Print this page
curzone reality check and teardown changes to use the RIGHT zone
| Split |
Close |
| Expand all |
| Collapse all |
--- old/usr/src/uts/common/klm/nlm_impl.c
+++ new/usr/src/uts/common/klm/nlm_impl.c
1 1 /*
2 2 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3 3 * Authors: Doug Rabson <dfr@rabson.org>
4 4 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
5 5 *
6 6 * Redistribution and use in source and binary forms, with or without
7 7 * modification, are permitted provided that the following conditions
8 8 * are met:
9 9 * 1. Redistributions of source code must retain the above copyright
10 10 * notice, this list of conditions and the following disclaimer.
11 11 * 2. Redistributions in binary form must reproduce the above copyright
12 12 * notice, this list of conditions and the following disclaimer in the
13 13 * documentation and/or other materials provided with the distribution.
14 14 *
15 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 25 * SUCH DAMAGE.
26 26 */
27 27
28 28 /*
29 29 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
30 30 * Copyright (c) 2012 by Delphix. All rights reserved.
31 31 */
32 32
33 33 /*
34 34 * NFS LockManager, start/stop, support functions, etc.
35 35 * Most of the interesting code is here.
36 36 *
37 37 * Source code derived from FreeBSD nlm_prot_impl.c
38 38 */
39 39
40 40 #include <sys/param.h>
41 41 #include <sys/systm.h>
42 42 #include <sys/thread.h>
43 43 #include <sys/fcntl.h>
44 44 #include <sys/flock.h>
45 45 #include <sys/mount.h>
46 46 #include <sys/priv.h>
47 47 #include <sys/proc.h>
48 48 #include <sys/share.h>
49 49 #include <sys/socket.h>
50 50 #include <sys/syscall.h>
51 51 #include <sys/syslog.h>
52 52 #include <sys/systm.h>
53 53 #include <sys/class.h>
54 54 #include <sys/unistd.h>
55 55 #include <sys/vnode.h>
56 56 #include <sys/vfs.h>
57 57 #include <sys/queue.h>
58 58 #include <sys/bitmap.h>
59 59 #include <sys/sdt.h>
60 60 #include <netinet/in.h>
61 61
62 62 #include <rpc/rpc.h>
63 63 #include <rpc/xdr.h>
64 64 #include <rpc/pmap_prot.h>
65 65 #include <rpc/pmap_clnt.h>
66 66 #include <rpc/rpcb_prot.h>
67 67
68 68 #include <rpcsvc/nlm_prot.h>
69 69 #include <rpcsvc/sm_inter.h>
70 70 #include <rpcsvc/nsm_addr.h>
71 71
72 72 #include <nfs/nfs.h>
73 73 #include <nfs/nfs_clnt.h>
74 74 #include <nfs/export.h>
75 75 #include <nfs/rnode.h>
76 76 #include <nfs/lm.h>
77 77
78 78 #include "nlm_impl.h"
79 79
80 80 struct nlm_knc {
81 81 struct knetconfig n_knc;
82 82 const char *n_netid;
83 83 };
84 84
85 85 /*
86 86 * Number of attempts NLM tries to obtain RPC binding
87 87 * of local statd.
88 88 */
89 89 #define NLM_NSM_RPCBIND_RETRIES 10
90 90
91 91 /*
92 92 * Timeout (in seconds) NLM waits before making another
93 93 * attempt to obtain RPC binding of local statd.
94 94 */
95 95 #define NLM_NSM_RPCBIND_TIMEOUT 5
96 96
97 97 /*
98 98 * Total number of sysids in NLM sysid bitmap
99 99 */
100 100 #define NLM_BMAP_NITEMS (LM_SYSID_MAX + 1)
101 101
102 102 /*
103 103 * Number of ulong_t words in bitmap that is used
104 104 * for allocation of sysid numbers.
105 105 */
106 106 #define NLM_BMAP_WORDS (NLM_BMAP_NITEMS / BT_NBIPUL)
107 107
108 108 /*
109 109 * Given an integer x, the macro returns
110 110 * -1 if x is negative,
111 111 * 0 if x is zero
112 112 * 1 if x is positive
113 113 */
114 114 #define SIGN(x) (((x) > 0) - ((x) < 0))
115 115
116 116 #define ARRSIZE(arr) (sizeof (arr) / sizeof ((arr)[0]))
117 117 #define NLM_KNCS ARRSIZE(nlm_netconfigs)
118 118
119 119 krwlock_t lm_lck;
120 120
121 121 /*
122 122 * Zero timeout for asynchronous NLM RPC operations
123 123 */
124 124 static const struct timeval nlm_rpctv_zero = { 0, 0 };
125 125
126 126 /*
127 127 * List of all Zone globals nlm_globals instences
128 128 * linked together.
129 129 */
130 130 static struct nlm_globals_list nlm_zones_list; /* (g) */
131 131
132 132 /*
133 133 * NLM kmem caches
134 134 */
135 135 static struct kmem_cache *nlm_hosts_cache = NULL;
136 136 static struct kmem_cache *nlm_vhold_cache = NULL;
137 137
138 138 /*
139 139 * A bitmap for allocation of new sysids.
140 140 * Sysid is a unique number between LM_SYSID
141 141 * and LM_SYSID_MAX. Sysid represents unique remote
142 142 * host that does file locks on the given host.
143 143 */
144 144 static ulong_t nlm_sysid_bmap[NLM_BMAP_WORDS]; /* (g) */
145 145 static int nlm_sysid_nidx; /* (g) */
146 146
147 147 /*
148 148 * RPC service registration for all transports
149 149 */
150 150 static SVC_CALLOUT nlm_svcs[] = {
151 151 { NLM_PROG, 4, 4, nlm_prog_4 }, /* NLM4_VERS */
152 152 { NLM_PROG, 1, 3, nlm_prog_3 } /* NLM_VERS - NLM_VERSX */
153 153 };
154 154
155 155 static SVC_CALLOUT_TABLE nlm_sct = {
156 156 ARRSIZE(nlm_svcs),
157 157 FALSE,
158 158 nlm_svcs
159 159 };
160 160
161 161 /*
162 162 * Static table of all netid/knetconfig network
163 163 * lock manager can work with. nlm_netconfigs table
164 164 * is used when we need to get valid knetconfig by
165 165 * netid and vice versa.
166 166 *
167 167 * Knetconfigs are activated either by the call from
168 168 * user-space lockd daemon (server side) or by taking
169 169 * knetconfig from NFS mountinfo (client side)
170 170 */
171 171 static struct nlm_knc nlm_netconfigs[] = { /* (g) */
172 172 /* UDP */
173 173 {
174 174 { NC_TPI_CLTS, NC_INET, NC_UDP, NODEV },
175 175 "udp",
176 176 },
177 177 /* TCP */
178 178 {
179 179 { NC_TPI_COTS_ORD, NC_INET, NC_TCP, NODEV },
180 180 "tcp",
181 181 },
182 182 /* UDP over IPv6 */
183 183 {
184 184 { NC_TPI_CLTS, NC_INET6, NC_UDP, NODEV },
185 185 "udp6",
186 186 },
187 187 /* TCP over IPv6 */
188 188 {
189 189 { NC_TPI_COTS_ORD, NC_INET6, NC_TCP, NODEV },
190 190 "tcp6",
191 191 },
192 192 /* ticlts (loopback over UDP) */
193 193 {
194 194 { NC_TPI_CLTS, NC_LOOPBACK, NC_NOPROTO, NODEV },
195 195 "ticlts",
196 196 },
197 197 /* ticotsord (loopback over TCP) */
198 198 {
199 199 { NC_TPI_COTS_ORD, NC_LOOPBACK, NC_NOPROTO, NODEV },
200 200 "ticotsord",
201 201 },
202 202 };
203 203
204 204 /*
205 205 * NLM misc. function
206 206 */
207 207 static void nlm_copy_netbuf(struct netbuf *, struct netbuf *);
208 208 static int nlm_netbuf_addrs_cmp(struct netbuf *, struct netbuf *);
209 209 static void nlm_kmem_reclaim(void *);
210 210 static void nlm_pool_shutdown(void);
211 211 static void nlm_suspend_zone(struct nlm_globals *);
212 212 static void nlm_resume_zone(struct nlm_globals *);
213 213 static void nlm_nsm_clnt_init(CLIENT *, struct nlm_nsm *);
214 214 static void nlm_netbuf_to_netobj(struct netbuf *, int *, netobj *);
215 215
216 216 /*
217 217 * NLM thread functions
218 218 */
219 219 static void nlm_gc(struct nlm_globals *);
220 220 static void nlm_reclaimer(struct nlm_host *);
221 221
222 222 /*
223 223 * NLM NSM functions
224 224 */
225 225 static int nlm_init_local_knc(struct knetconfig *);
226 226 static int nlm_nsm_init_local(struct nlm_nsm *);
227 227 static int nlm_nsm_init(struct nlm_nsm *, struct knetconfig *, struct netbuf *);
228 228 static void nlm_nsm_fini(struct nlm_nsm *);
229 229 static enum clnt_stat nlm_nsm_simu_crash(struct nlm_nsm *);
230 230 static enum clnt_stat nlm_nsm_stat(struct nlm_nsm *, int32_t *);
231 231 static enum clnt_stat nlm_nsm_mon(struct nlm_nsm *, char *, uint16_t);
232 232 static enum clnt_stat nlm_nsm_unmon(struct nlm_nsm *, char *);
233 233
234 234 /*
235 235 * NLM host functions
236 236 */
237 237 static int nlm_host_ctor(void *, void *, int);
238 238 static void nlm_host_dtor(void *, void *);
239 239 static void nlm_host_destroy(struct nlm_host *);
240 240 static struct nlm_host *nlm_host_create(char *, const char *,
241 241 struct knetconfig *, struct netbuf *);
242 242 static struct nlm_host *nlm_host_find_locked(struct nlm_globals *,
243 243 const char *, struct netbuf *, avl_index_t *);
244 244 static void nlm_host_unregister(struct nlm_globals *, struct nlm_host *);
245 245 static void nlm_host_gc_vholds(struct nlm_host *);
246 246 static bool_t nlm_host_has_srv_locks(struct nlm_host *);
247 247 static bool_t nlm_host_has_cli_locks(struct nlm_host *);
248 248 static bool_t nlm_host_has_locks(struct nlm_host *);
249 249
250 250 /*
251 251 * NLM vhold functions
252 252 */
253 253 static int nlm_vhold_ctor(void *, void *, int);
254 254 static void nlm_vhold_dtor(void *, void *);
255 255 static void nlm_vhold_destroy(struct nlm_host *,
256 256 struct nlm_vhold *);
257 257 static bool_t nlm_vhold_busy(struct nlm_host *, struct nlm_vhold *);
258 258 static void nlm_vhold_clean(struct nlm_vhold *, int);
259 259
260 260 /*
261 261 * NLM client/server sleeping locks/share reservation functions
262 262 */
263 263 struct nlm_slreq *nlm_slreq_find_locked(struct nlm_host *,
264 264 struct nlm_vhold *, struct flock64 *);
265 265 static struct nlm_shres *nlm_shres_create_item(struct shrlock *, vnode_t *);
266 266 static void nlm_shres_destroy_item(struct nlm_shres *);
267 267 static bool_t nlm_shres_equal(struct shrlock *, struct shrlock *);
268 268
269 269 /*
270 270 * NLM initialization functions.
271 271 */
272 272 void
273 273 nlm_init(void)
274 274 {
275 275 nlm_hosts_cache = kmem_cache_create("nlm_host_cache",
276 276 sizeof (struct nlm_host), 0, nlm_host_ctor, nlm_host_dtor,
277 277 nlm_kmem_reclaim, NULL, NULL, 0);
278 278
279 279 nlm_vhold_cache = kmem_cache_create("nlm_vhold_cache",
280 280 sizeof (struct nlm_vhold), 0, nlm_vhold_ctor, nlm_vhold_dtor,
281 281 NULL, NULL, NULL, 0);
282 282
283 283 nlm_rpc_init();
284 284 TAILQ_INIT(&nlm_zones_list);
285 285
286 286 /* initialize sysids bitmap */
287 287 bzero(nlm_sysid_bmap, sizeof (nlm_sysid_bmap));
288 288 nlm_sysid_nidx = 1;
289 289
290 290 /*
291 291 * Reserv the sysid #0, because it's associated
292 292 * with local locks only. Don't let to allocate
293 293 * it for remote locks.
294 294 */
295 295 BT_SET(nlm_sysid_bmap, 0);
296 296 }
297 297
298 298 void
299 299 nlm_globals_register(struct nlm_globals *g)
300 300 {
301 301 rw_enter(&lm_lck, RW_WRITER);
302 302 TAILQ_INSERT_TAIL(&nlm_zones_list, g, nlm_link);
303 303 rw_exit(&lm_lck);
304 304 }
305 305
306 306 void
307 307 nlm_globals_unregister(struct nlm_globals *g)
308 308 {
309 309 rw_enter(&lm_lck, RW_WRITER);
310 310 TAILQ_REMOVE(&nlm_zones_list, g, nlm_link);
311 311 rw_exit(&lm_lck);
312 312 }
313 313
314 314 /* ARGSUSED */
315 315 static void
316 316 nlm_kmem_reclaim(void *cdrarg)
317 317 {
318 318 struct nlm_globals *g;
319 319
320 320 rw_enter(&lm_lck, RW_READER);
321 321 TAILQ_FOREACH(g, &nlm_zones_list, nlm_link)
322 322 cv_broadcast(&g->nlm_gc_sched_cv);
323 323
324 324 rw_exit(&lm_lck);
325 325 }
326 326
327 327 /*
328 328 * NLM garbage collector thread (GC).
329 329 *
330 330 * NLM GC periodically checks whether there're any host objects
331 331 * that can be cleaned up. It also releases stale vnodes that
332 332 * live on the server side (under protection of vhold objects).
333 333 *
334 334 * NLM host objects are cleaned up from GC thread because
335 335 * operations helping us to determine whether given host has
336 336 * any locks can be quite expensive and it's not good to call
337 337 * them every time the very last reference to the host is dropped.
338 338 * Thus we use "lazy" approach for hosts cleanup.
339 339 *
340 340 * The work of GC is to release stale vnodes on the server side
341 341 * and destroy hosts that haven't any locks and any activity for
342 342 * some time (i.e. idle hosts).
343 343 */
344 344 static void
345 345 nlm_gc(struct nlm_globals *g)
346 346 {
347 347 struct nlm_host *hostp;
348 348 clock_t now, idle_period;
349 349
350 350 idle_period = SEC_TO_TICK(g->cn_idle_tmo);
351 351 mutex_enter(&g->lock);
352 352 for (;;) {
353 353 /*
354 354 * GC thread can be explicitly scheduled from
355 355 * memory reclamation function.
356 356 */
357 357 (void) cv_timedwait(&g->nlm_gc_sched_cv, &g->lock,
358 358 ddi_get_lbolt() + idle_period);
359 359
360 360 /*
361 361 * NLM is shutting down, time to die.
362 362 */
363 363 if (g->run_status == NLM_ST_STOPPING)
364 364 break;
365 365
366 366 now = ddi_get_lbolt();
367 367 DTRACE_PROBE2(gc__start, struct nlm_globals *, g,
368 368 clock_t, now);
369 369
370 370 /*
371 371 * Find all obviously unused vholds and destroy them.
372 372 */
373 373 for (hostp = avl_first(&g->nlm_hosts_tree); hostp != NULL;
374 374 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp)) {
375 375 struct nlm_vhold *nvp;
376 376
377 377 mutex_enter(&hostp->nh_lock);
378 378
379 379 nvp = TAILQ_FIRST(&hostp->nh_vholds_list);
380 380 while (nvp != NULL) {
381 381 struct nlm_vhold *new_nvp;
382 382
383 383 new_nvp = TAILQ_NEXT(nvp, nv_link);
384 384
385 385 /*
386 386 * If these conditions are met, the vhold is
387 387 * obviously unused and we will destroy it. In
388 388 * a case either v_filocks and/or v_shrlocks is
389 389 * non-NULL the vhold might still be unused by
390 390 * the host, but it is expensive to check that.
391 391 * We defer such check until the host is idle.
392 392 * The expensive check is done below without
393 393 * the global lock held.
394 394 */
395 395 if (nvp->nv_refcnt == 0 &&
396 396 nvp->nv_vp->v_filocks == NULL &&
397 397 nvp->nv_vp->v_shrlocks == NULL) {
398 398 nlm_vhold_destroy(hostp, nvp);
399 399 }
400 400
401 401 nvp = new_nvp;
402 402 }
403 403
404 404 mutex_exit(&hostp->nh_lock);
405 405 }
406 406
407 407 /*
408 408 * Handle all hosts that are unused at the moment
409 409 * until we meet one with idle timeout in future.
410 410 */
411 411 while ((hostp = TAILQ_FIRST(&g->nlm_idle_hosts)) != NULL) {
412 412 bool_t has_locks;
413 413
414 414 if (hostp->nh_idle_timeout > now)
415 415 break;
416 416
417 417 /*
418 418 * Drop global lock while doing expensive work
419 419 * on this host. We'll re-check any conditions
420 420 * that might change after retaking the global
421 421 * lock.
422 422 */
423 423 mutex_exit(&g->lock);
424 424 mutex_enter(&hostp->nh_lock);
425 425
426 426 /*
427 427 * nlm_globals lock was dropped earlier because
428 428 * garbage collecting of vholds and checking whether
429 429 * host has any locks/shares are expensive operations.
430 430 */
431 431 nlm_host_gc_vholds(hostp);
432 432 has_locks = nlm_host_has_locks(hostp);
433 433
434 434 mutex_exit(&hostp->nh_lock);
435 435 mutex_enter(&g->lock);
436 436
437 437 /*
438 438 * While we were doing expensive operations
439 439 * outside of nlm_globals critical section,
440 440 * somebody could take the host and remove it
441 441 * from the idle list. Whether its been
442 442 * reinserted or not, our information about
443 443 * the host is outdated, and we should take no
444 444 * further action.
445 445 */
446 446 if ((hostp->nh_flags & NLM_NH_INIDLE) == 0 ||
447 447 hostp->nh_idle_timeout > now)
448 448 continue;
449 449
450 450 /*
451 451 * If the host has locks we have to renew the
452 452 * host's timeout and put it at the end of LRU
453 453 * list.
454 454 */
455 455 if (has_locks) {
456 456 TAILQ_REMOVE(&g->nlm_idle_hosts,
457 457 hostp, nh_link);
458 458 hostp->nh_idle_timeout = now + idle_period;
459 459 TAILQ_INSERT_TAIL(&g->nlm_idle_hosts,
460 460 hostp, nh_link);
461 461 continue;
462 462 }
463 463
464 464 /*
465 465 * We're here if all the following conditions hold:
466 466 * 1) Host hasn't any locks or share reservations
467 467 * 2) Host is unused
468 468 * 3) Host wasn't touched by anyone at least for
469 469 * g->cn_idle_tmo seconds.
470 470 *
471 471 * So, now we can destroy it.
472 472 */
473 473 nlm_host_unregister(g, hostp);
474 474 mutex_exit(&g->lock);
475 475
476 476 nlm_host_unmonitor(g, hostp);
477 477 nlm_host_destroy(hostp);
478 478 mutex_enter(&g->lock);
479 479 if (g->run_status == NLM_ST_STOPPING)
480 480 break;
481 481
482 482 }
483 483
484 484 DTRACE_PROBE(gc__end);
485 485 }
486 486
487 487 DTRACE_PROBE1(gc__exit, struct nlm_globals *, g);
488 488
489 489 /* Let others know that GC has died */
490 490 g->nlm_gc_thread = NULL;
491 491 mutex_exit(&g->lock);
492 492
493 493 cv_broadcast(&g->nlm_gc_finish_cv);
494 494 zthread_exit();
495 495 }
496 496
497 497 /*
498 498 * Thread reclaim locks/shares acquired by the client side
499 499 * on the given server represented by hostp.
500 500 */
501 501 static void
502 502 nlm_reclaimer(struct nlm_host *hostp)
503 503 {
504 504 struct nlm_globals *g;
505 505
506 506 mutex_enter(&hostp->nh_lock);
507 507 hostp->nh_reclaimer = curthread;
508 508 mutex_exit(&hostp->nh_lock);
509 509
510 510 g = zone_getspecific(nlm_zone_key, curzone);
511 511 nlm_reclaim_client(g, hostp);
512 512
513 513 mutex_enter(&hostp->nh_lock);
514 514 hostp->nh_flags &= ~NLM_NH_RECLAIM;
515 515 hostp->nh_reclaimer = NULL;
516 516 cv_broadcast(&hostp->nh_recl_cv);
517 517 mutex_exit(&hostp->nh_lock);
518 518
519 519 /*
520 520 * Host was explicitly referenced before
521 521 * nlm_reclaim() was called, release it
522 522 * here.
523 523 */
524 524 nlm_host_release(g, hostp);
525 525 zthread_exit();
526 526 }
527 527
528 528 /*
529 529 * Copy a struct netobj. (see xdr.h)
530 530 */
531 531 void
532 532 nlm_copy_netobj(struct netobj *dst, struct netobj *src)
533 533 {
534 534 dst->n_len = src->n_len;
535 535 dst->n_bytes = kmem_alloc(src->n_len, KM_SLEEP);
536 536 bcopy(src->n_bytes, dst->n_bytes, src->n_len);
537 537 }
538 538
539 539 /*
540 540 * An NLM specificw replacement for clnt_call().
541 541 * nlm_clnt_call() is used by all RPC functions generated
542 542 * from nlm_prot.x specification. The function is aware
543 543 * about some pitfalls of NLM RPC procedures and has a logic
544 544 * that handles them properly.
545 545 */
546 546 enum clnt_stat
547 547 nlm_clnt_call(CLIENT *clnt, rpcproc_t procnum, xdrproc_t xdr_args,
548 548 caddr_t argsp, xdrproc_t xdr_result, caddr_t resultp, struct timeval wait)
549 549 {
550 550 k_sigset_t oldmask;
551 551 enum clnt_stat stat;
552 552 bool_t sig_blocked = FALSE;
553 553
554 554 /*
555 555 * If NLM RPC procnum is one of the NLM _RES procedures
556 556 * that are used to reply to asynchronous NLM RPC
557 557 * (MSG calls), explicitly set RPC timeout to zero.
558 558 * Client doesn't send a reply to RES procedures, so
559 559 * we don't need to wait anything.
560 560 *
561 561 * NOTE: we ignore NLM4_*_RES procnums because they are
562 562 * equal to NLM_*_RES numbers.
563 563 */
564 564 if (procnum >= NLM_TEST_RES && procnum <= NLM_GRANTED_RES)
565 565 wait = nlm_rpctv_zero;
566 566
567 567 /*
568 568 * We need to block signals in case of NLM_CANCEL RPC
569 569 * in order to prevent interruption of network RPC
570 570 * calls.
571 571 */
572 572 if (procnum == NLM_CANCEL) {
573 573 k_sigset_t newmask;
574 574
575 575 sigfillset(&newmask);
576 576 sigreplace(&newmask, &oldmask);
577 577 sig_blocked = TRUE;
578 578 }
579 579
580 580 stat = clnt_call(clnt, procnum, xdr_args,
581 581 argsp, xdr_result, resultp, wait);
582 582
583 583 /*
584 584 * Restore signal mask back if signals were blocked
585 585 */
586 586 if (sig_blocked)
587 587 sigreplace(&oldmask, (k_sigset_t *)NULL);
588 588
589 589 return (stat);
590 590 }
591 591
592 592 /*
593 593 * Suspend NLM client/server in the given zone.
594 594 *
595 595 * During suspend operation we mark those hosts
596 596 * that have any locks with NLM_NH_SUSPEND flags,
597 597 * so that they can be checked later, when resume
598 598 * operation occurs.
599 599 */
600 600 static void
601 601 nlm_suspend_zone(struct nlm_globals *g)
602 602 {
603 603 struct nlm_host *hostp;
604 604 struct nlm_host_list all_hosts;
605 605
606 606 /*
607 607 * Note that while we're doing suspend, GC thread is active
608 608 * and it can destroy some hosts while we're walking through
609 609 * the hosts tree. To prevent that and make suspend logic
610 610 * a bit more simple we put all hosts to local "all_hosts"
611 611 * list and increment reference counter of each host.
612 612 * This guaranties that no hosts will be released while
613 613 * we're doing suspend.
614 614 * NOTE: reference of each host must be dropped during
615 615 * resume operation.
616 616 */
617 617 TAILQ_INIT(&all_hosts);
618 618 mutex_enter(&g->lock);
619 619 for (hostp = avl_first(&g->nlm_hosts_tree); hostp != NULL;
620 620 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp)) {
621 621 /*
622 622 * If host is idle, remove it from idle list and
623 623 * clear idle flag. That is done to prevent GC
624 624 * from touching this host.
625 625 */
626 626 if (hostp->nh_flags & NLM_NH_INIDLE) {
627 627 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link);
628 628 hostp->nh_flags &= ~NLM_NH_INIDLE;
629 629 }
630 630
631 631 hostp->nh_refs++;
632 632 TAILQ_INSERT_TAIL(&all_hosts, hostp, nh_link);
633 633 }
634 634
635 635 /*
636 636 * Now we can walk through all hosts on the system
637 637 * with zone globals lock released. The fact the
638 638 * we have taken a reference to each host guaranties
639 639 * that no hosts can be destroyed during that process.
640 640 */
641 641 mutex_exit(&g->lock);
642 642 while ((hostp = TAILQ_FIRST(&all_hosts)) != NULL) {
643 643 mutex_enter(&hostp->nh_lock);
644 644 if (nlm_host_has_locks(hostp))
645 645 hostp->nh_flags |= NLM_NH_SUSPEND;
646 646
647 647 mutex_exit(&hostp->nh_lock);
648 648 TAILQ_REMOVE(&all_hosts, hostp, nh_link);
649 649 }
650 650 }
651 651
652 652 /*
653 653 * Resume NLM hosts for the given zone.
654 654 *
655 655 * nlm_resume_zone() is called after hosts were suspended
656 656 * (see nlm_suspend_zone) and its main purpose to check
657 657 * whether remote locks owned by hosts are still in consistent
658 658 * state. If they aren't, resume function tries to reclaim
659 659 * locks (for client side hosts) and clean locks (for
660 660 * server side hosts).
661 661 */
662 662 static void
663 663 nlm_resume_zone(struct nlm_globals *g)
664 664 {
665 665 struct nlm_host *hostp, *h_next;
666 666
667 667 mutex_enter(&g->lock);
668 668 hostp = avl_first(&g->nlm_hosts_tree);
669 669
670 670 /*
671 671 * In nlm_suspend_zone() the reference counter of each
672 672 * host was incremented, so we can safely iterate through
673 673 * all hosts without worrying that any host we touch will
674 674 * be removed at the moment.
675 675 */
676 676 while (hostp != NULL) {
677 677 struct nlm_nsm nsm;
678 678 enum clnt_stat stat;
679 679 int32_t sm_state;
680 680 int error;
681 681 bool_t resume_failed = FALSE;
682 682
683 683 h_next = AVL_NEXT(&g->nlm_hosts_tree, hostp);
684 684 mutex_exit(&g->lock);
685 685
686 686 DTRACE_PROBE1(resume__host, struct nlm_host *, hostp);
687 687
688 688 /*
689 689 * Suspend operation marked that the host doesn't
690 690 * have any locks. Skip it.
691 691 */
692 692 if (!(hostp->nh_flags & NLM_NH_SUSPEND))
693 693 goto cycle_end;
694 694
695 695 error = nlm_nsm_init(&nsm, &hostp->nh_knc, &hostp->nh_addr);
696 696 if (error != 0) {
697 697 NLM_ERR("Resume: Failed to contact to NSM of host %s "
698 698 "[error=%d]\n", hostp->nh_name, error);
699 699 resume_failed = TRUE;
700 700 goto cycle_end;
701 701 }
702 702
703 703 stat = nlm_nsm_stat(&nsm, &sm_state);
704 704 if (stat != RPC_SUCCESS) {
705 705 NLM_ERR("Resume: Failed to call SM_STAT operation for "
706 706 "host %s [stat=%d]\n", hostp->nh_name, stat);
707 707 resume_failed = TRUE;
708 708 nlm_nsm_fini(&nsm);
709 709 goto cycle_end;
710 710 }
711 711
712 712 if (sm_state != hostp->nh_state) {
713 713 /*
714 714 * Current SM state of the host isn't equal
715 715 * to the one host had when it was suspended.
716 716 * Probably it was rebooted. Try to reclaim
717 717 * locks if the host has any on its client side.
718 718 * Also try to clean up its server side locks
719 719 * (if the host has any).
720 720 */
721 721 nlm_host_notify_client(hostp, sm_state);
722 722 nlm_host_notify_server(hostp, sm_state);
723 723 }
724 724
725 725 nlm_nsm_fini(&nsm);
726 726
727 727 cycle_end:
728 728 if (resume_failed) {
729 729 /*
730 730 * Resume failed for the given host.
731 731 * Just clean up all resources it owns.
732 732 */
733 733 nlm_host_notify_server(hostp, 0);
734 734 nlm_client_cancel_all(g, hostp);
735 735 }
736 736
737 737 hostp->nh_flags &= ~NLM_NH_SUSPEND;
738 738 nlm_host_release(g, hostp);
739 739 hostp = h_next;
740 740 mutex_enter(&g->lock);
741 741 }
742 742
743 743 mutex_exit(&g->lock);
744 744 }
745 745
746 746 /*
747 747 * NLM functions responsible for operations on NSM handle.
748 748 */
749 749
750 750 /*
751 751 * Initialize knetconfig that is used for communication
752 752 * with local statd via loopback interface.
753 753 */
754 754 static int
755 755 nlm_init_local_knc(struct knetconfig *knc)
756 756 {
757 757 int error;
758 758 vnode_t *vp;
759 759
760 760 bzero(knc, sizeof (*knc));
761 761 error = lookupname("/dev/tcp", UIO_SYSSPACE,
762 762 FOLLOW, NULLVPP, &vp);
763 763 if (error != 0)
764 764 return (error);
765 765
766 766 knc->knc_semantics = NC_TPI_COTS;
767 767 knc->knc_protofmly = NC_INET;
768 768 knc->knc_proto = NC_TCP;
769 769 knc->knc_rdev = vp->v_rdev;
770 770 VN_RELE(vp);
771 771
772 772
773 773 return (0);
774 774 }
775 775
776 776 /*
777 777 * Initialize NSM handle that will be used to talk
778 778 * to local statd via loopback interface.
779 779 */
780 780 static int
781 781 nlm_nsm_init_local(struct nlm_nsm *nsm)
782 782 {
783 783 int error;
784 784 struct knetconfig knc;
785 785 struct sockaddr_in sin;
786 786 struct netbuf nb;
787 787
788 788 error = nlm_init_local_knc(&knc);
789 789 if (error != 0)
790 790 return (error);
791 791
792 792 bzero(&sin, sizeof (sin));
793 793 sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
794 794 sin.sin_family = AF_INET;
795 795
796 796 nb.buf = (char *)&sin;
797 797 nb.len = nb.maxlen = sizeof (sin);
798 798
799 799 return (nlm_nsm_init(nsm, &knc, &nb));
800 800 }
801 801
802 802 /*
803 803 * Initialize NSM handle used for talking to statd
804 804 */
805 805 static int
806 806 nlm_nsm_init(struct nlm_nsm *nsm, struct knetconfig *knc, struct netbuf *nb)
807 807 {
808 808 enum clnt_stat stat;
809 809 int error, retries;
810 810
811 811 bzero(nsm, sizeof (*nsm));
812 812 nsm->ns_knc = *knc;
813 813 nlm_copy_netbuf(&nsm->ns_addr, nb);
814 814
815 815 /*
816 816 * Try several times to get the port of statd service,
817 817 * If rpcbind_getaddr returns RPC_PROGNOTREGISTERED,
818 818 * retry an attempt, but wait for NLM_NSM_RPCBIND_TIMEOUT
819 819 * seconds berofore.
820 820 */
821 821 for (retries = 0; retries < NLM_NSM_RPCBIND_RETRIES; retries++) {
822 822 stat = rpcbind_getaddr(&nsm->ns_knc, SM_PROG,
823 823 SM_VERS, &nsm->ns_addr);
824 824 if (stat != RPC_SUCCESS) {
825 825 if (stat == RPC_PROGNOTREGISTERED) {
826 826 delay(SEC_TO_TICK(NLM_NSM_RPCBIND_TIMEOUT));
827 827 continue;
828 828 }
829 829 }
830 830
831 831 break;
832 832 }
833 833
834 834 if (stat != RPC_SUCCESS) {
835 835 DTRACE_PROBE2(rpcbind__error, enum clnt_stat, stat,
836 836 int, retries);
837 837 error = ENOENT;
838 838 goto error;
839 839 }
840 840
841 841 /*
842 842 * Create an RPC handle that'll be used for communication with local
843 843 * statd using the status monitor protocol.
844 844 */
845 845 error = clnt_tli_kcreate(&nsm->ns_knc, &nsm->ns_addr, SM_PROG, SM_VERS,
846 846 0, NLM_RPC_RETRIES, kcred, &nsm->ns_handle);
847 847 if (error != 0)
848 848 goto error;
849 849
850 850 /*
851 851 * Create an RPC handle that'll be used for communication with the
852 852 * local statd using the address registration protocol.
853 853 */
854 854 error = clnt_tli_kcreate(&nsm->ns_knc, &nsm->ns_addr, NSM_ADDR_PROGRAM,
855 855 NSM_ADDR_V1, 0, NLM_RPC_RETRIES, kcred, &nsm->ns_addr_handle);
856 856 if (error != 0)
857 857 goto error;
858 858
859 859 sema_init(&nsm->ns_sem, 1, NULL, SEMA_DEFAULT, NULL);
860 860 return (0);
861 861
862 862 error:
863 863 kmem_free(nsm->ns_addr.buf, nsm->ns_addr.maxlen);
864 864 if (nsm->ns_handle)
865 865 CLNT_DESTROY(nsm->ns_handle);
866 866
867 867 return (error);
868 868 }
869 869
870 870 static void
871 871 nlm_nsm_fini(struct nlm_nsm *nsm)
872 872 {
873 873 kmem_free(nsm->ns_addr.buf, nsm->ns_addr.maxlen);
874 874 CLNT_DESTROY(nsm->ns_addr_handle);
875 875 nsm->ns_addr_handle = NULL;
876 876 CLNT_DESTROY(nsm->ns_handle);
877 877 nsm->ns_handle = NULL;
878 878 sema_destroy(&nsm->ns_sem);
879 879 }
880 880
881 881 static enum clnt_stat
882 882 nlm_nsm_simu_crash(struct nlm_nsm *nsm)
883 883 {
884 884 enum clnt_stat stat;
885 885
886 886 sema_p(&nsm->ns_sem);
887 887 nlm_nsm_clnt_init(nsm->ns_handle, nsm);
888 888 stat = sm_simu_crash_1(NULL, NULL, nsm->ns_handle);
889 889 sema_v(&nsm->ns_sem);
890 890
891 891 return (stat);
892 892 }
893 893
894 894 static enum clnt_stat
895 895 nlm_nsm_stat(struct nlm_nsm *nsm, int32_t *out_stat)
896 896 {
897 897 struct sm_name args;
898 898 struct sm_stat_res res;
899 899 enum clnt_stat stat;
900 900
901 901 args.mon_name = uts_nodename();
902 902 bzero(&res, sizeof (res));
903 903
904 904 sema_p(&nsm->ns_sem);
905 905 nlm_nsm_clnt_init(nsm->ns_handle, nsm);
906 906 stat = sm_stat_1(&args, &res, nsm->ns_handle);
907 907 sema_v(&nsm->ns_sem);
908 908
909 909 if (stat == RPC_SUCCESS)
910 910 *out_stat = res.state;
911 911
912 912 return (stat);
913 913 }
914 914
915 915 static enum clnt_stat
916 916 nlm_nsm_mon(struct nlm_nsm *nsm, char *hostname, uint16_t priv)
917 917 {
918 918 struct mon args;
919 919 struct sm_stat_res res;
920 920 enum clnt_stat stat;
921 921
922 922 bzero(&args, sizeof (args));
923 923 bzero(&res, sizeof (res));
924 924
925 925 args.mon_id.mon_name = hostname;
926 926 args.mon_id.my_id.my_name = uts_nodename();
927 927 args.mon_id.my_id.my_prog = NLM_PROG;
928 928 args.mon_id.my_id.my_vers = NLM_SM;
929 929 args.mon_id.my_id.my_proc = NLM_SM_NOTIFY1;
930 930 bcopy(&priv, args.priv, sizeof (priv));
931 931
932 932 sema_p(&nsm->ns_sem);
933 933 nlm_nsm_clnt_init(nsm->ns_handle, nsm);
934 934 stat = sm_mon_1(&args, &res, nsm->ns_handle);
935 935 sema_v(&nsm->ns_sem);
936 936
937 937 return (stat);
938 938 }
939 939
940 940 static enum clnt_stat
941 941 nlm_nsm_unmon(struct nlm_nsm *nsm, char *hostname)
942 942 {
943 943 struct mon_id args;
944 944 struct sm_stat res;
945 945 enum clnt_stat stat;
946 946
947 947 bzero(&args, sizeof (args));
948 948 bzero(&res, sizeof (res));
949 949
950 950 args.mon_name = hostname;
951 951 args.my_id.my_name = uts_nodename();
952 952 args.my_id.my_prog = NLM_PROG;
953 953 args.my_id.my_vers = NLM_SM;
954 954 args.my_id.my_proc = NLM_SM_NOTIFY1;
955 955
956 956 sema_p(&nsm->ns_sem);
957 957 nlm_nsm_clnt_init(nsm->ns_handle, nsm);
958 958 stat = sm_unmon_1(&args, &res, nsm->ns_handle);
959 959 sema_v(&nsm->ns_sem);
960 960
961 961 return (stat);
962 962 }
963 963
964 964 static enum clnt_stat
965 965 nlm_nsmaddr_reg(struct nlm_nsm *nsm, char *name, int family, netobj *address)
966 966 {
967 967 struct reg1args args = { 0 };
968 968 struct reg1res res = { 0 };
969 969 enum clnt_stat stat;
970 970
971 971 args.family = family;
972 972 args.name = name;
973 973 args.address = *address;
974 974
975 975 sema_p(&nsm->ns_sem);
976 976 nlm_nsm_clnt_init(nsm->ns_addr_handle, nsm);
977 977 stat = nsmaddrproc1_reg_1(&args, &res, nsm->ns_addr_handle);
978 978 sema_v(&nsm->ns_sem);
979 979
980 980 return (stat);
981 981 }
982 982
983 983 /*
984 984 * Get NLM vhold object corresponding to vnode "vp".
985 985 * If no such object was found, create a new one.
986 986 *
987 987 * The purpose of this function is to associate vhold
988 988 * object with given vnode, so that:
989 989 * 1) vnode is hold (VN_HOLD) while vhold object is alive.
990 990 * 2) host has a track of all vnodes it touched by lock
991 991 * or share operations. These vnodes are accessible
992 992 * via collection of vhold objects.
993 993 */
994 994 struct nlm_vhold *
995 995 nlm_vhold_get(struct nlm_host *hostp, vnode_t *vp)
996 996 {
997 997 struct nlm_vhold *nvp, *new_nvp = NULL;
998 998
999 999 mutex_enter(&hostp->nh_lock);
1000 1000 nvp = nlm_vhold_find_locked(hostp, vp);
1001 1001 if (nvp != NULL)
1002 1002 goto out;
1003 1003
1004 1004 /* nlm_vhold wasn't found, then create a new one */
1005 1005 mutex_exit(&hostp->nh_lock);
1006 1006 new_nvp = kmem_cache_alloc(nlm_vhold_cache, KM_SLEEP);
1007 1007
1008 1008 /*
1009 1009 * Check if another thread has already
1010 1010 * created the same nlm_vhold.
1011 1011 */
1012 1012 mutex_enter(&hostp->nh_lock);
1013 1013 nvp = nlm_vhold_find_locked(hostp, vp);
1014 1014 if (nvp == NULL) {
1015 1015 nvp = new_nvp;
1016 1016 new_nvp = NULL;
1017 1017
1018 1018 TAILQ_INIT(&nvp->nv_slreqs);
1019 1019 nvp->nv_vp = vp;
1020 1020 nvp->nv_refcnt = 1;
1021 1021 VN_HOLD(nvp->nv_vp);
1022 1022
1023 1023 VERIFY(mod_hash_insert(hostp->nh_vholds_by_vp,
1024 1024 (mod_hash_key_t)vp, (mod_hash_val_t)nvp) == 0);
1025 1025 TAILQ_INSERT_TAIL(&hostp->nh_vholds_list, nvp, nv_link);
1026 1026 }
1027 1027
1028 1028 out:
1029 1029 mutex_exit(&hostp->nh_lock);
1030 1030 if (new_nvp != NULL)
1031 1031 kmem_cache_free(nlm_vhold_cache, new_nvp);
1032 1032
1033 1033 return (nvp);
1034 1034 }
1035 1035
1036 1036 /*
1037 1037 * Drop a reference to vhold object nvp.
1038 1038 */
1039 1039 void
1040 1040 nlm_vhold_release(struct nlm_host *hostp, struct nlm_vhold *nvp)
1041 1041 {
1042 1042 if (nvp == NULL)
1043 1043 return;
1044 1044
1045 1045 mutex_enter(&hostp->nh_lock);
1046 1046 ASSERT(nvp->nv_refcnt > 0);
1047 1047 nvp->nv_refcnt--;
1048 1048
1049 1049 /*
1050 1050 * If these conditions are met, the vhold is obviously unused and we
1051 1051 * will destroy it. In a case either v_filocks and/or v_shrlocks is
1052 1052 * non-NULL the vhold might still be unused by the host, but it is
1053 1053 * expensive to check that. We defer such check until the host is
1054 1054 * idle. The expensive check is done in the NLM garbage collector.
1055 1055 */
1056 1056 if (nvp->nv_refcnt == 0 &&
1057 1057 nvp->nv_vp->v_filocks == NULL &&
1058 1058 nvp->nv_vp->v_shrlocks == NULL) {
1059 1059 nlm_vhold_destroy(hostp, nvp);
1060 1060 }
1061 1061
1062 1062 mutex_exit(&hostp->nh_lock);
1063 1063 }
1064 1064
1065 1065 /*
1066 1066 * Clean all locks and share reservations on the
1067 1067 * given vhold object that were acquired by the
1068 1068 * given sysid
1069 1069 */
1070 1070 static void
1071 1071 nlm_vhold_clean(struct nlm_vhold *nvp, int sysid)
1072 1072 {
1073 1073 cleanlocks(nvp->nv_vp, IGN_PID, sysid);
1074 1074 cleanshares_by_sysid(nvp->nv_vp, sysid);
1075 1075 }
1076 1076
1077 1077 static void
1078 1078 nlm_vhold_destroy(struct nlm_host *hostp, struct nlm_vhold *nvp)
1079 1079 {
1080 1080 ASSERT(MUTEX_HELD(&hostp->nh_lock));
1081 1081
1082 1082 ASSERT(nvp->nv_refcnt == 0);
1083 1083 ASSERT(TAILQ_EMPTY(&nvp->nv_slreqs));
1084 1084
1085 1085 VERIFY(mod_hash_remove(hostp->nh_vholds_by_vp,
1086 1086 (mod_hash_key_t)nvp->nv_vp,
1087 1087 (mod_hash_val_t)&nvp) == 0);
1088 1088
1089 1089 TAILQ_REMOVE(&hostp->nh_vholds_list, nvp, nv_link);
1090 1090 VN_RELE(nvp->nv_vp);
1091 1091 nvp->nv_vp = NULL;
1092 1092
1093 1093 kmem_cache_free(nlm_vhold_cache, nvp);
1094 1094 }
1095 1095
1096 1096 /*
1097 1097 * Return TRUE if the given vhold is busy.
1098 1098 * Vhold object is considered to be "busy" when
1099 1099 * all the following conditions hold:
1100 1100 * 1) No one uses it at the moment;
1101 1101 * 2) It hasn't any locks;
1102 1102 * 3) It hasn't any share reservations;
1103 1103 */
1104 1104 static bool_t
1105 1105 nlm_vhold_busy(struct nlm_host *hostp, struct nlm_vhold *nvp)
1106 1106 {
1107 1107 vnode_t *vp;
1108 1108 int sysid;
1109 1109
1110 1110 ASSERT(MUTEX_HELD(&hostp->nh_lock));
1111 1111
1112 1112 if (nvp->nv_refcnt > 0)
1113 1113 return (TRUE);
1114 1114
1115 1115 vp = nvp->nv_vp;
1116 1116 sysid = hostp->nh_sysid;
1117 1117 if (flk_has_remote_locks_for_sysid(vp, sysid) ||
1118 1118 shr_has_remote_shares(vp, sysid))
1119 1119 return (TRUE);
1120 1120
1121 1121 return (FALSE);
1122 1122 }
1123 1123
1124 1124 /* ARGSUSED */
1125 1125 static int
1126 1126 nlm_vhold_ctor(void *datap, void *cdrarg, int kmflags)
1127 1127 {
1128 1128 struct nlm_vhold *nvp = (struct nlm_vhold *)datap;
1129 1129
1130 1130 bzero(nvp, sizeof (*nvp));
1131 1131 return (0);
1132 1132 }
1133 1133
1134 1134 /* ARGSUSED */
1135 1135 static void
1136 1136 nlm_vhold_dtor(void *datap, void *cdrarg)
1137 1137 {
1138 1138 struct nlm_vhold *nvp = (struct nlm_vhold *)datap;
1139 1139
1140 1140 ASSERT(nvp->nv_refcnt == 0);
1141 1141 ASSERT(TAILQ_EMPTY(&nvp->nv_slreqs));
1142 1142 ASSERT(nvp->nv_vp == NULL);
1143 1143 }
1144 1144
1145 1145 struct nlm_vhold *
1146 1146 nlm_vhold_find_locked(struct nlm_host *hostp, const vnode_t *vp)
1147 1147 {
1148 1148 struct nlm_vhold *nvp = NULL;
1149 1149
1150 1150 ASSERT(MUTEX_HELD(&hostp->nh_lock));
1151 1151 (void) mod_hash_find(hostp->nh_vholds_by_vp,
1152 1152 (mod_hash_key_t)vp,
1153 1153 (mod_hash_val_t)&nvp);
1154 1154
1155 1155 if (nvp != NULL)
1156 1156 nvp->nv_refcnt++;
1157 1157
1158 1158 return (nvp);
1159 1159 }
1160 1160
1161 1161 /*
1162 1162 * NLM host functions
1163 1163 */
1164 1164 static void
1165 1165 nlm_copy_netbuf(struct netbuf *dst, struct netbuf *src)
1166 1166 {
1167 1167 ASSERT(src->len <= src->maxlen);
1168 1168
1169 1169 dst->maxlen = src->maxlen;
1170 1170 dst->len = src->len;
1171 1171 dst->buf = kmem_zalloc(src->maxlen, KM_SLEEP);
1172 1172 bcopy(src->buf, dst->buf, src->len);
1173 1173 }
1174 1174
1175 1175 /* ARGSUSED */
1176 1176 static int
1177 1177 nlm_host_ctor(void *datap, void *cdrarg, int kmflags)
1178 1178 {
1179 1179 struct nlm_host *hostp = (struct nlm_host *)datap;
1180 1180
1181 1181 bzero(hostp, sizeof (*hostp));
1182 1182 return (0);
1183 1183 }
1184 1184
1185 1185 /* ARGSUSED */
1186 1186 static void
1187 1187 nlm_host_dtor(void *datap, void *cdrarg)
1188 1188 {
1189 1189 struct nlm_host *hostp = (struct nlm_host *)datap;
1190 1190 ASSERT(hostp->nh_refs == 0);
1191 1191 }
1192 1192
1193 1193 static void
1194 1194 nlm_host_unregister(struct nlm_globals *g, struct nlm_host *hostp)
1195 1195 {
1196 1196 ASSERT(hostp->nh_refs == 0);
1197 1197 ASSERT(hostp->nh_flags & NLM_NH_INIDLE);
1198 1198
1199 1199 avl_remove(&g->nlm_hosts_tree, hostp);
1200 1200 VERIFY(mod_hash_remove(g->nlm_hosts_hash,
1201 1201 (mod_hash_key_t)(uintptr_t)hostp->nh_sysid,
1202 1202 (mod_hash_val_t)&hostp) == 0);
1203 1203 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link);
1204 1204 hostp->nh_flags &= ~NLM_NH_INIDLE;
1205 1205 }
1206 1206
1207 1207 /*
1208 1208 * Free resources used by a host. This is called after the reference
1209 1209 * count has reached zero so it doesn't need to worry about locks.
1210 1210 */
1211 1211 static void
1212 1212 nlm_host_destroy(struct nlm_host *hostp)
1213 1213 {
1214 1214 ASSERT(hostp->nh_name != NULL);
1215 1215 ASSERT(hostp->nh_netid != NULL);
1216 1216 ASSERT(TAILQ_EMPTY(&hostp->nh_vholds_list));
1217 1217
1218 1218 strfree(hostp->nh_name);
1219 1219 strfree(hostp->nh_netid);
1220 1220 kmem_free(hostp->nh_addr.buf, hostp->nh_addr.maxlen);
1221 1221
1222 1222 if (hostp->nh_sysid != LM_NOSYSID)
1223 1223 nlm_sysid_free(hostp->nh_sysid);
1224 1224
1225 1225 nlm_rpc_cache_destroy(hostp);
1226 1226
1227 1227 ASSERT(TAILQ_EMPTY(&hostp->nh_vholds_list));
1228 1228 mod_hash_destroy_ptrhash(hostp->nh_vholds_by_vp);
1229 1229
1230 1230 mutex_destroy(&hostp->nh_lock);
1231 1231 cv_destroy(&hostp->nh_rpcb_cv);
1232 1232 cv_destroy(&hostp->nh_recl_cv);
1233 1233
1234 1234 kmem_cache_free(nlm_hosts_cache, hostp);
1235 1235 }
1236 1236
1237 1237 /*
1238 1238 * Cleanup SERVER-side state after a client restarts,
1239 1239 * or becomes unresponsive, or whatever.
1240 1240 *
1241 1241 * We unlock any active locks owned by the host.
1242 1242 * When rpc.lockd is shutting down,
1243 1243 * this function is called with newstate set to zero
1244 1244 * which allows us to cancel any pending async locks
1245 1245 * and clear the locking state.
1246 1246 *
1247 1247 * When "state" is 0, we don't update host's state,
1248 1248 * but cleanup all remote locks on the host.
1249 1249 * It's useful to call this function for resources
1250 1250 * cleanup.
1251 1251 */
1252 1252 void
1253 1253 nlm_host_notify_server(struct nlm_host *hostp, int32_t state)
1254 1254 {
1255 1255 struct nlm_vhold *nvp;
1256 1256 struct nlm_slreq *slr;
1257 1257 struct nlm_slreq_list slreqs2free;
1258 1258
1259 1259 TAILQ_INIT(&slreqs2free);
1260 1260 mutex_enter(&hostp->nh_lock);
1261 1261 if (state != 0)
1262 1262 hostp->nh_state = state;
1263 1263
1264 1264 TAILQ_FOREACH(nvp, &hostp->nh_vholds_list, nv_link) {
1265 1265
1266 1266 /* cleanup sleeping requests at first */
1267 1267 while ((slr = TAILQ_FIRST(&nvp->nv_slreqs)) != NULL) {
1268 1268 TAILQ_REMOVE(&nvp->nv_slreqs, slr, nsr_link);
1269 1269
1270 1270 /*
1271 1271 * Instead of freeing cancelled sleeping request
1272 1272 * here, we add it to the linked list created
1273 1273 * on the stack in order to do all frees outside
1274 1274 * the critical section.
1275 1275 */
1276 1276 TAILQ_INSERT_TAIL(&slreqs2free, slr, nsr_link);
1277 1277 }
1278 1278
1279 1279 nvp->nv_refcnt++;
1280 1280 mutex_exit(&hostp->nh_lock);
1281 1281
1282 1282 nlm_vhold_clean(nvp, hostp->nh_sysid);
1283 1283
1284 1284 mutex_enter(&hostp->nh_lock);
1285 1285 nvp->nv_refcnt--;
1286 1286 }
1287 1287
1288 1288 mutex_exit(&hostp->nh_lock);
1289 1289 while ((slr = TAILQ_FIRST(&slreqs2free)) != NULL) {
1290 1290 TAILQ_REMOVE(&slreqs2free, slr, nsr_link);
1291 1291 kmem_free(slr, sizeof (*slr));
1292 1292 }
1293 1293 }
1294 1294
1295 1295 /*
1296 1296 * Cleanup CLIENT-side state after a server restarts,
1297 1297 * or becomes unresponsive, or whatever.
1298 1298 *
1299 1299 * This is called by the local NFS statd when we receive a
1300 1300 * host state change notification. (also nlm_svc_stopping)
1301 1301 *
1302 1302 * Deal with a server restart. If we are stopping the
1303 1303 * NLM service, we'll have newstate == 0, and will just
1304 1304 * cancel all our client-side lock requests. Otherwise,
1305 1305 * start the "recovery" process to reclaim any locks
1306 1306 * we hold on this server.
1307 1307 */
1308 1308 void
1309 1309 nlm_host_notify_client(struct nlm_host *hostp, int32_t state)
1310 1310 {
1311 1311 mutex_enter(&hostp->nh_lock);
1312 1312 hostp->nh_state = state;
1313 1313 if (hostp->nh_flags & NLM_NH_RECLAIM) {
1314 1314 /*
1315 1315 * Either host's state is up to date or
1316 1316 * host is already in recovery.
1317 1317 */
1318 1318 mutex_exit(&hostp->nh_lock);
1319 1319 return;
1320 1320 }
1321 1321
1322 1322 hostp->nh_flags |= NLM_NH_RECLAIM;
1323 1323
1324 1324 /*
1325 1325 * Host will be released by the recovery thread,
1326 1326 * thus we need to increment refcount.
1327 1327 */
1328 1328 hostp->nh_refs++;
1329 1329 mutex_exit(&hostp->nh_lock);
1330 1330
1331 1331 (void) zthread_create(NULL, 0, nlm_reclaimer,
1332 1332 hostp, 0, minclsyspri);
1333 1333 }
1334 1334
1335 1335 /*
1336 1336 * The function is called when NLM client detects that
1337 1337 * server has entered in grace period and client needs
1338 1338 * to wait until reclamation process (if any) does
1339 1339 * its job.
1340 1340 */
1341 1341 int
1342 1342 nlm_host_wait_grace(struct nlm_host *hostp)
1343 1343 {
1344 1344 struct nlm_globals *g;
1345 1345 int error = 0;
1346 1346
1347 1347 g = zone_getspecific(nlm_zone_key, curzone);
1348 1348 mutex_enter(&hostp->nh_lock);
1349 1349
1350 1350 do {
1351 1351 int rc;
1352 1352
1353 1353 rc = cv_timedwait_sig(&hostp->nh_recl_cv,
1354 1354 &hostp->nh_lock, ddi_get_lbolt() +
1355 1355 SEC_TO_TICK(g->retrans_tmo));
1356 1356
1357 1357 if (rc == 0) {
1358 1358 error = EINTR;
1359 1359 break;
1360 1360 }
1361 1361 } while (hostp->nh_flags & NLM_NH_RECLAIM);
1362 1362
1363 1363 mutex_exit(&hostp->nh_lock);
1364 1364 return (error);
1365 1365 }
1366 1366
1367 1367 /*
1368 1368 * Create a new NLM host.
1369 1369 *
1370 1370 * NOTE: The in-kernel RPC (kRPC) subsystem uses TLI/XTI,
1371 1371 * which needs both a knetconfig and an address when creating
1372 1372 * endpoints. Thus host object stores both knetconfig and
1373 1373 * netid.
1374 1374 */
1375 1375 static struct nlm_host *
1376 1376 nlm_host_create(char *name, const char *netid,
1377 1377 struct knetconfig *knc, struct netbuf *naddr)
1378 1378 {
1379 1379 struct nlm_host *host;
1380 1380
1381 1381 host = kmem_cache_alloc(nlm_hosts_cache, KM_SLEEP);
1382 1382
1383 1383 mutex_init(&host->nh_lock, NULL, MUTEX_DEFAULT, NULL);
1384 1384 cv_init(&host->nh_rpcb_cv, NULL, CV_DEFAULT, NULL);
1385 1385 cv_init(&host->nh_recl_cv, NULL, CV_DEFAULT, NULL);
1386 1386
1387 1387 host->nh_sysid = LM_NOSYSID;
1388 1388 host->nh_refs = 1;
1389 1389 host->nh_name = strdup(name);
1390 1390 host->nh_netid = strdup(netid);
1391 1391 host->nh_knc = *knc;
1392 1392 nlm_copy_netbuf(&host->nh_addr, naddr);
1393 1393
1394 1394 host->nh_state = 0;
1395 1395 host->nh_rpcb_state = NRPCB_NEED_UPDATE;
1396 1396 host->nh_flags = 0;
1397 1397
1398 1398 host->nh_vholds_by_vp = mod_hash_create_ptrhash("nlm vholds hash",
1399 1399 32, mod_hash_null_valdtor, sizeof (vnode_t));
1400 1400
1401 1401 TAILQ_INIT(&host->nh_vholds_list);
1402 1402 TAILQ_INIT(&host->nh_rpchc);
1403 1403
1404 1404 return (host);
1405 1405 }
1406 1406
1407 1407 /*
1408 1408 * Cancel all client side sleeping locks owned by given host.
1409 1409 */
1410 1410 void
1411 1411 nlm_host_cancel_slocks(struct nlm_globals *g, struct nlm_host *hostp)
1412 1412 {
1413 1413 struct nlm_slock *nslp;
1414 1414
1415 1415 mutex_enter(&g->lock);
1416 1416 TAILQ_FOREACH(nslp, &g->nlm_slocks, nsl_link) {
1417 1417 if (nslp->nsl_host == hostp) {
1418 1418 nslp->nsl_state = NLM_SL_CANCELLED;
1419 1419 cv_broadcast(&nslp->nsl_cond);
1420 1420 }
1421 1421 }
1422 1422
1423 1423 mutex_exit(&g->lock);
1424 1424 }
1425 1425
1426 1426 /*
1427 1427 * Garbage collect stale vhold objects.
1428 1428 *
1429 1429 * In other words check whether vnodes that are
1430 1430 * held by vhold objects still have any locks
1431 1431 * or shares or still in use. If they aren't,
1432 1432 * just destroy them.
1433 1433 */
1434 1434 static void
1435 1435 nlm_host_gc_vholds(struct nlm_host *hostp)
1436 1436 {
1437 1437 struct nlm_vhold *nvp;
1438 1438
1439 1439 ASSERT(MUTEX_HELD(&hostp->nh_lock));
1440 1440
1441 1441 nvp = TAILQ_FIRST(&hostp->nh_vholds_list);
1442 1442 while (nvp != NULL) {
1443 1443 struct nlm_vhold *nvp_tmp;
1444 1444
1445 1445 if (nlm_vhold_busy(hostp, nvp)) {
1446 1446 nvp = TAILQ_NEXT(nvp, nv_link);
1447 1447 continue;
1448 1448 }
1449 1449
1450 1450 nvp_tmp = TAILQ_NEXT(nvp, nv_link);
1451 1451 nlm_vhold_destroy(hostp, nvp);
1452 1452 nvp = nvp_tmp;
1453 1453 }
1454 1454 }
1455 1455
1456 1456 /*
1457 1457 * Check whether the given host has any
1458 1458 * server side locks or share reservations.
1459 1459 */
1460 1460 static bool_t
1461 1461 nlm_host_has_srv_locks(struct nlm_host *hostp)
1462 1462 {
1463 1463 /*
1464 1464 * It's cheap and simple: if server has
1465 1465 * any locks/shares there must be vhold
1466 1466 * object storing the affected vnode.
1467 1467 *
1468 1468 * NOTE: We don't need to check sleeping
1469 1469 * locks on the server side, because if
1470 1470 * server side sleeping lock is alive,
1471 1471 * there must be a vhold object corresponding
1472 1472 * to target vnode.
1473 1473 */
1474 1474 ASSERT(MUTEX_HELD(&hostp->nh_lock));
1475 1475 if (!TAILQ_EMPTY(&hostp->nh_vholds_list))
1476 1476 return (TRUE);
1477 1477
1478 1478 return (FALSE);
1479 1479 }
1480 1480
1481 1481 /*
1482 1482 * Check whether the given host has any client side
1483 1483 * locks or share reservations.
1484 1484 */
1485 1485 static bool_t
1486 1486 nlm_host_has_cli_locks(struct nlm_host *hostp)
1487 1487 {
1488 1488 ASSERT(MUTEX_HELD(&hostp->nh_lock));
1489 1489
1490 1490 /*
1491 1491 * XXX: It's not the way I'd like to do the check,
1492 1492 * because flk_sysid_has_locks() can be very
1493 1493 * expensive by design. Unfortunatelly it iterates
1494 1494 * through all locks on the system, doesn't matter
1495 1495 * were they made on remote system via NLM or
1496 1496 * on local system via reclock. To understand the
1497 1497 * problem, consider that there're dozens of thousands
1498 1498 * of locks that are made on some ZFS dataset. And there's
1499 1499 * another dataset shared by NFS where NLM client had locks
1500 1500 * some time ago, but doesn't have them now.
1501 1501 * In this case flk_sysid_has_locks() will iterate
1502 1502 * thrught dozens of thousands locks until it returns us
1503 1503 * FALSE.
1504 1504 * Oh, I hope that in shiny future somebody will make
1505 1505 * local lock manager (os/flock.c) better, so that
1506 1506 * it'd be more friedly to remote locks and
1507 1507 * flk_sysid_has_locks() wouldn't be so expensive.
1508 1508 */
1509 1509 if (flk_sysid_has_locks(hostp->nh_sysid |
1510 1510 LM_SYSID_CLIENT, FLK_QUERY_ACTIVE))
1511 1511 return (TRUE);
1512 1512
1513 1513 /*
1514 1514 * Check whether host has any share reservations
1515 1515 * registered on the client side.
1516 1516 */
1517 1517 if (hostp->nh_shrlist != NULL)
1518 1518 return (TRUE);
1519 1519
1520 1520 return (FALSE);
1521 1521 }
1522 1522
1523 1523 /*
1524 1524 * Determine whether the given host owns any
1525 1525 * locks or share reservations.
1526 1526 */
1527 1527 static bool_t
1528 1528 nlm_host_has_locks(struct nlm_host *hostp)
1529 1529 {
1530 1530 if (nlm_host_has_srv_locks(hostp))
1531 1531 return (TRUE);
1532 1532
1533 1533 return (nlm_host_has_cli_locks(hostp));
1534 1534 }
1535 1535
1536 1536 /*
1537 1537 * This function compares only addresses of two netbufs
1538 1538 * that belong to NC_TCP[6] or NC_UDP[6] protofamily.
1539 1539 * Port part of netbuf is ignored.
1540 1540 *
1541 1541 * Return values:
1542 1542 * -1: nb1's address is "smaller" than nb2's
1543 1543 * 0: addresses are equal
1544 1544 * 1: nb1's address is "greater" than nb2's
1545 1545 */
1546 1546 static int
1547 1547 nlm_netbuf_addrs_cmp(struct netbuf *nb1, struct netbuf *nb2)
1548 1548 {
1549 1549 union nlm_addr {
1550 1550 struct sockaddr sa;
1551 1551 struct sockaddr_in sin;
1552 1552 struct sockaddr_in6 sin6;
1553 1553 } *na1, *na2;
1554 1554 int res;
1555 1555
1556 1556 /* LINTED E_BAD_PTR_CAST_ALIGN */
1557 1557 na1 = (union nlm_addr *)nb1->buf;
1558 1558 /* LINTED E_BAD_PTR_CAST_ALIGN */
1559 1559 na2 = (union nlm_addr *)nb2->buf;
1560 1560
1561 1561 if (na1->sa.sa_family < na2->sa.sa_family)
1562 1562 return (-1);
1563 1563 if (na1->sa.sa_family > na2->sa.sa_family)
1564 1564 return (1);
1565 1565
1566 1566 switch (na1->sa.sa_family) {
1567 1567 case AF_INET:
1568 1568 res = memcmp(&na1->sin.sin_addr, &na2->sin.sin_addr,
1569 1569 sizeof (na1->sin.sin_addr));
1570 1570 break;
1571 1571 case AF_INET6:
1572 1572 res = memcmp(&na1->sin6.sin6_addr, &na2->sin6.sin6_addr,
1573 1573 sizeof (na1->sin6.sin6_addr));
1574 1574 break;
1575 1575 default:
1576 1576 VERIFY(0);
1577 1577 return (0);
1578 1578 }
1579 1579
1580 1580 return (SIGN(res));
1581 1581 }
1582 1582
1583 1583 /*
1584 1584 * Compare two nlm hosts.
1585 1585 * Return values:
1586 1586 * -1: host1 is "smaller" than host2
1587 1587 * 0: host1 is equal to host2
1588 1588 * 1: host1 is "greater" than host2
1589 1589 */
1590 1590 int
1591 1591 nlm_host_cmp(const void *p1, const void *p2)
1592 1592 {
1593 1593 struct nlm_host *h1 = (struct nlm_host *)p1;
1594 1594 struct nlm_host *h2 = (struct nlm_host *)p2;
1595 1595 int res;
1596 1596
1597 1597 res = strcmp(h1->nh_netid, h2->nh_netid);
1598 1598 if (res != 0)
1599 1599 return (SIGN(res));
1600 1600
1601 1601 res = nlm_netbuf_addrs_cmp(&h1->nh_addr, &h2->nh_addr);
1602 1602 return (res);
1603 1603 }
1604 1604
1605 1605 /*
1606 1606 * Find the host specified by... (see below)
1607 1607 * If found, increment the ref count.
1608 1608 */
1609 1609 static struct nlm_host *
1610 1610 nlm_host_find_locked(struct nlm_globals *g, const char *netid,
1611 1611 struct netbuf *naddr, avl_index_t *wherep)
1612 1612 {
1613 1613 struct nlm_host *hostp, key;
1614 1614 avl_index_t pos;
1615 1615
1616 1616 ASSERT(MUTEX_HELD(&g->lock));
1617 1617
1618 1618 key.nh_netid = (char *)netid;
1619 1619 key.nh_addr.buf = naddr->buf;
1620 1620 key.nh_addr.len = naddr->len;
1621 1621 key.nh_addr.maxlen = naddr->maxlen;
1622 1622
1623 1623 hostp = avl_find(&g->nlm_hosts_tree, &key, &pos);
1624 1624
1625 1625 if (hostp != NULL) {
1626 1626 /*
1627 1627 * Host is inuse now. Remove it from idle
1628 1628 * hosts list if needed.
1629 1629 */
1630 1630 if (hostp->nh_flags & NLM_NH_INIDLE) {
1631 1631 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link);
1632 1632 hostp->nh_flags &= ~NLM_NH_INIDLE;
1633 1633 }
1634 1634
1635 1635 hostp->nh_refs++;
1636 1636 }
1637 1637 if (wherep != NULL)
1638 1638 *wherep = pos;
1639 1639
1640 1640 return (hostp);
1641 1641 }
1642 1642
1643 1643 /*
1644 1644 * Find NLM host for the given name and address.
1645 1645 */
1646 1646 struct nlm_host *
1647 1647 nlm_host_find(struct nlm_globals *g, const char *netid,
1648 1648 struct netbuf *addr)
1649 1649 {
1650 1650 struct nlm_host *hostp = NULL;
1651 1651
1652 1652 mutex_enter(&g->lock);
1653 1653 if (g->run_status != NLM_ST_UP)
1654 1654 goto out;
1655 1655
1656 1656 hostp = nlm_host_find_locked(g, netid, addr, NULL);
1657 1657
1658 1658 out:
1659 1659 mutex_exit(&g->lock);
1660 1660 return (hostp);
1661 1661 }
1662 1662
1663 1663
1664 1664 /*
1665 1665 * Find or create an NLM host for the given name and address.
1666 1666 *
1667 1667 * The remote host is determined by all of: name, netid, address.
1668 1668 * Note that the netid is whatever nlm_svc_add_ep() gave to
1669 1669 * svc_tli_kcreate() for the service binding. If any of these
1670 1670 * are different, allocate a new host (new sysid).
1671 1671 */
1672 1672 struct nlm_host *
1673 1673 nlm_host_findcreate(struct nlm_globals *g, char *name,
1674 1674 const char *netid, struct netbuf *addr)
1675 1675 {
1676 1676 int err;
1677 1677 struct nlm_host *host, *newhost = NULL;
1678 1678 struct knetconfig knc;
1679 1679 avl_index_t where;
1680 1680
1681 1681 mutex_enter(&g->lock);
1682 1682 if (g->run_status != NLM_ST_UP) {
1683 1683 mutex_exit(&g->lock);
1684 1684 return (NULL);
1685 1685 }
1686 1686
1687 1687 host = nlm_host_find_locked(g, netid, addr, NULL);
1688 1688 mutex_exit(&g->lock);
1689 1689 if (host != NULL)
1690 1690 return (host);
1691 1691
1692 1692 err = nlm_knc_from_netid(netid, &knc);
1693 1693 if (err != 0)
1694 1694 return (NULL);
1695 1695 /*
1696 1696 * Do allocations (etc.) outside of mutex,
1697 1697 * and then check again before inserting.
1698 1698 */
1699 1699 newhost = nlm_host_create(name, netid, &knc, addr);
1700 1700 newhost->nh_sysid = nlm_sysid_alloc();
1701 1701 if (newhost->nh_sysid == LM_NOSYSID)
1702 1702 goto out;
1703 1703
1704 1704 mutex_enter(&g->lock);
1705 1705 host = nlm_host_find_locked(g, netid, addr, &where);
1706 1706 if (host == NULL) {
1707 1707 host = newhost;
1708 1708 newhost = NULL;
1709 1709
1710 1710 /*
1711 1711 * Insert host to the hosts AVL tree that is
1712 1712 * used to lookup by <netid, address> pair.
1713 1713 */
1714 1714 avl_insert(&g->nlm_hosts_tree, host, where);
1715 1715
1716 1716 /*
1717 1717 * Insert host to the hosts hash table that is
1718 1718 * used to lookup host by sysid.
1719 1719 */
1720 1720 VERIFY(mod_hash_insert(g->nlm_hosts_hash,
1721 1721 (mod_hash_key_t)(uintptr_t)host->nh_sysid,
1722 1722 (mod_hash_val_t)host) == 0);
1723 1723 }
1724 1724
1725 1725 mutex_exit(&g->lock);
1726 1726
1727 1727 out:
1728 1728 if (newhost != NULL) {
1729 1729 /*
1730 1730 * We do not need the preallocated nlm_host
1731 1731 * so decrement the reference counter
1732 1732 * and destroy it.
1733 1733 */
1734 1734 newhost->nh_refs--;
1735 1735 nlm_host_destroy(newhost);
1736 1736 }
1737 1737
1738 1738 return (host);
1739 1739 }
1740 1740
1741 1741 /*
1742 1742 * Find the NLM host that matches the value of 'sysid'.
1743 1743 * If found, return it with a new ref,
1744 1744 * else return NULL.
1745 1745 */
1746 1746 struct nlm_host *
1747 1747 nlm_host_find_by_sysid(struct nlm_globals *g, sysid_t sysid)
1748 1748 {
1749 1749 struct nlm_host *hostp = NULL;
1750 1750
1751 1751 mutex_enter(&g->lock);
1752 1752 if (g->run_status != NLM_ST_UP)
1753 1753 goto out;
1754 1754
1755 1755 (void) mod_hash_find(g->nlm_hosts_hash,
1756 1756 (mod_hash_key_t)(uintptr_t)sysid,
1757 1757 (mod_hash_val_t)&hostp);
1758 1758
1759 1759 if (hostp == NULL)
1760 1760 goto out;
1761 1761
1762 1762 /*
1763 1763 * Host is inuse now. Remove it
1764 1764 * from idle hosts list if needed.
1765 1765 */
1766 1766 if (hostp->nh_flags & NLM_NH_INIDLE) {
1767 1767 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link);
1768 1768 hostp->nh_flags &= ~NLM_NH_INIDLE;
1769 1769 }
1770 1770
1771 1771 hostp->nh_refs++;
1772 1772
1773 1773 out:
1774 1774 mutex_exit(&g->lock);
1775 1775 return (hostp);
1776 1776 }
1777 1777
1778 1778 /*
1779 1779 * Release the given host.
1780 1780 * I.e. drop a reference that was taken earlier by one of
1781 1781 * the following functions: nlm_host_findcreate(), nlm_host_find(),
1782 1782 * nlm_host_find_by_sysid().
1783 1783 *
1784 1784 * When the very last reference is dropped, host is moved to
1785 1785 * so-called "idle state". All hosts that are in idle state
1786 1786 * have an idle timeout. If timeout is expired, GC thread
1787 1787 * checks whether hosts have any locks and if they heven't
1788 1788 * any, it removes them.
1789 1789 * NOTE: only unused hosts can be in idle state.
1790 1790 */
1791 1791 static void
1792 1792 nlm_host_release_locked(struct nlm_globals *g, struct nlm_host *hostp)
1793 1793 {
1794 1794 if (hostp == NULL)
1795 1795 return;
1796 1796
1797 1797 ASSERT(MUTEX_HELD(&g->lock));
1798 1798 ASSERT(hostp->nh_refs > 0);
1799 1799
1800 1800 hostp->nh_refs--;
1801 1801 if (hostp->nh_refs != 0)
1802 1802 return;
1803 1803
1804 1804 /*
1805 1805 * The very last reference to the host was dropped,
1806 1806 * thus host is unused now. Set its idle timeout
1807 1807 * and move it to the idle hosts LRU list.
1808 1808 */
1809 1809 hostp->nh_idle_timeout = ddi_get_lbolt() +
1810 1810 SEC_TO_TICK(g->cn_idle_tmo);
1811 1811
1812 1812 ASSERT((hostp->nh_flags & NLM_NH_INIDLE) == 0);
1813 1813 TAILQ_INSERT_TAIL(&g->nlm_idle_hosts, hostp, nh_link);
1814 1814 hostp->nh_flags |= NLM_NH_INIDLE;
1815 1815 }
1816 1816
1817 1817 void
1818 1818 nlm_host_release(struct nlm_globals *g, struct nlm_host *hostp)
1819 1819 {
1820 1820 if (hostp == NULL)
1821 1821 return;
1822 1822
1823 1823 mutex_enter(&g->lock);
1824 1824 nlm_host_release_locked(g, hostp);
1825 1825 mutex_exit(&g->lock);
1826 1826 }
1827 1827
1828 1828 /*
1829 1829 * Unregister this NLM host (NFS client) with the local statd
1830 1830 * due to idleness (no locks held for a while).
1831 1831 */
1832 1832 void
1833 1833 nlm_host_unmonitor(struct nlm_globals *g, struct nlm_host *host)
1834 1834 {
1835 1835 enum clnt_stat stat;
1836 1836
1837 1837 VERIFY(host->nh_refs == 0);
1838 1838 if (!(host->nh_flags & NLM_NH_MONITORED))
1839 1839 return;
1840 1840
1841 1841 host->nh_flags &= ~NLM_NH_MONITORED;
1842 1842 stat = nlm_nsm_unmon(&g->nlm_nsm, host->nh_name);
1843 1843 if (stat != RPC_SUCCESS) {
1844 1844 NLM_WARN("NLM: Failed to contact statd, stat=%d\n", stat);
1845 1845 return;
1846 1846 }
1847 1847 }
1848 1848
1849 1849 /*
1850 1850 * Ask the local NFS statd to begin monitoring this host.
1851 1851 * It will call us back when that host restarts, using the
1852 1852 * prog,vers,proc specified below, i.e. NLM_SM_NOTIFY1,
1853 1853 * which is handled in nlm_do_notify1().
1854 1854 */
1855 1855 void
1856 1856 nlm_host_monitor(struct nlm_globals *g, struct nlm_host *host, int state)
1857 1857 {
1858 1858 int family;
1859 1859 netobj obj;
1860 1860 enum clnt_stat stat;
1861 1861
1862 1862 if (state != 0 && host->nh_state == 0) {
1863 1863 /*
1864 1864 * This is the first time we have seen an NSM state
1865 1865 * Value for this host. We record it here to help
1866 1866 * detect host reboots.
1867 1867 */
1868 1868 host->nh_state = state;
1869 1869 }
1870 1870
1871 1871 mutex_enter(&host->nh_lock);
1872 1872 if (host->nh_flags & NLM_NH_MONITORED) {
1873 1873 mutex_exit(&host->nh_lock);
1874 1874 return;
1875 1875 }
1876 1876
1877 1877 host->nh_flags |= NLM_NH_MONITORED;
1878 1878 mutex_exit(&host->nh_lock);
1879 1879
1880 1880 /*
1881 1881 * Before we begin monitoring the host register the network address
1882 1882 * associated with this hostname.
1883 1883 */
1884 1884 nlm_netbuf_to_netobj(&host->nh_addr, &family, &obj);
1885 1885 stat = nlm_nsmaddr_reg(&g->nlm_nsm, host->nh_name, family, &obj);
1886 1886 if (stat != RPC_SUCCESS) {
1887 1887 NLM_WARN("Failed to register address, stat=%d\n", stat);
1888 1888 mutex_enter(&g->lock);
1889 1889 host->nh_flags &= ~NLM_NH_MONITORED;
1890 1890 mutex_exit(&g->lock);
1891 1891
1892 1892 return;
1893 1893 }
1894 1894
1895 1895 /*
1896 1896 * Tell statd how to call us with status updates for
1897 1897 * this host. Updates arrive via nlm_do_notify1().
1898 1898 *
1899 1899 * We put our assigned system ID value in the priv field to
1900 1900 * make it simpler to find the host if we are notified of a
1901 1901 * host restart.
1902 1902 */
1903 1903 stat = nlm_nsm_mon(&g->nlm_nsm, host->nh_name, host->nh_sysid);
1904 1904 if (stat != RPC_SUCCESS) {
1905 1905 NLM_WARN("Failed to contact local NSM, stat=%d\n", stat);
1906 1906 mutex_enter(&g->lock);
1907 1907 host->nh_flags &= ~NLM_NH_MONITORED;
1908 1908 mutex_exit(&g->lock);
1909 1909
1910 1910 return;
1911 1911 }
1912 1912 }
1913 1913
1914 1914 int
1915 1915 nlm_host_get_state(struct nlm_host *hostp)
1916 1916 {
1917 1917
1918 1918 return (hostp->nh_state);
1919 1919 }
1920 1920
1921 1921 /*
1922 1922 * NLM client/server sleeping locks
1923 1923 */
1924 1924
1925 1925 /*
1926 1926 * Register client side sleeping lock.
1927 1927 *
1928 1928 * Our client code calls this to keep information
1929 1929 * about sleeping lock somewhere. When it receives
1930 1930 * grant callback from server or when it just
1931 1931 * needs to remove all sleeping locks from vnode,
1932 1932 * it uses this information for remove/apply lock
1933 1933 * properly.
1934 1934 */
1935 1935 struct nlm_slock *
1936 1936 nlm_slock_register(
1937 1937 struct nlm_globals *g,
1938 1938 struct nlm_host *host,
1939 1939 struct nlm4_lock *lock,
1940 1940 struct vnode *vp)
1941 1941 {
1942 1942 struct nlm_slock *nslp;
1943 1943
1944 1944 nslp = kmem_zalloc(sizeof (*nslp), KM_SLEEP);
1945 1945 cv_init(&nslp->nsl_cond, NULL, CV_DEFAULT, NULL);
1946 1946 nslp->nsl_lock = *lock;
1947 1947 nlm_copy_netobj(&nslp->nsl_fh, &nslp->nsl_lock.fh);
1948 1948 nslp->nsl_state = NLM_SL_BLOCKED;
1949 1949 nslp->nsl_host = host;
1950 1950 nslp->nsl_vp = vp;
1951 1951
1952 1952 mutex_enter(&g->lock);
1953 1953 TAILQ_INSERT_TAIL(&g->nlm_slocks, nslp, nsl_link);
1954 1954 mutex_exit(&g->lock);
1955 1955
1956 1956 return (nslp);
1957 1957 }
1958 1958
1959 1959 /*
1960 1960 * Remove this lock from the wait list and destroy it.
1961 1961 */
1962 1962 void
1963 1963 nlm_slock_unregister(struct nlm_globals *g, struct nlm_slock *nslp)
1964 1964 {
1965 1965 mutex_enter(&g->lock);
1966 1966 TAILQ_REMOVE(&g->nlm_slocks, nslp, nsl_link);
1967 1967 mutex_exit(&g->lock);
1968 1968
1969 1969 kmem_free(nslp->nsl_fh.n_bytes, nslp->nsl_fh.n_len);
1970 1970 cv_destroy(&nslp->nsl_cond);
1971 1971 kmem_free(nslp, sizeof (*nslp));
1972 1972 }
1973 1973
1974 1974 /*
1975 1975 * Wait for a granted callback or cancellation event
1976 1976 * for a sleeping lock.
1977 1977 *
1978 1978 * If a signal interrupted the wait or if the lock
1979 1979 * was cancelled, return EINTR - the caller must arrange to send
1980 1980 * a cancellation to the server.
1981 1981 *
1982 1982 * If timeout occurred, return ETIMEDOUT - the caller must
1983 1983 * resend the lock request to the server.
1984 1984 *
1985 1985 * On success return 0.
1986 1986 */
1987 1987 int
1988 1988 nlm_slock_wait(struct nlm_globals *g,
1989 1989 struct nlm_slock *nslp, uint_t timeo_secs)
1990 1990 {
1991 1991 clock_t timeo_ticks;
1992 1992 int cv_res, error;
1993 1993
1994 1994 /*
1995 1995 * If the granted message arrived before we got here,
1996 1996 * nslp->nsl_state will be NLM_SL_GRANTED - in that case don't sleep.
1997 1997 */
1998 1998 cv_res = 1;
1999 1999 timeo_ticks = ddi_get_lbolt() + SEC_TO_TICK(timeo_secs);
2000 2000
2001 2001 mutex_enter(&g->lock);
2002 2002 while (nslp->nsl_state == NLM_SL_BLOCKED && cv_res > 0) {
2003 2003 cv_res = cv_timedwait_sig(&nslp->nsl_cond,
2004 2004 &g->lock, timeo_ticks);
2005 2005 }
2006 2006
2007 2007 /*
2008 2008 * No matter why we wake up, if the lock was
2009 2009 * cancelled, let the function caller to know
2010 2010 * about it by returning EINTR.
2011 2011 */
2012 2012 if (nslp->nsl_state == NLM_SL_CANCELLED) {
2013 2013 error = EINTR;
2014 2014 goto out;
2015 2015 }
2016 2016
2017 2017 if (cv_res <= 0) {
2018 2018 /* We were woken up either by timeout or by interrupt */
2019 2019 error = (cv_res < 0) ? ETIMEDOUT : EINTR;
2020 2020
2021 2021 /*
2022 2022 * The granted message may arrive after the
2023 2023 * interrupt/timeout but before we manage to lock the
2024 2024 * mutex. Detect this by examining nslp.
2025 2025 */
2026 2026 if (nslp->nsl_state == NLM_SL_GRANTED)
2027 2027 error = 0;
2028 2028 } else { /* Awaken via cv_signal()/cv_broadcast() or didn't block */
2029 2029 error = 0;
2030 2030 VERIFY(nslp->nsl_state == NLM_SL_GRANTED);
2031 2031 }
2032 2032
2033 2033 out:
2034 2034 mutex_exit(&g->lock);
2035 2035 return (error);
2036 2036 }
2037 2037
2038 2038 /*
2039 2039 * Mark client side sleeping lock as granted
2040 2040 * and wake up a process blocked on the lock.
2041 2041 * Called from server side NLM_GRANT handler.
2042 2042 *
2043 2043 * If sleeping lock is found return 0, otherwise
2044 2044 * return ENOENT.
2045 2045 */
2046 2046 int
2047 2047 nlm_slock_grant(struct nlm_globals *g,
2048 2048 struct nlm_host *hostp, struct nlm4_lock *alock)
2049 2049 {
2050 2050 struct nlm_slock *nslp;
2051 2051 int error = ENOENT;
2052 2052
2053 2053 mutex_enter(&g->lock);
2054 2054 TAILQ_FOREACH(nslp, &g->nlm_slocks, nsl_link) {
2055 2055 if ((nslp->nsl_state != NLM_SL_BLOCKED) ||
2056 2056 (nslp->nsl_host != hostp))
2057 2057 continue;
2058 2058
2059 2059 if (alock->svid == nslp->nsl_lock.svid &&
2060 2060 alock->l_offset == nslp->nsl_lock.l_offset &&
2061 2061 alock->l_len == nslp->nsl_lock.l_len &&
2062 2062 alock->fh.n_len == nslp->nsl_lock.fh.n_len &&
2063 2063 bcmp(alock->fh.n_bytes, nslp->nsl_lock.fh.n_bytes,
2064 2064 nslp->nsl_lock.fh.n_len) == 0) {
2065 2065 nslp->nsl_state = NLM_SL_GRANTED;
2066 2066 cv_broadcast(&nslp->nsl_cond);
2067 2067 error = 0;
2068 2068 break;
2069 2069 }
2070 2070 }
2071 2071
2072 2072 mutex_exit(&g->lock);
2073 2073 return (error);
2074 2074 }
2075 2075
2076 2076 /*
2077 2077 * Register sleeping lock request corresponding to
2078 2078 * flp on the given vhold object.
2079 2079 * On success function returns 0, otherwise (if
2080 2080 * lock request with the same flp is already
2081 2081 * registered) function returns EEXIST.
2082 2082 */
2083 2083 int
2084 2084 nlm_slreq_register(struct nlm_host *hostp, struct nlm_vhold *nvp,
2085 2085 struct flock64 *flp)
2086 2086 {
2087 2087 struct nlm_slreq *slr, *new_slr = NULL;
2088 2088 int ret = EEXIST;
2089 2089
2090 2090 mutex_enter(&hostp->nh_lock);
2091 2091 slr = nlm_slreq_find_locked(hostp, nvp, flp);
2092 2092 if (slr != NULL)
2093 2093 goto out;
2094 2094
2095 2095 mutex_exit(&hostp->nh_lock);
2096 2096 new_slr = kmem_zalloc(sizeof (*slr), KM_SLEEP);
2097 2097 bcopy(flp, &new_slr->nsr_fl, sizeof (*flp));
2098 2098
2099 2099 mutex_enter(&hostp->nh_lock);
2100 2100 slr = nlm_slreq_find_locked(hostp, nvp, flp);
2101 2101 if (slr == NULL) {
2102 2102 slr = new_slr;
2103 2103 new_slr = NULL;
2104 2104 ret = 0;
2105 2105
2106 2106 TAILQ_INSERT_TAIL(&nvp->nv_slreqs, slr, nsr_link);
2107 2107 }
2108 2108
2109 2109 out:
2110 2110 mutex_exit(&hostp->nh_lock);
2111 2111 if (new_slr != NULL)
2112 2112 kmem_free(new_slr, sizeof (*new_slr));
2113 2113
2114 2114 return (ret);
2115 2115 }
2116 2116
2117 2117 /*
2118 2118 * Unregister sleeping lock request corresponding
2119 2119 * to flp from the given vhold object.
2120 2120 * On success function returns 0, otherwise (if
2121 2121 * lock request corresponding to flp isn't found
2122 2122 * on the given vhold) function returns ENOENT.
2123 2123 */
2124 2124 int
2125 2125 nlm_slreq_unregister(struct nlm_host *hostp, struct nlm_vhold *nvp,
2126 2126 struct flock64 *flp)
2127 2127 {
2128 2128 struct nlm_slreq *slr;
2129 2129
2130 2130 mutex_enter(&hostp->nh_lock);
2131 2131 slr = nlm_slreq_find_locked(hostp, nvp, flp);
2132 2132 if (slr == NULL) {
2133 2133 mutex_exit(&hostp->nh_lock);
2134 2134 return (ENOENT);
2135 2135 }
2136 2136
2137 2137 TAILQ_REMOVE(&nvp->nv_slreqs, slr, nsr_link);
2138 2138 mutex_exit(&hostp->nh_lock);
2139 2139
2140 2140 kmem_free(slr, sizeof (*slr));
2141 2141 return (0);
2142 2142 }
2143 2143
2144 2144 /*
2145 2145 * Find sleeping lock request on the given vhold object by flp.
2146 2146 */
2147 2147 struct nlm_slreq *
2148 2148 nlm_slreq_find_locked(struct nlm_host *hostp, struct nlm_vhold *nvp,
2149 2149 struct flock64 *flp)
2150 2150 {
2151 2151 struct nlm_slreq *slr = NULL;
2152 2152
2153 2153 ASSERT(MUTEX_HELD(&hostp->nh_lock));
2154 2154 TAILQ_FOREACH(slr, &nvp->nv_slreqs, nsr_link) {
2155 2155 if (slr->nsr_fl.l_start == flp->l_start &&
2156 2156 slr->nsr_fl.l_len == flp->l_len &&
2157 2157 slr->nsr_fl.l_pid == flp->l_pid &&
2158 2158 slr->nsr_fl.l_type == flp->l_type)
2159 2159 break;
2160 2160 }
2161 2161
2162 2162 return (slr);
2163 2163 }
2164 2164
2165 2165 /*
2166 2166 * NLM tracks active share reservations made on the client side.
2167 2167 * It needs to have a track of share reservations for two purposes
2168 2168 * 1) to determine if nlm_host is busy (if it has active locks and/or
2169 2169 * share reservations, it is)
2170 2170 * 2) to recover active share reservations when NLM server reports
2171 2171 * that it has rebooted.
2172 2172 *
2173 2173 * Unfortunately Illumos local share reservations manager (see os/share.c)
2174 2174 * doesn't have an ability to lookup all reservations on the system
2175 2175 * by sysid (like local lock manager) or get all reservations by sysid.
2176 2176 * It tracks reservations per vnode and is able to get/looup them
2177 2177 * on particular vnode. It's not what NLM needs. Thus it has that ugly
2178 2178 * share reservations tracking scheme.
2179 2179 */
2180 2180
2181 2181 void
2182 2182 nlm_shres_track(struct nlm_host *hostp, vnode_t *vp, struct shrlock *shrp)
2183 2183 {
2184 2184 struct nlm_shres *nsp, *nsp_new;
2185 2185
2186 2186 /*
2187 2187 * NFS code must fill the s_owner, so that
2188 2188 * s_own_len is never 0.
2189 2189 */
2190 2190 ASSERT(shrp->s_own_len > 0);
2191 2191 nsp_new = nlm_shres_create_item(shrp, vp);
2192 2192
2193 2193 mutex_enter(&hostp->nh_lock);
2194 2194 for (nsp = hostp->nh_shrlist; nsp != NULL; nsp = nsp->ns_next)
2195 2195 if (nsp->ns_vp == vp && nlm_shres_equal(shrp, nsp->ns_shr))
2196 2196 break;
2197 2197
2198 2198 if (nsp != NULL) {
2199 2199 /*
2200 2200 * Found a duplicate. Do nothing.
2201 2201 */
2202 2202
2203 2203 goto out;
2204 2204 }
2205 2205
2206 2206 nsp = nsp_new;
2207 2207 nsp_new = NULL;
2208 2208 nsp->ns_next = hostp->nh_shrlist;
2209 2209 hostp->nh_shrlist = nsp;
2210 2210
2211 2211 out:
2212 2212 mutex_exit(&hostp->nh_lock);
2213 2213 if (nsp_new != NULL)
2214 2214 nlm_shres_destroy_item(nsp_new);
2215 2215 }
2216 2216
2217 2217 void
2218 2218 nlm_shres_untrack(struct nlm_host *hostp, vnode_t *vp, struct shrlock *shrp)
2219 2219 {
2220 2220 struct nlm_shres *nsp, *nsp_prev = NULL;
2221 2221
2222 2222 mutex_enter(&hostp->nh_lock);
2223 2223 nsp = hostp->nh_shrlist;
2224 2224 while (nsp != NULL) {
2225 2225 if (nsp->ns_vp == vp && nlm_shres_equal(shrp, nsp->ns_shr)) {
2226 2226 struct nlm_shres *nsp_del;
2227 2227
2228 2228 nsp_del = nsp;
2229 2229 nsp = nsp->ns_next;
2230 2230 if (nsp_prev != NULL)
2231 2231 nsp_prev->ns_next = nsp;
2232 2232 else
2233 2233 hostp->nh_shrlist = nsp;
2234 2234
2235 2235 nlm_shres_destroy_item(nsp_del);
2236 2236 continue;
2237 2237 }
2238 2238
2239 2239 nsp_prev = nsp;
2240 2240 nsp = nsp->ns_next;
2241 2241 }
2242 2242
2243 2243 mutex_exit(&hostp->nh_lock);
2244 2244 }
2245 2245
2246 2246 /*
2247 2247 * Get a _copy_ of the list of all active share reservations
2248 2248 * made by the given host.
2249 2249 * NOTE: the list function returns _must_ be released using
2250 2250 * nlm_free_shrlist().
2251 2251 */
2252 2252 struct nlm_shres *
2253 2253 nlm_get_active_shres(struct nlm_host *hostp)
2254 2254 {
2255 2255 struct nlm_shres *nsp, *nslist = NULL;
2256 2256
2257 2257 mutex_enter(&hostp->nh_lock);
2258 2258 for (nsp = hostp->nh_shrlist; nsp != NULL; nsp = nsp->ns_next) {
2259 2259 struct nlm_shres *nsp_new;
2260 2260
2261 2261 nsp_new = nlm_shres_create_item(nsp->ns_shr, nsp->ns_vp);
2262 2262 nsp_new->ns_next = nslist;
2263 2263 nslist = nsp_new;
2264 2264 }
2265 2265
2266 2266 mutex_exit(&hostp->nh_lock);
2267 2267 return (nslist);
2268 2268 }
2269 2269
2270 2270 /*
2271 2271 * Free memory allocated for the active share reservations
2272 2272 * list created by nlm_get_active_shres() function.
2273 2273 */
2274 2274 void
2275 2275 nlm_free_shrlist(struct nlm_shres *nslist)
2276 2276 {
2277 2277 struct nlm_shres *nsp;
2278 2278
2279 2279 while (nslist != NULL) {
2280 2280 nsp = nslist;
2281 2281 nslist = nslist->ns_next;
2282 2282
2283 2283 nlm_shres_destroy_item(nsp);
2284 2284 }
2285 2285 }
2286 2286
2287 2287 static bool_t
2288 2288 nlm_shres_equal(struct shrlock *shrp1, struct shrlock *shrp2)
2289 2289 {
2290 2290 if (shrp1->s_sysid == shrp2->s_sysid &&
2291 2291 shrp1->s_pid == shrp2->s_pid &&
2292 2292 shrp1->s_own_len == shrp2->s_own_len &&
2293 2293 bcmp(shrp1->s_owner, shrp2->s_owner,
2294 2294 shrp1->s_own_len) == 0)
2295 2295 return (TRUE);
2296 2296
2297 2297 return (FALSE);
2298 2298 }
2299 2299
2300 2300 static struct nlm_shres *
2301 2301 nlm_shres_create_item(struct shrlock *shrp, vnode_t *vp)
2302 2302 {
2303 2303 struct nlm_shres *nsp;
2304 2304
2305 2305 nsp = kmem_alloc(sizeof (*nsp), KM_SLEEP);
2306 2306 nsp->ns_shr = kmem_alloc(sizeof (*shrp), KM_SLEEP);
2307 2307 bcopy(shrp, nsp->ns_shr, sizeof (*shrp));
2308 2308 nsp->ns_shr->s_owner = kmem_alloc(shrp->s_own_len, KM_SLEEP);
2309 2309 bcopy(shrp->s_owner, nsp->ns_shr->s_owner, shrp->s_own_len);
2310 2310 nsp->ns_vp = vp;
2311 2311
2312 2312 return (nsp);
2313 2313 }
2314 2314
2315 2315 static void
2316 2316 nlm_shres_destroy_item(struct nlm_shres *nsp)
2317 2317 {
2318 2318 kmem_free(nsp->ns_shr->s_owner,
2319 2319 nsp->ns_shr->s_own_len);
2320 2320 kmem_free(nsp->ns_shr, sizeof (struct shrlock));
2321 2321 kmem_free(nsp, sizeof (*nsp));
2322 2322 }
2323 2323
2324 2324 /*
2325 2325 * Called by klmmod.c when lockd adds a network endpoint
2326 2326 * on which we should begin RPC services.
2327 2327 */
2328 2328 int
2329 2329 nlm_svc_add_ep(struct file *fp, const char *netid, struct knetconfig *knc)
2330 2330 {
2331 2331 SVCMASTERXPRT *xprt = NULL;
2332 2332 int error;
2333 2333
2334 2334 error = svc_tli_kcreate(fp, 0, (char *)netid, NULL, &xprt,
2335 2335 &nlm_sct, NULL, NLM_SVCPOOL_ID, FALSE);
2336 2336 if (error != 0)
2337 2337 return (error);
2338 2338
2339 2339 (void) nlm_knc_to_netid(knc);
2340 2340 return (0);
2341 2341 }
2342 2342
2343 2343 /*
2344 2344 * Start NLM service.
2345 2345 */
2346 2346 int
2347 2347 nlm_svc_starting(struct nlm_globals *g, struct file *fp,
2348 2348 const char *netid, struct knetconfig *knc)
2349 2349 {
2350 2350 int error;
2351 2351 enum clnt_stat stat;
2352 2352
2353 2353 VERIFY(g->run_status == NLM_ST_STARTING);
2354 2354 VERIFY(g->nlm_gc_thread == NULL);
2355 2355
2356 2356 error = nlm_nsm_init_local(&g->nlm_nsm);
2357 2357 if (error != 0) {
2358 2358 NLM_ERR("Failed to initialize NSM handler "
2359 2359 "(error=%d)\n", error);
2360 2360 g->run_status = NLM_ST_DOWN;
2361 2361 return (error);
2362 2362 }
2363 2363
2364 2364 error = EIO;
2365 2365
2366 2366 /*
2367 2367 * Create an NLM garbage collector thread that will
2368 2368 * clean up stale vholds and hosts objects.
2369 2369 */
2370 2370 g->nlm_gc_thread = zthread_create(NULL, 0, nlm_gc,
2371 2371 g, 0, minclsyspri);
2372 2372
2373 2373 /*
2374 2374 * Send SIMU_CRASH to local statd to report that
2375 2375 * NLM started, so that statd can report other hosts
2376 2376 * about NLM state change.
2377 2377 */
2378 2378
2379 2379 stat = nlm_nsm_simu_crash(&g->nlm_nsm);
2380 2380 if (stat != RPC_SUCCESS) {
2381 2381 NLM_ERR("Failed to connect to local statd "
2382 2382 "(rpcerr=%d)\n", stat);
2383 2383 goto shutdown_lm;
2384 2384 }
2385 2385
2386 2386 stat = nlm_nsm_stat(&g->nlm_nsm, &g->nsm_state);
2387 2387 if (stat != RPC_SUCCESS) {
2388 2388 NLM_ERR("Failed to get the status of local statd "
2389 2389 "(rpcerr=%d)\n", stat);
2390 2390 goto shutdown_lm;
2391 2391 }
2392 2392
2393 2393 g->grace_threshold = ddi_get_lbolt() +
2394 2394 SEC_TO_TICK(g->grace_period);
2395 2395
2396 2396 /* Register endpoint used for communications with local NLM */
2397 2397 error = nlm_svc_add_ep(fp, netid, knc);
2398 2398 if (error != 0)
2399 2399 goto shutdown_lm;
2400 2400
2401 2401 (void) svc_pool_control(NLM_SVCPOOL_ID,
2402 2402 SVCPSET_SHUTDOWN_PROC, (void *)nlm_pool_shutdown);
2403 2403 g->run_status = NLM_ST_UP;
2404 2404 return (0);
2405 2405
2406 2406 shutdown_lm:
2407 2407 mutex_enter(&g->lock);
2408 2408 g->run_status = NLM_ST_STOPPING;
2409 2409 mutex_exit(&g->lock);
2410 2410
2411 2411 nlm_svc_stopping(g);
2412 2412 return (error);
2413 2413 }
2414 2414
2415 2415 /*
2416 2416 * Called when the server pool is destroyed, so that
2417 2417 * all transports are closed and no any server threads
2418 2418 * exist.
2419 2419 *
2420 2420 * Just call lm_shutdown() to shut NLM down properly.
2421 2421 */
2422 2422 static void
2423 2423 nlm_pool_shutdown(void)
2424 2424 {
2425 2425 (void) lm_shutdown();
2426 2426 }
2427 2427
2428 2428 /*
2429 2429 * Stop NLM service, cleanup all resources
2430 2430 * NLM owns at the moment.
2431 2431 *
2432 2432 * NOTE: NFS code can call NLM while it's
2433 2433 * stopping or even if it's shut down. Any attempt
2434 2434 * to lock file either on client or on the server
2435 2435 * will fail if NLM isn't in NLM_ST_UP state.
2436 2436 */
2437 2437 void
2438 2438 nlm_svc_stopping(struct nlm_globals *g)
2439 2439 {
2440 2440 mutex_enter(&g->lock);
2441 2441 ASSERT(g->run_status == NLM_ST_STOPPING);
2442 2442
2443 2443 /*
2444 2444 * Ask NLM GC thread to exit and wait until it dies.
2445 2445 */
2446 2446 cv_signal(&g->nlm_gc_sched_cv);
2447 2447 while (g->nlm_gc_thread != NULL)
2448 2448 cv_wait(&g->nlm_gc_finish_cv, &g->lock);
2449 2449
2450 2450 mutex_exit(&g->lock);
2451 2451
2452 2452 /*
2453 2453 * Cleanup locks owned by NLM hosts.
2454 2454 * NOTE: New hosts won't be created while
2455 2455 * NLM is stopping.
2456 2456 */
2457 2457 while (!avl_is_empty(&g->nlm_hosts_tree)) {
2458 2458 struct nlm_host *hostp;
2459 2459 int busy_hosts = 0;
2460 2460
2461 2461 /*
2462 2462 * Iterate through all NLM hosts in the system
2463 2463 * and drop the locks they own by force.
2464 2464 */
2465 2465 hostp = avl_first(&g->nlm_hosts_tree);
2466 2466 while (hostp != NULL) {
2467 2467 /* Cleanup all client and server side locks */
2468 2468 nlm_client_cancel_all(g, hostp);
2469 2469 nlm_host_notify_server(hostp, 0);
2470 2470
2471 2471 mutex_enter(&hostp->nh_lock);
2472 2472 nlm_host_gc_vholds(hostp);
2473 2473 if (hostp->nh_refs > 0 || nlm_host_has_locks(hostp)) {
2474 2474 /*
2475 2475 * Oh, it seems the host is still busy, let
2476 2476 * it some time to release and go to the
2477 2477 * next one.
2478 2478 */
2479 2479
2480 2480 mutex_exit(&hostp->nh_lock);
2481 2481 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp);
2482 2482 busy_hosts++;
2483 2483 continue;
2484 2484 }
2485 2485
2486 2486 mutex_exit(&hostp->nh_lock);
2487 2487 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp);
2488 2488 }
2489 2489
2490 2490 /*
2491 2491 * All hosts go to nlm_idle_hosts list after
2492 2492 * all locks they own are cleaned up and last refereces
2493 2493 * were dropped. Just destroy all hosts in nlm_idle_hosts
2494 2494 * list, they can not be removed from there while we're
2495 2495 * in stopping state.
2496 2496 */
2497 2497 while ((hostp = TAILQ_FIRST(&g->nlm_idle_hosts)) != NULL) {
2498 2498 nlm_host_unregister(g, hostp);
2499 2499 nlm_host_destroy(hostp);
2500 2500 }
2501 2501
2502 2502 if (busy_hosts > 0) {
2503 2503 /*
2504 2504 * There're some hosts that weren't cleaned
2505 2505 * up. Probably they're in resource cleanup
2506 2506 * process. Give them some time to do drop
2507 2507 * references.
2508 2508 */
2509 2509 delay(MSEC_TO_TICK(500));
2510 2510 }
2511 2511 }
2512 2512
2513 2513 ASSERT(TAILQ_EMPTY(&g->nlm_slocks));
2514 2514
2515 2515 nlm_nsm_fini(&g->nlm_nsm);
2516 2516 g->lockd_pid = 0;
2517 2517 g->run_status = NLM_ST_DOWN;
2518 2518 }
2519 2519
2520 2520 /*
2521 2521 * Returns TRUE if the given vnode has
2522 2522 * any active or sleeping locks.
2523 2523 */
2524 2524 int
2525 2525 nlm_vp_active(const vnode_t *vp)
2526 2526 {
2527 2527 struct nlm_globals *g;
2528 2528 struct nlm_host *hostp;
2529 2529 struct nlm_vhold *nvp;
2530 2530 int active = 0;
2531 2531
2532 2532 g = zone_getspecific(nlm_zone_key, curzone);
2533 2533
2534 2534 /*
2535 2535 * Server side NLM has locks on the given vnode
2536 2536 * if there exist a vhold object that holds
2537 2537 * the given vnode "vp" in one of NLM hosts.
2538 2538 */
2539 2539 mutex_enter(&g->lock);
2540 2540 hostp = avl_first(&g->nlm_hosts_tree);
2541 2541 while (hostp != NULL) {
2542 2542 mutex_enter(&hostp->nh_lock);
2543 2543 nvp = nlm_vhold_find_locked(hostp, vp);
2544 2544 mutex_exit(&hostp->nh_lock);
2545 2545 if (nvp != NULL) {
2546 2546 active = 1;
2547 2547 break;
2548 2548 }
2549 2549
2550 2550 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp);
2551 2551 }
2552 2552
2553 2553 mutex_exit(&g->lock);
2554 2554 return (active);
2555 2555 }
2556 2556
2557 2557 /*
2558 2558 * Called right before NFS export is going to
2559 2559 * dissapear. The function finds all vnodes
|
↓ open down ↓ |
2559 lines elided |
↑ open up ↑ |
2560 2560 * belonging to the given export and cleans
2561 2561 * all remote locks and share reservations
2562 2562 * on them.
2563 2563 */
2564 2564 void
2565 2565 nlm_unexport(struct exportinfo *exi)
2566 2566 {
2567 2567 struct nlm_globals *g;
2568 2568 struct nlm_host *hostp;
2569 2569
2570 - g = zone_getspecific(nlm_zone_key, curzone);
2570 + /* This may be called on behalf of global-zone doing shutdown. */
2571 + ASSERT(exi->exi_zone == curzone || curzone == global_zone);
2572 + g = zone_getspecific(nlm_zone_key, exi->exi_zone);
2573 + if (g == NULL) {
2574 + /* Did zone cleanup get here already? */
2575 + return;
2576 + }
2571 2577
2572 2578 mutex_enter(&g->lock);
2573 2579 hostp = avl_first(&g->nlm_hosts_tree);
2574 2580 while (hostp != NULL) {
2575 2581 struct nlm_vhold *nvp;
2576 2582
2577 2583 if (hostp->nh_flags & NLM_NH_INIDLE) {
2578 2584 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link);
2579 2585 hostp->nh_flags &= ~NLM_NH_INIDLE;
2580 2586 }
2581 2587 hostp->nh_refs++;
2582 2588
2583 2589 mutex_exit(&g->lock);
2584 2590
2585 2591 mutex_enter(&hostp->nh_lock);
2586 2592 TAILQ_FOREACH(nvp, &hostp->nh_vholds_list, nv_link) {
2587 2593 vnode_t *vp;
2588 2594
2589 2595 nvp->nv_refcnt++;
2590 2596 mutex_exit(&hostp->nh_lock);
2591 2597
2592 2598 vp = nvp->nv_vp;
2593 2599
2594 2600 if (!EQFSID(&exi->exi_fsid, &vp->v_vfsp->vfs_fsid))
2595 2601 goto next_iter;
2596 2602
2597 2603 /*
2598 2604 * Ok, it we found out that vnode vp is under
2599 2605 * control by the exportinfo exi, now we need
2600 2606 * to drop all locks from this vnode, let's
2601 2607 * do it.
2602 2608 */
2603 2609 nlm_vhold_clean(nvp, hostp->nh_sysid);
2604 2610
2605 2611 next_iter:
2606 2612 mutex_enter(&hostp->nh_lock);
2607 2613 nvp->nv_refcnt--;
2608 2614 }
2609 2615 mutex_exit(&hostp->nh_lock);
2610 2616
2611 2617 mutex_enter(&g->lock);
2612 2618 nlm_host_release_locked(g, hostp);
2613 2619
2614 2620 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp);
2615 2621 }
2616 2622
2617 2623 mutex_exit(&g->lock);
2618 2624 }
2619 2625
2620 2626 /*
2621 2627 * Allocate new unique sysid.
2622 2628 * In case of failure (no available sysids)
2623 2629 * return LM_NOSYSID.
2624 2630 */
2625 2631 sysid_t
2626 2632 nlm_sysid_alloc(void)
2627 2633 {
2628 2634 sysid_t ret_sysid = LM_NOSYSID;
2629 2635
2630 2636 rw_enter(&lm_lck, RW_WRITER);
2631 2637 if (nlm_sysid_nidx > LM_SYSID_MAX)
2632 2638 nlm_sysid_nidx = LM_SYSID;
2633 2639
2634 2640 if (!BT_TEST(nlm_sysid_bmap, nlm_sysid_nidx)) {
2635 2641 BT_SET(nlm_sysid_bmap, nlm_sysid_nidx);
2636 2642 ret_sysid = nlm_sysid_nidx++;
2637 2643 } else {
2638 2644 index_t id;
2639 2645
2640 2646 id = bt_availbit(nlm_sysid_bmap, NLM_BMAP_NITEMS);
2641 2647 if (id > 0) {
2642 2648 nlm_sysid_nidx = id + 1;
2643 2649 ret_sysid = id;
2644 2650 BT_SET(nlm_sysid_bmap, id);
2645 2651 }
2646 2652 }
2647 2653
2648 2654 rw_exit(&lm_lck);
2649 2655 return (ret_sysid);
2650 2656 }
2651 2657
2652 2658 void
2653 2659 nlm_sysid_free(sysid_t sysid)
2654 2660 {
2655 2661 ASSERT(sysid >= LM_SYSID && sysid <= LM_SYSID_MAX);
2656 2662
2657 2663 rw_enter(&lm_lck, RW_WRITER);
2658 2664 ASSERT(BT_TEST(nlm_sysid_bmap, sysid));
2659 2665 BT_CLEAR(nlm_sysid_bmap, sysid);
2660 2666 rw_exit(&lm_lck);
2661 2667 }
2662 2668
2663 2669 /*
2664 2670 * Return true if the request came from a local caller.
2665 2671 * By necessity, this "knows" the netid names invented
2666 2672 * in lm_svc() and nlm_netid_from_knetconfig().
2667 2673 */
2668 2674 bool_t
2669 2675 nlm_caller_is_local(SVCXPRT *transp)
2670 2676 {
2671 2677 char *netid;
2672 2678 struct netbuf *rtaddr;
2673 2679
2674 2680 netid = svc_getnetid(transp);
2675 2681 rtaddr = svc_getrpccaller(transp);
2676 2682
2677 2683 if (netid == NULL)
2678 2684 return (FALSE);
2679 2685
2680 2686 if (strcmp(netid, "ticlts") == 0 ||
2681 2687 strcmp(netid, "ticotsord") == 0)
2682 2688 return (TRUE);
2683 2689
2684 2690 if (strcmp(netid, "tcp") == 0 || strcmp(netid, "udp") == 0) {
2685 2691 struct sockaddr_in *sin = (void *)rtaddr->buf;
2686 2692 if (sin->sin_addr.s_addr == htonl(INADDR_LOOPBACK))
2687 2693 return (TRUE);
2688 2694 }
2689 2695 if (strcmp(netid, "tcp6") == 0 || strcmp(netid, "udp6") == 0) {
2690 2696 struct sockaddr_in6 *sin6 = (void *)rtaddr->buf;
2691 2697 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
2692 2698 return (TRUE);
2693 2699 }
2694 2700
2695 2701 return (FALSE); /* unknown transport */
2696 2702 }
2697 2703
2698 2704 /*
2699 2705 * Get netid string correspondig to the given knetconfig.
2700 2706 * If not done already, save knc->knc_rdev in our table.
2701 2707 */
2702 2708 const char *
2703 2709 nlm_knc_to_netid(struct knetconfig *knc)
2704 2710 {
2705 2711 int i;
2706 2712 dev_t rdev;
2707 2713 struct nlm_knc *nc;
2708 2714 const char *netid = NULL;
2709 2715
2710 2716 rw_enter(&lm_lck, RW_READER);
2711 2717 for (i = 0; i < NLM_KNCS; i++) {
2712 2718 nc = &nlm_netconfigs[i];
2713 2719
2714 2720 if (nc->n_knc.knc_semantics == knc->knc_semantics &&
2715 2721 strcmp(nc->n_knc.knc_protofmly,
2716 2722 knc->knc_protofmly) == 0) {
2717 2723 netid = nc->n_netid;
2718 2724 rdev = nc->n_knc.knc_rdev;
2719 2725 break;
2720 2726 }
2721 2727 }
2722 2728 rw_exit(&lm_lck);
2723 2729
2724 2730 if (netid != NULL && rdev == NODEV) {
2725 2731 rw_enter(&lm_lck, RW_WRITER);
2726 2732 if (nc->n_knc.knc_rdev == NODEV)
2727 2733 nc->n_knc.knc_rdev = knc->knc_rdev;
2728 2734 rw_exit(&lm_lck);
2729 2735 }
2730 2736
2731 2737 return (netid);
2732 2738 }
2733 2739
2734 2740 /*
2735 2741 * Get a knetconfig corresponding to the given netid.
2736 2742 * If there's no knetconfig for this netid, ENOENT
2737 2743 * is returned.
2738 2744 */
2739 2745 int
2740 2746 nlm_knc_from_netid(const char *netid, struct knetconfig *knc)
2741 2747 {
2742 2748 int i, ret;
2743 2749
2744 2750 ret = ENOENT;
2745 2751 for (i = 0; i < NLM_KNCS; i++) {
2746 2752 struct nlm_knc *nknc;
2747 2753
2748 2754 nknc = &nlm_netconfigs[i];
2749 2755 if (strcmp(netid, nknc->n_netid) == 0 &&
2750 2756 nknc->n_knc.knc_rdev != NODEV) {
2751 2757 *knc = nknc->n_knc;
2752 2758 ret = 0;
2753 2759 break;
2754 2760 }
2755 2761 }
2756 2762
2757 2763 return (ret);
2758 2764 }
2759 2765
2760 2766 void
2761 2767 nlm_cprsuspend(void)
2762 2768 {
2763 2769 struct nlm_globals *g;
2764 2770
2765 2771 rw_enter(&lm_lck, RW_READER);
2766 2772 TAILQ_FOREACH(g, &nlm_zones_list, nlm_link)
2767 2773 nlm_suspend_zone(g);
2768 2774
2769 2775 rw_exit(&lm_lck);
2770 2776 }
2771 2777
2772 2778 void
2773 2779 nlm_cprresume(void)
2774 2780 {
2775 2781 struct nlm_globals *g;
2776 2782
2777 2783 rw_enter(&lm_lck, RW_READER);
2778 2784 TAILQ_FOREACH(g, &nlm_zones_list, nlm_link)
2779 2785 nlm_resume_zone(g);
2780 2786
2781 2787 rw_exit(&lm_lck);
2782 2788 }
2783 2789
2784 2790 static void
2785 2791 nlm_nsm_clnt_init(CLIENT *clnt, struct nlm_nsm *nsm)
2786 2792 {
2787 2793 (void) clnt_tli_kinit(clnt, &nsm->ns_knc, &nsm->ns_addr, 0,
2788 2794 NLM_RPC_RETRIES, kcred);
2789 2795 }
2790 2796
2791 2797 static void
2792 2798 nlm_netbuf_to_netobj(struct netbuf *addr, int *family, netobj *obj)
2793 2799 {
2794 2800 /* LINTED pointer alignment */
2795 2801 struct sockaddr *sa = (struct sockaddr *)addr->buf;
2796 2802
2797 2803 *family = sa->sa_family;
2798 2804
2799 2805 switch (sa->sa_family) {
2800 2806 case AF_INET: {
2801 2807 /* LINTED pointer alignment */
2802 2808 struct sockaddr_in *sin = (struct sockaddr_in *)sa;
2803 2809
2804 2810 obj->n_len = sizeof (sin->sin_addr);
2805 2811 obj->n_bytes = (char *)&sin->sin_addr;
2806 2812 break;
2807 2813 }
2808 2814
2809 2815 case AF_INET6: {
2810 2816 /* LINTED pointer alignment */
2811 2817 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
2812 2818
2813 2819 obj->n_len = sizeof (sin6->sin6_addr);
2814 2820 obj->n_bytes = (char *)&sin6->sin6_addr;
2815 2821 break;
2816 2822 }
2817 2823
2818 2824 default:
2819 2825 VERIFY(0);
2820 2826 break;
2821 2827 }
2822 2828 }
|
↓ open down ↓ |
242 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX