1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Bayard G. Bell. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2017 Joyent Inc
27 */
28
29 /*
30 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
31 * All rights reserved.
32 * Use is subject to license terms.
33 */
34
35 #include <sys/param.h>
36 #include <sys/types.h>
37 #include <sys/systm.h>
38 #include <sys/cred.h>
39 #include <sys/proc.h>
40 #include <sys/user.h>
41 #include <sys/buf.h>
42 #include <sys/vfs.h>
43 #include <sys/vnode.h>
44 #include <sys/pathname.h>
45 #include <sys/uio.h>
46 #include <sys/file.h>
47 #include <sys/stat.h>
48 #include <sys/errno.h>
49 #include <sys/socket.h>
50 #include <sys/sysmacros.h>
51 #include <sys/siginfo.h>
52 #include <sys/tiuser.h>
53 #include <sys/statvfs.h>
54 #include <sys/stream.h>
55 #include <sys/strsun.h>
56 #include <sys/strsubr.h>
57 #include <sys/stropts.h>
58 #include <sys/timod.h>
59 #include <sys/t_kuser.h>
60 #include <sys/kmem.h>
61 #include <sys/kstat.h>
62 #include <sys/dirent.h>
63 #include <sys/cmn_err.h>
64 #include <sys/debug.h>
65 #include <sys/unistd.h>
66 #include <sys/vtrace.h>
67 #include <sys/mode.h>
68 #include <sys/acl.h>
69 #include <sys/sdt.h>
70 #include <sys/debug.h>
71
72 #include <rpc/types.h>
73 #include <rpc/auth.h>
74 #include <rpc/auth_unix.h>
75 #include <rpc/auth_des.h>
76 #include <rpc/svc.h>
77 #include <rpc/xdr.h>
78 #include <rpc/rpc_rdma.h>
79
80 #include <nfs/nfs.h>
81 #include <nfs/export.h>
82 #include <nfs/nfssys.h>
83 #include <nfs/nfs_clnt.h>
84 #include <nfs/nfs_acl.h>
85 #include <nfs/nfs_log.h>
86 #include <nfs/nfs_cmd.h>
87 #include <nfs/lm.h>
88 #include <nfs/nfs_dispatch.h>
89 #include <nfs/nfs4_drc.h>
90
91 #include <sys/modctl.h>
92 #include <sys/cladm.h>
93 #include <sys/clconf.h>
94
95 #include <sys/tsol/label.h>
96
97 #define MAXHOST 32
98 const char *kinet_ntop6(uchar_t *, char *, size_t);
99
100 /*
101 * Module linkage information.
102 */
103
104 static struct modlmisc modlmisc = {
105 &mod_miscops, "NFS server module"
106 };
107
108 static struct modlinkage modlinkage = {
109 MODREV_1, (void *)&modlmisc, NULL
110 };
111
112 kmem_cache_t *nfs_xuio_cache;
113 int nfs_loaned_buffers = 0;
114
115 int
116 _init(void)
117 {
118 int status;
119
120 if ((status = nfs_srvinit()) != 0) {
121 cmn_err(CE_WARN, "_init: nfs_srvinit failed");
122 return (status);
123 }
124
125 status = mod_install((struct modlinkage *)&modlinkage);
126 if (status != 0) {
127 /*
128 * Could not load module, cleanup previous
129 * initialization work.
130 */
131 nfs_srvfini();
132
133 return (status);
134 }
135
136 /*
137 * Initialise some placeholders for nfssys() calls. These have
138 * to be declared by the nfs module, since that handles nfssys()
139 * calls - also used by NFS clients - but are provided by this
140 * nfssrv module. These also then serve as confirmation to the
141 * relevant code in nfs that nfssrv has been loaded, as they're
142 * initially NULL.
143 */
144 nfs_srv_quiesce_func = nfs_srv_quiesce_all;
145 nfs_srv_dss_func = rfs4_dss_setpaths;
146
147 /* setup DSS paths here; must be done before initial server startup */
148 rfs4_dss_paths = rfs4_dss_oldpaths = NULL;
149
150 /* initialize the copy reduction caches */
151
152 nfs_xuio_cache = kmem_cache_create("nfs_xuio_cache",
153 sizeof (nfs_xuio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
154
155 return (status);
156 }
157
158 int
159 _fini()
160 {
161 return (EBUSY);
162 }
163
164 int
165 _info(struct modinfo *modinfop)
166 {
167 return (mod_info(&modlinkage, modinfop));
168 }
169
170 /*
171 * PUBLICFH_CHECK() checks if the dispatch routine supports
172 * RPC_PUBLICFH_OK, if the filesystem is exported public, and if the
173 * incoming request is using the public filehandle. The check duplicates
174 * the exportmatch() call done in checkexport(), and we should consider
175 * modifying those routines to avoid the duplication. For now, we optimize
176 * by calling exportmatch() only after checking that the dispatch routine
177 * supports RPC_PUBLICFH_OK, and if the filesystem is explicitly exported
178 * public (i.e., not the placeholder).
179 */
180 #define PUBLICFH_CHECK(disp, exi, fsid, xfid) \
181 ((disp->dis_flags & RPC_PUBLICFH_OK) && \
182 ((exi->exi_export.ex_flags & EX_PUBLIC) || \
183 (exi == exi_public && exportmatch(exi_root, \
184 fsid, xfid))))
185
186 static void nfs_srv_shutdown_all(int);
187 static void rfs4_server_start(int);
188 static void nullfree(void);
189 static void rfs_dispatch(struct svc_req *, SVCXPRT *);
190 static void acl_dispatch(struct svc_req *, SVCXPRT *);
191 static void common_dispatch(struct svc_req *, SVCXPRT *,
192 rpcvers_t, rpcvers_t, char *,
193 struct rpc_disptable *);
194 static void hanfsv4_failover(void);
195 static int checkauth(struct exportinfo *, struct svc_req *, cred_t *, int,
196 bool_t, bool_t *);
197 static char *client_name(struct svc_req *req);
198 static char *client_addr(struct svc_req *req, char *buf);
199 extern int sec_svc_getcred(struct svc_req *, cred_t *cr, char **, int *);
200 extern bool_t sec_svc_inrootlist(int, caddr_t, int, caddr_t *);
201
202 #define NFSLOG_COPY_NETBUF(exi, xprt, nb) { \
203 (nb)->maxlen = (xprt)->xp_rtaddr.maxlen; \
204 (nb)->len = (xprt)->xp_rtaddr.len; \
205 (nb)->buf = kmem_alloc((nb)->len, KM_SLEEP); \
206 bcopy((xprt)->xp_rtaddr.buf, (nb)->buf, (nb)->len); \
207 }
208
209 /*
210 * Public Filehandle common nfs routines
211 */
212 static int MCLpath(char **);
213 static void URLparse(char *);
214
215 /*
216 * NFS callout table.
217 * This table is used by svc_getreq() to dispatch a request with
218 * a given prog/vers pair to an appropriate service provider
219 * dispatch routine.
220 *
221 * NOTE: ordering is relied upon below when resetting the version min/max
222 * for NFS_PROGRAM. Careful, if this is ever changed.
223 */
224 static SVC_CALLOUT __nfs_sc_clts[] = {
225 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch },
226 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch }
227 };
228
229 static SVC_CALLOUT_TABLE nfs_sct_clts = {
230 sizeof (__nfs_sc_clts) / sizeof (__nfs_sc_clts[0]), FALSE,
231 __nfs_sc_clts
232 };
233
234 static SVC_CALLOUT __nfs_sc_cots[] = {
235 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch },
236 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch }
237 };
238
239 static SVC_CALLOUT_TABLE nfs_sct_cots = {
240 sizeof (__nfs_sc_cots) / sizeof (__nfs_sc_cots[0]), FALSE, __nfs_sc_cots
241 };
242
243 static SVC_CALLOUT __nfs_sc_rdma[] = {
244 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch },
245 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch }
246 };
247
248 static SVC_CALLOUT_TABLE nfs_sct_rdma = {
249 sizeof (__nfs_sc_rdma) / sizeof (__nfs_sc_rdma[0]), FALSE, __nfs_sc_rdma
250 };
251 rpcvers_t nfs_versmin = NFS_VERSMIN_DEFAULT;
252 rpcvers_t nfs_versmax = NFS_VERSMAX_DEFAULT;
253
254 /*
255 * Used to track the state of the server so that initialization
256 * can be done properly.
257 */
258 typedef enum {
259 NFS_SERVER_STOPPED, /* server state destroyed */
260 NFS_SERVER_STOPPING, /* server state being destroyed */
261 NFS_SERVER_RUNNING,
262 NFS_SERVER_QUIESCED, /* server state preserved */
263 NFS_SERVER_OFFLINE /* server pool offline */
264 } nfs_server_running_t;
265
266 static nfs_server_running_t nfs_server_upordown;
267 static kmutex_t nfs_server_upordown_lock;
268 static kcondvar_t nfs_server_upordown_cv;
269
270 /*
271 * DSS: distributed stable storage
272 * lists of all DSS paths: current, and before last warmstart
273 */
274 nvlist_t *rfs4_dss_paths, *rfs4_dss_oldpaths;
275
276 int rfs4_dispatch(struct rpcdisp *, struct svc_req *, SVCXPRT *, char *);
277 bool_t rfs4_minorvers_mismatch(struct svc_req *, SVCXPRT *, void *);
278
279 /*
280 * RDMA wait variables.
281 */
282 static kcondvar_t rdma_wait_cv;
283 static kmutex_t rdma_wait_mutex;
284
285 /*
286 * Will be called at the point the server pool is being unregistered
287 * from the pool list. From that point onwards, the pool is waiting
288 * to be drained and as such the server state is stale and pertains
289 * to the old instantiation of the NFS server pool.
290 */
291 void
292 nfs_srv_offline(void)
293 {
294 mutex_enter(&nfs_server_upordown_lock);
295 if (nfs_server_upordown == NFS_SERVER_RUNNING) {
296 nfs_server_upordown = NFS_SERVER_OFFLINE;
297 }
298 mutex_exit(&nfs_server_upordown_lock);
299 }
300
301 /*
302 * Will be called at the point the server pool is being destroyed so
303 * all transports have been closed and no service threads are in
304 * existence.
305 *
306 * If we quiesce the server, we're shutting it down without destroying the
307 * server state. This allows it to warm start subsequently.
308 */
309 void
310 nfs_srv_stop_all(void)
311 {
312 int quiesce = 0;
313 nfs_srv_shutdown_all(quiesce);
314 }
315
316 /*
317 * This alternative shutdown routine can be requested via nfssys()
318 */
319 void
320 nfs_srv_quiesce_all(void)
321 {
322 int quiesce = 1;
323 nfs_srv_shutdown_all(quiesce);
324 }
325
326 static void
327 nfs_srv_shutdown_all(int quiesce) {
328 mutex_enter(&nfs_server_upordown_lock);
329 if (quiesce) {
330 if (nfs_server_upordown == NFS_SERVER_RUNNING ||
331 nfs_server_upordown == NFS_SERVER_OFFLINE) {
332 nfs_server_upordown = NFS_SERVER_QUIESCED;
333 cv_signal(&nfs_server_upordown_cv);
334
335 /* reset DSS state, for subsequent warm restart */
336 rfs4_dss_numnewpaths = 0;
337 rfs4_dss_newpaths = NULL;
338
339 cmn_err(CE_NOTE, "nfs_server: server is now quiesced; "
340 "NFSv4 state has been preserved");
341 }
342 } else {
343 if (nfs_server_upordown == NFS_SERVER_OFFLINE) {
344 nfs_server_upordown = NFS_SERVER_STOPPING;
345 mutex_exit(&nfs_server_upordown_lock);
346 rfs4_state_fini();
347 rfs4_fini_drc(nfs4_drc);
348 mutex_enter(&nfs_server_upordown_lock);
349 nfs_server_upordown = NFS_SERVER_STOPPED;
350 cv_signal(&nfs_server_upordown_cv);
351 }
352 }
353 mutex_exit(&nfs_server_upordown_lock);
354 }
355
356 static int
357 nfs_srv_set_sc_versions(struct file *fp, SVC_CALLOUT_TABLE **sctpp,
358 rpcvers_t versmin, rpcvers_t versmax)
359 {
360 struct strioctl strioc;
361 struct T_info_ack tinfo;
362 int error, retval;
363
364 /*
365 * Find out what type of transport this is.
366 */
367 strioc.ic_cmd = TI_GETINFO;
368 strioc.ic_timout = -1;
369 strioc.ic_len = sizeof (tinfo);
370 strioc.ic_dp = (char *)&tinfo;
371 tinfo.PRIM_type = T_INFO_REQ;
372
373 error = strioctl(fp->f_vnode, I_STR, (intptr_t)&strioc, 0, K_TO_K,
374 CRED(), &retval);
375 if (error || retval)
376 return (error);
377
378 /*
379 * Based on our query of the transport type...
380 *
381 * Reset the min/max versions based on the caller's request
382 * NOTE: This assumes that NFS_PROGRAM is first in the array!!
383 * And the second entry is the NFS_ACL_PROGRAM.
384 */
385 switch (tinfo.SERV_type) {
386 case T_CLTS:
387 if (versmax == NFS_V4)
388 return (EINVAL);
389 __nfs_sc_clts[0].sc_versmin = versmin;
390 __nfs_sc_clts[0].sc_versmax = versmax;
391 __nfs_sc_clts[1].sc_versmin = versmin;
392 __nfs_sc_clts[1].sc_versmax = versmax;
393 *sctpp = &nfs_sct_clts;
394 break;
395 case T_COTS:
396 case T_COTS_ORD:
397 __nfs_sc_cots[0].sc_versmin = versmin;
398 __nfs_sc_cots[0].sc_versmax = versmax;
399 /* For the NFS_ACL program, check the max version */
400 if (versmax > NFS_ACL_VERSMAX)
401 versmax = NFS_ACL_VERSMAX;
402 __nfs_sc_cots[1].sc_versmin = versmin;
403 __nfs_sc_cots[1].sc_versmax = versmax;
404 *sctpp = &nfs_sct_cots;
405 break;
406 default:
407 error = EINVAL;
408 }
409
410 return (error);
411 }
412
413 /*
414 * NFS Server system call.
415 * Does all of the work of running a NFS server.
416 * uap->fd is the fd of an open transport provider
417 */
418 int
419 nfs_svc(struct nfs_svc_args *arg, model_t model)
420 {
421 file_t *fp;
422 SVCMASTERXPRT *xprt;
423 int error;
424 int readsize;
425 char buf[KNC_STRSIZE];
426 size_t len;
427 STRUCT_HANDLE(nfs_svc_args, uap);
428 struct netbuf addrmask;
429 SVC_CALLOUT_TABLE *sctp = NULL;
430
431 #ifdef lint
432 model = model; /* STRUCT macros don't always refer to it */
433 #endif
434
435 STRUCT_SET_HANDLE(uap, model, arg);
436
437 /* Check privileges in nfssys() */
438
439 if ((fp = getf(STRUCT_FGET(uap, fd))) == NULL)
440 return (EBADF);
441
442 /*
443 * Set read buffer size to rsize
444 * and add room for RPC headers.
