struct nlm_globals *g)
300 300 {
301 301 rw_enter(&lm_lck, RW_WRITER);
302 302 TAILQ_INSERT_TAIL(&nlm_zones_list, g, nlm_link);
303 303 rw_exit(&lm_lck);
304 304 }
305 305
306 306 void
307 307 nlm_globals_unregister(struct nlm_globals *g)
308 308 {
309 309 rw_enter(&lm_lck, RW_WRITER);
310 310 TAILQ_REMOVE(&nlm_zones_list, g, nlm_link);
311 311 rw_exit(&lm_lck);
312 312 }
313 313
314 314 /* ARGSUSED */
315 315 static void
316 316 nlm_kmem_reclaim(void *cdrarg)
317 317 {
318 318 struct nlm_globals *g;
319 319
320 320 rw_enter(&lm_lck, RW_READER);
321 321 TAILQ_FOREACH(g, &nlm_zones_list, nlm_link)
322 322 cv_broadcast(&g->nlm_gc_sched_cv);
323 323
324 324 rw_exit(&lm_lck);
325 325 }
326 326
327 327 /*
328 328 * NLM garbage collector thread (GC).
329 329 *
330 330 * NLM GC periodically checks whether there're any host objects
331 331 * that can be cleaned up. It also releases stale vnodes that
332 332 * live on the server side (under protection of vhold objects).
333 333 *
334 334 * NLM host objects are cleaned up from GC thread because
335 335 * operations helping us to determine whether given host has
336 336 * any locks can be quite expensive and it's not good to call
337 337 * them every time the very last reference to the host is dropped.
338 338 * Thus we use "lazy" approach for hosts cleanup.
339 339 *
340 340 * The work of GC is to release stale vnodes on the server side
341 341 * and destroy hosts that haven't any locks and any activity for
342 342 * some time (i.e. idle hosts).
343 343 */
344 344 static void
345 345 nlm_gc(struct nlm_globals *g)
346 346 {
347 347 struct nlm_host *hostp;
348 348 clock_t now, idle_period;
349 349
350 350 idle_period = SEC_TO_TICK(g->cn_idle_tmo);
351 351 mutex_enter(&g->lock);
352 352 for (;;) {
353 353 /*
354 354 * GC thread can be explicitly scheduled from
355 355 * memory reclamation function.
356 356 */
357 357 (void) cv_timedwait(&g->nlm_gc_sched_cv, &g->lock,
358 358 ddi_get_lbolt() + idle_period);
359 359
360 360 /*
361 361 * NLM is shutting down, time to die.
362 362 */
363 363 if (g->run_status == NLM_ST_STOPPING)
364 364 break;
365 365
366 366 now = ddi_get_lbolt();
367 367 DTRACE_PROBE2(gc__start, struct nlm_globals *, g,
368 368 clock_t, now);
369 369
370 370 /*
371 371 * Find all obviously unused vholds and destroy them.
372 372 */
373 373 for (hostp = avl_first(&g->nlm_hosts_tree); hostp != NULL;
374 374 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp)) {
375 375 struct nlm_vhold *nvp;
376 376
377 377 mutex_enter(&hostp->nh_lock);
378 378
379 379 nvp = TAILQ_FIRST(&hostp->nh_vholds_list);
380 380 while (nvp != NULL) {
381 381 struct nlm_vhold *new_nvp;
382 382
383 383 new_nvp = TAILQ_NEXT(nvp, nv_link);
384 384
385 385 /*
386 386 * If these conditions are met, the vhold is
387 387 * obviously unused and we will destroy it. In
388 388 * a case either v_filocks and/or v_shrlocks is
389 389 * non-NULL the vhold might still be unused by
390 390 * the host, but it is expensive to check that.
391 391 * We defer such check until the host is idle.
392 392 * The expensive check is done below without
393 393 * the global lock held.
394 394 */
395 395 if (nvp->nv_refcnt == 0 &&
396 396 nvp->nv_vp->v_filocks == NULL &&
397 397 nvp->nv_vp->v_shrlocks == NULL) {
398 398 nlm_vhold_destroy(hostp, nvp);
399 399 }
400 400
401 401 nvp = new_nvp;
402 402 }
403 403
404 404 mutex_exit(&hostp->nh_lock);
405 405 }
406 406
407 407 /*
408 408 * Handle all hosts that are unused at the moment
409 409 * until we meet one with idle timeout in future.
410 410 */
411 411 while ((hostp = TAILQ_FIRST(&g->nlm_idle_hosts)) != NULL) {
412 412 bool_t has_locks;
413 413
414 414 if (hostp->nh_idle_timeout > now)
415 415 break;
416 416
417 417 /*
418 418 * Drop global lock while doing expensive work
419 419 * on this host. We'll re-check any conditions
420 420 * that might change after retaking the global
421 421 * lock.
422 422 */
423 423 mutex_exit(&g->lock);
424 424 mutex_enter(&hostp->nh_lock);
425 425
426 426 /*
427 427 * nlm_globals lock was dropped earlier because
428 428 * garbage collecting of vholds and checking whether
429 429 * host has any locks/shares are expensive operations.
430 430 */
431 431 nlm_host_gc_vholds(hostp);
432 432 has_locks = nlm_host_has_locks(hostp);
433 433
434 434 mutex_exit(&hostp->nh_lock);
435 435 mutex_enter(&g->lock);
436 436
437 437 /*
438 438 * While we were doing expensive operations
439 439 * outside of nlm_globals critical section,
440 440 * somebody could take the host and remove it
441 441 * from the idle list. Whether its been
442 442 * reinserted or not, our information about
443 443 * the host is outdated, and we should take no
444 444 * further action.
445 445 */
446 446 if ((hostp->nh_flags & NLM_NH_INIDLE) == 0 ||
447 447 hostp->nh_idle_timeout > now)
448 448 continue;
449 449
450 450 /*
451 451 * If the host has locks we have to renew the
452 452 * host's timeout and put it at the end of LRU
453 453 * list.
454 454 */
455 455 if (has_locks) {
456 456 TAILQ_REMOVE(&g->nlm_idle_hosts,
457 457 hostp, nh_link);
458 458 hostp->nh_idle_timeout = now + idle_period;
459 459 TAILQ_INSERT_TAIL(&g->nlm_idle_hosts,
460 460 hostp, nh_link);
461 461 continue;
462 462 }
463 463
464 464 /*
465 465 * We're here if all the following conditions hold:
466 466 * 1) Host hasn't any locks or share reservations
467 467 * 2) Host is unused
468 468 * 3) Host wasn't touched by anyone at least for
469 469 * g->cn_idle_tmo seconds.
470 470 *
471 471 * So, now we can destroy it.
472 472 */
473 473 nlm_host_unregister(g, hostp);
474 474 mutex_exit(&g->lock);
475 475
476 476 nlm_host_unmonitor(g, hostp);
477 477 nlm_host_destroy(hostp);
478 478 mutex_enter(&g->lock);
479 479 if (g->run_status == NLM_ST_STOPPING)
480 480 break;
481 481
482 482 }
483 483
484 484 DTRACE_PROBE(gc__end);
485 485 }
486 486
487 487 DTRACE_PROBE1(gc__exit, struct nlm_globals *, g);
488 488
489 489 /* Let others know that GC has died */
490 490 g->nlm_gc_thread = NULL;
491 491 mutex_exit(&g->lock);
492 492
493 493 cv_broadcast(&g->nlm_gc_finish_cv);
494 494 zthread_exit();
495 495 }
496 496
497 497 /*
498 498 * Thread reclaim locks/shares acquired by the client side
499 499 * on the given server represented by hostp.
500 500 */
501 501 static void
502 502 nlm_reclaimer(struct nlm_host *hostp)
503 503 {
504 504 struct nlm_globals *g;
505 505
506 506 mutex_enter(&hostp->nh_lock);
507 507 hostp->nh_reclaimer = curthread;
508 508 mutex_exit(&hostp->nh_lock);
509 509
510 510 g = zone_getspecific(nlm_zone_key, curzone);
511 511 nlm_reclaim_client(g, hostp);
512 512
513 513 mutex_enter(&hostp->nh_lock);
514 514 hostp->nh_flags &= ~NLM_NH_RECLAIM;
515 515 hostp->nh_reclaimer = NULL;
516 516 cv_broadcast(&hostp->nh_recl_cv);
517 517 mutex_exit(&hostp->nh_lock);
518 518
519 519 /*
520 520 * Host was explicitly referenced before
521 521 * nlm_reclaim() was called, release it
522 522 * here.
523 523 */
524 524 nlm_host_release(g, hostp);
525 525 zthread_exit();
526 526 }
527 527
528 528 /*
529 529 * Copy a struct netobj. (see xdr.h)
530 530 */
531 531 void
532 532 nlm_copy_netobj(struct netobj *dst, struct netobj *src)
533 533 {
534 534 dst->n_len = src->n_len;
535 535 dst->n_bytes = kmem_alloc(src->n_len, KM_SLEEP);
536 536 bcopy(src->n_bytes, dst->n_bytes, src->n_len);
537 537 }
538 538
539 539 /*
540 540 * An NLM specificw replacement for clnt_call().
541 541 * nlm_clnt_call() is used by all RPC functions generated
542 542 * from nlm_prot.x specification. The function is aware
543 543 * about some pitfalls of NLM RPC procedures and has a logic
544 544 * that handles them properly.
545 545 */
546 546 enum clnt_stat
547 547 nlm_clnt_call(CLIENT *clnt, rpcproc_t procnum, xdrproc_t xdr_args,
548 548 caddr_t argsp, xdrproc_t xdr_result, caddr_t resultp, struct timeval wait)
549 549 {
550 550 k_sigset_t oldmask;
551 551 enum clnt_stat stat;
552 552 bool_t sig_blocked = FALSE;
553 553
554 554 /*
555 555 * If NLM RPC procnum is one of the NLM _RES procedures
556 556 * that are used to reply to asynchronous NLM RPC
557 557 * (MSG calls), explicitly set RPC timeout to zero.
558 558 * Client doesn't send a reply to RES procedures, so
559 559 * we don't need to wait anything.
560 560 *
561 561 * NOTE: we ignore NLM4_*_RES procnums because they are
562 562 * equal to NLM_*_RES numbers.
563 563 */
564 564 if (procnum >= NLM_TEST_RES && procnum <= NLM_GRANTED_RES)
565 565 wait = nlm_rpctv_zero;
566 566
567 567 /*
568 568 * We need to block signals in case of NLM_CANCEL RPC
569 569 * in order to prevent interruption of network RPC
570 570 * calls.
571 571 */
572 572 if (procnum == NLM_CANCEL) {
573 573 k_sigset_t newmask;
574 574
575 575 sigfillset(&newmask);
576 576 sigreplace(&newmask, &oldmask);
577 577 sig_blocked = TRUE;
578 578 }
579 579
580 580 stat = clnt_call(clnt, procnum, xdr_args,
581 581 argsp, xdr_result, resultp, wait);
582 582
583 583 /*
584 584 * Restore signal mask back if signals were blocked
585 585 */
586 586 if (sig_blocked)
587 587 sigreplace(&oldmask, (k_sigset_t *)NULL);
588 588
589 589 return (stat);
590 590 }
591 591
592 592 /*
593 593 * Suspend NLM client/server in the given zone.
594 594 *
595 595 * During suspend operation we mark those hosts
596 596 * that have any locks with NLM_NH_SUSPEND flags,
597 597 * so that they can be checked later, when resume
598 598 * operation occurs.
599 599 */
600 600 static void
601 601 nlm_suspend_zone(struct nlm_globals *g)
602 602 {
603 603 struct nlm_host *hostp;
604 604 struct nlm_host_list all_hosts;
605 605
606 606 /*
607 607 * Note that while we're doing suspend, GC thread is active
608 608 * and it can destroy some hosts while we're walking through
609 609 * the hosts tree. To prevent that and make suspend logic
610 610 * a bit more simple we put all hosts to local "all_hosts"
611 611 * list and increment reference counter of each host.
612 612 * This guaranties that no hosts will be released while
613 613 * we're doing suspend.
614 614 * NOTE: reference of each host must be dropped during
615 615 * resume operation.
616 616 */
617 617 TAILQ_INIT(&all_hosts);
618 618 mutex_enter(&g->lock);
619 619 for (hostp = avl_first(&g->nlm_hosts_tree); hostp != NULL;
620 620 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp)) {
621 621 /*
622 622 * If host is idle, remove it from idle list and
623 623 * clear idle flag. That is done to prevent GC
624 624 * from touching this host.
625 625 */
626 626 if (hostp->nh_flags & NLM_NH_INIDLE) {
627 627 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link);
628 628 hostp->nh_flags &= ~NLM_NH_INIDLE;
629 629 }
630 630
631 631 hostp->nh_refs++;
632 632 TAILQ_INSERT_TAIL(&all_hosts, hostp, nh_link);
633 633 }
634 634
635 635 /*
636 636 * Now we can walk through all hosts on the system
637 637 * with zone globals lock released. The fact the
638 638 * we have taken a reference to each host guaranties
639 639 * that no hosts can be destroyed during that process.
640 640 */
641 641 mutex_exit(&g->lock);
642 642 while ((hostp = TAILQ_FIRST(&all_hosts)) != NULL) {
643 643 mutex_enter(&hostp->nh_lock);
644 644 if (nlm_host_has_locks(hostp))
645 645 hostp->nh_flags |= NLM_NH_SUSPEND;
646 646
647 647 mutex_exit(&hostp->nh_lock);
648 648 TAILQ_REMOVE(&all_hosts, hostp, nh_link);
649 649 }
650 650 }
651 651
652 652 /*
653 653 * Resume NLM hosts for the given zone.
