1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2015, Joyent Inc. All rights reserved.
25 * Copyright (c) 2016 by Delphix. All rights reserved.
26 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
27 */
28
29 /*
30 * Zones
31 *
32 * A zone is a named collection of processes, namespace constraints,
33 * and other system resources which comprise a secure and manageable
34 * application containment facility.
35 *
36 * Zones (represented by the reference counted zone_t) are tracked in
37 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs
38 * (zoneid_t) are used to track zone association. Zone IDs are
39 * dynamically generated when the zone is created; if a persistent
40 * identifier is needed (core files, accounting logs, audit trail,
41 * etc.), the zone name should be used.
42 *
43 *
44 * Global Zone:
45 *
46 * The global zone (zoneid 0) is automatically associated with all
47 * system resources that have not been bound to a user-created zone.
48 * This means that even systems where zones are not in active use
49 * have a global zone, and all processes, mounts, etc. are
50 * associated with that zone. The global zone is generally
51 * unconstrained in terms of privileges and access, though the usual
52 * credential and privilege based restrictions apply.
53 *
54 *
55 * Zone States:
56 *
57 * The states in which a zone may be in and the transitions are as
58 * follows:
59 *
60 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
61 * initialized zone is added to the list of active zones on the system but
62 * isn't accessible.
63 *
64 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
65 * not yet completed. Not possible to enter the zone, but attributes can
66 * be retrieved.
67 *
68 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
69 * ready. The zone is made visible after the ZSD constructor callbacks are
70 * executed. A zone remains in this state until it transitions into
71 * the ZONE_IS_BOOTING state as a result of a call to zone_boot().
72 *
73 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
74 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
75 * state.
76 *
77 * ZONE_IS_RUNNING: The zone is open for business: zsched has
78 * successfully started init. A zone remains in this state until
79 * zone_shutdown() is called.
80 *
81 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
82 * killing all processes running in the zone. The zone remains
83 * in this state until there are no more user processes running in the zone.
84 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
85 * Since zone_shutdown() is restartable, it may be called successfully
86 * multiple times for the same zone_t. Setting of the zone's state to
87 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
88 * the zone's status without worrying about it being a moving target.
89 *
90 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there
91 * are no more user processes in the zone. The zone remains in this
92 * state until there are no more kernel threads associated with the
93 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will
94 * fail.
95 *
96 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
97 * have exited. zone_shutdown() returns. Henceforth it is not possible to
98 * join the zone or create kernel threads therein.
99 *
100 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
101 * remains in this state until zsched exits. Calls to zone_find_by_*()
102 * return NULL from now on.
103 *
104 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no
105 * processes or threads doing work on behalf of the zone. The zone is
106 * removed from the list of active zones. zone_destroy() returns, and
107 * the zone can be recreated.
108 *
109 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
110 * callbacks are executed, and all memory associated with the zone is
111 * freed.
112 *
113 * Threads can wait for the zone to enter a requested state by using
114 * zone_status_wait() or zone_status_timedwait() with the desired
115 * state passed in as an argument. Zone state transitions are
116 * uni-directional; it is not possible to move back to an earlier state.
117 *
118 *
119 * Zone-Specific Data:
120 *
121 * Subsystems needing to maintain zone-specific data can store that
122 * data using the ZSD mechanism. This provides a zone-specific data
123 * store, similar to thread-specific data (see pthread_getspecific(3C)
124 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used
125 * to register callbacks to be invoked when a zone is created, shut
126 * down, or destroyed. This can be used to initialize zone-specific
127 * data for new zones and to clean up when zones go away.
128 *
129 *
130 * Data Structures:
131 *
132 * The per-zone structure (zone_t) is reference counted, and freed
133 * when all references are released. zone_hold and zone_rele can be
134 * used to adjust the reference count. In addition, reference counts
135 * associated with the cred_t structure are tracked separately using
136 * zone_cred_hold and zone_cred_rele.
137 *
138 * Pointers to active zone_t's are stored in two hash tables; one
139 * for searching by id, the other for searching by name. Lookups
140 * can be performed on either basis, using zone_find_by_id and
141 * zone_find_by_name. Both return zone_t pointers with the zone
142 * held, so zone_rele should be called when the pointer is no longer
143 * needed. Zones can also be searched by path; zone_find_by_path
144 * returns the zone with which a path name is associated (global
145 * zone if the path is not within some other zone's file system
146 * hierarchy). This currently requires iterating through each zone,
147 * so it is slower than an id or name search via a hash table.
148 *
149 *
150 * Locking:
151 *
152 * zonehash_lock: This is a top-level global lock used to protect the
153 * zone hash tables and lists. Zones cannot be created or destroyed
154 * while this lock is held.
155 * zone_status_lock: This is a global lock protecting zone state.
156 * Zones cannot change state while this lock is held. It also
157 * protects the list of kernel threads associated with a zone.
158 * zone_lock: This is a per-zone lock used to protect several fields of
159 * the zone_t (see <sys/zone.h> for details). In addition, holding
160 * this lock means that the zone cannot go away.
161 * zone_nlwps_lock: This is a per-zone lock used to protect the fields
162 * related to the zone.max-lwps rctl.
163 * zone_mem_lock: This is a per-zone lock used to protect the fields
164 * related to the zone.max-locked-memory and zone.max-swap rctls.
165 * zone_rctl_lock: This is a per-zone lock used to protect other rctls,
166 * currently just max_lofi
167 * zsd_key_lock: This is a global lock protecting the key state for ZSD.
168 * zone_deathrow_lock: This is a global lock protecting the "deathrow"
169 * list (a list of zones in the ZONE_IS_DEAD state).
170 *
171 * Ordering requirements:
172 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
173 * zone_lock --> zsd_key_lock --> pidlock --> p_lock
174 *
175 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
176 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
177 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock
178 *
179 * Blocking memory allocations are permitted while holding any of the
180 * zone locks.
181 *
182 *
183 * System Call Interface:
184 *
185 * The zone subsystem can be managed and queried from user level with
186 * the following system calls (all subcodes of the primary "zone"
187 * system call):
188 * - zone_create: creates a zone with selected attributes (name,
189 * root path, privileges, resource controls, ZFS datasets)
190 * - zone_enter: allows the current process to enter a zone
191 * - zone_getattr: reports attributes of a zone
192 * - zone_setattr: set attributes of a zone
193 * - zone_boot: set 'init' running for the zone
194 * - zone_list: lists all zones active in the system
195 * - zone_lookup: looks up zone id based on name
196 * - zone_shutdown: initiates shutdown process (see states above)
197 * - zone_destroy: completes shutdown process (see states above)
198 *
199 */
200
201 #include <sys/priv_impl.h>
202 #include <sys/cred.h>
203 #include <c2/audit.h>
204 #include <sys/debug.h>
205 #include <sys/file.h>
206 #include <sys/kmem.h>
207 #include <sys/kstat.h>
208 #include <sys/mutex.h>
209 #include <sys/note.h>
210 #include <sys/pathname.h>
211 #include <sys/proc.h>
212 #include <sys/project.h>
213 #include <sys/sysevent.h>
214 #include <sys/task.h>
215 #include <sys/systm.h>
216 #include <sys/types.h>
217 #include <sys/utsname.h>
218 #include <sys/vnode.h>
219 #include <sys/vfs.h>
220 #include <sys/systeminfo.h>
221 #include <sys/policy.h>
222 #include <sys/cred_impl.h>
223 #include <sys/contract_impl.h>
224 #include <sys/contract/process_impl.h>
225 #include <sys/class.h>
226 #include <sys/pool.h>
227 #include <sys/pool_pset.h>
228 #include <sys/pset.h>
229 #include <sys/strlog.h>
230 #include <sys/sysmacros.h>
231 #include <sys/callb.h>
232 #include <sys/vmparam.h>
233 #include <sys/corectl.h>
234 #include <sys/ipc_impl.h>
235 #include <sys/klpd.h>
236
237 #include <sys/door.h>
238 #include <sys/cpuvar.h>
239 #include <sys/sdt.h>
240
241 #include <sys/uadmin.h>
242 #include <sys/session.h>
243 #include <sys/cmn_err.h>
244 #include <sys/modhash.h>
245 #include <sys/sunddi.h>
246 #include <sys/nvpair.h>
247 #include <sys/rctl.h>
248 #include <sys/fss.h>
249 #include <sys/brand.h>
250 #include <sys/zone.h>
251 #include <net/if.h>
252 #include <sys/cpucaps.h>
253 #include <vm/seg.h>
254 #include <sys/mac.h>
255
256 /*
257 * This constant specifies the number of seconds that threads waiting for
258 * subsystems to release a zone's general-purpose references will wait before
259 * they log the zone's reference counts. The constant's value shouldn't
260 * be so small that reference counts are unnecessarily reported for zones
261 * whose references are slowly released. On the other hand, it shouldn't be so
262 * large that users reboot their systems out of frustration over hung zones
263 * before the system logs the zones' reference counts.
264 */
265 #define ZONE_DESTROY_TIMEOUT_SECS 60
266
267 /* List of data link IDs which are accessible from the zone */
268 typedef struct zone_dl {
269 datalink_id_t zdl_id;
270 nvlist_t *zdl_net;
271 list_node_t zdl_linkage;
272 } zone_dl_t;
273
274 /*
275 * cv used to signal that all references to the zone have been released. This
276 * needs to be global since there may be multiple waiters, and the first to
277 * wake up will free the zone_t, hence we cannot use zone->zone_cv.
278 */
279 static kcondvar_t zone_destroy_cv;
280 /*
281 * Lock used to serialize access to zone_cv. This could have been per-zone,
282 * but then we'd need another lock for zone_destroy_cv, and why bother?
283 */
284 static kmutex_t zone_status_lock;
285
286 /*
287 * ZSD-related global variables.
288 */
289 static kmutex_t zsd_key_lock; /* protects the following two */
290 /*
291 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
292 */
293 static zone_key_t zsd_keyval = 0;
294 /*
295 * Global list of registered keys. We use this when a new zone is created.
296 */
297 static list_t zsd_registered_keys;
298
299 int zone_hash_size = 256;
300 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
301 static kmutex_t zonehash_lock;
302 static uint_t zonecount;
303 static id_space_t *zoneid_space;
304
305 /*
306 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
307 * kernel proper runs, and which manages all other zones.
308 *
309 * Although not declared as static, the variable "zone0" should not be used
310 * except for by code that needs to reference the global zone early on in boot,
311 * before it is fully initialized. All other consumers should use
312 * 'global_zone'.
313 */
314 zone_t zone0;
315 zone_t *global_zone = NULL; /* Set when the global zone is initialized */
316
317 /*
318 * List of active zones, protected by zonehash_lock.
319 */
320 static list_t zone_active;
321
322 /*
323 * List of destroyed zones that still have outstanding cred references.
324 * Used for debugging. Uses a separate lock to avoid lock ordering
325 * problems in zone_free.
326 */
327 static list_t zone_deathrow;
328 static kmutex_t zone_deathrow_lock;
329
330 /* number of zones is limited by virtual interface limit in IP */
331 uint_t maxzones = 8192;
332
333 /* Event channel to sent zone state change notifications */
334 evchan_t *zone_event_chan;
335
336 /*
337 * This table holds the mapping from kernel zone states to
338 * states visible in the state notification API.
339 * The idea is that we only expose "obvious" states and
340 * do not expose states which are just implementation details.
341 */
342 const char *zone_status_table[] = {
343 ZONE_EVENT_UNINITIALIZED, /* uninitialized */
344 ZONE_EVENT_INITIALIZED, /* initialized */
345 ZONE_EVENT_READY, /* ready */
346 ZONE_EVENT_READY, /* booting */
347 ZONE_EVENT_RUNNING, /* running */
348 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */
349 ZONE_EVENT_SHUTTING_DOWN, /* empty */
350 ZONE_EVENT_SHUTTING_DOWN, /* down */
351 ZONE_EVENT_SHUTTING_DOWN, /* dying */
352 ZONE_EVENT_UNINITIALIZED, /* dead */
353 };
354
355 /*
356 * This array contains the names of the subsystems listed in zone_ref_subsys_t
357 * (see sys/zone.h).
358 */
359 static char *zone_ref_subsys_names[] = {
360 "NFS", /* ZONE_REF_NFS */
361 "NFSv4", /* ZONE_REF_NFSV4 */
362 "SMBFS", /* ZONE_REF_SMBFS */
363 "MNTFS", /* ZONE_REF_MNTFS */
364 "LOFI", /* ZONE_REF_LOFI */
365 "VFS", /* ZONE_REF_VFS */
366 "IPC" /* ZONE_REF_IPC */
367 };
368
369 /*
370 * This isn't static so lint doesn't complain.
371 */
372 rctl_hndl_t rc_zone_cpu_shares;
373 rctl_hndl_t rc_zone_locked_mem;
374 rctl_hndl_t rc_zone_max_swap;
375 rctl_hndl_t rc_zone_max_lofi;
376 rctl_hndl_t rc_zone_cpu_cap;
377 rctl_hndl_t rc_zone_nlwps;
378 rctl_hndl_t rc_zone_nprocs;
379 rctl_hndl_t rc_zone_shmmax;
380 rctl_hndl_t rc_zone_shmmni;
381 rctl_hndl_t rc_zone_semmni;
382 rctl_hndl_t rc_zone_msgmni;
383
384 const char * const zone_default_initname = "/sbin/init";
385 static char * const zone_prefix = "/zone/";
386 static int zone_shutdown(zoneid_t zoneid);
387 static int zone_add_datalink(zoneid_t, datalink_id_t);
388 static int zone_remove_datalink(zoneid_t, datalink_id_t);
389 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
390 static int zone_set_network(zoneid_t, zone_net_data_t *);
391 static int zone_get_network(zoneid_t, zone_net_data_t *);
392
393 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
394
395 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
396 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
397 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
398 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
399 zone_key_t);
400 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
401 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
402 kmutex_t *);
403 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
404 kmutex_t *);
405
406 /*
407 * Bump this number when you alter the zone syscall interfaces; this is
408 * because we need to have support for previous API versions in libc
409 * to support patching; libc calls into the kernel to determine this number.
410 *
411 * Version 1 of the API is the version originally shipped with Solaris 10
412 * Version 2 alters the zone_create system call in order to support more
413 * arguments by moving the args into a structure; and to do better
414 * error reporting when zone_create() fails.
415 * Version 3 alters the zone_create system call in order to support the
416 * import of ZFS datasets to zones.
417 * Version 4 alters the zone_create system call in order to support
418 * Trusted Extensions.
419 * Version 5 alters the zone_boot system call, and converts its old
420 * bootargs parameter to be set by the zone_setattr API instead.
421 * Version 6 adds the flag argument to zone_create.
422 */
423 static const int ZONE_SYSCALL_API_VERSION = 6;
424
425 /*
426 * Certain filesystems (such as NFS and autofs) need to know which zone
427 * the mount is being placed in. Because of this, we need to be able to
428 * ensure that a zone isn't in the process of being created/destroyed such
429 * that nfs_mount() thinks it is in the global/NGZ zone, while by the time
430 * it gets added the list of mounted zones, it ends up on the wrong zone's
431 * mount list. Since a zone can't reside on an NFS file system, we don't
432 * have to worry about the zonepath itself.
433 *
434 * The following functions: block_mounts()/resume_mounts() and
435 * mount_in_progress()/mount_completed() are used by zones and the VFS
436 * layer (respectively) to synchronize zone state transitions and new
437 * mounts within a zone. This syncronization is on a per-zone basis, so
438 * activity for one zone will not interfere with activity for another zone.
439 *
440 * The semantics are like a reader-reader lock such that there may
441 * either be multiple mounts (or zone state transitions, if that weren't
442 * serialized by zonehash_lock) in progress at the same time, but not
443 * both.
444 *
445 * We use cv's so the user can ctrl-C out of the operation if it's
446 * taking too long.
447 *
448 * The semantics are such that there is unfair bias towards the
449 * "current" operation. This means that zone halt may starve if
450 * there is a rapid succession of new mounts coming in to the zone.
451 */
452 /*
453 * Prevent new mounts from progressing to the point of calling
454 * VFS_MOUNT(). If there are already mounts in this "region", wait for
455 * them to complete.
456 */
457 static int
458 block_mounts(zone_t *zp)
459 {
460 int retval = 0;
461
462 /*
463 * Since it may block for a long time, block_mounts() shouldn't be
464 * called with zonehash_lock held.
465 */
466 ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
467 mutex_enter(&zp->zone_mount_lock);
468 while (zp->zone_mounts_in_progress > 0) {
469 if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0)
470 goto signaled;
471 }
472 /*
473 * A negative value of mounts_in_progress indicates that mounts
474 * have been blocked by (-mounts_in_progress) different callers
475 * (remotely possible if two threads enter zone_shutdown at the same
476 * time).
477 */
478 zp->zone_mounts_in_progress--;
479 retval = 1;
480 signaled:
481 mutex_exit(&zp->zone_mount_lock);
482 return (retval);
483 }
484
485 /*
486 * The VFS layer may progress with new mounts as far as we're concerned.
487 * Allow them to progress if we were the last obstacle.
488 */
489 static void
490 resume_mounts(zone_t *zp)
491 {
492 mutex_enter(&zp->zone_mount_lock);
493 if (++zp->zone_mounts_in_progress == 0)
494 cv_broadcast(&zp->zone_mount_cv);
495 mutex_exit(&zp->zone_mount_lock);
496 }
497
498 /*
499 * The VFS layer is busy with a mount; this zone should wait until all
500 * of its mounts are completed to progress.
501 */
502 void
503 mount_in_progress(zone_t *zp)
504 {
505 mutex_enter(&zp->zone_mount_lock);
506 while (zp->zone_mounts_in_progress < 0)
507 cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock);
508 zp->zone_mounts_in_progress++;
509 mutex_exit(&zp->zone_mount_lock);
510 }
511
512 /*
513 * VFS is done with one mount; wake up any waiting block_mounts()
514 * callers if this is the last mount.
515 */
516 void
517 mount_completed(zone_t *zp)
518 {
519 mutex_enter(&zp->zone_mount_lock);
520 if (--zp->zone_mounts_in_progress == 0)
521 cv_broadcast(&zp->zone_mount_cv);
522 mutex_exit(&zp->zone_mount_lock);
523 }
524
525 /*
526 * ZSD routines.
527 *
528 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
529 * defined by the pthread_key_create() and related interfaces.
530 *
531 * Kernel subsystems may register one or more data items and/or
532 * callbacks to be executed when a zone is created, shutdown, or
533 * destroyed.
534 *
535 * Unlike the thread counterpart, destructor callbacks will be executed
536 * even if the data pointer is NULL and/or there are no constructor
537 * callbacks, so it is the responsibility of such callbacks to check for
538 * NULL data values if necessary.
539 *
540 * The locking strategy and overall picture is as follows:
541 *
542 * When someone calls zone_key_create(), a template ZSD entry is added to the
543 * global list "zsd_registered_keys", protected by zsd_key_lock. While
544 * holding that lock all the existing zones are marked as
545 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
546 * zone_zsd list (protected by zone_lock). The global list is updated first
547 * (under zone_key_lock) to make sure that newly created zones use the
548 * most recent list of keys. Then under zonehash_lock we walk the zones
549 * and mark them. Similar locking is used in zone_key_delete().
550 *
551 * The actual create, shutdown, and destroy callbacks are done without
552 * holding any lock. And zsd_flags are used to ensure that the operations
553 * completed so that when zone_key_create (and zone_create) is done, as well as
554 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
555 * are completed.
556 *
557 * When new zones are created constructor callbacks for all registered ZSD
558 * entries will be called. That also uses the above two phases of marking
559 * what needs to be done, and then running the callbacks without holding
560 * any locks.
561 *
562 * The framework does not provide any locking around zone_getspecific() and
563 * zone_setspecific() apart from that needed for internal consistency, so
564 * callers interested in atomic "test-and-set" semantics will need to provide
565 * their own locking.
566 */
567
568 /*
569 * Helper function to find the zsd_entry associated with the key in the
570 * given list.
571 */
572 static struct zsd_entry *
573 zsd_find(list_t *l, zone_key_t key)
574 {
575 struct zsd_entry *zsd;
576
577 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
578 if (zsd->zsd_key == key) {
579 return (zsd);
580 }
581 }
582 return (NULL);
583 }
584
585 /*
586 * Helper function to find the zsd_entry associated with the key in the
587 * given list. Move it to the front of the list.
588 */
589 static struct zsd_entry *
590 zsd_find_mru(list_t *l, zone_key_t key)
591 {
592 struct zsd_entry *zsd;
593
594 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
595 if (zsd->zsd_key == key) {
596 /*
597 * Move to head of list to keep list in MRU order.
598 */
599 if (zsd != list_head(l)) {
600 list_remove(l, zsd);
601 list_insert_head(l, zsd);
602 }
603 return (zsd);
604 }
605 }
606 return (NULL);
607 }
608
609 void
610 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
611 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
612 {
613 struct zsd_entry *zsdp;
614 struct zsd_entry *t;
615 struct zone *zone;
616 zone_key_t key;
617
618 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
619 zsdp->zsd_data = NULL;
620 zsdp->zsd_create = create;
621 zsdp->zsd_shutdown = shutdown;
622 zsdp->zsd_destroy = destroy;
623
624 /*
625 * Insert in global list of callbacks. Makes future zone creations
626 * see it.
627 */
628 mutex_enter(&zsd_key_lock);
629 key = zsdp->zsd_key = ++zsd_keyval;
630 ASSERT(zsd_keyval != 0);
631 list_insert_tail(&zsd_registered_keys, zsdp);
632 mutex_exit(&zsd_key_lock);
633
634 /*
635 * Insert for all existing zones and mark them as needing
636 * a create callback.
637 */
638 mutex_enter(&zonehash_lock); /* stop the world */
639 for (zone = list_head(&zone_active); zone != NULL;
640 zone = list_next(&zone_active, zone)) {
641 zone_status_t status;
642
643 mutex_enter(&zone->zone_lock);
644
645 /* Skip zones that are on the way down or not yet up */
646 status = zone_status_get(zone);
647 if (status >= ZONE_IS_DOWN ||
648 status == ZONE_IS_UNINITIALIZED) {
649 mutex_exit(&zone->zone_lock);
650 continue;
651 }
652
653 t = zsd_find_mru(&zone->zone_zsd, key);
654 if (t != NULL) {
655 /*
656 * A zsd_configure already inserted it after
657 * we dropped zsd_key_lock above.
658 */
659 mutex_exit(&zone->zone_lock);
660 continue;
661 }
662 t = kmem_zalloc(sizeof (*t), KM_SLEEP);
663 t->zsd_key = key;
664 t->zsd_create = create;
665 t->zsd_shutdown = shutdown;
666 t->zsd_destroy = destroy;
667 if (create != NULL) {
668 t->zsd_flags = ZSD_CREATE_NEEDED;
669 DTRACE_PROBE2(zsd__create__needed,
670 zone_t *, zone, zone_key_t, key);
671 }
672 list_insert_tail(&zone->zone_zsd, t);
673 mutex_exit(&zone->zone_lock);
674 }
675 mutex_exit(&zonehash_lock);
676
677 if (create != NULL) {
678 /* Now call the create callback for this key */
679 zsd_apply_all_zones(zsd_apply_create, key);
680 }
681 /*
682 * It is safe for consumers to use the key now, make it
683 * globally visible. Specifically zone_getspecific() will
684 * always successfully return the zone specific data associated
685 * with the key.
686 */
687 *keyp = key;
688
689 }
690
691 /*
692 * Function called when a module is being unloaded, or otherwise wishes
693 * to unregister its ZSD key and callbacks.
694 *
695 * Remove from the global list and determine the functions that need to
696 * be called under a global lock. Then call the functions without
697 * holding any locks. Finally free up the zone_zsd entries. (The apply
698 * functions need to access the zone_zsd entries to find zsd_data etc.)
699 */
700 int
701 zone_key_delete(zone_key_t key)
702 {
703 struct zsd_entry *zsdp = NULL;
704 zone_t *zone;
705
706 mutex_enter(&zsd_key_lock);
707 zsdp = zsd_find_mru(&zsd_registered_keys, key);
708 if (zsdp == NULL) {
709 mutex_exit(&zsd_key_lock);
710 return (-1);
711 }
712 list_remove(&zsd_registered_keys, zsdp);
713 mutex_exit(&zsd_key_lock);
714
715 mutex_enter(&zonehash_lock);
716 for (zone = list_head(&zone_active); zone != NULL;
717 zone = list_next(&zone_active, zone)) {
718 struct zsd_entry *del;
719
720 mutex_enter(&zone->zone_lock);
721 del = zsd_find_mru(&zone->zone_zsd, key);
722 if (del == NULL) {
723 /*
724 * Somebody else got here first e.g the zone going
725 * away.
726 */
727 mutex_exit(&zone->zone_lock);
728 continue;
729 }
730 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
731 ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
732 if (del->zsd_shutdown != NULL &&
733 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
734 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
735 DTRACE_PROBE2(zsd__shutdown__needed,
736 zone_t *, zone, zone_key_t, key);
737 }
738 if (del->zsd_destroy != NULL &&
739 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
740 del->zsd_flags |= ZSD_DESTROY_NEEDED;
741 DTRACE_PROBE2(zsd__destroy__needed,
742 zone_t *, zone, zone_key_t, key);
743 }
744 mutex_exit(&zone->zone_lock);
745 }
746 mutex_exit(&zonehash_lock);
747 kmem_free(zsdp, sizeof (*zsdp));
748
749 /* Now call the shutdown and destroy callback for this key */
750 zsd_apply_all_zones(zsd_apply_shutdown, key);
751 zsd_apply_all_zones(zsd_apply_destroy, key);
752
753 /* Now we can free up the zsdp structures in each zone */
754 mutex_enter(&zonehash_lock);
755 for (zone = list_head(&zone_active); zone != NULL;
756 zone = list_next(&zone_active, zone)) {
757 struct zsd_entry *del;
758
759 mutex_enter(&zone->zone_lock);
760 del = zsd_find(&zone->zone_zsd, key);
761 if (del != NULL) {
762 list_remove(&zone->zone_zsd, del);
763 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
764 kmem_free(del, sizeof (*del));
765 }
766 mutex_exit(&zone->zone_lock);
767 }
768 mutex_exit(&zonehash_lock);
769
770 return (0);
771 }
772
773 /*
774 * ZSD counterpart of pthread_setspecific().
775 *
776 * Since all zsd callbacks, including those with no create function,
777 * have an entry in zone_zsd, if the key is registered it is part of
778 * the zone_zsd list.
779 * Return an error if the key wasn't registerd.
780 */
781 int
782 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
783 {
784 struct zsd_entry *t;
785
786 mutex_enter(&zone->zone_lock);
787 t = zsd_find_mru(&zone->zone_zsd, key);
788 if (t != NULL) {
789 /*
790 * Replace old value with new
791 */
792 t->zsd_data = (void *)data;
793 mutex_exit(&zone->zone_lock);
794 return (0);
795 }
796 mutex_exit(&zone->zone_lock);
797 return (-1);
798 }
799
800 /*
801 * ZSD counterpart of pthread_getspecific().
802 */
803 void *
804 zone_getspecific(zone_key_t key, zone_t *zone)
805 {
806 struct zsd_entry *t;
807 void *data;
808
809 mutex_enter(&zone->zone_lock);
810 t = zsd_find_mru(&zone->zone_zsd, key);
811 data = (t == NULL ? NULL : t->zsd_data);
812 mutex_exit(&zone->zone_lock);
813 return (data);
814 }
815
816 /*
817 * Function used to initialize a zone's list of ZSD callbacks and data
818 * when the zone is being created. The callbacks are initialized from
819 * the template list (zsd_registered_keys). The constructor callback is
820 * executed later (once the zone exists and with locks dropped).
821 */
822 static void
823 zone_zsd_configure(zone_t *zone)
824 {
825 struct zsd_entry *zsdp;
826 struct zsd_entry *t;
827
828 ASSERT(MUTEX_HELD(&zonehash_lock));
829 ASSERT(list_head(&zone->zone_zsd) == NULL);
830 mutex_enter(&zone->zone_lock);
831 mutex_enter(&zsd_key_lock);
832 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
833 zsdp = list_next(&zsd_registered_keys, zsdp)) {
834 /*
835 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
836 * should not have added anything to it.
837 */
838 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
839
840 t = kmem_zalloc(sizeof (*t), KM_SLEEP);
841 t->zsd_key = zsdp->zsd_key;
842 t->zsd_create = zsdp->zsd_create;
843 t->zsd_shutdown = zsdp->zsd_shutdown;
844 t->zsd_destroy = zsdp->zsd_destroy;
845 if (zsdp->zsd_create != NULL) {
846 t->zsd_flags = ZSD_CREATE_NEEDED;
847 DTRACE_PROBE2(zsd__create__needed,
848 zone_t *, zone, zone_key_t, zsdp->zsd_key);
849 }
850 list_insert_tail(&zone->zone_zsd, t);
851 }
852 mutex_exit(&zsd_key_lock);
853 mutex_exit(&zone->zone_lock);
854 }
855
856 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
857
858 /*
859 * Helper function to execute shutdown or destructor callbacks.
860 */
861 static void
862 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
863 {
864 struct zsd_entry *t;
865
866 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
867 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
868 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
869
870 /*
871 * Run the callback solely based on what is registered for the zone
872 * in zone_zsd. The global list can change independently of this
873 * as keys are registered and unregistered and we don't register new
874 * callbacks for a zone that is in the process of going away.
875 */
876 mutex_enter(&zone->zone_lock);
877 for (t = list_head(&zone->zone_zsd); t != NULL;
878 t = list_next(&zone->zone_zsd, t)) {
879 zone_key_t key = t->zsd_key;
880
881 /* Skip if no callbacks registered */
882
883 if (ct == ZSD_SHUTDOWN) {
884 if (t->zsd_shutdown != NULL &&
885 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
886 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
887 DTRACE_PROBE2(zsd__shutdown__needed,
888 zone_t *, zone, zone_key_t, key);
889 }
890 } else {
891 if (t->zsd_destroy != NULL &&
892 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
893 t->zsd_flags |= ZSD_DESTROY_NEEDED;
894 DTRACE_PROBE2(zsd__destroy__needed,
895 zone_t *, zone, zone_key_t, key);
896 }
897 }
898 }
899 mutex_exit(&zone->zone_lock);
900
901 /* Now call the shutdown and destroy callback for this key */
902 zsd_apply_all_keys(zsd_apply_shutdown, zone);
903 zsd_apply_all_keys(zsd_apply_destroy, zone);
904
905 }
906
907 /*
908 * Called when the zone is going away; free ZSD-related memory, and
909 * destroy the zone_zsd list.
910 */
911 static void
912 zone_free_zsd(zone_t *zone)
913 {
914 struct zsd_entry *t, *next;
915
916 /*
917 * Free all the zsd_entry's we had on this zone.
918 */
919 mutex_enter(&zone->zone_lock);
920 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
921 next = list_next(&zone->zone_zsd, t);
922 list_remove(&zone->zone_zsd, t);
923 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
924 kmem_free(t, sizeof (*t));
925 }
926 list_destroy(&zone->zone_zsd);
927 mutex_exit(&zone->zone_lock);
928
929 }
930
931 /*
932 * Apply a function to all zones for particular key value.
933 *
934 * The applyfn has to drop zonehash_lock if it does some work, and
935 * then reacquire it before it returns.
936 * When the lock is dropped we don't follow list_next even
937 * if it is possible to do so without any hazards. This is
938 * because we want the design to allow for the list of zones
939 * to change in any arbitrary way during the time the
940 * lock was dropped.
941 *
942 * It is safe to restart the loop at list_head since the applyfn
943 * changes the zsd_flags as it does work, so a subsequent
944 * pass through will have no effect in applyfn, hence the loop will terminate
945 * in at worst O(N^2).
946 */
947 static void
948 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
949 {
950 zone_t *zone;
951
952 mutex_enter(&zonehash_lock);
953 zone = list_head(&zone_active);
954 while (zone != NULL) {
955 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
956 /* Lock dropped - restart at head */
957 zone = list_head(&zone_active);
958 } else {
959 zone = list_next(&zone_active, zone);
960 }
961 }
962 mutex_exit(&zonehash_lock);
963 }
964
965 /*
966 * Apply a function to all keys for a particular zone.
967 *
968 * The applyfn has to drop zonehash_lock if it does some work, and
969 * then reacquire it before it returns.
970 * When the lock is dropped we don't follow list_next even
971 * if it is possible to do so without any hazards. This is
972 * because we want the design to allow for the list of zsd callbacks
973 * to change in any arbitrary way during the time the
974 * lock was dropped.
975 *
976 * It is safe to restart the loop at list_head since the applyfn
977 * changes the zsd_flags as it does work, so a subsequent
978 * pass through will have no effect in applyfn, hence the loop will terminate
979 * in at worst O(N^2).
980 */
981 static void
982 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
983 {
984 struct zsd_entry *t;
985
986 mutex_enter(&zone->zone_lock);
987 t = list_head(&zone->zone_zsd);
988 while (t != NULL) {
989 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
990 /* Lock dropped - restart at head */
991 t = list_head(&zone->zone_zsd);
992 } else {
993 t = list_next(&zone->zone_zsd, t);
994 }
995 }
996 mutex_exit(&zone->zone_lock);
997 }
998
999 /*
1000 * Call the create function for the zone and key if CREATE_NEEDED
1001 * is set.
1002 * If some other thread gets here first and sets CREATE_INPROGRESS, then
1003 * we wait for that thread to complete so that we can ensure that
1004 * all the callbacks are done when we've looped over all zones/keys.
1005 *
1006 * When we call the create function, we drop the global held by the
1007 * caller, and return true to tell the caller it needs to re-evalute the
1008 * state.
1009 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1010 * remains held on exit.
1011 */
1012 static boolean_t
1013 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
1014 zone_t *zone, zone_key_t key)
1015 {
1016 void *result;
1017 struct zsd_entry *t;
1018 boolean_t dropped;
1019
1020 if (lockp != NULL) {
1021 ASSERT(MUTEX_HELD(lockp));
1022 }
1023 if (zone_lock_held) {
1024 ASSERT(MUTEX_HELD(&zone->zone_lock));
1025 } else {
1026 mutex_enter(&zone->zone_lock);
1027 }
1028
1029 t = zsd_find(&zone->zone_zsd, key);
1030 if (t == NULL) {
1031 /*
1032 * Somebody else got here first e.g the zone going
1033 * away.
1034 */
1035 if (!zone_lock_held)
1036 mutex_exit(&zone->zone_lock);
1037 return (B_FALSE);
1038 }
1039 dropped = B_FALSE;
1040 if (zsd_wait_for_inprogress(zone, t, lockp))
1041 dropped = B_TRUE;
1042
1043 if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1044 t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1045 t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1046 DTRACE_PROBE2(zsd__create__inprogress,
1047 zone_t *, zone, zone_key_t, key);
1048 mutex_exit(&zone->zone_lock);
1049 if (lockp != NULL)
1050 mutex_exit(lockp);
1051
1052 dropped = B_TRUE;
1053 ASSERT(t->zsd_create != NULL);
1054 DTRACE_PROBE2(zsd__create__start,
1055 zone_t *, zone, zone_key_t, key);
1056
1057 result = (*t->zsd_create)(zone->zone_id);
1058
1059 DTRACE_PROBE2(zsd__create__end,
1060 zone_t *, zone, voidn *, result);
1061
1062 ASSERT(result != NULL);
1063 if (lockp != NULL)
1064 mutex_enter(lockp);
1065 mutex_enter(&zone->zone_lock);
1066 t->zsd_data = result;
1067 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1068 t->zsd_flags |= ZSD_CREATE_COMPLETED;
1069 cv_broadcast(&t->zsd_cv);
1070 DTRACE_PROBE2(zsd__create__completed,
1071 zone_t *, zone, zone_key_t, key);
1072 }
1073 if (!zone_lock_held)
1074 mutex_exit(&zone->zone_lock);
1075 return (dropped);
1076 }
1077
1078 /*
1079 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1080 * is set.
1081 * If some other thread gets here first and sets *_INPROGRESS, then
1082 * we wait for that thread to complete so that we can ensure that
1083 * all the callbacks are done when we've looped over all zones/keys.
1084 *
1085 * When we call the shutdown function, we drop the global held by the
1086 * caller, and return true to tell the caller it needs to re-evalute the
1087 * state.
1088 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1089 * remains held on exit.
1090 */
1091 static boolean_t
1092 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1093 zone_t *zone, zone_key_t key)
1094 {
1095 struct zsd_entry *t;
1096 void *data;
1097 boolean_t dropped;
1098
1099 if (lockp != NULL) {
1100 ASSERT(MUTEX_HELD(lockp));
1101 }
1102 if (zone_lock_held) {
1103 ASSERT(MUTEX_HELD(&zone->zone_lock));
1104 } else {
1105 mutex_enter(&zone->zone_lock);
1106 }
1107
1108 t = zsd_find(&zone->zone_zsd, key);
1109 if (t == NULL) {
1110 /*
1111 * Somebody else got here first e.g the zone going
1112 * away.
1113 */
1114 if (!zone_lock_held)
1115 mutex_exit(&zone->zone_lock);
1116 return (B_FALSE);
1117 }
1118 dropped = B_FALSE;
1119 if (zsd_wait_for_creator(zone, t, lockp))
1120 dropped = B_TRUE;
1121
1122 if (zsd_wait_for_inprogress(zone, t, lockp))
1123 dropped = B_TRUE;
1124
1125 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1126 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1127 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1128 DTRACE_PROBE2(zsd__shutdown__inprogress,
1129 zone_t *, zone, zone_key_t, key);
1130 mutex_exit(&zone->zone_lock);
1131 if (lockp != NULL)
1132 mutex_exit(lockp);
1133 dropped = B_TRUE;
1134
1135 ASSERT(t->zsd_shutdown != NULL);
1136 data = t->zsd_data;
1137
1138 DTRACE_PROBE2(zsd__shutdown__start,
1139 zone_t *, zone, zone_key_t, key);
1140
1141 (t->zsd_shutdown)(zone->zone_id, data);
1142 DTRACE_PROBE2(zsd__shutdown__end,
1143 zone_t *, zone, zone_key_t, key);
1144
1145 if (lockp != NULL)
1146 mutex_enter(lockp);
1147 mutex_enter(&zone->zone_lock);
1148 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1149 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1150 cv_broadcast(&t->zsd_cv);
1151 DTRACE_PROBE2(zsd__shutdown__completed,
1152 zone_t *, zone, zone_key_t, key);
1153 }
1154 if (!zone_lock_held)
1155 mutex_exit(&zone->zone_lock);
1156 return (dropped);
1157 }
1158
1159 /*
1160 * Call the destroy function for the zone and key if DESTROY_NEEDED
1161 * is set.
1162 * If some other thread gets here first and sets *_INPROGRESS, then
1163 * we wait for that thread to complete so that we can ensure that
1164 * all the callbacks are done when we've looped over all zones/keys.
1165 *
1166 * When we call the destroy function, we drop the global held by the
1167 * caller, and return true to tell the caller it needs to re-evalute the
1168 * state.
1169 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1170 * remains held on exit.
1171 */
1172 static boolean_t
1173 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1174 zone_t *zone, zone_key_t key)
1175 {
1176 struct zsd_entry *t;
1177 void *data;
1178 boolean_t dropped;
1179
1180 if (lockp != NULL) {
1181 ASSERT(MUTEX_HELD(lockp));
1182 }
1183 if (zone_lock_held) {
1184 ASSERT(MUTEX_HELD(&zone->zone_lock));
1185 } else {
1186 mutex_enter(&zone->zone_lock);
1187 }
1188
1189 t = zsd_find(&zone->zone_zsd, key);
1190 if (t == NULL) {
1191 /*
1192 * Somebody else got here first e.g the zone going
1193 * away.
1194 */
1195 if (!zone_lock_held)
1196 mutex_exit(&zone->zone_lock);
1197 return (B_FALSE);
1198 }
1199 dropped = B_FALSE;
1200 if (zsd_wait_for_creator(zone, t, lockp))
1201 dropped = B_TRUE;
1202
1203 if (zsd_wait_for_inprogress(zone, t, lockp))
1204 dropped = B_TRUE;
1205
1206 if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1207 t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1208 t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1209 DTRACE_PROBE2(zsd__destroy__inprogress,
1210 zone_t *, zone, zone_key_t, key);
1211 mutex_exit(&zone->zone_lock);
1212 if (lockp != NULL)
1213 mutex_exit(lockp);
1214 dropped = B_TRUE;
1215
1216 ASSERT(t->zsd_destroy != NULL);
1217 data = t->zsd_data;
1218 DTRACE_PROBE2(zsd__destroy__start,
1219 zone_t *, zone, zone_key_t, key);
1220
1221 (t->zsd_destroy)(zone->zone_id, data);
1222 DTRACE_PROBE2(zsd__destroy__end,
1223 zone_t *, zone, zone_key_t, key);
1224
1225 if (lockp != NULL)
1226 mutex_enter(lockp);
1227 mutex_enter(&zone->zone_lock);
1228 t->zsd_data = NULL;
1229 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1230 t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1231 cv_broadcast(&t->zsd_cv);
1232 DTRACE_PROBE2(zsd__destroy__completed,
1233 zone_t *, zone, zone_key_t, key);
1234 }
1235 if (!zone_lock_held)
1236 mutex_exit(&zone->zone_lock);
1237 return (dropped);
1238 }
1239
1240 /*
1241 * Wait for any CREATE_NEEDED flag to be cleared.
1242 * Returns true if lockp was temporarily dropped while waiting.
1243 */
1244 static boolean_t
1245 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1246 {
1247 boolean_t dropped = B_FALSE;
1248
1249 while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1250 DTRACE_PROBE2(zsd__wait__for__creator,
1251 zone_t *, zone, struct zsd_entry *, t);
1252 if (lockp != NULL) {
1253 dropped = B_TRUE;
1254 mutex_exit(lockp);
1255 }
1256 cv_wait(&t->zsd_cv, &zone->zone_lock);
1257 if (lockp != NULL) {
1258 /* First drop zone_lock to preserve order */
1259 mutex_exit(&zone->zone_lock);
1260 mutex_enter(lockp);
1261 mutex_enter(&zone->zone_lock);
1262 }
1263 }
1264 return (dropped);
1265 }
1266
1267 /*
1268 * Wait for any INPROGRESS flag to be cleared.
1269 * Returns true if lockp was temporarily dropped while waiting.
1270 */
1271 static boolean_t
1272 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1273 {
1274 boolean_t dropped = B_FALSE;
1275
1276 while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1277 DTRACE_PROBE2(zsd__wait__for__inprogress,
1278 zone_t *, zone, struct zsd_entry *, t);
1279 if (lockp != NULL) {
1280 dropped = B_TRUE;
1281 mutex_exit(lockp);
1282 }
1283 cv_wait(&t->zsd_cv, &zone->zone_lock);
1284 if (lockp != NULL) {
1285 /* First drop zone_lock to preserve order */
1286 mutex_exit(&zone->zone_lock);
1287 mutex_enter(lockp);
1288 mutex_enter(&zone->zone_lock);
1289 }
1290 }
1291 return (dropped);
1292 }
1293
1294 /*
1295 * Frees memory associated with the zone dataset list.
1296 */
1297 static void
1298 zone_free_datasets(zone_t *zone)
1299 {
1300 zone_dataset_t *t, *next;
1301
1302 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1303 next = list_next(&zone->zone_datasets, t);
1304 list_remove(&zone->zone_datasets, t);
1305 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1306 kmem_free(t, sizeof (*t));
1307 }
1308 list_destroy(&zone->zone_datasets);
1309 }
1310
1311 /*
1312 * zone.cpu-shares resource control support.
1313 */
1314 /*ARGSUSED*/
1315 static rctl_qty_t
1316 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1317 {
1318 ASSERT(MUTEX_HELD(&p->p_lock));
1319 return (p->p_zone->zone_shares);
1320 }
1321
1322 /*ARGSUSED*/
1323 static int
1324 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1325 rctl_qty_t nv)
1326 {
1327 ASSERT(MUTEX_HELD(&p->p_lock));
1328 ASSERT(e->rcep_t == RCENTITY_ZONE);
1329 if (e->rcep_p.zone == NULL)
1330 return (0);
1331
1332 e->rcep_p.zone->zone_shares = nv;
1333 return (0);
1334 }
1335
1336 static rctl_ops_t zone_cpu_shares_ops = {
1337 rcop_no_action,
1338 zone_cpu_shares_usage,
1339 zone_cpu_shares_set,
1340 rcop_no_test
1341 };
1342
1343 /*
1344 * zone.cpu-cap resource control support.
1345 */
1346 /*ARGSUSED*/
1347 static rctl_qty_t
1348 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1349 {
1350 ASSERT(MUTEX_HELD(&p->p_lock));
1351 return (cpucaps_zone_get(p->p_zone));
1352 }
1353
1354 /*ARGSUSED*/
1355 static int
1356 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1357 rctl_qty_t nv)
1358 {
1359 zone_t *zone = e->rcep_p.zone;
1360
1361 ASSERT(MUTEX_HELD(&p->p_lock));
1362 ASSERT(e->rcep_t == RCENTITY_ZONE);
1363
1364 if (zone == NULL)
1365 return (0);
1366
1367 /*
1368 * set cap to the new value.
1369 */
1370 return (cpucaps_zone_set(zone, nv));
1371 }
1372
1373 static rctl_ops_t zone_cpu_cap_ops = {
1374 rcop_no_action,
1375 zone_cpu_cap_get,
1376 zone_cpu_cap_set,
1377 rcop_no_test
1378 };
1379
1380 /*ARGSUSED*/
1381 static rctl_qty_t
1382 zone_lwps_usage(rctl_t *r, proc_t *p)
1383 {
1384 rctl_qty_t nlwps;
1385 zone_t *zone = p->p_zone;
1386
1387 ASSERT(MUTEX_HELD(&p->p_lock));
1388
1389 mutex_enter(&zone->zone_nlwps_lock);
1390 nlwps = zone->zone_nlwps;
1391 mutex_exit(&zone->zone_nlwps_lock);
1392
1393 return (nlwps);
1394 }
1395
1396 /*ARGSUSED*/
1397 static int
1398 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1399 rctl_qty_t incr, uint_t flags)
1400 {
1401 rctl_qty_t nlwps;
1402
1403 ASSERT(MUTEX_HELD(&p->p_lock));
1404 ASSERT(e->rcep_t == RCENTITY_ZONE);
1405 if (e->rcep_p.zone == NULL)
1406 return (0);
1407 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1408 nlwps = e->rcep_p.zone->zone_nlwps;
1409
1410 if (nlwps + incr > rcntl->rcv_value)
1411 return (1);
1412
1413 return (0);
1414 }
1415
1416 /*ARGSUSED*/
1417 static int
1418 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1419 {
1420 ASSERT(MUTEX_HELD(&p->p_lock));
1421 ASSERT(e->rcep_t == RCENTITY_ZONE);
1422 if (e->rcep_p.zone == NULL)
1423 return (0);
1424 e->rcep_p.zone->zone_nlwps_ctl = nv;
1425 return (0);
1426 }
1427
1428 static rctl_ops_t zone_lwps_ops = {
1429 rcop_no_action,
1430 zone_lwps_usage,
1431 zone_lwps_set,
1432 zone_lwps_test,
1433 };
1434
1435 /*ARGSUSED*/
1436 static rctl_qty_t
1437 zone_procs_usage(rctl_t *r, proc_t *p)
1438 {
1439 rctl_qty_t nprocs;
1440 zone_t *zone = p->p_zone;
1441
1442 ASSERT(MUTEX_HELD(&p->p_lock));
1443
1444 mutex_enter(&zone->zone_nlwps_lock);
1445 nprocs = zone->zone_nprocs;
1446 mutex_exit(&zone->zone_nlwps_lock);
1447
1448 return (nprocs);
1449 }
1450
1451 /*ARGSUSED*/
1452 static int
1453 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1454 rctl_qty_t incr, uint_t flags)
1455 {
1456 rctl_qty_t nprocs;
1457
1458 ASSERT(MUTEX_HELD(&p->p_lock));
1459 ASSERT(e->rcep_t == RCENTITY_ZONE);
1460 if (e->rcep_p.zone == NULL)
1461 return (0);
1462 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1463 nprocs = e->rcep_p.zone->zone_nprocs;
1464
1465 if (nprocs + incr > rcntl->rcv_value)
1466 return (1);
1467
1468 return (0);
1469 }
1470
1471 /*ARGSUSED*/
1472 static int
1473 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1474 {
1475 ASSERT(MUTEX_HELD(&p->p_lock));
1476 ASSERT(e->rcep_t == RCENTITY_ZONE);
1477 if (e->rcep_p.zone == NULL)
1478 return (0);
1479 e->rcep_p.zone->zone_nprocs_ctl = nv;
1480 return (0);
1481 }
1482
1483 static rctl_ops_t zone_procs_ops = {
1484 rcop_no_action,
1485 zone_procs_usage,
1486 zone_procs_set,
1487 zone_procs_test,
1488 };
1489
1490 /*ARGSUSED*/
1491 static rctl_qty_t
1492 zone_shmmax_usage(rctl_t *rctl, struct proc *p)
1493 {
1494 ASSERT(MUTEX_HELD(&p->p_lock));
1495 return (p->p_zone->zone_shmmax);
1496 }
1497
1498 /*ARGSUSED*/
1499 static int
1500 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1501 rctl_qty_t incr, uint_t flags)
1502 {
1503 rctl_qty_t v;
1504 ASSERT(MUTEX_HELD(&p->p_lock));
1505 ASSERT(e->rcep_t == RCENTITY_ZONE);
1506 v = e->rcep_p.zone->zone_shmmax + incr;
1507 if (v > rval->rcv_value)
1508 return (1);
1509 return (0);
1510 }
1511
1512 static rctl_ops_t zone_shmmax_ops = {
1513 rcop_no_action,
1514 zone_shmmax_usage,
1515 rcop_no_set,
1516 zone_shmmax_test
1517 };
1518
1519 /*ARGSUSED*/
1520 static rctl_qty_t
1521 zone_shmmni_usage(rctl_t *rctl, struct proc *p)
1522 {
1523 ASSERT(MUTEX_HELD(&p->p_lock));
1524 return (p->p_zone->zone_ipc.ipcq_shmmni);
1525 }
1526
1527 /*ARGSUSED*/
1528 static int
1529 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1530 rctl_qty_t incr, uint_t flags)
1531 {
1532 rctl_qty_t v;
1533 ASSERT(MUTEX_HELD(&p->p_lock));
1534 ASSERT(e->rcep_t == RCENTITY_ZONE);
1535 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1536 if (v > rval->rcv_value)
1537 return (1);
1538 return (0);
1539 }
1540
1541 static rctl_ops_t zone_shmmni_ops = {
1542 rcop_no_action,
1543 zone_shmmni_usage,
1544 rcop_no_set,
1545 zone_shmmni_test
1546 };
1547
1548 /*ARGSUSED*/
1549 static rctl_qty_t
1550 zone_semmni_usage(rctl_t *rctl, struct proc *p)
1551 {
1552 ASSERT(MUTEX_HELD(&p->p_lock));
1553 return (p->p_zone->zone_ipc.ipcq_semmni);
1554 }
1555
1556 /*ARGSUSED*/
1557 static int
1558 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1559 rctl_qty_t incr, uint_t flags)
1560 {
1561 rctl_qty_t v;
1562 ASSERT(MUTEX_HELD(&p->p_lock));
1563 ASSERT(e->rcep_t == RCENTITY_ZONE);
1564 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1565 if (v > rval->rcv_value)
1566 return (1);
1567 return (0);
1568 }
1569
1570 static rctl_ops_t zone_semmni_ops = {
1571 rcop_no_action,
1572 zone_semmni_usage,
1573 rcop_no_set,
1574 zone_semmni_test
1575 };
1576
1577 /*ARGSUSED*/
1578 static rctl_qty_t
1579 zone_msgmni_usage(rctl_t *rctl, struct proc *p)
1580 {
1581 ASSERT(MUTEX_HELD(&p->p_lock));
1582 return (p->p_zone->zone_ipc.ipcq_msgmni);
1583 }
1584
1585 /*ARGSUSED*/
1586 static int
1587 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1588 rctl_qty_t incr, uint_t flags)
1589 {
1590 rctl_qty_t v;
1591 ASSERT(MUTEX_HELD(&p->p_lock));
1592 ASSERT(e->rcep_t == RCENTITY_ZONE);
1593 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1594 if (v > rval->rcv_value)
1595 return (1);
1596 return (0);
1597 }
1598
1599 static rctl_ops_t zone_msgmni_ops = {
1600 rcop_no_action,
1601 zone_msgmni_usage,
1602 rcop_no_set,
1603 zone_msgmni_test
1604 };
1605
1606 /*ARGSUSED*/
1607 static rctl_qty_t
1608 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1609 {
1610 rctl_qty_t q;
1611 ASSERT(MUTEX_HELD(&p->p_lock));
1612 mutex_enter(&p->p_zone->zone_mem_lock);
1613 q = p->p_zone->zone_locked_mem;
1614 mutex_exit(&p->p_zone->zone_mem_lock);
1615 return (q);
1616 }
1617
1618 /*ARGSUSED*/
1619 static int
1620 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1621 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1622 {
1623 rctl_qty_t q;
1624 zone_t *z;
1625
1626 z = e->rcep_p.zone;
1627 ASSERT(MUTEX_HELD(&p->p_lock));
1628 ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1629 q = z->zone_locked_mem;
1630 if (q + incr > rcntl->rcv_value)
1631 return (1);
1632 return (0);
1633 }
1634
1635 /*ARGSUSED*/
1636 static int
1637 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1638 rctl_qty_t nv)
1639 {
1640 ASSERT(MUTEX_HELD(&p->p_lock));
1641 ASSERT(e->rcep_t == RCENTITY_ZONE);
1642 if (e->rcep_p.zone == NULL)
1643 return (0);
1644 e->rcep_p.zone->zone_locked_mem_ctl = nv;
1645 return (0);
1646 }
1647
1648 static rctl_ops_t zone_locked_mem_ops = {
1649 rcop_no_action,
1650 zone_locked_mem_usage,
1651 zone_locked_mem_set,
1652 zone_locked_mem_test
1653 };
1654
1655 /*ARGSUSED*/
1656 static rctl_qty_t
1657 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1658 {
1659 rctl_qty_t q;
1660 zone_t *z = p->p_zone;
1661
1662 ASSERT(MUTEX_HELD(&p->p_lock));
1663 mutex_enter(&z->zone_mem_lock);
1664 q = z->zone_max_swap;
1665 mutex_exit(&z->zone_mem_lock);
1666 return (q);
1667 }
1668
1669 /*ARGSUSED*/
1670 static int
1671 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1672 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1673 {
1674 rctl_qty_t q;
1675 zone_t *z;
1676
1677 z = e->rcep_p.zone;
1678 ASSERT(MUTEX_HELD(&p->p_lock));
1679 ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1680 q = z->zone_max_swap;
1681 if (q + incr > rcntl->rcv_value)
1682 return (1);
1683 return (0);
1684 }
1685
1686 /*ARGSUSED*/
1687 static int
1688 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1689 rctl_qty_t nv)
1690 {
1691 ASSERT(MUTEX_HELD(&p->p_lock));
1692 ASSERT(e->rcep_t == RCENTITY_ZONE);
1693 if (e->rcep_p.zone == NULL)
1694 return (0);
1695 e->rcep_p.zone->zone_max_swap_ctl = nv;
1696 return (0);
1697 }
1698
1699 static rctl_ops_t zone_max_swap_ops = {
1700 rcop_no_action,
1701 zone_max_swap_usage,
1702 zone_max_swap_set,
1703 zone_max_swap_test
1704 };
1705
1706 /*ARGSUSED*/
1707 static rctl_qty_t
1708 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1709 {
1710 rctl_qty_t q;
1711 zone_t *z = p->p_zone;
1712
1713 ASSERT(MUTEX_HELD(&p->p_lock));
1714 mutex_enter(&z->zone_rctl_lock);
1715 q = z->zone_max_lofi;
1716 mutex_exit(&z->zone_rctl_lock);
1717 return (q);
1718 }
1719
1720 /*ARGSUSED*/
1721 static int
1722 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1723 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1724 {
1725 rctl_qty_t q;
1726 zone_t *z;
1727
1728 z = e->rcep_p.zone;
1729 ASSERT(MUTEX_HELD(&p->p_lock));
1730 ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1731 q = z->zone_max_lofi;
1732 if (q + incr > rcntl->rcv_value)
1733 return (1);
1734 return (0);
1735 }
1736
1737 /*ARGSUSED*/
1738 static int
1739 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1740 rctl_qty_t nv)
1741 {
1742 ASSERT(MUTEX_HELD(&p->p_lock));
1743 ASSERT(e->rcep_t == RCENTITY_ZONE);
1744 if (e->rcep_p.zone == NULL)
1745 return (0);
1746 e->rcep_p.zone->zone_max_lofi_ctl = nv;
1747 return (0);
1748 }
1749
1750 static rctl_ops_t zone_max_lofi_ops = {
1751 rcop_no_action,
1752 zone_max_lofi_usage,
1753 zone_max_lofi_set,
1754 zone_max_lofi_test
1755 };
1756
1757 /*
1758 * Helper function to brand the zone with a unique ID.
1759 */
1760 static void
1761 zone_uniqid(zone_t *zone)
1762 {
1763 static uint64_t uniqid = 0;
1764
1765 ASSERT(MUTEX_HELD(&zonehash_lock));
1766 zone->zone_uniqid = uniqid++;
1767 }
1768
1769 /*
1770 * Returns a held pointer to the "kcred" for the specified zone.
1771 */
1772 struct cred *
1773 zone_get_kcred(zoneid_t zoneid)
1774 {
1775 zone_t *zone;
1776 cred_t *cr;
1777
1778 if ((zone = zone_find_by_id(zoneid)) == NULL)
1779 return (NULL);
1780 cr = zone->zone_kcred;
1781 crhold(cr);
1782 zone_rele(zone);
1783 return (cr);
1784 }
1785
1786 static int
1787 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1788 {
1789 zone_t *zone = ksp->ks_private;
1790 zone_kstat_t *zk = ksp->ks_data;
1791
1792 if (rw == KSTAT_WRITE)
1793 return (EACCES);
1794
1795 zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1796 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1797 return (0);
1798 }
1799
1800 static int
1801 zone_nprocs_kstat_update(kstat_t *ksp, int rw)
1802 {
1803 zone_t *zone = ksp->ks_private;
1804 zone_kstat_t *zk = ksp->ks_data;
1805
1806 if (rw == KSTAT_WRITE)
1807 return (EACCES);
1808
1809 zk->zk_usage.value.ui64 = zone->zone_nprocs;
1810 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl;
1811 return (0);
1812 }
1813
1814 static int
1815 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1816 {
1817 zone_t *zone = ksp->ks_private;
1818 zone_kstat_t *zk = ksp->ks_data;
1819
1820 if (rw == KSTAT_WRITE)
1821 return (EACCES);
1822
1823 zk->zk_usage.value.ui64 = zone->zone_max_swap;
1824 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1825 return (0);
1826 }
1827
1828 static kstat_t *
1829 zone_kstat_create_common(zone_t *zone, char *name,
1830 int (*updatefunc) (kstat_t *, int))
1831 {
1832 kstat_t *ksp;
1833 zone_kstat_t *zk;
1834
1835 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED,
1836 sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1837 KSTAT_FLAG_VIRTUAL);
1838
1839 if (ksp == NULL)
1840 return (NULL);
1841
1842 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1843 ksp->ks_data_size += strlen(zone->zone_name) + 1;
1844 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1845 kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1846 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1847 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1848 ksp->ks_update = updatefunc;
1849 ksp->ks_private = zone;
1850 kstat_install(ksp);
1851 return (ksp);
1852 }
1853
1854
1855 static int
1856 zone_mcap_kstat_update(kstat_t *ksp, int rw)
1857 {
1858 zone_t *zone = ksp->ks_private;
1859 zone_mcap_kstat_t *zmp = ksp->ks_data;
1860
1861 if (rw == KSTAT_WRITE)
1862 return (EACCES);
1863
1864 zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin;
1865 zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin;
1866 zmp->zm_execpgin.value.ui64 = zone->zone_execpgin;
1867 zmp->zm_fspgin.value.ui64 = zone->zone_fspgin;
1868 zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail;
1869
1870 return (0);
1871 }
1872
1873 static kstat_t *
1874 zone_mcap_kstat_create(zone_t *zone)
1875 {
1876 kstat_t *ksp;
1877 zone_mcap_kstat_t *zmp;
1878
1879 if ((ksp = kstat_create_zone("memory_cap", zone->zone_id,
1880 zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED,
1881 sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t),
1882 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1883 return (NULL);
1884
1885 if (zone->zone_id != GLOBAL_ZONEID)
1886 kstat_zone_add(ksp, GLOBAL_ZONEID);
1887
1888 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP);
1889 ksp->ks_data_size += strlen(zone->zone_name) + 1;
1890 ksp->ks_lock = &zone->zone_mcap_lock;
1891 zone->zone_mcap_stats = zmp;
1892
1893 /* The kstat "name" field is not large enough for a full zonename */
1894 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1895 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1896 kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64);
1897 kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64);
1898 kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64);
1899 kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64);
1900 kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail",
1901 KSTAT_DATA_UINT64);
1902
1903 ksp->ks_update = zone_mcap_kstat_update;
1904 ksp->ks_private = zone;
1905
1906 kstat_install(ksp);
1907 return (ksp);
1908 }
1909
1910 static int
1911 zone_misc_kstat_update(kstat_t *ksp, int rw)
1912 {
1913 zone_t *zone = ksp->ks_private;
1914 zone_misc_kstat_t *zmp = ksp->ks_data;
1915 hrtime_t hrtime;
1916 uint64_t tmp;
1917
1918 if (rw == KSTAT_WRITE)
1919 return (EACCES);
1920
1921 tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_STIME);
1922 hrtime = UINT64_OVERFLOW_TO_INT64(tmp);
1923 scalehrtime(&hrtime);
1924 zmp->zm_stime.value.ui64 = hrtime;
1925
1926 tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_UTIME);
1927 hrtime = UINT64_OVERFLOW_TO_INT64(tmp);
1928 scalehrtime(&hrtime);
1929 zmp->zm_utime.value.ui64 = hrtime;
1930
1931 tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_WTIME);
1932 hrtime = UINT64_OVERFLOW_TO_INT64(tmp);
1933 scalehrtime(&hrtime);
1934 zmp->zm_wtime.value.ui64 = hrtime;
1935
1936 zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0];
1937 zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1];
1938 zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2];
1939
1940 zmp->zm_ffcap.value.ui32 = zone->zone_ffcap;
1941 zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc;
1942 zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem;
1943 zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc;
1944
1945 zmp->zm_nested_intp.value.ui32 = zone->zone_nested_intp;
1946
1947 zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid;
1948 zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time;
1949
1950 return (0);
1951 }
1952
1953 static kstat_t *
1954 zone_misc_kstat_create(zone_t *zone)
1955 {
1956 kstat_t *ksp;
1957 zone_misc_kstat_t *zmp;
1958
1959 if ((ksp = kstat_create_zone("zones", zone->zone_id,
1960 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED,
1961 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t),
1962 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1963 return (NULL);
1964
1965 if (zone->zone_id != GLOBAL_ZONEID)
1966 kstat_zone_add(ksp, GLOBAL_ZONEID);
1967
1968 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP);
1969 ksp->ks_data_size += strlen(zone->zone_name) + 1;
1970 ksp->ks_lock = &zone->zone_misc_lock;
1971 zone->zone_misc_stats = zmp;
1972
1973 /* The kstat "name" field is not large enough for a full zonename */
1974 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1975 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1976 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64);
1977 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64);
1978 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64);
1979 kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32);
1980 kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32);
1981 kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min",
1982 KSTAT_DATA_UINT32);
1983 kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32);
1984 kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc",
1985 KSTAT_DATA_UINT32);
1986 kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32);
1987 kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32);
1988 kstat_named_init(&zmp->zm_nested_intp, "nested_interp",
1989 KSTAT_DATA_UINT32);
1990 kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32);
1991 kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64);
1992
1993 ksp->ks_update = zone_misc_kstat_update;
1994 ksp->ks_private = zone;
1995
1996 kstat_install(ksp);
1997 return (ksp);
1998 }
1999
2000 static void
2001 zone_kstat_create(zone_t *zone)
2002 {
2003 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone,
2004 "lockedmem", zone_lockedmem_kstat_update);
2005 zone->zone_swapresv_kstat = zone_kstat_create_common(zone,
2006 "swapresv", zone_swapresv_kstat_update);
2007 zone->zone_nprocs_kstat = zone_kstat_create_common(zone,
2008 "nprocs", zone_nprocs_kstat_update);
2009
2010 if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) {
2011 zone->zone_mcap_stats = kmem_zalloc(
2012 sizeof (zone_mcap_kstat_t), KM_SLEEP);
2013 }
2014
2015 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) {
2016 zone->zone_misc_stats = kmem_zalloc(
2017 sizeof (zone_misc_kstat_t), KM_SLEEP);
2018 }
2019 }
2020
2021 static void
2022 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz)
2023 {
2024 void *data;
2025
2026 if (*pkstat != NULL) {
2027 data = (*pkstat)->ks_data;
2028 kstat_delete(*pkstat);
2029 kmem_free(data, datasz);
2030 *pkstat = NULL;
2031 }
2032 }
2033
2034 static void
2035 zone_kstat_delete(zone_t *zone)
2036 {
2037 zone_kstat_delete_common(&zone->zone_lockedmem_kstat,
2038 sizeof (zone_kstat_t));
2039 zone_kstat_delete_common(&zone->zone_swapresv_kstat,
2040 sizeof (zone_kstat_t));
2041 zone_kstat_delete_common(&zone->zone_nprocs_kstat,
2042 sizeof (zone_kstat_t));
2043 zone_kstat_delete_common(&zone->zone_mcap_ksp,
2044 sizeof (zone_mcap_kstat_t));
2045 zone_kstat_delete_common(&zone->zone_misc_ksp,
2046 sizeof (zone_misc_kstat_t));
2047 }
2048
2049 /*
2050 * Called very early on in boot to initialize the ZSD list so that
2051 * zone_key_create() can be called before zone_init(). It also initializes
2052 * portions of zone0 which may be used before zone_init() is called. The
2053 * variable "global_zone" will be set when zone0 is fully initialized by
2054 * zone_init().
2055 */
2056 void
2057 zone_zsd_init(void)
2058 {
2059 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
2060 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
2061 list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
2062 offsetof(struct zsd_entry, zsd_linkage));
2063 list_create(&zone_active, sizeof (zone_t),
2064 offsetof(zone_t, zone_linkage));
2065 list_create(&zone_deathrow, sizeof (zone_t),
2066 offsetof(zone_t, zone_linkage));
2067
2068 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
2069 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
2070 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
2071 zone0.zone_shares = 1;
2072 zone0.zone_nlwps = 0;
2073 zone0.zone_nlwps_ctl = INT_MAX;
2074 zone0.zone_nprocs = 0;
2075 zone0.zone_nprocs_ctl = INT_MAX;
2076 zone0.zone_locked_mem = 0;
2077 zone0.zone_locked_mem_ctl = UINT64_MAX;
2078 ASSERT(zone0.zone_max_swap == 0);
2079 zone0.zone_max_swap_ctl = UINT64_MAX;
2080 zone0.zone_max_lofi = 0;
2081 zone0.zone_max_lofi_ctl = UINT64_MAX;
2082 zone0.zone_shmmax = 0;
2083 zone0.zone_ipc.ipcq_shmmni = 0;
2084 zone0.zone_ipc.ipcq_semmni = 0;
2085 zone0.zone_ipc.ipcq_msgmni = 0;
2086 zone0.zone_name = GLOBAL_ZONENAME;
2087 zone0.zone_nodename = utsname.nodename;
2088 zone0.zone_domain = srpc_domain;
2089 zone0.zone_hostid = HW_INVALID_HOSTID;
2090 zone0.zone_fs_allowed = NULL;
2091 psecflags_default(&zone0.zone_secflags);
2092 zone0.zone_ref = 1;
2093 zone0.zone_id = GLOBAL_ZONEID;
2094 zone0.zone_status = ZONE_IS_RUNNING;
2095 zone0.zone_rootpath = "/";
2096 zone0.zone_rootpathlen = 2;
2097 zone0.zone_psetid = ZONE_PS_INVAL;
2098 zone0.zone_ncpus = 0;
2099 zone0.zone_ncpus_online = 0;
2100 zone0.zone_proc_initpid = 1;
2101 zone0.zone_initname = initname;
2102 zone0.zone_lockedmem_kstat = NULL;
2103 zone0.zone_swapresv_kstat = NULL;
2104 zone0.zone_nprocs_kstat = NULL;
2105
2106 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t),
2107 offsetof(zone_ref_t, zref_linkage));
2108 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
2109 offsetof(struct zsd_entry, zsd_linkage));
2110 list_insert_head(&zone_active, &zone0);
2111
2112 /*
2113 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
2114 * to anything meaningful. It is assigned to be 'rootdir' in
2115 * vfs_mountroot().
2116 */
2117 zone0.zone_rootvp = NULL;
2118 zone0.zone_vfslist = NULL;
2119 zone0.zone_bootargs = initargs;
2120 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
2121 /*
2122 * The global zone has all privileges
2123 */
2124 priv_fillset(zone0.zone_privset);
2125 /*
2126 * Add p0 to the global zone
2127 */
2128 zone0.zone_zsched = &p0;
2129 p0.p_zone = &zone0;
2130 }
2131
2132 /*
2133 * Compute a hash value based on the contents of the label and the DOI. The
2134 * hash algorithm is somewhat arbitrary, but is based on the observation that
2135 * humans will likely pick labels that differ by amounts that work out to be
2136 * multiples of the number of hash chains, and thus stirring in some primes
2137 * should help.
2138 */
2139 static uint_t
2140 hash_bylabel(void *hdata, mod_hash_key_t key)
2141 {
2142 const ts_label_t *lab = (ts_label_t *)key;
2143 const uint32_t *up, *ue;
2144 uint_t hash;
2145 int i;
2146
2147 _NOTE(ARGUNUSED(hdata));
2148
2149 hash = lab->tsl_doi + (lab->tsl_doi << 1);
2150 /* we depend on alignment of label, but not representation */
2151 up = (const uint32_t *)&lab->tsl_label;
2152 ue = up + sizeof (lab->tsl_label) / sizeof (*up);
2153 i = 1;
2154 while (up < ue) {
2155 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */
2156 hash += *up + (*up << ((i % 16) + 1));
2157 up++;
2158 i++;
2159 }
2160 return (hash);
2161 }
2162
2163 /*
2164 * All that mod_hash cares about here is zero (equal) versus non-zero (not
2165 * equal). This may need to be changed if less than / greater than is ever
2166 * needed.
2167 */
2168 static int
2169 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
2170 {
2171 ts_label_t *lab1 = (ts_label_t *)key1;
2172 ts_label_t *lab2 = (ts_label_t *)key2;
2173
2174 return (label_equal(lab1, lab2) ? 0 : 1);
2175 }
2176
2177 /*
2178 * Called by main() to initialize the zones framework.
2179 */
2180 void
2181 zone_init(void)
2182 {
2183 rctl_dict_entry_t *rde;
2184 rctl_val_t *dval;
2185 rctl_set_t *set;
2186 rctl_alloc_gp_t *gp;
2187 rctl_entity_p_t e;
2188 int res;
2189
2190 ASSERT(curproc == &p0);
2191
2192 /*
2193 * Create ID space for zone IDs. ID 0 is reserved for the
2194 * global zone.
2195 */
2196 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
2197
2198 /*
2199 * Initialize generic zone resource controls, if any.
2200 */
2201 rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
2202 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2203 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2204 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
2205
2206 rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
2207 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
2208 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
2209 RCTL_GLOBAL_INFINITE,
2210 MAXCAP, MAXCAP, &zone_cpu_cap_ops);
2211
2212 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
2213 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2214 INT_MAX, INT_MAX, &zone_lwps_ops);
2215
2216 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE,
2217 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2218 INT_MAX, INT_MAX, &zone_procs_ops);
2219
2220 /*
2221 * System V IPC resource controls
2222 */
2223 rc_zone_msgmni = rctl_register("zone.max-msg-ids",
2224 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2225 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
2226
2227 rc_zone_semmni = rctl_register("zone.max-sem-ids",
2228 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2229 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
2230
2231 rc_zone_shmmni = rctl_register("zone.max-shm-ids",
2232 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2233 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
2234
2235 rc_zone_shmmax = rctl_register("zone.max-shm-memory",
2236 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2237 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
2238
2239 /*
2240 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach
2241 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
2242 */
2243 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2244 bzero(dval, sizeof (rctl_val_t));
2245 dval->rcv_value = 1;
2246 dval->rcv_privilege = RCPRIV_PRIVILEGED;
2247 dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2248 dval->rcv_action_recip_pid = -1;
2249
2250 rde = rctl_dict_lookup("zone.cpu-shares");
2251 (void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2252
2253 rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
2254 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2255 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2256 &zone_locked_mem_ops);
2257
2258 rc_zone_max_swap = rctl_register("zone.max-swap",
2259 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2260 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2261 &zone_max_swap_ops);
2262
2263 rc_zone_max_lofi = rctl_register("zone.max-lofi",
2264 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
2265 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2266 &zone_max_lofi_ops);
2267
2268 /*
2269 * Initialize the ``global zone''.
2270 */
2271 set = rctl_set_create();
2272 gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2273 mutex_enter(&p0.p_lock);
2274 e.rcep_p.zone = &zone0;
2275 e.rcep_t = RCENTITY_ZONE;
2276 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
2277 gp);
2278
2279 zone0.zone_nlwps = p0.p_lwpcnt;
2280 zone0.zone_nprocs = 1;
2281 zone0.zone_ntasks = 1;
2282 mutex_exit(&p0.p_lock);
2283 zone0.zone_restart_init = B_TRUE;
2284 zone0.zone_brand = &native_brand;
2285 rctl_prealloc_destroy(gp);
2286 /*
2287 * pool_default hasn't been initialized yet, so we let pool_init()
2288 * take care of making sure the global zone is in the default pool.
2289 */
2290
2291 /*
2292 * Initialize global zone kstats
2293 */
2294 zone_kstat_create(&zone0);
2295
2296 /*
2297 * Initialize zone label.
2298 * mlp are initialized when tnzonecfg is loaded.
2299 */
2300 zone0.zone_slabel = l_admin_low;
2301 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
2302 label_hold(l_admin_low);
2303
2304 /*
2305 * Initialise the lock for the database structure used by mntfs.
2306 */
2307 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2308
2309 zone0.zone_ustate = cpu_uarray_zalloc(ZONE_USTATE_MAX, KM_SLEEP);
2310
2311 mutex_enter(&zonehash_lock);
2312 zone_uniqid(&zone0);
2313 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2314
2315 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2316 mod_hash_null_valdtor);
2317 zonehashbyname = mod_hash_create_strhash("zone_by_name",
2318 zone_hash_size, mod_hash_null_valdtor);
2319 /*
2320 * maintain zonehashbylabel only for labeled systems
2321 */
2322 if (is_system_labeled())
2323 zonehashbylabel = mod_hash_create_extended("zone_by_label",
2324 zone_hash_size, mod_hash_null_keydtor,
2325 mod_hash_null_valdtor, hash_bylabel, NULL,
2326 hash_labelkey_cmp, KM_SLEEP);
2327 zonecount = 1;
2328
2329 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2330 (mod_hash_val_t)&zone0);
2331 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2332 (mod_hash_val_t)&zone0);
2333 if (is_system_labeled()) {
2334 zone0.zone_flags |= ZF_HASHED_LABEL;
2335 (void) mod_hash_insert(zonehashbylabel,
2336 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
2337 }
2338 mutex_exit(&zonehash_lock);
2339
2340 /*
2341 * We avoid setting zone_kcred until now, since kcred is initialized
2342 * sometime after zone_zsd_init() and before zone_init().
2343 */
2344 zone0.zone_kcred = kcred;
2345 /*
2346 * The global zone is fully initialized (except for zone_rootvp which
2347 * will be set when the root filesystem is mounted).
2348 */
2349 global_zone = &zone0;
2350
2351 /*
2352 * Setup an event channel to send zone status change notifications on
2353 */
2354 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2355 EVCH_CREAT);
2356
2357 if (res)
2358 panic("Sysevent_evc_bind failed during zone setup.\n");
2359
2360 }
2361
2362 static void
2363 zone_free(zone_t *zone)
2364 {
2365 ASSERT(zone != global_zone);
2366 ASSERT(zone->zone_ntasks == 0);
2367 ASSERT(zone->zone_nlwps == 0);
2368 ASSERT(zone->zone_nprocs == 0);
2369 ASSERT(zone->zone_cred_ref == 0);
2370 ASSERT(zone->zone_kcred == NULL);
2371 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2372 zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2373 ASSERT(list_is_empty(&zone->zone_ref_list));
2374
2375 /*
2376 * Remove any zone caps.
2377 */
2378 cpucaps_zone_remove(zone);
2379
2380 ASSERT(zone->zone_cpucap == NULL);
2381
2382 /* remove from deathrow list */
2383 if (zone_status_get(zone) == ZONE_IS_DEAD) {
2384 ASSERT(zone->zone_ref == 0);
2385 mutex_enter(&zone_deathrow_lock);
2386 list_remove(&zone_deathrow, zone);
2387 mutex_exit(&zone_deathrow_lock);
2388 }
2389
2390 list_destroy(&zone->zone_ref_list);
2391 zone_free_zsd(zone);
2392 zone_free_datasets(zone);
2393 list_destroy(&zone->zone_dl_list);
2394
2395 cpu_uarray_free(zone->zone_ustate);
2396
2397 if (zone->zone_rootvp != NULL) {
2398 vnode_t *vp = zone->zone_rootvp;
2399
2400 mutex_enter(&vp->v_lock);
2401 vp->v_flag &= ~VZONEROOT;
2402 mutex_exit(&vp->v_lock);
2403 VN_RELE(vp);
2404 /* No need to worry about NULL-ing out zone_rootvp. */
2405 }
2406 if (zone->zone_rootpath)
2407 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2408 if (zone->zone_name != NULL)
2409 kmem_free(zone->zone_name, ZONENAME_MAX);
2410 if (zone->zone_slabel != NULL)
2411 label_rele(zone->zone_slabel);
2412 if (zone->zone_nodename != NULL)
2413 kmem_free(zone->zone_nodename, _SYS_NMLN);
2414 if (zone->zone_domain != NULL)
2415 kmem_free(zone->zone_domain, _SYS_NMLN);
2416 if (zone->zone_privset != NULL)
2417 kmem_free(zone->zone_privset, sizeof (priv_set_t));
2418 if (zone->zone_rctls != NULL)
2419 rctl_set_free(zone->zone_rctls);
2420 if (zone->zone_bootargs != NULL)
2421 strfree(zone->zone_bootargs);
2422 if (zone->zone_initname != NULL)
2423 strfree(zone->zone_initname);
2424 if (zone->zone_fs_allowed != NULL)
2425 strfree(zone->zone_fs_allowed);
2426 if (zone->zone_pfexecd != NULL)
2427 klpd_freelist(&zone->zone_pfexecd);
2428 id_free(zoneid_space, zone->zone_id);
2429 mutex_destroy(&zone->zone_lock);
2430 cv_destroy(&zone->zone_cv);
2431 rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2432 rw_destroy(&zone->zone_mntfs_db_lock);
2433 kmem_free(zone, sizeof (zone_t));
2434 }
2435
2436 /*
2437 * See block comment at the top of this file for information about zone
2438 * status values.
2439 */
2440 /*
2441 * Convenience function for setting zone status.
2442 */
2443 static void
2444 zone_status_set(zone_t *zone, zone_status_t status)
2445 {
2446
2447 nvlist_t *nvl = NULL;
2448 ASSERT(MUTEX_HELD(&zone_status_lock));
2449 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2450 status >= zone_status_get(zone));
2451
2452 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2453 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2454 nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2455 zone_status_table[status]) ||
2456 nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2457 zone_status_table[zone->zone_status]) ||
2458 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2459 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2460 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2461 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2462 #ifdef DEBUG
2463 (void) printf(
2464 "Failed to allocate and send zone state change event.\n");
2465 #endif
2466 }
2467 nvlist_free(nvl);
2468
2469 zone->zone_status = status;
2470
2471 cv_broadcast(&zone->zone_cv);
2472 }
2473
2474 /*
2475 * Public function to retrieve the zone status. The zone status may
2476 * change after it is retrieved.
2477 */
2478 zone_status_t
2479 zone_status_get(zone_t *zone)
2480 {
2481 return (zone->zone_status);
2482 }
2483
2484 static int
2485 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2486 {
2487 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2488 int err = 0;
2489
2490 ASSERT(zone != global_zone);
2491 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
2492 goto done; /* EFAULT or ENAMETOOLONG */
2493
2494 if (zone->zone_bootargs != NULL)
2495 strfree(zone->zone_bootargs);
2496
2497 zone->zone_bootargs = strdup(buf);
2498
2499 done:
2500 kmem_free(buf, BOOTARGS_MAX);
2501 return (err);
2502 }
2503
2504 static int
2505 zone_set_brand(zone_t *zone, const char *brand)
2506 {
2507 struct brand_attr *attrp;
2508 brand_t *bp;
2509
2510 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2511 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2512 kmem_free(attrp, sizeof (struct brand_attr));
2513 return (EFAULT);
2514 }
2515
2516 bp = brand_register_zone(attrp);
2517 kmem_free(attrp, sizeof (struct brand_attr));
2518 if (bp == NULL)
2519 return (EINVAL);
2520
2521 /*
2522 * This is the only place where a zone can change it's brand.
2523 * We already need to hold zone_status_lock to check the zone
2524 * status, so we'll just use that lock to serialize zone
2525 * branding requests as well.
2526 */
2527 mutex_enter(&zone_status_lock);
2528
2529 /* Re-Branding is not allowed and the zone can't be booted yet */
2530 if ((ZONE_IS_BRANDED(zone)) ||
2531 (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2532 mutex_exit(&zone_status_lock);
2533 brand_unregister_zone(bp);
2534 return (EINVAL);
2535 }
2536
2537 /* set up the brand specific data */
2538 zone->zone_brand = bp;
2539 ZBROP(zone)->b_init_brand_data(zone);
2540
2541 mutex_exit(&zone_status_lock);
2542 return (0);
2543 }
2544
2545 static int
2546 zone_set_secflags(zone_t *zone, const psecflags_t *zone_secflags)
2547 {
2548 int err = 0;
2549 psecflags_t psf;
2550
2551 ASSERT(zone != global_zone);
2552
2553 if ((err = copyin(zone_secflags, &psf, sizeof (psf))) != 0)
2554 return (err);
2555
2556 if (zone_status_get(zone) > ZONE_IS_READY)
2557 return (EINVAL);
2558
2559 if (!psecflags_validate(&psf))
2560 return (EINVAL);
2561
2562 (void) memcpy(&zone->zone_secflags, &psf, sizeof (psf));
2563
2564 /* Set security flags on the zone's zsched */
2565 (void) memcpy(&zone->zone_zsched->p_secflags, &zone->zone_secflags,
2566 sizeof (zone->zone_zsched->p_secflags));
2567
2568 return (0);
2569 }
2570
2571 static int
2572 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
2573 {
2574 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
2575 int err = 0;
2576
2577 ASSERT(zone != global_zone);
2578 if ((err = copyinstr(zone_fs_allowed, buf,
2579 ZONE_FS_ALLOWED_MAX, NULL)) != 0)
2580 goto done;
2581
2582 if (zone->zone_fs_allowed != NULL)
2583 strfree(zone->zone_fs_allowed);
2584
2585 zone->zone_fs_allowed = strdup(buf);
2586
2587 done:
2588 kmem_free(buf, ZONE_FS_ALLOWED_MAX);
2589 return (err);
2590 }
2591
2592 static int
2593 zone_set_initname(zone_t *zone, const char *zone_initname)
2594 {
2595 char initname[INITNAME_SZ];
2596 size_t len;
2597 int err = 0;
2598
2599 ASSERT(zone != global_zone);
2600 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2601 return (err); /* EFAULT or ENAMETOOLONG */
2602
2603 if (zone->zone_initname != NULL)
2604 strfree(zone->zone_initname);
2605
2606 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2607 (void) strcpy(zone->zone_initname, initname);
2608 return (0);
2609 }
2610
2611 static int
2612 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2613 {
2614 uint64_t mcap;
2615 int err = 0;
2616
2617 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2618 zone->zone_phys_mcap = mcap;
2619
2620 return (err);
2621 }
2622
2623 static int
2624 zone_set_sched_class(zone_t *zone, const char *new_class)
2625 {
2626 char sched_class[PC_CLNMSZ];
2627 id_t classid;
2628 int err;
2629
2630 ASSERT(zone != global_zone);
2631 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2632 return (err); /* EFAULT or ENAMETOOLONG */
2633
2634 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2635 return (set_errno(EINVAL));
2636 zone->zone_defaultcid = classid;
2637 ASSERT(zone->zone_defaultcid > 0 &&
2638 zone->zone_defaultcid < loaded_classes);
2639
2640 return (0);
2641 }
2642
2643 /*
2644 * Block indefinitely waiting for (zone_status >= status)
2645 */
2646 void
2647 zone_status_wait(zone_t *zone, zone_status_t status)
2648 {
2649 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2650
2651 mutex_enter(&zone_status_lock);
2652 while (zone->zone_status < status) {
2653 cv_wait(&zone->zone_cv, &zone_status_lock);
2654 }
2655 mutex_exit(&zone_status_lock);
2656 }
2657
2658 /*
2659 * Private CPR-safe version of zone_status_wait().
2660 */
2661 static void
2662 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2663 {
2664 callb_cpr_t cprinfo;
2665
2666 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2667
2668 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2669 str);
2670 mutex_enter(&zone_status_lock);
2671 while (zone->zone_status < status) {
2672 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2673 cv_wait(&zone->zone_cv, &zone_status_lock);
2674 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2675 }
2676 /*
2677 * zone_status_lock is implicitly released by the following.
2678 */
2679 CALLB_CPR_EXIT(&cprinfo);
2680 }
2681
2682 /*
2683 * Block until zone enters requested state or signal is received. Return (0)
2684 * if signaled, non-zero otherwise.
2685 */
2686 int
2687 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2688 {
2689 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2690
2691 mutex_enter(&zone_status_lock);
2692 while (zone->zone_status < status) {
2693 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2694 mutex_exit(&zone_status_lock);
2695 return (0);
2696 }
2697 }
2698 mutex_exit(&zone_status_lock);
2699 return (1);
2700 }
2701
2702 /*
2703 * Block until the zone enters the requested state or the timeout expires,
2704 * whichever happens first. Return (-1) if operation timed out, time remaining
2705 * otherwise.
2706 */
2707 clock_t
2708 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2709 {
2710 clock_t timeleft = 0;
2711
2712 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2713
2714 mutex_enter(&zone_status_lock);
2715 while (zone->zone_status < status && timeleft != -1) {
2716 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2717 }
2718 mutex_exit(&zone_status_lock);
2719 return (timeleft);
2720 }
2721
2722 /*
2723 * Block until the zone enters the requested state, the current process is
2724 * signaled, or the timeout expires, whichever happens first. Return (-1) if
2725 * operation timed out, 0 if signaled, time remaining otherwise.
2726 */
2727 clock_t
2728 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2729 {
2730 clock_t timeleft = tim - ddi_get_lbolt();
2731
2732 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2733
2734 mutex_enter(&zone_status_lock);
2735 while (zone->zone_status < status) {
2736 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2737 tim);
2738 if (timeleft <= 0)
2739 break;
2740 }
2741 mutex_exit(&zone_status_lock);
2742 return (timeleft);
2743 }
2744
2745 /*
2746 * Zones have two reference counts: one for references from credential
2747 * structures (zone_cred_ref), and one (zone_ref) for everything else.
2748 * This is so we can allow a zone to be rebooted while there are still
2749 * outstanding cred references, since certain drivers cache dblks (which
2750 * implicitly results in cached creds). We wait for zone_ref to drop to
2751 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is
2752 * later freed when the zone_cred_ref drops to 0, though nothing other
2753 * than the zone id and privilege set should be accessed once the zone
2754 * is "dead".
2755 *
2756 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2757 * to force halt/reboot to block waiting for the zone_cred_ref to drop
2758 * to 0. This can be useful to flush out other sources of cached creds
2759 * that may be less innocuous than the driver case.
2760 *
2761 * Zones also provide a tracked reference counting mechanism in which zone
2762 * references are represented by "crumbs" (zone_ref structures). Crumbs help
2763 * debuggers determine the sources of leaked zone references. See
2764 * zone_hold_ref() and zone_rele_ref() below for more information.
2765 */
2766
2767 int zone_wait_for_cred = 0;
2768
2769 static void
2770 zone_hold_locked(zone_t *z)
2771 {
2772 ASSERT(MUTEX_HELD(&z->zone_lock));
2773 z->zone_ref++;
2774 ASSERT(z->zone_ref != 0);
2775 }
2776
2777 /*
2778 * Increment the specified zone's reference count. The zone's zone_t structure
2779 * will not be freed as long as the zone's reference count is nonzero.
2780 * Decrement the zone's reference count via zone_rele().
2781 *
2782 * NOTE: This function should only be used to hold zones for short periods of
2783 * time. Use zone_hold_ref() if the zone must be held for a long time.
2784 */
2785 void
2786 zone_hold(zone_t *z)
2787 {
2788 mutex_enter(&z->zone_lock);
2789 zone_hold_locked(z);
2790 mutex_exit(&z->zone_lock);
2791 }
2792
2793 /*
2794 * If the non-cred ref count drops to 1 and either the cred ref count
2795 * is 0 or we aren't waiting for cred references, the zone is ready to
2796 * be destroyed.
2797 */
2798 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \
2799 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2800
2801 /*
2802 * Common zone reference release function invoked by zone_rele() and
2803 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified
2804 * zone's subsystem-specific reference counters are not affected by the
2805 * release. If ref is not NULL, then the zone_ref_t to which it refers is
2806 * removed from the specified zone's reference list. ref must be non-NULL iff
2807 * subsys is not ZONE_REF_NUM_SUBSYS.
2808 */
2809 static void
2810 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2811 {
2812 boolean_t wakeup;
2813
2814 mutex_enter(&z->zone_lock);
2815 ASSERT(z->zone_ref != 0);
2816 z->zone_ref--;
2817 if (subsys != ZONE_REF_NUM_SUBSYS) {
2818 ASSERT(z->zone_subsys_ref[subsys] != 0);
2819 z->zone_subsys_ref[subsys]--;
2820 list_remove(&z->zone_ref_list, ref);
2821 }
2822 if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2823 /* no more refs, free the structure */
2824 mutex_exit(&z->zone_lock);
2825 zone_free(z);
2826 return;
2827 }
2828 /* signal zone_destroy so the zone can finish halting */
2829 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2830 mutex_exit(&z->zone_lock);
2831
2832 if (wakeup) {
2833 /*
2834 * Grabbing zonehash_lock here effectively synchronizes with
2835 * zone_destroy() to avoid missed signals.
2836 */
2837 mutex_enter(&zonehash_lock);
2838 cv_broadcast(&zone_destroy_cv);
2839 mutex_exit(&zonehash_lock);
2840 }
2841 }
2842
2843 /*
2844 * Decrement the specified zone's reference count. The specified zone will
2845 * cease to exist after this function returns if the reference count drops to
2846 * zero. This function should be paired with zone_hold().
2847 */
2848 void
2849 zone_rele(zone_t *z)
2850 {
2851 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS);
2852 }
2853
2854 /*
2855 * Initialize a zone reference structure. This function must be invoked for
2856 * a reference structure before the structure is passed to zone_hold_ref().
2857 */
2858 void
2859 zone_init_ref(zone_ref_t *ref)
2860 {
2861 ref->zref_zone = NULL;
2862 list_link_init(&ref->zref_linkage);
2863 }
2864
2865 /*
2866 * Acquire a reference to zone z. The caller must specify the
2867 * zone_ref_subsys_t constant associated with its subsystem. The specified
2868 * zone_ref_t structure will represent a reference to the specified zone. Use
2869 * zone_rele_ref() to release the reference.
2870 *
2871 * The referenced zone_t structure will not be freed as long as the zone_t's
2872 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding
2873 * references.
2874 *
2875 * NOTE: The zone_ref_t structure must be initialized before it is used.
2876 * See zone_init_ref() above.
2877 */
2878 void
2879 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2880 {
2881 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS);
2882
2883 /*
2884 * Prevent consumers from reusing a reference structure before
2885 * releasing it.
2886 */
2887 VERIFY(ref->zref_zone == NULL);
2888
2889 ref->zref_zone = z;
2890 mutex_enter(&z->zone_lock);
2891 zone_hold_locked(z);
2892 z->zone_subsys_ref[subsys]++;
2893 ASSERT(z->zone_subsys_ref[subsys] != 0);
2894 list_insert_head(&z->zone_ref_list, ref);
2895 mutex_exit(&z->zone_lock);
2896 }
2897
2898 /*
2899 * Release the zone reference represented by the specified zone_ref_t.
2900 * The reference is invalid after it's released; however, the zone_ref_t
2901 * structure can be reused without having to invoke zone_init_ref().
2902 * subsys should be the same value that was passed to zone_hold_ref()
2903 * when the reference was acquired.
2904 */
2905 void
2906 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys)
2907 {
2908 zone_rele_common(ref->zref_zone, ref, subsys);
2909
2910 /*
2911 * Set the zone_ref_t's zref_zone field to NULL to generate panics
2912 * when consumers dereference the reference. This helps us catch
2913 * consumers who use released references. Furthermore, this lets
2914 * consumers reuse the zone_ref_t structure without having to
2915 * invoke zone_init_ref().
2916 */
2917 ref->zref_zone = NULL;
2918 }
2919
2920 void
2921 zone_cred_hold(zone_t *z)
2922 {
2923 mutex_enter(&z->zone_lock);
2924 z->zone_cred_ref++;
2925 ASSERT(z->zone_cred_ref != 0);
2926 mutex_exit(&z->zone_lock);
2927 }
2928
2929 void
2930 zone_cred_rele(zone_t *z)
2931 {
2932 boolean_t wakeup;
2933
2934 mutex_enter(&z->zone_lock);
2935 ASSERT(z->zone_cred_ref != 0);
2936 z->zone_cred_ref--;
2937 if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2938 /* no more refs, free the structure */
2939 mutex_exit(&z->zone_lock);
2940 zone_free(z);
2941 return;
2942 }
2943 /*
2944 * If zone_destroy is waiting for the cred references to drain
2945 * out, and they have, signal it.
2946 */
2947 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2948 zone_status_get(z) >= ZONE_IS_DEAD);
2949 mutex_exit(&z->zone_lock);
2950
2951 if (wakeup) {
2952 /*
2953 * Grabbing zonehash_lock here effectively synchronizes with
2954 * zone_destroy() to avoid missed signals.
2955 */
2956 mutex_enter(&zonehash_lock);
2957 cv_broadcast(&zone_destroy_cv);
2958 mutex_exit(&zonehash_lock);
2959 }
2960 }
2961
2962 void
2963 zone_task_hold(zone_t *z)
2964 {
2965 mutex_enter(&z->zone_lock);
2966 z->zone_ntasks++;
2967 ASSERT(z->zone_ntasks != 0);
2968 mutex_exit(&z->zone_lock);
2969 }
2970
2971 void
2972 zone_task_rele(zone_t *zone)
2973 {
2974 uint_t refcnt;
2975
2976 mutex_enter(&zone->zone_lock);
2977 ASSERT(zone->zone_ntasks != 0);
2978 refcnt = --zone->zone_ntasks;
2979 if (refcnt > 1) { /* Common case */
2980 mutex_exit(&zone->zone_lock);
2981 return;
2982 }
2983 zone_hold_locked(zone); /* so we can use the zone_t later */
2984 mutex_exit(&zone->zone_lock);
2985 if (refcnt == 1) {
2986 /*
2987 * See if the zone is shutting down.
2988 */
2989 mutex_enter(&zone_status_lock);
2990 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2991 goto out;
2992 }
2993
2994 /*
2995 * Make sure the ntasks didn't change since we
2996 * dropped zone_lock.
2997 */
2998 mutex_enter(&zone->zone_lock);
2999 if (refcnt != zone->zone_ntasks) {
3000 mutex_exit(&zone->zone_lock);
3001 goto out;
3002 }
3003 mutex_exit(&zone->zone_lock);
3004
3005 /*
3006 * No more user processes in the zone. The zone is empty.
3007 */
3008 zone_status_set(zone, ZONE_IS_EMPTY);
3009 goto out;
3010 }
3011
3012 ASSERT(refcnt == 0);
3013 /*
3014 * zsched has exited; the zone is dead.
3015 */
3016 zone->zone_zsched = NULL; /* paranoia */
3017 mutex_enter(&zone_status_lock);
3018 zone_status_set(zone, ZONE_IS_DEAD);
3019 out:
3020 mutex_exit(&zone_status_lock);
3021 zone_rele(zone);
3022 }
3023
3024 zoneid_t
3025 getzoneid(void)
3026 {
3027 return (curproc->p_zone->zone_id);
3028 }
3029
3030 /*
3031 * Internal versions of zone_find_by_*(). These don't zone_hold() or
3032 * check the validity of a zone's state.
3033 */
3034 static zone_t *
3035 zone_find_all_by_id(zoneid_t zoneid)
3036 {
3037 mod_hash_val_t hv;
3038 zone_t *zone = NULL;
3039
3040 ASSERT(MUTEX_HELD(&zonehash_lock));
3041
3042 if (mod_hash_find(zonehashbyid,
3043 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
3044 zone = (zone_t *)hv;
3045 return (zone);
3046 }
3047
3048 static zone_t *
3049 zone_find_all_by_label(const ts_label_t *label)
3050 {
3051 mod_hash_val_t hv;
3052 zone_t *zone = NULL;
3053
3054 ASSERT(MUTEX_HELD(&zonehash_lock));
3055
3056 /*
3057 * zonehashbylabel is not maintained for unlabeled systems
3058 */
3059 if (!is_system_labeled())
3060 return (NULL);
3061 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
3062 zone = (zone_t *)hv;
3063 return (zone);
3064 }
3065
3066 static zone_t *
3067 zone_find_all_by_name(char *name)
3068 {
3069 mod_hash_val_t hv;
3070 zone_t *zone = NULL;
3071
3072 ASSERT(MUTEX_HELD(&zonehash_lock));
3073
3074 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
3075 zone = (zone_t *)hv;
3076 return (zone);
3077 }
3078
3079 /*
3080 * Public interface for looking up a zone by zoneid. Only returns the zone if
3081 * it is fully initialized, and has not yet begun the zone_destroy() sequence.
3082 * Caller must call zone_rele() once it is done with the zone.
3083 *
3084 * The zone may begin the zone_destroy() sequence immediately after this
3085 * function returns, but may be safely used until zone_rele() is called.
3086 */
3087 zone_t *
3088 zone_find_by_id(zoneid_t zoneid)
3089 {
3090 zone_t *zone;
3091 zone_status_t status;
3092
3093 mutex_enter(&zonehash_lock);
3094 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
3095 mutex_exit(&zonehash_lock);
3096 return (NULL);
3097 }
3098 status = zone_status_get(zone);
3099 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3100 /*
3101 * For all practical purposes the zone doesn't exist.
3102 */
3103 mutex_exit(&zonehash_lock);
3104 return (NULL);
3105 }
3106 zone_hold(zone);
3107 mutex_exit(&zonehash_lock);
3108 return (zone);
3109 }
3110
3111 /*
3112 * Similar to zone_find_by_id, but using zone label as the key.
3113 */
3114 zone_t *
3115 zone_find_by_label(const ts_label_t *label)
3116 {
3117 zone_t *zone;
3118 zone_status_t status;
3119
3120 mutex_enter(&zonehash_lock);
3121 if ((zone = zone_find_all_by_label(label)) == NULL) {
3122 mutex_exit(&zonehash_lock);
3123 return (NULL);
3124 }
3125
3126 status = zone_status_get(zone);
3127 if (status > ZONE_IS_DOWN) {
3128 /*
3129 * For all practical purposes the zone doesn't exist.
3130 */
3131 mutex_exit(&zonehash_lock);
3132 return (NULL);
3133 }
3134 zone_hold(zone);
3135 mutex_exit(&zonehash_lock);
3136 return (zone);
3137 }
3138
3139 /*
3140 * Similar to zone_find_by_id, but using zone name as the key.
3141 */
3142 zone_t *
3143 zone_find_by_name(char *name)
3144 {
3145 zone_t *zone;
3146 zone_status_t status;
3147
3148 mutex_enter(&zonehash_lock);
3149 if ((zone = zone_find_all_by_name(name)) == NULL) {
3150 mutex_exit(&zonehash_lock);
3151 return (NULL);
3152 }
3153 status = zone_status_get(zone);
3154 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3155 /*
3156 * For all practical purposes the zone doesn't exist.
3157 */
3158 mutex_exit(&zonehash_lock);
3159 return (NULL);
3160 }
3161 zone_hold(zone);
3162 mutex_exit(&zonehash_lock);
3163 return (zone);
3164 }
3165
3166 /*
3167 * Similar to zone_find_by_id(), using the path as a key. For instance,
3168 * if there is a zone "foo" rooted at /foo/root, and the path argument
3169 * is "/foo/root/proc", it will return the held zone_t corresponding to
3170 * zone "foo".
3171 *
3172 * zone_find_by_path() always returns a non-NULL value, since at the
3173 * very least every path will be contained in the global zone.
3174 *
3175 * As with the other zone_find_by_*() functions, the caller is
3176 * responsible for zone_rele()ing the return value of this function.
3177 */
3178 zone_t *
3179 zone_find_by_path(const char *path)
3180 {
3181 zone_t *zone;
3182 zone_t *zret = NULL;
3183 zone_status_t status;
3184
3185 if (path == NULL) {
3186 /*
3187 * Call from rootconf().
3188 */
3189 zone_hold(global_zone);
3190 return (global_zone);
3191 }
3192 ASSERT(*path == '/');
3193 mutex_enter(&zonehash_lock);
3194 for (zone = list_head(&zone_active); zone != NULL;
3195 zone = list_next(&zone_active, zone)) {
3196 if (ZONE_PATH_VISIBLE(path, zone))
3197 zret = zone;
3198 }
3199 ASSERT(zret != NULL);
3200 status = zone_status_get(zret);
3201 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3202 /*
3203 * Zone practically doesn't exist.
3204 */
3205 zret = global_zone;
3206 }
3207 zone_hold(zret);
3208 mutex_exit(&zonehash_lock);
3209 return (zret);
3210 }
3211
3212 /*
3213 * Public interface for updating per-zone load averages. Called once per
3214 * second.
3215 *
3216 * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c.
3217 */
3218 void
3219 zone_loadavg_update(void)
3220 {
3221 zone_t *zp;
3222 zone_status_t status;
3223 struct loadavg_s *lavg;
3224 hrtime_t zone_total;
3225 uint64_t tmp;
3226 int i;
3227 hrtime_t hr_avg;
3228 int nrun;
3229 static int64_t f[3] = { 135, 27, 9 };
3230 int64_t q, r;
3231
3232 mutex_enter(&zonehash_lock);
3233 for (zp = list_head(&zone_active); zp != NULL;
3234 zp = list_next(&zone_active, zp)) {
3235 mutex_enter(&zp->zone_lock);
3236
3237 /* Skip zones that are on the way down or not yet up */
3238 status = zone_status_get(zp);
3239 if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) {
3240 /* For all practical purposes the zone doesn't exist. */
3241 mutex_exit(&zp->zone_lock);
3242 continue;
3243 }
3244
3245 /*
3246 * Update the 10 second moving average data in zone_loadavg.
3247 */
3248 lavg = &zp->zone_loadavg;
3249
3250 tmp = cpu_uarray_sum_all(zp->zone_ustate);
3251 zone_total = UINT64_OVERFLOW_TO_INT64(tmp);
3252
3253 scalehrtime(&zone_total);
3254
3255 /* The zone_total should always be increasing. */
3256 lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ?
3257 zone_total - lavg->lg_total : 0;
3258 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
3259 /* lg_total holds the prev. 1 sec. total */
3260 lavg->lg_total = zone_total;
3261
3262 /*
3263 * To simplify the calculation, we don't calculate the load avg.
3264 * until the zone has been up for at least 10 seconds and our
3265 * moving average is thus full.
3266 */
3267 if ((lavg->lg_len + 1) < S_LOADAVG_SZ) {
3268 lavg->lg_len++;
3269 mutex_exit(&zp->zone_lock);
3270 continue;
3271 }
3272
3273 /* Now calculate the 1min, 5min, 15 min load avg. */
3274 hr_avg = 0;
3275 for (i = 0; i < S_LOADAVG_SZ; i++)
3276 hr_avg += lavg->lg_loads[i];
3277 hr_avg = hr_avg / S_LOADAVG_SZ;
3278 nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
3279
3280 /* Compute load avg. See comment in calcloadavg() */
3281 for (i = 0; i < 3; i++) {
3282 q = (zp->zone_hp_avenrun[i] >> 16) << 7;
3283 r = (zp->zone_hp_avenrun[i] & 0xffff) << 7;
3284 zp->zone_hp_avenrun[i] +=
3285 ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
3286
3287 /* avenrun[] can only hold 31 bits of load avg. */
3288 if (zp->zone_hp_avenrun[i] <
3289 ((uint64_t)1<<(31+16-FSHIFT)))
3290 zp->zone_avenrun[i] = (int32_t)
3291 (zp->zone_hp_avenrun[i] >> (16 - FSHIFT));
3292 else
3293 zp->zone_avenrun[i] = 0x7fffffff;
3294 }
3295
3296 mutex_exit(&zp->zone_lock);
3297 }
3298 mutex_exit(&zonehash_lock);
3299 }
3300
3301 /*
3302 * Get the number of cpus visible to this zone. The system-wide global
3303 * 'ncpus' is returned if pools are disabled, the caller is in the
3304 * global zone, or a NULL zone argument is passed in.
3305 */
3306 int
3307 zone_ncpus_get(zone_t *zone)
3308 {
3309 int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
3310
3311 return (myncpus != 0 ? myncpus : ncpus);
3312 }
3313
3314 /*
3315 * Get the number of online cpus visible to this zone. The system-wide
3316 * global 'ncpus_online' is returned if pools are disabled, the caller
3317 * is in the global zone, or a NULL zone argument is passed in.
3318 */
3319 int
3320 zone_ncpus_online_get(zone_t *zone)
3321 {
3322 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
3323
3324 return (myncpus_online != 0 ? myncpus_online : ncpus_online);
3325 }
3326
3327 /*
3328 * Return the pool to which the zone is currently bound.
3329 */
3330 pool_t *
3331 zone_pool_get(zone_t *zone)
3332 {
3333 ASSERT(pool_lock_held());
3334
3335 return (zone->zone_pool);
3336 }
3337
3338 /*
3339 * Set the zone's pool pointer and update the zone's visibility to match
3340 * the resources in the new pool.
3341 */
3342 void
3343 zone_pool_set(zone_t *zone, pool_t *pool)
3344 {
3345 ASSERT(pool_lock_held());
3346 ASSERT(MUTEX_HELD(&cpu_lock));
3347
3348 zone->zone_pool = pool;
3349 zone_pset_set(zone, pool->pool_pset->pset_id);
3350 }
3351
3352 /*
3353 * Return the cached value of the id of the processor set to which the
3354 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools
3355 * facility is disabled.
3356 */
3357 psetid_t
3358 zone_pset_get(zone_t *zone)
3359 {
3360 ASSERT(MUTEX_HELD(&cpu_lock));
3361
3362 return (zone->zone_psetid);
3363 }
3364
3365 /*
3366 * Set the cached value of the id of the processor set to which the zone
3367 * is currently bound. Also update the zone's visibility to match the
3368 * resources in the new processor set.
3369 */
3370 void
3371 zone_pset_set(zone_t *zone, psetid_t newpsetid)
3372 {
3373 psetid_t oldpsetid;
3374
3375 ASSERT(MUTEX_HELD(&cpu_lock));
3376 oldpsetid = zone_pset_get(zone);
3377
3378 if (oldpsetid == newpsetid)
3379 return;
3380 /*
3381 * Global zone sees all.
3382 */
3383 if (zone != global_zone) {
3384 zone->zone_psetid = newpsetid;
3385 if (newpsetid != ZONE_PS_INVAL)
3386 pool_pset_visibility_add(newpsetid, zone);
3387 if (oldpsetid != ZONE_PS_INVAL)
3388 pool_pset_visibility_remove(oldpsetid, zone);
3389 }
3390 /*
3391 * Disabling pools, so we should start using the global values
3392 * for ncpus and ncpus_online.
3393 */
3394 if (newpsetid == ZONE_PS_INVAL) {
3395 zone->zone_ncpus = 0;
3396 zone->zone_ncpus_online = 0;
3397 }
3398 }
3399
3400 /*
3401 * Walk the list of active zones and issue the provided callback for
3402 * each of them.
3403 *
3404 * Caller must not be holding any locks that may be acquired under
3405 * zonehash_lock. See comment at the beginning of the file for a list of
3406 * common locks and their interactions with zones.
3407 */
3408 int
3409 zone_walk(int (*cb)(zone_t *, void *), void *data)
3410 {
3411 zone_t *zone;
3412 int ret = 0;
3413 zone_status_t status;
3414
3415 mutex_enter(&zonehash_lock);
3416 for (zone = list_head(&zone_active); zone != NULL;
3417 zone = list_next(&zone_active, zone)) {
3418 /*
3419 * Skip zones that shouldn't be externally visible.
3420 */
3421 status = zone_status_get(zone);
3422 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
3423 continue;
3424 /*
3425 * Bail immediately if any callback invocation returns a
3426 * non-zero value.
3427 */
3428 ret = (*cb)(zone, data);
3429 if (ret != 0)
3430 break;
3431 }
3432 mutex_exit(&zonehash_lock);
3433 return (ret);
3434 }
3435
3436 static int
3437 zone_set_root(zone_t *zone, const char *upath)
3438 {
3439 vnode_t *vp;
3440 int trycount;
3441 int error = 0;
3442 char *path;
3443 struct pathname upn, pn;
3444 size_t pathlen;
3445
3446 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
3447 return (error);
3448
3449 pn_alloc(&pn);
3450
3451 /* prevent infinite loop */
3452 trycount = 10;
3453 for (;;) {
3454 if (--trycount <= 0) {
3455 error = ESTALE;
3456 goto out;
3457 }
3458
3459 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
3460 /*
3461 * VOP_ACCESS() may cover 'vp' with a new
3462 * filesystem, if 'vp' is an autoFS vnode.
3463 * Get the new 'vp' if so.
3464 */
3465 if ((error =
3466 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
3467 (!vn_ismntpt(vp) ||
3468 (error = traverse(&vp)) == 0)) {
3469 pathlen = pn.pn_pathlen + 2;
3470 path = kmem_alloc(pathlen, KM_SLEEP);
3471 (void) strncpy(path, pn.pn_path,
3472 pn.pn_pathlen + 1);
3473 path[pathlen - 2] = '/';
3474 path[pathlen - 1] = '\0';
3475 pn_free(&pn);
3476 pn_free(&upn);
3477
3478 /* Success! */
3479 break;
3480 }
3481 VN_RELE(vp);
3482 }
3483 if (error != ESTALE)
3484 goto out;
3485 }
3486
3487 ASSERT(error == 0);
3488 mutex_enter(&vp->v_lock);
3489 if (vp->v_flag & VZONEROOT) {
3490 /* Wow, someone's already using this zone root! */
3491 error = EEXIST; /* XXX KEBE ASKS, better errno? */
3492 mutex_exit(&vp->v_lock);
3493 VN_RELE(vp);
3494 goto out;
3495 }
3496 vp->v_flag |= VZONEROOT;
3497 mutex_exit(&vp->v_lock);
3498 zone->zone_rootvp = vp; /* we hold a reference to vp */
3499 zone->zone_rootpath = path;
3500 zone->zone_rootpathlen = pathlen;
3501 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
3502 zone->zone_flags |= ZF_IS_SCRATCH;
3503 return (0);
3504
3505 out:
3506 pn_free(&pn);
3507 pn_free(&upn);
3508 return (error);
3509 }
3510
3511 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \
3512 ((c) >= 'a' && (c) <= 'z') || \
3513 ((c) >= 'A' && (c) <= 'Z'))
3514
3515 static int
3516 zone_set_name(zone_t *zone, const char *uname)
3517 {
3518 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
3519 size_t len;
3520 int i, err;
3521
3522 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
3523 kmem_free(kname, ZONENAME_MAX);
3524 return (err); /* EFAULT or ENAMETOOLONG */
3525 }
3526
3527 /* must be less than ZONENAME_MAX */
3528 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
3529 kmem_free(kname, ZONENAME_MAX);
3530 return (EINVAL);
3531 }
3532
3533 /*
3534 * Name must start with an alphanumeric and must contain only
3535 * alphanumerics, '-', '_' and '.'.
3536 */
3537 if (!isalnum(kname[0])) {
3538 kmem_free(kname, ZONENAME_MAX);
3539 return (EINVAL);
3540 }
3541 for (i = 1; i < len - 1; i++) {
3542 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
3543 kname[i] != '.') {
3544 kmem_free(kname, ZONENAME_MAX);
3545 return (EINVAL);
3546 }
3547 }
3548
3549 zone->zone_name = kname;
3550 return (0);
3551 }
3552
3553 /*
3554 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep'
3555 * is NULL or it points to a zone with no hostid emulation, then the machine's
3556 * hostid (i.e., the global zone's hostid) is returned. This function returns
3557 * zero if neither the zone nor the host machine (global zone) have hostids. It
3558 * returns HW_INVALID_HOSTID if the function attempts to return the machine's
3559 * hostid and the machine's hostid is invalid.
3560 */
3561 uint32_t
3562 zone_get_hostid(zone_t *zonep)
3563 {
3564 unsigned long machine_hostid;
3565
3566 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
3567 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
3568 return (HW_INVALID_HOSTID);
3569 return ((uint32_t)machine_hostid);
3570 }
3571 return (zonep->zone_hostid);
3572 }
3573
3574 /*
3575 * Similar to thread_create(), but makes sure the thread is in the appropriate
3576 * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
3577 */
3578 /*ARGSUSED*/
3579 kthread_t *
3580 zthread_create(
3581 caddr_t stk,
3582 size_t stksize,
3583 void (*proc)(),
3584 void *arg,
3585 size_t len,
3586 pri_t pri)
3587 {
3588 kthread_t *t;
3589 zone_t *zone = curproc->p_zone;
3590 proc_t *pp = zone->zone_zsched;
3591
3592 zone_hold(zone); /* Reference to be dropped when thread exits */
3593
3594 /*
3595 * No-one should be trying to create threads if the zone is shutting
3596 * down and there aren't any kernel threads around. See comment
3597 * in zthread_exit().
3598 */
3599 ASSERT(!(zone->zone_kthreads == NULL &&
3600 zone_status_get(zone) >= ZONE_IS_EMPTY));
3601 /*
3602 * Create a thread, but don't let it run until we've finished setting
3603 * things up.
3604 */
3605 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
3606 ASSERT(t->t_forw == NULL);
3607 mutex_enter(&zone_status_lock);
3608 if (zone->zone_kthreads == NULL) {
3609 t->t_forw = t->t_back = t;
3610 } else {
3611 kthread_t *tx = zone->zone_kthreads;
3612
3613 t->t_forw = tx;
3614 t->t_back = tx->t_back;
3615 tx->t_back->t_forw = t;
3616 tx->t_back = t;
3617 }
3618 zone->zone_kthreads = t;
3619 mutex_exit(&zone_status_lock);
3620
3621 mutex_enter(&pp->p_lock);
3622 t->t_proc_flag |= TP_ZTHREAD;
3623 project_rele(t->t_proj);
3624 t->t_proj = project_hold(pp->p_task->tk_proj);
3625
3626 /*
3627 * Setup complete, let it run.
3628 */
3629 thread_lock(t);
3630 t->t_schedflag |= TS_ALLSTART;
3631 setrun_locked(t);
3632 thread_unlock(t);
3633
3634 mutex_exit(&pp->p_lock);
3635
3636 return (t);
3637 }
3638
3639 /*
3640 * Similar to thread_exit(). Must be called by threads created via
3641 * zthread_exit().
3642 */
3643 void
3644 zthread_exit(void)
3645 {
3646 kthread_t *t = curthread;
3647 proc_t *pp = curproc;
3648 zone_t *zone = pp->p_zone;
3649
3650 mutex_enter(&zone_status_lock);
3651
3652 /*
3653 * Reparent to p0
3654 */
3655 kpreempt_disable();
3656 mutex_enter(&pp->p_lock);
3657 t->t_proc_flag &= ~TP_ZTHREAD;
3658 t->t_procp = &p0;
3659 hat_thread_exit(t);
3660 mutex_exit(&pp->p_lock);
3661 kpreempt_enable();
3662
3663 if (t->t_back == t) {
3664 ASSERT(t->t_forw == t);
3665 /*
3666 * If the zone is empty, once the thread count
3667 * goes to zero no further kernel threads can be
3668 * created. This is because if the creator is a process
3669 * in the zone, then it must have exited before the zone
3670 * state could be set to ZONE_IS_EMPTY.
3671 * Otherwise, if the creator is a kernel thread in the
3672 * zone, the thread count is non-zero.
3673 *
3674 * This really means that non-zone kernel threads should
3675 * not create zone kernel threads.
3676 */
3677 zone->zone_kthreads = NULL;
3678 if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3679 zone_status_set(zone, ZONE_IS_DOWN);
3680 /*
3681 * Remove any CPU caps on this zone.
3682 */
3683 cpucaps_zone_remove(zone);
3684 }
3685 } else {
3686 t->t_forw->t_back = t->t_back;
3687 t->t_back->t_forw = t->t_forw;
3688 if (zone->zone_kthreads == t)
3689 zone->zone_kthreads = t->t_forw;
3690 }
3691 mutex_exit(&zone_status_lock);
3692 zone_rele(zone);
3693 thread_exit();
3694 /* NOTREACHED */
3695 }
3696
3697 static void
3698 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3699 {
3700 vnode_t *oldvp;
3701
3702 /* we're going to hold a reference here to the directory */
3703 VN_HOLD(vp);
3704
3705 /* update abs cwd/root path see c2/audit.c */
3706 if (AU_AUDITING())
3707 audit_chdirec(vp, vpp);
3708
3709 mutex_enter(&pp->p_lock);
3710 oldvp = *vpp;
3711 *vpp = vp;
3712 mutex_exit(&pp->p_lock);
3713 if (oldvp != NULL)
3714 VN_RELE(oldvp);
3715 }
3716
3717 /*
3718 * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3719 */
3720 static int
3721 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3722 {
3723 nvpair_t *nvp = NULL;
3724 boolean_t priv_set = B_FALSE;
3725 boolean_t limit_set = B_FALSE;
3726 boolean_t action_set = B_FALSE;
3727
3728 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3729 const char *name;
3730 uint64_t ui64;
3731
3732 name = nvpair_name(nvp);
3733 if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3734 return (EINVAL);
3735 (void) nvpair_value_uint64(nvp, &ui64);
3736 if (strcmp(name, "privilege") == 0) {
3737 /*
3738 * Currently only privileged values are allowed, but
3739 * this may change in the future.
3740 */
3741 if (ui64 != RCPRIV_PRIVILEGED)
3742 return (EINVAL);
3743 rv->rcv_privilege = ui64;
3744 priv_set = B_TRUE;
3745 } else if (strcmp(name, "limit") == 0) {
3746 rv->rcv_value = ui64;
3747 limit_set = B_TRUE;
3748 } else if (strcmp(name, "action") == 0) {
3749 if (ui64 != RCTL_LOCAL_NOACTION &&
3750 ui64 != RCTL_LOCAL_DENY)
3751 return (EINVAL);
3752 rv->rcv_flagaction = ui64;
3753 action_set = B_TRUE;
3754 } else {
3755 return (EINVAL);
3756 }
3757 }
3758
3759 if (!(priv_set && limit_set && action_set))
3760 return (EINVAL);
3761 rv->rcv_action_signal = 0;
3762 rv->rcv_action_recipient = NULL;
3763 rv->rcv_action_recip_pid = -1;
3764 rv->rcv_firing_time = 0;
3765
3766 return (0);
3767 }
3768
3769 /*
3770 * Non-global zone version of start_init.
3771 */
3772 void
3773 zone_start_init(void)
3774 {
3775 proc_t *p = ttoproc(curthread);
3776 zone_t *z = p->p_zone;
3777
3778 ASSERT(!INGLOBALZONE(curproc));
3779
3780 /*
3781 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3782 * storing just the pid of init is sufficient.
3783 */
3784 z->zone_proc_initpid = p->p_pid;
3785
3786 /*
3787 * We maintain zone_boot_err so that we can return the cause of the
3788 * failure back to the caller of the zone_boot syscall.
3789 */
3790 p->p_zone->zone_boot_err = start_init_common();
3791
3792 /*
3793 * We will prevent booting zones from becoming running zones if the
3794 * global zone is shutting down.
3795 */
3796 mutex_enter(&zone_status_lock);
3797 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3798 ZONE_IS_SHUTTING_DOWN) {
3799 /*
3800 * Make sure we are still in the booting state-- we could have
3801 * raced and already be shutting down, or even further along.
3802 */
3803 if (zone_status_get(z) == ZONE_IS_BOOTING) {
3804 zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3805 }
3806 mutex_exit(&zone_status_lock);
3807 /* It's gone bad, dispose of the process */
3808 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3809 mutex_enter(&p->p_lock);
3810 ASSERT(p->p_flag & SEXITLWPS);
3811 lwp_exit();
3812 }
3813 } else {
3814 if (zone_status_get(z) == ZONE_IS_BOOTING)
3815 zone_status_set(z, ZONE_IS_RUNNING);
3816 mutex_exit(&zone_status_lock);
3817 /* cause the process to return to userland. */
3818 lwp_rtt();
3819 }
3820 }
3821
3822 struct zsched_arg {
3823 zone_t *zone;
3824 nvlist_t *nvlist;
3825 };
3826
3827 /*
3828 * Per-zone "sched" workalike. The similarity to "sched" doesn't have
3829 * anything to do with scheduling, but rather with the fact that
3830 * per-zone kernel threads are parented to zsched, just like regular
3831 * kernel threads are parented to sched (p0).
3832 *
3833 * zsched is also responsible for launching init for the zone.
3834 */
3835 static void
3836 zsched(void *arg)
3837 {
3838 struct zsched_arg *za = arg;
3839 proc_t *pp = curproc;
3840 proc_t *initp = proc_init;
3841 zone_t *zone = za->zone;
3842 cred_t *cr, *oldcred;
3843 rctl_set_t *set;
3844 rctl_alloc_gp_t *gp;
3845 contract_t *ct = NULL;
3846 task_t *tk, *oldtk;
3847 rctl_entity_p_t e;
3848 kproject_t *pj;
3849
3850 nvlist_t *nvl = za->nvlist;
3851 nvpair_t *nvp = NULL;
3852
3853 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3854 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3855 PTOU(pp)->u_argc = 0;
3856 PTOU(pp)->u_argv = 0;
3857 PTOU(pp)->u_envp = 0;
3858 PTOU(pp)->u_commpagep = 0;
3859 closeall(P_FINFO(pp));
3860
3861 /*
3862 * We are this zone's "zsched" process. As the zone isn't generally
3863 * visible yet we don't need to grab any locks before initializing its
3864 * zone_proc pointer.
3865 */
3866 zone_hold(zone); /* this hold is released by zone_destroy() */
3867 zone->zone_zsched = pp;
3868 mutex_enter(&pp->p_lock);
3869 pp->p_zone = zone;
3870 mutex_exit(&pp->p_lock);
3871
3872 /*
3873 * Disassociate process from its 'parent'; parent ourselves to init
3874 * (pid 1) and change other values as needed.
3875 */
3876 sess_create();
3877
3878 mutex_enter(&pidlock);
3879 proc_detach(pp);
3880 pp->p_ppid = 1;
3881 pp->p_flag |= SZONETOP;
3882 pp->p_ancpid = 1;
3883 pp->p_parent = initp;
3884 pp->p_psibling = NULL;
3885 if (initp->p_child)
3886 initp->p_child->p_psibling = pp;
3887 pp->p_sibling = initp->p_child;
3888 initp->p_child = pp;
3889
3890 /* Decrement what newproc() incremented. */
3891 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3892 /*
3893 * Our credentials are about to become kcred-like, so we don't care
3894 * about the caller's ruid.
3895 */
3896 upcount_inc(crgetruid(kcred), zone->zone_id);
3897 mutex_exit(&pidlock);
3898
3899 /*
3900 * getting out of global zone, so decrement lwp and process counts
3901 */
3902 pj = pp->p_task->tk_proj;
3903 mutex_enter(&global_zone->zone_nlwps_lock);
3904 pj->kpj_nlwps -= pp->p_lwpcnt;
3905 global_zone->zone_nlwps -= pp->p_lwpcnt;
3906 pj->kpj_nprocs--;
3907 global_zone->zone_nprocs--;
3908 mutex_exit(&global_zone->zone_nlwps_lock);
3909
3910 /*
3911 * Decrement locked memory counts on old zone and project.
3912 */
3913 mutex_enter(&global_zone->zone_mem_lock);
3914 global_zone->zone_locked_mem -= pp->p_locked_mem;
3915 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3916 mutex_exit(&global_zone->zone_mem_lock);
3917
3918 /*
3919 * Create and join a new task in project '0' of this zone.
3920 *
3921 * We don't need to call holdlwps() since we know we're the only lwp in
3922 * this process.
3923 *
3924 * task_join() returns with p_lock held.
3925 */
3926 tk = task_create(0, zone);
3927 mutex_enter(&cpu_lock);
3928 oldtk = task_join(tk, 0);
3929
3930 pj = pp->p_task->tk_proj;
3931
3932 mutex_enter(&zone->zone_mem_lock);
3933 zone->zone_locked_mem += pp->p_locked_mem;
3934 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3935 mutex_exit(&zone->zone_mem_lock);
3936
3937 /*
3938 * add lwp and process counts to zsched's zone, and increment
3939 * project's task and process count due to the task created in
3940 * the above task_create.
3941 */
3942 mutex_enter(&zone->zone_nlwps_lock);
3943 pj->kpj_nlwps += pp->p_lwpcnt;
3944 pj->kpj_ntasks += 1;
3945 zone->zone_nlwps += pp->p_lwpcnt;
3946 pj->kpj_nprocs++;
3947 zone->zone_nprocs++;
3948 mutex_exit(&zone->zone_nlwps_lock);
3949
3950 mutex_exit(&curproc->p_lock);
3951 mutex_exit(&cpu_lock);
3952 task_rele(oldtk);
3953
3954 /*
3955 * The process was created by a process in the global zone, hence the
3956 * credentials are wrong. We might as well have kcred-ish credentials.
3957 */
3958 cr = zone->zone_kcred;
3959 crhold(cr);
3960 mutex_enter(&pp->p_crlock);
3961 oldcred = pp->p_cred;
3962 pp->p_cred = cr;
3963 mutex_exit(&pp->p_crlock);
3964 crfree(oldcred);
3965
3966 /*
3967 * Hold credentials again (for thread)
3968 */
3969 crhold(cr);
3970
3971 /*
3972 * p_lwpcnt can't change since this is a kernel process.
3973 */
3974 crset(pp, cr);
3975
3976 /*
3977 * Chroot
3978 */
3979 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3980 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3981
3982 /*
3983 * Initialize zone's rctl set.
3984 */
3985 set = rctl_set_create();
3986 gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3987 mutex_enter(&pp->p_lock);
3988 e.rcep_p.zone = zone;
3989 e.rcep_t = RCENTITY_ZONE;
3990 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3991 mutex_exit(&pp->p_lock);
3992 rctl_prealloc_destroy(gp);
3993
3994 /*
3995 * Apply the rctls passed in to zone_create(). This is basically a list
3996 * assignment: all of the old values are removed and the new ones
3997 * inserted. That is, if an empty list is passed in, all values are
3998 * removed.
3999 */
4000 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4001 rctl_dict_entry_t *rde;
4002 rctl_hndl_t hndl;
4003 char *name;
4004 nvlist_t **nvlarray;
4005 uint_t i, nelem;
4006 int error; /* For ASSERT()s */
4007
4008 name = nvpair_name(nvp);
4009 hndl = rctl_hndl_lookup(name);
4010 ASSERT(hndl != -1);
4011 rde = rctl_dict_lookup_hndl(hndl);
4012 ASSERT(rde != NULL);
4013
4014 for (; /* ever */; ) {
4015 rctl_val_t oval;
4016
4017 mutex_enter(&pp->p_lock);
4018 error = rctl_local_get(hndl, NULL, &oval, pp);
4019 mutex_exit(&pp->p_lock);
4020 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */
4021 ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
4022 if (oval.rcv_privilege == RCPRIV_SYSTEM)
4023 break;
4024 mutex_enter(&pp->p_lock);
4025 error = rctl_local_delete(hndl, &oval, pp);
4026 mutex_exit(&pp->p_lock);
4027 ASSERT(error == 0);
4028 }
4029 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4030 ASSERT(error == 0);
4031 for (i = 0; i < nelem; i++) {
4032 rctl_val_t *nvalp;
4033
4034 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
4035 error = nvlist2rctlval(nvlarray[i], nvalp);
4036 ASSERT(error == 0);
4037 /*
4038 * rctl_local_insert can fail if the value being
4039 * inserted is a duplicate; this is OK.
4040 */
4041 mutex_enter(&pp->p_lock);
4042 if (rctl_local_insert(hndl, nvalp, pp) != 0)
4043 kmem_cache_free(rctl_val_cache, nvalp);
4044 mutex_exit(&pp->p_lock);
4045 }
4046 }
4047
4048 /*
4049 * Tell the world that we're done setting up.
4050 *
4051 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
4052 * and atomically set the zone's processor set visibility. Once
4053 * we drop pool_lock() this zone will automatically get updated
4054 * to reflect any future changes to the pools configuration.
4055 *
4056 * Note that after we drop the locks below (zonehash_lock in
4057 * particular) other operations such as a zone_getattr call can
4058 * now proceed and observe the zone. That is the reason for doing a
4059 * state transition to the INITIALIZED state.
4060 */
4061 pool_lock();
4062 mutex_enter(&cpu_lock);
4063 mutex_enter(&zonehash_lock);
4064 zone_uniqid(zone);
4065 zone_zsd_configure(zone);
4066 if (pool_state == POOL_ENABLED)
4067 zone_pset_set(zone, pool_default->pool_pset->pset_id);
4068 mutex_enter(&zone_status_lock);
4069 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
4070 zone_status_set(zone, ZONE_IS_INITIALIZED);
4071 mutex_exit(&zone_status_lock);
4072 mutex_exit(&zonehash_lock);
4073 mutex_exit(&cpu_lock);
4074 pool_unlock();
4075
4076 /* Now call the create callback for this key */
4077 zsd_apply_all_keys(zsd_apply_create, zone);
4078
4079 /* The callbacks are complete. Mark ZONE_IS_READY */
4080 mutex_enter(&zone_status_lock);
4081 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
4082 zone_status_set(zone, ZONE_IS_READY);
4083 mutex_exit(&zone_status_lock);
4084
4085 /*
4086 * Once we see the zone transition to the ZONE_IS_BOOTING state,
4087 * we launch init, and set the state to running.
4088 */
4089 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
4090
4091 if (zone_status_get(zone) == ZONE_IS_BOOTING) {
4092 id_t cid;
4093
4094 /*
4095 * Ok, this is a little complicated. We need to grab the
4096 * zone's pool's scheduling class ID; note that by now, we
4097 * are already bound to a pool if we need to be (zoneadmd
4098 * will have done that to us while we're in the READY
4099 * state). *But* the scheduling class for the zone's 'init'
4100 * must be explicitly passed to newproc, which doesn't
4101 * respect pool bindings.
4102 *
4103 * We hold the pool_lock across the call to newproc() to
4104 * close the obvious race: the pool's scheduling class
4105 * could change before we manage to create the LWP with
4106 * classid 'cid'.
4107 */
4108 pool_lock();
4109 if (zone->zone_defaultcid > 0)
4110 cid = zone->zone_defaultcid;
4111 else
4112 cid = pool_get_class(zone->zone_pool);
4113 if (cid == -1)
4114 cid = defaultcid;
4115
4116 /*
4117 * If this fails, zone_boot will ultimately fail. The
4118 * state of the zone will be set to SHUTTING_DOWN-- userland
4119 * will have to tear down the zone, and fail, or try again.
4120 */
4121 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
4122 minclsyspri - 1, &ct, 0)) != 0) {
4123 mutex_enter(&zone_status_lock);
4124 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4125 mutex_exit(&zone_status_lock);
4126 } else {
4127 zone->zone_boot_time = gethrestime_sec();
4128 }
4129
4130 pool_unlock();
4131 }
4132
4133 /*
4134 * Wait for zone_destroy() to be called. This is what we spend
4135 * most of our life doing.
4136 */
4137 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
4138
4139 if (ct)
4140 /*
4141 * At this point the process contract should be empty.
4142 * (Though if it isn't, it's not the end of the world.)
4143 */
4144 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
4145
4146 /*
4147 * Allow kcred to be freed when all referring processes
4148 * (including this one) go away. We can't just do this in
4149 * zone_free because we need to wait for the zone_cred_ref to
4150 * drop to 0 before calling zone_free, and the existence of
4151 * zone_kcred will prevent that. Thus, we call crfree here to
4152 * balance the crdup in zone_create. The crhold calls earlier
4153 * in zsched will be dropped when the thread and process exit.
4154 */
4155 crfree(zone->zone_kcred);
4156 zone->zone_kcred = NULL;
4157
4158 exit(CLD_EXITED, 0);
4159 }
4160
4161 /*
4162 * Helper function to determine if there are any submounts of the
4163 * provided path. Used to make sure the zone doesn't "inherit" any
4164 * mounts from before it is created.
4165 */
4166 static uint_t
4167 zone_mount_count(const char *rootpath)
4168 {
4169 vfs_t *vfsp;
4170 uint_t count = 0;
4171 size_t rootpathlen = strlen(rootpath);
4172
4173 /*
4174 * Holding zonehash_lock prevents race conditions with
4175 * vfs_list_add()/vfs_list_remove() since we serialize with
4176 * zone_find_by_path().
4177 */
4178 ASSERT(MUTEX_HELD(&zonehash_lock));
4179 /*
4180 * The rootpath must end with a '/'
4181 */
4182 ASSERT(rootpath[rootpathlen - 1] == '/');
4183
4184 /*
4185 * This intentionally does not count the rootpath itself if that
4186 * happens to be a mount point.
4187 */
4188 vfs_list_read_lock();
4189 vfsp = rootvfs;
4190 do {
4191 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
4192 rootpathlen) == 0)
4193 count++;
4194 vfsp = vfsp->vfs_next;
4195 } while (vfsp != rootvfs);
4196 vfs_list_unlock();
4197 return (count);
4198 }
4199
4200 /*
4201 * Helper function to make sure that a zone created on 'rootpath'
4202 * wouldn't end up containing other zones' rootpaths.
4203 */
4204 static boolean_t
4205 zone_is_nested(const char *rootpath)
4206 {
4207 zone_t *zone;
4208 size_t rootpathlen = strlen(rootpath);
4209 size_t len;
4210
4211 ASSERT(MUTEX_HELD(&zonehash_lock));
4212
4213 /*
4214 * zone_set_root() appended '/' and '\0' at the end of rootpath
4215 */
4216 if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
4217 (rootpath[1] == '/') && (rootpath[2] == '\0'))
4218 return (B_TRUE);
4219
4220 for (zone = list_head(&zone_active); zone != NULL;
4221 zone = list_next(&zone_active, zone)) {
4222 if (zone == global_zone)
4223 continue;
4224 len = strlen(zone->zone_rootpath);
4225 if (strncmp(rootpath, zone->zone_rootpath,
4226 MIN(rootpathlen, len)) == 0)
4227 return (B_TRUE);
4228 }
4229 return (B_FALSE);
4230 }
4231
4232 static int
4233 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
4234 size_t zone_privssz)
4235 {
4236 priv_set_t *privs;
4237
4238 if (zone_privssz < sizeof (priv_set_t))
4239 return (ENOMEM);
4240
4241 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
4242
4243 if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
4244 kmem_free(privs, sizeof (priv_set_t));
4245 return (EFAULT);
4246 }
4247
4248 zone->zone_privset = privs;
4249 return (0);
4250 }
4251
4252 /*
4253 * We make creative use of nvlists to pass in rctls from userland. The list is
4254 * a list of the following structures:
4255 *
4256 * (name = rctl_name, value = nvpair_list_array)
4257 *
4258 * Where each element of the nvpair_list_array is of the form:
4259 *
4260 * [(name = "privilege", value = RCPRIV_PRIVILEGED),
4261 * (name = "limit", value = uint64_t),
4262 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
4263 */
4264 static int
4265 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
4266 {
4267 nvpair_t *nvp = NULL;
4268 nvlist_t *nvl = NULL;
4269 char *kbuf;
4270 int error;
4271 rctl_val_t rv;
4272
4273 *nvlp = NULL;
4274
4275 if (buflen == 0)
4276 return (0);
4277
4278 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4279 return (ENOMEM);
4280 if (copyin(ubuf, kbuf, buflen)) {
4281 error = EFAULT;
4282 goto out;
4283 }
4284 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
4285 /*
4286 * nvl may have been allocated/free'd, but the value set to
4287 * non-NULL, so we reset it here.
4288 */
4289 nvl = NULL;
4290 error = EINVAL;
4291 goto out;
4292 }
4293 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4294 rctl_dict_entry_t *rde;
4295 rctl_hndl_t hndl;
4296 nvlist_t **nvlarray;
4297 uint_t i, nelem;
4298 char *name;
4299
4300 error = EINVAL;
4301 name = nvpair_name(nvp);
4302 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
4303 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
4304 goto out;
4305 }
4306 if ((hndl = rctl_hndl_lookup(name)) == -1) {
4307 goto out;
4308 }
4309 rde = rctl_dict_lookup_hndl(hndl);
4310 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4311 ASSERT(error == 0);
4312 for (i = 0; i < nelem; i++) {
4313 if (error = nvlist2rctlval(nvlarray[i], &rv))
4314 goto out;
4315 }
4316 if (rctl_invalid_value(rde, &rv)) {
4317 error = EINVAL;
4318 goto out;
4319 }
4320 }
4321 error = 0;
4322 *nvlp = nvl;
4323 out:
4324 kmem_free(kbuf, buflen);
4325 if (error && nvl != NULL)
4326 nvlist_free(nvl);
4327 return (error);
4328 }
4329
4330 int
4331 zone_create_error(int er_error, int er_ext, int *er_out)
4332 {
4333 if (er_out != NULL) {
4334 if (copyout(&er_ext, er_out, sizeof (int))) {
4335 return (set_errno(EFAULT));
4336 }
4337 }
4338 return (set_errno(er_error));
4339 }
4340
4341 static int
4342 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
4343 {
4344 ts_label_t *tsl;
4345 bslabel_t blab;
4346
4347 /* Get label from user */
4348 if (copyin(lab, &blab, sizeof (blab)) != 0)
4349 return (EFAULT);
4350 tsl = labelalloc(&blab, doi, KM_NOSLEEP);
4351 if (tsl == NULL)
4352 return (ENOMEM);
4353
4354 zone->zone_slabel = tsl;
4355 return (0);
4356 }
4357
4358 /*
4359 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
4360 */
4361 static int
4362 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
4363 {
4364 char *kbuf;
4365 char *dataset, *next;
4366 zone_dataset_t *zd;
4367 size_t len;
4368
4369 if (ubuf == NULL || buflen == 0)
4370 return (0);
4371
4372 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4373 return (ENOMEM);
4374
4375 if (copyin(ubuf, kbuf, buflen) != 0) {
4376 kmem_free(kbuf, buflen);
4377 return (EFAULT);
4378 }
4379
4380 dataset = next = kbuf;
4381 for (;;) {
4382 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
4383
4384 next = strchr(dataset, ',');
4385
4386 if (next == NULL)
4387 len = strlen(dataset);
4388 else
4389 len = next - dataset;
4390
4391 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
4392 bcopy(dataset, zd->zd_dataset, len);
4393 zd->zd_dataset[len] = '\0';
4394
4395 list_insert_head(&zone->zone_datasets, zd);
4396
4397 if (next == NULL)
4398 break;
4399
4400 dataset = next + 1;
4401 }
4402
4403 kmem_free(kbuf, buflen);
4404 return (0);
4405 }
4406
4407 /*
4408 * System call to create/initialize a new zone named 'zone_name', rooted
4409 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
4410 * and initialized with the zone-wide rctls described in 'rctlbuf', and
4411 * with labeling set by 'match', 'doi', and 'label'.
4412 *
4413 * If extended error is non-null, we may use it to return more detailed
4414 * error information.
4415 */
4416 static zoneid_t
4417 zone_create(const char *zone_name, const char *zone_root,
4418 const priv_set_t *zone_privs, size_t zone_privssz,
4419 caddr_t rctlbuf, size_t rctlbufsz,
4420 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
4421 int match, uint32_t doi, const bslabel_t *label,
4422 int flags)
4423 {
4424 struct zsched_arg zarg;
4425 nvlist_t *rctls = NULL;
4426 proc_t *pp = curproc;
4427 zone_t *zone, *ztmp;
4428 zoneid_t zoneid, start = GLOBAL_ZONEID;
4429 int error;
4430 int error2 = 0;
4431 char *str;
4432 cred_t *zkcr;
4433 boolean_t insert_label_hash;
4434
4435 if (secpolicy_zone_config(CRED()) != 0)
4436 return (set_errno(EPERM));
4437
4438 /* can't boot zone from within chroot environment */
4439 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
4440 return (zone_create_error(ENOTSUP, ZE_CHROOTED,
4441 extended_error));
4442 /*
4443 * As the first step of zone creation, we want to allocate a zoneid.
4444 * This allocation is complicated by the fact that netstacks use the
4445 * zoneid to determine their stackid, but netstacks themselves are
4446 * freed asynchronously with respect to zone destruction. This means
4447 * that a netstack reference leak (or in principle, an extraordinarily
4448 * long netstack reference hold) could result in a zoneid being
4449 * allocated that in fact corresponds to a stackid from an active
4450 * (referenced) netstack -- unleashing all sorts of havoc when that
4451 * netstack is actually (re)used. (In the abstract, we might wish a
4452 * zoneid to not be deallocated until its last referencing netstack
4453 * has been released, but netstacks lack a backpointer into their
4454 * referencing zone -- and changing them to have such a pointer would
4455 * be substantial, to put it euphemistically.) To avoid this, we
4456 * detect this condition on allocation: if we have allocated a zoneid
4457 * that corresponds to a netstack that's still in use, we warn about
4458 * it (as it is much more likely to be a reference leak than an actual
4459 * netstack reference), free it, and allocate another. That these
4460 * identifers are allocated out of an ID space assures that we won't
4461 * see the identifier we just allocated.
4462 */
4463 for (;;) {
4464 zoneid = id_alloc(zoneid_space);
4465
4466 if (!netstack_inuse_by_stackid(zoneid_to_netstackid(zoneid)))
4467 break;
4468
4469 id_free(zoneid_space, zoneid);
4470
4471 if (start == GLOBAL_ZONEID) {
4472 start = zoneid;
4473 } else if (zoneid == start) {
4474 /*
4475 * We have managed to iterate over the entire available
4476 * zoneid space -- there are no identifiers available,
4477 * presumably due to some number of leaked netstack
4478 * references. While it's in principle possible for us
4479 * to continue to try, it seems wiser to give up at
4480 * this point to warn and fail explicitly with a
4481 * distinctive error.
4482 */
4483 cmn_err(CE_WARN, "zone_create() failed: all available "
4484 "zone IDs have netstacks still in use");
4485 return (set_errno(ENFILE));
4486 }
4487
4488 cmn_err(CE_WARN, "unable to reuse zone ID %d; "
4489 "netstack still in use", zoneid);
4490 }
4491
4492 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
4493 zone->zone_id = zoneid;
4494 zone->zone_status = ZONE_IS_UNINITIALIZED;
4495 zone->zone_pool = pool_default;
4496 zone->zone_pool_mod = gethrtime();
4497 zone->zone_psetid = ZONE_PS_INVAL;
4498 zone->zone_ncpus = 0;
4499 zone->zone_ncpus_online = 0;
4500 zone->zone_restart_init = B_TRUE;
4501 zone->zone_brand = &native_brand;
4502 zone->zone_initname = NULL;
4503 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
4504 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
4505 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
4506 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
4507 list_create(&zone->zone_ref_list, sizeof (zone_ref_t),
4508 offsetof(zone_ref_t, zref_linkage));
4509 list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
4510 offsetof(struct zsd_entry, zsd_linkage));
4511 list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
4512 offsetof(zone_dataset_t, zd_linkage));
4513 list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
4514 offsetof(zone_dl_t, zdl_linkage));
4515 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
4516 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
4517
4518 if (flags & ZCF_NET_EXCL) {
4519 zone->zone_flags |= ZF_NET_EXCL;
4520 }
4521
4522 if ((error = zone_set_name(zone, zone_name)) != 0) {
4523 zone_free(zone);
4524 return (zone_create_error(error, 0, extended_error));
4525 }
4526
4527 if ((error = zone_set_root(zone, zone_root)) != 0) {
4528 zone_free(zone);
4529 return (zone_create_error(error, 0, extended_error));
4530 }
4531 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
4532 zone_free(zone);
4533 return (zone_create_error(error, 0, extended_error));
4534 }
4535
4536 /* initialize node name to be the same as zone name */
4537 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4538 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
4539 zone->zone_nodename[_SYS_NMLN - 1] = '\0';
4540
4541 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4542 zone->zone_domain[0] = '\0';
4543 zone->zone_hostid = HW_INVALID_HOSTID;
4544 zone->zone_shares = 1;
4545 zone->zone_shmmax = 0;
4546 zone->zone_ipc.ipcq_shmmni = 0;
4547 zone->zone_ipc.ipcq_semmni = 0;
4548 zone->zone_ipc.ipcq_msgmni = 0;
4549 zone->zone_bootargs = NULL;
4550 zone->zone_fs_allowed = NULL;
4551
4552 psecflags_default(&zone->zone_secflags);
4553
4554 zone->zone_initname =
4555 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
4556 (void) strcpy(zone->zone_initname, zone_default_initname);
4557 zone->zone_nlwps = 0;
4558 zone->zone_nlwps_ctl = INT_MAX;
4559 zone->zone_nprocs = 0;
4560 zone->zone_nprocs_ctl = INT_MAX;
4561 zone->zone_locked_mem = 0;
4562 zone->zone_locked_mem_ctl = UINT64_MAX;
4563 zone->zone_max_swap = 0;
4564 zone->zone_max_swap_ctl = UINT64_MAX;
4565 zone->zone_max_lofi = 0;
4566 zone->zone_max_lofi_ctl = UINT64_MAX;
4567 zone0.zone_lockedmem_kstat = NULL;
4568 zone0.zone_swapresv_kstat = NULL;
4569
4570 zone->zone_ustate = cpu_uarray_zalloc(ZONE_USTATE_MAX, KM_SLEEP);
4571
4572 /*
4573 * Zsched initializes the rctls.
4574 */
4575 zone->zone_rctls = NULL;
4576
4577 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
4578 zone_free(zone);
4579 return (zone_create_error(error, 0, extended_error));
4580 }
4581
4582 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
4583 zone_free(zone);
4584 return (set_errno(error));
4585 }
4586
4587 /*
4588 * Read in the trusted system parameters:
4589 * match flag and sensitivity label.
4590 */
4591 zone->zone_match = match;
4592 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4593 /* Fail if requested to set doi to anything but system's doi */
4594 if (doi != 0 && doi != default_doi) {
4595 zone_free(zone);
4596 return (set_errno(EINVAL));
4597 }
4598 /* Always apply system's doi to the zone */
4599 error = zone_set_label(zone, label, default_doi);
4600 if (error != 0) {
4601 zone_free(zone);
4602 return (set_errno(error));
4603 }
4604 insert_label_hash = B_TRUE;
4605 } else {
4606 /* all zones get an admin_low label if system is not labeled */
4607 zone->zone_slabel = l_admin_low;
4608 label_hold(l_admin_low);
4609 insert_label_hash = B_FALSE;
4610 }
4611
4612 /*
4613 * Stop all lwps since that's what normally happens as part of fork().
4614 * This needs to happen before we grab any locks to avoid deadlock
4615 * (another lwp in the process could be waiting for the held lock).
4616 */
4617 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
4618 zone_free(zone);
4619 nvlist_free(rctls);
4620 return (zone_create_error(error, 0, extended_error));
4621 }
4622
4623 if (block_mounts(zone) == 0) {
4624 mutex_enter(&pp->p_lock);
4625 if (curthread != pp->p_agenttp)
4626 continuelwps(pp);
4627 mutex_exit(&pp->p_lock);
4628 zone_free(zone);
4629 nvlist_free(rctls);
4630 return (zone_create_error(error, 0, extended_error));
4631 }
4632
4633 /*
4634 * Set up credential for kernel access. After this, any errors
4635 * should go through the dance in errout rather than calling
4636 * zone_free directly.
4637 */
4638 zone->zone_kcred = crdup(kcred);
4639 crsetzone(zone->zone_kcred, zone);
4640 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
4641 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
4642 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
4643 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
4644
4645 mutex_enter(&zonehash_lock);
4646 /*
4647 * Make sure zone doesn't already exist.
4648 *
4649 * If the system and zone are labeled,
4650 * make sure no other zone exists that has the same label.
4651 */
4652 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
4653 (insert_label_hash &&
4654 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
4655 zone_status_t status;
4656
4657 status = zone_status_get(ztmp);
4658 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
4659 error = EEXIST;
4660 else
4661 error = EBUSY;
4662
4663 if (insert_label_hash)
4664 error2 = ZE_LABELINUSE;
4665
4666 goto errout;
4667 }
4668
4669 /*
4670 * Don't allow zone creations which would cause one zone's rootpath to
4671 * be accessible from that of another (non-global) zone.
4672 */
4673 if (zone_is_nested(zone->zone_rootpath)) {
4674 error = EBUSY;
4675 goto errout;
4676 }
4677
4678 ASSERT(zonecount != 0); /* check for leaks */
4679 if (zonecount + 1 > maxzones) {
4680 error = ENOMEM;
4681 goto errout;
4682 }
4683
4684 if (zone_mount_count(zone->zone_rootpath) != 0) {
4685 error = EBUSY;
4686 error2 = ZE_AREMOUNTS;
4687 goto errout;
4688 }
4689
4690 /*
4691 * Zone is still incomplete, but we need to drop all locks while
4692 * zsched() initializes this zone's kernel process. We
4693 * optimistically add the zone to the hashtable and associated
4694 * lists so a parallel zone_create() doesn't try to create the
4695 * same zone.
4696 */
4697 zonecount++;
4698 (void) mod_hash_insert(zonehashbyid,
4699 (mod_hash_key_t)(uintptr_t)zone->zone_id,
4700 (mod_hash_val_t)(uintptr_t)zone);
4701 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
4702 (void) strcpy(str, zone->zone_name);
4703 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
4704 (mod_hash_val_t)(uintptr_t)zone);
4705 if (insert_label_hash) {
4706 (void) mod_hash_insert(zonehashbylabel,
4707 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
4708 zone->zone_flags |= ZF_HASHED_LABEL;
4709 }
4710
4711 /*
4712 * Insert into active list. At this point there are no 'hold's
4713 * on the zone, but everyone else knows not to use it, so we can
4714 * continue to use it. zsched() will do a zone_hold() if the
4715 * newproc() is successful.
4716 */
4717 list_insert_tail(&zone_active, zone);
4718 mutex_exit(&zonehash_lock);
4719
4720 zarg.zone = zone;
4721 zarg.nvlist = rctls;
4722 /*
4723 * The process, task, and project rctls are probably wrong;
4724 * we need an interface to get the default values of all rctls,
4725 * and initialize zsched appropriately. I'm not sure that that
4726 * makes much of a difference, though.
4727 */
4728 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
4729 if (error != 0) {
4730 /*
4731 * We need to undo all globally visible state.
4732 */
4733 mutex_enter(&zonehash_lock);
4734 list_remove(&zone_active, zone);
4735 if (zone->zone_flags & ZF_HASHED_LABEL) {
4736 ASSERT(zone->zone_slabel != NULL);
4737 (void) mod_hash_destroy(zonehashbylabel,
4738 (mod_hash_key_t)zone->zone_slabel);
4739 }
4740 (void) mod_hash_destroy(zonehashbyname,
4741 (mod_hash_key_t)(uintptr_t)zone->zone_name);
4742 (void) mod_hash_destroy(zonehashbyid,
4743 (mod_hash_key_t)(uintptr_t)zone->zone_id);
4744 ASSERT(zonecount > 1);
4745 zonecount--;
4746 goto errout;
4747 }
4748
4749 /*
4750 * Zone creation can't fail from now on.
4751 */
4752
4753 /*
4754 * Create zone kstats
4755 */
4756 zone_kstat_create(zone);
4757
4758 /*
4759 * Let the other lwps continue.
4760 */
4761 mutex_enter(&pp->p_lock);
4762 if (curthread != pp->p_agenttp)
4763 continuelwps(pp);
4764 mutex_exit(&pp->p_lock);
4765
4766 /*
4767 * Wait for zsched to finish initializing the zone.
4768 */
4769 zone_status_wait(zone, ZONE_IS_READY);
4770 /*
4771 * The zone is fully visible, so we can let mounts progress.
4772 */
4773 resume_mounts(zone);
4774 nvlist_free(rctls);
4775
4776 return (zoneid);
4777
4778 errout:
4779 mutex_exit(&zonehash_lock);
4780 /*
4781 * Let the other lwps continue.
4782 */
4783 mutex_enter(&pp->p_lock);
4784 if (curthread != pp->p_agenttp)
4785 continuelwps(pp);
4786 mutex_exit(&pp->p_lock);
4787
4788 resume_mounts(zone);
4789 nvlist_free(rctls);
4790 /*
4791 * There is currently one reference to the zone, a cred_ref from
4792 * zone_kcred. To free the zone, we call crfree, which will call
4793 * zone_cred_rele, which will call zone_free.
4794 */
4795 ASSERT(zone->zone_cred_ref == 1);
4796 ASSERT(zone->zone_kcred->cr_ref == 1);
4797 ASSERT(zone->zone_ref == 0);
4798 zkcr = zone->zone_kcred;
4799 zone->zone_kcred = NULL;
4800 crfree(zkcr); /* triggers call to zone_free */
4801 return (zone_create_error(error, error2, extended_error));
4802 }
4803
4804 /*
4805 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do
4806 * the heavy lifting. initname is the path to the program to launch
4807 * at the "top" of the zone; if this is NULL, we use the system default,
4808 * which is stored at zone_default_initname.
4809 */
4810 static int
4811 zone_boot(zoneid_t zoneid)
4812 {
4813 int err;
4814 zone_t *zone;
4815
4816 if (secpolicy_zone_config(CRED()) != 0)
4817 return (set_errno(EPERM));
4818 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4819 return (set_errno(EINVAL));
4820
4821 mutex_enter(&zonehash_lock);
4822 /*
4823 * Look for zone under hash lock to prevent races with calls to
4824 * zone_shutdown, zone_destroy, etc.
4825 */
4826 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4827 mutex_exit(&zonehash_lock);
4828 return (set_errno(EINVAL));
4829 }
4830
4831 mutex_enter(&zone_status_lock);
4832 if (zone_status_get(zone) != ZONE_IS_READY) {
4833 mutex_exit(&zone_status_lock);
4834 mutex_exit(&zonehash_lock);
4835 return (set_errno(EINVAL));
4836 }
4837 zone_status_set(zone, ZONE_IS_BOOTING);
4838 mutex_exit(&zone_status_lock);
4839
4840 zone_hold(zone); /* so we can use the zone_t later */
4841 mutex_exit(&zonehash_lock);
4842
4843 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4844 zone_rele(zone);
4845 return (set_errno(EINTR));
4846 }
4847
4848 /*
4849 * Boot (starting init) might have failed, in which case the zone
4850 * will go to the SHUTTING_DOWN state; an appropriate errno will
4851 * be placed in zone->zone_boot_err, and so we return that.
4852 */
4853 err = zone->zone_boot_err;
4854 zone_rele(zone);
4855 return (err ? set_errno(err) : 0);
4856 }
4857
4858 /*
4859 * Kills all user processes in the zone, waiting for them all to exit
4860 * before returning.
4861 */
4862 static int
4863 zone_empty(zone_t *zone)
4864 {
4865 int waitstatus;
4866
4867 /*
4868 * We need to drop zonehash_lock before killing all
4869 * processes, otherwise we'll deadlock with zone_find_*
4870 * which can be called from the exit path.
4871 */
4872 ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4873 while ((waitstatus = zone_status_timedwait_sig(zone,
4874 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
4875 killall(zone->zone_id);
4876 }
4877 /*
4878 * return EINTR if we were signaled
4879 */
4880 if (waitstatus == 0)
4881 return (EINTR);
4882 return (0);
4883 }
4884
4885 /*
4886 * This function implements the policy for zone visibility.
4887 *
4888 * In standard Solaris, a non-global zone can only see itself.
4889 *
4890 * In Trusted Extensions, a labeled zone can lookup any zone whose label
4891 * it dominates. For this test, the label of the global zone is treated as
4892 * admin_high so it is special-cased instead of being checked for dominance.
4893 *
4894 * Returns true if zone attributes are viewable, false otherwise.
4895 */
4896 static boolean_t
4897 zone_list_access(zone_t *zone)
4898 {
4899
4900 if (curproc->p_zone == global_zone ||
4901 curproc->p_zone == zone) {
4902 return (B_TRUE);
4903 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4904 bslabel_t *curproc_label;
4905 bslabel_t *zone_label;
4906
4907 curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4908 zone_label = label2bslabel(zone->zone_slabel);
4909
4910 if (zone->zone_id != GLOBAL_ZONEID &&
4911 bldominates(curproc_label, zone_label)) {
4912 return (B_TRUE);
4913 } else {
4914 return (B_FALSE);
4915 }
4916 } else {
4917 return (B_FALSE);
4918 }
4919 }
4920
4921 /*
4922 * Systemcall to start the zone's halt sequence. By the time this
4923 * function successfully returns, all user processes and kernel threads
4924 * executing in it will have exited, ZSD shutdown callbacks executed,
4925 * and the zone status set to ZONE_IS_DOWN.
4926 *
4927 * It is possible that the call will interrupt itself if the caller is the
4928 * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4929 */
4930 static int
4931 zone_shutdown(zoneid_t zoneid)
4932 {
4933 int error;
4934 zone_t *zone;
4935 zone_status_t status;
4936
4937 if (secpolicy_zone_config(CRED()) != 0)
4938 return (set_errno(EPERM));
4939 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4940 return (set_errno(EINVAL));
4941
4942 mutex_enter(&zonehash_lock);
4943 /*
4944 * Look for zone under hash lock to prevent races with other
4945 * calls to zone_shutdown and zone_destroy.
4946 */
4947 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4948 mutex_exit(&zonehash_lock);
4949 return (set_errno(EINVAL));
4950 }
4951
4952 /*
4953 * We have to drop zonehash_lock before calling block_mounts.
4954 * Hold the zone so we can continue to use the zone_t.
4955 */
4956 zone_hold(zone);
4957 mutex_exit(&zonehash_lock);
4958
4959 /*
4960 * Block mounts so that VFS_MOUNT() can get an accurate view of
4961 * the zone's status with regards to ZONE_IS_SHUTTING down.
4962 *
4963 * e.g. NFS can fail the mount if it determines that the zone
4964 * has already begun the shutdown sequence.
4965 *
4966 */
4967 if (block_mounts(zone) == 0) {
4968 zone_rele(zone);
4969 return (set_errno(EINTR));
4970 }
4971
4972 mutex_enter(&zonehash_lock);
4973 mutex_enter(&zone_status_lock);
4974 status = zone_status_get(zone);
4975 /*
4976 * Fail if the zone isn't fully initialized yet.
4977 */
4978 if (status < ZONE_IS_READY) {
4979 mutex_exit(&zone_status_lock);
4980 mutex_exit(&zonehash_lock);
4981 resume_mounts(zone);
4982 zone_rele(zone);
4983 return (set_errno(EINVAL));
4984 }
4985 /*
4986 * If conditions required for zone_shutdown() to return have been met,
4987 * return success.
4988 */
4989 if (status >= ZONE_IS_DOWN) {
4990 mutex_exit(&zone_status_lock);
4991 mutex_exit(&zonehash_lock);
4992 resume_mounts(zone);
4993 zone_rele(zone);
4994 return (0);
4995 }
4996 /*
4997 * If zone_shutdown() hasn't been called before, go through the motions.
4998 * If it has, there's nothing to do but wait for the kernel threads to
4999 * drain.
5000 */
5001 if (status < ZONE_IS_EMPTY) {
5002 uint_t ntasks;
5003
5004 mutex_enter(&zone->zone_lock);
5005 if ((ntasks = zone->zone_ntasks) != 1) {
5006 /*
5007 * There's still stuff running.
5008 */
5009 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
5010 }
5011 mutex_exit(&zone->zone_lock);
5012 if (ntasks == 1) {
5013 /*
5014 * The only way to create another task is through
5015 * zone_enter(), which will block until we drop
5016 * zonehash_lock. The zone is empty.
5017 */
5018 if (zone->zone_kthreads == NULL) {
5019 /*
5020 * Skip ahead to ZONE_IS_DOWN
5021 */
5022 zone_status_set(zone, ZONE_IS_DOWN);
5023 } else {
5024 zone_status_set(zone, ZONE_IS_EMPTY);
5025 }
5026 }
5027 }
5028 mutex_exit(&zone_status_lock);
5029 mutex_exit(&zonehash_lock);
5030 resume_mounts(zone);
5031
5032 if (error = zone_empty(zone)) {
5033 zone_rele(zone);
5034 return (set_errno(error));
5035 }
5036 /*
5037 * After the zone status goes to ZONE_IS_DOWN this zone will no
5038 * longer be notified of changes to the pools configuration, so
5039 * in order to not end up with a stale pool pointer, we point
5040 * ourselves at the default pool and remove all resource
5041 * visibility. This is especially important as the zone_t may
5042 * languish on the deathrow for a very long time waiting for
5043 * cred's to drain out.
5044 *
5045 * This rebinding of the zone can happen multiple times
5046 * (presumably due to interrupted or parallel systemcalls)
5047 * without any adverse effects.
5048 */
5049 if (pool_lock_intr() != 0) {
5050 zone_rele(zone);
5051 return (set_errno(EINTR));
5052 }
5053 if (pool_state == POOL_ENABLED) {
5054 mutex_enter(&cpu_lock);
5055 zone_pool_set(zone, pool_default);
5056 /*
5057 * The zone no longer needs to be able to see any cpus.
5058 */
5059 zone_pset_set(zone, ZONE_PS_INVAL);
5060 mutex_exit(&cpu_lock);
5061 }
5062 pool_unlock();
5063
5064 /*
5065 * ZSD shutdown callbacks can be executed multiple times, hence
5066 * it is safe to not be holding any locks across this call.
5067 */
5068 zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
5069
5070 mutex_enter(&zone_status_lock);
5071 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
5072 zone_status_set(zone, ZONE_IS_DOWN);
5073 mutex_exit(&zone_status_lock);
5074
5075 /*
5076 * Wait for kernel threads to drain.
5077 */
5078 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
5079 zone_rele(zone);
5080 return (set_errno(EINTR));
5081 }
5082
5083 /*
5084 * Zone can be become down/destroyable even if the above wait
5085 * returns EINTR, so any code added here may never execute.
5086 * (i.e. don't add code here)
5087 */
5088
5089 zone_rele(zone);
5090 return (0);
5091 }
5092
5093 /*
5094 * Log the specified zone's reference counts. The caller should not be
5095 * holding the zone's zone_lock.
5096 */
5097 static void
5098 zone_log_refcounts(zone_t *zone)
5099 {
5100 char *buffer;
5101 char *buffer_position;
5102 uint32_t buffer_size;
5103 uint32_t index;
5104 uint_t ref;
5105 uint_t cred_ref;
5106
5107 /*
5108 * Construct a string representing the subsystem-specific reference
5109 * counts. The counts are printed in ascending order by index into the
5110 * zone_t::zone_subsys_ref array. The list will be surrounded by
5111 * square brackets [] and will only contain nonzero reference counts.
5112 *
5113 * The buffer will hold two square bracket characters plus ten digits,
5114 * one colon, one space, one comma, and some characters for a
5115 * subsystem name per subsystem-specific reference count. (Unsigned 32-
5116 * bit integers have at most ten decimal digits.) The last
5117 * reference count's comma is replaced by the closing square
5118 * bracket and a NULL character to terminate the string.
5119 *
5120 * NOTE: We have to grab the zone's zone_lock to create a consistent
5121 * snapshot of the zone's reference counters.
5122 *
5123 * First, figure out how much space the string buffer will need.
5124 * The buffer's size is stored in buffer_size.
5125 */
5126 buffer_size = 2; /* for the square brackets */
5127 mutex_enter(&zone->zone_lock);
5128 zone->zone_flags |= ZF_REFCOUNTS_LOGGED;
5129 ref = zone->zone_ref;
5130 cred_ref = zone->zone_cred_ref;
5131 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index)
5132 if (zone->zone_subsys_ref[index] != 0)
5133 buffer_size += strlen(zone_ref_subsys_names[index]) +
5134 13;
5135 if (buffer_size == 2) {
5136 /*
5137 * No subsystems had nonzero reference counts. Don't bother
5138 * with allocating a buffer; just log the general-purpose and
5139 * credential reference counts.
5140 */
5141 mutex_exit(&zone->zone_lock);
5142 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5143 "Zone '%s' (ID: %d) is shutting down, but %u zone "
5144 "references and %u credential references are still extant",
5145 zone->zone_name, zone->zone_id, ref, cred_ref);
5146 return;
5147 }
5148
5149 /*
5150 * buffer_size contains the exact number of characters that the
5151 * buffer will need. Allocate the buffer and fill it with nonzero
5152 * subsystem-specific reference counts. Surround the results with
5153 * square brackets afterwards.
5154 */
5155 buffer = kmem_alloc(buffer_size, KM_SLEEP);
5156 buffer_position = &buffer[1];
5157 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) {
5158 /*
5159 * NOTE: The DDI's version of sprintf() returns a pointer to
5160 * the modified buffer rather than the number of bytes written
5161 * (as in snprintf(3C)). This is unfortunate and annoying.
5162 * Therefore, we'll use snprintf() with INT_MAX to get the
5163 * number of bytes written. Using INT_MAX is safe because
5164 * the buffer is perfectly sized for the data: we'll never
5165 * overrun the buffer.
5166 */
5167 if (zone->zone_subsys_ref[index] != 0)
5168 buffer_position += snprintf(buffer_position, INT_MAX,
5169 "%s: %u,", zone_ref_subsys_names[index],
5170 zone->zone_subsys_ref[index]);
5171 }
5172 mutex_exit(&zone->zone_lock);
5173 buffer[0] = '[';
5174 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size);
5175 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ',');
5176 buffer_position[-1] = ']';
5177
5178 /*
5179 * Log the reference counts and free the message buffer.
5180 */
5181 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5182 "Zone '%s' (ID: %d) is shutting down, but %u zone references and "
5183 "%u credential references are still extant %s", zone->zone_name,
5184 zone->zone_id, ref, cred_ref, buffer);
5185 kmem_free(buffer, buffer_size);
5186 }
5187
5188 /*
5189 * Systemcall entry point to finalize the zone halt process. The caller
5190 * must have already successfully called zone_shutdown().
5191 *
5192 * Upon successful completion, the zone will have been fully destroyed:
5193 * zsched will have exited, destructor callbacks executed, and the zone
5194 * removed from the list of active zones.
5195 */
5196 static int
5197 zone_destroy(zoneid_t zoneid)
5198 {
5199 uint64_t uniqid;
5200 zone_t *zone;
5201 zone_status_t status;
5202 clock_t wait_time;
5203 boolean_t log_refcounts;
5204
5205 if (secpolicy_zone_config(CRED()) != 0)
5206 return (set_errno(EPERM));
5207 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5208 return (set_errno(EINVAL));
5209
5210 mutex_enter(&zonehash_lock);
5211 /*
5212 * Look for zone under hash lock to prevent races with other
5213 * calls to zone_destroy.
5214 */
5215 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5216 mutex_exit(&zonehash_lock);
5217 return (set_errno(EINVAL));
5218 }
5219
5220 if (zone_mount_count(zone->zone_rootpath) != 0) {
5221 mutex_exit(&zonehash_lock);
5222 return (set_errno(EBUSY));
5223 }
5224 mutex_enter(&zone_status_lock);
5225 status = zone_status_get(zone);
5226 if (status < ZONE_IS_DOWN) {
5227 mutex_exit(&zone_status_lock);
5228 mutex_exit(&zonehash_lock);
5229 return (set_errno(EBUSY));
5230 } else if (status == ZONE_IS_DOWN) {
5231 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
5232 }
5233 mutex_exit(&zone_status_lock);
5234 zone_hold(zone);
5235 mutex_exit(&zonehash_lock);
5236
5237 /*
5238 * wait for zsched to exit
5239 */
5240 zone_status_wait(zone, ZONE_IS_DEAD);
5241 zone_zsd_callbacks(zone, ZSD_DESTROY);
5242 zone->zone_netstack = NULL;
5243 uniqid = zone->zone_uniqid;
5244 zone_rele(zone);
5245 zone = NULL; /* potentially free'd */
5246
5247 log_refcounts = B_FALSE;
5248 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS);
5249 mutex_enter(&zonehash_lock);
5250 for (; /* ever */; ) {
5251 boolean_t unref;
5252 boolean_t refs_have_been_logged;
5253
5254 if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
5255 zone->zone_uniqid != uniqid) {
5256 /*
5257 * The zone has gone away. Necessary conditions
5258 * are met, so we return success.
5259 */
5260 mutex_exit(&zonehash_lock);
5261 return (0);
5262 }
5263 mutex_enter(&zone->zone_lock);
5264 unref = ZONE_IS_UNREF(zone);
5265 refs_have_been_logged = (zone->zone_flags &
5266 ZF_REFCOUNTS_LOGGED);
5267 mutex_exit(&zone->zone_lock);
5268 if (unref) {
5269 /*
5270 * There is only one reference to the zone -- that
5271 * added when the zone was added to the hashtables --
5272 * and things will remain this way until we drop
5273 * zonehash_lock... we can go ahead and cleanup the
5274 * zone.
5275 */
5276 break;
5277 }
5278
5279 /*
5280 * Wait for zone_rele_common() or zone_cred_rele() to signal
5281 * zone_destroy_cv. zone_destroy_cv is signaled only when
5282 * some zone's general-purpose reference count reaches one.
5283 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting
5284 * on zone_destroy_cv, then log the zone's reference counts and
5285 * continue to wait for zone_rele() and zone_cred_rele().
5286 */
5287 if (!refs_have_been_logged) {
5288 if (!log_refcounts) {
5289 /*
5290 * This thread hasn't timed out waiting on
5291 * zone_destroy_cv yet. Wait wait_time clock
5292 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS
5293 * seconds) for the zone's references to clear.
5294 */
5295 ASSERT(wait_time > 0);
5296 wait_time = cv_reltimedwait_sig(
5297 &zone_destroy_cv, &zonehash_lock, wait_time,
5298 TR_SEC);
5299 if (wait_time > 0) {
5300 /*
5301 * A thread in zone_rele() or
5302 * zone_cred_rele() signaled
5303 * zone_destroy_cv before this thread's
5304 * wait timed out. The zone might have
5305 * only one reference left; find out!
5306 */
5307 continue;
5308 } else if (wait_time == 0) {
5309 /* The thread's process was signaled. */
5310 mutex_exit(&zonehash_lock);
5311 return (set_errno(EINTR));
5312 }
5313
5314 /*
5315 * The thread timed out while waiting on
5316 * zone_destroy_cv. Even though the thread
5317 * timed out, it has to check whether another
5318 * thread woke up from zone_destroy_cv and
5319 * destroyed the zone.
5320 *
5321 * If the zone still exists and has more than
5322 * one unreleased general-purpose reference,
5323 * then log the zone's reference counts.
5324 */
5325 log_refcounts = B_TRUE;
5326 continue;
5327 }
5328
5329 /*
5330 * The thread already timed out on zone_destroy_cv while
5331 * waiting for subsystems to release the zone's last
5332 * general-purpose references. Log the zone's reference
5333 * counts and wait indefinitely on zone_destroy_cv.
5334 */
5335 zone_log_refcounts(zone);
5336 }
5337 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
5338 /* The thread's process was signaled. */
5339 mutex_exit(&zonehash_lock);
5340 return (set_errno(EINTR));
5341 }
5342 }
5343
5344 /*
5345 * Remove CPU cap for this zone now since we're not going to
5346 * fail below this point.
5347 */
5348 cpucaps_zone_remove(zone);
5349
5350 /* Get rid of the zone's kstats */
5351 zone_kstat_delete(zone);
5352
5353 /* remove the pfexecd doors */
5354 if (zone->zone_pfexecd != NULL) {
5355 klpd_freelist(&zone->zone_pfexecd);
5356 zone->zone_pfexecd = NULL;
5357 }
5358
5359 /* free brand specific data */
5360 if (ZONE_IS_BRANDED(zone))
5361 ZBROP(zone)->b_free_brand_data(zone);
5362
5363 /* Say goodbye to brand framework. */
5364 brand_unregister_zone(zone->zone_brand);
5365
5366 /*
5367 * It is now safe to let the zone be recreated; remove it from the
5368 * lists. The memory will not be freed until the last cred
5369 * reference goes away.
5370 */
5371 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */
5372 zonecount--;
5373 /* remove from active list and hash tables */
5374 list_remove(&zone_active, zone);
5375 (void) mod_hash_destroy(zonehashbyname,
5376 (mod_hash_key_t)zone->zone_name);
5377 (void) mod_hash_destroy(zonehashbyid,
5378 (mod_hash_key_t)(uintptr_t)zone->zone_id);
5379 if (zone->zone_flags & ZF_HASHED_LABEL)
5380 (void) mod_hash_destroy(zonehashbylabel,
5381 (mod_hash_key_t)zone->zone_slabel);
5382 mutex_exit(&zonehash_lock);
5383
5384 /*
5385 * Release the root vnode; we're not using it anymore. Nor should any
5386 * other thread that might access it exist.
5387 */
5388 if (zone->zone_rootvp != NULL) {
5389 vnode_t *vp = zone->zone_rootvp;
5390
5391 mutex_enter(&vp->v_lock);
5392 vp->v_flag &= ~VZONEROOT;
5393 mutex_exit(&vp->v_lock);
5394 VN_RELE(vp);
5395 zone->zone_rootvp = NULL;
5396 }
5397
5398 /* add to deathrow list */
5399 mutex_enter(&zone_deathrow_lock);
5400 list_insert_tail(&zone_deathrow, zone);
5401 mutex_exit(&zone_deathrow_lock);
5402
5403 /*
5404 * Drop last reference (which was added by zsched()), this will
5405 * free the zone unless there are outstanding cred references.
5406 */
5407 zone_rele(zone);
5408 return (0);
5409 }
5410
5411 /*
5412 * Systemcall entry point for zone_getattr(2).
5413 */
5414 static ssize_t
5415 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5416 {
5417 size_t size;
5418 int error = 0, err;
5419 zone_t *zone;
5420 char *zonepath;
5421 char *outstr;
5422 zone_status_t zone_status;
5423 pid_t initpid;
5424 boolean_t global = (curzone == global_zone);
5425 boolean_t inzone = (curzone->zone_id == zoneid);
5426 ushort_t flags;
5427 zone_net_data_t *zbuf;
5428
5429 mutex_enter(&zonehash_lock);
5430 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5431 mutex_exit(&zonehash_lock);
5432 return (set_errno(EINVAL));
5433 }
5434 zone_status = zone_status_get(zone);
5435 if (zone_status < ZONE_IS_INITIALIZED) {
5436 mutex_exit(&zonehash_lock);
5437 return (set_errno(EINVAL));
5438 }
5439 zone_hold(zone);
5440 mutex_exit(&zonehash_lock);
5441
5442 /*
5443 * If not in the global zone, don't show information about other zones,
5444 * unless the system is labeled and the local zone's label dominates
5445 * the other zone.
5446 */
5447 if (!zone_list_access(zone)) {
5448 zone_rele(zone);
5449 return (set_errno(EINVAL));
5450 }
5451
5452 switch (attr) {
5453 case ZONE_ATTR_ROOT:
5454 if (global) {
5455 /*
5456 * Copy the path to trim the trailing "/" (except for
5457 * the global zone).
5458 */
5459 if (zone != global_zone)
5460 size = zone->zone_rootpathlen - 1;
5461 else
5462 size = zone->zone_rootpathlen;
5463 zonepath = kmem_alloc(size, KM_SLEEP);
5464 bcopy(zone->zone_rootpath, zonepath, size);
5465 zonepath[size - 1] = '\0';
5466 } else {
5467 if (inzone || !is_system_labeled()) {
5468 /*
5469 * Caller is not in the global zone.
5470 * if the query is on the current zone
5471 * or the system is not labeled,
5472 * just return faked-up path for current zone.
5473 */
5474 zonepath = "/";
5475 size = 2;
5476 } else {
5477 /*
5478 * Return related path for current zone.
5479 */
5480 int prefix_len = strlen(zone_prefix);
5481 int zname_len = strlen(zone->zone_name);
5482
5483 size = prefix_len + zname_len + 1;
5484 zonepath = kmem_alloc(size, KM_SLEEP);
5485 bcopy(zone_prefix, zonepath, prefix_len);
5486 bcopy(zone->zone_name, zonepath +
5487 prefix_len, zname_len);
5488 zonepath[size - 1] = '\0';
5489 }
5490 }
5491 if (bufsize > size)
5492 bufsize = size;
5493 if (buf != NULL) {
5494 err = copyoutstr(zonepath, buf, bufsize, NULL);
5495 if (err != 0 && err != ENAMETOOLONG)
5496 error = EFAULT;
5497 }
5498 if (global || (is_system_labeled() && !inzone))
5499 kmem_free(zonepath, size);
5500 break;
5501
5502 case ZONE_ATTR_NAME:
5503 size = strlen(zone->zone_name) + 1;
5504 if (bufsize > size)
5505 bufsize = size;
5506 if (buf != NULL) {
5507 err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
5508 if (err != 0 && err != ENAMETOOLONG)
5509 error = EFAULT;
5510 }
5511 break;
5512
5513 case ZONE_ATTR_STATUS:
5514 /*
5515 * Since we're not holding zonehash_lock, the zone status
5516 * may be anything; leave it up to userland to sort it out.
5517 */
5518 size = sizeof (zone_status);
5519 if (bufsize > size)
5520 bufsize = size;
5521 zone_status = zone_status_get(zone);
5522 if (buf != NULL &&
5523 copyout(&zone_status, buf, bufsize) != 0)
5524 error = EFAULT;
5525 break;
5526 case ZONE_ATTR_FLAGS:
5527 size = sizeof (zone->zone_flags);
5528 if (bufsize > size)
5529 bufsize = size;
5530 flags = zone->zone_flags;
5531 if (buf != NULL &&
5532 copyout(&flags, buf, bufsize) != 0)
5533 error = EFAULT;
5534 break;
5535 case ZONE_ATTR_PRIVSET:
5536 size = sizeof (priv_set_t);
5537 if (bufsize > size)
5538 bufsize = size;
5539 if (buf != NULL &&
5540 copyout(zone->zone_privset, buf, bufsize) != 0)
5541 error = EFAULT;
5542 break;
5543 case ZONE_ATTR_UNIQID:
5544 size = sizeof (zone->zone_uniqid);
5545 if (bufsize > size)
5546 bufsize = size;
5547 if (buf != NULL &&
5548 copyout(&zone->zone_uniqid, buf, bufsize) != 0)
5549 error = EFAULT;
5550 break;
5551 case ZONE_ATTR_POOLID:
5552 {
5553 pool_t *pool;
5554 poolid_t poolid;
5555
5556 if (pool_lock_intr() != 0) {
5557 error = EINTR;
5558 break;
5559 }
5560 pool = zone_pool_get(zone);
5561 poolid = pool->pool_id;
5562 pool_unlock();
5563 size = sizeof (poolid);
5564 if (bufsize > size)
5565 bufsize = size;
5566 if (buf != NULL && copyout(&poolid, buf, size) != 0)
5567 error = EFAULT;
5568 }
5569 break;
5570 case ZONE_ATTR_SLBL:
5571 size = sizeof (bslabel_t);
5572 if (bufsize > size)
5573 bufsize = size;
5574 if (zone->zone_slabel == NULL)
5575 error = EINVAL;
5576 else if (buf != NULL &&
5577 copyout(label2bslabel(zone->zone_slabel), buf,
5578 bufsize) != 0)
5579 error = EFAULT;
5580 break;
5581 case ZONE_ATTR_INITPID:
5582 size = sizeof (initpid);
5583 if (bufsize > size)
5584 bufsize = size;
5585 initpid = zone->zone_proc_initpid;
5586 if (initpid == -1) {
5587 error = ESRCH;
5588 break;
5589 }
5590 if (buf != NULL &&
5591 copyout(&initpid, buf, bufsize) != 0)
5592 error = EFAULT;
5593 break;
5594 case ZONE_ATTR_BRAND:
5595 size = strlen(zone->zone_brand->b_name) + 1;
5596
5597 if (bufsize > size)
5598 bufsize = size;
5599 if (buf != NULL) {
5600 err = copyoutstr(zone->zone_brand->b_name, buf,
5601 bufsize, NULL);
5602 if (err != 0 && err != ENAMETOOLONG)
5603 error = EFAULT;
5604 }
5605 break;
5606 case ZONE_ATTR_INITNAME:
5607 size = strlen(zone->zone_initname) + 1;
5608 if (bufsize > size)
5609 bufsize = size;
5610 if (buf != NULL) {
5611 err = copyoutstr(zone->zone_initname, buf, bufsize,
5612 NULL);
5613 if (err != 0 && err != ENAMETOOLONG)
5614 error = EFAULT;
5615 }
5616 break;
5617 case ZONE_ATTR_BOOTARGS:
5618 if (zone->zone_bootargs == NULL)
5619 outstr = "";
5620 else
5621 outstr = zone->zone_bootargs;
5622 size = strlen(outstr) + 1;
5623 if (bufsize > size)
5624 bufsize = size;
5625 if (buf != NULL) {
5626 err = copyoutstr(outstr, buf, bufsize, NULL);
5627 if (err != 0 && err != ENAMETOOLONG)
5628 error = EFAULT;
5629 }
5630 break;
5631 case ZONE_ATTR_PHYS_MCAP:
5632 size = sizeof (zone->zone_phys_mcap);
5633 if (bufsize > size)
5634 bufsize = size;
5635 if (buf != NULL &&
5636 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
5637 error = EFAULT;
5638 break;
5639 case ZONE_ATTR_SCHED_CLASS:
5640 mutex_enter(&class_lock);
5641
5642 if (zone->zone_defaultcid >= loaded_classes)
5643 outstr = "";
5644 else
5645 outstr = sclass[zone->zone_defaultcid].cl_name;
5646 size = strlen(outstr) + 1;
5647 if (bufsize > size)
5648 bufsize = size;
5649 if (buf != NULL) {
5650 err = copyoutstr(outstr, buf, bufsize, NULL);
5651 if (err != 0 && err != ENAMETOOLONG)
5652 error = EFAULT;
5653 }
5654
5655 mutex_exit(&class_lock);
5656 break;
5657 case ZONE_ATTR_HOSTID:
5658 if (zone->zone_hostid != HW_INVALID_HOSTID &&
5659 bufsize == sizeof (zone->zone_hostid)) {
5660 size = sizeof (zone->zone_hostid);
5661 if (buf != NULL && copyout(&zone->zone_hostid, buf,
5662 bufsize) != 0)
5663 error = EFAULT;
5664 } else {
5665 error = EINVAL;
5666 }
5667 break;
5668 case ZONE_ATTR_FS_ALLOWED:
5669 if (zone->zone_fs_allowed == NULL)
5670 outstr = "";
5671 else
5672 outstr = zone->zone_fs_allowed;
5673 size = strlen(outstr) + 1;
5674 if (bufsize > size)
5675 bufsize = size;
5676 if (buf != NULL) {
5677 err = copyoutstr(outstr, buf, bufsize, NULL);
5678 if (err != 0 && err != ENAMETOOLONG)
5679 error = EFAULT;
5680 }
5681 break;
5682 case ZONE_ATTR_SECFLAGS:
5683 size = sizeof (zone->zone_secflags);
5684 if (bufsize > size)
5685 bufsize = size;
5686 if ((err = copyout(&zone->zone_secflags, buf, bufsize)) != 0)
5687 error = EFAULT;
5688 break;
5689 case ZONE_ATTR_NETWORK:
5690 bufsize = MIN(bufsize, PIPE_BUF + sizeof (zone_net_data_t));
5691 size = bufsize;
5692 zbuf = kmem_alloc(bufsize, KM_SLEEP);
5693 if (copyin(buf, zbuf, bufsize) != 0) {
5694 error = EFAULT;
5695 } else {
5696 error = zone_get_network(zoneid, zbuf);
5697 if (error == 0 && copyout(zbuf, buf, bufsize) != 0)
5698 error = EFAULT;
5699 }
5700 kmem_free(zbuf, bufsize);
5701 break;
5702 default:
5703 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
5704 size = bufsize;
5705 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
5706 } else {
5707 error = EINVAL;
5708 }
5709 }
5710 zone_rele(zone);
5711
5712 if (error)
5713 return (set_errno(error));
5714 return ((ssize_t)size);
5715 }
5716
5717 /*
5718 * Systemcall entry point for zone_setattr(2).
5719 */
5720 /*ARGSUSED*/
5721 static int
5722 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5723 {
5724 zone_t *zone;
5725 zone_status_t zone_status;
5726 int err = -1;
5727 zone_net_data_t *zbuf;
5728
5729 if (secpolicy_zone_config(CRED()) != 0)
5730 return (set_errno(EPERM));
5731
5732 /*
5733 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
5734 * global zone.
5735 */
5736 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
5737 return (set_errno(EINVAL));
5738 }
5739
5740 mutex_enter(&zonehash_lock);
5741 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5742 mutex_exit(&zonehash_lock);
5743 return (set_errno(EINVAL));
5744 }
5745 zone_hold(zone);
5746 mutex_exit(&zonehash_lock);
5747
5748 /*
5749 * At present most attributes can only be set on non-running,
5750 * non-global zones.
5751 */
5752 zone_status = zone_status_get(zone);
5753 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) {
5754 err = EINVAL;
5755 goto done;
5756 }
5757
5758 switch (attr) {
5759 case ZONE_ATTR_INITNAME:
5760 err = zone_set_initname(zone, (const char *)buf);
5761 break;
5762 case ZONE_ATTR_INITNORESTART:
5763 zone->zone_restart_init = B_FALSE;
5764 err = 0;
5765 break;
5766 case ZONE_ATTR_BOOTARGS:
5767 err = zone_set_bootargs(zone, (const char *)buf);
5768 break;
5769 case ZONE_ATTR_BRAND:
5770 err = zone_set_brand(zone, (const char *)buf);
5771 break;
5772 case ZONE_ATTR_FS_ALLOWED:
5773 err = zone_set_fs_allowed(zone, (const char *)buf);
5774 break;
5775 case ZONE_ATTR_SECFLAGS:
5776 err = zone_set_secflags(zone, (psecflags_t *)buf);
5777 break;
5778 case ZONE_ATTR_PHYS_MCAP:
5779 err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
5780 break;
5781 case ZONE_ATTR_SCHED_CLASS:
5782 err = zone_set_sched_class(zone, (const char *)buf);
5783 break;
5784 case ZONE_ATTR_HOSTID:
5785 if (bufsize == sizeof (zone->zone_hostid)) {
5786 if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
5787 err = 0;
5788 else
5789 err = EFAULT;
5790 } else {
5791 err = EINVAL;
5792 }
5793 break;
5794 case ZONE_ATTR_NETWORK:
5795 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) {
5796 err = EINVAL;
5797 break;
5798 }
5799 zbuf = kmem_alloc(bufsize, KM_SLEEP);
5800 if (copyin(buf, zbuf, bufsize) != 0) {
5801 kmem_free(zbuf, bufsize);
5802 err = EFAULT;
5803 break;
5804 }
5805 err = zone_set_network(zoneid, zbuf);
5806 kmem_free(zbuf, bufsize);
5807 break;
5808 default:
5809 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
5810 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
5811 else
5812 err = EINVAL;
5813 }
5814
5815 done:
5816 zone_rele(zone);
5817 ASSERT(err != -1);
5818 return (err != 0 ? set_errno(err) : 0);
5819 }
5820
5821 /*
5822 * Return zero if the process has at least one vnode mapped in to its
5823 * address space which shouldn't be allowed to change zones.
5824 *
5825 * Also return zero if the process has any shared mappings which reserve
5826 * swap. This is because the counting for zone.max-swap does not allow swap
5827 * reservation to be shared between zones. zone swap reservation is counted
5828 * on zone->zone_max_swap.
5829 */
5830 static int
5831 as_can_change_zones(void)
5832 {
5833 proc_t *pp = curproc;
5834 struct seg *seg;
5835 struct as *as = pp->p_as;
5836 vnode_t *vp;
5837 int allow = 1;
5838
5839 ASSERT(pp->p_as != &kas);
5840 AS_LOCK_ENTER(as, RW_READER);
5841 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
5842
5843 /*
5844 * Cannot enter zone with shared anon memory which
5845 * reserves swap. See comment above.
5846 */
5847 if (seg_can_change_zones(seg) == B_FALSE) {
5848 allow = 0;
5849 break;
5850 }
5851 /*
5852 * if we can't get a backing vnode for this segment then skip
5853 * it.
5854 */
5855 vp = NULL;
5856 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
5857 continue;
5858 if (!vn_can_change_zones(vp)) { /* bail on first match */
5859 allow = 0;
5860 break;
5861 }
5862 }
5863 AS_LOCK_EXIT(as);
5864 return (allow);
5865 }
5866
5867 /*
5868 * Count swap reserved by curproc's address space
5869 */
5870 static size_t
5871 as_swresv(void)
5872 {
5873 proc_t *pp = curproc;
5874 struct seg *seg;
5875 struct as *as = pp->p_as;
5876 size_t swap = 0;
5877
5878 ASSERT(pp->p_as != &kas);
5879 ASSERT(AS_WRITE_HELD(as));
5880 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
5881 swap += seg_swresv(seg);
5882
5883 return (swap);
5884 }
5885
5886 /*
5887 * Systemcall entry point for zone_enter().
5888 *
5889 * The current process is injected into said zone. In the process
5890 * it will change its project membership, privileges, rootdir/cwd,
5891 * zone-wide rctls, and pool association to match those of the zone.
5892 *
5893 * The first zone_enter() called while the zone is in the ZONE_IS_READY
5894 * state will transition it to ZONE_IS_RUNNING. Processes may only
5895 * enter a zone that is "ready" or "running".
5896 */
5897 static int
5898 zone_enter(zoneid_t zoneid)
5899 {
5900 zone_t *zone;
5901 vnode_t *vp;
5902 proc_t *pp = curproc;
5903 contract_t *ct;
5904 cont_process_t *ctp;
5905 task_t *tk, *oldtk;
5906 kproject_t *zone_proj0;
5907 cred_t *cr, *newcr;
5908 pool_t *oldpool, *newpool;
5909 sess_t *sp;
5910 uid_t uid;
5911 zone_status_t status;
5912 int err = 0;
5913 rctl_entity_p_t e;
5914 size_t swap;
5915 kthread_id_t t;
5916
5917 if (secpolicy_zone_config(CRED()) != 0)
5918 return (set_errno(EPERM));
5919 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5920 return (set_errno(EINVAL));
5921
5922 /*
5923 * Stop all lwps so we don't need to hold a lock to look at
5924 * curproc->p_zone. This needs to happen before we grab any
5925 * locks to avoid deadlock (another lwp in the process could
5926 * be waiting for the held lock).
5927 */
5928 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
5929 return (set_errno(EINTR));
5930
5931 /*
5932 * Make sure we're not changing zones with files open or mapped in
5933 * to our address space which shouldn't be changing zones.
5934 */
5935 if (!files_can_change_zones()) {
5936 err = EBADF;
5937 goto out;
5938 }
5939 if (!as_can_change_zones()) {
5940 err = EFAULT;
5941 goto out;
5942 }
5943
5944 mutex_enter(&zonehash_lock);
5945 if (pp->p_zone != global_zone) {
5946 mutex_exit(&zonehash_lock);
5947 err = EINVAL;
5948 goto out;
5949 }
5950
5951 zone = zone_find_all_by_id(zoneid);
5952 if (zone == NULL) {
5953 mutex_exit(&zonehash_lock);
5954 err = EINVAL;
5955 goto out;
5956 }
5957
5958 /*
5959 * To prevent processes in a zone from holding contracts on
5960 * extrazonal resources, and to avoid process contract
5961 * memberships which span zones, contract holders and processes
5962 * which aren't the sole members of their encapsulating process
5963 * contracts are not allowed to zone_enter.
5964 */
5965 ctp = pp->p_ct_process;
5966 ct = &ctp->conp_contract;
5967 mutex_enter(&ct->ct_lock);
5968 mutex_enter(&pp->p_lock);
5969 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5970 mutex_exit(&pp->p_lock);
5971 mutex_exit(&ct->ct_lock);
5972 mutex_exit(&zonehash_lock);
5973 err = EINVAL;
5974 goto out;
5975 }
5976
5977 /*
5978 * Moreover, we don't allow processes whose encapsulating
5979 * process contracts have inherited extrazonal contracts.
5980 * While it would be easier to eliminate all process contracts
5981 * with inherited contracts, we need to be able to give a
5982 * restarted init (or other zone-penetrating process) its
5983 * predecessor's contracts.
5984 */
5985 if (ctp->conp_ninherited != 0) {
5986 contract_t *next;
5987 for (next = list_head(&ctp->conp_inherited); next;
5988 next = list_next(&ctp->conp_inherited, next)) {
5989 if (contract_getzuniqid(next) != zone->zone_uniqid) {
5990 mutex_exit(&pp->p_lock);
5991 mutex_exit(&ct->ct_lock);
5992 mutex_exit(&zonehash_lock);
5993 err = EINVAL;
5994 goto out;
5995 }
5996 }
5997 }
5998
5999 mutex_exit(&pp->p_lock);
6000 mutex_exit(&ct->ct_lock);
6001
6002 status = zone_status_get(zone);
6003 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
6004 /*
6005 * Can't join
6006 */
6007 mutex_exit(&zonehash_lock);
6008 err = EINVAL;
6009 goto out;
6010 }
6011
6012 /*
6013 * Make sure new priv set is within the permitted set for caller
6014 */
6015 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
6016 mutex_exit(&zonehash_lock);
6017 err = EPERM;
6018 goto out;
6019 }
6020 /*
6021 * We want to momentarily drop zonehash_lock while we optimistically
6022 * bind curproc to the pool it should be running in. This is safe
6023 * since the zone can't disappear (we have a hold on it).
6024 */
6025 zone_hold(zone);
6026 mutex_exit(&zonehash_lock);
6027
6028 /*
6029 * Grab pool_lock to keep the pools configuration from changing
6030 * and to stop ourselves from getting rebound to another pool
6031 * until we join the zone.
6032 */
6033 if (pool_lock_intr() != 0) {
6034 zone_rele(zone);
6035 err = EINTR;
6036 goto out;
6037 }
6038 ASSERT(secpolicy_pool(CRED()) == 0);
6039 /*
6040 * Bind ourselves to the pool currently associated with the zone.
6041 */
6042 oldpool = curproc->p_pool;
6043 newpool = zone_pool_get(zone);
6044 if (pool_state == POOL_ENABLED && newpool != oldpool &&
6045 (err = pool_do_bind(newpool, P_PID, P_MYID,
6046 POOL_BIND_ALL)) != 0) {
6047 pool_unlock();
6048 zone_rele(zone);
6049 goto out;
6050 }
6051
6052 /*
6053 * Grab cpu_lock now; we'll need it later when we call
6054 * task_join().
6055 */
6056 mutex_enter(&cpu_lock);
6057 mutex_enter(&zonehash_lock);
6058 /*
6059 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
6060 */
6061 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
6062 /*
6063 * Can't join anymore.
6064 */
6065 mutex_exit(&zonehash_lock);
6066 mutex_exit(&cpu_lock);
6067 if (pool_state == POOL_ENABLED &&
6068 newpool != oldpool)
6069 (void) pool_do_bind(oldpool, P_PID, P_MYID,
6070 POOL_BIND_ALL);
6071 pool_unlock();
6072 zone_rele(zone);
6073 err = EINVAL;
6074 goto out;
6075 }
6076
6077 /*
6078 * a_lock must be held while transfering locked memory and swap
6079 * reservation from the global zone to the non global zone because
6080 * asynchronous faults on the processes' address space can lock
6081 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
6082 * segments respectively.
6083 */
6084 AS_LOCK_ENTER(pp->p_as, RW_WRITER);
6085 swap = as_swresv();
6086 mutex_enter(&pp->p_lock);
6087 zone_proj0 = zone->zone_zsched->p_task->tk_proj;
6088 /* verify that we do not exceed and task or lwp limits */
6089 mutex_enter(&zone->zone_nlwps_lock);
6090 /* add new lwps to zone and zone's proj0 */
6091 zone_proj0->kpj_nlwps += pp->p_lwpcnt;
6092 zone->zone_nlwps += pp->p_lwpcnt;
6093 /* add 1 task to zone's proj0 */
6094 zone_proj0->kpj_ntasks += 1;
6095
6096 zone_proj0->kpj_nprocs++;
6097 zone->zone_nprocs++;
6098 mutex_exit(&zone->zone_nlwps_lock);
6099
6100 mutex_enter(&zone->zone_mem_lock);
6101 zone->zone_locked_mem += pp->p_locked_mem;
6102 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
6103 zone->zone_max_swap += swap;
6104 mutex_exit(&zone->zone_mem_lock);
6105
6106 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
6107 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
6108 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
6109
6110 /* remove lwps and process from proc's old zone and old project */
6111 mutex_enter(&pp->p_zone->zone_nlwps_lock);
6112 pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
6113 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
6114 pp->p_task->tk_proj->kpj_nprocs--;
6115 pp->p_zone->zone_nprocs--;
6116 mutex_exit(&pp->p_zone->zone_nlwps_lock);
6117
6118 mutex_enter(&pp->p_zone->zone_mem_lock);
6119 pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
6120 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
6121 pp->p_zone->zone_max_swap -= swap;
6122 mutex_exit(&pp->p_zone->zone_mem_lock);
6123
6124 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
6125 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
6126 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
6127
6128 pp->p_flag |= SZONETOP;
6129 pp->p_zone = zone;
6130 mutex_exit(&pp->p_lock);
6131 AS_LOCK_EXIT(pp->p_as);
6132
6133 /*
6134 * Joining the zone cannot fail from now on.
6135 *
6136 * This means that a lot of the following code can be commonized and
6137 * shared with zsched().
6138 */
6139
6140 /*
6141 * If the process contract fmri was inherited, we need to
6142 * flag this so that any contract status will not leak
6143 * extra zone information, svc_fmri in this case
6144 */
6145 if (ctp->conp_svc_ctid != ct->ct_id) {
6146 mutex_enter(&ct->ct_lock);
6147 ctp->conp_svc_zone_enter = ct->ct_id;
6148 mutex_exit(&ct->ct_lock);
6149 }
6150
6151 /*
6152 * Reset the encapsulating process contract's zone.
6153 */
6154 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
6155 contract_setzuniqid(ct, zone->zone_uniqid);
6156
6157 /*
6158 * Create a new task and associate the process with the project keyed
6159 * by (projid,zoneid).
6160 *
6161 * We might as well be in project 0; the global zone's projid doesn't
6162 * make much sense in a zone anyhow.
6163 *
6164 * This also increments zone_ntasks, and returns with p_lock held.
6165 */
6166 tk = task_create(0, zone);
6167 oldtk = task_join(tk, 0);
6168 mutex_exit(&cpu_lock);
6169
6170 /*
6171 * call RCTLOP_SET functions on this proc
6172 */
6173 e.rcep_p.zone = zone;
6174 e.rcep_t = RCENTITY_ZONE;
6175 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
6176 RCD_CALLBACK);
6177 mutex_exit(&pp->p_lock);
6178
6179 /*
6180 * We don't need to hold any of zsched's locks here; not only do we know
6181 * the process and zone aren't going away, we know its session isn't
6182 * changing either.
6183 *
6184 * By joining zsched's session here, we mimic the behavior in the
6185 * global zone of init's sid being the pid of sched. We extend this
6186 * to all zlogin-like zone_enter()'ing processes as well.
6187 */
6188 mutex_enter(&pidlock);
6189 sp = zone->zone_zsched->p_sessp;
6190 sess_hold(zone->zone_zsched);
6191 mutex_enter(&pp->p_lock);
6192 pgexit(pp);
6193 sess_rele(pp->p_sessp, B_TRUE);
6194 pp->p_sessp = sp;
6195 pgjoin(pp, zone->zone_zsched->p_pidp);
6196
6197 /*
6198 * If any threads are scheduled to be placed on zone wait queue they
6199 * should abandon the idea since the wait queue is changing.
6200 * We need to be holding pidlock & p_lock to do this.
6201 */
6202 if ((t = pp->p_tlist) != NULL) {
6203 do {
6204 thread_lock(t);
6205 /*
6206 * Kick this thread so that it doesn't sit
6207 * on a wrong wait queue.
6208 */
6209 if (ISWAITING(t))
6210 setrun_locked(t);
6211
6212 if (t->t_schedflag & TS_ANYWAITQ)
6213 t->t_schedflag &= ~ TS_ANYWAITQ;
6214
6215 thread_unlock(t);
6216 } while ((t = t->t_forw) != pp->p_tlist);
6217 }
6218
6219 /*
6220 * If there is a default scheduling class for the zone and it is not
6221 * the class we are currently in, change all of the threads in the
6222 * process to the new class. We need to be holding pidlock & p_lock
6223 * when we call parmsset so this is a good place to do it.
6224 */
6225 if (zone->zone_defaultcid > 0 &&
6226 zone->zone_defaultcid != curthread->t_cid) {
6227 pcparms_t pcparms;
6228
6229 pcparms.pc_cid = zone->zone_defaultcid;
6230 pcparms.pc_clparms[0] = 0;
6231
6232 /*
6233 * If setting the class fails, we still want to enter the zone.
6234 */
6235 if ((t = pp->p_tlist) != NULL) {
6236 do {
6237 (void) parmsset(&pcparms, t);
6238 } while ((t = t->t_forw) != pp->p_tlist);
6239 }
6240 }
6241
6242 mutex_exit(&pp->p_lock);
6243 mutex_exit(&pidlock);
6244
6245 mutex_exit(&zonehash_lock);
6246 /*
6247 * We're firmly in the zone; let pools progress.
6248 */
6249 pool_unlock();
6250 task_rele(oldtk);
6251 /*
6252 * We don't need to retain a hold on the zone since we already
6253 * incremented zone_ntasks, so the zone isn't going anywhere.
6254 */
6255 zone_rele(zone);
6256
6257 /*
6258 * Chroot
6259 */
6260 vp = zone->zone_rootvp;
6261 zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
6262 zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
6263
6264 /*
6265 * Change process security flags. Note that the _effective_ flags
6266 * cannot change
6267 */
6268 secflags_copy(&pp->p_secflags.psf_lower,
6269 &zone->zone_secflags.psf_lower);
6270 secflags_copy(&pp->p_secflags.psf_upper,
6271 &zone->zone_secflags.psf_upper);
6272 secflags_copy(&pp->p_secflags.psf_inherit,
6273 &zone->zone_secflags.psf_inherit);
6274
6275 /*
6276 * Change process credentials
6277 */
6278 newcr = cralloc();
6279 mutex_enter(&pp->p_crlock);
6280 cr = pp->p_cred;
6281 crcopy_to(cr, newcr);
6282 crsetzone(newcr, zone);
6283 pp->p_cred = newcr;
6284
6285 /*
6286 * Restrict all process privilege sets to zone limit
6287 */
6288 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
6289 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
6290 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
6291 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
6292 mutex_exit(&pp->p_crlock);
6293 crset(pp, newcr);
6294
6295 /*
6296 * Adjust upcount to reflect zone entry.
6297 */
6298 uid = crgetruid(newcr);
6299 mutex_enter(&pidlock);
6300 upcount_dec(uid, GLOBAL_ZONEID);
6301 upcount_inc(uid, zoneid);
6302 mutex_exit(&pidlock);
6303
6304 /*
6305 * Set up core file path and content.
6306 */
6307 set_core_defaults();
6308
6309 out:
6310 /*
6311 * Let the other lwps continue.
6312 */
6313 mutex_enter(&pp->p_lock);
6314 if (curthread != pp->p_agenttp)
6315 continuelwps(pp);
6316 mutex_exit(&pp->p_lock);
6317
6318 return (err != 0 ? set_errno(err) : 0);
6319 }
6320
6321 /*
6322 * Systemcall entry point for zone_list(2).
6323 *
6324 * Processes running in a (non-global) zone only see themselves.
6325 * On labeled systems, they see all zones whose label they dominate.
6326 */
6327 static int
6328 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
6329 {
6330 zoneid_t *zoneids;
6331 zone_t *zone, *myzone;
6332 uint_t user_nzones, real_nzones;
6333 uint_t domi_nzones;
6334 int error;
6335
6336 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
6337 return (set_errno(EFAULT));
6338
6339 myzone = curproc->p_zone;
6340 if (myzone != global_zone) {
6341 bslabel_t *mybslab;
6342
6343 if (!is_system_labeled()) {
6344 /* just return current zone */
6345 real_nzones = domi_nzones = 1;
6346 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
6347 zoneids[0] = myzone->zone_id;
6348 } else {
6349 /* return all zones that are dominated */
6350 mutex_enter(&zonehash_lock);
6351 real_nzones = zonecount;
6352 domi_nzones = 0;
6353 if (real_nzones > 0) {
6354 zoneids = kmem_alloc(real_nzones *
6355 sizeof (zoneid_t), KM_SLEEP);
6356 mybslab = label2bslabel(myzone->zone_slabel);
6357 for (zone = list_head(&zone_active);
6358 zone != NULL;
6359 zone = list_next(&zone_active, zone)) {
6360 if (zone->zone_id == GLOBAL_ZONEID)
6361 continue;
6362 if (zone != myzone &&
6363 (zone->zone_flags & ZF_IS_SCRATCH))
6364 continue;
6365 /*
6366 * Note that a label always dominates
6367 * itself, so myzone is always included
6368 * in the list.
6369 */
6370 if (bldominates(mybslab,
6371 label2bslabel(zone->zone_slabel))) {
6372 zoneids[domi_nzones++] =
6373 zone->zone_id;
6374 }
6375 }
6376 }
6377 mutex_exit(&zonehash_lock);
6378 }
6379 } else {
6380 mutex_enter(&zonehash_lock);
6381 real_nzones = zonecount;
6382 domi_nzones = 0;
6383 if (real_nzones > 0) {
6384 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
6385 KM_SLEEP);
6386 for (zone = list_head(&zone_active); zone != NULL;
6387 zone = list_next(&zone_active, zone))
6388 zoneids[domi_nzones++] = zone->zone_id;
6389 ASSERT(domi_nzones == real_nzones);
6390 }
6391 mutex_exit(&zonehash_lock);
6392 }
6393
6394 /*
6395 * If user has allocated space for fewer entries than we found, then
6396 * return only up to their limit. Either way, tell them exactly how
6397 * many we found.
6398 */
6399 if (domi_nzones < user_nzones)
6400 user_nzones = domi_nzones;
6401 error = 0;
6402 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
6403 error = EFAULT;
6404 } else if (zoneidlist != NULL && user_nzones != 0) {
6405 if (copyout(zoneids, zoneidlist,
6406 user_nzones * sizeof (zoneid_t)) != 0)
6407 error = EFAULT;
6408 }
6409
6410 if (real_nzones > 0)
6411 kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
6412
6413 if (error != 0)
6414 return (set_errno(error));
6415 else
6416 return (0);
6417 }
6418
6419 /*
6420 * Systemcall entry point for zone_lookup(2).
6421 *
6422 * Non-global zones are only able to see themselves and (on labeled systems)
6423 * the zones they dominate.
6424 */
6425 static zoneid_t
6426 zone_lookup(const char *zone_name)
6427 {
6428 char *kname;
6429 zone_t *zone;
6430 zoneid_t zoneid;
6431 int err;
6432
6433 if (zone_name == NULL) {
6434 /* return caller's zone id */
6435 return (getzoneid());
6436 }
6437
6438 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
6439 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
6440 kmem_free(kname, ZONENAME_MAX);
6441 return (set_errno(err));
6442 }
6443
6444 mutex_enter(&zonehash_lock);
6445 zone = zone_find_all_by_name(kname);
6446 kmem_free(kname, ZONENAME_MAX);
6447 /*
6448 * In a non-global zone, can only lookup global and own name.
6449 * In Trusted Extensions zone label dominance rules apply.
6450 */
6451 if (zone == NULL ||
6452 zone_status_get(zone) < ZONE_IS_READY ||
6453 !zone_list_access(zone)) {
6454 mutex_exit(&zonehash_lock);
6455 return (set_errno(EINVAL));
6456 } else {
6457 zoneid = zone->zone_id;
6458 mutex_exit(&zonehash_lock);
6459 return (zoneid);
6460 }
6461 }
6462
6463 static int
6464 zone_version(int *version_arg)
6465 {
6466 int version = ZONE_SYSCALL_API_VERSION;
6467
6468 if (copyout(&version, version_arg, sizeof (int)) != 0)
6469 return (set_errno(EFAULT));
6470 return (0);
6471 }
6472
6473 /* ARGSUSED */
6474 long
6475 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
6476 {
6477 zone_def zs;
6478 int err;
6479
6480 switch (cmd) {
6481 case ZONE_CREATE:
6482 if (get_udatamodel() == DATAMODEL_NATIVE) {
6483 if (copyin(arg1, &zs, sizeof (zone_def))) {
6484 return (set_errno(EFAULT));
6485 }
6486 } else {
6487 #ifdef _SYSCALL32_IMPL
6488 zone_def32 zs32;
6489
6490 if (copyin(arg1, &zs32, sizeof (zone_def32))) {
6491 return (set_errno(EFAULT));
6492 }
6493 zs.zone_name =
6494 (const char *)(unsigned long)zs32.zone_name;
6495 zs.zone_root =
6496 (const char *)(unsigned long)zs32.zone_root;
6497 zs.zone_privs =
6498 (const struct priv_set *)
6499 (unsigned long)zs32.zone_privs;
6500 zs.zone_privssz = zs32.zone_privssz;
6501 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
6502 zs.rctlbufsz = zs32.rctlbufsz;
6503 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
6504 zs.zfsbufsz = zs32.zfsbufsz;
6505 zs.extended_error =
6506 (int *)(unsigned long)zs32.extended_error;
6507 zs.match = zs32.match;
6508 zs.doi = zs32.doi;
6509 zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
6510 zs.flags = zs32.flags;
6511 #else
6512 panic("get_udatamodel() returned bogus result\n");
6513 #endif
6514 }
6515
6516 return (zone_create(zs.zone_name, zs.zone_root,
6517 zs.zone_privs, zs.zone_privssz,
6518 (caddr_t)zs.rctlbuf, zs.rctlbufsz,
6519 (caddr_t)zs.zfsbuf, zs.zfsbufsz,
6520 zs.extended_error, zs.match, zs.doi,
6521 zs.label, zs.flags));
6522 case ZONE_BOOT:
6523 return (zone_boot((zoneid_t)(uintptr_t)arg1));
6524 case ZONE_DESTROY:
6525 return (zone_destroy((zoneid_t)(uintptr_t)arg1));
6526 case ZONE_GETATTR:
6527 return (zone_getattr((zoneid_t)(uintptr_t)arg1,
6528 (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6529 case ZONE_SETATTR:
6530 return (zone_setattr((zoneid_t)(uintptr_t)arg1,
6531 (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6532 case ZONE_ENTER:
6533 return (zone_enter((zoneid_t)(uintptr_t)arg1));
6534 case ZONE_LIST:
6535 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
6536 case ZONE_SHUTDOWN:
6537 return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
6538 case ZONE_LOOKUP:
6539 return (zone_lookup((const char *)arg1));
6540 case ZONE_VERSION:
6541 return (zone_version((int *)arg1));
6542 case ZONE_ADD_DATALINK:
6543 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
6544 (datalink_id_t)(uintptr_t)arg2));
6545 case ZONE_DEL_DATALINK:
6546 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
6547 (datalink_id_t)(uintptr_t)arg2));
6548 case ZONE_CHECK_DATALINK: {
6549 zoneid_t zoneid;
6550 boolean_t need_copyout;
6551
6552 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
6553 return (EFAULT);
6554 need_copyout = (zoneid == ALL_ZONES);
6555 err = zone_check_datalink(&zoneid,
6556 (datalink_id_t)(uintptr_t)arg2);
6557 if (err == 0 && need_copyout) {
6558 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
6559 err = EFAULT;
6560 }
6561 return (err == 0 ? 0 : set_errno(err));
6562 }
6563 case ZONE_LIST_DATALINK:
6564 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
6565 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
6566 default:
6567 return (set_errno(EINVAL));
6568 }
6569 }
6570
6571 struct zarg {
6572 zone_t *zone;
6573 zone_cmd_arg_t arg;
6574 };
6575
6576 static int
6577 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
6578 {
6579 char *buf;
6580 size_t buflen;
6581 int error;
6582
6583 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
6584 buf = kmem_alloc(buflen, KM_SLEEP);
6585 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
6586 error = door_ki_open(buf, doorp);
6587 kmem_free(buf, buflen);
6588 return (error);
6589 }
6590
6591 static void
6592 zone_release_door(door_handle_t *doorp)
6593 {
6594 door_ki_rele(*doorp);
6595 *doorp = NULL;
6596 }
6597
6598 static void
6599 zone_ki_call_zoneadmd(struct zarg *zargp)
6600 {
6601 door_handle_t door = NULL;
6602 door_arg_t darg, save_arg;
6603 char *zone_name;
6604 size_t zone_namelen;
6605 zoneid_t zoneid;
6606 zone_t *zone;
6607 zone_cmd_arg_t arg;
6608 uint64_t uniqid;
6609 size_t size;
6610 int error;
6611 int retry;
6612
6613 zone = zargp->zone;
6614 arg = zargp->arg;
6615 kmem_free(zargp, sizeof (*zargp));
6616
6617 zone_namelen = strlen(zone->zone_name) + 1;
6618 zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
6619 bcopy(zone->zone_name, zone_name, zone_namelen);
6620 zoneid = zone->zone_id;
6621 uniqid = zone->zone_uniqid;
6622 /*
6623 * zoneadmd may be down, but at least we can empty out the zone.
6624 * We can ignore the return value of zone_empty() since we're called
6625 * from a kernel thread and know we won't be delivered any signals.
6626 */
6627 ASSERT(curproc == &p0);
6628 (void) zone_empty(zone);
6629 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
6630 zone_rele(zone);
6631
6632 size = sizeof (arg);
6633 darg.rbuf = (char *)&arg;
6634 darg.data_ptr = (char *)&arg;
6635 darg.rsize = size;
6636 darg.data_size = size;
6637 darg.desc_ptr = NULL;
6638 darg.desc_num = 0;
6639
6640 save_arg = darg;
6641 /*
6642 * Since we're not holding a reference to the zone, any number of
6643 * things can go wrong, including the zone disappearing before we get a
6644 * chance to talk to zoneadmd.
6645 */
6646 for (retry = 0; /* forever */; retry++) {
6647 if (door == NULL &&
6648 (error = zone_lookup_door(zone_name, &door)) != 0) {
6649 goto next;
6650 }
6651 ASSERT(door != NULL);
6652
6653 if ((error = door_ki_upcall_limited(door, &darg, NULL,
6654 SIZE_MAX, 0)) == 0) {
6655 break;
6656 }
6657 switch (error) {
6658 case EINTR:
6659 /* FALLTHROUGH */
6660 case EAGAIN: /* process may be forking */
6661 /*
6662 * Back off for a bit
6663 */
6664 break;
6665 case EBADF:
6666 zone_release_door(&door);
6667 if (zone_lookup_door(zone_name, &door) != 0) {
6668 /*
6669 * zoneadmd may be dead, but it may come back to
6670 * life later.
6671 */
6672 break;
6673 }
6674 break;
6675 default:
6676 cmn_err(CE_WARN,
6677 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
6678 error);
6679 goto out;
6680 }
6681 next:
6682 /*
6683 * If this isn't the same zone_t that we originally had in mind,
6684 * then this is the same as if two kadmin requests come in at
6685 * the same time: the first one wins. This means we lose, so we
6686 * bail.
6687 */
6688 if ((zone = zone_find_by_id(zoneid)) == NULL) {
6689 /*
6690 * Problem is solved.
6691 */
6692 break;
6693 }
6694 if (zone->zone_uniqid != uniqid) {
6695 /*
6696 * zoneid recycled
6697 */
6698 zone_rele(zone);
6699 break;
6700 }
6701 /*
6702 * We could zone_status_timedwait(), but there doesn't seem to
6703 * be much point in doing that (plus, it would mean that
6704 * zone_free() isn't called until this thread exits).
6705 */
6706 zone_rele(zone);
6707 delay(hz);
6708 darg = save_arg;
6709 }
6710 out:
6711 if (door != NULL) {
6712 zone_release_door(&door);
6713 }
6714 kmem_free(zone_name, zone_namelen);
6715 thread_exit();
6716 }
6717
6718 /*
6719 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to
6720 * kadmin(). The caller is a process in the zone.
6721 *
6722 * In order to shutdown the zone, we will hand off control to zoneadmd
6723 * (running in the global zone) via a door. We do a half-hearted job at
6724 * killing all processes in the zone, create a kernel thread to contact
6725 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is
6726 * a form of generation number used to let zoneadmd (as well as
6727 * zone_destroy()) know exactly which zone they're re talking about.
6728 */
6729 int
6730 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
6731 {
6732 struct zarg *zargp;
6733 zone_cmd_t zcmd;
6734 zone_t *zone;
6735
6736 zone = curproc->p_zone;
6737 ASSERT(getzoneid() != GLOBAL_ZONEID);
6738
6739 switch (cmd) {
6740 case A_SHUTDOWN:
6741 switch (fcn) {
6742 case AD_HALT:
6743 case AD_POWEROFF:
6744 zcmd = Z_HALT;
6745 break;
6746 case AD_BOOT:
6747 zcmd = Z_REBOOT;
6748 break;
6749 case AD_IBOOT:
6750 case AD_SBOOT:
6751 case AD_SIBOOT:
6752 case AD_NOSYNC:
6753 return (ENOTSUP);
6754 default:
6755 return (EINVAL);
6756 }
6757 break;
6758 case A_REBOOT:
6759 zcmd = Z_REBOOT;
6760 break;
6761 case A_FTRACE:
6762 case A_REMOUNT:
6763 case A_FREEZE:
6764 case A_DUMP:
6765 case A_CONFIG:
6766 return (ENOTSUP);
6767 default:
6768 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */
6769 return (EINVAL);
6770 }
6771
6772 if (secpolicy_zone_admin(credp, B_FALSE))
6773 return (EPERM);
6774 mutex_enter(&zone_status_lock);
6775
6776 /*
6777 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
6778 * is in the zone.
6779 */
6780 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
6781 if (zone_status_get(zone) > ZONE_IS_RUNNING) {
6782 /*
6783 * This zone is already on its way down.
6784 */
6785 mutex_exit(&zone_status_lock);
6786 return (0);
6787 }
6788 /*
6789 * Prevent future zone_enter()s
6790 */
6791 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
6792 mutex_exit(&zone_status_lock);
6793
6794 /*
6795 * Kill everyone now and call zoneadmd later.
6796 * zone_ki_call_zoneadmd() will do a more thorough job of this
6797 * later.
6798 */
6799 killall(zone->zone_id);
6800 /*
6801 * Now, create the thread to contact zoneadmd and do the rest of the
6802 * work. This thread can't be created in our zone otherwise
6803 * zone_destroy() would deadlock.
6804 */
6805 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
6806 zargp->arg.cmd = zcmd;
6807 zargp->arg.uniqid = zone->zone_uniqid;
6808 zargp->zone = zone;
6809 (void) strcpy(zargp->arg.locale, "C");
6810 /* mdep was already copied in for us by uadmin */
6811 if (mdep != NULL)
6812 (void) strlcpy(zargp->arg.bootbuf, mdep,
6813 sizeof (zargp->arg.bootbuf));
6814 zone_hold(zone);
6815
6816 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
6817 TS_RUN, minclsyspri);
6818 exit(CLD_EXITED, 0);
6819
6820 return (EINVAL);
6821 }
6822
6823 /*
6824 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
6825 * status to ZONE_IS_SHUTTING_DOWN.
6826 *
6827 * This function also shuts down all running zones to ensure that they won't
6828 * fork new processes.
6829 */
6830 void
6831 zone_shutdown_global(void)
6832 {
6833 zone_t *current_zonep;
6834
6835 ASSERT(INGLOBALZONE(curproc));
6836 mutex_enter(&zonehash_lock);
6837 mutex_enter(&zone_status_lock);
6838
6839 /* Modify the global zone's status first. */
6840 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
6841 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
6842
6843 /*
6844 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
6845 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
6846 * could cause assertions to fail (e.g., assertions about a zone's
6847 * state during initialization, readying, or booting) or produce races.
6848 * We'll let threads continue to initialize and ready new zones: they'll
6849 * fail to boot the new zones when they see that the global zone is
6850 * shutting down.
6851 */
6852 for (current_zonep = list_head(&zone_active); current_zonep != NULL;
6853 current_zonep = list_next(&zone_active, current_zonep)) {
6854 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
6855 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
6856 }
6857 mutex_exit(&zone_status_lock);
6858 mutex_exit(&zonehash_lock);
6859 }
6860
6861 /*
6862 * Returns true if the named dataset is visible in the current zone.
6863 * The 'write' parameter is set to 1 if the dataset is also writable.
6864 */
6865 int
6866 zone_dataset_visible(const char *dataset, int *write)
6867 {
6868 static int zfstype = -1;
6869 zone_dataset_t *zd;
6870 size_t len;
6871 zone_t *zone = curproc->p_zone;
6872 const char *name = NULL;
6873 vfs_t *vfsp = NULL;
6874
6875 if (dataset[0] == '\0')
6876 return (0);
6877
6878 /*
6879 * Walk the list once, looking for datasets which match exactly, or
6880 * specify a dataset underneath an exported dataset. If found, return
6881 * true and note that it is writable.
6882 */
6883 for (zd = list_head(&zone->zone_datasets); zd != NULL;
6884 zd = list_next(&zone->zone_datasets, zd)) {
6885
6886 len = strlen(zd->zd_dataset);
6887 if (strlen(dataset) >= len &&
6888 bcmp(dataset, zd->zd_dataset, len) == 0 &&
6889 (dataset[len] == '\0' || dataset[len] == '/' ||
6890 dataset[len] == '@')) {
6891 if (write)
6892 *write = 1;
6893 return (1);
6894 }
6895 }
6896
6897 /*
6898 * Walk the list a second time, searching for datasets which are parents
6899 * of exported datasets. These should be visible, but read-only.
6900 *
6901 * Note that we also have to support forms such as 'pool/dataset/', with
6902 * a trailing slash.
6903 */
6904 for (zd = list_head(&zone->zone_datasets); zd != NULL;
6905 zd = list_next(&zone->zone_datasets, zd)) {
6906
6907 len = strlen(dataset);
6908 if (dataset[len - 1] == '/')
6909 len--; /* Ignore trailing slash */
6910 if (len < strlen(zd->zd_dataset) &&
6911 bcmp(dataset, zd->zd_dataset, len) == 0 &&
6912 zd->zd_dataset[len] == '/') {
6913 if (write)
6914 *write = 0;
6915 return (1);
6916 }
6917 }
6918
6919 /*
6920 * We reach here if the given dataset is not found in the zone_dataset
6921 * list. Check if this dataset was added as a filesystem (ie. "add fs")
6922 * instead of delegation. For this we search for the dataset in the
6923 * zone_vfslist of this zone. If found, return true and note that it is
6924 * not writable.
6925 */
6926
6927 /*
6928 * Initialize zfstype if it is not initialized yet.
6929 */
6930 if (zfstype == -1) {
6931 struct vfssw *vswp = vfs_getvfssw("zfs");
6932 zfstype = vswp - vfssw;
6933 vfs_unrefvfssw(vswp);
6934 }
6935
6936 vfs_list_read_lock();
6937 vfsp = zone->zone_vfslist;
6938 do {
6939 ASSERT(vfsp);
6940 if (vfsp->vfs_fstype == zfstype) {
6941 name = refstr_value(vfsp->vfs_resource);
6942
6943 /*
6944 * Check if we have an exact match.
6945 */
6946 if (strcmp(dataset, name) == 0) {
6947 vfs_list_unlock();
6948 if (write)
6949 *write = 0;
6950 return (1);
6951 }
6952 /*
6953 * We need to check if we are looking for parents of
6954 * a dataset. These should be visible, but read-only.
6955 */
6956 len = strlen(dataset);
6957 if (dataset[len - 1] == '/')
6958 len--;
6959
6960 if (len < strlen(name) &&
6961 bcmp(dataset, name, len) == 0 && name[len] == '/') {
6962 vfs_list_unlock();
6963 if (write)
6964 *write = 0;
6965 return (1);
6966 }
6967 }
6968 vfsp = vfsp->vfs_zone_next;
6969 } while (vfsp != zone->zone_vfslist);
6970
6971 vfs_list_unlock();
6972 return (0);
6973 }
6974
6975 /*
6976 * zone_find_by_any_path() -
6977 *
6978 * kernel-private routine similar to zone_find_by_path(), but which
6979 * effectively compares against zone paths rather than zonerootpath
6980 * (i.e., the last component of zonerootpaths, which should be "root/",
6981 * are not compared.) This is done in order to accurately identify all
6982 * paths, whether zone-visible or not, including those which are parallel
6983 * to /root/, such as /dev/, /home/, etc...
6984 *
6985 * If the specified path does not fall under any zone path then global
6986 * zone is returned.
6987 *
6988 * The treat_abs parameter indicates whether the path should be treated as
6989 * an absolute path although it does not begin with "/". (This supports
6990 * nfs mount syntax such as host:any/path.)
6991 *
6992 * The caller is responsible for zone_rele of the returned zone.
6993 */
6994 zone_t *
6995 zone_find_by_any_path(const char *path, boolean_t treat_abs)
6996 {
6997 zone_t *zone;
6998 int path_offset = 0;
6999
7000 if (path == NULL) {
7001 zone_hold(global_zone);
7002 return (global_zone);
7003 }
7004
7005 if (*path != '/') {
7006 ASSERT(treat_abs);
7007 path_offset = 1;
7008 }
7009
7010 mutex_enter(&zonehash_lock);
7011 for (zone = list_head(&zone_active); zone != NULL;
7012 zone = list_next(&zone_active, zone)) {
7013 char *c;
7014 size_t pathlen;
7015 char *rootpath_start;
7016
7017 if (zone == global_zone) /* skip global zone */
7018 continue;
7019
7020 /* scan backwards to find start of last component */
7021 c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
7022 do {
7023 c--;
7024 } while (*c != '/');
7025
7026 pathlen = c - zone->zone_rootpath + 1 - path_offset;
7027 rootpath_start = (zone->zone_rootpath + path_offset);
7028 if (strncmp(path, rootpath_start, pathlen) == 0)
7029 break;
7030 }
7031 if (zone == NULL)
7032 zone = global_zone;
7033 zone_hold(zone);
7034 mutex_exit(&zonehash_lock);
7035 return (zone);
7036 }
7037
7038 /*
7039 * Finds a zone_dl_t with the given linkid in the given zone. Returns the
7040 * zone_dl_t pointer if found, and NULL otherwise.
7041 */
7042 static zone_dl_t *
7043 zone_find_dl(zone_t *zone, datalink_id_t linkid)
7044 {
7045 zone_dl_t *zdl;
7046
7047 ASSERT(mutex_owned(&zone->zone_lock));
7048 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7049 zdl = list_next(&zone->zone_dl_list, zdl)) {
7050 if (zdl->zdl_id == linkid)
7051 break;
7052 }
7053 return (zdl);
7054 }
7055
7056 static boolean_t
7057 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
7058 {
7059 boolean_t exists;
7060
7061 mutex_enter(&zone->zone_lock);
7062 exists = (zone_find_dl(zone, linkid) != NULL);
7063 mutex_exit(&zone->zone_lock);
7064 return (exists);
7065 }
7066
7067 /*
7068 * Add an data link name for the zone.
7069 */
7070 static int
7071 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
7072 {
7073 zone_dl_t *zdl;
7074 zone_t *zone;
7075 zone_t *thiszone;
7076
7077 if ((thiszone = zone_find_by_id(zoneid)) == NULL)
7078 return (set_errno(ENXIO));
7079
7080 /* Verify that the datalink ID doesn't already belong to a zone. */
7081 mutex_enter(&zonehash_lock);
7082 for (zone = list_head(&zone_active); zone != NULL;
7083 zone = list_next(&zone_active, zone)) {
7084 if (zone_dl_exists(zone, linkid)) {
7085 mutex_exit(&zonehash_lock);
7086 zone_rele(thiszone);
7087 return (set_errno((zone == thiszone) ? EEXIST : EPERM));
7088 }
7089 }
7090
7091 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
7092 zdl->zdl_id = linkid;
7093 zdl->zdl_net = NULL;
7094 mutex_enter(&thiszone->zone_lock);
7095 list_insert_head(&thiszone->zone_dl_list, zdl);
7096 mutex_exit(&thiszone->zone_lock);
7097 mutex_exit(&zonehash_lock);
7098 zone_rele(thiszone);
7099 return (0);
7100 }
7101
7102 static int
7103 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
7104 {
7105 zone_dl_t *zdl;
7106 zone_t *zone;
7107 int err = 0;
7108
7109 if ((zone = zone_find_by_id(zoneid)) == NULL)
7110 return (set_errno(EINVAL));
7111
7112 mutex_enter(&zone->zone_lock);
7113 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7114 err = ENXIO;
7115 } else {
7116 list_remove(&zone->zone_dl_list, zdl);
7117 nvlist_free(zdl->zdl_net);
7118 kmem_free(zdl, sizeof (zone_dl_t));
7119 }
7120 mutex_exit(&zone->zone_lock);
7121 zone_rele(zone);
7122 return (err == 0 ? 0 : set_errno(err));
7123 }
7124
7125 /*
7126 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
7127 * the linkid. Otherwise we just check if the specified zoneidp has been
7128 * assigned the supplied linkid.
7129 */
7130 int
7131 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
7132 {
7133 zone_t *zone;
7134 int err = ENXIO;
7135
7136 if (*zoneidp != ALL_ZONES) {
7137 if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
7138 if (zone_dl_exists(zone, linkid))
7139 err = 0;
7140 zone_rele(zone);
7141 }
7142 return (err);
7143 }
7144
7145 mutex_enter(&zonehash_lock);
7146 for (zone = list_head(&zone_active); zone != NULL;
7147 zone = list_next(&zone_active, zone)) {
7148 if (zone_dl_exists(zone, linkid)) {
7149 *zoneidp = zone->zone_id;
7150 err = 0;
7151 break;
7152 }
7153 }
7154 mutex_exit(&zonehash_lock);
7155 return (err);
7156 }
7157
7158 /*
7159 * Get the list of datalink IDs assigned to a zone.
7160 *
7161 * On input, *nump is the number of datalink IDs that can fit in the supplied
7162 * idarray. Upon return, *nump is either set to the number of datalink IDs
7163 * that were placed in the array if the array was large enough, or to the
7164 * number of datalink IDs that the function needs to place in the array if the
7165 * array is too small.
7166 */
7167 static int
7168 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
7169 {
7170 uint_t num, dlcount;
7171 zone_t *zone;
7172 zone_dl_t *zdl;
7173 datalink_id_t *idptr = idarray;
7174
7175 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
7176 return (set_errno(EFAULT));
7177 if ((zone = zone_find_by_id(zoneid)) == NULL)
7178 return (set_errno(ENXIO));
7179
7180 num = 0;
7181 mutex_enter(&zone->zone_lock);
7182 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7183 zdl = list_next(&zone->zone_dl_list, zdl)) {
7184 /*
7185 * If the list is bigger than what the caller supplied, just
7186 * count, don't do copyout.
7187 */
7188 if (++num > dlcount)
7189 continue;
7190 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
7191 mutex_exit(&zone->zone_lock);
7192 zone_rele(zone);
7193 return (set_errno(EFAULT));
7194 }
7195 idptr++;
7196 }
7197 mutex_exit(&zone->zone_lock);
7198 zone_rele(zone);
7199
7200 /* Increased or decreased, caller should be notified. */
7201 if (num != dlcount) {
7202 if (copyout(&num, nump, sizeof (num)) != 0)
7203 return (set_errno(EFAULT));
7204 }
7205 return (0);
7206 }
7207
7208 /*
7209 * Public interface for looking up a zone by zoneid. It's a customized version
7210 * for netstack_zone_create(). It can only be called from the zsd create
7211 * callbacks, since it doesn't have reference on the zone structure hence if
7212 * it is called elsewhere the zone could disappear after the zonehash_lock
7213 * is dropped.
7214 *
7215 * Furthermore it
7216 * 1. Doesn't check the status of the zone.
7217 * 2. It will be called even before zone_init is called, in that case the
7218 * address of zone0 is returned directly, and netstack_zone_create()
7219 * will only assign a value to zone0.zone_netstack, won't break anything.
7220 * 3. Returns without the zone being held.
7221 */
7222 zone_t *
7223 zone_find_by_id_nolock(zoneid_t zoneid)
7224 {
7225 zone_t *zone;
7226
7227 mutex_enter(&zonehash_lock);
7228 if (zonehashbyid == NULL)
7229 zone = &zone0;
7230 else
7231 zone = zone_find_all_by_id(zoneid);
7232 mutex_exit(&zonehash_lock);
7233 return (zone);
7234 }
7235
7236 /*
7237 * Walk the datalinks for a given zone
7238 */
7239 int
7240 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
7241 void *data)
7242 {
7243 zone_t *zone;
7244 zone_dl_t *zdl;
7245 datalink_id_t *idarray;
7246 uint_t idcount = 0;
7247 int i, ret = 0;
7248
7249 if ((zone = zone_find_by_id(zoneid)) == NULL)
7250 return (ENOENT);
7251
7252 /*
7253 * We first build an array of linkid's so that we can walk these and
7254 * execute the callback with the zone_lock dropped.
7255 */
7256 mutex_enter(&zone->zone_lock);
7257 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7258 zdl = list_next(&zone->zone_dl_list, zdl)) {
7259 idcount++;
7260 }
7261
7262 if (idcount == 0) {
7263 mutex_exit(&zone->zone_lock);
7264 zone_rele(zone);
7265 return (0);
7266 }
7267
7268 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
7269 if (idarray == NULL) {
7270 mutex_exit(&zone->zone_lock);
7271 zone_rele(zone);
7272 return (ENOMEM);
7273 }
7274
7275 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7276 i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
7277 idarray[i] = zdl->zdl_id;
7278 }
7279
7280 mutex_exit(&zone->zone_lock);
7281
7282 for (i = 0; i < idcount && ret == 0; i++) {
7283 if ((ret = (*cb)(idarray[i], data)) != 0)
7284 break;
7285 }
7286
7287 zone_rele(zone);
7288 kmem_free(idarray, sizeof (datalink_id_t) * idcount);
7289 return (ret);
7290 }
7291
7292 static char *
7293 zone_net_type2name(int type)
7294 {
7295 switch (type) {
7296 case ZONE_NETWORK_ADDRESS:
7297 return (ZONE_NET_ADDRNAME);
7298 case ZONE_NETWORK_DEFROUTER:
7299 return (ZONE_NET_RTRNAME);
7300 default:
7301 return (NULL);
7302 }
7303 }
7304
7305 static int
7306 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7307 {
7308 zone_t *zone;
7309 zone_dl_t *zdl;
7310 nvlist_t *nvl;
7311 int err = 0;
7312 uint8_t *new = NULL;
7313 char *nvname;
7314 int bufsize;
7315 datalink_id_t linkid = znbuf->zn_linkid;
7316
7317 if (secpolicy_zone_config(CRED()) != 0)
7318 return (set_errno(EPERM));
7319
7320 if (zoneid == GLOBAL_ZONEID)
7321 return (set_errno(EINVAL));
7322
7323 nvname = zone_net_type2name(znbuf->zn_type);
7324 bufsize = znbuf->zn_len;
7325 new = znbuf->zn_val;
7326 if (nvname == NULL)
7327 return (set_errno(EINVAL));
7328
7329 if ((zone = zone_find_by_id(zoneid)) == NULL) {
7330 return (set_errno(EINVAL));
7331 }
7332
7333 mutex_enter(&zone->zone_lock);
7334 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7335 err = ENXIO;
7336 goto done;
7337 }
7338 if ((nvl = zdl->zdl_net) == NULL) {
7339 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) {
7340 err = ENOMEM;
7341 goto done;
7342 } else {
7343 zdl->zdl_net = nvl;
7344 }
7345 }
7346 if (nvlist_exists(nvl, nvname)) {
7347 err = EINVAL;
7348 goto done;
7349 }
7350 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize);
7351 ASSERT(err == 0);
7352 done:
7353 mutex_exit(&zone->zone_lock);
7354 zone_rele(zone);
7355 if (err != 0)
7356 return (set_errno(err));
7357 else
7358 return (0);
7359 }
7360
7361 static int
7362 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7363 {
7364 zone_t *zone;
7365 zone_dl_t *zdl;
7366 nvlist_t *nvl;
7367 uint8_t *ptr;
7368 uint_t psize;
7369 int err = 0;
7370 char *nvname;
7371 int bufsize;
7372 void *buf;
7373 datalink_id_t linkid = znbuf->zn_linkid;
7374
7375 if (zoneid == GLOBAL_ZONEID)
7376 return (set_errno(EINVAL));
7377
7378 nvname = zone_net_type2name(znbuf->zn_type);
7379 bufsize = znbuf->zn_len;
7380 buf = znbuf->zn_val;
7381
7382 if (nvname == NULL)
7383 return (set_errno(EINVAL));
7384 if ((zone = zone_find_by_id(zoneid)) == NULL)
7385 return (set_errno(EINVAL));
7386
7387 mutex_enter(&zone->zone_lock);
7388 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7389 err = ENXIO;
7390 goto done;
7391 }
7392 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) {
7393 err = ENOENT;
7394 goto done;
7395 }
7396 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize);
7397 ASSERT(err == 0);
7398
7399 if (psize > bufsize) {
7400 err = ENOBUFS;
7401 goto done;
7402 }
7403 znbuf->zn_len = psize;
7404 bcopy(ptr, buf, psize);
7405 done:
7406 mutex_exit(&zone->zone_lock);
7407 zone_rele(zone);
7408 if (err != 0)
7409 return (set_errno(err));
7410 else
7411 return (0);
7412 }