445 */
446 readsize = nfs3tsize() + (RPC_MAXDATASIZE - NFS_MAXDATA);
447 if (readsize < RPC_MAXDATASIZE)
448 readsize = RPC_MAXDATASIZE;
449
450 error = copyinstr((const char *)STRUCT_FGETP(uap, netid), buf,
451 KNC_STRSIZE, &len);
452 if (error) {
453 releasef(STRUCT_FGET(uap, fd));
454 return (error);
455 }
456
457 addrmask.len = STRUCT_FGET(uap, addrmask.len);
458 addrmask.maxlen = STRUCT_FGET(uap, addrmask.maxlen);
459 addrmask.buf = kmem_alloc(addrmask.maxlen, KM_SLEEP);
460 error = copyin(STRUCT_FGETP(uap, addrmask.buf), addrmask.buf,
461 addrmask.len);
462 if (error) {
463 releasef(STRUCT_FGET(uap, fd));
464 kmem_free(addrmask.buf, addrmask.maxlen);
465 return (error);
466 }
467
468 nfs_versmin = STRUCT_FGET(uap, versmin);
469 nfs_versmax = STRUCT_FGET(uap, versmax);
470
471 /* Double check the vers min/max ranges */
472 if ((nfs_versmin > nfs_versmax) ||
473 (nfs_versmin < NFS_VERSMIN) ||
474 (nfs_versmax > NFS_VERSMAX)) {
475 nfs_versmin = NFS_VERSMIN_DEFAULT;
476 nfs_versmax = NFS_VERSMAX_DEFAULT;
477 }
478
479 if (error =
480 nfs_srv_set_sc_versions(fp, &sctp, nfs_versmin, nfs_versmax)) {
481 releasef(STRUCT_FGET(uap, fd));
482 kmem_free(addrmask.buf, addrmask.maxlen);
483 return (error);
484 }
485
486 /* Initialize nfsv4 server */
487 if (nfs_versmax == (rpcvers_t)NFS_V4)
488 rfs4_server_start(STRUCT_FGET(uap, delegation));
489
490 /* Create a transport handle. */
491 error = svc_tli_kcreate(fp, readsize, buf, &addrmask, &xprt,
492 sctp, NULL, NFS_SVCPOOL_ID, TRUE);
493
494 if (error)
495 kmem_free(addrmask.buf, addrmask.maxlen);
496
497 releasef(STRUCT_FGET(uap, fd));
498
499 /* HA-NFSv4: save the cluster nodeid */
500 if (cluster_bootflags & CLUSTER_BOOTED)
501 lm_global_nlmid = clconf_get_nodeid();
502
503 return (error);
504 }
505
506 static void
507 rfs4_server_start(int nfs4_srv_delegation)
508 {
509 /*
510 * Determine if the server has previously been "started" and
511 * if not, do the per instance initialization
512 */
513 mutex_enter(&nfs_server_upordown_lock);
514
515 if (nfs_server_upordown != NFS_SERVER_RUNNING) {
516 /* Do we need to stop and wait on the previous server? */
517 while (nfs_server_upordown == NFS_SERVER_STOPPING ||
518 nfs_server_upordown == NFS_SERVER_OFFLINE)
519 cv_wait(&nfs_server_upordown_cv,
520 &nfs_server_upordown_lock);
521
522 if (nfs_server_upordown != NFS_SERVER_RUNNING) {
523 (void) svc_pool_control(NFS_SVCPOOL_ID,
524 SVCPSET_UNREGISTER_PROC, (void *)&nfs_srv_offline);
525 (void) svc_pool_control(NFS_SVCPOOL_ID,
526 SVCPSET_SHUTDOWN_PROC, (void *)&nfs_srv_stop_all);
527
528 /* is this an nfsd warm start? */
529 if (nfs_server_upordown == NFS_SERVER_QUIESCED) {
530 cmn_err(CE_NOTE, "nfs_server: "
531 "server was previously quiesced; "
532 "existing NFSv4 state will be re-used");
533
534 /*
535 * HA-NFSv4: this is also the signal
536 * that a Resource Group failover has
537 * occurred.
538 */
539 if (cluster_bootflags & CLUSTER_BOOTED)
540 hanfsv4_failover();
541 } else {
542 /* cold start */
543 rfs4_state_init();
544 nfs4_drc = rfs4_init_drc(nfs4_drc_max,
545 nfs4_drc_hash);
546 }
547
548 /*
549 * Check to see if delegation is to be
550 * enabled at the server
551 */
552 if (nfs4_srv_delegation != FALSE)
553 rfs4_set_deleg_policy(SRV_NORMAL_DELEGATE);
554
555 nfs_server_upordown = NFS_SERVER_RUNNING;
556 }
557 cv_signal(&nfs_server_upordown_cv);
558 }
559 mutex_exit(&nfs_server_upordown_lock);
560 }
561
562 /*
563 * If RDMA device available,
564 * start RDMA listener.
565 */
566 int
567 rdma_start(struct rdma_svc_args *rsa)
568 {
569 int error;
570 rdma_xprt_group_t started_rdma_xprts;
571 rdma_stat stat;
572 int svc_state = 0;
573
574 /* Double check the vers min/max ranges */
575 if ((rsa->nfs_versmin > rsa->nfs_versmax) ||
576 (rsa->nfs_versmin < NFS_VERSMIN) ||
577 (rsa->nfs_versmax > NFS_VERSMAX)) {
578 rsa->nfs_versmin = NFS_VERSMIN_DEFAULT;
579 rsa->nfs_versmax = NFS_VERSMAX_DEFAULT;
580 }
581 nfs_versmin = rsa->nfs_versmin;
582 nfs_versmax = rsa->nfs_versmax;
583
584 /* Set the versions in the callout table */
585 __nfs_sc_rdma[0].sc_versmin = rsa->nfs_versmin;
586 __nfs_sc_rdma[0].sc_versmax = rsa->nfs_versmax;
587 /* For the NFS_ACL program, check the max version */
588 __nfs_sc_rdma[1].sc_versmin = rsa->nfs_versmin;
589 if (rsa->nfs_versmax > NFS_ACL_VERSMAX)
590 __nfs_sc_rdma[1].sc_versmax = NFS_ACL_VERSMAX;
591 else
592 __nfs_sc_rdma[1].sc_versmax = rsa->nfs_versmax;
593
594 /* Initialize nfsv4 server */
595 if (rsa->nfs_versmax == (rpcvers_t)NFS_V4)
596 rfs4_server_start(rsa->delegation);
597
598 started_rdma_xprts.rtg_count = 0;
599 started_rdma_xprts.rtg_listhead = NULL;
600 started_rdma_xprts.rtg_poolid = rsa->poolid;
601
602 restart:
603 error = svc_rdma_kcreate(rsa->netid, &nfs_sct_rdma, rsa->poolid,
604 &started_rdma_xprts);
605
606 svc_state = !error;
607
608 while (!error) {
609
610 /*
611 * wait till either interrupted by a signal on
612 * nfs service stop/restart or signalled by a
613 * rdma plugin attach/detatch.
614 */
615
616 stat = rdma_kwait();
617
618 /*
619 * stop services if running -- either on a HCA detach event
620 * or if the nfs service is stopped/restarted.
621 */
622
623 if ((stat == RDMA_HCA_DETACH || stat == RDMA_INTR) &&
624 svc_state) {
625 rdma_stop(&started_rdma_xprts);
626 svc_state = 0;
627 }
628
629 /*
630 * nfs service stop/restart, break out of the
631 * wait loop and return;
632 */
633 if (stat == RDMA_INTR)
634 return (0);
635
636 /*
637 * restart stopped services on a HCA attach event
638 * (if not already running)
639 */
640
641 if ((stat == RDMA_HCA_ATTACH) && (svc_state == 0))
642 goto restart;
643
644 /*
645 * loop until a nfs service stop/restart
646 */
647 }
648
649 return (error);
650 }
651
652 /* ARGSUSED */
653 void
654 rpc_null(caddr_t *argp, caddr_t *resp, struct exportinfo *exi,
655 struct svc_req *req, cred_t *cr, bool_t ro)
656 {
657 }
658
659 /* ARGSUSED */
660 void
661 rpc_null_v3(caddr_t *argp, caddr_t *resp, struct exportinfo *exi,
662 struct svc_req *req, cred_t *cr, bool_t ro)
663 {
664 DTRACE_NFSV3_3(op__null__start, struct svc_req *, req,
665 cred_t *, cr, vnode_t *, NULL);
666 DTRACE_NFSV3_3(op__null__done, struct svc_req *, req,
667 cred_t *, cr, vnode_t *, NULL);
668 }
669
670 /* ARGSUSED */
671 static void
672 rfs_error(caddr_t *argp, caddr_t *resp, struct exportinfo *exi,
673 struct svc_req *req, cred_t *cr, bool_t ro)
674 {
675 /* return (EOPNOTSUPP); */
676 }
677
678 static void
679 nullfree(void)
680 {
681 }
682
683 static char *rfscallnames_v2[] = {
684 "RFS2_NULL",
685 "RFS2_GETATTR",
686 "RFS2_SETATTR",
687 "RFS2_ROOT",
688 "RFS2_LOOKUP",
689 "RFS2_READLINK",
690 "RFS2_READ",
691 "RFS2_WRITECACHE",
692 "RFS2_WRITE",
693 "RFS2_CREATE",
694 "RFS2_REMOVE",
695 "RFS2_RENAME",
696 "RFS2_LINK",
697 "RFS2_SYMLINK",
698 "RFS2_MKDIR",
699 "RFS2_RMDIR",
700 "RFS2_READDIR",
701 "RFS2_STATFS"
702 };
703
704 static struct rpcdisp rfsdisptab_v2[] = {
705 /*
706 * NFS VERSION 2
707 */
708
709 /* RFS_NULL = 0 */
710 {rpc_null,
711 xdr_void, NULL_xdrproc_t, 0,
712 xdr_void, NULL_xdrproc_t, 0,
713 nullfree, RPC_IDEMPOTENT,
714 0},
715
716 /* RFS_GETATTR = 1 */
717 {rfs_getattr,
718 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t),
719 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat),
720 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP,
721 rfs_getattr_getfh},
722
723 /* RFS_SETATTR = 2 */
724 {rfs_setattr,
725 xdr_saargs, NULL_xdrproc_t, sizeof (struct nfssaargs),
726 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat),
727 nullfree, RPC_MAPRESP,
728 rfs_setattr_getfh},
729
730 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */
731 {rfs_error,
732 xdr_void, NULL_xdrproc_t, 0,
733 xdr_void, NULL_xdrproc_t, 0,
734 nullfree, RPC_IDEMPOTENT,
735 0},
736
737 /* RFS_LOOKUP = 4 */
738 {rfs_lookup,
739 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs),
740 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres),
741 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP|RPC_PUBLICFH_OK,
742 rfs_lookup_getfh},
743
744 /* RFS_READLINK = 5 */
745 {rfs_readlink,
746 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t),
747 xdr_rdlnres, NULL_xdrproc_t, sizeof (struct nfsrdlnres),
748 rfs_rlfree, RPC_IDEMPOTENT,
749 rfs_readlink_getfh},
750
751 /* RFS_READ = 6 */
752 {rfs_read,
753 xdr_readargs, NULL_xdrproc_t, sizeof (struct nfsreadargs),
754 xdr_rdresult, NULL_xdrproc_t, sizeof (struct nfsrdresult),
755 rfs_rdfree, RPC_IDEMPOTENT,
756 rfs_read_getfh},
757
758 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */
759 {rfs_error,
760 xdr_void, NULL_xdrproc_t, 0,
761 xdr_void, NULL_xdrproc_t, 0,
762 nullfree, RPC_IDEMPOTENT,
763 0},
764
765 /* RFS_WRITE = 8 */
766 {rfs_write,
767 xdr_writeargs, NULL_xdrproc_t, sizeof (struct nfswriteargs),
768 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat),
769 nullfree, RPC_MAPRESP,
770 rfs_write_getfh},
771
772 /* RFS_CREATE = 9 */
773 {rfs_create,
774 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs),
775 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres),
776 nullfree, RPC_MAPRESP,
777 rfs_create_getfh},
778
779 /* RFS_REMOVE = 10 */
780 {rfs_remove,
781 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs),
782 #ifdef _LITTLE_ENDIAN
783 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
784 #else
785 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
786 #endif
787 nullfree, RPC_MAPRESP,
788 rfs_remove_getfh},
789
790 /* RFS_RENAME = 11 */
791 {rfs_rename,
792 xdr_rnmargs, NULL_xdrproc_t, sizeof (struct nfsrnmargs),
793 #ifdef _LITTLE_ENDIAN
794 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
795 #else
796 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
797 #endif
798 nullfree, RPC_MAPRESP,
799 rfs_rename_getfh},
800
801 /* RFS_LINK = 12 */
802 {rfs_link,
803 xdr_linkargs, NULL_xdrproc_t, sizeof (struct nfslinkargs),
804 #ifdef _LITTLE_ENDIAN
805 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
806 #else
807 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
808 #endif
809 nullfree, RPC_MAPRESP,
810 rfs_link_getfh},
811
812 /* RFS_SYMLINK = 13 */
813 {rfs_symlink,
814 xdr_slargs, NULL_xdrproc_t, sizeof (struct nfsslargs),
815 #ifdef _LITTLE_ENDIAN
816 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
817 #else
818 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
819 #endif
820 nullfree, RPC_MAPRESP,
821 rfs_symlink_getfh},
822
823 /* RFS_MKDIR = 14 */
824 {rfs_mkdir,
825 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs),
826 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres),
827 nullfree, RPC_MAPRESP,
828 rfs_mkdir_getfh},
829
830 /* RFS_RMDIR = 15 */
831 {rfs_rmdir,
832 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs),
833 #ifdef _LITTLE_ENDIAN
834 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
835 #else
836 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
837 #endif
838 nullfree, RPC_MAPRESP,
839 rfs_rmdir_getfh},
840
841 /* RFS_READDIR = 16 */
842 {rfs_readdir,
843 xdr_rddirargs, NULL_xdrproc_t, sizeof (struct nfsrddirargs),
844 xdr_putrddirres, NULL_xdrproc_t, sizeof (struct nfsrddirres),
845 rfs_rddirfree, RPC_IDEMPOTENT,
846 rfs_readdir_getfh},
847
848 /* RFS_STATFS = 17 */
849 {rfs_statfs,
850 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t),
851 xdr_statfs, xdr_faststatfs, sizeof (struct nfsstatfs),
852 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP,
853 rfs_statfs_getfh},
854 };
855
856 static char *rfscallnames_v3[] = {
857 "RFS3_NULL",
858 "RFS3_GETATTR",
859 "RFS3_SETATTR",
860 "RFS3_LOOKUP",
861 "RFS3_ACCESS",
862 "RFS3_READLINK",
863 "RFS3_READ",
864 "RFS3_WRITE",
865 "RFS3_CREATE",
866 "RFS3_MKDIR",
867 "RFS3_SYMLINK",
868 "RFS3_MKNOD",
869 "RFS3_REMOVE",
870 "RFS3_RMDIR",
871 "RFS3_RENAME",
872 "RFS3_LINK",
873 "RFS3_READDIR",
874 "RFS3_READDIRPLUS",
875 "RFS3_FSSTAT",
876 "RFS3_FSINFO",
877 "RFS3_PATHCONF",
878 "RFS3_COMMIT"
879 };
880
881 static struct rpcdisp rfsdisptab_v3[] = {
882 /*
883 * NFS VERSION 3
884 */
885