654 654 *
655 655 * nlm_resume_zone() is called after hosts were suspended
656 656 * (see nlm_suspend_zone) and its main purpose to check
657 657 * whether remote locks owned by hosts are still in consistent
658 658 * state. If they aren't, resume function tries to reclaim
659 659 * locks (for client side hosts) and clean locks (for
660 660 * server side hosts).
661 661 */
662 662 static void
663 663 nlm_resume_zone(struct nlm_globals *g)
664 664 {
665 665 struct nlm_host *hostp, *h_next;
666 666
667 667 mutex_enter(&g->lock);
668 668 hostp = avl_first(&g->nlm_hosts_tree);
669 669
670 670 /*
671 671 * In nlm_suspend_zone() the reference counter of each
672 672 * host was incremented, so we can safely iterate through
673 673 * all hosts without worrying that any host we touch will
674 674 * be removed at the moment.
675 675 */
676 676 while (hostp != NULL) {
677 677 struct nlm_nsm nsm;
678 678 enum clnt_stat stat;
679 679 int32_t sm_state;
680 680 int error;
681 681 bool_t resume_failed = FALSE;
682 682
683 683 h_next = AVL_NEXT(&g->nlm_hosts_tree, hostp);
684 684 mutex_exit(&g->lock);
685 685
686 686 DTRACE_PROBE1(resume__host, struct nlm_host *, hostp);
687 687
688 688 /*
689 689 * Suspend operation marked that the host doesn't
690 690 * have any locks. Skip it.
691 691 */
692 692 if (!(hostp->nh_flags & NLM_NH_SUSPEND))
693 693 goto cycle_end;
694 694
695 695 error = nlm_nsm_init(&nsm, &hostp->nh_knc, &hostp->nh_addr);
696 696 if (error != 0) {
697 697 NLM_ERR("Resume: Failed to contact to NSM of host %s "
698 698 "[error=%d]\n", hostp->nh_name, error);
699 699 resume_failed = TRUE;
700 700 goto cycle_end;
701 701 }
702 702
703 703 stat = nlm_nsm_stat(&nsm, &sm_state);
704 704 if (stat != RPC_SUCCESS) {
705 705 NLM_ERR("Resume: Failed to call SM_STAT operation for "
706 706 "host %s [stat=%d]\n", hostp->nh_name, stat);
707 707 resume_failed = TRUE;
708 708 nlm_nsm_fini(&nsm);
709 709 goto cycle_end;
710 710 }
711 711
712 712 if (sm_state != hostp->nh_state) {
713 713 /*
714 714 * Current SM state of the host isn't equal
715 715 * to the one host had when it was suspended.
716 716 * Probably it was rebooted. Try to reclaim
717 717 * locks if the host has any on its client side.
718 718 * Also try to clean up its server side locks
719 719 * (if the host has any).
720 720 */
721 721 nlm_host_notify_client(hostp, sm_state);
722 722 nlm_host_notify_server(hostp, sm_state);
723 723 }
724 724
725 725 nlm_nsm_fini(&nsm);
726 726
727 727 cycle_end:
728 728 if (resume_failed) {
729 729 /*
730 730 * Resume failed for the given host.
731 731 * Just clean up all resources it owns.
732 732 */
733 733 nlm_host_notify_server(hostp, 0);
734 734 nlm_client_cancel_all(g, hostp);
735 735 }
736 736
737 737 hostp->nh_flags &= ~NLM_NH_SUSPEND;
738 738 nlm_host_release(g, hostp);
739 739 hostp = h_next;
740 740 mutex_enter(&g->lock);
741 741 }
742 742
743 743 mutex_exit(&g->lock);
744 744 }
745 745
746 746 /*
747 747 * NLM functions responsible for operations on NSM handle.
748 748 */
749 749
750 750 /*
751 751 * Initialize knetconfig that is used for communication
752 752 * with local statd via loopback interface.
753 753 */
754 754 static int
755 755 nlm_init_local_knc(struct knetconfig *knc)
756 756 {
757 757 int error;
758 758 vnode_t *vp;
759 759
760 760 bzero(knc, sizeof (*knc));
761 761 error = lookupname("/dev/tcp", UIO_SYSSPACE,
762 762 FOLLOW, NULLVPP, &vp);
763 763 if (error != 0)
764 764 return (error);
765 765
766 766 knc->knc_semantics = NC_TPI_COTS;
767 767 knc->knc_protofmly = NC_INET;
768 768 knc->knc_proto = NC_TCP;
769 769 knc->knc_rdev = vp->v_rdev;
770 770 VN_RELE(vp);
771 771
772 772
773 773 return (0);
774 774 }
775 775
776 776 /*
777 777 * Initialize NSM handle that will be used to talk
778 778 * to local statd via loopback interface.
779 779 */
780 780 static int
781 781 nlm_nsm_init_local(struct nlm_nsm *nsm)
782 782 {
783 783 int error;
784 784 struct knetconfig knc;
785 785 struct sockaddr_in sin;
786 786 struct netbuf nb;
787 787
788 788 error = nlm_init_local_knc(&knc);
789 789 if (error != 0)
790 790 return (error);
791 791
792 792 bzero(&sin, sizeof (sin));
793 793 sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
794 794 sin.sin_family = AF_INET;
795 795
796 796 nb.buf = (char *)&sin;
797 797 nb.len = nb.maxlen = sizeof (sin);
798 798
799 799 return (nlm_nsm_init(nsm, &knc, &nb));
800 800 }
801 801
802 802 /*
803 803 * Initialize NSM handle used for talking to statd
804 804 */
805 805 static int
806 806 nlm_nsm_init(struct nlm_nsm *nsm, struct knetconfig *knc, struct netbuf *nb)
807 807 {
808 808 enum clnt_stat stat;
809 809 int error, retries;
810 810
811 811 bzero(nsm, sizeof (*nsm));
812 812 nsm->ns_knc = *knc;
813 813 nlm_copy_netbuf(&nsm->ns_addr, nb);
814 814
815 815 /*
816 816 * Try several times to get the port of statd service,
817 817 * If rpcbind_getaddr returns RPC_PROGNOTREGISTERED,
818 818 * retry an attempt, but wait for NLM_NSM_RPCBIND_TIMEOUT
819 819 * seconds berofore.
820 820 */
821 821 for (retries = 0; retries < NLM_NSM_RPCBIND_RETRIES; retries++) {
822 822 stat = rpcbind_getaddr(&nsm->ns_knc, SM_PROG,
823 823 SM_VERS, &nsm->ns_addr);
824 824 if (stat != RPC_SUCCESS) {
825 825 if (stat == RPC_PROGNOTREGISTERED) {
826 826 delay(SEC_TO_TICK(NLM_NSM_RPCBIND_TIMEOUT));
827 827 continue;
828 828 }
829 829 }
830 830
831 831 break;
832 832 }
833 833
834 834 if (stat != RPC_SUCCESS) {
835 835 DTRACE_PROBE2(rpcbind__error, enum clnt_stat, stat,
836 836 int, retries);
837 837 error = ENOENT;
838 838 goto error;
839 839 }
840 840
841 841 /*
842 842 * Create an RPC handle that'll be used for communication with local
843 843 * statd using the status monitor protocol.
844 844 */
845 845 error = clnt_tli_kcreate(&nsm->ns_knc, &nsm->ns_addr, SM_PROG, SM_VERS,
846 846 0, NLM_RPC_RETRIES, zone_kcred(), &nsm->ns_handle);
847 847 if (error != 0)
848 848 goto error;
849 849
850 850 /*
851 851 * Create an RPC handle that'll be used for communication with the
852 852 * local statd using the address registration protocol.
853 853 */
854 854 error = clnt_tli_kcreate(&nsm->ns_knc, &nsm->ns_addr, NSM_ADDR_PROGRAM,
855 855 NSM_ADDR_V1, 0, NLM_RPC_RETRIES, zone_kcred(),
856 856 &nsm->ns_addr_handle);
857 857 if (error != 0)
858 858 goto error;
859 859
860 860 sema_init(&nsm->ns_sem, 1, NULL, SEMA_DEFAULT, NULL);
861 861 return (0);
862 862
863 863 error:
864 864 kmem_free(nsm->ns_addr.buf, nsm->ns_addr.maxlen);
865 865 if (nsm->ns_handle) {
866 866 ASSERT(nsm->ns_handle->cl_auth != NULL);
867 867 auth_destroy(nsm->ns_handle->cl_auth);
868 868 CLNT_DESTROY(nsm->ns_handle);
869 869 }
870 870
871 871 return (error);
872 872 }
873 873
874 874 static void
875 875 nlm_nsm_fini(struct nlm_nsm *nsm)
876 876 {
877 877 kmem_free(nsm->ns_addr.buf, nsm->ns_addr.maxlen);
878 878 if (nsm->ns_addr_handle->cl_auth != NULL)
879 879 auth_destroy(nsm->ns_addr_handle->cl_auth);
880 880 CLNT_DESTROY(nsm->ns_addr_handle);
881 881 nsm->ns_addr_handle = NULL;
882 882 if (nsm->ns_handle->cl_auth != NULL)
883 883 auth_destroy(nsm->ns_handle->cl_auth);
884 884 CLNT_DESTROY(nsm->ns_handle);
885 885 nsm->ns_handle = NULL;
886 886 sema_destroy(&nsm->ns_sem);
887 887 }
888 888
889 889 static enum clnt_stat
890 890 nlm_nsm_simu_crash(struct nlm_nsm *nsm)
891 891 {
892 892 enum clnt_stat stat;
893 893
894 894 sema_p(&nsm->ns_sem);
895 895 nlm_nsm_clnt_init(nsm->ns_handle, nsm);
896 896 stat = sm_simu_crash_1(NULL, NULL, nsm->ns_handle);
897 897 sema_v(&nsm->ns_sem);
898 898
899 899 return (stat);
900 900 }
901 901
902 902 static enum clnt_stat
903 903 nlm_nsm_stat(struct nlm_nsm *nsm, int32_t *out_stat)
904 904 {
905 905 struct sm_name args;
906 906 struct sm_stat_res res;
907 907 enum clnt_stat stat;
908 908
909 909 args.mon_name = uts_nodename();
910 910 bzero(&res, sizeof (res));
911 911
912 912 sema_p(&nsm->ns_sem);
913 913 nlm_nsm_clnt_init(nsm->ns_handle, nsm);
914 914 stat = sm_stat_1(&args, &res, nsm->ns_handle);
915 915 sema_v(&nsm->ns_sem);
916 916
917 917 if (stat == RPC_SUCCESS)
918 918 *out_stat = res.state;
919 919
920 920 return (stat);
921 921 }
922 922
923 923 static enum clnt_stat
924 924 nlm_nsm_mon(struct nlm_nsm *nsm, char *hostname, uint16_t priv)
925 925 {
926 926 struct mon args;
927 927 struct sm_stat_res res;
928 928 enum clnt_stat stat;
929 929
930 930 bzero(&args, sizeof (args));
931 931 bzero(&res, sizeof (res));
932 932
933 933 args.mon_id.mon_name = hostname;
934 934 args.mon_id.my_id.my_name = uts_nodename();
935 935 args.mon_id.my_id.my_prog = NLM_PROG;
936 936 args.mon_id.my_id.my_vers = NLM_SM;
937 937 args.mon_id.my_id.my_proc = NLM_SM_NOTIFY1;
938 938 bcopy(&priv, args.priv, sizeof (priv));
939 939
940 940 sema_p(&nsm->ns_sem);
941 941 nlm_nsm_clnt_init(nsm->ns_handle, nsm);
942 942 stat = sm_mon_1(&args, &res, nsm->ns_handle);
943 943 sema_v(&nsm->ns_sem);
944 944
945 945 return (stat);
946 946 }
947 947
948 948 static enum clnt_stat
949 949 nlm_nsm_unmon(struct nlm_nsm *nsm, char *hostname)
950 950 {
951 951 struct mon_id args;
952 952 struct sm_stat res;
953 953 enum clnt_stat stat;
954 954
955 955 bzero(&args, sizeof (args));
956 956 bzero(&res, sizeof (res));
957 957
958 958 args.mon_name = hostname;
959 959 args.my_id.my_name = uts_nodename();
960 960 args.my_id.my_prog = NLM_PROG;
961 961 args.my_id.my_vers = NLM_SM;
962 962 args.my_id.my_proc = NLM_SM_NOTIFY1;
963 963
964 964 sema_p(&nsm->ns_sem);
965 965 nlm_nsm_clnt_init(nsm->ns_handle, nsm);
966 966 stat = sm_unmon_1(&args, &res, nsm->ns_handle);
967 967 sema_v(&nsm->ns_sem);
968 968
969 969 return (stat);
970 970 }
971 971
972 972 static enum clnt_stat
973 973 nlm_nsmaddr_reg(struct nlm_nsm *nsm, char *name, int family, netobj *address)
974 974 {
975 975 struct reg1args args = { 0 };
976 976 struct reg1res res = { 0 };
977 977 enum clnt_stat stat;
978 978
979 979 args.family = family;
980 980 args.name = name;
981 981 args.address = *address;
982 982
983 983 sema_p(&nsm->ns_sem);
984 984 nlm_nsm_clnt_init(nsm->ns_addr_handle, nsm);
985 985 stat = nsmaddrproc1_reg_1(&args, &res, nsm->ns_addr_handle);
986 986 sema_v(&nsm->ns_sem);
987 987
988 988 return (stat);
989 989 }
990 990
991 991 /*
992 992 * Get NLM vhold object corresponding to vnode "vp".
993 993 * If no such object was found, create a new one.
994 994 *
995 995 * The purpose of this function is to associate vhold
996 996 * object with given vnode, so that:
997 997 * 1) vnode is hold (VN_HOLD) while vhold object is alive.
998 998 * 2) host has a track of all vnodes it touched by lock
999 999 * or share operations. These vnodes are accessible
1000 1000 * via collection of vhold objects.
1001 1001 */
1002 1002 struct nlm_vhold *
1003 1003 nlm_vhold_get(struct nlm_host *hostp, vnode_t *vp)
1004 1004 {
1005 1005 struct nlm_vhold *nvp, *new_nvp = NULL;
1006 1006
1007 1007 mutex_enter(&hostp->nh_lock);
1008 1008 nvp = nlm_vhold_find_locked(hostp, vp);
1009 1009 if (nvp != NULL)
1010 1010 goto out;
1011 1011
1012 1012 /* nlm_vhold wasn't found, then create a new one */
1013 1013 mutex_exit(&hostp->nh_lock);
1014 1014 new_nvp = kmem_cache_alloc(nlm_vhold_cache, KM_SLEEP);
1015 1015
1016 1016 /*
1017 1017 * Check if another thread has already
1018 1018 * created the same nlm_vhold.
1019 1019 */
1020 1020 mutex_enter(&hostp->nh_lock);
1021 1021 nvp = nlm_vhold_find_locked(hostp, vp);
1022 1022 if (nvp == NULL) {
1023 1023 nvp = new_nvp;
1024 1024 new_nvp = NULL;
1025 1025
1026 1026 TAILQ_INIT(&nvp->nv_slreqs);
1027 1027 nvp->nv_vp = vp;
1028 1028 nvp->nv_refcnt = 1;
1029 1029 VN_HOLD(nvp->nv_vp);
1030 1030
1031 1031 VERIFY(mod_hash_insert(hostp->nh_vholds_by_vp,
1032 1032 (mod_hash_key_t)vp, (mod_hash_val_t)nvp) == 0);
1033 1033 TAILQ_INSERT_TAIL(&hostp->nh_vholds_list, nvp, nv_link);
1034 1034 }
1035 1035
1036 1036 out:
1037 1037 mutex_exit(&hostp->nh_lock);
1038 1038 if (new_nvp != NULL)
1039 1039 kmem_cache_free(nlm_vhold_cache, new_nvp);
1040 1040
1041 1041 return (nvp);
1042 1042 }
1043 1043
1044 1044 /*
1045 1045 * Drop a reference to vhold object nvp.
1046 1046 */
1047 1047 void
1048 1048 nlm_vhold_release(struct nlm_host *hostp, struct nlm_vhold *nvp)
1049 1049 {
1050 1050 if (nvp == NULL)
1051 1051 return;
1052 1052
1053 1053 mutex_enter(&hostp->nh_lock);
1054 1054 ASSERT(nvp->nv_refcnt > 0);
1055 1055 nvp->nv_refcnt--;
1056 1056
1057 1057 /*
1058 1058 * If these conditions are met, the vhold is obviously unused and we
1059 1059 * will destroy it. In a case either v_filocks and/or v_shrlocks is
1060 1060 * non-NULL the vhold might still be unused by the host, but it is
1061 1061 * expensive to check that. We defer such check until the host is
1062 1062 * idle. The expensive check is done in the NLM garbage collector.
1063 1063 */
1064 1064 if (nvp->nv_refcnt == 0 &&
1065 1065 nvp->nv_vp->v_filocks == NULL &&
1066 1066 nvp->nv_vp->v_shrlocks == NULL) {
1067 1067 nlm_vhold_destroy(hostp, nvp);
1068 1068 }
1069 1069
1070 1070 mutex_exit(&hostp->nh_lock);
1071 1071 }
1072 1072
1073 1073 /*
1074 1074 * Clean all locks and share reservations on the
1075 1075 * given vhold object that were acquired by the
1076 1076 * given sysid
1077 1077 */
1078 1078 static void
1079 1079 nlm_vhold_clean(struct nlm_vhold *nvp, int sysid)
1080 1080 {
1081 1081 cleanlocks(nvp->nv_vp, IGN_PID, sysid);
1082 1082 cleanshares_by_sysid(nvp->nv_vp, sysid);
1083 1083 }
1084 1084
1085 1085 static void
1086 1086 nlm_vhold_destroy(struct nlm_host *hostp, struct nlm_vhold *nvp)
1087 1087 {
1088 1088 ASSERT(MUTEX_HELD(&hostp->nh_lock));
1089 1089
1090 1090 ASSERT(nvp->nv_refcnt == 0);
1091 1091 ASSERT(TAILQ_EMPTY(&nvp->nv_slreqs));
1092 1092
1093 1093 VERIFY(mod_hash_remove(hostp->nh_vholds_by_vp,
1094 1094 (mod_hash_key_t)nvp->nv_vp,
1095 1095 (mod_hash_val_t)&nvp) == 0);
1096 1096
1097 1097 TAILQ_REMOVE(&hostp->nh_vholds_list, nvp, nv_link);
1098 1098 VN_RELE(nvp->nv_vp);
1099 1099 nvp->nv_vp = NULL;
1100 1100
1101 1101 kmem_cache_free(nlm_vhold_cache, nvp);
1102 1102 }
1103 1103
1104 1104 /*
1105 1105 * Return TRUE if the given vhold is busy.
1106 1106 * Vhold object is considered to be "busy" when
1107 1107 * all the following conditions hold:
1108 1108 * 1) No one uses it at the moment;
1109 1109 * 2) It hasn't any locks;
1110 1110 * 3) It hasn't any share reservations;
1111 1111 */
1112 1112 static bool_t
1113 1113 nlm_vhold_busy(struct nlm_host *hostp, struct nlm_vhold *nvp)
1114 1114 {
1115 1115 vnode_t *vp;
1116 1116 int sysid;
1117 1117
1118 1118 ASSERT(MUTEX_HELD(&hostp->nh_lock));
1119 1119
1120 1120 if (nvp->nv_refcnt > 0)
1121 1121 return (TRUE);
1122 1122
1123 1123 vp = nvp->nv_vp;
1124 1124 sysid = hostp->nh_sysid;
1125 1125 if (flk_has_remote_locks_for_sysid(vp, sysid) ||
1126 1126 shr_has_remote_shares(vp, sysid))
1127 1127 return (TRUE);
1128 1128
1129 1129 return (FALSE);
1130 1130 }
1131 1131
1132 1132 /* ARGSUSED */
1133 1133 static int
1134 1134 nlm_vhold_ctor(void *datap, void *cdrarg, int kmflags)
1135 1135 {
1136 1136 struct nlm_vhold *nvp = (struct nlm_vhold *)datap;
1137 1137
1138 1138 bzero(nvp, sizeof (*nvp));
1139 1139 return (0);
1140 1140 }
1141 1141
1142 1142 /* ARGSUSED */
1143 1143 static void
1144 1144 nlm_vhold_dtor(void *datap, void *cdrarg)
1145 1145 {
1146 1146 struct nlm_vhold *nvp = (struct nlm_vhold *)datap;
1147 1147
1148 1148 ASSERT(nvp->nv_refcnt == 0);
1149 1149 ASSERT(TAILQ_EMPTY(&nvp->nv_slreqs));
1150 1150 ASSERT(nvp->nv_vp == NULL);
1151 1151 }
1152 1152
1153 1153 struct nlm_vhold *
1154 1154 nlm_vhold_find_locked(struct nlm_host *hostp, const vnode_t *vp)
1155 1155 {
1156 1156 struct nlm_vhold *nvp = NULL;
1157 1157
1158 1158 ASSERT(MUTEX_HELD(&hostp->nh_lock));
1159 1159 (void) mod_hash_find(hostp->nh_vholds_by_vp,
1160 1160 (mod_hash_key_t)vp,
1161 1161 (mod_hash_val_t)&nvp);
1162 1162
1163 1163 if (nvp != NULL)
1164 1164 nvp->nv_refcnt++;
1165 1165
1166 1166 return (nvp);
1167 1167 }
1168 1168
1169 1169 /*
1170 1170 * NLM host functions
1171 1171 */
1172 1172 static void
1173 1173 nlm_copy_netbuf(struct netbuf *dst, struct netbuf *src)
1174 1174 {
1175 1175 ASSERT(src->len <= src->maxlen);
1176 1176
1177 1177 dst->maxlen = src->maxlen;
1178 1178 dst->len = src->len;
1179 1179 dst->buf = kmem_zalloc(src->maxlen, KM_SLEEP);
1180 1180 bcopy(src->buf, dst->buf, src->len);
1181 1181 }
1182 1182
1183 1183 /* ARGSUSED */
1184 1184 static int
1185 1185 nlm_host_ctor(void *datap, void *cdrarg, int kmflags)
1186 1186 {
1187 1187 struct nlm_host *hostp = (struct nlm_host *)datap;
1188 1188
1189 1189 bzero(hostp, sizeof (*hostp));
1190 1190 return (0);
1191 1191 }
1192 1192
1193 1193 /* ARGSUSED */
1194 1194 static void
1195 1195 nlm_host_dtor(void *datap, void *cdrarg)
1196 1196 {
1197 1197 struct nlm_host *hostp = (struct nlm_host *)datap;
1198 1198 ASSERT(hostp->nh_refs == 0);
1199 1199 }
1200 1200
1201 1201 static void
1202 1202 nlm_host_unregister(struct nlm_globals *g, struct nlm_host *hostp)
1203 1203 {
1204 1204 ASSERT(hostp->nh_refs == 0);
1205 1205 ASSERT(hostp->nh_flags & NLM_NH_INIDLE);
1206 1206
1207 1207 avl_remove(&g->nlm_hosts_tree, hostp);
1208 1208 VERIFY(mod_hash_remove(g->nlm_hosts_hash,
1209 1209 (mod_hash_key_t)(uintptr_t)hostp->nh_sysid,
1210 1210 (mod_hash_val_t)&hostp) == 0);
1211 1211 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link);
1212 1212 hostp->nh_flags &= ~NLM_NH_INIDLE;
1213 1213 }
1214 1214
1215 1215 /*
1216 1216 * Free resources used by a host. This is called after the reference
1217 1217 * count has reached zero so it doesn't need to worry about locks.
1218 1218 */
1219 1219 static void
1220 1220 nlm_host_destroy(struct nlm_host *hostp)
1221 1221 {
1222 1222 ASSERT(hostp->nh_name != NULL);
1223 1223 ASSERT(hostp->nh_netid != NULL);
1224 1224 ASSERT(TAILQ_EMPTY(&hostp->nh_vholds_list));
1225 1225
1226 1226 strfree(hostp->nh_name);
1227 1227 strfree(hostp->nh_netid);
1228 1228 kmem_free(hostp->nh_addr.buf, hostp->nh_addr.maxlen);
1229 1229
1230 1230 if (hostp->nh_sysid != LM_NOSYSID)
1231 1231 nlm_sysid_free(hostp->nh_sysid);
1232 1232
1233 1233 nlm_rpc_cache_destroy(hostp);
1234 1234
1235 1235 ASSERT(TAILQ_EMPTY(&hostp->nh_vholds_list));
1236 1236 mod_hash_destroy_ptrhash(hostp->nh_vholds_by_vp);
1237 1237
1238 1238 mutex_destroy(&hostp->nh_lock);
1239 1239 cv_destroy(&hostp->nh_rpcb_cv);
1240 1240 cv_destroy(&hostp->nh_recl_cv);
1241 1241
1242 1242 kmem_cache_free(nlm_hosts_cache, hostp);
1243 1243 }
1244 1244
1245 1245 /*
1246 1246 * Cleanup SERVER-side state after a client restarts,
1247 1247 * or becomes unresponsive, or whatever.
1248 1248 *
1249 1249 * We unlock any active locks owned by the host.
1250 1250 * When rpc.lockd is shutting down,
1251 1251 * this function is called with newstate set to zero
1252 1252 * which allows us to cancel any pending async locks
1253 1253 * and clear the locking state.
1254 1254 *
1255 1255 * When "state" is 0, we don't update host's state,
1256 1256 * but cleanup all remote locks on the host.
1257 1257 * It's useful to call this function for resources
1258 1258 * cleanup.
1259 1259 */
1260 1260 void
1261 1261 nlm_host_notify_server(struct nlm_host *hostp, int32_t state)
1262 1262 {
1263 1263 struct nlm_vhold *nvp;
1264 1264 struct nlm_slreq *slr;
1265 1265 struct nlm_slreq_list slreqs2free;
1266 1266
1267 1267 TAILQ_INIT(&slreqs2free);
1268 1268 mutex_enter(&hostp->nh_lock);
1269 1269 if (state != 0)
1270 1270 hostp->nh_state = state;
1271 1271
1272 1272 TAILQ_FOREACH(nvp, &hostp->nh_vholds_list, nv_link) {
1273 1273
1274 1274 /* cleanup sleeping requests at first */
1275 1275 while ((slr = TAILQ_FIRST(&nvp->nv_slreqs)) != NULL) {
1276 1276 TAILQ_REMOVE(&nvp->nv_slreqs, slr, nsr_link);
1277 1277
1278 1278 /*
1279 1279 * Instead of freeing cancelled sleeping request
1280 1280 * here, we add it to the linked list created
1281 1281 * on the stack in order to do all frees outside
1282 1282 * the critical section.
