1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
  24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  25  * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
  26  * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
  27  * Copyright 2017 Joyent, Inc.
  28  * Copyright 2017 RackTop Systems.
  29  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
  30  */
  31 
  32 /*
  33  * Routines to manage ZFS mounts.  We separate all the nasty routines that have
  34  * to deal with the OS.  The following functions are the main entry points --
  35  * they are used by mount and unmount and when changing a filesystem's
  36  * mountpoint.
  37  *
  38  *      zfs_is_mounted()
  39  *      zfs_mount()
  40  *      zfs_unmount()
  41  *      zfs_unmountall()
  42  *
  43  * This file also contains the functions used to manage sharing filesystems via
  44  * NFS and iSCSI:
  45  *
  46  *      zfs_is_shared()
  47  *      zfs_share()
  48  *      zfs_unshare()
  49  *
  50  *      zfs_is_shared_nfs()
  51  *      zfs_is_shared_smb()
  52  *      zfs_share_proto()
  53  *      zfs_shareall();
  54  *      zfs_unshare_nfs()
  55  *      zfs_unshare_smb()
  56  *      zfs_unshareall_nfs()
  57  *      zfs_unshareall_smb()
  58  *      zfs_unshareall()
  59  *      zfs_unshareall_bypath()
  60  *
  61  * The following functions are available for pool consumers, and will
  62  * mount/unmount and share/unshare all datasets within pool:
  63  *
  64  *      zpool_enable_datasets()
  65  *      zpool_disable_datasets()
  66  */
  67 
  68 #include <dirent.h>
  69 #include <dlfcn.h>
  70 #include <errno.h>
  71 #include <fcntl.h>
  72 #include <libgen.h>
  73 #include <libintl.h>
  74 #include <stdio.h>
  75 #include <stdlib.h>
  76 #include <strings.h>
  77 #include <unistd.h>
  78 #include <zone.h>
  79 #include <sys/mntent.h>
  80 #include <sys/mount.h>
  81 #include <sys/stat.h>
  82 #include <sys/statvfs.h>
  83 #include <sys/dsl_crypt.h>
  84 
  85 #include <libzfs.h>
  86 
  87 #include "libzfs_impl.h"
  88 #include "libzfs_taskq.h"
  89 
  90 #include <libshare.h>
  91 #include <sys/systeminfo.h>
  92 #define MAXISALEN       257     /* based on sysinfo(2) man page */
  93 
  94 static int mount_tq_nthr = 512; /* taskq threads for multi-threaded mounting */
  95 
  96 static void zfs_mount_task(void *);
  97 static int zfs_share_proto(zfs_handle_t *, zfs_share_proto_t *);
  98 zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **,
  99     zfs_share_proto_t);
 100 
 101 /*
 102  * The share protocols table must be in the same order as the zfs_share_proto_t
 103  * enum in libzfs_impl.h
 104  */
 105 typedef struct {
 106         zfs_prop_t p_prop;
 107         char *p_name;
 108         int p_share_err;
 109         int p_unshare_err;
 110 } proto_table_t;
 111 
 112 proto_table_t proto_table[PROTO_END] = {
 113         {ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED},
 114         {ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED},
 115 };
 116 
 117 zfs_share_proto_t nfs_only[] = {
 118         PROTO_NFS,
 119         PROTO_END
 120 };
 121 
 122 zfs_share_proto_t smb_only[] = {
 123         PROTO_SMB,
 124         PROTO_END
 125 };
 126 zfs_share_proto_t share_all_proto[] = {
 127         PROTO_NFS,
 128         PROTO_SMB,
 129         PROTO_END
 130 };
 131 
 132 /*
 133  * Search the sharetab for the given mountpoint and protocol, returning
 134  * a zfs_share_type_t value.
 135  */
 136 static zfs_share_type_t
 137 is_shared(libzfs_handle_t *hdl, const char *mountpoint, zfs_share_proto_t proto)
 138 {
 139         char buf[MAXPATHLEN], *tab;
 140         char *ptr;
 141 
 142         if (hdl->libzfs_sharetab == NULL)
 143                 return (SHARED_NOT_SHARED);
 144 
 145         (void) fseek(hdl->libzfs_sharetab, 0, SEEK_SET);
 146 
 147         while (fgets(buf, sizeof (buf), hdl->libzfs_sharetab) != NULL) {
 148 
 149                 /* the mountpoint is the first entry on each line */
 150                 if ((tab = strchr(buf, '\t')) == NULL)
 151                         continue;
 152 
 153                 *tab = '\0';
 154                 if (strcmp(buf, mountpoint) == 0) {
 155                         /*
 156                          * the protocol field is the third field
 157                          * skip over second field
 158                          */
 159                         ptr = ++tab;
 160                         if ((tab = strchr(ptr, '\t')) == NULL)
 161                                 continue;
 162                         ptr = ++tab;
 163                         if ((tab = strchr(ptr, '\t')) == NULL)
 164                                 continue;
 165                         *tab = '\0';
 166                         if (strcmp(ptr,
 167                             proto_table[proto].p_name) == 0) {
 168                                 switch (proto) {
 169                                 case PROTO_NFS:
 170                                         return (SHARED_NFS);
 171                                 case PROTO_SMB:
 172                                         return (SHARED_SMB);
 173                                 default:
 174                                         return (0);
 175                                 }
 176                         }
 177                 }
 178         }
 179 
 180         return (SHARED_NOT_SHARED);
 181 }
 182 
 183 static boolean_t
 184 dir_is_empty_stat(const char *dirname)
 185 {
 186         struct stat st;
 187 
 188         /*
 189          * We only want to return false if the given path is a non empty
 190          * directory, all other errors are handled elsewhere.
 191          */
 192         if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) {
 193                 return (B_TRUE);
 194         }
 195 
 196         /*
 197          * An empty directory will still have two entries in it, one
 198          * entry for each of "." and "..".
 199          */
 200         if (st.st_size > 2) {
 201                 return (B_FALSE);
 202         }
 203 
 204         return (B_TRUE);
 205 }
 206 
 207 static boolean_t
 208 dir_is_empty_readdir(const char *dirname)
 209 {
 210         DIR *dirp;
 211         struct dirent64 *dp;
 212         int dirfd;
 213 
 214         if ((dirfd = openat(AT_FDCWD, dirname,
 215             O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) {
 216                 return (B_TRUE);
 217         }
 218 
 219         if ((dirp = fdopendir(dirfd)) == NULL) {
 220                 (void) close(dirfd);
 221                 return (B_TRUE);
 222         }
 223 
 224         while ((dp = readdir64(dirp)) != NULL) {
 225 
 226                 if (strcmp(dp->d_name, ".") == 0 ||
 227                     strcmp(dp->d_name, "..") == 0)
 228                         continue;
 229 
 230                 (void) closedir(dirp);
 231                 return (B_FALSE);
 232         }
 233 
 234         (void) closedir(dirp);
 235         return (B_TRUE);
 236 }
 237 
 238 /*
 239  * Returns true if the specified directory is empty.  If we can't open the
 240  * directory at all, return true so that the mount can fail with a more
 241  * informative error message.
 242  */
 243 static boolean_t
 244 dir_is_empty(const char *dirname)
 245 {
 246         struct statvfs64 st;
 247 
 248         /*
 249          * If the statvfs call fails or the filesystem is not a ZFS
 250          * filesystem, fall back to the slow path which uses readdir.
 251          */
 252         if ((statvfs64(dirname, &st) != 0) ||
 253             (strcmp(st.f_basetype, "zfs") != 0)) {
 254                 return (dir_is_empty_readdir(dirname));
 255         }
 256 
 257         /*
 258          * At this point, we know the provided path is on a ZFS
 259          * filesystem, so we can use stat instead of readdir to
 260          * determine if the directory is empty or not. We try to avoid
 261          * using readdir because that requires opening "dirname"; this
 262          * open file descriptor can potentially end up in a child
 263          * process if there's a concurrent fork, thus preventing the
 264          * zfs_mount() from otherwise succeeding (the open file
 265          * descriptor inherited by the child process will cause the
 266          * parent's mount to fail with EBUSY). The performance
 267          * implications of replacing the open, read, and close with a
 268          * single stat is nice; but is not the main motivation for the
 269          * added complexity.
 270          */
 271         return (dir_is_empty_stat(dirname));
 272 }
 273 
 274 /*
 275  * Checks to see if the mount is active.  If the filesystem is mounted, we fill
 276  * in 'where' with the current mountpoint, and return 1.  Otherwise, we return
 277  * 0.
 278  */
 279 boolean_t
 280 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where)
 281 {
 282         struct mnttab entry;
 283 
 284         if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0)
 285                 return (B_FALSE);
 286 
 287         if (where != NULL)
 288                 *where = zfs_strdup(zfs_hdl, entry.mnt_mountp);
 289 
 290         return (B_TRUE);
 291 }
 292 
 293 boolean_t
 294 zfs_is_mounted(zfs_handle_t *zhp, char **where)
 295 {
 296         return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where));
 297 }
 298 
 299 /*
 300  * Returns true if the given dataset is mountable, false otherwise.  Returns the
 301  * mountpoint in 'buf'.
 302  */
 303 static boolean_t
 304 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen,
 305     zprop_source_t *source)
 306 {
 307         char sourceloc[MAXNAMELEN];
 308         zprop_source_t sourcetype;
 309 
 310         if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type))
 311                 return (B_FALSE);
 312 
 313         verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen,
 314             &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0);
 315 
 316         if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 ||
 317             strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0)
 318                 return (B_FALSE);
 319 
 320         if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF)
 321                 return (B_FALSE);
 322 
 323         if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
 324             getzoneid() == GLOBAL_ZONEID)
 325                 return (B_FALSE);
 326 
 327         if (source)
 328                 *source = sourcetype;
 329 
 330         return (B_TRUE);
 331 }
 332 
 333 /*
 334  * Mount the given filesystem.
 335  */
 336 int
 337 zfs_mount(zfs_handle_t *zhp, const char *options, int flags)
 338 {
 339         struct stat buf;
 340         char mountpoint[ZFS_MAXPROPLEN];
 341         char mntopts[MNT_LINE_MAX];
 342         libzfs_handle_t *hdl = zhp->zfs_hdl;
 343         uint64_t keystatus;
 344         int rc;
 345 
 346         if (options == NULL)
 347                 mntopts[0] = '\0';
 348         else
 349                 (void) strlcpy(mntopts, options, sizeof (mntopts));
 350 
 351         /*
 352          * If the pool is imported read-only then all mounts must be read-only
 353          */
 354         if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL))
 355                 flags |= MS_RDONLY;
 356 
 357         if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL))
 358                 return (0);
 359 
 360         /*
 361          * If the filesystem is encrypted the key must be loaded  in order to
 362          * mount. If the key isn't loaded, the MS_CRYPT flag decides whether
 363          * or not we attempt to load the keys. Note: we must call
 364          * zfs_refresh_properties() here since some callers of this function
 365          * (most notably zpool_enable_datasets()) may implicitly load our key
 366          * by loading the parent's key first.
 367          */
 368         if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
 369                 zfs_refresh_properties(zhp);
 370                 keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
 371 
 372                 /*
 373                  * If the key is unavailable and MS_CRYPT is set give the
 374                  * user a chance to enter the key. Otherwise just fail
 375                  * immediately.
 376                  */
 377                 if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
 378                         if (flags & MS_CRYPT) {
 379                                 rc = zfs_crypto_load_key(zhp, B_FALSE, NULL);
 380                                 if (rc != 0)
 381                                         return (rc);
 382                         } else {
 383                                 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 384                                     "encryption key not loaded"));
 385                                 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
 386                                     dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
 387                                     mountpoint));
 388                         }
 389                 }
 390 
 391         }
 392 
 393         /* Create the directory if it doesn't already exist */
 394         if (lstat(mountpoint, &buf) != 0) {
 395                 if (mkdirp(mountpoint, 0755) != 0) {
 396                         zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 397                             "failed to create mountpoint"));
 398                         return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
 399                             dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
 400                             mountpoint));
 401                 }
 402         }
 403 
 404         /*
 405          * Determine if the mountpoint is empty.  If so, refuse to perform the
 406          * mount.  We don't perform this check if MS_OVERLAY is specified, which
 407          * would defeat the point.  We also avoid this check if 'remount' is
 408          * specified.
 409          */
 410         if ((flags & MS_OVERLAY) == 0 &&
 411             strstr(mntopts, MNTOPT_REMOUNT) == NULL &&
 412             !dir_is_empty(mountpoint)) {
 413                 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 414                     "directory is not empty"));
 415                 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
 416                     dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint));
 417         }
 418 
 419         /* perform the mount */
 420         if (mount(zfs_get_name(zhp), mountpoint, MS_OPTIONSTR | flags,
 421             MNTTYPE_ZFS, NULL, 0, mntopts, sizeof (mntopts)) != 0) {
 422                 /*
 423                  * Generic errors are nasty, but there are just way too many
 424                  * from mount(), and they're well-understood.  We pick a few
 425                  * common ones to improve upon.
 426                  */
 427                 if (errno == EBUSY) {
 428                         zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 429                             "mountpoint or dataset is busy"));
 430                 } else if (errno == EPERM) {
 431                         zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 432                             "Insufficient privileges"));
 433                 } else if (errno == ENOTSUP) {
 434                         char buf[256];
 435                         int spa_version;
 436 
 437                         VERIFY(zfs_spa_version(zhp, &spa_version) == 0);
 438                         (void) snprintf(buf, sizeof (buf),
 439                             dgettext(TEXT_DOMAIN, "Can't mount a version %lld "
 440                             "file system on a version %d pool. Pool must be"
 441                             " upgraded to mount this file system."),
 442                             (u_longlong_t)zfs_prop_get_int(zhp,
 443                             ZFS_PROP_VERSION), spa_version);
 444                         zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, buf));
 445                 } else {
 446                         zfs_error_aux(hdl, strerror(errno));
 447                 }
 448                 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
 449                     dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
 450                     zhp->zfs_name));
 451         }
 452 
 453         /* add the mounted entry into our cache */
 454         libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint,
 455             mntopts);
 456         return (0);
 457 }
 458 
 459 /*
 460  * Unmount a single filesystem.
 461  */
 462 static int
 463 unmount_one(libzfs_handle_t *hdl, const char *mountpoint, int flags)
 464 {
 465         if (umount2(mountpoint, flags) != 0) {
 466                 zfs_error_aux(hdl, strerror(errno));
 467                 return (zfs_error_fmt(hdl, EZFS_UMOUNTFAILED,
 468                     dgettext(TEXT_DOMAIN, "cannot unmount '%s'"),
 469                     mountpoint));
 470         }
 471 
 472         return (0);
 473 }
 474 
 475 /*
 476  * Unmount the given filesystem.
 477  */
 478 int
 479 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags)
 480 {
 481         libzfs_handle_t *hdl = zhp->zfs_hdl;
 482         struct mnttab entry;
 483         char *mntpt = NULL;
 484 
 485         /* check to see if we need to unmount the filesystem */
 486         if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
 487             libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) {
 488                 /*
 489                  * mountpoint may have come from a call to
 490                  * getmnt/getmntany if it isn't NULL. If it is NULL,
 491                  * we know it comes from libzfs_mnttab_find which can
 492                  * then get freed later. We strdup it to play it safe.
 493                  */
 494                 if (mountpoint == NULL)
 495                         mntpt = zfs_strdup(hdl, entry.mnt_mountp);
 496                 else
 497                         mntpt = zfs_strdup(hdl, mountpoint);
 498 
 499                 /*
 500                  * Unshare and unmount the filesystem
 501                  */
 502                 if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0)
 503                         return (-1);
 504 
 505                 if (unmount_one(hdl, mntpt, flags) != 0) {
 506                         free(mntpt);
 507                         (void) zfs_shareall(zhp);
 508                         return (-1);
 509                 }
 510                 libzfs_mnttab_remove(hdl, zhp->zfs_name);
 511                 free(mntpt);
 512         }
 513 
 514         return (0);
 515 }
 516 
 517 /*
 518  * Unmount this filesystem and any children inheriting the mountpoint property.
 519  * To do this, just act like we're changing the mountpoint property, but don't
 520  * remount the filesystems afterwards.
 521  */
 522 int
 523 zfs_unmountall(zfs_handle_t *zhp, int flags)
 524 {
 525         prop_changelist_t *clp;
 526         int ret;
 527 
 528         clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 0, flags);
 529         if (clp == NULL)
 530                 return (-1);
 531 
 532         ret = changelist_prefix(clp);
 533         changelist_free(clp);
 534 
 535         return (ret);
 536 }
 537 
 538 boolean_t
 539 zfs_is_shared(zfs_handle_t *zhp)
 540 {
 541         zfs_share_type_t rc = 0;
 542         zfs_share_proto_t *curr_proto;
 543 
 544         if (ZFS_IS_VOLUME(zhp))
 545                 return (B_FALSE);
 546 
 547         for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
 548             curr_proto++)
 549                 rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto);
 550 
 551         return (rc ? B_TRUE : B_FALSE);
 552 }
 553 
 554 int
 555 zfs_share(zfs_handle_t *zhp)
 556 {
 557         assert(!ZFS_IS_VOLUME(zhp));
 558         return (zfs_share_proto(zhp, share_all_proto));
 559 }
 560 
 561 int
 562 zfs_unshare(zfs_handle_t *zhp)
 563 {
 564         assert(!ZFS_IS_VOLUME(zhp));
 565         return (zfs_unshareall(zhp));
 566 }
 567 
 568 /*
 569  * Check to see if the filesystem is currently shared.
 570  */
 571 zfs_share_type_t
 572 zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto)
 573 {
 574         char *mountpoint;
 575         zfs_share_type_t rc;
 576 
 577         if (!zfs_is_mounted(zhp, &mountpoint))
 578                 return (SHARED_NOT_SHARED);
 579 
 580         if ((rc = is_shared(zhp->zfs_hdl, mountpoint, proto))
 581             != SHARED_NOT_SHARED) {
 582                 if (where != NULL)
 583                         *where = mountpoint;
 584                 else
 585                         free(mountpoint);
 586                 return (rc);
 587         } else {
 588                 free(mountpoint);
 589                 return (SHARED_NOT_SHARED);
 590         }
 591 }
 592 
 593 boolean_t
 594 zfs_is_shared_nfs(zfs_handle_t *zhp, char **where)
 595 {
 596         return (zfs_is_shared_proto(zhp, where,
 597             PROTO_NFS) != SHARED_NOT_SHARED);
 598 }
 599 
 600 boolean_t
 601 zfs_is_shared_smb(zfs_handle_t *zhp, char **where)
 602 {
 603         return (zfs_is_shared_proto(zhp, where,
 604             PROTO_SMB) != SHARED_NOT_SHARED);
 605 }
 606 
 607 /*
 608  * Make sure things will work if libshare isn't installed by using
 609  * wrapper functions that check to see that the pointers to functions
 610  * initialized in _zfs_init_libshare() are actually present.
 611  */
 612 
 613 static sa_handle_t (*_sa_init)(int);
 614 static sa_handle_t (*_sa_init_arg)(int, void *);
 615 static void (*_sa_fini)(sa_handle_t);
 616 static sa_share_t (*_sa_find_share)(sa_handle_t, char *);
 617 static int (*_sa_enable_share)(sa_share_t, char *);
 618 static int (*_sa_disable_share)(sa_share_t, char *);
 619 static char *(*_sa_errorstr)(int);
 620 static int (*_sa_parse_legacy_options)(sa_group_t, char *, char *);
 621 static boolean_t (*_sa_needs_refresh)(sa_handle_t *);
 622 static libzfs_handle_t *(*_sa_get_zfs_handle)(sa_handle_t);
 623 static int (*_sa_zfs_process_share)(sa_handle_t, sa_group_t, sa_share_t,
 624     char *, char *, zprop_source_t, char *, char *, char *);
 625 static void (*_sa_update_sharetab_ts)(sa_handle_t);
 626 
 627 /*
 628  * _zfs_init_libshare()
 629  *
 630  * Find the libshare.so.1 entry points that we use here and save the
 631  * values to be used later. This is triggered by the runtime loader.
 632  * Make sure the correct ISA version is loaded.
 633  */
 634 
 635 #pragma init(_zfs_init_libshare)
 636 static void
 637 _zfs_init_libshare(void)
 638 {
 639         void *libshare;
 640         char path[MAXPATHLEN];
 641         char isa[MAXISALEN];
 642 
 643 #if defined(_LP64)
 644         if (sysinfo(SI_ARCHITECTURE_64, isa, MAXISALEN) == -1)
 645                 isa[0] = '\0';
 646 #else
 647         isa[0] = '\0';
 648 #endif
 649         (void) snprintf(path, MAXPATHLEN,
 650             "/usr/lib/%s/libshare.so.1", isa);
 651 
 652         if ((libshare = dlopen(path, RTLD_LAZY | RTLD_GLOBAL)) != NULL) {
 653                 _sa_init = (sa_handle_t (*)(int))dlsym(libshare, "sa_init");
 654                 _sa_init_arg = (sa_handle_t (*)(int, void *))dlsym(libshare,
 655                     "sa_init_arg");
 656                 _sa_fini = (void (*)(sa_handle_t))dlsym(libshare, "sa_fini");
 657                 _sa_find_share = (sa_share_t (*)(sa_handle_t, char *))
 658                     dlsym(libshare, "sa_find_share");
 659                 _sa_enable_share = (int (*)(sa_share_t, char *))dlsym(libshare,
 660                     "sa_enable_share");
 661                 _sa_disable_share = (int (*)(sa_share_t, char *))dlsym(libshare,
 662                     "sa_disable_share");
 663                 _sa_errorstr = (char *(*)(int))dlsym(libshare, "sa_errorstr");
 664                 _sa_parse_legacy_options = (int (*)(sa_group_t, char *, char *))
 665                     dlsym(libshare, "sa_parse_legacy_options");
 666                 _sa_needs_refresh = (boolean_t (*)(sa_handle_t *))
 667                     dlsym(libshare, "sa_needs_refresh");
 668                 _sa_get_zfs_handle = (libzfs_handle_t *(*)(sa_handle_t))
 669                     dlsym(libshare, "sa_get_zfs_handle");
 670                 _sa_zfs_process_share = (int (*)(sa_handle_t, sa_group_t,
 671                     sa_share_t, char *, char *, zprop_source_t, char *,
 672                     char *, char *))dlsym(libshare, "sa_zfs_process_share");
 673                 _sa_update_sharetab_ts = (void (*)(sa_handle_t))
 674                     dlsym(libshare, "sa_update_sharetab_ts");
 675                 if (_sa_init == NULL || _sa_init_arg == NULL ||
 676                     _sa_fini == NULL || _sa_find_share == NULL ||
 677                     _sa_enable_share == NULL || _sa_disable_share == NULL ||
 678                     _sa_errorstr == NULL || _sa_parse_legacy_options == NULL ||
 679                     _sa_needs_refresh == NULL || _sa_get_zfs_handle == NULL ||
 680                     _sa_zfs_process_share == NULL ||
 681                     _sa_update_sharetab_ts == NULL) {
 682                         _sa_init = NULL;
 683                         _sa_init_arg = NULL;
 684                         _sa_fini = NULL;
 685                         _sa_disable_share = NULL;
 686                         _sa_enable_share = NULL;
 687                         _sa_errorstr = NULL;
 688                         _sa_parse_legacy_options = NULL;
 689                         (void) dlclose(libshare);
 690                         _sa_needs_refresh = NULL;
 691                         _sa_get_zfs_handle = NULL;
 692                         _sa_zfs_process_share = NULL;
 693                         _sa_update_sharetab_ts = NULL;
 694                 }
 695         }
 696 }
 697 
 698 /*
 699  * zfs_init_libshare(zhandle, service)
 700  *
 701  * Initialize the libshare API if it hasn't already been initialized.
 702  * In all cases it returns 0 if it succeeded and an error if not. The
 703  * service value is which part(s) of the API to initialize and is a
 704  * direct map to the libshare sa_init(service) interface.
 705  */
 706 static int
 707 zfs_init_libshare_impl(libzfs_handle_t *zhandle, int service, void *arg)
 708 {
 709         /*
 710          * libshare is either not installed or we're in a branded zone. The
 711          * rest of the wrapper functions around the libshare calls already
 712          * handle NULL function pointers, but we don't want the callers of
 713          * zfs_init_libshare() to fail prematurely if libshare is not available.
 714          */
 715         if (_sa_init == NULL)
 716                 return (SA_OK);
 717 
 718         /*
 719          * Attempt to refresh libshare. This is necessary if there was a cache
 720          * miss for a new ZFS dataset that was just created, or if state of the
 721          * sharetab file has changed since libshare was last initialized. We
 722          * want to make sure so check timestamps to see if a different process
 723          * has updated any of the configuration. If there was some non-ZFS
 724          * change, we need to re-initialize the internal cache.
 725          */
 726         if (_sa_needs_refresh != NULL &&
 727             _sa_needs_refresh(zhandle->libzfs_sharehdl)) {
 728                 zfs_uninit_libshare(zhandle);
 729                 zhandle->libzfs_sharehdl = _sa_init_arg(service, arg);
 730         }
 731 
 732         if (zhandle && zhandle->libzfs_sharehdl == NULL)
 733                 zhandle->libzfs_sharehdl = _sa_init_arg(service, arg);
 734 
 735         if (zhandle->libzfs_sharehdl == NULL)
 736                 return (SA_NO_MEMORY);
 737 
 738         return (SA_OK);
 739 }
 740 int
 741 zfs_init_libshare(libzfs_handle_t *zhandle, int service)
 742 {
 743         return (zfs_init_libshare_impl(zhandle, service, NULL));
 744 }
 745 
 746 int
 747 zfs_init_libshare_arg(libzfs_handle_t *zhandle, int service, void *arg)
 748 {
 749         return (zfs_init_libshare_impl(zhandle, service, arg));
 750 }
 751 
 752 
 753 /*
 754  * zfs_uninit_libshare(zhandle)
 755  *
 756  * Uninitialize the libshare API if it hasn't already been
 757  * uninitialized. It is OK to call multiple times.
 758  */
 759 void
 760 zfs_uninit_libshare(libzfs_handle_t *zhandle)
 761 {
 762         if (zhandle != NULL && zhandle->libzfs_sharehdl != NULL) {
 763                 if (_sa_fini != NULL)
 764                         _sa_fini(zhandle->libzfs_sharehdl);
 765                 zhandle->libzfs_sharehdl = NULL;
 766         }
 767 }
 768 
 769 /*
 770  * zfs_parse_options(options, proto)
 771  *
 772  * Call the legacy parse interface to get the protocol specific
 773  * options using the NULL arg to indicate that this is a "parse" only.
 774  */
 775 int
 776 zfs_parse_options(char *options, zfs_share_proto_t proto)
 777 {
 778         if (_sa_parse_legacy_options != NULL) {
 779                 return (_sa_parse_legacy_options(NULL, options,
 780                     proto_table[proto].p_name));
 781         }
 782         return (SA_CONFIG_ERR);
 783 }
 784 
 785 /*
 786  * zfs_sa_find_share(handle, path)
 787  *
 788  * wrapper around sa_find_share to find a share path in the
 789  * configuration.
 790  */
 791 static sa_share_t
 792 zfs_sa_find_share(sa_handle_t handle, char *path)
 793 {
 794         if (_sa_find_share != NULL)
 795                 return (_sa_find_share(handle, path));
 796         return (NULL);
 797 }
 798 
 799 /*
 800  * zfs_sa_enable_share(share, proto)
 801  *
 802  * Wrapper for sa_enable_share which enables a share for a specified
 803  * protocol.
 804  */
 805 static int
 806 zfs_sa_enable_share(sa_share_t share, char *proto)
 807 {
 808         if (_sa_enable_share != NULL)
 809                 return (_sa_enable_share(share, proto));
 810         return (SA_CONFIG_ERR);
 811 }
 812 
 813 /*
 814  * zfs_sa_disable_share(share, proto)
 815  *
 816  * Wrapper for sa_enable_share which disables a share for a specified
 817  * protocol.
 818  */
 819 static int
 820 zfs_sa_disable_share(sa_share_t share, char *proto)
 821 {
 822         if (_sa_disable_share != NULL)
 823                 return (_sa_disable_share(share, proto));
 824         return (SA_CONFIG_ERR);
 825 }
 826 
 827 /*
 828  * Share the given filesystem according to the options in the specified
 829  * protocol specific properties (sharenfs, sharesmb).  We rely
 830  * on "libshare" to the dirty work for us.
 831  */
 832 static int
 833 zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
 834 {
 835         char mountpoint[ZFS_MAXPROPLEN];
 836         char shareopts[ZFS_MAXPROPLEN];
 837         char sourcestr[ZFS_MAXPROPLEN];
 838         libzfs_handle_t *hdl = zhp->zfs_hdl;
 839         sa_share_t share;
 840         zfs_share_proto_t *curr_proto;
 841         zprop_source_t sourcetype;
 842         int ret;
 843 
 844         if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL))
 845                 return (0);
 846 
 847         for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) {
 848                 /*
 849                  * Return success if there are no share options.
 850                  */
 851                 if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop,
 852                     shareopts, sizeof (shareopts), &sourcetype, sourcestr,
 853                     ZFS_MAXPROPLEN, B_FALSE) != 0 ||
 854                     strcmp(shareopts, "off") == 0)
 855                         continue;
 856                 ret = zfs_init_libshare_arg(hdl, SA_INIT_ONE_SHARE_FROM_HANDLE,
 857                     zhp);
 858                 if (ret != SA_OK) {
 859                         (void) zfs_error_fmt(hdl, EZFS_SHARENFSFAILED,
 860                             dgettext(TEXT_DOMAIN, "cannot share '%s': %s"),
 861                             zfs_get_name(zhp), _sa_errorstr != NULL ?
 862                             _sa_errorstr(ret) : "");
 863                         return (-1);
 864                 }
 865 
 866                 /*
 867                  * If the 'zoned' property is set, then zfs_is_mountable()
 868                  * will have already bailed out if we are in the global zone.
 869                  * But local zones cannot be NFS servers, so we ignore it for
 870                  * local zones as well.
 871                  */
 872                 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED))
 873                         continue;
 874 
 875                 share = zfs_sa_find_share(hdl->libzfs_sharehdl, mountpoint);
 876                 if (share == NULL) {
 877                         /*
 878                          * This may be a new file system that was just
 879                          * created so isn't in the internal cache
 880                          * (second time through). Rather than
 881                          * reloading the entire configuration, we can
 882                          * assume ZFS has done the checking and it is
 883                          * safe to add this to the internal
 884                          * configuration.
 885                          */
 886                         if (_sa_zfs_process_share(hdl->libzfs_sharehdl,
 887                             NULL, NULL, mountpoint,
 888                             proto_table[*curr_proto].p_name, sourcetype,
 889                             shareopts, sourcestr, zhp->zfs_name) != SA_OK) {
 890                                 (void) zfs_error_fmt(hdl,
 891                                     proto_table[*curr_proto].p_share_err,
 892                                     dgettext(TEXT_DOMAIN, "cannot share '%s'"),
 893                                     zfs_get_name(zhp));
 894                                 return (-1);
 895                         }
 896                         share = zfs_sa_find_share(hdl->libzfs_sharehdl,
 897                             mountpoint);
 898                 }
 899                 if (share != NULL) {
 900                         int err;
 901                         err = zfs_sa_enable_share(share,
 902                             proto_table[*curr_proto].p_name);
 903                         if (err != SA_OK) {
 904                                 (void) zfs_error_fmt(hdl,
 905                                     proto_table[*curr_proto].p_share_err,
 906                                     dgettext(TEXT_DOMAIN, "cannot share '%s'"),
 907                                     zfs_get_name(zhp));
 908                                 return (-1);
 909                         }
 910                 } else {
 911                         (void) zfs_error_fmt(hdl,
 912                             proto_table[*curr_proto].p_share_err,
 913                             dgettext(TEXT_DOMAIN, "cannot share '%s'"),
 914                             zfs_get_name(zhp));
 915                         return (-1);
 916                 }
 917 
 918         }
 919         return (0);
 920 }
 921 
 922 
 923 int
 924 zfs_share_nfs(zfs_handle_t *zhp)
 925 {
 926         return (zfs_share_proto(zhp, nfs_only));
 927 }
 928 
 929 int
 930 zfs_share_smb(zfs_handle_t *zhp)
 931 {
 932         return (zfs_share_proto(zhp, smb_only));
 933 }
 934 
 935 int
 936 zfs_shareall(zfs_handle_t *zhp)
 937 {
 938         return (zfs_share_proto(zhp, share_all_proto));
 939 }
 940 
 941 /*
 942  * Unshare a filesystem by mountpoint.
 943  */
 944 static int
 945 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint,
 946     zfs_share_proto_t proto)
 947 {
 948         sa_share_t share;
 949         int err;
 950         char *mntpt;
 951 
 952         /*
 953          * Mountpoint could get trashed if libshare calls getmntany
 954          * which it does during API initialization, so strdup the
 955          * value.
 956          */
 957         mntpt = zfs_strdup(hdl, mountpoint);
 958 
 959         /*
 960          * make sure libshare initialized, initialize everything because we
 961          * don't know what other unsharing may happen later. Functions up the
 962          * stack are allowed to initialize instead a subset of shares at the
 963          * time the set is known.
 964          */
 965         if ((err = zfs_init_libshare_arg(hdl, SA_INIT_ONE_SHARE_FROM_NAME,
 966             (void *)name)) != SA_OK) {
 967                 free(mntpt);    /* don't need the copy anymore */
 968                 return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
 969                     dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
 970                     name, _sa_errorstr(err)));
 971         }
 972 
 973         share = zfs_sa_find_share(hdl->libzfs_sharehdl, mntpt);
 974         free(mntpt);    /* don't need the copy anymore */
 975 
 976         if (share != NULL) {
 977                 err = zfs_sa_disable_share(share, proto_table[proto].p_name);
 978                 if (err != SA_OK) {
 979                         return (zfs_error_fmt(hdl,
 980                             proto_table[proto].p_unshare_err,
 981                             dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
 982                             name, _sa_errorstr(err)));
 983                 }
 984         } else {
 985                 return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
 986                     dgettext(TEXT_DOMAIN, "cannot unshare '%s': not found"),
 987                     name));
 988         }
 989         return (0);
 990 }
 991 
 992 /*
 993  * Unshare the given filesystem.
 994  */
 995 int
 996 zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint,
 997     zfs_share_proto_t *proto)
 998 {
 999         libzfs_handle_t *hdl = zhp->zfs_hdl;
1000         struct mnttab entry;
1001         char *mntpt = NULL;
1002 
1003         /* check to see if need to unmount the filesystem */
1004         rewind(zhp->zfs_hdl->libzfs_mnttab);
1005         if (mountpoint != NULL)
1006                 mountpoint = mntpt = zfs_strdup(hdl, mountpoint);
1007 
1008         if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
1009             libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) {
1010                 zfs_share_proto_t *curr_proto;
1011 
1012                 if (mountpoint == NULL)
1013                         mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp);
1014 
1015                 for (curr_proto = proto; *curr_proto != PROTO_END;
1016                     curr_proto++) {
1017 
1018                         if (is_shared(hdl, mntpt, *curr_proto) &&
1019                             unshare_one(hdl, zhp->zfs_name,
1020                             mntpt, *curr_proto) != 0) {
1021                                 if (mntpt != NULL)
1022                                         free(mntpt);
1023                                 return (-1);
1024                         }
1025                 }
1026         }
1027         if (mntpt != NULL)
1028                 free(mntpt);
1029 
1030         return (0);
1031 }
1032 
1033 int
1034 zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint)
1035 {
1036         return (zfs_unshare_proto(zhp, mountpoint, nfs_only));
1037 }
1038 
1039 int
1040 zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint)
1041 {
1042         return (zfs_unshare_proto(zhp, mountpoint, smb_only));
1043 }
1044 
1045 /*
1046  * Same as zfs_unmountall(), but for NFS and SMB unshares.
1047  */
1048 int
1049 zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
1050 {
1051         prop_changelist_t *clp;
1052         int ret;
1053 
1054         clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0);
1055         if (clp == NULL)
1056                 return (-1);
1057 
1058         ret = changelist_unshare(clp, proto);
1059         changelist_free(clp);
1060 
1061         return (ret);
1062 }
1063 
1064 int
1065 zfs_unshareall_nfs(zfs_handle_t *zhp)
1066 {
1067         return (zfs_unshareall_proto(zhp, nfs_only));
1068 }
1069 
1070 int
1071 zfs_unshareall_smb(zfs_handle_t *zhp)
1072 {
1073         return (zfs_unshareall_proto(zhp, smb_only));
1074 }
1075 
1076 int
1077 zfs_unshareall(zfs_handle_t *zhp)
1078 {
1079         return (zfs_unshareall_proto(zhp, share_all_proto));
1080 }
1081 
1082 int
1083 zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint)
1084 {
1085         return (zfs_unshare_proto(zhp, mountpoint, share_all_proto));
1086 }
1087 
1088 /*
1089  * Remove the mountpoint associated with the current dataset, if necessary.
1090  * We only remove the underlying directory if:
1091  *
1092  *      - The mountpoint is not 'none' or 'legacy'
1093  *      - The mountpoint is non-empty
1094  *      - The mountpoint is the default or inherited
1095  *      - The 'zoned' property is set, or we're in a local zone
1096  *
1097  * Any other directories we leave alone.
1098  */
1099 void
1100 remove_mountpoint(zfs_handle_t *zhp)
1101 {
1102         char mountpoint[ZFS_MAXPROPLEN];
1103         zprop_source_t source;
1104 
1105         if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint),
1106             &source))
1107                 return;
1108 
1109         if (source == ZPROP_SRC_DEFAULT ||
1110             source == ZPROP_SRC_INHERITED) {
1111                 /*
1112                  * Try to remove the directory, silently ignoring any errors.
1113                  * The filesystem may have since been removed or moved around,
1114                  * and this error isn't really useful to the administrator in
1115                  * any way.
1116                  */
1117                 (void) rmdir(mountpoint);
1118         }
1119 }
1120 
1121 /*
1122  * Add the given zfs handle to the cb_handles array, dynamically reallocating
1123  * the array if it is out of space.
1124  */
1125 void
1126 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp)
1127 {
1128         if (cbp->cb_alloc == cbp->cb_used) {
1129                 size_t newsz;
1130                 zfs_handle_t **newhandles;
1131 
1132                 newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64;
1133                 newhandles = zfs_realloc(zhp->zfs_hdl,
1134                     cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *),
1135                     newsz * sizeof (zfs_handle_t *));
1136                 cbp->cb_handles = newhandles;
1137                 cbp->cb_alloc = newsz;
1138         }
1139         cbp->cb_handles[cbp->cb_used++] = zhp;
1140 }
1141 
1142 /*
1143  * Recursive helper function used during file system enumeration
1144  */
1145 static int
1146 zfs_iter_cb(zfs_handle_t *zhp, void *data)
1147 {
1148         get_all_cb_t *cbp = data;
1149 
1150         if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) {
1151                 zfs_close(zhp);
1152                 return (0);
1153         }
1154 
1155         if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) {
1156                 zfs_close(zhp);
1157                 return (0);
1158         }
1159 
1160         if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
1161             ZFS_KEYSTATUS_UNAVAILABLE) {
1162                 zfs_close(zhp);
1163                 return (0);
1164         }
1165 
1166         /*
1167          * If this filesystem is inconsistent and has a receive resume
1168          * token, we can not mount it.
1169          */
1170         if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) &&
1171             zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
1172             NULL, 0, NULL, NULL, 0, B_TRUE) == 0) {
1173                 zfs_close(zhp);
1174                 return (0);
1175         }
1176 
1177         libzfs_add_handle(cbp, zhp);
1178         if (zfs_iter_filesystems(zhp, zfs_iter_cb, cbp) != 0) {
1179                 zfs_close(zhp);
1180                 return (-1);
1181         }
1182         return (0);
1183 }
1184 
1185 /*
1186  * Sort comparator that compares two mountpoint paths. We sort these paths so
1187  * that subdirectories immediately follow their parents. This means that we
1188  * effectively treat the '/' character as the lowest value non-nul char.
1189  * Since filesystems from non-global zones can have the same mountpoint
1190  * as other filesystems, the comparator sorts global zone filesystems to
1191  * the top of the list. This means that the global zone will traverse the
1192  * filesystem list in the correct order and can stop when it sees the
1193  * first zoned filesystem. In a non-global zone, only the delegated
1194  * filesystems are seen.
1195  *
1196  * An example sorted list using this comparator would look like:
1197  *
1198  * /foo
1199  * /foo/bar
1200  * /foo/bar/baz
1201  * /foo/baz
1202  * /foo.bar
1203  * /foo (NGZ1)
1204  * /foo (NGZ2)
1205  *
1206  * The mounting code depends on this ordering to deterministically iterate
1207  * over filesystems in order to spawn parallel mount tasks.
1208  */
1209 static int
1210 mountpoint_cmp(const void *arga, const void *argb)
1211 {
1212         zfs_handle_t *const *zap = arga;
1213         zfs_handle_t *za = *zap;
1214         zfs_handle_t *const *zbp = argb;
1215         zfs_handle_t *zb = *zbp;
1216         char mounta[MAXPATHLEN];
1217         char mountb[MAXPATHLEN];
1218         const char *a = mounta;
1219         const char *b = mountb;
1220         boolean_t gota, gotb;
1221         uint64_t zoneda, zonedb;
1222 
1223         zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED);
1224         zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED);
1225         if (zoneda && !zonedb)
1226                 return (1);
1227         if (!zoneda && zonedb)
1228                 return (-1);
1229 
1230         gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM);
1231         if (gota) {
1232                 verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta,
1233                     sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
1234         }
1235         gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM);
1236         if (gotb) {
1237                 verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb,
1238                     sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
1239         }
1240 
1241         if (gota && gotb) {
1242                 while (*a != '\0' && (*a == *b)) {
1243                         a++;
1244                         b++;
1245                 }
1246                 if (*a == *b)
1247                         return (0);
1248                 if (*a == '\0')
1249                         return (-1);
1250                 if (*b == '\0')
1251                         return (1);
1252                 if (*a == '/')
1253                         return (-1);
1254                 if (*b == '/')
1255                         return (1);
1256                 return (*a < *b ? -1 : *a > *b);
1257         }
1258 
1259         if (gota)
1260                 return (-1);
1261         if (gotb)
1262                 return (1);
1263 
1264         /*
1265          * If neither filesystem has a mountpoint, revert to sorting by
1266          * dataset name.
1267          */
1268         return (strcmp(zfs_get_name(za), zfs_get_name(zb)));
1269 }
1270 
1271 /*
1272  * Return true if path2 is a child of path1.
1273  */
1274 static boolean_t
1275 libzfs_path_contains(const char *path1, const char *path2)
1276 {
1277         return (strstr(path2, path1) == path2 && path2[strlen(path1)] == '/');
1278 }
1279 
1280 /*
1281  * Given a mountpoint specified by idx in the handles array, find the first
1282  * non-descendent of that mountpoint and return its index. Descendant paths
1283  * start with the parent's path. This function relies on the ordering
1284  * enforced by mountpoint_cmp().
1285  */
1286 static int
1287 non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx)
1288 {
1289         char parent[ZFS_MAXPROPLEN];
1290         char child[ZFS_MAXPROPLEN];
1291         int i;
1292 
1293         verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent,
1294             sizeof (parent), NULL, NULL, 0, B_FALSE) == 0);
1295 
1296         for (i = idx + 1; i < num_handles; i++) {
1297                 verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child,
1298                     sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1299                 if (!libzfs_path_contains(parent, child))
1300                         break;
1301         }
1302         return (i);
1303 }
1304 
1305 typedef struct mnt_param {
1306         libzfs_handle_t *mnt_hdl;
1307         zfs_taskq_t     *mnt_tq;
1308         zfs_handle_t    **mnt_zhps; /* filesystems to mount */
1309         size_t          mnt_num_handles;
1310         int             mnt_idx;        /* Index of selected entry to mount */
1311         zfs_iter_f      mnt_func;
1312         void            *mnt_data;
1313 } mnt_param_t;
1314 
1315 /*
1316  * Allocate and populate the parameter struct for mount function, and
1317  * schedule mounting of the entry selected by idx.
1318  */
1319 static void
1320 zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles,
1321     size_t num_handles, int idx, zfs_iter_f func, void *data, zfs_taskq_t *tq)
1322 {
1323         mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t));
1324 
1325         mnt_param->mnt_hdl = hdl;
1326         mnt_param->mnt_tq = tq;
1327         mnt_param->mnt_zhps = handles;
1328         mnt_param->mnt_num_handles = num_handles;
1329         mnt_param->mnt_idx = idx;
1330         mnt_param->mnt_func = func;
1331         mnt_param->mnt_data = data;
1332 
1333         (void) zfs_taskq_dispatch(tq, zfs_mount_task, (void*)mnt_param,
1334             ZFS_TQ_SLEEP);
1335 }
1336 
1337 /*
1338  * This is the structure used to keep state of mounting or sharing operations
1339  * during a call to zpool_enable_datasets().
1340  */
1341 typedef struct mount_state {
1342         /*
1343          * ms_mntstatus is set to -1 if any mount fails. While multiple threads
1344          * could update this variable concurrently, no synchronization is
1345          * needed as it's only ever set to -1.
1346          */
1347         int             ms_mntstatus;
1348         int             ms_mntflags;
1349         const char      *ms_mntopts;
1350 } mount_state_t;
1351 
1352 static int
1353 zfs_mount_one(zfs_handle_t *zhp, void *arg)
1354 {
1355         mount_state_t *ms = arg;
1356         int ret = 0;
1357 
1358         if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
1359             ZFS_KEYSTATUS_UNAVAILABLE)
1360                 return (0);
1361 
1362         if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0)
1363                 ret = ms->ms_mntstatus = -1;
1364         return (ret);
1365 }
1366 
1367 static int
1368 zfs_share_one(zfs_handle_t *zhp, void *arg)
1369 {
1370         mount_state_t *ms = arg;
1371         int ret = 0;
1372 
1373         if (zfs_share(zhp) != 0)
1374                 ret = ms->ms_mntstatus = -1;
1375         return (ret);
1376 }
1377 
1378 /*
1379  * Task queue function to mount one file system. On completion, it finds and
1380  * schedules its children to be mounted. This depends on the sorting done in
1381  * zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries
1382  * each descending from the previous) will have no parallelism since we always
1383  * have to wait for the parent to finish mounting before we can schedule
1384  * its children.
1385  */
1386 static void
1387 zfs_mount_task(void *arg)
1388 {
1389         mnt_param_t *mp = arg;
1390         int idx = mp->mnt_idx;
1391         zfs_handle_t **handles = mp->mnt_zhps;
1392         size_t num_handles = mp->mnt_num_handles;
1393         char mountpoint[ZFS_MAXPROPLEN];
1394 
1395         verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint,
1396             sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0);
1397 
1398         if (mp->mnt_func(handles[idx], mp->mnt_data) != 0)
1399                 return;
1400 
1401         /*
1402          * We dispatch tasks to mount filesystems with mountpoints underneath
1403          * this one. We do this by dispatching the next filesystem with a
1404          * descendant mountpoint of the one we just mounted, then skip all of
1405          * its descendants, dispatch the next descendant mountpoint, and so on.
1406          * The non_descendant_idx() function skips over filesystems that are
1407          * descendants of the filesystem we just dispatched.
1408          */
1409         for (int i = idx + 1; i < num_handles;
1410             i = non_descendant_idx(handles, num_handles, i)) {
1411                 char child[ZFS_MAXPROPLEN];
1412                 verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT,
1413                     child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1414 
1415                 if (!libzfs_path_contains(mountpoint, child))
1416                         break; /* not a descendant, return */
1417                 zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i,
1418                     mp->mnt_func, mp->mnt_data, mp->mnt_tq);
1419         }
1420         free(mp);
1421 }
1422 
1423 /*
1424  * Issue the func callback for each ZFS handle contained in the handles
1425  * array. This function is used to mount all datasets, and so this function
1426  * guarantees that filesystems for parent mountpoints are called before their
1427  * children. As such, before issuing any callbacks, we first sort the array
1428  * of handles by mountpoint.
1429  *
1430  * Callbacks are issued in one of two ways:
1431  *
1432  * 1. Sequentially: If the parallel argument is B_FALSE or the ZFS_SERIAL_MOUNT
1433  *    environment variable is set, then we issue callbacks sequentially.
1434  *
1435  * 2. In parallel: If the parallel argument is B_TRUE and the ZFS_SERIAL_MOUNT
1436  *    environment variable is not set, then we use a taskq to dispatch threads
1437  *    to mount filesystems is parallel. This function dispatches tasks to mount
1438  *    the filesystems at the top-level mountpoints, and these tasks in turn
1439  *    are responsible for recursively mounting filesystems in their children
1440  *    mountpoints.
1441  */
1442 void
1443 zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles,
1444     size_t num_handles, zfs_iter_f func, void *data, boolean_t parallel)
1445 {
1446         zoneid_t zoneid = getzoneid();
1447 
1448         /*
1449          * The ZFS_SERIAL_MOUNT environment variable is an undocumented
1450          * variable that can be used as a convenience to do a/b comparison
1451          * of serial vs. parallel mounting.
1452          */
1453         boolean_t serial_mount = !parallel ||
1454             (getenv("ZFS_SERIAL_MOUNT") != NULL);
1455 
1456         /*
1457          * Sort the datasets by mountpoint. See mountpoint_cmp for details
1458          * of how these are sorted.
1459          */
1460         qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp);
1461 
1462         if (serial_mount) {
1463                 for (int i = 0; i < num_handles; i++) {
1464                         func(handles[i], data);
1465                 }
1466                 return;
1467         }
1468 
1469         /*
1470          * Issue the callback function for each dataset using a parallel
1471          * algorithm that uses a taskq to manage threads.
1472          */
1473         zfs_taskq_t *tq = zfs_taskq_create("mount_taskq", mount_tq_nthr, 0,
1474             mount_tq_nthr, mount_tq_nthr, ZFS_TASKQ_PREPOPULATE);
1475 
1476         /*
1477          * There may be multiple "top level" mountpoints outside of the pool's
1478          * root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of
1479          * these.
1480          */
1481         for (int i = 0; i < num_handles;
1482             i = non_descendant_idx(handles, num_handles, i)) {
1483                 /*
1484                  * Since the mountpoints have been sorted so that the zoned
1485                  * filesystems are at the end, a zoned filesystem seen from
1486                  * the global zone means that we're done.
1487                  */
1488                 if (zoneid == GLOBAL_ZONEID &&
1489                     zfs_prop_get_int(handles[i], ZFS_PROP_ZONED))
1490                         break;
1491                 zfs_dispatch_mount(hdl, handles, num_handles, i, func, data,
1492                     tq);
1493         }
1494 
1495         zfs_taskq_wait(tq); /* wait for all scheduled mounts to complete */
1496         zfs_taskq_destroy(tq);
1497 }
1498 
1499 /*
1500  * Mount and share all datasets within the given pool.  This assumes that no
1501  * datasets within the pool are currently mounted.
1502  */
1503 #pragma weak zpool_mount_datasets = zpool_enable_datasets
1504 int
1505 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags)
1506 {
1507         get_all_cb_t cb = { 0 };
1508         mount_state_t ms = { 0 };
1509         zfs_handle_t *zfsp;
1510         sa_init_selective_arg_t sharearg;
1511         int ret = 0;
1512 
1513         if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name,
1514             ZFS_TYPE_DATASET)) == NULL)
1515                 goto out;
1516 
1517 
1518         /*
1519          * Gather all non-snapshot datasets within the pool. Start by adding
1520          * the root filesystem for this pool to the list, and then iterate
1521          * over all child filesystems.
1522          */
1523         libzfs_add_handle(&cb, zfsp);
1524         if (zfs_iter_filesystems(zfsp, zfs_iter_cb, &cb) != 0)
1525                 goto out;
1526 
1527         ms.ms_mntopts = mntopts;
1528         ms.ms_mntflags = flags;
1529         zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1530             zfs_mount_one, &ms, B_TRUE);
1531         if (ms.ms_mntstatus != 0)
1532                 ret = ms.ms_mntstatus;
1533 
1534         /*
1535          * Share all filesystems that need to be shared. This needs to be
1536          * a separate pass because libshare is not mt-safe, and so we need
1537          * to share serially.
1538          */
1539         sharearg.zhandle_arr = cb.cb_handles;
1540         sharearg.zhandle_len = cb.cb_used;
1541         if ((ret = zfs_init_libshare_arg(zhp->zpool_hdl,
1542             SA_INIT_SHARE_API_SELECTIVE, &sharearg)) != 0)
1543                 goto out;
1544 
1545         ms.ms_mntstatus = 0;
1546         zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1547             zfs_share_one, &ms, B_FALSE);
1548         if (ms.ms_mntstatus != 0)
1549                 ret = ms.ms_mntstatus;
1550 
1551 out:
1552         for (int i = 0; i < cb.cb_used; i++)
1553                 zfs_close(cb.cb_handles[i]);
1554         free(cb.cb_handles);
1555 
1556         return (ret);
1557 }
1558 
1559 static int
1560 mountpoint_compare(const void *a, const void *b)
1561 {
1562         const char *mounta = *((char **)a);
1563         const char *mountb = *((char **)b);
1564 
1565         return (strcmp(mountb, mounta));
1566 }
1567 
1568 /* alias for 2002/240 */
1569 #pragma weak zpool_unmount_datasets = zpool_disable_datasets
1570 /*
1571  * Unshare and unmount all datasets within the given pool.  We don't want to
1572  * rely on traversing the DSL to discover the filesystems within the pool,
1573  * because this may be expensive (if not all of them are mounted), and can fail
1574  * arbitrarily (on I/O error, for example).  Instead, we walk /etc/mnttab and
1575  * gather all the filesystems that are currently mounted.
1576  */
1577 int
1578 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
1579 {
1580         int used, alloc;
1581         struct mnttab entry;
1582         size_t namelen;
1583         char **mountpoints = NULL;
1584         zfs_handle_t **datasets = NULL;
1585         libzfs_handle_t *hdl = zhp->zpool_hdl;
1586         int i;
1587         int ret = -1;
1588         int flags = (force ? MS_FORCE : 0);
1589         sa_init_selective_arg_t sharearg;
1590 
1591         namelen = strlen(zhp->zpool_name);
1592 
1593         rewind(hdl->libzfs_mnttab);
1594         used = alloc = 0;
1595         while (getmntent(hdl->libzfs_mnttab, &entry) == 0) {
1596                 /*
1597                  * Ignore non-ZFS entries.
1598                  */
1599                 if (entry.mnt_fstype == NULL ||
1600                     strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
1601                         continue;
1602 
1603                 /*
1604                  * Ignore filesystems not within this pool.
1605                  */
1606                 if (entry.mnt_mountp == NULL ||
1607                     strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
1608                     (entry.mnt_special[namelen] != '/' &&
1609                     entry.mnt_special[namelen] != '\0'))
1610                         continue;
1611 
1612                 /*
1613                  * At this point we've found a filesystem within our pool.  Add
1614                  * it to our growing list.
1615                  */
1616                 if (used == alloc) {
1617                         if (alloc == 0) {
1618                                 if ((mountpoints = zfs_alloc(hdl,
1619                                     8 * sizeof (void *))) == NULL)
1620                                         goto out;
1621 
1622                                 if ((datasets = zfs_alloc(hdl,
1623                                     8 * sizeof (void *))) == NULL)
1624                                         goto out;
1625 
1626                                 alloc = 8;
1627                         } else {
1628                                 void *ptr;
1629 
1630                                 if ((ptr = zfs_realloc(hdl, mountpoints,
1631                                     alloc * sizeof (void *),
1632                                     alloc * 2 * sizeof (void *))) == NULL)
1633                                         goto out;
1634                                 mountpoints = ptr;
1635 
1636                                 if ((ptr = zfs_realloc(hdl, datasets,
1637                                     alloc * sizeof (void *),
1638                                     alloc * 2 * sizeof (void *))) == NULL)
1639                                         goto out;
1640                                 datasets = ptr;
1641 
1642                                 alloc *= 2;
1643                         }
1644                 }
1645 
1646                 if ((mountpoints[used] = zfs_strdup(hdl,
1647                     entry.mnt_mountp)) == NULL)
1648                         goto out;
1649 
1650                 /*
1651                  * This is allowed to fail, in case there is some I/O error.  It
1652                  * is only used to determine if we need to remove the underlying
1653                  * mountpoint, so failure is not fatal.
1654                  */
1655                 datasets[used] = make_dataset_handle(hdl, entry.mnt_special);
1656 
1657                 used++;
1658         }
1659 
1660         /*
1661          * At this point, we have the entire list of filesystems, so sort it by
1662          * mountpoint.
1663          */
1664         sharearg.zhandle_arr = datasets;
1665         sharearg.zhandle_len = used;
1666         ret = zfs_init_libshare_arg(hdl, SA_INIT_SHARE_API_SELECTIVE,
1667             &sharearg);
1668         if (ret != 0)
1669                 goto out;
1670         qsort(mountpoints, used, sizeof (char *), mountpoint_compare);
1671 
1672         /*
1673          * Walk through and first unshare everything.
1674          */
1675         for (i = 0; i < used; i++) {
1676                 zfs_share_proto_t *curr_proto;
1677                 for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
1678                     curr_proto++) {
1679                         if (is_shared(hdl, mountpoints[i], *curr_proto) &&
1680                             unshare_one(hdl, mountpoints[i],
1681                             mountpoints[i], *curr_proto) != 0)
1682                                 goto out;
1683                 }
1684         }
1685 
1686         /*
1687          * Now unmount everything, removing the underlying directories as
1688          * appropriate.
1689          */
1690         for (i = 0; i < used; i++) {
1691                 if (unmount_one(hdl, mountpoints[i], flags) != 0)
1692                         goto out;
1693         }
1694 
1695         for (i = 0; i < used; i++) {
1696                 if (datasets[i])
1697                         remove_mountpoint(datasets[i]);
1698         }
1699 
1700         ret = 0;
1701 out:
1702         for (i = 0; i < used; i++) {
1703                 if (datasets[i])
1704                         zfs_close(datasets[i]);
1705                 free(mountpoints[i]);
1706         }
1707         free(datasets);
1708         free(mountpoints);
1709 
1710         return (ret);
1711 }