886 /* RFS_NULL = 0 */
887 {rpc_null_v3,
888 xdr_void, NULL_xdrproc_t, 0,
889 xdr_void, NULL_xdrproc_t, 0,
890 nullfree, RPC_IDEMPOTENT,
891 0},
892
893 /* RFS3_GETATTR = 1 */
894 {rfs3_getattr,
895 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (GETATTR3args),
896 xdr_GETATTR3res, NULL_xdrproc_t, sizeof (GETATTR3res),
897 nullfree, (RPC_IDEMPOTENT | RPC_ALLOWANON),
898 rfs3_getattr_getfh},
899
900 /* RFS3_SETATTR = 2 */
901 {rfs3_setattr,
902 xdr_SETATTR3args, NULL_xdrproc_t, sizeof (SETATTR3args),
903 xdr_SETATTR3res, NULL_xdrproc_t, sizeof (SETATTR3res),
904 nullfree, 0,
905 rfs3_setattr_getfh},
906
907 /* RFS3_LOOKUP = 3 */
908 {rfs3_lookup,
909 xdr_diropargs3, NULL_xdrproc_t, sizeof (LOOKUP3args),
910 xdr_LOOKUP3res, NULL_xdrproc_t, sizeof (LOOKUP3res),
911 nullfree, (RPC_IDEMPOTENT | RPC_PUBLICFH_OK),
912 rfs3_lookup_getfh},
913
914 /* RFS3_ACCESS = 4 */
915 {rfs3_access,
916 xdr_ACCESS3args, NULL_xdrproc_t, sizeof (ACCESS3args),
917 xdr_ACCESS3res, NULL_xdrproc_t, sizeof (ACCESS3res),
918 nullfree, RPC_IDEMPOTENT,
919 rfs3_access_getfh},
920
921 /* RFS3_READLINK = 5 */
922 {rfs3_readlink,
923 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (READLINK3args),
924 xdr_READLINK3res, NULL_xdrproc_t, sizeof (READLINK3res),
925 rfs3_readlink_free, RPC_IDEMPOTENT,
926 rfs3_readlink_getfh},
927
928 /* RFS3_READ = 6 */
929 {rfs3_read,
930 xdr_READ3args, NULL_xdrproc_t, sizeof (READ3args),
931 xdr_READ3res, NULL_xdrproc_t, sizeof (READ3res),
932 rfs3_read_free, RPC_IDEMPOTENT,
933 rfs3_read_getfh},
934
935 /* RFS3_WRITE = 7 */
936 {rfs3_write,
937 xdr_WRITE3args, NULL_xdrproc_t, sizeof (WRITE3args),
938 xdr_WRITE3res, NULL_xdrproc_t, sizeof (WRITE3res),
939 nullfree, 0,
940 rfs3_write_getfh},
941
942 /* RFS3_CREATE = 8 */
943 {rfs3_create,
944 xdr_CREATE3args, NULL_xdrproc_t, sizeof (CREATE3args),
945 xdr_CREATE3res, NULL_xdrproc_t, sizeof (CREATE3res),
946 nullfree, 0,
947 rfs3_create_getfh},
948
949 /* RFS3_MKDIR = 9 */
950 {rfs3_mkdir,
951 xdr_MKDIR3args, NULL_xdrproc_t, sizeof (MKDIR3args),
952 xdr_MKDIR3res, NULL_xdrproc_t, sizeof (MKDIR3res),
953 nullfree, 0,
954 rfs3_mkdir_getfh},
955
956 /* RFS3_SYMLINK = 10 */
957 {rfs3_symlink,
958 xdr_SYMLINK3args, NULL_xdrproc_t, sizeof (SYMLINK3args),
959 xdr_SYMLINK3res, NULL_xdrproc_t, sizeof (SYMLINK3res),
960 nullfree, 0,
961 rfs3_symlink_getfh},
962
963 /* RFS3_MKNOD = 11 */
964 {rfs3_mknod,
965 xdr_MKNOD3args, NULL_xdrproc_t, sizeof (MKNOD3args),
966 xdr_MKNOD3res, NULL_xdrproc_t, sizeof (MKNOD3res),
967 nullfree, 0,
968 rfs3_mknod_getfh},
969
970 /* RFS3_REMOVE = 12 */
971 {rfs3_remove,
972 xdr_diropargs3, NULL_xdrproc_t, sizeof (REMOVE3args),
973 xdr_REMOVE3res, NULL_xdrproc_t, sizeof (REMOVE3res),
974 nullfree, 0,
975 rfs3_remove_getfh},
976
977 /* RFS3_RMDIR = 13 */
978 {rfs3_rmdir,
979 xdr_diropargs3, NULL_xdrproc_t, sizeof (RMDIR3args),
980 xdr_RMDIR3res, NULL_xdrproc_t, sizeof (RMDIR3res),
981 nullfree, 0,
982 rfs3_rmdir_getfh},
983
984 /* RFS3_RENAME = 14 */
985 {rfs3_rename,
986 xdr_RENAME3args, NULL_xdrproc_t, sizeof (RENAME3args),
987 xdr_RENAME3res, NULL_xdrproc_t, sizeof (RENAME3res),
988 nullfree, 0,
989 rfs3_rename_getfh},
990
991 /* RFS3_LINK = 15 */
992 {rfs3_link,
993 xdr_LINK3args, NULL_xdrproc_t, sizeof (LINK3args),
994 xdr_LINK3res, NULL_xdrproc_t, sizeof (LINK3res),
995 nullfree, 0,
996 rfs3_link_getfh},
997
998 /* RFS3_READDIR = 16 */
999 {rfs3_readdir,
1000 xdr_READDIR3args, NULL_xdrproc_t, sizeof (READDIR3args),
1001 xdr_READDIR3res, NULL_xdrproc_t, sizeof (READDIR3res),
1002 rfs3_readdir_free, RPC_IDEMPOTENT,
1003 rfs3_readdir_getfh},
1004
1005 /* RFS3_READDIRPLUS = 17 */
1006 {rfs3_readdirplus,
1007 xdr_READDIRPLUS3args, NULL_xdrproc_t, sizeof (READDIRPLUS3args),
1008 xdr_READDIRPLUS3res, NULL_xdrproc_t, sizeof (READDIRPLUS3res),
1009 rfs3_readdirplus_free, RPC_AVOIDWORK,
1010 rfs3_readdirplus_getfh},
1011
1012 /* RFS3_FSSTAT = 18 */
1013 {rfs3_fsstat,
1014 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSSTAT3args),
1015 xdr_FSSTAT3res, NULL_xdrproc_t, sizeof (FSSTAT3res),
1016 nullfree, RPC_IDEMPOTENT,
1017 rfs3_fsstat_getfh},
1018
1019 /* RFS3_FSINFO = 19 */
1020 {rfs3_fsinfo,
1021 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSINFO3args),
1022 xdr_FSINFO3res, NULL_xdrproc_t, sizeof (FSINFO3res),
1023 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON,
1024 rfs3_fsinfo_getfh},
1025
1026 /* RFS3_PATHCONF = 20 */
1027 {rfs3_pathconf,
1028 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (PATHCONF3args),
1029 xdr_PATHCONF3res, NULL_xdrproc_t, sizeof (PATHCONF3res),
1030 nullfree, RPC_IDEMPOTENT,
1031 rfs3_pathconf_getfh},
1032
1033 /* RFS3_COMMIT = 21 */
1034 {rfs3_commit,
1035 xdr_COMMIT3args, NULL_xdrproc_t, sizeof (COMMIT3args),
1036 xdr_COMMIT3res, NULL_xdrproc_t, sizeof (COMMIT3res),
1037 nullfree, RPC_IDEMPOTENT,
1038 rfs3_commit_getfh},
1039 };
1040
1041 static char *rfscallnames_v4[] = {
1042 "RFS4_NULL",
1043 "RFS4_COMPOUND",
1044 "RFS4_NULL",
1045 "RFS4_NULL",
1046 "RFS4_NULL",
1047 "RFS4_NULL",
1048 "RFS4_NULL",
1049 "RFS4_NULL",
1050 "RFS4_CREATE"
1051 };
1052
1053 static struct rpcdisp rfsdisptab_v4[] = {
1054 /*
1055 * NFS VERSION 4
1056 */
1057
1058 /* RFS_NULL = 0 */
1059 {rpc_null,
1060 xdr_void, NULL_xdrproc_t, 0,
1061 xdr_void, NULL_xdrproc_t, 0,
1062 nullfree, RPC_IDEMPOTENT, 0},
1063
1064 /* RFS4_compound = 1 */
1065 {rfs4_compound,
1066 xdr_COMPOUND4args_srv, NULL_xdrproc_t, sizeof (COMPOUND4args),
1067 xdr_COMPOUND4res_srv, NULL_xdrproc_t, sizeof (COMPOUND4res),
1068 rfs4_compound_free, 0, 0},
1069 };
1070
1071 union rfs_args {
1072 /*
1073 * NFS VERSION 2
1074 */
1075
1076 /* RFS_NULL = 0 */
1077
1078 /* RFS_GETATTR = 1 */
1079 fhandle_t nfs2_getattr_args;
1080
1081 /* RFS_SETATTR = 2 */
1082 struct nfssaargs nfs2_setattr_args;
1083
1084 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */
1085
1086 /* RFS_LOOKUP = 4 */
1087 struct nfsdiropargs nfs2_lookup_args;
1088
1089 /* RFS_READLINK = 5 */
1090 fhandle_t nfs2_readlink_args;
1091
1092 /* RFS_READ = 6 */
1093 struct nfsreadargs nfs2_read_args;
1094
1095 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */
1096
1097 /* RFS_WRITE = 8 */
1098 struct nfswriteargs nfs2_write_args;
1099
1100 /* RFS_CREATE = 9 */
1101 struct nfscreatargs nfs2_create_args;
1102
1103 /* RFS_REMOVE = 10 */
1104 struct nfsdiropargs nfs2_remove_args;
1105
1106 /* RFS_RENAME = 11 */
1107 struct nfsrnmargs nfs2_rename_args;
1108
1109 /* RFS_LINK = 12 */
1110 struct nfslinkargs nfs2_link_args;
1111
1112 /* RFS_SYMLINK = 13 */
1113 struct nfsslargs nfs2_symlink_args;
1114
1115 /* RFS_MKDIR = 14 */
1116 struct nfscreatargs nfs2_mkdir_args;
1117
1118 /* RFS_RMDIR = 15 */
1119 struct nfsdiropargs nfs2_rmdir_args;
1120
1121 /* RFS_READDIR = 16 */
1122 struct nfsrddirargs nfs2_readdir_args;
1123
1124 /* RFS_STATFS = 17 */
1125 fhandle_t nfs2_statfs_args;
1126
1127 /*
1128 * NFS VERSION 3
1129 */
1130
1131 /* RFS_NULL = 0 */
1132
1133 /* RFS3_GETATTR = 1 */
1134 GETATTR3args nfs3_getattr_args;
1135
1136 /* RFS3_SETATTR = 2 */
1137 SETATTR3args nfs3_setattr_args;
1138
1139 /* RFS3_LOOKUP = 3 */
1140 LOOKUP3args nfs3_lookup_args;
1141
1142 /* RFS3_ACCESS = 4 */
1143 ACCESS3args nfs3_access_args;
1144
1145 /* RFS3_READLINK = 5 */
1146 READLINK3args nfs3_readlink_args;
1147
1148 /* RFS3_READ = 6 */
1149 READ3args nfs3_read_args;
1150
1151 /* RFS3_WRITE = 7 */
1152 WRITE3args nfs3_write_args;
1153
1154 /* RFS3_CREATE = 8 */
1155 CREATE3args nfs3_create_args;
1156
1157 /* RFS3_MKDIR = 9 */
1158 MKDIR3args nfs3_mkdir_args;
1159
1160 /* RFS3_SYMLINK = 10 */
1161 SYMLINK3args nfs3_symlink_args;
1162
1163 /* RFS3_MKNOD = 11 */
1164 MKNOD3args nfs3_mknod_args;
1165
1166 /* RFS3_REMOVE = 12 */
1167 REMOVE3args nfs3_remove_args;
1168
1169 /* RFS3_RMDIR = 13 */
1170 RMDIR3args nfs3_rmdir_args;
1171
1172 /* RFS3_RENAME = 14 */
1173 RENAME3args nfs3_rename_args;
1174
1175 /* RFS3_LINK = 15 */
1176 LINK3args nfs3_link_args;
1177
1178 /* RFS3_READDIR = 16 */
1179 READDIR3args nfs3_readdir_args;
1180
1181 /* RFS3_READDIRPLUS = 17 */
1182 READDIRPLUS3args nfs3_readdirplus_args;
1183
1184 /* RFS3_FSSTAT = 18 */
1185 FSSTAT3args nfs3_fsstat_args;
1186
1187 /* RFS3_FSINFO = 19 */
1188 FSINFO3args nfs3_fsinfo_args;
1189
1190 /* RFS3_PATHCONF = 20 */
1191 PATHCONF3args nfs3_pathconf_args;
1192
1193 /* RFS3_COMMIT = 21 */
1194 COMMIT3args nfs3_commit_args;
1195
1196 /*
1197 * NFS VERSION 4
1198 */
1199
1200 /* RFS_NULL = 0 */
1201
1202 /* COMPUND = 1 */
1203 COMPOUND4args nfs4_compound_args;
1204 };
1205
1206 union rfs_res {
1207 /*
1208 * NFS VERSION 2
1209 */
1210
1211 /* RFS_NULL = 0 */
1212
1213 /* RFS_GETATTR = 1 */
1214 struct nfsattrstat nfs2_getattr_res;
1215
1216 /* RFS_SETATTR = 2 */
1217 struct nfsattrstat nfs2_setattr_res;
1218
1219 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */
1220
1221 /* RFS_LOOKUP = 4 */
1222 struct nfsdiropres nfs2_lookup_res;
1223
1224 /* RFS_READLINK = 5 */
1225 struct nfsrdlnres nfs2_readlink_res;
1226
1227 /* RFS_READ = 6 */
1228 struct nfsrdresult nfs2_read_res;
1229
1230 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */
1231
1232 /* RFS_WRITE = 8 */
1233 struct nfsattrstat nfs2_write_res;
1234
1235 /* RFS_CREATE = 9 */
1236 struct nfsdiropres nfs2_create_res;
1237
1238 /* RFS_REMOVE = 10 */
1239 enum nfsstat nfs2_remove_res;
1240
1241 /* RFS_RENAME = 11 */
1242 enum nfsstat nfs2_rename_res;
1243
1244 /* RFS_LINK = 12 */
1245 enum nfsstat nfs2_link_res;
1246
1247 /* RFS_SYMLINK = 13 */
1248 enum nfsstat nfs2_symlink_res;
1249
1250 /* RFS_MKDIR = 14 */
1251 struct nfsdiropres nfs2_mkdir_res;
1252
1253 /* RFS_RMDIR = 15 */
1254 enum nfsstat nfs2_rmdir_res;
1255
1256 /* RFS_READDIR = 16 */
1257 struct nfsrddirres nfs2_readdir_res;
1258
1259 /* RFS_STATFS = 17 */
1260 struct nfsstatfs nfs2_statfs_res;
1261
1262 /*
1263 * NFS VERSION 3
1264 */
1265
1266 /* RFS_NULL = 0 */
1267
1268 /* RFS3_GETATTR = 1 */
1269 GETATTR3res nfs3_getattr_res;
1270
1271 /* RFS3_SETATTR = 2 */
1272 SETATTR3res nfs3_setattr_res;
1273
1274 /* RFS3_LOOKUP = 3 */
1275 LOOKUP3res nfs3_lookup_res;
1276
1277 /* RFS3_ACCESS = 4 */
1278 ACCESS3res nfs3_access_res;
1279
1280 /* RFS3_READLINK = 5 */
1281 READLINK3res nfs3_readlink_res;
1282
1283 /* RFS3_READ = 6 */
1284 READ3res nfs3_read_res;
1285
1286 /* RFS3_WRITE = 7 */
1287 WRITE3res nfs3_write_res;
1288
1289 /* RFS3_CREATE = 8 */
1290 CREATE3res nfs3_create_res;
1291
1292 /* RFS3_MKDIR = 9 */
1293 MKDIR3res nfs3_mkdir_res;
1294
1295 /* RFS3_SYMLINK = 10 */
1296 SYMLINK3res nfs3_symlink_res;
1297
1298 /* RFS3_MKNOD = 11 */
1299 MKNOD3res nfs3_mknod_res;
1300
1301 /* RFS3_REMOVE = 12 */
1302 REMOVE3res nfs3_remove_res;
1303
1304 /* RFS3_RMDIR = 13 */
1305 RMDIR3res nfs3_rmdir_res;
1306
1307 /* RFS3_RENAME = 14 */
1308 RENAME3res nfs3_rename_res;
1309
1310 /* RFS3_LINK = 15 */
1311 LINK3res nfs3_link_res;
1312
1313 /* RFS3_READDIR = 16 */
1314 READDIR3res nfs3_readdir_res;
1315
1316 /* RFS3_READDIRPLUS = 17 */
1317 READDIRPLUS3res nfs3_readdirplus_res;
1318
1319 /* RFS3_FSSTAT = 18 */
1320 FSSTAT3res nfs3_fsstat_res;
1321
1322 /* RFS3_FSINFO = 19 */
1323 FSINFO3res nfs3_fsinfo_res;
1324
1325 /* RFS3_PATHCONF = 20 */
1326 PATHCONF3res nfs3_pathconf_res;
1327
1328 /* RFS3_COMMIT = 21 */
1329 COMMIT3res nfs3_commit_res;
1330
1331 /*
1332 * NFS VERSION 4
1333 */
1334
1335 /* RFS_NULL = 0 */
1336
1337 /* RFS4_COMPOUND = 1 */
1338 COMPOUND4res nfs4_compound_res;
1339
1340 };
1341
1342 static struct rpc_disptable rfs_disptable[] = {
1343 {sizeof (rfsdisptab_v2) / sizeof (rfsdisptab_v2[0]),
1344 rfscallnames_v2,
1345 &rfsproccnt_v2_ptr, rfsdisptab_v2},
1346 {sizeof (rfsdisptab_v3) / sizeof (rfsdisptab_v3[0]),
1347 rfscallnames_v3,
1348 &rfsproccnt_v3_ptr, rfsdisptab_v3},
1349 {sizeof (rfsdisptab_v4) / sizeof (rfsdisptab_v4[0]),
1350 rfscallnames_v4,
1351 &rfsproccnt_v4_ptr, rfsdisptab_v4},
1352 };
1353
1354 /*
1355 * If nfs_portmon is set, then clients are required to use privileged
1356 * ports (ports < IPPORT_RESERVED) in order to get NFS services.
1357 *
1358 * N.B.: this attempt to carry forward the already ill-conceived notion
1359 * of privileged ports for TCP/UDP is really quite ineffectual. Not only
1360 * is it transport-dependent, it's laughably easy to spoof. If you're
1361 * really interested in security, you must start with secure RPC instead.
1362 */
1363 static int nfs_portmon = 0;
1364
1365 #ifdef DEBUG
1366 static int cred_hits = 0;
1367 static int cred_misses = 0;
1368 #endif
1369
1370
1371 #ifdef DEBUG
1372 /*
1373 * Debug code to allow disabling of rfs_dispatch() use of
1374 * fastxdrargs() and fastxdrres() calls for testing purposes.
1375 */
1376 static int rfs_no_fast_xdrargs = 0;
1377 static int rfs_no_fast_xdrres = 0;
1378 #endif
1379
1380 union acl_args {
1381 /*
1382 * ACL VERSION 2
1383 */
1384
1385 /* ACL2_NULL = 0 */
1386
1387 /* ACL2_GETACL = 1 */
1388 GETACL2args acl2_getacl_args;
1389
1390 /* ACL2_SETACL = 2 */
1391 SETACL2args acl2_setacl_args;
1392
1393 /* ACL2_GETATTR = 3 */
1394 GETATTR2args acl2_getattr_args;
1395
1396 /* ACL2_ACCESS = 4 */
1397 ACCESS2args acl2_access_args;
1398
1399 /* ACL2_GETXATTRDIR = 5 */
1400 GETXATTRDIR2args acl2_getxattrdir_args;
1401
1402 /*
1403 * ACL VERSION 3
1404 */
1405
1406 /* ACL3_NULL = 0 */
1407
1408 /* ACL3_GETACL = 1 */
1409 GETACL3args acl3_getacl_args;
1410
1411 /* ACL3_SETACL = 2 */
1412 SETACL3args acl3_setacl;
1413
1414 /* ACL3_GETXATTRDIR = 3 */
1415 GETXATTRDIR3args acl3_getxattrdir_args;
1416
1417 };
1418
1419 union acl_res {
1420 /*
1421 * ACL VERSION 2
1422 */
1423
1424 /* ACL2_NULL = 0 */
1425
1426 /* ACL2_GETACL = 1 */
1427 GETACL2res acl2_getacl_res;
1428
1429 /* ACL2_SETACL = 2 */
1430 SETACL2res acl2_setacl_res;
1431
1432 /* ACL2_GETATTR = 3 */
1433 GETATTR2res acl2_getattr_res;
1434
1435 /* ACL2_ACCESS = 4 */
1436 ACCESS2res acl2_access_res;
1437
1438 /* ACL2_GETXATTRDIR = 5 */
1439 GETXATTRDIR2args acl2_getxattrdir_res;
1440
1441 /*
1442 * ACL VERSION 3
1443 */
1444
1445 /* ACL3_NULL = 0 */
1446
1447 /* ACL3_GETACL = 1 */
1448 GETACL3res acl3_getacl_res;
1449
1450 /* ACL3_SETACL = 2 */
1451 SETACL3res acl3_setacl_res;
1452
1453 /* ACL3_GETXATTRDIR = 3 */
1454 GETXATTRDIR3res acl3_getxattrdir_res;
1455
1456 };
1457
1458 static bool_t
1459 auth_tooweak(struct svc_req *req, char *res)
1460 {
1461
1462 if (req->rq_vers == NFS_VERSION && req->rq_proc == RFS_LOOKUP) {
1463 struct nfsdiropres *dr = (struct nfsdiropres *)res;
1464 if ((enum wnfsstat)dr->dr_status == WNFSERR_CLNT_FLAVOR)
1465 return (TRUE);
1466 } else if (req->rq_vers == NFS_V3 && req->rq_proc == NFSPROC3_LOOKUP) {
1467 LOOKUP3res *resp = (LOOKUP3res *)res;
1468 if ((enum wnfsstat)resp->status == WNFSERR_CLNT_FLAVOR)
1469 return (TRUE);
1470 }
1471 return (FALSE);
1472 }
1473
1474
1475 static void
1476 common_dispatch(struct svc_req *req, SVCXPRT *xprt, rpcvers_t min_vers,
1477 rpcvers_t max_vers, char *pgmname,
1478 struct rpc_disptable *disptable)
1479 {
1480 int which;
1481 rpcvers_t vers;
1482 char *args;
1483 union {
1484 union rfs_args ra;
1485 union acl_args aa;
1486 } args_buf;
1487 char *res;
1488 union {
1489 union rfs_res rr;
1490 union acl_res ar;
1491 } res_buf;
1492 struct rpcdisp *disp = NULL;
1493 int dis_flags = 0;
1494 cred_t *cr;
1495 int error = 0;
1496 int anon_ok;
1497 struct exportinfo *exi = NULL;
1498 unsigned int nfslog_rec_id;
1499 int dupstat;
1500 struct dupreq *dr;
1501 int authres;
1502 bool_t publicfh_ok = FALSE;
1503 enum_t auth_flavor;
1504 bool_t dupcached = FALSE;
1505 struct netbuf nb;
1506 bool_t logging_enabled = FALSE;
1507 struct exportinfo *nfslog_exi = NULL;
1508 char **procnames;
1509 char cbuf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */
1510 bool_t ro = FALSE;
1511
1512 vers = req->rq_vers;
1513
1514 if (vers < min_vers || vers > max_vers) {
1515 svcerr_progvers(req->rq_xprt, min_vers, max_vers);
1516 error++;
1517 cmn_err(CE_NOTE, "%s: bad version number %u", pgmname, vers);
1518 goto done;
1519 }
1520 vers -= min_vers;
1521
1522 which = req->rq_proc;
1523 if (which < 0 || which >= disptable[(int)vers].dis_nprocs) {
1524 svcerr_noproc(req->rq_xprt);
1525 error++;
1526 goto done;
1527 }
1528
1529 (*(disptable[(int)vers].dis_proccntp))[which].value.ui64++;
1530
1531 disp = &disptable[(int)vers].dis_table[which];
1532 procnames = disptable[(int)vers].dis_procnames;
1533
1534 auth_flavor = req->rq_cred.oa_flavor;
1535
1536 /*
1537 * Deserialize into the args struct.
1538 */
1539 args = (char *)&args_buf;
1540
1541 #ifdef DEBUG
1542 if (rfs_no_fast_xdrargs || (auth_flavor == RPCSEC_GSS) ||
1543 disp->dis_fastxdrargs == NULL_xdrproc_t ||
1544 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args))
1545 #else
1546 if ((auth_flavor == RPCSEC_GSS) ||
1547 disp->dis_fastxdrargs == NULL_xdrproc_t ||
1548 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args))
1549 #endif
1550 {
1551 bzero(args, disp->dis_argsz);
1552 if (!SVC_GETARGS(xprt, disp->dis_xdrargs, args)) {
1553 error++;
1554 /*
1555 * Check if we are outside our capabilities.
1556 */
1557 if (rfs4_minorvers_mismatch(req, xprt, (void *)args))
1558 goto done;
1559
1560 svcerr_decode(xprt);
1561 cmn_err(CE_NOTE,
1562 "Failed to decode arguments for %s version %u "
1563 "procedure %s client %s%s",
1564 pgmname, vers + min_vers, procnames[which],
1565 client_name(req), client_addr(req, cbuf));
1566 goto done;
1567 }
1568 }
1569
1570 /*
1571 * If Version 4 use that specific dispatch function.
1572 */
1573 if (req->rq_vers == 4) {
1574 error += rfs4_dispatch(disp, req, xprt, args);
1575 goto done;
1576 }
1577
1578 dis_flags = disp->dis_flags;
1579
1580 /*
1581 * Find export information and check authentication,
1582 * setting the credential if everything is ok.
1583 */
1584 if (disp->dis_getfh != NULL) {
1585 void *fh;
1586 fsid_t *fsid;
1587 fid_t *fid, *xfid;
1588 fhandle_t *fh2;
1589 nfs_fh3 *fh3;
1590
1591 fh = (*disp->dis_getfh)(args);
1592 switch (req->rq_vers) {
1593 case NFS_VERSION:
1594 fh2 = (fhandle_t *)fh;
1595 fsid = &fh2->fh_fsid;
1596 fid = (fid_t *)&fh2->fh_len;
1597 xfid = (fid_t *)&fh2->fh_xlen;
1598 break;
1599 case NFS_V3:
1600 fh3 = (nfs_fh3 *)fh;
1601 fsid = &fh3->fh3_fsid;
1602 fid = FH3TOFIDP(fh3);
1603 xfid = FH3TOXFIDP(fh3);
1604 break;
1605 }
1606
1607 /*
1608 * Fix for bug 1038302 - corbin
1609 * There is a problem here if anonymous access is
1610 * disallowed. If the current request is part of the
1611 * client's mount process for the requested filesystem,
1612 * then it will carry root (uid 0) credentials on it, and
1613 * will be denied by checkauth if that client does not
1614 * have explicit root=0 permission. This will cause the
1615 * client's mount operation to fail. As a work-around,
1616 * we check here to see if the request is a getattr or
1617 * statfs operation on the exported vnode itself, and
1618 * pass a flag to checkauth with the result of this test.
1619 *
1620 * The filehandle refers to the mountpoint itself if
1621 * the fh_data and fh_xdata portions of the filehandle
1622 * are equal.
1623 *
1624 * Added anon_ok argument to checkauth().
1625 */
1626
1627 if ((dis_flags & RPC_ALLOWANON) && EQFID(fid, xfid))
1628 anon_ok = 1;
1629 else
1630 anon_ok = 0;
1631
1632 cr = xprt->xp_cred;
1633 ASSERT(cr != NULL);
1634 #ifdef DEBUG
1635 if (crgetref(cr) != 1) {
1636 crfree(cr);
1637 cr = crget();
1638 xprt->xp_cred = cr;
1639 cred_misses++;
1640 } else
1641 cred_hits++;
1642 #else
1643 if (crgetref(cr) != 1) {
1644 crfree(cr);
1645 cr = crget();
1646 xprt->xp_cred = cr;
1647 }
1648 #endif
1649
1650 exi = checkexport(fsid, xfid);
1651
1652 if (exi != NULL) {
1653 publicfh_ok = PUBLICFH_CHECK(disp, exi, fsid, xfid);
1654
1655 /*
1656 * Don't allow non-V4 clients access
1657 * to pseudo exports
1658 */
1659 if (PSEUDO(exi)) {
1660 svcerr_weakauth(xprt);
1661 error++;
1662 goto done;
1663 }
1664
1665 authres = checkauth(exi, req, cr, anon_ok, publicfh_ok,
1666 &ro);
1667 /*
1668 * authres > 0: authentication OK - proceed
1669 * authres == 0: authentication weak - return error
1670 * authres < 0: authentication timeout - drop
1671 */
1672 if (authres <= 0) {
1673 if (authres == 0) {
1674 svcerr_weakauth(xprt);
1675 error++;
1676 }
1677 goto done;
1678 }
1679 }
1680 } else
1681 cr = NULL;
1682
1683 if ((dis_flags & RPC_MAPRESP) && (auth_flavor != RPCSEC_GSS)) {
1684 res = (char *)SVC_GETRES(xprt, disp->dis_ressz);
1685 if (res == NULL)
1686 res = (char *)&res_buf;
1687 } else
1688 res = (char *)&res_buf;
1689
1690 if (!(dis_flags & RPC_IDEMPOTENT)) {
1691 dupstat = SVC_DUP_EXT(xprt, req, res, disp->dis_ressz, &dr,
1692 &dupcached);
1693
1694 switch (dupstat) {
1695 case DUP_ERROR:
1696 svcerr_systemerr(xprt);
1697 error++;
1698 goto done;
1699 /* NOTREACHED */
1700 case DUP_INPROGRESS:
1701 if (res != (char *)&res_buf)
1702 SVC_FREERES(xprt);
1703 error++;
1704 goto done;
1705 /* NOTREACHED */
1706 case DUP_NEW:
1707 case DUP_DROP:
1708 curthread->t_flag |= T_DONTPEND;
1709
1710 (*disp->dis_proc)(args, res, exi, req, cr, ro);
1711
1712 curthread->t_flag &= ~T_DONTPEND;
1713 if (curthread->t_flag & T_WOULDBLOCK) {
1714 curthread->t_flag &= ~T_WOULDBLOCK;
1715 SVC_DUPDONE_EXT(xprt, dr, res, NULL,
1716 disp->dis_ressz, DUP_DROP);
1717 if (res != (char *)&res_buf)
1718 SVC_FREERES(xprt);
1719 error++;
1720 goto done;
1721 }
1722 if (dis_flags & RPC_AVOIDWORK) {
1723 SVC_DUPDONE_EXT(xprt, dr, res, NULL,
1724 disp->dis_ressz, DUP_DROP);
1725 } else {
1726 SVC_DUPDONE_EXT(xprt, dr, res,
1727 disp->dis_resfree == nullfree ? NULL :
1728 disp->dis_resfree,
1729 disp->dis_ressz, DUP_DONE);
1730 dupcached = TRUE;
1731 }
1732 break;
1733 case DUP_DONE:
1734 break;
1735 }
1736
1737 } else {
1738 curthread->t_flag |= T_DONTPEND;
1739
1740 (*disp->dis_proc)(args, res, exi, req, cr, ro);
1741
1742 curthread->t_flag &= ~T_DONTPEND;
1743 if (curthread->t_flag & T_WOULDBLOCK) {
1744 curthread->t_flag &= ~T_WOULDBLOCK;
1745 if (res != (char *)&res_buf)
1746 SVC_FREERES(xprt);
1747 error++;
1748 goto done;
1749 }
1750 }
1751
1752 if (auth_tooweak(req, res)) {
1753 svcerr_weakauth(xprt);
1754 error++;
1755 goto done;
1756 }
1757
1758 /*
1759 * Check to see if logging has been enabled on the server.
1760 * If so, then obtain the export info struct to be used for
1761 * the later writing of the log record. This is done for
1762 * the case that a lookup is done across a non-logged public
1763 * file system.
1764 */
1765 if (nfslog_buffer_list != NULL) {
1766 nfslog_exi = nfslog_get_exi(exi, req, res, &nfslog_rec_id);
1767 /*
1768 * Is logging enabled?
1769 */
1770 logging_enabled = (nfslog_exi != NULL);
1771
1772 /*
1773 * Copy the netbuf for logging purposes, before it is
1774 * freed by svc_sendreply().
1775 */
1776 if (logging_enabled) {
1777 NFSLOG_COPY_NETBUF(nfslog_exi, xprt, &nb);
1778 /*
1779 * If RPC_MAPRESP flag set (i.e. in V2 ops) the
1780 * res gets copied directly into the mbuf and
1781 * may be freed soon after the sendreply. So we
1782 * must copy it here to a safe place...
1783 */
1784 if (res != (char *)&res_buf) {
1785 bcopy(res, (char *)&res_buf, disp->dis_ressz);
1786 }
1787 }
1788 }
1789
1790 /*
1791 * Serialize and send results struct
1792 */
1793 #ifdef DEBUG
1794 if (rfs_no_fast_xdrres == 0 && res != (char *)&res_buf)
1795 #else
1796 if (res != (char *)&res_buf)
1797 #endif
1798 {
1799 if (!svc_sendreply(xprt, disp->dis_fastxdrres, res)) {
1800 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname);
1801 svcerr_systemerr(xprt);
1802 error++;
1803 }
1804 } else {
1805 if (!svc_sendreply(xprt, disp->dis_xdrres, res)) {
1806 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname);
1807 svcerr_systemerr(xprt);
1808 error++;
1809 }
1810 }
1811
1812 /*
1813 * Log if needed
1814 */
1815 if (logging_enabled) {
1816 nfslog_write_record(nfslog_exi, req, args, (char *)&res_buf,
1817 cr, &nb, nfslog_rec_id, NFSLOG_ONE_BUFFER);
1818 exi_rele(nfslog_exi);
1819 kmem_free((&nb)->buf, (&nb)->len);
1820 }
1821
1822 /*
1823 * Free results struct. With the addition of NFS V4 we can
1824 * have non-idempotent procedures with functions.
1825 */
1826 if (disp->dis_resfree != nullfree && dupcached == FALSE) {
1827 (*disp->dis_resfree)(res);
1828 }
1829
1830 done:
1831 /*
1832 * Free arguments struct
1833 */
1834 if (disp) {
1835 if (!SVC_FREEARGS(xprt, disp->dis_xdrargs, args)) {
1836 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname);
1837 error++;
1838 }
1839 } else {
1840 if (!SVC_FREEARGS(xprt, (xdrproc_t)0, (caddr_t)0)) {
1841 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname);
1842 error++;
1843 }
1844 }
1845
1846 if (exi != NULL)
1847 exi_rele(exi);
1848
1849 global_svstat_ptr[req->rq_vers][NFS_BADCALLS].value.ui64 += error;
1850
1851 global_svstat_ptr[req->rq_vers][NFS_CALLS].value.ui64++;
1852 }
1853
1854 static void
1855 rfs_dispatch(struct svc_req *req, SVCXPRT *xprt)
1856 {
1857 common_dispatch(req, xprt, NFS_VERSMIN, NFS_VERSMAX,
1858 "NFS", rfs_disptable);
1859 }
1860
1861 static char *aclcallnames_v2[] = {
1862 "ACL2_NULL",
1863 "ACL2_GETACL",
1864 "ACL2_SETACL",
1865 "ACL2_GETATTR",
1866 "ACL2_ACCESS",
1867 "ACL2_GETXATTRDIR"
1868 };
1869
1870 static struct rpcdisp acldisptab_v2[] = {
1871 /*
1872 * ACL VERSION 2
1873 */
1874
1875 /* ACL2_NULL = 0 */
1876 {rpc_null,
1877 xdr_void, NULL_xdrproc_t, 0,
1878 xdr_void, NULL_xdrproc_t, 0,
1879 nullfree, RPC_IDEMPOTENT,
1880 0},
1881
1882 /* ACL2_GETACL = 1 */
1883 {acl2_getacl,
1884 xdr_GETACL2args, xdr_fastGETACL2args, sizeof (GETACL2args),
1885 xdr_GETACL2res, NULL_xdrproc_t, sizeof (GETACL2res),
1886 acl2_getacl_free, RPC_IDEMPOTENT,
1887 acl2_getacl_getfh},
1888
1889 /* ACL2_SETACL = 2 */
1890 {acl2_setacl,
1891 xdr_SETACL2args, NULL_xdrproc_t, sizeof (SETACL2args),
1892 #ifdef _LITTLE_ENDIAN
1893 xdr_SETACL2res, xdr_fastSETACL2res, sizeof (SETACL2res),
1894 #else
1895 xdr_SETACL2res, NULL_xdrproc_t, sizeof (SETACL2res),
1896 #endif
1897 nullfree, RPC_MAPRESP,
1898 acl2_setacl_getfh},
1899
1900 /* ACL2_GETATTR = 3 */
1901 {acl2_getattr,
1902 xdr_GETATTR2args, xdr_fastGETATTR2args, sizeof (GETATTR2args),
1903 #ifdef _LITTLE_ENDIAN
1904 xdr_GETATTR2res, xdr_fastGETATTR2res, sizeof (GETATTR2res),
1905 #else
1906 xdr_GETATTR2res, NULL_xdrproc_t, sizeof (GETATTR2res),
1907 #endif
1908 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP,
1909 acl2_getattr_getfh},
1910
1911 /* ACL2_ACCESS = 4 */
1912 {acl2_access,
1913 xdr_ACCESS2args, xdr_fastACCESS2args, sizeof (ACCESS2args),
1914 #ifdef _LITTLE_ENDIAN
1915 xdr_ACCESS2res, xdr_fastACCESS2res, sizeof (ACCESS2res),
1916 #else
1917 xdr_ACCESS2res, NULL_xdrproc_t, sizeof (ACCESS2res),
1918 #endif
1919 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP,
1920 acl2_access_getfh},
1921
1922 /* ACL2_GETXATTRDIR = 5 */
1923 {acl2_getxattrdir,
1924 xdr_GETXATTRDIR2args, NULL_xdrproc_t, sizeof (GETXATTRDIR2args),
1925 xdr_GETXATTRDIR2res, NULL_xdrproc_t, sizeof (GETXATTRDIR2res),
1926 nullfree, RPC_IDEMPOTENT,
1927 acl2_getxattrdir_getfh},
1928 };
1929
1930 static char *aclcallnames_v3[] = {
1931 "ACL3_NULL",
1932 "ACL3_GETACL",
1933 "ACL3_SETACL",
1934 "ACL3_GETXATTRDIR"
1935 };
1936
1937 static struct rpcdisp acldisptab_v3[] = {
1938 /*
1939 * ACL VERSION 3
1940 */
1941
1942 /* ACL3_NULL = 0 */
1943 {rpc_null,
1944 xdr_void, NULL_xdrproc_t, 0,
1945 xdr_void, NULL_xdrproc_t, 0,
1946 nullfree, RPC_IDEMPOTENT,
1947 0},
1948
1949 /* ACL3_GETACL = 1 */
1950 {acl3_getacl,
1951 xdr_GETACL3args, NULL_xdrproc_t, sizeof (GETACL3args),
1952 xdr_GETACL3res, NULL_xdrproc_t, sizeof (GETACL3res),
1953 acl3_getacl_free, RPC_IDEMPOTENT,
1954 acl3_getacl_getfh},
1955
1956 /* ACL3_SETACL = 2 */
1957 {acl3_setacl,
1958 xdr_SETACL3args, NULL_xdrproc_t, sizeof (SETACL3args),
1959 xdr_SETACL3res, NULL_xdrproc_t, sizeof (SETACL3res),
1960 nullfree, 0,
1961 acl3_setacl_getfh},
1962
1963 /* ACL3_GETXATTRDIR = 3 */
1964 {acl3_getxattrdir,
1965 xdr_GETXATTRDIR3args, NULL_xdrproc_t, sizeof (GETXATTRDIR3args),
1966 xdr_GETXATTRDIR3res, NULL_xdrproc_t, sizeof (GETXATTRDIR3res),
1967 nullfree, RPC_IDEMPOTENT,
1968 acl3_getxattrdir_getfh},
1969 };
1970
1971 static struct rpc_disptable acl_disptable[] = {
1972 {sizeof (acldisptab_v2) / sizeof (acldisptab_v2[0]),
1973 aclcallnames_v2,
1974 &aclproccnt_v2_ptr, acldisptab_v2},
1975 {sizeof (acldisptab_v3) / sizeof (acldisptab_v3[0]),
1976 aclcallnames_v3,
1977 &aclproccnt_v3_ptr, acldisptab_v3},
1978 };
1979
1980 static void
1981 acl_dispatch(struct svc_req *req, SVCXPRT *xprt)
1982 {
1983 common_dispatch(req, xprt, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX,
1984 "ACL", acl_disptable);
1985 }
1986
1987 int
1988 checkwin(int flavor, int window, struct svc_req *req)
1989 {
1990 struct authdes_cred *adc;
1991
1992 switch (flavor) {
1993 case AUTH_DES:
1994 adc = (struct authdes_cred *)req->rq_clntcred;
1995 CTASSERT(sizeof (struct authdes_cred) <= RQCRED_SIZE);
1996 if (adc->adc_fullname.window > window)
1997 return (0);
1998 break;
1999
2000 default:
2001 break;
2002 }
2003 return (1);
2004 }
2005
2006
2007 /*
2008 * checkauth() will check the access permission against the export
2009 * information. Then map root uid/gid to appropriate uid/gid.
2010 *
2011 * This routine is used by NFS V3 and V2 code.
2012 */
2013 static int
2014 checkauth(struct exportinfo *exi, struct svc_req *req, cred_t *cr, int anon_ok,
2015 bool_t publicfh_ok, bool_t *ro)
2016 {
2017 int i, nfsflavor, rpcflavor, stat, access;
2018 struct secinfo *secp;
2019 caddr_t principal;
2020 char buf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */
2021 int anon_res = 0;
2022
2023 uid_t uid;
2024 gid_t gid;
2025 uint_t ngids;
2026 gid_t *gids;
2027
2028 /*
2029 * Check for privileged port number
2030 * N.B.: this assumes that we know the format of a netbuf.
2031 */
2032 if (nfs_portmon) {
2033 struct sockaddr *ca;
2034 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf;
2035
2036 if (ca == NULL)
2037 return (0);
2038
2039 if ((ca->sa_family == AF_INET &&
2040 ntohs(((struct sockaddr_in *)ca)->sin_port) >=
2041 IPPORT_RESERVED) ||
2042 (ca->sa_family == AF_INET6 &&
2043 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >=
2044 IPPORT_RESERVED)) {
2045 cmn_err(CE_NOTE,
2046 "nfs_server: client %s%ssent NFS request from "
2047 "unprivileged port",
2048 client_name(req), client_addr(req, buf));
2049 return (0);
2050 }
2051 }
2052
2053 /*
2054 * return 1 on success or 0 on failure
2055 */
2056 stat = sec_svc_getcred(req, cr, &principal, &nfsflavor);
2057
2058 /*
2059 * A failed AUTH_UNIX sec_svc_getcred() implies we couldn't set
2060 * the credentials; below we map that to anonymous.
2061 */
2062 if (!stat && nfsflavor != AUTH_UNIX) {
2063 cmn_err(CE_NOTE,
2064 "nfs_server: couldn't get unix cred for %s",
2065 client_name(req));
2066 return (0);
2067 }
2068
2069 /*
2070 * Short circuit checkauth() on operations that support the
2071 * public filehandle, and if the request for that operation
2072 * is using the public filehandle. Note that we must call
2073 * sec_svc_getcred() first so that xp_cookie is set to the
2074 * right value. Normally xp_cookie is just the RPC flavor
2075 * of the the request, but in the case of RPCSEC_GSS it
2076 * could be a pseudo flavor.
2077 */
2078 if (publicfh_ok)
2079 return (1);
2080
2081 rpcflavor = req->rq_cred.oa_flavor;
2082 /*
2083 * Check if the auth flavor is valid for this export
2084 */
2085 access = nfsauth_access(exi, req, cr, &uid, &gid, &ngids, &gids);
2086 if (access & NFSAUTH_DROP)
2087 return (-1); /* drop the request */
2088
2089 if (access & NFSAUTH_RO)
2090 *ro = TRUE;
2091
2092 if (access & NFSAUTH_DENIED) {
2093 /*
2094 * If anon_ok == 1 and we got NFSAUTH_DENIED, it was
2095 * probably due to the flavor not matching during
2096 * the mount attempt. So map the flavor to AUTH_NONE
2097 * so that the credentials get mapped to the anonymous
2098 * user.
2099 */
2100 if (anon_ok == 1)
2101 rpcflavor = AUTH_NONE;
2102 else
2103 return (0); /* deny access */
2104
2105 } else if (access & NFSAUTH_MAPNONE) {
2106 /*
2107 * Access was granted even though the flavor mismatched
2108 * because AUTH_NONE was one of the exported flavors.
2109 */
2110 rpcflavor = AUTH_NONE;
2111
2112 } else if (access & NFSAUTH_WRONGSEC) {
2113 /*
2114 * NFSAUTH_WRONGSEC is used for NFSv4. If we get here,
2115 * it means a client ignored the list of allowed flavors
2116 * returned via the MOUNT protocol. So we just disallow it!
2117 */
2118 return (0);
2119 }
2120
2121 if (rpcflavor != AUTH_SYS)
2122 kmem_free(gids, ngids * sizeof (gid_t));
2123
2124 switch (rpcflavor) {
2125 case AUTH_NONE:
2126 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2127 exi->exi_export.ex_anon);
2128 (void) crsetgroups(cr, 0, NULL);
2129 break;
2130
2131 case AUTH_UNIX:
2132 if (!stat || crgetuid(cr) == 0 && !(access & NFSAUTH_UIDMAP)) {
2133 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2134 exi->exi_export.ex_anon);
2135 (void) crsetgroups(cr, 0, NULL);
2136 } else if (crgetuid(cr) == 0 && access & NFSAUTH_ROOT) {
2137 /*
2138 * It is root, so apply rootid to get real UID
2139 * Find the secinfo structure. We should be able
2140 * to find it by the time we reach here.
2141 * nfsauth_access() has done the checking.
2142 */
2143 secp = NULL;
2144 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2145 struct secinfo *sptr;
2146 sptr = &exi->exi_export.ex_secinfo[i];
2147 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) {
2148 secp = sptr;
2149 break;
2150 }
2151 }
2152 if (secp != NULL) {
2153 (void) crsetugid(cr, secp->s_rootid,
2154 secp->s_rootid);
2155 (void) crsetgroups(cr, 0, NULL);
2156 }
2157 } else if (crgetuid(cr) != uid || crgetgid(cr) != gid) {
2158 if (crsetugid(cr, uid, gid) != 0)
2159 anon_res = crsetugid(cr,
2160 exi->exi_export.ex_anon,
2161 exi->exi_export.ex_anon);
2162 (void) crsetgroups(cr, 0, NULL);
2163 } else if (access & NFSAUTH_GROUPS) {
2164 (void) crsetgroups(cr, ngids, gids);
2165 }
2166
2167 kmem_free(gids, ngids * sizeof (gid_t));
2168
2169 break;
2170
2171 case AUTH_DES:
2172 case RPCSEC_GSS:
2173 /*
2174 * Find the secinfo structure. We should be able
2175 * to find it by the time we reach here.
2176 * nfsauth_access() has done the checking.
2177 */
2178 secp = NULL;
2179 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2180 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum ==
2181 nfsflavor) {
2182 secp = &exi->exi_export.ex_secinfo[i];
2183 break;
2184 }
2185 }
2186
2187 if (!secp) {
2188 cmn_err(CE_NOTE, "nfs_server: client %s%shad "
2189 "no secinfo data for flavor %d",
2190 client_name(req), client_addr(req, buf),
2191 nfsflavor);
2192 return (0);
2193 }
2194
2195 if (!checkwin(rpcflavor, secp->s_window, req)) {
2196 cmn_err(CE_NOTE,
2197 "nfs_server: client %s%sused invalid "
2198 "auth window value",
2199 client_name(req), client_addr(req, buf));
2200 return (0);
2201 }
2202
2203 /*
2204 * Map root principals listed in the share's root= list to root,
2205 * and map any others principals that were mapped to root by RPC
2206 * to anon.
2207 */
2208 if (principal && sec_svc_inrootlist(rpcflavor, principal,
2209 secp->s_rootcnt, secp->s_rootnames)) {
2210 if (crgetuid(cr) == 0 && secp->s_rootid == 0)
2211 return (1);
2212
2213
2214 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid);
2215
2216 /*
2217 * NOTE: If and when kernel-land privilege tracing is
2218 * added this may have to be replaced with code that
2219 * retrieves root's supplementary groups (e.g., using
2220 * kgss_get_group_info(). In the meantime principals
2221 * mapped to uid 0 get all privileges, so setting cr's
2222 * supplementary groups for them does nothing.
2223 */
2224 (void) crsetgroups(cr, 0, NULL);
2225
2226 return (1);
2227 }
2228
2229 /*
2230 * Not a root princ, or not in root list, map UID 0/nobody to
2231 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to
2232 * UID_NOBODY and GID_NOBODY, respectively.)
2233 */
2234 if (crgetuid(cr) != 0 &&
2235 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY))
2236 return (1);
2237
2238 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2239 exi->exi_export.ex_anon);
2240 (void) crsetgroups(cr, 0, NULL);
2241 break;
2242 default:
2243 return (0);
2244 } /* switch on rpcflavor */
2245
2246 /*
2247 * Even if anon access is disallowed via ex_anon == -1, we allow
2248 * this access if anon_ok is set. So set creds to the default
2249 * "nobody" id.
2250 */
2251 if (anon_res != 0) {
2252 if (anon_ok == 0) {
2253 cmn_err(CE_NOTE,
2254 "nfs_server: client %s%ssent wrong "
2255 "authentication for %s",
2256 client_name(req), client_addr(req, buf),
2257 exi->exi_export.ex_path ?
2258 exi->exi_export.ex_path : "?");
2259 return (0);
2260 }
2261
2262 if (crsetugid(cr, UID_NOBODY, GID_NOBODY) != 0)
2263 return (0);
2264 }
2265
2266 return (1);
2267 }
2268
2269 /*
2270 * returns 0 on failure, -1 on a drop, -2 on wrong security flavor,
2271 * and 1 on success
2272 */
2273 int
2274 checkauth4(struct compound_state *cs, struct svc_req *req)
2275 {
2276 int i, rpcflavor, access;
2277 struct secinfo *secp;
2278 char buf[MAXHOST + 1];
2279 int anon_res = 0, nfsflavor;
2280 struct exportinfo *exi;
2281 cred_t *cr;
2282 caddr_t principal;
2283
2284 uid_t uid;
2285 gid_t gid;
2286 uint_t ngids;
2287 gid_t *gids;
2288
2289 exi = cs->exi;
2290 cr = cs->cr;
2291 principal = cs->principal;
2292 nfsflavor = cs->nfsflavor;
2293
2294 ASSERT(cr != NULL);
2295
2296 rpcflavor = req->rq_cred.oa_flavor;
2297 cs->access &= ~CS_ACCESS_LIMITED;
2298
2299 /*
2300 * Check for privileged port number
2301 * N.B.: this assumes that we know the format of a netbuf.
2302 */
2303 if (nfs_portmon) {
2304 struct sockaddr *ca;
2305 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf;
2306
2307 if (ca == NULL)
2308 return (0);
2309
2310 if ((ca->sa_family == AF_INET &&
2311 ntohs(((struct sockaddr_in *)ca)->sin_port) >=
2312 IPPORT_RESERVED) ||
2313 (ca->sa_family == AF_INET6 &&
2314 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >=
2315 IPPORT_RESERVED)) {
2316 cmn_err(CE_NOTE,
2317 "nfs_server: client %s%ssent NFSv4 request from "
2318 "unprivileged port",
2319 client_name(req), client_addr(req, buf));
2320 return (0);
2321 }
2322 }
2323
2324 /*
2325 * Check the access right per auth flavor on the vnode of
2326 * this export for the given request.
2327 */
2328 access = nfsauth4_access(cs->exi, cs->vp, req, cr, &uid, &gid, &ngids,
2329 &gids);
2330
2331 if (access & NFSAUTH_WRONGSEC)
2332 return (-2); /* no access for this security flavor */
2333
2334 if (access & NFSAUTH_DROP)
2335 return (-1); /* drop the request */
2336
2337 if (access & NFSAUTH_DENIED) {
2338
2339 if (exi->exi_export.ex_seccnt > 0)
2340 return (0); /* deny access */
2341
2342 } else if (access & NFSAUTH_LIMITED) {
2343
2344 cs->access |= CS_ACCESS_LIMITED;
2345
2346 } else if (access & NFSAUTH_MAPNONE) {
2347 /*
2348 * Access was granted even though the flavor mismatched
2349 * because AUTH_NONE was one of the exported flavors.
2350 */
2351 rpcflavor = AUTH_NONE;
2352 }
2353
2354 /*
2355 * XXX probably need to redo some of it for nfsv4?
2356 * return 1 on success or 0 on failure
2357 */
2358
2359 if (rpcflavor != AUTH_SYS)
2360 kmem_free(gids, ngids * sizeof (gid_t));
2361
2362 switch (rpcflavor) {
2363 case AUTH_NONE:
2364 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2365 exi->exi_export.ex_anon);
2366 (void) crsetgroups(cr, 0, NULL);
2367 break;
2368
2369 case AUTH_UNIX:
2370 if (crgetuid(cr) == 0 && !(access & NFSAUTH_UIDMAP)) {
2371 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2372 exi->exi_export.ex_anon);
2373 (void) crsetgroups(cr, 0, NULL);
2374 } else if (crgetuid(cr) == 0 && access & NFSAUTH_ROOT) {
2375 /*
2376 * It is root, so apply rootid to get real UID
2377 * Find the secinfo structure. We should be able
2378 * to find it by the time we reach here.
2379 * nfsauth_access() has done the checking.
2380 */
2381 secp = NULL;
2382 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2383 struct secinfo *sptr;
2384 sptr = &exi->exi_export.ex_secinfo[i];
2385 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) {
2386 secp = &exi->exi_export.ex_secinfo[i];
2387 break;
2388 }
2389 }
2390 if (secp != NULL) {
2391 (void) crsetugid(cr, secp->s_rootid,
2392 secp->s_rootid);
2393 (void) crsetgroups(cr, 0, NULL);
2394 }
2395 } else if (crgetuid(cr) != uid || crgetgid(cr) != gid) {
2396 if (crsetugid(cr, uid, gid) != 0)
2397 anon_res = crsetugid(cr,
2398 exi->exi_export.ex_anon,
2399 exi->exi_export.ex_anon);
2400 (void) crsetgroups(cr, 0, NULL);
2401 } if (access & NFSAUTH_GROUPS) {
2402 (void) crsetgroups(cr, ngids, gids);
2403 }
2404
2405 kmem_free(gids, ngids * sizeof (gid_t));
2406
2407 break;
2408
2409 default:
2410 /*
2411 * Find the secinfo structure. We should be able
2412 * to find it by the time we reach here.
2413 * nfsauth_access() has done the checking.
2414 */
2415 secp = NULL;
2416 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2417 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum ==
2418 nfsflavor) {
2419 secp = &exi->exi_export.ex_secinfo[i];
2420 break;
2421 }
2422 }
2423
2424 if (!secp) {
2425 cmn_err(CE_NOTE, "nfs_server: client %s%shad "
2426 "no secinfo data for flavor %d",
2427 client_name(req), client_addr(req, buf),
2428 nfsflavor);
2429 return (0);
2430 }
2431
2432 if (!checkwin(rpcflavor, secp->s_window, req)) {
2433 cmn_err(CE_NOTE,
2434 "nfs_server: client %s%sused invalid "
2435 "auth window value",
2436 client_name(req), client_addr(req, buf));
2437 return (0);
2438 }
2439
2440 /*
2441 * Map root principals listed in the share's root= list to root,
2442 * and map any others principals that were mapped to root by RPC
2443 * to anon. If not going to anon, set to rootid (root_mapping).
2444 */
2445 if (principal && sec_svc_inrootlist(rpcflavor, principal,
2446 secp->s_rootcnt, secp->s_rootnames)) {
2447 if (crgetuid(cr) == 0 && secp->s_rootid == 0)
2448 return (1);
2449
2450 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid);
2451
2452 /*
2453 * NOTE: If and when kernel-land privilege tracing is
2454 * added this may have to be replaced with code that
2455 * retrieves root's supplementary groups (e.g., using
2456 * kgss_get_group_info(). In the meantime principals
2457 * mapped to uid 0 get all privileges, so setting cr's
2458 * supplementary groups for them does nothing.
2459 */
2460 (void) crsetgroups(cr, 0, NULL);
2461
2462 return (1);
2463 }
2464
2465 /*
2466 * Not a root princ, or not in root list, map UID 0/nobody to
2467 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to
2468 * UID_NOBODY and GID_NOBODY, respectively.)
2469 */
2470 if (crgetuid(cr) != 0 &&
2471 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY))
2472 return (1);
2473
2474 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2475 exi->exi_export.ex_anon);
2476 (void) crsetgroups(cr, 0, NULL);
2477 break;
2478 } /* switch on rpcflavor */
2479
2480 /*
2481 * Even if anon access is disallowed via ex_anon == -1, we allow
2482 * this access if anon_ok is set. So set creds to the default
2483 * "nobody" id.
2484 */
2485
2486 if (anon_res != 0) {
2487 cmn_err(CE_NOTE,
2488 "nfs_server: client %s%ssent wrong "
2489 "authentication for %s",
2490 client_name(req), client_addr(req, buf),
2491 exi->exi_export.ex_path ?
2492 exi->exi_export.ex_path : "?");
2493 return (0);
2494 }
2495
2496 return (1);
2497 }
2498
2499
2500 static char *
2501 client_name(struct svc_req *req)
2502 {
2503 char *hostname = NULL;
2504
2505 /*
2506 * If it's a Unix cred then use the
2507 * hostname from the credential.
2508 */
2509 if (req->rq_cred.oa_flavor == AUTH_UNIX) {
2510 hostname = ((struct authunix_parms *)
2511 req->rq_clntcred)->aup_machname;
2512 }
2513 if (hostname == NULL)
2514 hostname = "";
2515
2516 return (hostname);
2517 }
2518
2519 static char *
2520 client_addr(struct svc_req *req, char *buf)
2521 {
2522 struct sockaddr *ca;
2523 uchar_t *b;
2524 char *frontspace = "";
2525
2526 /*
2527 * We assume we are called in tandem with client_name and the
2528 * format string looks like "...client %s%sblah blah..."
2529 *
2530 * If it's a Unix cred then client_name returned
2531 * a host name, so we need insert a space between host name
2532 * and IP address.
2533 */
2534 if (req->rq_cred.oa_flavor == AUTH_UNIX)
2535 frontspace = " ";
2536
2537 /*
2538 * Convert the caller's IP address to a dotted string
2539 */
2540 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf;
2541
2542 if (ca->sa_family == AF_INET) {
2543 b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr;
2544 (void) sprintf(buf, "%s(%d.%d.%d.%d) ", frontspace,
2545 b[0] & 0xFF, b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF);
2546 } else if (ca->sa_family == AF_INET6) {
2547 struct sockaddr_in6 *sin6;
2548 sin6 = (struct sockaddr_in6 *)ca;
2549 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr,
2550 buf, INET6_ADDRSTRLEN);
2551
2552 } else {
2553
2554 /*
2555 * No IP address to print. If there was a host name
2556 * printed, then we print a space.
2557 */
2558 (void) sprintf(buf, frontspace);
2559 }
2560
2561 return (buf);
2562 }
2563
2564 /*
2565 * NFS Server initialization routine. This routine should only be called
2566 * once. It performs the following tasks:
2567 * - Call sub-initialization routines (localize access to variables)
2568 * - Initialize all locks
2569 * - initialize the version 3 write verifier
2570 */
2571 int
2572 nfs_srvinit(void)
2573 {
2574 int error;
2575
2576 error = nfs_exportinit();
2577 if (error != 0)
2578 return (error);
2579 error = rfs4_srvrinit();
2580 if (error != 0) {
2581 nfs_exportfini();
2582 return (error);
2583 }
2584 rfs_srvrinit();
2585 rfs3_srvrinit();
2586 nfsauth_init();
2587
2588 /* Init the stuff to control start/stop */
2589 nfs_server_upordown = NFS_SERVER_STOPPED;
2590 mutex_init(&nfs_server_upordown_lock, NULL, MUTEX_DEFAULT, NULL);
2591 cv_init(&nfs_server_upordown_cv, NULL, CV_DEFAULT, NULL);
2592 mutex_init(&rdma_wait_mutex, NULL, MUTEX_DEFAULT, NULL);
2593 cv_init(&rdma_wait_cv, NULL, CV_DEFAULT, NULL);
2594
2595 return (0);
2596 }
2597
2598 /*
2599 * NFS Server finalization routine. This routine is called to cleanup the
2600 * initialization work previously performed if the NFS server module could
2601 * not be loaded correctly.
2602 */
2603 void
2604 nfs_srvfini(void)
2605 {
2606 nfsauth_fini();
2607 rfs3_srvrfini();
2608 rfs_srvrfini();
2609 nfs_exportfini();
2610
2611 mutex_destroy(&nfs_server_upordown_lock);
2612 cv_destroy(&nfs_server_upordown_cv);
2613 mutex_destroy(&rdma_wait_mutex);
2614 cv_destroy(&rdma_wait_cv);
2615 }
2616
2617 /*
2618 * Set up an iovec array of up to cnt pointers.
2619 */
2620
2621 void
2622 mblk_to_iov(mblk_t *m, int cnt, struct iovec *iovp)
2623 {
2624 while (m != NULL && cnt-- > 0) {
2625 iovp->iov_base = (caddr_t)m->b_rptr;
2626 iovp->iov_len = (m->b_wptr - m->b_rptr);
2627 iovp++;
2628 m = m->b_cont;
2629 }
2630 }
2631
2632 /*
2633 * Common code between NFS Version 2 and NFS Version 3 for the public
2634 * filehandle multicomponent lookups.
2635 */
2636
2637 /*
2638 * Public filehandle evaluation of a multi-component lookup, following
2639 * symbolic links, if necessary. This may result in a vnode in another
2640 * filesystem, which is OK as long as the other filesystem is exported.
2641 *
2642 * Note that the exi will be set either to NULL or a new reference to the
2643 * exportinfo struct that corresponds to the vnode of the multi-component path.
2644 * It is the callers responsibility to release this reference.
2645 */
2646 int
2647 rfs_publicfh_mclookup(char *p, vnode_t *dvp, cred_t *cr, vnode_t **vpp,
2648 struct exportinfo **exi, struct sec_ol *sec)
2649 {
2650 int pathflag;
2651 vnode_t *mc_dvp = NULL;
2652 vnode_t *realvp;
2653 int error;
2654
2655 *exi = NULL;
2656
2657 /*
2658 * check if the given path is a url or native path. Since p is
2659 * modified by MCLpath(), it may be empty after returning from
2660 * there, and should be checked.
2661 */
2662 if ((pathflag = MCLpath(&p)) == -1)
2663 return (EIO);
2664
2665 /*
2666 * If pathflag is SECURITY_QUERY, turn the SEC_QUERY bit
2667 * on in sec->sec_flags. This bit will later serve as an
2668 * indication in makefh_ol() or makefh3_ol() to overload the
2669 * filehandle to contain the sec modes used by the server for
2670 * the path.
2671 */
2672 if (pathflag == SECURITY_QUERY) {
2673 if ((sec->sec_index = (uint_t)(*p)) > 0) {
2674 sec->sec_flags |= SEC_QUERY;
2675 p++;
2676 if ((pathflag = MCLpath(&p)) == -1)
2677 return (EIO);
2678 } else {
2679 cmn_err(CE_NOTE,
2680 "nfs_server: invalid security index %d, "
2681 "violating WebNFS SNEGO protocol.", sec->sec_index);
2682 return (EIO);
2683 }
2684 }
2685
2686 if (p[0] == '\0') {
2687 error = ENOENT;
2688 goto publicfh_done;
2689 }
2690
2691 error = rfs_pathname(p, &mc_dvp, vpp, dvp, cr, pathflag);
2692
2693 /*
2694 * If name resolves to "/" we get EINVAL since we asked for
2695 * the vnode of the directory that the file is in. Try again
2696 * with NULL directory vnode.
2697 */
2698 if (error == EINVAL) {
2699 error = rfs_pathname(p, NULL, vpp, dvp, cr, pathflag);
2700 if (!error) {
2701 ASSERT(*vpp != NULL);
2702 if ((*vpp)->v_type == VDIR) {
2703 VN_HOLD(*vpp);
2704 mc_dvp = *vpp;
2705 } else {
2706 /*
2707 * This should not happen, the filesystem is
2708 * in an inconsistent state. Fail the lookup
2709 * at this point.
2710 */
2711 VN_RELE(*vpp);
2712 error = EINVAL;
2713 }
2714 }
2715 }
2716
2717 if (error)
2718 goto publicfh_done;
2719
2720 if (*vpp == NULL) {
2721 error = ENOENT;
2722 goto publicfh_done;
2723 }
2724
2725 ASSERT(mc_dvp != NULL);
2726 ASSERT(*vpp != NULL);
2727
2728 if ((*vpp)->v_type == VDIR) {
2729 do {
2730 /*
2731 * *vpp may be an AutoFS node, so we perform
2732 * a VOP_ACCESS() to trigger the mount of the intended
2733 * filesystem, so we can perform the lookup in the
2734 * intended filesystem.
2735 */
2736 (void) VOP_ACCESS(*vpp, 0, 0, cr, NULL);
2737
2738 /*
2739 * If vnode is covered, get the
2740 * the topmost vnode.
2741 */
2742 if (vn_mountedvfs(*vpp) != NULL) {
2743 error = traverse(vpp);
2744 if (error) {
2745 VN_RELE(*vpp);
2746 goto publicfh_done;
2747 }
2748 }
2749
2750 if (VOP_REALVP(*vpp, &realvp, NULL) == 0 &&
2751 realvp != *vpp) {
2752 /*
2753 * If realvp is different from *vpp
2754 * then release our reference on *vpp, so that
2755 * the export access check be performed on the
2756 * real filesystem instead.
2757 */
2758 VN_HOLD(realvp);
2759 VN_RELE(*vpp);
2760 *vpp = realvp;
2761 } else {
2762 break;
2763 }
2764 /* LINTED */
2765 } while (TRUE);
2766
2767 /*
2768 * Let nfs_vptexi() figure what the real parent is.
2769 */
2770 VN_RELE(mc_dvp);
2771 mc_dvp = NULL;
2772
2773 } else {
2774 /*
2775 * If vnode is covered, get the
2776 * the topmost vnode.
2777 */
2778 if (vn_mountedvfs(mc_dvp) != NULL) {
2779 error = traverse(&mc_dvp);
2780 if (error) {
2781 VN_RELE(*vpp);
2782 goto publicfh_done;
2783 }
2784 }
2785
2786 if (VOP_REALVP(mc_dvp, &realvp, NULL) == 0 &&
2787 realvp != mc_dvp) {
2788 /*
2789 * *vpp is a file, obtain realvp of the parent
2790 * directory vnode.
2791 */
2792 VN_HOLD(realvp);
2793 VN_RELE(mc_dvp);
2794 mc_dvp = realvp;
2795 }
2796 }
2797
2798 /*
2799 * The pathname may take us from the public filesystem to another.
2800 * If that's the case then just set the exportinfo to the new export
2801 * and build filehandle for it. Thanks to per-access checking there's
2802 * no security issues with doing this. If the client is not allowed
2803 * access to this new export then it will get an access error when it
2804 * tries to use the filehandle
2805 */
2806 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) {
2807 VN_RELE(*vpp);
2808 goto publicfh_done;
2809 }
2810
2811 /*
2812 * Not allowed access to pseudo exports.
2813 */
2814 if (PSEUDO(*exi)) {
2815 error = ENOENT;
2816 VN_RELE(*vpp);
2817 goto publicfh_done;
2818 }
2819
2820 /*
2821 * Do a lookup for the index file. We know the index option doesn't
2822 * allow paths through handling in the share command, so mc_dvp will
2823 * be the parent for the index file vnode, if its present. Use
2824 * temporary pointers to preserve and reuse the vnode pointers of the
2825 * original directory in case there's no index file. Note that the
2826 * index file is a native path, and should not be interpreted by
2827 * the URL parser in rfs_pathname()
2828 */
2829 if (((*exi)->exi_export.ex_flags & EX_INDEX) &&
2830 ((*vpp)->v_type == VDIR) && (pathflag == URLPATH)) {
2831 vnode_t *tvp, *tmc_dvp; /* temporary vnode pointers */
2832
2833 tmc_dvp = mc_dvp;
2834 mc_dvp = tvp = *vpp;
2835
2836 error = rfs_pathname((*exi)->exi_export.ex_index, NULL, vpp,
2837 mc_dvp, cr, NATIVEPATH);
2838
2839 if (error == ENOENT) {
2840 *vpp = tvp;
2841 mc_dvp = tmc_dvp;
2842 error = 0;
2843 } else { /* ok or error other than ENOENT */
2844 if (tmc_dvp)
2845 VN_RELE(tmc_dvp);
2846 if (error)
2847 goto publicfh_done;
2848
2849 /*
2850 * Found a valid vp for index "filename". Sanity check
2851 * for odd case where a directory is provided as index
2852 * option argument and leads us to another filesystem
2853 */
2854
2855 /* Release the reference on the old exi value */
2856 ASSERT(*exi != NULL);
2857 exi_rele(*exi);
2858
2859 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) {
2860 VN_RELE(*vpp);
2861 goto publicfh_done;
2862 }
2863 }
2864 }
2865
2866 publicfh_done:
2867 if (mc_dvp)
2868 VN_RELE(mc_dvp);
2869
2870 return (error);
2871 }
2872
2873 /*
2874 * Evaluate a multi-component path
2875 */
2876 int
2877 rfs_pathname(
2878 char *path, /* pathname to evaluate */
2879 vnode_t **dirvpp, /* ret for ptr to parent dir vnode */
2880 vnode_t **compvpp, /* ret for ptr to component vnode */
2881 vnode_t *startdvp, /* starting vnode */
2882 cred_t *cr, /* user's credential */
2883 int pathflag) /* flag to identify path, e.g. URL */
2884 {
2885 char namebuf[TYPICALMAXPATHLEN];
2886 struct pathname pn;
2887 int error;
2888
2889 /*
2890 * If pathname starts with '/', then set startdvp to root.
2891 */
2892 if (*path == '/') {
2893 while (*path == '/')
2894 path++;
2895
2896 startdvp = rootdir;
2897 }
2898
2899 error = pn_get_buf(path, UIO_SYSSPACE, &pn, namebuf, sizeof (namebuf));
2900 if (error == 0) {
2901 /*
2902 * Call the URL parser for URL paths to modify the original
2903 * string to handle any '%' encoded characters that exist.
2904 * Done here to avoid an extra bcopy in the lookup.
2905 * We need to be careful about pathlen's. We know that
2906 * rfs_pathname() is called with a non-empty path. However,
2907 * it could be emptied due to the path simply being all /'s,
2908 * which is valid to proceed with the lookup, or due to the
2909 * URL parser finding an encoded null character at the
2910 * beginning of path which should not proceed with the lookup.
2911 */
2912 if (pn.pn_pathlen != 0 && pathflag == URLPATH) {
2913 URLparse(pn.pn_path);
2914 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0)
2915 return (ENOENT);
2916 }
2917 VN_HOLD(startdvp);
2918 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp,
2919 rootdir, startdvp, cr);
2920 }
2921 if (error == ENAMETOOLONG) {
2922 /*
2923 * This thread used a pathname > TYPICALMAXPATHLEN bytes long.
2924 */
2925 if (error = pn_get(path, UIO_SYSSPACE, &pn))
2926 return (error);
2927 if (pn.pn_pathlen != 0 && pathflag == URLPATH) {
2928 URLparse(pn.pn_path);
2929 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) {
2930 pn_free(&pn);
2931 return (ENOENT);
2932 }
2933 }
2934 VN_HOLD(startdvp);
2935 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp,
2936 rootdir, startdvp, cr);
2937 pn_free(&pn);
2938 }
2939
2940 return (error);
2941 }
2942
2943 /*
2944 * Adapt the multicomponent lookup path depending on the pathtype
2945 */
2946 static int
2947 MCLpath(char **path)
2948 {
2949 unsigned char c = (unsigned char)**path;
2950
2951 /*
2952 * If the MCL path is between 0x20 and 0x7E (graphic printable
2953 * character of the US-ASCII coded character set), its a URL path,
2954 * per RFC 1738.
2955 */
2956 if (c >= 0x20 && c <= 0x7E)
2957 return (URLPATH);
2958
2959 /*
2960 * If the first octet of the MCL path is not an ASCII character
2961 * then it must be interpreted as a tag value that describes the
2962 * format of the remaining octets of the MCL path.
2963 *
2964 * If the first octet of the MCL path is 0x81 it is a query
2965 * for the security info.
2966 */
2967 switch (c) {
2968 case 0x80: /* native path, i.e. MCL via mount protocol */
2969 (*path)++;
2970 return (NATIVEPATH);
2971 case 0x81: /* security query */
2972 (*path)++;
2973 return (SECURITY_QUERY);
2974 default:
2975 return (-1);
2976 }
2977 }
2978
2979 #define fromhex(c) ((c >= '0' && c <= '9') ? (c - '0') : \
2980 ((c >= 'A' && c <= 'F') ? (c - 'A' + 10) :\
2981 ((c >= 'a' && c <= 'f') ? (c - 'a' + 10) : 0)))
2982
2983 /*
2984 * The implementation of URLparse guarantees that the final string will
2985 * fit in the original one. Replaces '%' occurrences followed by 2 characters
2986 * with its corresponding hexadecimal character.
2987 */
2988 static void
2989 URLparse(char *str)
2990 {
2991 char *p, *q;
2992
2993 p = q = str;
2994 while (*p) {
2995 *q = *p;
2996 if (*p++ == '%') {
2997 if (*p) {
2998 *q = fromhex(*p) * 16;
2999 p++;
3000 if (*p) {
3001 *q += fromhex(*p);
3002 p++;
3003 }
3004 }
3005 }
3006 q++;
3007 }
3008 *q = '\0';
3009 }
3010
3011
3012 /*
3013 * Get the export information for the lookup vnode, and verify its
3014 * useable.
3015 */
3016 int
3017 nfs_check_vpexi(vnode_t *mc_dvp, vnode_t *vp, cred_t *cr,
3018 struct exportinfo **exi)
3019 {
3020 int walk;
3021 int error = 0;
3022
3023 *exi = nfs_vptoexi(mc_dvp, vp, cr, &walk, NULL, FALSE);
3024 if (*exi == NULL)
3025 error = EACCES;
3026 else {
3027 /*
3028 * If nosub is set for this export then
3029 * a lookup relative to the public fh
3030 * must not terminate below the
3031 * exported directory.
3032 */
3033 if ((*exi)->exi_export.ex_flags & EX_NOSUB && walk > 0)
3034 error = EACCES;
3035 }
3036
3037 return (error);
3038 }
3039
3040 /*
3041 * Do the main work of handling HA-NFSv4 Resource Group failover on
3042 * Sun Cluster.
3043 * We need to detect whether any RG admin paths have been added or removed,
3044 * and adjust resources accordingly.
3045 * Currently we're using a very inefficient algorithm, ~ 2 * O(n**2). In
3046 * order to scale, the list and array of paths need to be held in more
3047 * suitable data structures.
3048 */
3049 static void
3050 hanfsv4_failover(void)
3051 {
3052 int i, start_grace, numadded_paths = 0;
3053 char **added_paths = NULL;
3054 rfs4_dss_path_t *dss_path;
3055
3056 /*
3057 * Note: currently, rfs4_dss_pathlist cannot be NULL, since
3058 * it will always include an entry for NFS4_DSS_VAR_DIR. If we
3059 * make the latter dynamically specified too, the following will
3060 * need to be adjusted.
3061 */
3062
3063 /*
3064 * First, look for removed paths: RGs that have been failed-over
3065 * away from this node.
3066 * Walk the "currently-serving" rfs4_dss_pathlist and, for each
3067 * path, check if it is on the "passed-in" rfs4_dss_newpaths array
3068 * from nfsd. If not, that RG path has been removed.
3069 *
3070 * Note that nfsd has sorted rfs4_dss_newpaths for us, and removed
3071 * any duplicates.
3072 */
3073 dss_path = rfs4_dss_pathlist;
3074 do {
3075 int found = 0;
3076 char *path = dss_path->path;
3077
3078 /* used only for non-HA so may not be removed */
3079 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) {
3080 dss_path = dss_path->next;
3081 continue;
3082 }
3083
3084 for (i = 0; i < rfs4_dss_numnewpaths; i++) {
3085 int cmpret;
3086 char *newpath = rfs4_dss_newpaths[i];
3087
3088 /*
3089 * Since nfsd has sorted rfs4_dss_newpaths for us,
3090 * once the return from strcmp is negative we know
3091 * we've passed the point where "path" should be,
3092 * and can stop searching: "path" has been removed.
3093 */
3094 cmpret = strcmp(path, newpath);
3095 if (cmpret < 0)
3096 break;
3097 if (cmpret == 0) {
3098 found = 1;
3099 break;
3100 }
3101 }
3102
3103 if (found == 0) {
3104 unsigned index = dss_path->index;
3105 rfs4_servinst_t *sip = dss_path->sip;
3106 rfs4_dss_path_t *path_next = dss_path->next;
3107
3108 /*
3109 * This path has been removed.
3110 * We must clear out the servinst reference to
3111 * it, since it's now owned by another
3112 * node: we should not attempt to touch it.
3113 */
3114 ASSERT(dss_path == sip->dss_paths[index]);
3115 sip->dss_paths[index] = NULL;
3116
3117 /* remove from "currently-serving" list, and destroy */
3118 remque(dss_path);
3119 /* allow for NUL */
3120 kmem_free(dss_path->path, strlen(dss_path->path) + 1);
3121 kmem_free(dss_path, sizeof (rfs4_dss_path_t));
3122
3123 dss_path = path_next;
3124 } else {
3125 /* path was found; not removed */
3126 dss_path = dss_path->next;
3127 }
3128 } while (dss_path != rfs4_dss_pathlist);
3129
3130 /*
3131 * Now, look for added paths: RGs that have been failed-over
3132 * to this node.
3133 * Walk the "passed-in" rfs4_dss_newpaths array from nfsd and,
3134 * for each path, check if it is on the "currently-serving"
3135 * rfs4_dss_pathlist. If not, that RG path has been added.
3136 *
3137 * Note: we don't do duplicate detection here; nfsd does that for us.
3138 *
3139 * Note: numadded_paths <= rfs4_dss_numnewpaths, which gives us
3140 * an upper bound for the size needed for added_paths[numadded_paths].
3141 */
3142
3143 /* probably more space than we need, but guaranteed to be enough */
3144 if (rfs4_dss_numnewpaths > 0) {
3145 size_t sz = rfs4_dss_numnewpaths * sizeof (char *);
3146 added_paths = kmem_zalloc(sz, KM_SLEEP);
3147 }
3148
3149 /* walk the "passed-in" rfs4_dss_newpaths array from nfsd */
3150 for (i = 0; i < rfs4_dss_numnewpaths; i++) {
3151 int found = 0;
3152 char *newpath = rfs4_dss_newpaths[i];
3153
3154 dss_path = rfs4_dss_pathlist;
3155 do {
3156 char *path = dss_path->path;
3157
3158 /* used only for non-HA */
3159 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) {
3160 dss_path = dss_path->next;
3161 continue;
3162 }
3163
3164 if (strncmp(path, newpath, strlen(path)) == 0) {
3165 found = 1;
3166 break;
3167 }
3168
3169 dss_path = dss_path->next;
3170 } while (dss_path != rfs4_dss_pathlist);
3171
3172 if (found == 0) {
3173 added_paths[numadded_paths] = newpath;
3174 numadded_paths++;
3175 }
3176 }
3177
3178 /* did we find any added paths? */
3179 if (numadded_paths > 0) {
3180 /* create a new server instance, and start its grace period */
3181 start_grace = 1;
3182 rfs4_servinst_create(start_grace, numadded_paths, added_paths);
3183
3184 /* read in the stable storage state from these paths */
3185 rfs4_dss_readstate(numadded_paths, added_paths);
3186
3187 /*
3188 * Multiple failovers during a grace period will cause
3189 * clients of the same resource group to be partitioned
3190 * into different server instances, with different
3191 * grace periods. Since clients of the same resource
3192 * group must be subject to the same grace period,
3193 * we need to reset all currently active grace periods.
3194 */
3195 rfs4_grace_reset_all();
3196 }
3197
3198 if (rfs4_dss_numnewpaths > 0)
3199 kmem_free(added_paths, rfs4_dss_numnewpaths * sizeof (char *));
3200 }
3201
3202 /*
3203 * Used by NFSv3 and NFSv4 server to query label of
3204 * a pathname component during lookup/access ops.
3205 */
3206 ts_label_t *
3207 nfs_getflabel(vnode_t *vp, struct exportinfo *exi)
3208 {
3209 zone_t *zone;
3210 ts_label_t *zone_label;
3211 char *path;
3212
3213 mutex_enter(&vp->v_lock);
3214 if (vp->v_path != vn_vpath_empty) {
3215 zone = zone_find_by_any_path(vp->v_path, B_FALSE);
3216 mutex_exit(&vp->v_lock);
3217 } else {
3218 /*
3219 * v_path not cached. Fall back on pathname of exported
3220 * file system as we rely on pathname from which we can
3221 * derive a label. The exported file system portion of
3222 * path is sufficient to obtain a label.
3223 */
3224 path = exi->exi_export.ex_path;
3225 if (path == NULL) {
3226 mutex_exit(&vp->v_lock);
3227 return (NULL);
3228 }
3229 zone = zone_find_by_any_path(path, B_FALSE);
3230 mutex_exit(&vp->v_lock);
3231 }
3232 /*
3233 * Caller has verified that the file is either
3234 * exported or visible. So if the path falls in
3235 * global zone, admin_low is returned; otherwise
3236 * the zone's label is returned.
3237 */
3238 zone_label = zone->zone_slabel;
3239 label_hold(zone_label);
3240 zone_rele(zone);
3241 return (zone_label);
3242 }
3243
3244 /*
3245 * TX NFS routine used by NFSv3 and NFSv4 to do label check
3246 * on client label and server's file object lable.
3247 */
3248 boolean_t
3249 do_rfs_label_check(bslabel_t *clabel, vnode_t *vp, int flag,
3250 struct exportinfo *exi)
3251 {
3252 bslabel_t *slabel;
3253 ts_label_t *tslabel;
3254 boolean_t result;
3255
3256 if ((tslabel = nfs_getflabel(vp, exi)) == NULL) {
3257 return (B_FALSE);
3258 }
3259 slabel = label2bslabel(tslabel);
3260 DTRACE_PROBE4(tx__rfs__log__info__labelcheck, char *,
3261 "comparing server's file label(1) with client label(2) (vp(3))",
3262 bslabel_t *, slabel, bslabel_t *, clabel, vnode_t *, vp);
3263
3264 if (flag == EQUALITY_CHECK)
3265 result = blequal(clabel, slabel);
3266 else
3267 result = bldominates(clabel, slabel);
3268 label_rele(tslabel);
3269 return (result);
3270 }
3271
3272 /*
3273 * Callback function to return the loaned buffers.
3274 * Calls VOP_RETZCBUF() only after all uio_iov[]
3275 * buffers are returned. nu_ref maintains the count.
3276 */
3277 void
3278 rfs_free_xuio(void *free_arg)
3279 {
3280 uint_t ref;
3281 nfs_xuio_t *nfsuiop = (nfs_xuio_t *)free_arg;
3282
3283 ref = atomic_dec_uint_nv(&nfsuiop->nu_ref);
3284
3285 /*
3286 * Call VOP_RETZCBUF() only when all the iov buffers
3287 * are sent OTW.
3288 */
3289 if (ref != 0)
3290 return;
3291
3292 if (((uio_t *)nfsuiop)->uio_extflg & UIO_XUIO) {
3293 (void) VOP_RETZCBUF(nfsuiop->nu_vp, (xuio_t *)free_arg, NULL,
3294 NULL);
3295 VN_RELE(nfsuiop->nu_vp);
3296 }
3297
3298 kmem_cache_free(nfs_xuio_cache, free_arg);
3299 }
3300
3301 xuio_t *
3302 rfs_setup_xuio(vnode_t *vp)
3303 {
3304 nfs_xuio_t *nfsuiop;
3305
3306 nfsuiop = kmem_cache_alloc(nfs_xuio_cache, KM_SLEEP);
3307
3308 bzero(nfsuiop, sizeof (nfs_xuio_t));
3309 nfsuiop->nu_vp = vp;
3310
3311 /*
3312 * ref count set to 1. more may be added
3313 * if multiple mblks refer to multiple iov's.
3314 * This is done in uio_to_mblk().
3315 */
3316
3317 nfsuiop->nu_ref = 1;
3318
3319 nfsuiop->nu_frtn.free_func = rfs_free_xuio;
3320 nfsuiop->nu_frtn.free_arg = (char *)nfsuiop;
3321
3322 nfsuiop->nu_uio.xu_type = UIOTYPE_ZEROCOPY;
3323
3324 return (&nfsuiop->nu_uio);
3325 }
3326
3327 mblk_t *
3328 uio_to_mblk(uio_t *uiop)
3329 {
3330 struct iovec *iovp;
3331 int i;
3332 mblk_t *mp, *mp1;
3333 nfs_xuio_t *nfsuiop = (nfs_xuio_t *)uiop;
3334
3335 if (uiop->uio_iovcnt == 0)
3336 return (NULL);
3337
3338 iovp = uiop->uio_iov;
3339 mp = mp1 = esballoca((uchar_t *)iovp->iov_base, iovp->iov_len,
3340 BPRI_MED, &nfsuiop->nu_frtn);
3341 ASSERT(mp != NULL);
3342
3343 mp->b_wptr += iovp->iov_len;
3344 mp->b_datap->db_type = M_DATA;
3345
3346 for (i = 1; i < uiop->uio_iovcnt; i++) {
3347 iovp = (uiop->uio_iov + i);
3348
3349 mp1->b_cont = esballoca(
3350 (uchar_t *)iovp->iov_base, iovp->iov_len, BPRI_MED,
3351 &nfsuiop->nu_frtn);
3352
3353 mp1 = mp1->b_cont;
3354 ASSERT(mp1 != NULL);
3355 mp1->b_wptr += iovp->iov_len;
3356 mp1->b_datap->db_type = M_DATA;
3357 }
3358
3359 nfsuiop->nu_ref = uiop->uio_iovcnt;
3360
3361 return (mp);
3362 }
3363
3364 /*
3365 * Allocate memory to hold data for a read request of len bytes.
3366 *
3367 * We don't allocate buffers greater than kmem_max_cached in size to avoid
3368 * allocating memory from the kmem_oversized arena. If we allocate oversized
3369 * buffers, we incur heavy cross-call activity when freeing these large buffers
3370 * in the TCP receive path. Note that we can't set b_wptr here since the
3371 * length of the data returned may differ from the length requested when
3372 * reading the end of a file; we set b_wptr in rfs_rndup_mblks() once the
3373 * length of the read is known.
3374 */
3375 mblk_t *
3376 rfs_read_alloc(uint_t len, struct iovec **iov, int *iovcnt)
3377 {
3378 struct iovec *iovarr;
3379 mblk_t *mp, **mpp = ∓
3380 size_t mpsize;
3381 uint_t remain = len;
3382 int i, err = 0;
3383
3384 *iovcnt = howmany(len, kmem_max_cached);
3385
3386 iovarr = kmem_alloc(*iovcnt * sizeof (struct iovec), KM_SLEEP);
3387 *iov = iovarr;
3388
3389 for (i = 0; i < *iovcnt; remain -= mpsize, i++) {
3390 ASSERT(remain <= len);
3391 /*
3392 * We roundup the size we allocate to a multiple of
3393 * BYTES_PER_XDR_UNIT (4 bytes) so that the call to
3394 * xdrmblk_putmblk() never fails.
3395 */
3396 ASSERT(kmem_max_cached % BYTES_PER_XDR_UNIT == 0);
3397 mpsize = MIN(kmem_max_cached, remain);
3398 *mpp = allocb_wait(RNDUP(mpsize), BPRI_MED, STR_NOSIG, &err);
3399 ASSERT(*mpp != NULL);
3400 ASSERT(err == 0);
3401
3402 iovarr[i].iov_base = (caddr_t)(*mpp)->b_rptr;
3403 iovarr[i].iov_len = mpsize;
3404 mpp = &(*mpp)->b_cont;
3405 }
3406 return (mp);
3407 }
3408
3409 void
3410 rfs_rndup_mblks(mblk_t *mp, uint_t len, int buf_loaned)
3411 {
3412 int i;
3413 int alloc_err = 0;
3414 mblk_t *rmp;
3415 uint_t mpsize, remainder;
3416
3417 remainder = P2NPHASE(len, BYTES_PER_XDR_UNIT);
3418
3419 /*
3420 * Non copy-reduction case. This function assumes that blocks were
3421 * allocated in multiples of BYTES_PER_XDR_UNIT bytes, which makes this
3422 * padding safe without bounds checking.
3423 */
3424 if (!buf_loaned) {
3425 /*
3426 * Set the size of each mblk in the chain until we've consumed
3427 * the specified length for all but the last one.
3428 */
3429 while ((mpsize = MBLKSIZE(mp)) < len) {
3430 ASSERT(mpsize % BYTES_PER_XDR_UNIT == 0);
3431 mp->b_wptr += mpsize;
3432 len -= mpsize;
3433 mp = mp->b_cont;
3434 ASSERT(mp != NULL);
3435 }
3436
3437 ASSERT(len + remainder <= mpsize);
3438 mp->b_wptr += len;
3439 for (i = 0; i < remainder; i++)
3440 *mp->b_wptr++ = '\0';
3441 return;
3442 }
3443
3444 /*
3445 * No remainder mblk required.
3446 */
3447 if (remainder == 0)
3448 return;
3449
3450 /*
3451 * Get to the last mblk in the chain.
3452 */
3453 while (mp->b_cont != NULL)
3454 mp = mp->b_cont;
3455
3456 /*
3457 * In case of copy-reduction mblks, the size of the mblks are fixed
3458 * and are of the size of the loaned buffers. Allocate a remainder
3459 * mblk and chain it to the data buffers. This is sub-optimal, but not
3460 * expected to happen commonly.
3461 */
3462 rmp = allocb_wait(remainder, BPRI_MED, STR_NOSIG, &alloc_err);
3463 ASSERT(rmp != NULL);
3464 ASSERT(alloc_err == 0);
3465
3466 for (i = 0; i < remainder; i++)
3467 *rmp->b_wptr++ = '\0';
3468
3469 rmp->b_datap->db_type = M_DATA;
3470 mp->b_cont = rmp;
3471 }