1283 1283 */
1284 1284 TAILQ_INSERT_TAIL(&slreqs2free, slr, nsr_link);
1285 1285 }
1286 1286
1287 1287 nvp->nv_refcnt++;
1288 1288 mutex_exit(&hostp->nh_lock);
1289 1289
1290 1290 nlm_vhold_clean(nvp, hostp->nh_sysid);
1291 1291
1292 1292 mutex_enter(&hostp->nh_lock);
1293 1293 nvp->nv_refcnt--;
1294 1294 }
1295 1295
1296 1296 mutex_exit(&hostp->nh_lock);
1297 1297 while ((slr = TAILQ_FIRST(&slreqs2free)) != NULL) {
1298 1298 TAILQ_REMOVE(&slreqs2free, slr, nsr_link);
1299 1299 kmem_free(slr, sizeof (*slr));
1300 1300 }
1301 1301 }
1302 1302
1303 1303 /*
1304 1304 * Cleanup CLIENT-side state after a server restarts,
1305 1305 * or becomes unresponsive, or whatever.
1306 1306 *
1307 1307 * This is called by the local NFS statd when we receive a
1308 1308 * host state change notification. (also nlm_svc_stopping)
1309 1309 *
1310 1310 * Deal with a server restart. If we are stopping the
1311 1311 * NLM service, we'll have newstate == 0, and will just
1312 1312 * cancel all our client-side lock requests. Otherwise,
1313 1313 * start the "recovery" process to reclaim any locks
1314 1314 * we hold on this server.
1315 1315 */
1316 1316 void
1317 1317 nlm_host_notify_client(struct nlm_host *hostp, int32_t state)
1318 1318 {
1319 1319 mutex_enter(&hostp->nh_lock);
1320 1320 hostp->nh_state = state;
1321 1321 if (hostp->nh_flags & NLM_NH_RECLAIM) {
1322 1322 /*
1323 1323 * Either host's state is up to date or
1324 1324 * host is already in recovery.
1325 1325 */
1326 1326 mutex_exit(&hostp->nh_lock);
1327 1327 return;
1328 1328 }
1329 1329
1330 1330 hostp->nh_flags |= NLM_NH_RECLAIM;
1331 1331
1332 1332 /*
1333 1333 * Host will be released by the recovery thread,
1334 1334 * thus we need to increment refcount.
1335 1335 */
1336 1336 hostp->nh_refs++;
1337 1337 mutex_exit(&hostp->nh_lock);
1338 1338
1339 1339 (void) zthread_create(NULL, 0, nlm_reclaimer,
1340 1340 hostp, 0, minclsyspri);
1341 1341 }
1342 1342
1343 1343 /*
1344 1344 * The function is called when NLM client detects that
1345 1345 * server has entered in grace period and client needs
1346 1346 * to wait until reclamation process (if any) does
1347 1347 * its job.
1348 1348 */
1349 1349 int
1350 1350 nlm_host_wait_grace(struct nlm_host *hostp)
1351 1351 {
1352 1352 struct nlm_globals *g;
1353 1353 int error = 0;
1354 1354
1355 1355 g = zone_getspecific(nlm_zone_key, curzone);
1356 1356 mutex_enter(&hostp->nh_lock);
1357 1357
1358 1358 do {
1359 1359 int rc;
1360 1360
1361 1361 rc = cv_timedwait_sig(&hostp->nh_recl_cv,
1362 1362 &hostp->nh_lock, ddi_get_lbolt() +
1363 1363 SEC_TO_TICK(g->retrans_tmo));
1364 1364
1365 1365 if (rc == 0) {
1366 1366 error = EINTR;
1367 1367 break;
1368 1368 }
1369 1369 } while (hostp->nh_flags & NLM_NH_RECLAIM);
1370 1370
1371 1371 mutex_exit(&hostp->nh_lock);
1372 1372 return (error);
1373 1373 }
1374 1374
1375 1375 /*
1376 1376 * Create a new NLM host.
1377 1377 *
1378 1378 * NOTE: The in-kernel RPC (kRPC) subsystem uses TLI/XTI,
1379 1379 * which needs both a knetconfig and an address when creating
1380 1380 * endpoints. Thus host object stores both knetconfig and
1381 1381 * netid.
1382 1382 */
1383 1383 static struct nlm_host *
1384 1384 nlm_host_create(char *name, const char *netid,
1385 1385 struct knetconfig *knc, struct netbuf *naddr)
1386 1386 {
1387 1387 struct nlm_host *host;
1388 1388
1389 1389 host = kmem_cache_alloc(nlm_hosts_cache, KM_SLEEP);
1390 1390
1391 1391 mutex_init(&host->nh_lock, NULL, MUTEX_DEFAULT, NULL);
1392 1392 cv_init(&host->nh_rpcb_cv, NULL, CV_DEFAULT, NULL);
1393 1393 cv_init(&host->nh_recl_cv, NULL, CV_DEFAULT, NULL);
1394 1394
1395 1395 host->nh_sysid = LM_NOSYSID;
1396 1396 host->nh_refs = 1;
1397 1397 host->nh_name = strdup(name);
1398 1398 host->nh_netid = strdup(netid);
1399 1399 host->nh_knc = *knc;
1400 1400 nlm_copy_netbuf(&host->nh_addr, naddr);
1401 1401
1402 1402 host->nh_state = 0;
1403 1403 host->nh_rpcb_state = NRPCB_NEED_UPDATE;
1404 1404 host->nh_flags = 0;
1405 1405
1406 1406 host->nh_vholds_by_vp = mod_hash_create_ptrhash("nlm vholds hash",
1407 1407 32, mod_hash_null_valdtor, sizeof (vnode_t));
1408 1408
1409 1409 TAILQ_INIT(&host->nh_vholds_list);
1410 1410 TAILQ_INIT(&host->nh_rpchc);
1411 1411
1412 1412 return (host);
1413 1413 }
1414 1414
1415 1415 /*
1416 1416 * Cancel all client side sleeping locks owned by given host.
1417 1417 */
1418 1418 void
1419 1419 nlm_host_cancel_slocks(struct nlm_globals *g, struct nlm_host *hostp)
1420 1420 {
1421 1421 struct nlm_slock *nslp;
1422 1422
1423 1423 mutex_enter(&g->lock);
1424 1424 TAILQ_FOREACH(nslp, &g->nlm_slocks, nsl_link) {
1425 1425 if (nslp->nsl_host == hostp) {
1426 1426 nslp->nsl_state = NLM_SL_CANCELLED;
1427 1427 cv_broadcast(&nslp->nsl_cond);
1428 1428 }
1429 1429 }
1430 1430
1431 1431 mutex_exit(&g->lock);
1432 1432 }
1433 1433
1434 1434 /*
1435 1435 * Garbage collect stale vhold objects.
1436 1436 *
1437 1437 * In other words check whether vnodes that are
1438 1438 * held by vhold objects still have any locks
1439 1439 * or shares or still in use. If they aren't,
1440 1440 * just destroy them.
1441 1441 */
1442 1442 static void
1443 1443 nlm_host_gc_vholds(struct nlm_host *hostp)
1444 1444 {
1445 1445 struct nlm_vhold *nvp;
1446 1446
1447 1447 ASSERT(MUTEX_HELD(&hostp->nh_lock));
1448 1448
1449 1449 nvp = TAILQ_FIRST(&hostp->nh_vholds_list);
1450 1450 while (nvp != NULL) {
1451 1451 struct nlm_vhold *nvp_tmp;
1452 1452
1453 1453 if (nlm_vhold_busy(hostp, nvp)) {
1454 1454 nvp = TAILQ_NEXT(nvp, nv_link);
1455 1455 continue;
1456 1456 }
1457 1457
1458 1458 nvp_tmp = TAILQ_NEXT(nvp, nv_link);
1459 1459 nlm_vhold_destroy(hostp, nvp);
1460 1460 nvp = nvp_tmp;
1461 1461 }
1462 1462 }
1463 1463
1464 1464 /*
1465 1465 * Check whether the given host has any
1466 1466 * server side locks or share reservations.
1467 1467 */
1468 1468 static bool_t
1469 1469 nlm_host_has_srv_locks(struct nlm_host *hostp)
1470 1470 {
1471 1471 /*
1472 1472 * It's cheap and simple: if server has
1473 1473 * any locks/shares there must be vhold
1474 1474 * object storing the affected vnode.
1475 1475 *
1476 1476 * NOTE: We don't need to check sleeping
1477 1477 * locks on the server side, because if
1478 1478 * server side sleeping lock is alive,
1479 1479 * there must be a vhold object corresponding
1480 1480 * to target vnode.
1481 1481 */
1482 1482 ASSERT(MUTEX_HELD(&hostp->nh_lock));
1483 1483 if (!TAILQ_EMPTY(&hostp->nh_vholds_list))
1484 1484 return (TRUE);
1485 1485
1486 1486 return (FALSE);
1487 1487 }
1488 1488
1489 1489 /*
1490 1490 * Check whether the given host has any client side
1491 1491 * locks or share reservations.
1492 1492 */
1493 1493 static bool_t
1494 1494 nlm_host_has_cli_locks(struct nlm_host *hostp)
1495 1495 {
1496 1496 ASSERT(MUTEX_HELD(&hostp->nh_lock));
1497 1497
1498 1498 /*
1499 1499 * XXX: It's not the way I'd like to do the check,
1500 1500 * because flk_sysid_has_locks() can be very
1501 1501 * expensive by design. Unfortunatelly it iterates
1502 1502 * through all locks on the system, doesn't matter
1503 1503 * were they made on remote system via NLM or
1504 1504 * on local system via reclock. To understand the
1505 1505 * problem, consider that there're dozens of thousands
1506 1506 * of locks that are made on some ZFS dataset. And there's
1507 1507 * another dataset shared by NFS where NLM client had locks
1508 1508 * some time ago, but doesn't have them now.
1509 1509 * In this case flk_sysid_has_locks() will iterate
1510 1510 * thrught dozens of thousands locks until it returns us
1511 1511 * FALSE.
1512 1512 * Oh, I hope that in shiny future somebody will make
1513 1513 * local lock manager (os/flock.c) better, so that
1514 1514 * it'd be more friedly to remote locks and
1515 1515 * flk_sysid_has_locks() wouldn't be so expensive.
1516 1516 */
1517 1517 if (flk_sysid_has_locks(hostp->nh_sysid |
1518 1518 LM_SYSID_CLIENT, FLK_QUERY_ACTIVE))
1519 1519 return (TRUE);
1520 1520
1521 1521 /*
1522 1522 * Check whether host has any share reservations
1523 1523 * registered on the client side.
1524 1524 */
1525 1525 if (hostp->nh_shrlist != NULL)
1526 1526 return (TRUE);
1527 1527
1528 1528 return (FALSE);
1529 1529 }
1530 1530
1531 1531 /*
1532 1532 * Determine whether the given host owns any
1533 1533 * locks or share reservations.
1534 1534 */
1535 1535 static bool_t
1536 1536 nlm_host_has_locks(struct nlm_host *hostp)
1537 1537 {
1538 1538 if (nlm_host_has_srv_locks(hostp))
1539 1539 return (TRUE);
1540 1540
1541 1541 return (nlm_host_has_cli_locks(hostp));
1542 1542 }
1543 1543
1544 1544 /*
1545 1545 * This function compares only addresses of two netbufs
1546 1546 * that belong to NC_TCP[6] or NC_UDP[6] protofamily.
1547 1547 * Port part of netbuf is ignored.
1548 1548 *
1549 1549 * Return values:
1550 1550 * -1: nb1's address is "smaller" than nb2's
1551 1551 * 0: addresses are equal
1552 1552 * 1: nb1's address is "greater" than nb2's
1553 1553 */
1554 1554 static int
1555 1555 nlm_netbuf_addrs_cmp(struct netbuf *nb1, struct netbuf *nb2)
1556 1556 {
1557 1557 union nlm_addr {
1558 1558 struct sockaddr sa;
1559 1559 struct sockaddr_in sin;
1560 1560 struct sockaddr_in6 sin6;
1561 1561 } *na1, *na2;
1562 1562 int res;
1563 1563
1564 1564 /* LINTED E_BAD_PTR_CAST_ALIGN */
1565 1565 na1 = (union nlm_addr *)nb1->buf;
1566 1566 /* LINTED E_BAD_PTR_CAST_ALIGN */
1567 1567 na2 = (union nlm_addr *)nb2->buf;
1568 1568
1569 1569 if (na1->sa.sa_family < na2->sa.sa_family)
1570 1570 return (-1);
1571 1571 if (na1->sa.sa_family > na2->sa.sa_family)
1572 1572 return (1);
1573 1573
1574 1574 switch (na1->sa.sa_family) {
1575 1575 case AF_INET:
1576 1576 res = memcmp(&na1->sin.sin_addr, &na2->sin.sin_addr,
1577 1577 sizeof (na1->sin.sin_addr));
1578 1578 break;
1579 1579 case AF_INET6:
1580 1580 res = memcmp(&na1->sin6.sin6_addr, &na2->sin6.sin6_addr,
1581 1581 sizeof (na1->sin6.sin6_addr));
1582 1582 break;
1583 1583 default:
1584 1584 VERIFY(0);
1585 1585 return (0);
1586 1586 }
1587 1587
1588 1588 return (SIGN(res));
1589 1589 }
1590 1590
1591 1591 /*
1592 1592 * Compare two nlm hosts.
1593 1593 * Return values:
1594 1594 * -1: host1 is "smaller" than host2
1595 1595 * 0: host1 is equal to host2
1596 1596 * 1: host1 is "greater" than host2
1597 1597 */
1598 1598 int
1599 1599 nlm_host_cmp(const void *p1, const void *p2)
1600 1600 {
1601 1601 struct nlm_host *h1 = (struct nlm_host *)p1;
1602 1602 struct nlm_host *h2 = (struct nlm_host *)p2;
1603 1603 int res;
1604 1604
1605 1605 res = strcmp(h1->nh_netid, h2->nh_netid);
1606 1606 if (res != 0)
1607 1607 return (SIGN(res));
1608 1608
1609 1609 res = nlm_netbuf_addrs_cmp(&h1->nh_addr, &h2->nh_addr);
1610 1610 return (res);
1611 1611 }
1612 1612
1613 1613 /*
1614 1614 * Find the host specified by... (see below)
1615 1615 * If found, increment the ref count.
1616 1616 */
1617 1617 static struct nlm_host *
1618 1618 nlm_host_find_locked(struct nlm_globals *g, const char *netid,
1619 1619 struct netbuf *naddr, avl_index_t *wherep)
1620 1620 {
1621 1621 struct nlm_host *hostp, key;
1622 1622 avl_index_t pos;
1623 1623
1624 1624 ASSERT(MUTEX_HELD(&g->lock));
1625 1625
1626 1626 key.nh_netid = (char *)netid;
1627 1627 key.nh_addr.buf = naddr->buf;
1628 1628 key.nh_addr.len = naddr->len;
1629 1629 key.nh_addr.maxlen = naddr->maxlen;
1630 1630
1631 1631 hostp = avl_find(&g->nlm_hosts_tree, &key, &pos);
1632 1632
1633 1633 if (hostp != NULL) {
1634 1634 /*
1635 1635 * Host is inuse now. Remove it from idle
1636 1636 * hosts list if needed.
1637 1637 */
1638 1638 if (hostp->nh_flags & NLM_NH_INIDLE) {
1639 1639 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link);
1640 1640 hostp->nh_flags &= ~NLM_NH_INIDLE;
1641 1641 }
1642 1642
1643 1643 hostp->nh_refs++;
1644 1644 }
1645 1645 if (wherep != NULL)
1646 1646 *wherep = pos;
1647 1647
1648 1648 return (hostp);
1649 1649 }
1650 1650
1651 1651 /*
1652 1652 * Find NLM host for the given name and address.
1653 1653 */
1654 1654 struct nlm_host *
1655 1655 nlm_host_find(struct nlm_globals *g, const char *netid,
1656 1656 struct netbuf *addr)
1657 1657 {
1658 1658 struct nlm_host *hostp = NULL;
1659 1659
1660 1660 mutex_enter(&g->lock);
1661 1661 if (g->run_status != NLM_ST_UP)
1662 1662 goto out;
1663 1663
1664 1664 hostp = nlm_host_find_locked(g, netid, addr, NULL);
1665 1665
1666 1666 out:
1667 1667 mutex_exit(&g->lock);
1668 1668 return (hostp);
1669 1669 }
1670 1670
1671 1671
1672 1672 /*
1673 1673 * Find or create an NLM host for the given name and address.
1674 1674 *
1675 1675 * The remote host is determined by all of: name, netid, address.
1676 1676 * Note that the netid is whatever nlm_svc_add_ep() gave to
1677 1677 * svc_tli_kcreate() for the service binding. If any of these
1678 1678 * are different, allocate a new host (new sysid).
1679 1679 */
1680 1680 struct nlm_host *
1681 1681 nlm_host_findcreate(struct nlm_globals *g, char *name,
1682 1682 const char *netid, struct netbuf *addr)
1683 1683 {
1684 1684 int err;
1685 1685 struct nlm_host *host, *newhost = NULL;
1686 1686 struct knetconfig knc;
1687 1687 avl_index_t where;
1688 1688
1689 1689 mutex_enter(&g->lock);
1690 1690 if (g->run_status != NLM_ST_UP) {
1691 1691 mutex_exit(&g->lock);
1692 1692 return (NULL);
1693 1693 }
1694 1694
1695 1695 host = nlm_host_find_locked(g, netid, addr, NULL);
1696 1696 mutex_exit(&g->lock);
1697 1697 if (host != NULL)
1698 1698 return (host);
1699 1699
1700 1700 err = nlm_knc_from_netid(netid, &knc);
1701 1701 if (err != 0)
1702 1702 return (NULL);
1703 1703 /*
1704 1704 * Do allocations (etc.) outside of mutex,
1705 1705 * and then check again before inserting.
1706 1706 */
1707 1707 newhost = nlm_host_create(name, netid, &knc, addr);
1708 1708 newhost->nh_sysid = nlm_sysid_alloc();
1709 1709 if (newhost->nh_sysid == LM_NOSYSID)
1710 1710 goto out;
1711 1711
1712 1712 mutex_enter(&g->lock);
1713 1713 host = nlm_host_find_locked(g, netid, addr, &where);
1714 1714 if (host == NULL) {
1715 1715 host = newhost;
1716 1716 newhost = NULL;
1717 1717
1718 1718 /*
1719 1719 * Insert host to the hosts AVL tree that is
1720 1720 * used to lookup by <netid, address> pair.
1721 1721 */
1722 1722 avl_insert(&g->nlm_hosts_tree, host, where);
1723 1723
1724 1724 /*
1725 1725 * Insert host to the hosts hash table that is
1726 1726 * used to lookup host by sysid.
1727 1727 */
1728 1728 VERIFY(mod_hash_insert(g->nlm_hosts_hash,
1729 1729 (mod_hash_key_t)(uintptr_t)host->nh_sysid,
1730 1730 (mod_hash_val_t)host) == 0);
1731 1731 }
1732 1732
1733 1733 mutex_exit(&g->lock);
1734 1734
1735 1735 out:
1736 1736 if (newhost != NULL) {
1737 1737 /*
1738 1738 * We do not need the preallocated nlm_host
1739 1739 * so decrement the reference counter
1740 1740 * and destroy it.
1741 1741 */
1742 1742 newhost->nh_refs--;
1743 1743 nlm_host_destroy(newhost);
1744 1744 }
1745 1745
1746 1746 return (host);
1747 1747 }
1748 1748
1749 1749 /*
1750 1750 * Find the NLM host that matches the value of 'sysid'.
1751 1751 * If found, return it with a new ref,
1752 1752 * else return NULL.
1753 1753 */
1754 1754 struct nlm_host *
1755 1755 nlm_host_find_by_sysid(struct nlm_globals *g, sysid_t sysid)
1756 1756 {
1757 1757 struct nlm_host *hostp = NULL;
1758 1758
1759 1759 mutex_enter(&g->lock);
1760 1760 if (g->run_status != NLM_ST_UP)
1761 1761 goto out;
1762 1762
1763 1763 (void) mod_hash_find(g->nlm_hosts_hash,
1764 1764 (mod_hash_key_t)(uintptr_t)sysid,
1765 1765 (mod_hash_val_t)&hostp);
1766 1766
1767 1767 if (hostp == NULL)
1768 1768 goto out;
1769 1769
1770 1770 /*
1771 1771 * Host is inuse now. Remove it
1772 1772 * from idle hosts list if needed.
1773 1773 */
1774 1774 if (hostp->nh_flags & NLM_NH_INIDLE) {
1775 1775 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link);
1776 1776 hostp->nh_flags &= ~NLM_NH_INIDLE;
1777 1777 }
1778 1778
1779 1779 hostp->nh_refs++;
1780 1780
1781 1781 out:
1782 1782 mutex_exit(&g->lock);
1783 1783 return (hostp);
1784 1784 }
1785 1785
1786 1786 /*
1787 1787 * Release the given host.
1788 1788 * I.e. drop a reference that was taken earlier by one of
1789 1789 * the following functions: nlm_host_findcreate(), nlm_host_find(),
1790 1790 * nlm_host_find_by_sysid().
1791 1791 *
1792 1792 * When the very last reference is dropped, host is moved to
1793 1793 * so-called "idle state". All hosts that are in idle state
1794 1794 * have an idle timeout. If timeout is expired, GC thread
1795 1795 * checks whether hosts have any locks and if they heven't
1796 1796 * any, it removes them.
1797 1797 * NOTE: only unused hosts can be in idle state.
1798 1798 */
1799 1799 static void
1800 1800 nlm_host_release_locked(struct nlm_globals *g, struct nlm_host *hostp)
1801 1801 {
1802 1802 if (hostp == NULL)
1803 1803 return;
1804 1804
1805 1805 ASSERT(MUTEX_HELD(&g->lock));
1806 1806 ASSERT(hostp->nh_refs > 0);
1807 1807
1808 1808 hostp->nh_refs--;
1809 1809 if (hostp->nh_refs != 0)
1810 1810 return;
1811 1811
1812 1812 /*
1813 1813 * The very last reference to the host was dropped,
1814 1814 * thus host is unused now. Set its idle timeout
1815 1815 * and move it to the idle hosts LRU list.
1816 1816 */
1817 1817 hostp->nh_idle_timeout = ddi_get_lbolt() +
1818 1818 SEC_TO_TICK(g->cn_idle_tmo);
1819 1819
1820 1820 ASSERT((hostp->nh_flags & NLM_NH_INIDLE) == 0);
1821 1821 TAILQ_INSERT_TAIL(&g->nlm_idle_hosts, hostp, nh_link);
1822 1822 hostp->nh_flags |= NLM_NH_INIDLE;
1823 1823 }
1824 1824
1825 1825 void
1826 1826 nlm_host_release(struct nlm_globals *g, struct nlm_host *hostp)
1827 1827 {
1828 1828 if (hostp == NULL)
1829 1829 return;
1830 1830
1831 1831 mutex_enter(&g->lock);
1832 1832 nlm_host_release_locked(g, hostp);
1833 1833 mutex_exit(&g->lock);
1834 1834 }
1835 1835
1836 1836 /*
1837 1837 * Unregister this NLM host (NFS client) with the local statd
1838 1838 * due to idleness (no locks held for a while).
1839 1839 */
1840 1840 void
1841 1841 nlm_host_unmonitor(struct nlm_globals *g, struct nlm_host *host)
1842 1842 {
1843 1843 enum clnt_stat stat;
1844 1844
1845 1845 VERIFY(host->nh_refs == 0);
1846 1846 if (!(host->nh_flags & NLM_NH_MONITORED))
1847 1847 return;
1848 1848
1849 1849 host->nh_flags &= ~NLM_NH_MONITORED;
1850 1850 stat = nlm_nsm_unmon(&g->nlm_nsm, host->nh_name);
1851 1851 if (stat != RPC_SUCCESS) {
1852 1852 NLM_WARN("NLM: Failed to contact statd, stat=%d\n", stat);
1853 1853 return;
1854 1854 }
1855 1855 }
1856 1856
1857 1857 /*
1858 1858 * Ask the local NFS statd to begin monitoring this host.
1859 1859 * It will call us back when that host restarts, using the
1860 1860 * prog,vers,proc specified below, i.e. NLM_SM_NOTIFY1,
1861 1861 * which is handled in nlm_do_notify1().
1862 1862 */
1863 1863 void
1864 1864 nlm_host_monitor(struct nlm_globals *g, struct nlm_host *host, int state)
1865 1865 {
1866 1866 int family;
1867 1867 netobj obj;
1868 1868 enum clnt_stat stat;
1869 1869
1870 1870 if (state != 0 && host->nh_state == 0) {
1871 1871 /*
1872 1872 * This is the first time we have seen an NSM state
1873 1873 * Value for this host. We record it here to help
1874 1874 * detect host reboots.
1875 1875 */
1876 1876 host->nh_state = state;
1877 1877 }
1878 1878
1879 1879 mutex_enter(&host->nh_lock);
1880 1880 if (host->nh_flags & NLM_NH_MONITORED) {
1881 1881 mutex_exit(&host->nh_lock);
1882 1882 return;
1883 1883 }
1884 1884
1885 1885 host->nh_flags |= NLM_NH_MONITORED;
1886 1886 mutex_exit(&host->nh_lock);
1887 1887
1888 1888 /*
1889 1889 * Before we begin monitoring the host register the network address
1890 1890 * associated with this hostname.
1891 1891 */
1892 1892 nlm_netbuf_to_netobj(&host->nh_addr, &family, &obj);
1893 1893 stat = nlm_nsmaddr_reg(&g->nlm_nsm, host->nh_name, family, &obj);
1894 1894 if (stat != RPC_SUCCESS) {
1895 1895 NLM_WARN("Failed to register address, stat=%d\n", stat);
1896 1896 mutex_enter(&g->lock);
1897 1897 host->nh_flags &= ~NLM_NH_MONITORED;
1898 1898 mutex_exit(&g->lock);
1899 1899
1900 1900 return;
1901 1901 }
1902 1902
1903 1903 /*
1904 1904 * Tell statd how to call us with status updates for
1905 1905 * this host. Updates arrive via nlm_do_notify1().
1906 1906 *
1907 1907 * We put our assigned system ID value in the priv field to
1908 1908 * make it simpler to find the host if we are notified of a
1909 1909 * host restart.
1910 1910 */
1911 1911 stat = nlm_nsm_mon(&g->nlm_nsm, host->nh_name, host->nh_sysid);
1912 1912 if (stat != RPC_SUCCESS) {
1913 1913 NLM_WARN("Failed to contact local NSM, stat=%d\n", stat);
1914 1914 mutex_enter(&g->lock);
1915 1915 host->nh_flags &= ~NLM_NH_MONITORED;
1916 1916 mutex_exit(&g->lock);
1917 1917
1918 1918 return;
1919 1919 }
1920 1920 }
1921 1921
1922 1922 int
1923 1923 nlm_host_get_state(struct nlm_host *hostp)
1924 1924 {
1925 1925
1926 1926 return (hostp->nh_state);
1927 1927 }
1928 1928
1929 1929 /*
1930 1930 * NLM client/server sleeping locks
1931 1931 */
1932 1932
1933 1933 /*
1934 1934 * Register client side sleeping lock.
1935 1935 *
1936 1936 * Our client code calls this to keep information
1937 1937 * about sleeping lock somewhere. When it receives
1938 1938 * grant callback from server or when it just
1939 1939 * needs to remove all sleeping locks from vnode,
1940 1940 * it uses this information for remove/apply lock
1941 1941 * properly.
1942 1942 */
1943 1943 struct nlm_slock *
1944 1944 nlm_slock_register(
1945 1945 struct nlm_globals *g,
1946 1946 struct nlm_host *host,
1947 1947 struct nlm4_lock *lock,
1948 1948 struct vnode *vp)
1949 1949 {
1950 1950 struct nlm_slock *nslp;
1951 1951
1952 1952 nslp = kmem_zalloc(sizeof (*nslp), KM_SLEEP);
1953 1953 cv_init(&nslp->nsl_cond, NULL, CV_DEFAULT, NULL);
1954 1954 nslp->nsl_lock = *lock;
1955 1955 nlm_copy_netobj(&nslp->nsl_fh, &nslp->nsl_lock.fh);
1956 1956 nslp->nsl_state = NLM_SL_BLOCKED;
1957 1957 nslp->nsl_host = host;
1958 1958 nslp->nsl_vp = vp;
1959 1959
1960 1960 mutex_enter(&g->lock);
1961 1961 TAILQ_INSERT_TAIL(&g->nlm_slocks, nslp, nsl_link);
1962 1962 mutex_exit(&g->lock);
1963 1963
1964 1964 return (nslp);
1965 1965 }
1966 1966
1967 1967 /*
1968 1968 * Remove this lock from the wait list and destroy it.
1969 1969 */
1970 1970 void
1971 1971 nlm_slock_unregister(struct nlm_globals *g, struct nlm_slock *nslp)
1972 1972 {
1973 1973 mutex_enter(&g->lock);
1974 1974 TAILQ_REMOVE(&g->nlm_slocks, nslp, nsl_link);
1975 1975 mutex_exit(&g->lock);
1976 1976
1977 1977 kmem_free(nslp->nsl_fh.n_bytes, nslp->nsl_fh.n_len);
1978 1978 cv_destroy(&nslp->nsl_cond);
1979 1979 kmem_free(nslp, sizeof (*nslp));
1980 1980 }
1981 1981
1982 1982 /*
1983 1983 * Wait for a granted callback or cancellation event
1984 1984 * for a sleeping lock.
1985 1985 *
1986 1986 * If a signal interrupted the wait or if the lock
1987 1987 * was cancelled, return EINTR - the caller must arrange to send
1988 1988 * a cancellation to the server.
1989 1989 *
1990 1990 * If timeout occurred, return ETIMEDOUT - the caller must
1991 1991 * resend the lock request to the server.
1992 1992 *
1993 1993 * On success return 0.
1994 1994 */
1995 1995 int
1996 1996 nlm_slock_wait(struct nlm_globals *g,
1997 1997 struct nlm_slock *nslp, uint_t timeo_secs)
1998 1998 {
1999 1999 clock_t timeo_ticks;
2000 2000 int cv_res, error;
2001 2001
2002 2002 /*
2003 2003 * If the granted message arrived before we got here,
2004 2004 * nslp->nsl_state will be NLM_SL_GRANTED - in that case don't sleep.
2005 2005 */
2006 2006 cv_res = 1;
2007 2007 timeo_ticks = ddi_get_lbolt() + SEC_TO_TICK(timeo_secs);
2008 2008
2009 2009 mutex_enter(&g->lock);
2010 2010 while (nslp->nsl_state == NLM_SL_BLOCKED && cv_res > 0) {
2011 2011 cv_res = cv_timedwait_sig(&nslp->nsl_cond,
2012 2012 &g->lock, timeo_ticks);
2013 2013 }
2014 2014
2015 2015 /*
2016 2016 * No matter why we wake up, if the lock was
2017 2017 * cancelled, let the function caller to know
2018 2018 * about it by returning EINTR.
2019 2019 */
2020 2020 if (nslp->nsl_state == NLM_SL_CANCELLED) {
2021 2021 error = EINTR;
2022 2022 goto out;
2023 2023 }
2024 2024
2025 2025 if (cv_res <= 0) {
2026 2026 /* We were woken up either by timeout or by interrupt */
2027 2027 error = (cv_res < 0) ? ETIMEDOUT : EINTR;
2028 2028
2029 2029 /*
2030 2030 * The granted message may arrive after the
2031 2031 * interrupt/timeout but before we manage to lock the
2032 2032 * mutex. Detect this by examining nslp.
2033 2033 */
2034 2034 if (nslp->nsl_state == NLM_SL_GRANTED)
2035 2035 error = 0;
2036 2036 } else { /* Awaken via cv_signal()/cv_broadcast() or didn't block */
2037 2037 error = 0;
2038 2038 VERIFY(nslp->nsl_state == NLM_SL_GRANTED);
2039 2039 }
2040 2040
2041 2041 out:
2042 2042 mutex_exit(&g->lock);
2043 2043 return (error);
2044 2044 }
2045 2045
2046 2046 /*
2047 2047 * Mark client side sleeping lock as granted
2048 2048 * and wake up a process blocked on the lock.
2049 2049 * Called from server side NLM_GRANT handler.
2050 2050 *
2051 2051 * If sleeping lock is found return 0, otherwise
2052 2052 * return ENOENT.
2053 2053 */
2054 2054 int
2055 2055 nlm_slock_grant(struct nlm_globals *g,
2056 2056 struct nlm_host *hostp, struct nlm4_lock *alock)
2057 2057 {
2058 2058 struct nlm_slock *nslp;
2059 2059 int error = ENOENT;
2060 2060
2061 2061 mutex_enter(&g->lock);
2062 2062 TAILQ_FOREACH(nslp, &g->nlm_slocks, nsl_link) {
2063 2063 if ((nslp->nsl_state != NLM_SL_BLOCKED) ||
2064 2064 (nslp->nsl_host != hostp))
2065 2065 continue;
2066 2066
2067 2067 if (alock->svid == nslp->nsl_lock.svid &&
2068 2068 alock->l_offset == nslp->nsl_lock.l_offset &&
2069 2069 alock->l_len == nslp->nsl_lock.l_len &&
2070 2070 alock->fh.n_len == nslp->nsl_lock.fh.n_len &&
2071 2071 bcmp(alock->fh.n_bytes, nslp->nsl_lock.fh.n_bytes,
2072 2072 nslp->nsl_lock.fh.n_len) == 0) {
2073 2073 nslp->nsl_state = NLM_SL_GRANTED;
2074 2074 cv_broadcast(&nslp->nsl_cond);
2075 2075 error = 0;
2076 2076 break;
2077 2077 }
2078 2078 }
2079 2079
2080 2080 mutex_exit(&g->lock);
2081 2081 return (error);
2082 2082 }
2083 2083
2084 2084 /*
2085 2085 * Register sleeping lock request corresponding to
2086 2086 * flp on the given vhold object.
2087 2087 * On success function returns 0, otherwise (if
2088 2088 * lock request with the same flp is already
2089 2089 * registered) function returns EEXIST.
2090 2090 */
2091 2091 int
2092 2092 nlm_slreq_register(struct nlm_host *hostp, struct nlm_vhold *nvp,
2093 2093 struct flock64 *flp)
2094 2094 {
2095 2095 struct nlm_slreq *slr, *new_slr = NULL;
2096 2096 int ret = EEXIST;
2097 2097
2098 2098 mutex_enter(&hostp->nh_lock);
2099 2099 slr = nlm_slreq_find_locked(hostp, nvp, flp);
2100 2100 if (slr != NULL)
2101 2101 goto out;
2102 2102
2103 2103 mutex_exit(&hostp->nh_lock);
2104 2104 new_slr = kmem_zalloc(sizeof (*slr), KM_SLEEP);
2105 2105 bcopy(flp, &new_slr->nsr_fl, sizeof (*flp));
2106 2106
2107 2107 mutex_enter(&hostp->nh_lock);
2108 2108 slr = nlm_slreq_find_locked(hostp, nvp, flp);
2109 2109 if (slr == NULL) {
2110 2110 slr = new_slr;
2111 2111 new_slr = NULL;
2112 2112 ret = 0;
2113 2113
2114 2114 TAILQ_INSERT_TAIL(&nvp->nv_slreqs, slr, nsr_link);
2115 2115 }
2116 2116
2117 2117 out:
2118 2118 mutex_exit(&hostp->nh_lock);
2119 2119 if (new_slr != NULL)
2120 2120 kmem_free(new_slr, sizeof (*new_slr));
2121 2121
2122 2122 return (ret);
2123 2123 }
2124 2124
2125 2125 /*
2126 2126 * Unregister sleeping lock request corresponding
2127 2127 * to flp from the given vhold object.
2128 2128 * On success function returns 0, otherwise (if
2129 2129 * lock request corresponding to flp isn't found
2130 2130 * on the given vhold) function returns ENOENT.
2131 2131 */
2132 2132 int
2133 2133 nlm_slreq_unregister(struct nlm_host *hostp, struct nlm_vhold *nvp,
2134 2134 struct flock64 *flp)
2135 2135 {
2136 2136 struct nlm_slreq *slr;
2137 2137
2138 2138 mutex_enter(&hostp->nh_lock);
2139 2139 slr = nlm_slreq_find_locked(hostp, nvp, flp);
2140 2140 if (slr == NULL) {
2141 2141 mutex_exit(&hostp->nh_lock);
2142 2142 return (ENOENT);
2143 2143 }
2144 2144
2145 2145 TAILQ_REMOVE(&nvp->nv_slreqs, slr, nsr_link);
2146 2146 mutex_exit(&hostp->nh_lock);
2147 2147
2148 2148 kmem_free(slr, sizeof (*slr));
2149 2149 return (0);
2150 2150 }
2151 2151
2152 2152 /*
2153 2153 * Find sleeping lock request on the given vhold object by flp.
2154 2154 */
2155 2155 struct nlm_slreq *
2156 2156 nlm_slreq_find_locked(struct nlm_host *hostp, struct nlm_vhold *nvp,
2157 2157 struct flock64 *flp)
2158 2158 {
2159 2159 struct nlm_slreq *slr = NULL;
2160 2160
2161 2161 ASSERT(MUTEX_HELD(&hostp->nh_lock));
2162 2162 TAILQ_FOREACH(slr, &nvp->nv_slreqs, nsr_link) {
2163 2163 if (slr->nsr_fl.l_start == flp->l_start &&
2164 2164 slr->nsr_fl.l_len == flp->l_len &&
2165 2165 slr->nsr_fl.l_pid == flp->l_pid &&
2166 2166 slr->nsr_fl.l_type == flp->l_type)
2167 2167 break;
2168 2168 }
2169 2169
2170 2170 return (slr);
2171 2171 }
2172 2172
2173 2173 /*
2174 2174 * NLM tracks active share reservations made on the client side.
2175 2175 * It needs to have a track of share reservations for two purposes
2176 2176 * 1) to determine if nlm_host is busy (if it has active locks and/or
2177 2177 * share reservations, it is)
2178 2178 * 2) to recover active share reservations when NLM server reports
2179 2179 * that it has rebooted.
2180 2180 *
2181 2181 * Unfortunately Illumos local share reservations manager (see os/share.c)
2182 2182 * doesn't have an ability to lookup all reservations on the system
2183 2183 * by sysid (like local lock manager) or get all reservations by sysid.
2184 2184 * It tracks reservations per vnode and is able to get/looup them
2185 2185 * on particular vnode. It's not what NLM needs. Thus it has that ugly
2186 2186 * share reservations tracking scheme.
2187 2187 */
2188 2188
2189 2189 void
2190 2190 nlm_shres_track(struct nlm_host *hostp, vnode_t *vp, struct shrlock *shrp)
2191 2191 {
2192 2192 struct nlm_shres *nsp, *nsp_new;
2193 2193
2194 2194 /*
2195 2195 * NFS code must fill the s_owner, so that
2196 2196 * s_own_len is never 0.
2197 2197 */
2198 2198 ASSERT(shrp->s_own_len > 0);
2199 2199 nsp_new = nlm_shres_create_item(shrp, vp);
2200 2200
2201 2201 mutex_enter(&hostp->nh_lock);
2202 2202 for (nsp = hostp->nh_shrlist; nsp != NULL; nsp = nsp->ns_next)
2203 2203 if (nsp->ns_vp == vp && nlm_shres_equal(shrp, nsp->ns_shr))
2204 2204 break;
2205 2205
2206 2206 if (nsp != NULL) {
2207 2207 /*
2208 2208 * Found a duplicate. Do nothing.
2209 2209 */
2210 2210
2211 2211 goto out;
2212 2212 }
2213 2213
2214 2214 nsp = nsp_new;
2215 2215 nsp_new = NULL;
2216 2216 nsp->ns_next = hostp->nh_shrlist;
2217 2217 hostp->nh_shrlist = nsp;
2218 2218
2219 2219 out:
2220 2220 mutex_exit(&hostp->nh_lock);
2221 2221 if (nsp_new != NULL)
2222 2222 nlm_shres_destroy_item(nsp_new);
2223 2223 }
2224 2224
2225 2225 void
2226 2226 nlm_shres_untrack(struct nlm_host *hostp, vnode_t *vp, struct shrlock *shrp)
2227 2227 {
2228 2228 struct nlm_shres *nsp, *nsp_prev = NULL;
2229 2229
2230 2230 mutex_enter(&hostp->nh_lock);
2231 2231 nsp = hostp->nh_shrlist;
2232 2232 while (nsp != NULL) {
2233 2233 if (nsp->ns_vp == vp && nlm_shres_equal(shrp, nsp->ns_shr)) {
2234 2234 struct nlm_shres *nsp_del;
2235 2235
2236 2236 nsp_del = nsp;
2237 2237 nsp = nsp->ns_next;
2238 2238 if (nsp_prev != NULL)
2239 2239 nsp_prev->ns_next = nsp;
2240 2240 else
2241 2241 hostp->nh_shrlist = nsp;
2242 2242
2243 2243 nlm_shres_destroy_item(nsp_del);
2244 2244 continue;
2245 2245 }
2246 2246
2247 2247 nsp_prev = nsp;
2248 2248 nsp = nsp->ns_next;
2249 2249 }
2250 2250
2251 2251 mutex_exit(&hostp->nh_lock);
2252 2252 }
2253 2253
2254 2254 /*
2255 2255 * Get a _copy_ of the list of all active share reservations
2256 2256 * made by the given host.
2257 2257 * NOTE: the list function returns _must_ be released using
2258 2258 * nlm_free_shrlist().
2259 2259 */
2260 2260 struct nlm_shres *
2261 2261 nlm_get_active_shres(struct nlm_host *hostp)
2262 2262 {
2263 2263 struct nlm_shres *nsp, *nslist = NULL;
2264 2264
2265 2265 mutex_enter(&hostp->nh_lock);
2266 2266 for (nsp = hostp->nh_shrlist; nsp != NULL; nsp = nsp->ns_next) {
2267 2267 struct nlm_shres *nsp_new;
2268 2268
2269 2269 nsp_new = nlm_shres_create_item(nsp->ns_shr, nsp->ns_vp);
2270 2270 nsp_new->ns_next = nslist;
2271 2271 nslist = nsp_new;
2272 2272 }
2273 2273
2274 2274 mutex_exit(&hostp->nh_lock);
2275 2275 return (nslist);
2276 2276 }
2277 2277
2278 2278 /*
2279 2279 * Free memory allocated for the active share reservations
2280 2280 * list created by nlm_get_active_shres() function.
2281 2281 */
2282 2282 void
2283 2283 nlm_free_shrlist(struct nlm_shres *nslist)
2284 2284 {
2285 2285 struct nlm_shres *nsp;
2286 2286
2287 2287 while (nslist != NULL) {
2288 2288 nsp = nslist;
2289 2289 nslist = nslist->ns_next;
2290 2290
2291 2291 nlm_shres_destroy_item(nsp);
2292 2292 }
2293 2293 }
2294 2294
2295 2295 static bool_t
2296 2296 nlm_shres_equal(struct shrlock *shrp1, struct shrlock *shrp2)
2297 2297 {
2298 2298 if (shrp1->s_sysid == shrp2->s_sysid &&
2299 2299 shrp1->s_pid == shrp2->s_pid &&
2300 2300 shrp1->s_own_len == shrp2->s_own_len &&
2301 2301 bcmp(shrp1->s_owner, shrp2->s_owner,
2302 2302 shrp1->s_own_len) == 0)
2303 2303 return (TRUE);
2304 2304
2305 2305 return (FALSE);
2306 2306 }
2307 2307
2308 2308 static struct nlm_shres *
2309 2309 nlm_shres_create_item(struct shrlock *shrp, vnode_t *vp)
2310 2310 {
2311 2311 struct nlm_shres *nsp;
2312 2312
2313 2313 nsp = kmem_alloc(sizeof (*nsp), KM_SLEEP);
2314 2314 nsp->ns_shr = kmem_alloc(sizeof (*shrp), KM_SLEEP);
2315 2315 bcopy(shrp, nsp->ns_shr, sizeof (*shrp));
2316 2316 nsp->ns_shr->s_owner = kmem_alloc(shrp->s_own_len, KM_SLEEP);
2317 2317 bcopy(shrp->s_owner, nsp->ns_shr->s_owner, shrp->s_own_len);
2318 2318 nsp->ns_vp = vp;
2319 2319
2320 2320 return (nsp);
2321 2321 }
2322 2322
2323 2323 static void
2324 2324 nlm_shres_destroy_item(struct nlm_shres *nsp)
2325 2325 {
2326 2326 kmem_free(nsp->ns_shr->s_owner,
2327 2327 nsp->ns_shr->s_own_len);
2328 2328 kmem_free(nsp->ns_shr, sizeof (struct shrlock));
2329 2329 kmem_free(nsp, sizeof (*nsp));
2330 2330 }
2331 2331
2332 2332 /*
2333 2333 * Called by klmmod.c when lockd adds a network endpoint
2334 2334 * on which we should begin RPC services.
2335 2335 */
2336 2336 int
2337 2337 nlm_svc_add_ep(struct file *fp, const char *netid, struct knetconfig *knc)
2338 2338 {
2339 2339 SVCMASTERXPRT *xprt = NULL;
2340 2340 int error;
2341 2341
2342 2342 error = svc_tli_kcreate(fp, 0, (char *)netid, NULL, &xprt,
2343 2343 &nlm_sct, NULL, NLM_SVCPOOL_ID, FALSE);
2344 2344 if (error != 0)
2345 2345 return (error);
2346 2346
2347 2347 (void) nlm_knc_to_netid(knc);
2348 2348 return (0);
2349 2349 }
2350 2350
2351 2351 /*
2352 2352 * Start NLM service.
2353 2353 */
2354 2354 int
2355 2355 nlm_svc_starting(struct nlm_globals *g, struct file *fp,
2356 2356 const char *netid, struct knetconfig *knc)
2357 2357 {
2358 2358 int error;
2359 2359 enum clnt_stat stat;
2360 2360
2361 2361 VERIFY(g->run_status == NLM_ST_STARTING);
2362 2362 VERIFY(g->nlm_gc_thread == NULL);
2363 2363
2364 2364 error = nlm_nsm_init_local(&g->nlm_nsm);
2365 2365 if (error != 0) {
2366 2366 NLM_ERR("Failed to initialize NSM handler "
2367 2367 "(error=%d)\n", error);
2368 2368 g->run_status = NLM_ST_DOWN;
2369 2369 return (error);
2370 2370 }
2371 2371
2372 2372 error = EIO;
2373 2373
2374 2374 /*
2375 2375 * Create an NLM garbage collector thread that will
2376 2376 * clean up stale vholds and hosts objects.
2377 2377 */
2378 2378 g->nlm_gc_thread = zthread_create(NULL, 0, nlm_gc,
2379 2379 g, 0, minclsyspri);
2380 2380
2381 2381 /*
2382 2382 * Send SIMU_CRASH to local statd to report that
2383 2383 * NLM started, so that statd can report other hosts
2384 2384 * about NLM state change.
2385 2385 */
2386 2386
2387 2387 stat = nlm_nsm_simu_crash(&g->nlm_nsm);
2388 2388 if (stat != RPC_SUCCESS) {
2389 2389 NLM_ERR("Failed to connect to local statd "
2390 2390 "(rpcerr=%d)\n", stat);
2391 2391 goto shutdown_lm;
2392 2392 }
2393 2393
2394 2394 stat = nlm_nsm_stat(&g->nlm_nsm, &g->nsm_state);
2395 2395 if (stat != RPC_SUCCESS) {
2396 2396 NLM_ERR("Failed to get the status of local statd "
2397 2397 "(rpcerr=%d)\n", stat);
2398 2398 goto shutdown_lm;
2399 2399 }
2400 2400
2401 2401 g->grace_threshold = ddi_get_lbolt() +
2402 2402 SEC_TO_TICK(g->grace_period);
2403 2403
2404 2404 /* Register endpoint used for communications with local NLM */
2405 2405 error = nlm_svc_add_ep(fp, netid, knc);
2406 2406 if (error != 0)
2407 2407 goto shutdown_lm;
2408 2408
2409 2409 (void) svc_pool_control(NLM_SVCPOOL_ID,
2410 2410 SVCPSET_SHUTDOWN_PROC, (void *)nlm_pool_shutdown);
2411 2411 g->run_status = NLM_ST_UP;
2412 2412 return (0);
2413 2413
2414 2414 shutdown_lm:
2415 2415 mutex_enter(&g->lock);
2416 2416 g->run_status = NLM_ST_STOPPING;
2417 2417 mutex_exit(&g->lock);
2418 2418
2419 2419 nlm_svc_stopping(g);
2420 2420 return (error);
2421 2421 }
2422 2422
2423 2423 /*
2424 2424 * Called when the server pool is destroyed, so that
2425 2425 * all transports are closed and no any server threads
2426 2426 * exist.
2427 2427 *
2428 2428 * Just call lm_shutdown() to shut NLM down properly.
2429 2429 */
2430 2430 static void
2431 2431 nlm_pool_shutdown(void)
2432 2432 {
2433 2433 (void) lm_shutdown();
2434 2434 }
2435 2435
2436 2436 /*
2437 2437 * Stop NLM service, cleanup all resources
2438 2438 * NLM owns at the moment.
2439 2439 *
2440 2440 * NOTE: NFS code can call NLM while it's
2441 2441 * stopping or even if it's shut down. Any attempt
2442 2442 * to lock file either on client or on the server
2443 2443 * will fail if NLM isn't in NLM_ST_UP state.
2444 2444 */
2445 2445 void
2446 2446 nlm_svc_stopping(struct nlm_globals *g)
2447 2447 {
2448 2448 mutex_enter(&g->lock);
2449 2449 ASSERT(g->run_status == NLM_ST_STOPPING);
2450 2450
2451 2451 /*
2452 2452 * Ask NLM GC thread to exit and wait until it dies.
2453 2453 */
2454 2454 cv_signal(&g->nlm_gc_sched_cv);
2455 2455 while (g->nlm_gc_thread != NULL)
2456 2456 cv_wait(&g->nlm_gc_finish_cv, &g->lock);
2457 2457
2458 2458 mutex_exit(&g->lock);
2459 2459
2460 2460 /*
2461 2461 * Cleanup locks owned by NLM hosts.
2462 2462 * NOTE: New hosts won't be created while
2463 2463 * NLM is stopping.
2464 2464 */
2465 2465 while (!avl_is_empty(&g->nlm_hosts_tree)) {
2466 2466 struct nlm_host *hostp;
2467 2467 int busy_hosts = 0;
2468 2468
2469 2469 /*
2470 2470 * Iterate through all NLM hosts in the system
2471 2471 * and drop the locks they own by force.
2472 2472 */
2473 2473 hostp = avl_first(&g->nlm_hosts_tree);
2474 2474 while (hostp != NULL) {
2475 2475 /* Cleanup all client and server side locks */
2476 2476 nlm_client_cancel_all(g, hostp);
2477 2477 nlm_host_notify_server(hostp, 0);
2478 2478
2479 2479 mutex_enter(&hostp->nh_lock);
2480 2480 nlm_host_gc_vholds(hostp);
2481 2481 if (hostp->nh_refs > 0 || nlm_host_has_locks(hostp)) {
2482 2482 /*
2483 2483 * Oh, it seems the host is still busy, let
2484 2484 * it some time to release and go to the
2485 2485 * next one.
2486 2486 */
2487 2487
2488 2488 mutex_exit(&hostp->nh_lock);
2489 2489 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp);
2490 2490 busy_hosts++;
2491 2491 continue;
2492 2492 }
2493 2493
2494 2494 mutex_exit(&hostp->nh_lock);
2495 2495 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp);
2496 2496 }
2497 2497
2498 2498 /*
2499 2499 * All hosts go to nlm_idle_hosts list after
2500 2500 * all locks they own are cleaned up and last refereces
2501 2501 * were dropped. Just destroy all hosts in nlm_idle_hosts
2502 2502 * list, they can not be removed from there while we're
2503 2503 * in stopping state.
2504 2504 */
2505 2505 while ((hostp = TAILQ_FIRST(&g->nlm_idle_hosts)) != NULL) {
2506 2506 nlm_host_unregister(g, hostp);
2507 2507 nlm_host_destroy(hostp);
2508 2508 }
2509 2509
2510 2510 if (busy_hosts > 0) {
2511 2511 /*
2512 2512 * There're some hosts that weren't cleaned
2513 2513 * up. Probably they're in resource cleanup
2514 2514 * process. Give them some time to do drop
2515 2515 * references.
2516 2516 */
2517 2517 delay(MSEC_TO_TICK(500));
2518 2518 }
2519 2519 }
2520 2520
2521 2521 ASSERT(TAILQ_EMPTY(&g->nlm_slocks));
2522 2522
2523 2523 nlm_nsm_fini(&g->nlm_nsm);
2524 2524 g->lockd_pid = 0;
2525 2525 g->run_status = NLM_ST_DOWN;
2526 2526 }
2527 2527
2528 2528 /*
2529 2529 * Returns TRUE if the given vnode has
2530 2530 * any active or sleeping locks.
2531 2531 */
2532 2532 int
2533 2533 nlm_vp_active(const vnode_t *vp)
2534 2534 {
2535 2535 struct nlm_globals *g;
2536 2536 struct nlm_host *hostp;
2537 2537 struct nlm_vhold *nvp;
2538 2538 int active = 0;
2539 2539
2540 2540 g = zone_getspecific(nlm_zone_key, curzone);
2541 2541
2542 2542 /*
2543 2543 * Server side NLM has locks on the given vnode
2544 2544 * if there exist a vhold object that holds
2545 2545 * the given vnode "vp" in one of NLM hosts.
2546 2546 */
2547 2547 mutex_enter(&g->lock);
2548 2548 hostp = avl_first(&g->nlm_hosts_tree);
2549 2549 while (hostp != NULL) {
2550 2550 mutex_enter(&hostp->nh_lock);
2551 2551 nvp = nlm_vhold_find_locked(hostp, vp);
2552 2552 mutex_exit(&hostp->nh_lock);
2553 2553 if (nvp != NULL) {
2554 2554 active = 1;
2555 2555 break;
2556 2556 }
2557 2557
2558 2558 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp);
2559 2559 }
2560 2560
2561 2561 mutex_exit(&g->lock);
2562 2562 return (active);
|
↓ open down ↓ |
2562 lines elided |
↑ open up ↑ |
2563 2563 }
2564 2564
2565 2565 /*
2566 2566 * Called right before NFS export is going to
2567 2567 * dissapear. The function finds all vnodes
2568 2568 * belonging to the given export and cleans
2569 2569 * all remote locks and share reservations
2570 2570 * on them.
2571 2571 */
2572 2572 void
2573 -nlm_unexport(struct exportinfo *exi)
2573 +nlm_zone_unexport(struct nlm_globals *g, struct exportinfo *exi)
2574 2574 {
2575 - struct nlm_globals *g;
2576 2575 struct nlm_host *hostp;
2577 2576
2578 - /* This may be called on behalf of global-zone doing shutdown. */
2579 - ASSERT(exi->exi_zone == curzone || curzone == global_zone);
2580 - g = zone_getspecific(nlm_zone_key, exi->exi_zone);
2581 - if (g == NULL) {
2582 - /* Did zone cleanup get here already? */
2577 + mutex_enter(&g->lock);
2578 + if (g->run_status != NLM_ST_UP) {
2579 + /* nothing to do */
2580 + mutex_exit(&g->lock);
2583 2581 return;
2584 2582 }
2585 2583
2586 - mutex_enter(&g->lock);
2587 2584 hostp = avl_first(&g->nlm_hosts_tree);
2588 2585 while (hostp != NULL) {
2589 2586 struct nlm_vhold *nvp;
2590 2587
2591 2588 if (hostp->nh_flags & NLM_NH_INIDLE) {
2592 2589 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link);
2593 2590 hostp->nh_flags &= ~NLM_NH_INIDLE;
2594 2591 }
2595 2592 hostp->nh_refs++;
2596 2593
2597 2594 mutex_exit(&g->lock);
2598 2595
2599 2596 mutex_enter(&hostp->nh_lock);
2600 2597 TAILQ_FOREACH(nvp, &hostp->nh_vholds_list, nv_link) {
2601 2598 vnode_t *vp;
2602 2599
2603 2600 nvp->nv_refcnt++;
2604 2601 mutex_exit(&hostp->nh_lock);
2605 2602
2606 2603 vp = nvp->nv_vp;
2607 2604
2608 2605 if (!EQFSID(&exi->exi_fsid, &vp->v_vfsp->vfs_fsid))
2609 2606 goto next_iter;
2610 2607
2611 2608 /*
2612 2609 * Ok, it we found out that vnode vp is under
2613 2610 * control by the exportinfo exi, now we need
2614 2611 * to drop all locks from this vnode, let's
2615 2612 * do it.
2616 2613 */
2617 2614 nlm_vhold_clean(nvp, hostp->nh_sysid);
2618 2615
2619 2616 next_iter:
2620 2617 mutex_enter(&hostp->nh_lock);
2621 2618 nvp->nv_refcnt--;
2622 2619 }
2623 2620 mutex_exit(&hostp->nh_lock);
|
↓ open down ↓ |
27 lines elided |
↑ open up ↑ |
2624 2621
2625 2622 mutex_enter(&g->lock);
2626 2623 nlm_host_release_locked(g, hostp);
2627 2624
2628 2625 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp);
2629 2626 }
2630 2627
2631 2628 mutex_exit(&g->lock);
2632 2629 }
2633 2630
2631 +void
2632 +nlm_unexport(struct exportinfo *exi)
2633 +{
2634 + struct nlm_globals *g;
2635 +
2636 + rw_enter(&lm_lck, RW_READER);
2637 + TAILQ_FOREACH(g, &nlm_zones_list, nlm_link) {
2638 + if (g->nlm_zoneid == exi->exi_zoneid) {
2639 + /*
2640 + * NOTE: If we want to drop lm_lock before
2641 + * calling nlm_zone_unexport(), we should break,
2642 + * and have a post-rw_exit() snippit like:
2643 + * if (g != NULL)
2644 + * nlm_zone_unexport(g, exi);
2645 + */
2646 + nlm_zone_unexport(g, exi);
2647 + break; /* Only going to match once! */
2648 + }
2649 + }
2650 + rw_exit(&lm_lck);
2651 +}
2652 +
2634 2653 /*
2635 2654 * Allocate new unique sysid.
2636 2655 * In case of failure (no available sysids)
2637 2656 * return LM_NOSYSID.
2638 2657 */
2639 2658 sysid_t
2640 2659 nlm_sysid_alloc(void)
2641 2660 {
2642 2661 sysid_t ret_sysid = LM_NOSYSID;
2643 2662
2644 2663 rw_enter(&lm_lck, RW_WRITER);
2645 2664 if (nlm_sysid_nidx > LM_SYSID_MAX)
2646 2665 nlm_sysid_nidx = LM_SYSID;
2647 2666
2648 2667 if (!BT_TEST(nlm_sysid_bmap, nlm_sysid_nidx)) {
2649 2668 BT_SET(nlm_sysid_bmap, nlm_sysid_nidx);
2650 2669 ret_sysid = nlm_sysid_nidx++;
2651 2670 } else {
2652 2671 index_t id;
2653 2672
2654 2673 id = bt_availbit(nlm_sysid_bmap, NLM_BMAP_NITEMS);
2655 2674 if (id > 0) {
2656 2675 nlm_sysid_nidx = id + 1;
2657 2676 ret_sysid = id;
2658 2677 BT_SET(nlm_sysid_bmap, id);
2659 2678 }
2660 2679 }
2661 2680
2662 2681 rw_exit(&lm_lck);
2663 2682 return (ret_sysid);
2664 2683 }
2665 2684
2666 2685 void
2667 2686 nlm_sysid_free(sysid_t sysid)
2668 2687 {
2669 2688 ASSERT(sysid >= LM_SYSID && sysid <= LM_SYSID_MAX);
2670 2689
2671 2690 rw_enter(&lm_lck, RW_WRITER);
2672 2691 ASSERT(BT_TEST(nlm_sysid_bmap, sysid));
2673 2692 BT_CLEAR(nlm_sysid_bmap, sysid);
2674 2693 rw_exit(&lm_lck);
2675 2694 }
2676 2695
2677 2696 /*
2678 2697 * Return true if the request came from a local caller.
2679 2698 * By necessity, this "knows" the netid names invented
2680 2699 * in lm_svc() and nlm_netid_from_knetconfig().
2681 2700 */
2682 2701 bool_t
2683 2702 nlm_caller_is_local(SVCXPRT *transp)
2684 2703 {
2685 2704 char *netid;
2686 2705 struct netbuf *rtaddr;
2687 2706
2688 2707 netid = svc_getnetid(transp);
2689 2708 rtaddr = svc_getrpccaller(transp);
2690 2709
2691 2710 if (netid == NULL)
2692 2711 return (FALSE);
2693 2712
2694 2713 if (strcmp(netid, "ticlts") == 0 ||
2695 2714 strcmp(netid, "ticotsord") == 0)
2696 2715 return (TRUE);
2697 2716
2698 2717 if (strcmp(netid, "tcp") == 0 || strcmp(netid, "udp") == 0) {
2699 2718 struct sockaddr_in *sin = (void *)rtaddr->buf;
2700 2719 if (sin->sin_addr.s_addr == htonl(INADDR_LOOPBACK))
2701 2720 return (TRUE);
2702 2721 }
2703 2722 if (strcmp(netid, "tcp6") == 0 || strcmp(netid, "udp6") == 0) {
2704 2723 struct sockaddr_in6 *sin6 = (void *)rtaddr->buf;
2705 2724 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
2706 2725 return (TRUE);
2707 2726 }
2708 2727
2709 2728 return (FALSE); /* unknown transport */
2710 2729 }
2711 2730
2712 2731 /*
2713 2732 * Get netid string correspondig to the given knetconfig.
2714 2733 * If not done already, save knc->knc_rdev in our table.
2715 2734 */
2716 2735 const char *
2717 2736 nlm_knc_to_netid(struct knetconfig *knc)
2718 2737 {
2719 2738 int i;
2720 2739 dev_t rdev;
2721 2740 struct nlm_knc *nc;
2722 2741 const char *netid = NULL;
2723 2742
2724 2743 rw_enter(&lm_lck, RW_READER);
2725 2744 for (i = 0; i < NLM_KNCS; i++) {
2726 2745 nc = &nlm_netconfigs[i];
2727 2746
2728 2747 if (nc->n_knc.knc_semantics == knc->knc_semantics &&
2729 2748 strcmp(nc->n_knc.knc_protofmly,
2730 2749 knc->knc_protofmly) == 0) {
2731 2750 netid = nc->n_netid;
2732 2751 rdev = nc->n_knc.knc_rdev;
2733 2752 break;
2734 2753 }
2735 2754 }
2736 2755 rw_exit(&lm_lck);
2737 2756
2738 2757 if (netid != NULL && rdev == NODEV) {
2739 2758 rw_enter(&lm_lck, RW_WRITER);
2740 2759 if (nc->n_knc.knc_rdev == NODEV)
2741 2760 nc->n_knc.knc_rdev = knc->knc_rdev;
2742 2761 rw_exit(&lm_lck);
2743 2762 }
2744 2763
2745 2764 return (netid);
2746 2765 }
2747 2766
2748 2767 /*
2749 2768 * Get a knetconfig corresponding to the given netid.
2750 2769 * If there's no knetconfig for this netid, ENOENT
2751 2770 * is returned.
2752 2771 */
2753 2772 int
2754 2773 nlm_knc_from_netid(const char *netid, struct knetconfig *knc)
2755 2774 {
2756 2775 int i, ret;
2757 2776
2758 2777 ret = ENOENT;
2759 2778 for (i = 0; i < NLM_KNCS; i++) {
2760 2779 struct nlm_knc *nknc;
2761 2780
2762 2781 nknc = &nlm_netconfigs[i];
2763 2782 if (strcmp(netid, nknc->n_netid) == 0 &&
2764 2783 nknc->n_knc.knc_rdev != NODEV) {
2765 2784 *knc = nknc->n_knc;
2766 2785 ret = 0;
2767 2786 break;
2768 2787 }
2769 2788 }
2770 2789
2771 2790 return (ret);
2772 2791 }
2773 2792
2774 2793 void
2775 2794 nlm_cprsuspend(void)
2776 2795 {
2777 2796 struct nlm_globals *g;
2778 2797
2779 2798 rw_enter(&lm_lck, RW_READER);
2780 2799 TAILQ_FOREACH(g, &nlm_zones_list, nlm_link)
2781 2800 nlm_suspend_zone(g);
2782 2801
2783 2802 rw_exit(&lm_lck);
2784 2803 }
2785 2804
2786 2805 void
2787 2806 nlm_cprresume(void)
2788 2807 {
2789 2808 struct nlm_globals *g;
2790 2809
2791 2810 rw_enter(&lm_lck, RW_READER);
2792 2811 TAILQ_FOREACH(g, &nlm_zones_list, nlm_link)
2793 2812 nlm_resume_zone(g);
2794 2813
2795 2814 rw_exit(&lm_lck);
2796 2815 }
2797 2816
2798 2817 static void
2799 2818 nlm_nsm_clnt_init(CLIENT *clnt, struct nlm_nsm *nsm)
2800 2819 {
2801 2820 (void) clnt_tli_kinit(clnt, &nsm->ns_knc, &nsm->ns_addr, 0,
2802 2821 NLM_RPC_RETRIES, zone_kcred());
2803 2822 }
2804 2823
2805 2824 static void
2806 2825 nlm_netbuf_to_netobj(struct netbuf *addr, int *family, netobj *obj)
2807 2826 {
2808 2827 /* LINTED pointer alignment */
2809 2828 struct sockaddr *sa = (struct sockaddr *)addr->buf;
2810 2829
2811 2830 *family = sa->sa_family;
2812 2831
2813 2832 switch (sa->sa_family) {
2814 2833 case AF_INET: {
2815 2834 /* LINTED pointer alignment */
2816 2835 struct sockaddr_in *sin = (struct sockaddr_in *)sa;
2817 2836
2818 2837 obj->n_len = sizeof (sin->sin_addr);
2819 2838 obj->n_bytes = (char *)&sin->sin_addr;
2820 2839 break;
2821 2840 }
2822 2841
2823 2842 case AF_INET6: {
2824 2843 /* LINTED pointer alignment */
2825 2844 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
2826 2845
2827 2846 obj->n_len = sizeof (sin6->sin6_addr);
2828 2847 obj->n_bytes = (char *)&sin6->sin6_addr;
2829 2848 break;
2830 2849 }
2831 2850
2832 2851 default:
2833 2852 VERIFY(0);
2834 2853 break;
2835 2854 }
2836 2855 }
|
↓ open down ↓ |
193 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX