Print this page
Revert exi_zone to exi_zoneid, and install exi_ne backpointer
| Split |
Close |
| Expand all |
| Collapse all |
--- old/usr/src/uts/common/fs/nfs/nfs_auth.c
+++ new/usr/src/uts/common/fs/nfs/nfs_auth.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24 24 * Copyright (c) 2015 by Delphix. All rights reserved.
25 25 * Copyright 2018 Nexenta Systems, Inc. All rights reserved.
26 26 */
27 27
28 28 #include <sys/param.h>
29 29 #include <sys/errno.h>
30 30 #include <sys/vfs.h>
31 31 #include <sys/vnode.h>
32 32 #include <sys/cred.h>
33 33 #include <sys/cmn_err.h>
34 34 #include <sys/systm.h>
35 35 #include <sys/kmem.h>
36 36 #include <sys/pathname.h>
37 37 #include <sys/utsname.h>
38 38 #include <sys/debug.h>
39 39 #include <sys/door.h>
40 40 #include <sys/sdt.h>
41 41 #include <sys/thread.h>
42 42 #include <sys/avl.h>
43 43
44 44 #include <rpc/types.h>
45 45 #include <rpc/auth.h>
46 46 #include <rpc/clnt.h>
47 47
48 48 #include <nfs/nfs.h>
49 49 #include <nfs/export.h>
50 50 #include <nfs/nfs_clnt.h>
51 51 #include <nfs/auth.h>
52 52
53 53 static struct kmem_cache *exi_cache_handle;
54 54 static void exi_cache_reclaim(void *);
55 55 static void exi_cache_reclaim_zone(nfs_globals_t *);
56 56 static void exi_cache_trim(struct exportinfo *exi);
57 57
58 58 extern pri_t minclsyspri;
59 59
60 60 /* NFS auth cache statistics */
61 61 volatile uint_t nfsauth_cache_hit;
62 62 volatile uint_t nfsauth_cache_miss;
63 63 volatile uint_t nfsauth_cache_refresh;
64 64 volatile uint_t nfsauth_cache_reclaim;
65 65 volatile uint_t exi_cache_auth_reclaim_failed;
66 66 volatile uint_t exi_cache_clnt_reclaim_failed;
67 67
68 68 /*
69 69 * The lifetime of an auth cache entry:
70 70 * ------------------------------------
71 71 *
72 72 * An auth cache entry is created with both the auth_time
73 73 * and auth_freshness times set to the current time.
74 74 *
75 75 * Upon every client access which results in a hit, the
76 76 * auth_time will be updated.
77 77 *
78 78 * If a client access determines that the auth_freshness
79 79 * indicates that the entry is STALE, then it will be
80 80 * refreshed. Note that this will explicitly reset
81 81 * auth_time.
82 82 *
83 83 * When the REFRESH successfully occurs, then the
84 84 * auth_freshness is updated.
85 85 *
86 86 * There are two ways for an entry to leave the cache:
87 87 *
88 88 * 1) Purged by an action on the export (remove or changed)
89 89 * 2) Memory backpressure from the kernel (check against NFSAUTH_CACHE_TRIM)
90 90 *
91 91 * For 2) we check the timeout value against auth_time.
92 92 */
93 93
94 94 /*
95 95 * Number of seconds until we mark for refresh an auth cache entry.
96 96 */
97 97 #define NFSAUTH_CACHE_REFRESH 600
98 98
99 99 /*
100 100 * Number of idle seconds until we yield to backpressure
101 101 * to trim a cache entry.
102 102 */
103 103 #define NFSAUTH_CACHE_TRIM 3600
104 104
105 105 /*
106 106 * While we could encapuslate the exi_list inside the
107 107 * exi structure, we can't do that for the auth_list.
108 108 * So, to keep things looking clean, we keep them both
109 109 * in these external lists.
110 110 */
111 111 typedef struct refreshq_exi_node {
112 112 struct exportinfo *ren_exi;
113 113 list_t ren_authlist;
114 114 list_node_t ren_node;
115 115 } refreshq_exi_node_t;
116 116
117 117 typedef struct refreshq_auth_node {
118 118 struct auth_cache *ran_auth;
119 119 char *ran_netid;
120 120 list_node_t ran_node;
121 121 } refreshq_auth_node_t;
122 122
123 123 /*
124 124 * Used to manipulate things on the refreshq_queue. Note that the refresh
125 125 * thread will effectively pop a node off of the queue, at which point it
126 126 * will no longer need to hold the mutex.
127 127 */
128 128 static kmutex_t refreshq_lock;
129 129 static list_t refreshq_queue;
130 130 static kcondvar_t refreshq_cv;
131 131
132 132 /*
133 133 * If there is ever a problem with loading the module, then nfsauth_fini()
134 134 * needs to be called to remove state. In that event, since the refreshq
135 135 * thread has been started, they need to work together to get rid of state.
136 136 */
137 137 typedef enum nfsauth_refreshq_thread_state {
138 138 REFRESHQ_THREAD_RUNNING,
139 139 REFRESHQ_THREAD_FINI_REQ,
140 140 REFRESHQ_THREAD_HALTED,
141 141 REFRESHQ_THREAD_NEED_CREATE
142 142 } nfsauth_refreshq_thread_state_t;
143 143
144 144 typedef struct nfsauth_globals {
145 145 kmutex_t mountd_lock;
146 146 door_handle_t mountd_dh;
147 147
148 148 /*
149 149 * Used to manipulate things on the refreshq_queue. Note that the
150 150 * refresh thread will effectively pop a node off of the queue,
151 151 * at which point it will no longer need to hold the mutex.
152 152 */
153 153 kmutex_t refreshq_lock;
154 154 list_t refreshq_queue;
155 155 kcondvar_t refreshq_cv;
156 156
157 157 /*
158 158 * A list_t would be overkill. These are auth_cache entries which are
159 159 * no longer linked to an exi. It should be the case that all of their
160 160 * states are NFS_AUTH_INVALID, i.e., the only way to be put on this
161 161 * list is iff their state indicated that they had been placed on the
162 162 * refreshq_queue.
163 163 *
164 164 * Note that while there is no link from the exi or back to the exi,
165 165 * the exi can not go away until these entries are harvested.
166 166 */
167 167 struct auth_cache *refreshq_dead_entries;
168 168 nfsauth_refreshq_thread_state_t refreshq_thread_state;
169 169
170 170 } nfsauth_globals_t;
171 171
172 172 static void nfsauth_free_node(struct auth_cache *);
173 173 static void nfsauth_refresh_thread(nfsauth_globals_t *);
174 174
175 175 static int nfsauth_cache_compar(const void *, const void *);
176 176
177 177 static nfsauth_globals_t *
178 178 nfsauth_get_zg(void)
179 179 {
180 180 nfs_globals_t *ng = zone_getspecific(nfssrv_zone_key, curzone);
181 181 nfsauth_globals_t *nag = ng->nfs_auth;
182 182 ASSERT(nag != NULL);
183 183 return (nag);
184 184 }
185 185
186 186 void
187 187 mountd_args(uint_t did)
188 188 {
189 189 nfsauth_globals_t *nag;
190 190
191 191 nag = nfsauth_get_zg();
192 192 mutex_enter(&nag->mountd_lock);
193 193 if (nag->mountd_dh != NULL)
194 194 door_ki_rele(nag->mountd_dh);
195 195 nag->mountd_dh = door_ki_lookup(did);
196 196 mutex_exit(&nag->mountd_lock);
197 197 }
198 198
199 199 void
200 200 nfsauth_init(void)
201 201 {
202 202 exi_cache_handle = kmem_cache_create("exi_cache_handle",
203 203 sizeof (struct auth_cache), 0, NULL, NULL,
204 204 exi_cache_reclaim, NULL, NULL, 0);
205 205 }
206 206
207 207 void
208 208 nfsauth_fini(void)
209 209 {
210 210 kmem_cache_destroy(exi_cache_handle);
211 211 }
212 212
213 213 void
214 214 nfsauth_zone_init(nfs_globals_t *ng)
215 215 {
216 216 nfsauth_globals_t *nag;
217 217
218 218 nag = kmem_zalloc(sizeof (*nag), KM_SLEEP);
219 219
220 220 /*
221 221 * mountd can be restarted by smf(5). We need to make sure
222 222 * the updated door handle will safely make it to mountd_dh.
223 223 */
224 224 mutex_init(&nag->mountd_lock, NULL, MUTEX_DEFAULT, NULL);
225 225 mutex_init(&nag->refreshq_lock, NULL, MUTEX_DEFAULT, NULL);
226 226 list_create(&nag->refreshq_queue, sizeof (refreshq_exi_node_t),
227 227 offsetof(refreshq_exi_node_t, ren_node));
228 228 cv_init(&nag->refreshq_cv, NULL, CV_DEFAULT, NULL);
229 229 nag->refreshq_thread_state = REFRESHQ_THREAD_NEED_CREATE;
230 230
231 231 ng->nfs_auth = nag;
232 232 }
233 233
234 234 void
235 235 nfsauth_zone_shutdown(nfs_globals_t *ng)
236 236 {
237 237 refreshq_exi_node_t *ren;
238 238 nfsauth_globals_t *nag = ng->nfs_auth;
239 239
240 240 /* Prevent the nfsauth_refresh_thread from getting new work */
241 241 mutex_enter(&nag->refreshq_lock);
242 242 if (nag->refreshq_thread_state == REFRESHQ_THREAD_RUNNING) {
243 243 nag->refreshq_thread_state = REFRESHQ_THREAD_FINI_REQ;
244 244 cv_broadcast(&nag->refreshq_cv);
245 245
246 246 /* Wait for nfsauth_refresh_thread() to exit */
247 247 while (nag->refreshq_thread_state != REFRESHQ_THREAD_HALTED)
248 248 cv_wait(&nag->refreshq_cv, &nag->refreshq_lock);
249 249 }
250 250 mutex_exit(&nag->refreshq_lock);
251 251
252 252 /*
253 253 * Walk the exi_list and in turn, walk the auth_lists and free all
254 254 * lists. In addition, free INVALID auth_cache entries.
255 255 */
256 256 while ((ren = list_remove_head(&nag->refreshq_queue))) {
257 257 refreshq_auth_node_t *ran;
258 258
259 259 while ((ran = list_remove_head(&ren->ren_authlist)) != NULL) {
260 260 struct auth_cache *p = ran->ran_auth;
261 261 if (p->auth_state == NFS_AUTH_INVALID)
262 262 nfsauth_free_node(p);
263 263 strfree(ran->ran_netid);
264 264 kmem_free(ran, sizeof (*ran));
265 265 }
266 266
267 267 list_destroy(&ren->ren_authlist);
268 268 exi_rele(ren->ren_exi);
269 269 kmem_free(ren, sizeof (*ren));
270 270 }
271 271 }
272 272
273 273 void
274 274 nfsauth_zone_fini(nfs_globals_t *ng)
275 275 {
276 276 nfsauth_globals_t *nag = ng->nfs_auth;
277 277
278 278 ng->nfs_auth = NULL;
279 279
280 280 list_destroy(&nag->refreshq_queue);
281 281 cv_destroy(&nag->refreshq_cv);
282 282 mutex_destroy(&nag->refreshq_lock);
283 283 mutex_destroy(&nag->mountd_lock);
284 284 /* Extra cleanup. */
285 285 if (nag->mountd_dh != NULL)
286 286 door_ki_rele(nag->mountd_dh);
287 287 kmem_free(nag, sizeof (*nag));
288 288 }
289 289
290 290 /*
291 291 * Convert the address in a netbuf to
292 292 * a hash index for the auth_cache table.
293 293 */
294 294 static int
295 295 hash(struct netbuf *a)
296 296 {
297 297 int i, h = 0;
298 298
299 299 for (i = 0; i < a->len; i++)
300 300 h ^= a->buf[i];
301 301
302 302 return (h & (AUTH_TABLESIZE - 1));
303 303 }
304 304
305 305 /*
306 306 * Mask out the components of an
307 307 * address that do not identify
308 308 * a host. For socket addresses the
309 309 * masking gets rid of the port number.
310 310 */
311 311 static void
312 312 addrmask(struct netbuf *addr, struct netbuf *mask)
313 313 {
314 314 int i;
315 315
316 316 for (i = 0; i < addr->len; i++)
317 317 addr->buf[i] &= mask->buf[i];
318 318 }
319 319
320 320 /*
321 321 * nfsauth4_access is used for NFS V4 auth checking. Besides doing
322 322 * the common nfsauth_access(), it will check if the client can
323 323 * have a limited access to this vnode even if the security flavor
324 324 * used does not meet the policy.
325 325 */
326 326 int
327 327 nfsauth4_access(struct exportinfo *exi, vnode_t *vp, struct svc_req *req,
328 328 cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
329 329 {
330 330 int access;
331 331
332 332 access = nfsauth_access(exi, req, cr, uid, gid, ngids, gids);
333 333
334 334 /*
335 335 * There are cases that the server needs to allow the client
336 336 * to have a limited view.
337 337 *
338 338 * e.g.
339 339 * /export is shared as "sec=sys,rw=dfs-test-4,sec=krb5,rw"
340 340 * /export/home is shared as "sec=sys,rw"
341 341 *
342 342 * When the client mounts /export with sec=sys, the client
343 343 * would get a limited view with RO access on /export to see
344 344 * "home" only because the client is allowed to access
345 345 * /export/home with auth_sys.
346 346 */
347 347 if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) {
348 348 /*
349 349 * Allow ro permission with LIMITED view if there is a
350 350 * sub-dir exported under vp.
351 351 */
352 352 if (has_visible(exi, vp))
353 353 return (NFSAUTH_LIMITED);
354 354 }
355 355
356 356 return (access);
357 357 }
358 358
359 359 static void
360 360 sys_log(const char *msg)
361 361 {
362 362 static time_t tstamp = 0;
363 363 time_t now;
364 364
365 365 /*
366 366 * msg is shown (at most) once per minute
367 367 */
368 368 now = gethrestime_sec();
369 369 if ((tstamp + 60) < now) {
370 370 tstamp = now;
371 371 cmn_err(CE_WARN, msg);
372 372 }
373 373 }
374 374
375 375 /*
376 376 * Callup to the mountd to get access information in the kernel.
377 377 */
378 378 static bool_t
379 379 nfsauth_retrieve(nfsauth_globals_t *nag, struct exportinfo *exi,
380 380 char *req_netid, int flavor, struct netbuf *addr, int *access,
381 381 cred_t *clnt_cred, uid_t *srv_uid, gid_t *srv_gid, uint_t *srv_gids_cnt,
382 382 gid_t **srv_gids)
383 383 {
384 384 varg_t varg = {0};
385 385 nfsauth_res_t res = {0};
386 386 XDR xdrs;
387 387 size_t absz;
388 388 caddr_t abuf;
389 389 int last = 0;
390 390 door_arg_t da;
391 391 door_info_t di;
392 392 door_handle_t dh;
393 393 uint_t ntries = 0;
394 394
395 395 /*
396 396 * No entry in the cache for this client/flavor
397 397 * so we need to call the nfsauth service in the
398 398 * mount daemon.
399 399 */
400 400
401 401 varg.vers = V_PROTO;
402 402 varg.arg_u.arg.cmd = NFSAUTH_ACCESS;
403 403 varg.arg_u.arg.areq.req_client.n_len = addr->len;
404 404 varg.arg_u.arg.areq.req_client.n_bytes = addr->buf;
405 405 varg.arg_u.arg.areq.req_netid = req_netid;
406 406 varg.arg_u.arg.areq.req_path = exi->exi_export.ex_path;
407 407 varg.arg_u.arg.areq.req_flavor = flavor;
408 408 varg.arg_u.arg.areq.req_clnt_uid = crgetuid(clnt_cred);
409 409 varg.arg_u.arg.areq.req_clnt_gid = crgetgid(clnt_cred);
410 410 varg.arg_u.arg.areq.req_clnt_gids.len = crgetngroups(clnt_cred);
411 411 varg.arg_u.arg.areq.req_clnt_gids.val = (gid_t *)crgetgroups(clnt_cred);
412 412
413 413 DTRACE_PROBE1(nfsserv__func__nfsauth__varg, varg_t *, &varg);
414 414
415 415 /*
416 416 * Setup the XDR stream for encoding the arguments. Notice that
417 417 * in addition to the args having variable fields (req_netid and
418 418 * req_path), the argument data structure is itself versioned,
419 419 * so we need to make sure we can size the arguments buffer
420 420 * appropriately to encode all the args. If we can't get sizing
421 421 * info _or_ properly encode the arguments, there's really no
422 422 * point in continuting, so we fail the request.
423 423 */
424 424 if ((absz = xdr_sizeof(xdr_varg, &varg)) == 0) {
425 425 *access = NFSAUTH_DENIED;
426 426 return (FALSE);
427 427 }
428 428
429 429 abuf = (caddr_t)kmem_alloc(absz, KM_SLEEP);
430 430 xdrmem_create(&xdrs, abuf, absz, XDR_ENCODE);
431 431 if (!xdr_varg(&xdrs, &varg)) {
432 432 XDR_DESTROY(&xdrs);
433 433 goto fail;
434 434 }
435 435 XDR_DESTROY(&xdrs);
436 436
437 437 /*
438 438 * Prepare the door arguments
439 439 *
440 440 * We don't know the size of the message the daemon
441 441 * will pass back to us. By setting rbuf to NULL,
442 442 * we force the door code to allocate a buf of the
443 443 * appropriate size. We must set rsize > 0, however,
444 444 * else the door code acts as if no response was
445 445 * expected and doesn't pass the data to us.
446 446 */
447 447 da.data_ptr = (char *)abuf;
448 448 da.data_size = absz;
449 449 da.desc_ptr = NULL;
450 450 da.desc_num = 0;
451 451 da.rbuf = NULL;
452 452 da.rsize = 1;
453 453
454 454 retry:
455 455 mutex_enter(&nag->mountd_lock);
456 456 dh = nag->mountd_dh;
457 457 if (dh != NULL)
458 458 door_ki_hold(dh);
459 459 mutex_exit(&nag->mountd_lock);
460 460
461 461 if (dh == NULL) {
462 462 /*
463 463 * The rendezvous point has not been established yet!
464 464 * This could mean that either mountd(1m) has not yet
465 465 * been started or that _this_ routine nuked the door
466 466 * handle after receiving an EINTR for a REVOKED door.
467 467 *
468 468 * Returning NFSAUTH_DROP will cause the NFS client
469 469 * to retransmit the request, so let's try to be more
470 470 * rescillient and attempt for ntries before we bail.
471 471 */
472 472 if (++ntries % NFSAUTH_DR_TRYCNT) {
473 473 delay(hz);
474 474 goto retry;
475 475 }
476 476
477 477 kmem_free(abuf, absz);
478 478
479 479 sys_log("nfsauth: mountd has not established door");
480 480 *access = NFSAUTH_DROP;
481 481 return (FALSE);
482 482 }
483 483
484 484 ntries = 0;
485 485
486 486 /*
487 487 * Now that we've got what we need, place the call.
488 488 */
489 489 switch (door_ki_upcall_limited(dh, &da, NULL, SIZE_MAX, 0)) {
490 490 case 0: /* Success */
491 491 door_ki_rele(dh);
492 492
493 493 if (da.data_ptr == NULL && da.data_size == 0) {
494 494 /*
495 495 * The door_return that contained the data
496 496 * failed! We're here because of the 2nd
497 497 * door_return (w/o data) such that we can
498 498 * get control of the thread (and exit
499 499 * gracefully).
500 500 */
501 501 DTRACE_PROBE1(nfsserv__func__nfsauth__door__nil,
502 502 door_arg_t *, &da);
503 503 goto fail;
504 504 }
505 505
506 506 break;
507 507
508 508 case EAGAIN:
509 509 /*
510 510 * Server out of resources; back off for a bit
511 511 */
512 512 door_ki_rele(dh);
513 513 delay(hz);
514 514 goto retry;
515 515 /* NOTREACHED */
516 516
517 517 case EINTR:
518 518 if (!door_ki_info(dh, &di)) {
519 519 door_ki_rele(dh);
520 520
521 521 if (di.di_attributes & DOOR_REVOKED) {
522 522 /*
523 523 * The server barfed and revoked
524 524 * the (existing) door on us; we
525 525 * want to wait to give smf(5) a
526 526 * chance to restart mountd(1m)
527 527 * and establish a new door handle.
528 528 */
529 529 mutex_enter(&nag->mountd_lock);
530 530 if (dh == nag->mountd_dh) {
531 531 door_ki_rele(nag->mountd_dh);
532 532 nag->mountd_dh = NULL;
533 533 }
534 534 mutex_exit(&nag->mountd_lock);
535 535 delay(hz);
536 536 goto retry;
537 537 }
538 538 /*
539 539 * If the door was _not_ revoked on us,
540 540 * then more than likely we took an INTR,
541 541 * so we need to fail the operation.
542 542 */
543 543 goto fail;
544 544 }
545 545 /*
546 546 * The only failure that can occur from getting
547 547 * the door info is EINVAL, so we let the code
548 548 * below handle it.
549 549 */
550 550 /* FALLTHROUGH */
551 551
552 552 case EBADF:
553 553 case EINVAL:
554 554 default:
555 555 /*
556 556 * If we have a stale door handle, give smf a last
557 557 * chance to start it by sleeping for a little bit.
558 558 * If we're still hosed, we'll fail the call.
559 559 *
560 560 * Since we're going to reacquire the door handle
561 561 * upon the retry, we opt to sleep for a bit and
562 562 * _not_ to clear mountd_dh. If mountd restarted
563 563 * and was able to set mountd_dh, we should see
564 564 * the new instance; if not, we won't get caught
565 565 * up in the retry/DELAY loop.
566 566 */
567 567 door_ki_rele(dh);
568 568 if (!last) {
569 569 delay(hz);
570 570 last++;
571 571 goto retry;
572 572 }
573 573 sys_log("nfsauth: stale mountd door handle");
574 574 goto fail;
575 575 }
576 576
577 577 ASSERT(da.rbuf != NULL);
578 578
579 579 /*
580 580 * No door errors encountered; setup the XDR stream for decoding
581 581 * the results. If we fail to decode the results, we've got no
582 582 * other recourse than to fail the request.
583 583 */
584 584 xdrmem_create(&xdrs, da.rbuf, da.rsize, XDR_DECODE);
585 585 if (!xdr_nfsauth_res(&xdrs, &res)) {
586 586 xdr_free(xdr_nfsauth_res, (char *)&res);
587 587 XDR_DESTROY(&xdrs);
588 588 kmem_free(da.rbuf, da.rsize);
589 589 goto fail;
590 590 }
591 591 XDR_DESTROY(&xdrs);
592 592 kmem_free(da.rbuf, da.rsize);
593 593
594 594 DTRACE_PROBE1(nfsserv__func__nfsauth__results, nfsauth_res_t *, &res);
595 595 switch (res.stat) {
596 596 case NFSAUTH_DR_OKAY:
597 597 *access = res.ares.auth_perm;
598 598 *srv_uid = res.ares.auth_srv_uid;
599 599 *srv_gid = res.ares.auth_srv_gid;
600 600 *srv_gids_cnt = res.ares.auth_srv_gids.len;
601 601 *srv_gids = kmem_alloc(*srv_gids_cnt * sizeof (gid_t),
602 602 KM_SLEEP);
603 603 bcopy(res.ares.auth_srv_gids.val, *srv_gids,
604 604 *srv_gids_cnt * sizeof (gid_t));
605 605 break;
606 606
607 607 case NFSAUTH_DR_EFAIL:
608 608 case NFSAUTH_DR_DECERR:
609 609 case NFSAUTH_DR_BADCMD:
610 610 default:
611 611 xdr_free(xdr_nfsauth_res, (char *)&res);
612 612 fail:
613 613 *access = NFSAUTH_DENIED;
614 614 kmem_free(abuf, absz);
615 615 return (FALSE);
616 616 /* NOTREACHED */
617 617 }
618 618
619 619 xdr_free(xdr_nfsauth_res, (char *)&res);
620 620 kmem_free(abuf, absz);
621 621
622 622 return (TRUE);
623 623 }
624 624
625 625 static void
626 626 nfsauth_refresh_thread(nfsauth_globals_t *nag)
627 627 {
628 628 refreshq_exi_node_t *ren;
629 629 refreshq_auth_node_t *ran;
630 630
631 631 struct exportinfo *exi;
632 632
633 633 int access;
634 634 bool_t retrieval;
635 635
636 636 callb_cpr_t cprinfo;
637 637
638 638 CALLB_CPR_INIT(&cprinfo, &nag->refreshq_lock, callb_generic_cpr,
639 639 "nfsauth_refresh");
640 640
641 641 for (;;) {
642 642 mutex_enter(&nag->refreshq_lock);
643 643 if (nag->refreshq_thread_state != REFRESHQ_THREAD_RUNNING) {
644 644 /* Keep the hold on the lock! */
645 645 break;
646 646 }
647 647
648 648 ren = list_remove_head(&nag->refreshq_queue);
649 649 if (ren == NULL) {
650 650 CALLB_CPR_SAFE_BEGIN(&cprinfo);
651 651 cv_wait(&nag->refreshq_cv, &nag->refreshq_lock);
652 652 CALLB_CPR_SAFE_END(&cprinfo, &nag->refreshq_lock);
653 653 mutex_exit(&nag->refreshq_lock);
654 654 continue;
655 655 }
656 656 mutex_exit(&nag->refreshq_lock);
657 657
658 658 exi = ren->ren_exi;
659 659 ASSERT(exi != NULL);
660 660
661 661 /*
662 662 * Since the ren was removed from the refreshq_queue above,
663 663 * this is the only thread aware about the ren existence, so we
664 664 * have the exclusive ownership of it and we do not need to
665 665 * protect it by any lock.
666 666 */
667 667 while ((ran = list_remove_head(&ren->ren_authlist))) {
668 668 uid_t uid;
669 669 gid_t gid;
670 670 uint_t ngids;
671 671 gid_t *gids;
672 672 struct auth_cache *p = ran->ran_auth;
673 673 char *netid = ran->ran_netid;
674 674
675 675 ASSERT(p != NULL);
676 676 ASSERT(netid != NULL);
677 677
678 678 kmem_free(ran, sizeof (refreshq_auth_node_t));
679 679
680 680 mutex_enter(&p->auth_lock);
681 681
682 682 /*
683 683 * Once the entry goes INVALID, it can not change
684 684 * state.
685 685 *
686 686 * No need to refresh entries also in a case we are
687 687 * just shutting down.
688 688 *
689 689 * In general, there is no need to hold the
690 690 * refreshq_lock to test the refreshq_thread_state. We
691 691 * do hold it at other places because there is some
692 692 * related thread synchronization (or some other tasks)
693 693 * close to the refreshq_thread_state check.
694 694 *
695 695 * The check for the refreshq_thread_state value here
696 696 * is purely advisory to allow the faster
697 697 * nfsauth_refresh_thread() shutdown. In a case we
698 698 * will miss such advisory, nothing catastrophic
699 699 * happens: we will just spin longer here before the
700 700 * shutdown.
701 701 */
702 702 if (p->auth_state == NFS_AUTH_INVALID ||
703 703 nag->refreshq_thread_state !=
704 704 REFRESHQ_THREAD_RUNNING) {
705 705 mutex_exit(&p->auth_lock);
706 706
707 707 if (p->auth_state == NFS_AUTH_INVALID)
708 708 nfsauth_free_node(p);
709 709
710 710 strfree(netid);
711 711
712 712 continue;
713 713 }
714 714
715 715 /*
716 716 * Make sure the state is valid. Note that once we
717 717 * change the state to NFS_AUTH_REFRESHING, no other
718 718 * thread will be able to work on this entry.
719 719 */
720 720 ASSERT(p->auth_state == NFS_AUTH_STALE);
721 721
722 722 p->auth_state = NFS_AUTH_REFRESHING;
723 723 mutex_exit(&p->auth_lock);
724 724
725 725 DTRACE_PROBE2(nfsauth__debug__cache__refresh,
726 726 struct exportinfo *, exi,
727 727 struct auth_cache *, p);
728 728
729 729 /*
730 730 * The first caching of the access rights
731 731 * is done with the netid pulled out of the
732 732 * request from the client. All subsequent
733 733 * users of the cache may or may not have
734 734 * the same netid. It doesn't matter. So
735 735 * when we refresh, we simply use the netid
736 736 * of the request which triggered the
737 737 * refresh attempt.
738 738 */
739 739 retrieval = nfsauth_retrieve(nag, exi, netid,
740 740 p->auth_flavor, &p->auth_clnt->authc_addr, &access,
741 741 p->auth_clnt_cred, &uid, &gid, &ngids, &gids);
742 742
743 743 /*
744 744 * This can only be set in one other place
745 745 * and the state has to be NFS_AUTH_FRESH.
746 746 */
747 747 strfree(netid);
748 748
749 749 mutex_enter(&p->auth_lock);
750 750 if (p->auth_state == NFS_AUTH_INVALID) {
751 751 mutex_exit(&p->auth_lock);
752 752 nfsauth_free_node(p);
753 753 if (retrieval == TRUE)
754 754 kmem_free(gids, ngids * sizeof (gid_t));
755 755 } else {
756 756 /*
757 757 * If we got an error, do not reset the
758 758 * time. This will cause the next access
759 759 * check for the client to reschedule this
760 760 * node.
761 761 */
762 762 if (retrieval == TRUE) {
763 763 p->auth_access = access;
764 764
765 765 p->auth_srv_uid = uid;
766 766 p->auth_srv_gid = gid;
767 767 kmem_free(p->auth_srv_gids,
768 768 p->auth_srv_ngids * sizeof (gid_t));
769 769 p->auth_srv_ngids = ngids;
770 770 p->auth_srv_gids = gids;
771 771
772 772 p->auth_freshness = gethrestime_sec();
773 773 }
774 774 p->auth_state = NFS_AUTH_FRESH;
775 775
776 776 cv_broadcast(&p->auth_cv);
777 777 mutex_exit(&p->auth_lock);
778 778 }
779 779 }
780 780
781 781 list_destroy(&ren->ren_authlist);
782 782 exi_rele(ren->ren_exi);
783 783 kmem_free(ren, sizeof (refreshq_exi_node_t));
784 784 }
785 785
786 786 nag->refreshq_thread_state = REFRESHQ_THREAD_HALTED;
787 787 cv_broadcast(&nag->refreshq_cv);
788 788 CALLB_CPR_EXIT(&cprinfo);
789 789 DTRACE_PROBE(nfsauth__nfsauth__refresh__thread__exit);
790 790 zthread_exit();
791 791 }
792 792
793 793 int
794 794 nfsauth_cache_clnt_compar(const void *v1, const void *v2)
795 795 {
796 796 int c;
797 797
798 798 const struct auth_cache_clnt *a1 = (const struct auth_cache_clnt *)v1;
799 799 const struct auth_cache_clnt *a2 = (const struct auth_cache_clnt *)v2;
800 800
801 801 if (a1->authc_addr.len < a2->authc_addr.len)
802 802 return (-1);
803 803 if (a1->authc_addr.len > a2->authc_addr.len)
804 804 return (1);
805 805
806 806 c = memcmp(a1->authc_addr.buf, a2->authc_addr.buf, a1->authc_addr.len);
807 807 if (c < 0)
808 808 return (-1);
809 809 if (c > 0)
810 810 return (1);
811 811
812 812 return (0);
813 813 }
814 814
815 815 static int
816 816 nfsauth_cache_compar(const void *v1, const void *v2)
817 817 {
818 818 int c;
819 819
820 820 const struct auth_cache *a1 = (const struct auth_cache *)v1;
821 821 const struct auth_cache *a2 = (const struct auth_cache *)v2;
822 822
823 823 if (a1->auth_flavor < a2->auth_flavor)
824 824 return (-1);
825 825 if (a1->auth_flavor > a2->auth_flavor)
826 826 return (1);
827 827
828 828 if (crgetuid(a1->auth_clnt_cred) < crgetuid(a2->auth_clnt_cred))
829 829 return (-1);
830 830 if (crgetuid(a1->auth_clnt_cred) > crgetuid(a2->auth_clnt_cred))
831 831 return (1);
832 832
833 833 if (crgetgid(a1->auth_clnt_cred) < crgetgid(a2->auth_clnt_cred))
834 834 return (-1);
835 835 if (crgetgid(a1->auth_clnt_cred) > crgetgid(a2->auth_clnt_cred))
836 836 return (1);
837 837
838 838 if (crgetngroups(a1->auth_clnt_cred) < crgetngroups(a2->auth_clnt_cred))
839 839 return (-1);
840 840 if (crgetngroups(a1->auth_clnt_cred) > crgetngroups(a2->auth_clnt_cred))
841 841 return (1);
842 842
843 843 c = memcmp(crgetgroups(a1->auth_clnt_cred),
844 844 crgetgroups(a2->auth_clnt_cred), crgetngroups(a1->auth_clnt_cred));
845 845 if (c < 0)
846 846 return (-1);
847 847 if (c > 0)
848 848 return (1);
849 849
850 850 return (0);
851 851 }
852 852
853 853 /*
854 854 * Get the access information from the cache or callup to the mountd
855 855 * to get and cache the access information in the kernel.
856 856 */
857 857 static int
858 858 nfsauth_cache_get(struct exportinfo *exi, struct svc_req *req, int flavor,
859 859 cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
860 860 {
861 861 nfsauth_globals_t *nag;
862 862 struct netbuf *taddrmask;
863 863 struct netbuf addr; /* temporary copy of client's address */
864 864 const struct netbuf *claddr;
865 865 avl_tree_t *tree;
866 866 struct auth_cache ac; /* used as a template for avl_find() */
867 867 struct auth_cache_clnt *c;
868 868 struct auth_cache_clnt acc; /* used as a template for avl_find() */
869 869 struct auth_cache *p = NULL;
870 870 int access;
|
↓ open down ↓ |
870 lines elided |
↑ open up ↑ |
871 871
872 872 uid_t tmpuid;
873 873 gid_t tmpgid;
874 874 uint_t tmpngids;
875 875 gid_t *tmpgids;
876 876
877 877 avl_index_t where; /* used for avl_find()/avl_insert() */
878 878
879 879 ASSERT(cr != NULL);
880 880
881 - ASSERT3P(curzone, ==, exi->exi_zone);
881 + ASSERT3P(curzone->zone_id, ==, exi->exi_zoneid);
882 882 nag = nfsauth_get_zg();
883 883
884 884 /*
885 885 * Now check whether this client already
886 886 * has an entry for this flavor in the cache
887 887 * for this export.
888 888 * Get the caller's address, mask off the
889 889 * parts of the address that do not identify
890 890 * the host (port number, etc), and then hash
891 891 * it to find the chain of cache entries.
892 892 */
893 893
894 894 claddr = svc_getrpccaller(req->rq_xprt);
895 895 addr = *claddr;
896 896 addr.buf = kmem_alloc(addr.maxlen, KM_SLEEP);
897 897 bcopy(claddr->buf, addr.buf, claddr->len);
898 898
899 899 SVC_GETADDRMASK(req->rq_xprt, SVC_TATTR_ADDRMASK, (void **)&taddrmask);
900 900 ASSERT(taddrmask != NULL);
901 901 addrmask(&addr, taddrmask);
902 902
903 903 ac.auth_flavor = flavor;
904 904 ac.auth_clnt_cred = crdup(cr);
905 905
906 906 acc.authc_addr = addr;
907 907
908 908 tree = exi->exi_cache[hash(&addr)];
909 909
910 910 rw_enter(&exi->exi_cache_lock, RW_READER);
911 911 c = (struct auth_cache_clnt *)avl_find(tree, &acc, NULL);
912 912
913 913 if (c == NULL) {
914 914 struct auth_cache_clnt *nc;
915 915
916 916 rw_exit(&exi->exi_cache_lock);
917 917
918 918 nc = kmem_alloc(sizeof (*nc), KM_NOSLEEP | KM_NORMALPRI);
919 919 if (nc == NULL)
920 920 goto retrieve;
921 921
922 922 /*
923 923 * Initialize the new auth_cache_clnt
924 924 */
925 925 nc->authc_addr = addr;
926 926 nc->authc_addr.buf = kmem_alloc(addr.maxlen,
927 927 KM_NOSLEEP | KM_NORMALPRI);
928 928 if (addr.maxlen != 0 && nc->authc_addr.buf == NULL) {
929 929 kmem_free(nc, sizeof (*nc));
930 930 goto retrieve;
931 931 }
932 932 bcopy(addr.buf, nc->authc_addr.buf, addr.len);
933 933 rw_init(&nc->authc_lock, NULL, RW_DEFAULT, NULL);
934 934 avl_create(&nc->authc_tree, nfsauth_cache_compar,
935 935 sizeof (struct auth_cache),
936 936 offsetof(struct auth_cache, auth_link));
937 937
938 938 rw_enter(&exi->exi_cache_lock, RW_WRITER);
939 939 c = (struct auth_cache_clnt *)avl_find(tree, &acc, &where);
940 940 if (c == NULL) {
941 941 avl_insert(tree, nc, where);
942 942 rw_downgrade(&exi->exi_cache_lock);
943 943 c = nc;
944 944 } else {
945 945 rw_downgrade(&exi->exi_cache_lock);
946 946
947 947 avl_destroy(&nc->authc_tree);
948 948 rw_destroy(&nc->authc_lock);
949 949 kmem_free(nc->authc_addr.buf, nc->authc_addr.maxlen);
950 950 kmem_free(nc, sizeof (*nc));
951 951 }
952 952 }
953 953
954 954 ASSERT(c != NULL);
955 955
956 956 rw_enter(&c->authc_lock, RW_READER);
957 957 p = (struct auth_cache *)avl_find(&c->authc_tree, &ac, NULL);
958 958
959 959 if (p == NULL) {
960 960 struct auth_cache *np;
961 961
962 962 rw_exit(&c->authc_lock);
963 963
964 964 np = kmem_cache_alloc(exi_cache_handle,
965 965 KM_NOSLEEP | KM_NORMALPRI);
966 966 if (np == NULL) {
967 967 rw_exit(&exi->exi_cache_lock);
968 968 goto retrieve;
969 969 }
970 970
971 971 /*
972 972 * Initialize the new auth_cache
973 973 */
974 974 np->auth_clnt = c;
975 975 np->auth_flavor = flavor;
976 976 np->auth_clnt_cred = ac.auth_clnt_cred;
977 977 np->auth_srv_ngids = 0;
978 978 np->auth_srv_gids = NULL;
979 979 np->auth_time = np->auth_freshness = gethrestime_sec();
980 980 np->auth_state = NFS_AUTH_NEW;
981 981 mutex_init(&np->auth_lock, NULL, MUTEX_DEFAULT, NULL);
982 982 cv_init(&np->auth_cv, NULL, CV_DEFAULT, NULL);
983 983
984 984 rw_enter(&c->authc_lock, RW_WRITER);
985 985 rw_exit(&exi->exi_cache_lock);
986 986
987 987 p = (struct auth_cache *)avl_find(&c->authc_tree, &ac, &where);
988 988 if (p == NULL) {
989 989 avl_insert(&c->authc_tree, np, where);
990 990 rw_downgrade(&c->authc_lock);
991 991 p = np;
992 992 } else {
993 993 rw_downgrade(&c->authc_lock);
994 994
995 995 cv_destroy(&np->auth_cv);
996 996 mutex_destroy(&np->auth_lock);
997 997 crfree(ac.auth_clnt_cred);
998 998 kmem_cache_free(exi_cache_handle, np);
999 999 }
1000 1000 } else {
1001 1001 rw_exit(&exi->exi_cache_lock);
1002 1002 crfree(ac.auth_clnt_cred);
1003 1003 }
1004 1004
1005 1005 mutex_enter(&p->auth_lock);
1006 1006 rw_exit(&c->authc_lock);
1007 1007
1008 1008 /*
1009 1009 * If the entry is in the WAITING state then some other thread is just
1010 1010 * retrieving the required info. The entry was either NEW, or the list
1011 1011 * of client's supplemental groups is going to be changed (either by
1012 1012 * this thread, or by some other thread). We need to wait until the
1013 1013 * nfsauth_retrieve() is done.
1014 1014 */
1015 1015 while (p->auth_state == NFS_AUTH_WAITING)
1016 1016 cv_wait(&p->auth_cv, &p->auth_lock);
1017 1017
1018 1018 /*
1019 1019 * Here the entry cannot be in WAITING or INVALID state.
1020 1020 */
1021 1021 ASSERT(p->auth_state != NFS_AUTH_WAITING);
1022 1022 ASSERT(p->auth_state != NFS_AUTH_INVALID);
1023 1023
1024 1024 /*
1025 1025 * If the cache entry is not valid yet, we need to retrieve the
1026 1026 * info ourselves.
1027 1027 */
1028 1028 if (p->auth_state == NFS_AUTH_NEW) {
1029 1029 bool_t res;
1030 1030 /*
1031 1031 * NFS_AUTH_NEW is the default output auth_state value in a
1032 1032 * case we failed somewhere below.
1033 1033 */
1034 1034 auth_state_t state = NFS_AUTH_NEW;
1035 1035
1036 1036 p->auth_state = NFS_AUTH_WAITING;
1037 1037 mutex_exit(&p->auth_lock);
1038 1038 kmem_free(addr.buf, addr.maxlen);
1039 1039 addr = p->auth_clnt->authc_addr;
1040 1040
1041 1041 atomic_inc_uint(&nfsauth_cache_miss);
1042 1042
1043 1043 res = nfsauth_retrieve(nag, exi, svc_getnetid(req->rq_xprt),
1044 1044 flavor, &addr, &access, cr, &tmpuid, &tmpgid, &tmpngids,
1045 1045 &tmpgids);
1046 1046
1047 1047 p->auth_access = access;
1048 1048 p->auth_time = p->auth_freshness = gethrestime_sec();
1049 1049
1050 1050 if (res == TRUE) {
1051 1051 if (uid != NULL)
1052 1052 *uid = tmpuid;
1053 1053 if (gid != NULL)
1054 1054 *gid = tmpgid;
1055 1055 if (ngids != NULL && gids != NULL) {
1056 1056 *ngids = tmpngids;
1057 1057 *gids = tmpgids;
1058 1058
1059 1059 /*
1060 1060 * We need a copy of gids for the
1061 1061 * auth_cache entry
1062 1062 */
1063 1063 tmpgids = kmem_alloc(tmpngids * sizeof (gid_t),
1064 1064 KM_NOSLEEP | KM_NORMALPRI);
1065 1065 if (tmpgids != NULL)
1066 1066 bcopy(*gids, tmpgids,
1067 1067 tmpngids * sizeof (gid_t));
1068 1068 }
1069 1069
1070 1070 if (tmpgids != NULL || tmpngids == 0) {
1071 1071 p->auth_srv_uid = tmpuid;
1072 1072 p->auth_srv_gid = tmpgid;
1073 1073 p->auth_srv_ngids = tmpngids;
1074 1074 p->auth_srv_gids = tmpgids;
1075 1075
1076 1076 state = NFS_AUTH_FRESH;
1077 1077 }
1078 1078 }
1079 1079
1080 1080 /*
1081 1081 * Set the auth_state and notify waiters.
1082 1082 */
1083 1083 mutex_enter(&p->auth_lock);
1084 1084 p->auth_state = state;
1085 1085 cv_broadcast(&p->auth_cv);
1086 1086 mutex_exit(&p->auth_lock);
1087 1087 } else {
1088 1088 uint_t nach;
1089 1089 time_t refresh;
1090 1090
1091 1091 refresh = gethrestime_sec() - p->auth_freshness;
1092 1092
1093 1093 p->auth_time = gethrestime_sec();
1094 1094
1095 1095 if (uid != NULL)
1096 1096 *uid = p->auth_srv_uid;
1097 1097 if (gid != NULL)
1098 1098 *gid = p->auth_srv_gid;
1099 1099 if (ngids != NULL && gids != NULL) {
1100 1100 *ngids = p->auth_srv_ngids;
1101 1101 *gids = kmem_alloc(*ngids * sizeof (gid_t), KM_SLEEP);
1102 1102 bcopy(p->auth_srv_gids, *gids, *ngids * sizeof (gid_t));
1103 1103 }
1104 1104
1105 1105 access = p->auth_access;
1106 1106
1107 1107 if ((refresh > NFSAUTH_CACHE_REFRESH) &&
1108 1108 p->auth_state == NFS_AUTH_FRESH) {
1109 1109 refreshq_auth_node_t *ran;
1110 1110 uint_t nacr;
1111 1111
1112 1112 p->auth_state = NFS_AUTH_STALE;
1113 1113 mutex_exit(&p->auth_lock);
1114 1114
1115 1115 nacr = atomic_inc_uint_nv(&nfsauth_cache_refresh);
1116 1116 DTRACE_PROBE3(nfsauth__debug__cache__stale,
1117 1117 struct exportinfo *, exi,
1118 1118 struct auth_cache *, p,
1119 1119 uint_t, nacr);
1120 1120
1121 1121 ran = kmem_alloc(sizeof (refreshq_auth_node_t),
1122 1122 KM_SLEEP);
1123 1123 ran->ran_auth = p;
1124 1124 ran->ran_netid = strdup(svc_getnetid(req->rq_xprt));
1125 1125
1126 1126 mutex_enter(&nag->refreshq_lock);
1127 1127
1128 1128 if (nag->refreshq_thread_state ==
1129 1129 REFRESHQ_THREAD_NEED_CREATE) {
1130 1130 /* Launch nfsauth refresh thread */
1131 1131 nag->refreshq_thread_state =
1132 1132 REFRESHQ_THREAD_RUNNING;
1133 1133 (void) zthread_create(NULL, 0,
1134 1134 nfsauth_refresh_thread, nag, 0,
1135 1135 minclsyspri);
1136 1136 }
1137 1137
1138 1138 /*
1139 1139 * We should not add a work queue item if the thread
1140 1140 * is not accepting them.
1141 1141 */
1142 1142 if (nag->refreshq_thread_state ==
1143 1143 REFRESHQ_THREAD_RUNNING) {
1144 1144 refreshq_exi_node_t *ren;
1145 1145
1146 1146 /*
1147 1147 * Is there an existing exi_list?
1148 1148 */
1149 1149 for (ren = list_head(&nag->refreshq_queue);
1150 1150 ren != NULL;
1151 1151 ren = list_next(&nag->refreshq_queue,
1152 1152 ren)) {
1153 1153 if (ren->ren_exi == exi) {
1154 1154 list_insert_tail(
1155 1155 &ren->ren_authlist, ran);
1156 1156 break;
1157 1157 }
1158 1158 }
1159 1159
1160 1160 if (ren == NULL) {
1161 1161 ren = kmem_alloc(
1162 1162 sizeof (refreshq_exi_node_t),
1163 1163 KM_SLEEP);
1164 1164
1165 1165 exi_hold(exi);
1166 1166 ren->ren_exi = exi;
1167 1167
1168 1168 list_create(&ren->ren_authlist,
1169 1169 sizeof (refreshq_auth_node_t),
1170 1170 offsetof(refreshq_auth_node_t,
1171 1171 ran_node));
1172 1172
1173 1173 list_insert_tail(&ren->ren_authlist,
1174 1174 ran);
1175 1175 list_insert_tail(&nag->refreshq_queue,
1176 1176 ren);
1177 1177 }
1178 1178
1179 1179 cv_broadcast(&nag->refreshq_cv);
1180 1180 } else {
1181 1181 strfree(ran->ran_netid);
1182 1182 kmem_free(ran, sizeof (refreshq_auth_node_t));
1183 1183 }
1184 1184
1185 1185 mutex_exit(&nag->refreshq_lock);
1186 1186 } else {
1187 1187 mutex_exit(&p->auth_lock);
1188 1188 }
1189 1189
1190 1190 nach = atomic_inc_uint_nv(&nfsauth_cache_hit);
1191 1191 DTRACE_PROBE2(nfsauth__debug__cache__hit,
1192 1192 uint_t, nach,
1193 1193 time_t, refresh);
1194 1194
1195 1195 kmem_free(addr.buf, addr.maxlen);
1196 1196 }
1197 1197
1198 1198 return (access);
1199 1199
1200 1200 retrieve:
1201 1201 crfree(ac.auth_clnt_cred);
1202 1202
1203 1203 /*
1204 1204 * Retrieve the required data without caching.
1205 1205 */
1206 1206
1207 1207 ASSERT(p == NULL);
1208 1208
1209 1209 atomic_inc_uint(&nfsauth_cache_miss);
1210 1210
1211 1211 if (nfsauth_retrieve(nag, exi, svc_getnetid(req->rq_xprt), flavor,
1212 1212 &addr, &access, cr, &tmpuid, &tmpgid, &tmpngids, &tmpgids)) {
1213 1213 if (uid != NULL)
1214 1214 *uid = tmpuid;
1215 1215 if (gid != NULL)
1216 1216 *gid = tmpgid;
1217 1217 if (ngids != NULL && gids != NULL) {
1218 1218 *ngids = tmpngids;
1219 1219 *gids = tmpgids;
1220 1220 } else {
1221 1221 kmem_free(tmpgids, tmpngids * sizeof (gid_t));
1222 1222 }
1223 1223 }
1224 1224
1225 1225 kmem_free(addr.buf, addr.maxlen);
1226 1226
1227 1227 return (access);
1228 1228 }
1229 1229
1230 1230 /*
1231 1231 * Check if the requesting client has access to the filesystem with
1232 1232 * a given nfs flavor number which is an explicitly shared flavor.
1233 1233 */
1234 1234 int
1235 1235 nfsauth4_secinfo_access(struct exportinfo *exi, struct svc_req *req,
1236 1236 int flavor, int perm, cred_t *cr)
1237 1237 {
1238 1238 int access;
1239 1239
1240 1240 if (! (perm & M_4SEC_EXPORTED)) {
1241 1241 return (NFSAUTH_DENIED);
1242 1242 }
1243 1243
1244 1244 /*
1245 1245 * Optimize if there are no lists
1246 1246 */
1247 1247 if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0) {
1248 1248 perm &= ~M_4SEC_EXPORTED;
1249 1249 if (perm == M_RO)
1250 1250 return (NFSAUTH_RO);
1251 1251 if (perm == M_RW)
1252 1252 return (NFSAUTH_RW);
1253 1253 }
1254 1254
1255 1255 access = nfsauth_cache_get(exi, req, flavor, cr, NULL, NULL, NULL,
1256 1256 NULL);
1257 1257
1258 1258 return (access);
1259 1259 }
1260 1260
1261 1261 int
1262 1262 nfsauth_access(struct exportinfo *exi, struct svc_req *req, cred_t *cr,
1263 1263 uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
1264 1264 {
1265 1265 int access, mapaccess;
1266 1266 struct secinfo *sp;
1267 1267 int i, flavor, perm;
1268 1268 int authnone_entry = -1;
1269 1269
1270 1270 /*
1271 1271 * By default root is mapped to anonymous user.
1272 1272 * This might get overriden later in nfsauth_cache_get().
1273 1273 */
1274 1274 if (crgetuid(cr) == 0) {
1275 1275 if (uid != NULL)
1276 1276 *uid = exi->exi_export.ex_anon;
1277 1277 if (gid != NULL)
1278 1278 *gid = exi->exi_export.ex_anon;
1279 1279 } else {
1280 1280 if (uid != NULL)
1281 1281 *uid = crgetuid(cr);
1282 1282 if (gid != NULL)
1283 1283 *gid = crgetgid(cr);
1284 1284 }
1285 1285
1286 1286 if (ngids != NULL)
1287 1287 *ngids = 0;
1288 1288 if (gids != NULL)
1289 1289 *gids = NULL;
1290 1290
1291 1291 /*
1292 1292 * Get the nfs flavor number from xprt.
1293 1293 */
1294 1294 flavor = (int)(uintptr_t)req->rq_xprt->xp_cookie;
1295 1295
1296 1296 /*
1297 1297 * First check the access restrictions on the filesystem. If
1298 1298 * there are no lists associated with this flavor then there's no
1299 1299 * need to make an expensive call to the nfsauth service or to
1300 1300 * cache anything.
1301 1301 */
1302 1302
1303 1303 sp = exi->exi_export.ex_secinfo;
1304 1304 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
1305 1305 if (flavor != sp[i].s_secinfo.sc_nfsnum) {
1306 1306 if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE)
1307 1307 authnone_entry = i;
1308 1308 continue;
1309 1309 }
1310 1310 break;
1311 1311 }
1312 1312
1313 1313 mapaccess = 0;
1314 1314
1315 1315 if (i >= exi->exi_export.ex_seccnt) {
1316 1316 /*
1317 1317 * Flavor not found, but use AUTH_NONE if it exists
1318 1318 */
1319 1319 if (authnone_entry == -1)
1320 1320 return (NFSAUTH_DENIED);
1321 1321 flavor = AUTH_NONE;
1322 1322 mapaccess = NFSAUTH_MAPNONE;
1323 1323 i = authnone_entry;
1324 1324 }
1325 1325
1326 1326 /*
1327 1327 * If the flavor is in the ex_secinfo list, but not an explicitly
1328 1328 * shared flavor by the user, it is a result of the nfsv4 server
1329 1329 * namespace setup. We will grant an RO permission similar for
1330 1330 * a pseudo node except that this node is a shared one.
1331 1331 *
1332 1332 * e.g. flavor in (flavor) indicates that it is not explictly
1333 1333 * shared by the user:
1334 1334 *
1335 1335 * / (sys, krb5)
1336 1336 * |
1337 1337 * export #share -o sec=sys (krb5)
1338 1338 * |
1339 1339 * secure #share -o sec=krb5
1340 1340 *
1341 1341 * In this case, when a krb5 request coming in to access
1342 1342 * /export, RO permission is granted.
1343 1343 */
1344 1344 if (!(sp[i].s_flags & M_4SEC_EXPORTED))
1345 1345 return (mapaccess | NFSAUTH_RO);
1346 1346
1347 1347 /*
1348 1348 * Optimize if there are no lists.
1349 1349 * We cannot optimize for AUTH_SYS with NGRPS (16) supplemental groups.
1350 1350 */
1351 1351 perm = sp[i].s_flags;
1352 1352 if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0 && (ngroups_max <= NGRPS ||
1353 1353 flavor != AUTH_SYS || crgetngroups(cr) < NGRPS)) {
1354 1354 perm &= ~M_4SEC_EXPORTED;
1355 1355 if (perm == M_RO)
1356 1356 return (mapaccess | NFSAUTH_RO);
1357 1357 if (perm == M_RW)
1358 1358 return (mapaccess | NFSAUTH_RW);
1359 1359 }
1360 1360
1361 1361 access = nfsauth_cache_get(exi, req, flavor, cr, uid, gid, ngids, gids);
1362 1362
1363 1363 /*
1364 1364 * For both NFSAUTH_DENIED and NFSAUTH_WRONGSEC we do not care about
1365 1365 * the supplemental groups.
1366 1366 */
1367 1367 if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) {
1368 1368 if (ngids != NULL && gids != NULL) {
1369 1369 kmem_free(*gids, *ngids * sizeof (gid_t));
1370 1370 *ngids = 0;
1371 1371 *gids = NULL;
1372 1372 }
1373 1373 }
1374 1374
1375 1375 /*
1376 1376 * Client's security flavor doesn't match with "ro" or
1377 1377 * "rw" list. Try again using AUTH_NONE if present.
1378 1378 */
1379 1379 if ((access & NFSAUTH_WRONGSEC) && (flavor != AUTH_NONE)) {
1380 1380 /*
1381 1381 * Have we already encountered AUTH_NONE ?
1382 1382 */
1383 1383 if (authnone_entry != -1) {
1384 1384 mapaccess = NFSAUTH_MAPNONE;
1385 1385 access = nfsauth_cache_get(exi, req, AUTH_NONE, cr,
1386 1386 NULL, NULL, NULL, NULL);
1387 1387 } else {
1388 1388 /*
1389 1389 * Check for AUTH_NONE presence.
1390 1390 */
1391 1391 for (; i < exi->exi_export.ex_seccnt; i++) {
1392 1392 if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE) {
1393 1393 mapaccess = NFSAUTH_MAPNONE;
1394 1394 access = nfsauth_cache_get(exi, req,
1395 1395 AUTH_NONE, cr, NULL, NULL, NULL,
1396 1396 NULL);
1397 1397 break;
1398 1398 }
1399 1399 }
1400 1400 }
1401 1401 }
1402 1402
1403 1403 if (access & NFSAUTH_DENIED)
1404 1404 access = NFSAUTH_DENIED;
1405 1405
1406 1406 return (access | mapaccess);
1407 1407 }
1408 1408
1409 1409 static void
1410 1410 nfsauth_free_clnt_node(struct auth_cache_clnt *p)
1411 1411 {
1412 1412 void *cookie = NULL;
1413 1413 struct auth_cache *node;
1414 1414
1415 1415 while ((node = avl_destroy_nodes(&p->authc_tree, &cookie)) != NULL)
1416 1416 nfsauth_free_node(node);
1417 1417 avl_destroy(&p->authc_tree);
1418 1418
1419 1419 kmem_free(p->authc_addr.buf, p->authc_addr.maxlen);
1420 1420 rw_destroy(&p->authc_lock);
1421 1421
1422 1422 kmem_free(p, sizeof (*p));
1423 1423 }
1424 1424
1425 1425 static void
1426 1426 nfsauth_free_node(struct auth_cache *p)
1427 1427 {
1428 1428 crfree(p->auth_clnt_cred);
1429 1429 kmem_free(p->auth_srv_gids, p->auth_srv_ngids * sizeof (gid_t));
1430 1430 mutex_destroy(&p->auth_lock);
1431 1431 cv_destroy(&p->auth_cv);
1432 1432 kmem_cache_free(exi_cache_handle, p);
1433 1433 }
1434 1434
1435 1435 /*
1436 1436 * Free the nfsauth cache for a given export
1437 1437 */
1438 1438 void
1439 1439 nfsauth_cache_free(struct exportinfo *exi)
1440 1440 {
1441 1441 int i;
1442 1442
1443 1443 /*
1444 1444 * The only way we got here was with an exi_rele, which means that no
1445 1445 * auth cache entry is being refreshed.
1446 1446 */
1447 1447
1448 1448 for (i = 0; i < AUTH_TABLESIZE; i++) {
1449 1449 avl_tree_t *tree = exi->exi_cache[i];
1450 1450 void *cookie = NULL;
1451 1451 struct auth_cache_clnt *node;
1452 1452
1453 1453 while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
1454 1454 nfsauth_free_clnt_node(node);
1455 1455 }
1456 1456 }
1457 1457
1458 1458 /*
1459 1459 * Called by the kernel memory allocator when memory is low.
1460 1460 * Free unused cache entries. If that's not enough, the VM system
1461 1461 * will call again for some more.
1462 1462 *
1463 1463 * This needs to operate on all zones, so we take a reader lock
1464 1464 * on the list of zones and walk the list. This is OK here
1465 1465 * becuase exi_cache_trim doesn't block or cause new objects
1466 1466 * to be allocated (basically just frees lots of stuff).
1467 1467 * Use care if nfssrv_globals_rwl is taken as reader in any
1468 1468 * other cases because it will block nfs_server_zone_init
1469 1469 * and nfs_server_zone_fini, which enter as writer.
1470 1470 */
1471 1471 /*ARGSUSED*/
1472 1472 void
1473 1473 exi_cache_reclaim(void *cdrarg)
1474 1474 {
1475 1475 nfs_globals_t *ng;
1476 1476
1477 1477 rw_enter(&nfssrv_globals_rwl, RW_READER);
1478 1478
1479 1479 ng = list_head(&nfssrv_globals_list);
1480 1480 while (ng != NULL) {
1481 1481 exi_cache_reclaim_zone(ng);
1482 1482 ng = list_next(&nfssrv_globals_list, ng);
1483 1483 }
1484 1484
1485 1485 rw_exit(&nfssrv_globals_rwl);
1486 1486 }
1487 1487
1488 1488 static void
1489 1489 exi_cache_reclaim_zone(nfs_globals_t *ng)
1490 1490 {
1491 1491 int i;
1492 1492 struct exportinfo *exi;
1493 1493 nfs_export_t *ne = ng->nfs_export;
1494 1494
1495 1495 rw_enter(&ne->exported_lock, RW_READER);
1496 1496
1497 1497 for (i = 0; i < EXPTABLESIZE; i++) {
1498 1498 for (exi = ne->exptable[i]; exi; exi = exi->fid_hash.next)
1499 1499 exi_cache_trim(exi);
1500 1500 }
1501 1501
1502 1502 rw_exit(&ne->exported_lock);
1503 1503
1504 1504 atomic_inc_uint(&nfsauth_cache_reclaim);
1505 1505 }
1506 1506
1507 1507 static void
1508 1508 exi_cache_trim(struct exportinfo *exi)
1509 1509 {
1510 1510 struct auth_cache_clnt *c;
1511 1511 struct auth_cache_clnt *nextc;
1512 1512 struct auth_cache *p;
1513 1513 struct auth_cache *next;
1514 1514 int i;
1515 1515 time_t stale_time;
1516 1516 avl_tree_t *tree;
1517 1517
1518 1518 for (i = 0; i < AUTH_TABLESIZE; i++) {
1519 1519 tree = exi->exi_cache[i];
1520 1520 stale_time = gethrestime_sec() - NFSAUTH_CACHE_TRIM;
1521 1521 rw_enter(&exi->exi_cache_lock, RW_READER);
1522 1522
1523 1523 /*
1524 1524 * Free entries that have not been
1525 1525 * used for NFSAUTH_CACHE_TRIM seconds.
1526 1526 */
1527 1527 for (c = avl_first(tree); c != NULL; c = AVL_NEXT(tree, c)) {
1528 1528 /*
1529 1529 * We are being called by the kmem subsystem to reclaim
1530 1530 * memory so don't block if we can't get the lock.
1531 1531 */
1532 1532 if (rw_tryenter(&c->authc_lock, RW_WRITER) == 0) {
1533 1533 exi_cache_auth_reclaim_failed++;
1534 1534 rw_exit(&exi->exi_cache_lock);
1535 1535 return;
1536 1536 }
1537 1537
1538 1538 for (p = avl_first(&c->authc_tree); p != NULL;
1539 1539 p = next) {
1540 1540 next = AVL_NEXT(&c->authc_tree, p);
1541 1541
1542 1542 ASSERT(p->auth_state != NFS_AUTH_INVALID);
1543 1543
1544 1544 mutex_enter(&p->auth_lock);
1545 1545
1546 1546 /*
1547 1547 * We won't trim recently used and/or WAITING
1548 1548 * entries.
1549 1549 */
1550 1550 if (p->auth_time > stale_time ||
1551 1551 p->auth_state == NFS_AUTH_WAITING) {
1552 1552 mutex_exit(&p->auth_lock);
1553 1553 continue;
1554 1554 }
1555 1555
1556 1556 DTRACE_PROBE1(nfsauth__debug__trim__state,
1557 1557 auth_state_t, p->auth_state);
1558 1558
1559 1559 /*
1560 1560 * STALE and REFRESHING entries needs to be
1561 1561 * marked INVALID only because they are
1562 1562 * referenced by some other structures or
1563 1563 * threads. They will be freed later.
1564 1564 */
1565 1565 if (p->auth_state == NFS_AUTH_STALE ||
1566 1566 p->auth_state == NFS_AUTH_REFRESHING) {
1567 1567 p->auth_state = NFS_AUTH_INVALID;
1568 1568 mutex_exit(&p->auth_lock);
1569 1569
1570 1570 avl_remove(&c->authc_tree, p);
1571 1571 } else {
1572 1572 mutex_exit(&p->auth_lock);
1573 1573
1574 1574 avl_remove(&c->authc_tree, p);
1575 1575 nfsauth_free_node(p);
1576 1576 }
1577 1577 }
1578 1578 rw_exit(&c->authc_lock);
1579 1579 }
1580 1580
1581 1581 if (rw_tryupgrade(&exi->exi_cache_lock) == 0) {
1582 1582 rw_exit(&exi->exi_cache_lock);
1583 1583 exi_cache_clnt_reclaim_failed++;
1584 1584 continue;
1585 1585 }
1586 1586
1587 1587 for (c = avl_first(tree); c != NULL; c = nextc) {
1588 1588 nextc = AVL_NEXT(tree, c);
1589 1589
1590 1590 if (avl_is_empty(&c->authc_tree) == B_FALSE)
1591 1591 continue;
1592 1592
1593 1593 avl_remove(tree, c);
1594 1594
1595 1595 nfsauth_free_clnt_node(c);
1596 1596 }
1597 1597
1598 1598 rw_exit(&exi->exi_cache_lock);
1599 1599 }
1600 1600 }
|
↓ open down ↓ |
709 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX