1 /*
   2  * This file and its contents are supplied under the terms of the
   3  * Common Development and Distribution License ("CDDL"), version 1.0.
   4  * You may only use this file in accordance with the terms of version
   5  * 1.0 of the CDDL.
   6  *
   7  * A full copy of the text of the CDDL should have accompanied this
   8  * source.  A copy of the CDDL is also available via the Internet at
   9  * http://www.illumos.org/license/CDDL.
  10  */
  11 
  12 /*
  13  * Copyright 2016 Joyent, Inc.
  14  */
  15 
  16 /*
  17  * Overlay Devices
  18  *
  19  * Overlay devices provide a means for creating overlay networks, a means of
  20  * multiplexing multiple logical, isolated, and discrete layer two and layer
  21  * three networks on top of one physical network.
  22  *
  23  * In general, these overlay devices encapsulate the logic to answer two
  24  * different questions:
  25  *
  26  *   1) How should I transform a packet to put it on the wire?
  27  *   2) Where should I send a transformed packet?
  28  *
  29  * Each overlay device is presented to the user as a GLDv3 device. While the
  30  * link itself cannot have an IP interface created on top of it, it allows for
  31  * additional GLDv3 devices, such as a VNIC, to be created on top of it which
  32  * can be plumbed up with IP interfaces.
  33  *
  34  *
  35  * --------------------
  36  * General Architecture
  37  * --------------------
  38  *
  39  * The logical overlay device that a user sees in dladm(1M) is a combination of
  40  * two different components that work together. The first component is this
  41  * kernel module, which is responsible for answering question one -- how should
  42  * I transform a packet to put it on the wire.
  43  *
  44  * The second component is what we call the virtual ARP daemon, or varpd. It is
  45  * a userland component that is responsible for answering the second question --
  46  * Where should I send a transformed packet. Instances of the kernel overlay
  47  * GLDv3 device ask varpd the question of where should a packet go.
  48  *
  49  * The split was done for a few reasons. Importantly, we wanted to keep the act
  50  * of generating encapsulated packets in the kernel so as to ensure that the
  51  * general data path was fast and also kept simple. On the flip side, while the
  52  * question of where should something go may be simple, it may often be
  53  * complicated and need to interface with several different external or
  54  * distributed systems. In those cases, it's simpler to allow for the full
  55  * flexibility of userland to be brought to bear to solve that problem and in
  56  * general, the path isn't very common.
  57  *
  58  * The following is what makes up the logical overlay device that a user would
  59  * create with dladm(1M).
  60  *
  61  *       Kernel                                     Userland
  62  *   . . . . . . . . . . . . . . . . . . . . .   . . . . . . . . . . . . .
  63  *   . +--------+   +--------+  +--------+   .   .                       .
  64  *   . | VNIC 0 |   | VNIC 1 |  | VNIC 2 |   .   .                       .
  65  *   . +--------+   +--------+  +--------+   .   .                       .
  66  *   .     |            |           |        .   .                       .
  67  *   .     |            |           |        .   .                       .
  68  *   .     +------------+-----------+        .   .                       .
  69  *   .                  |              . . /dev/overlay                  .
  70  *   .           +--------------+      .     .   .       +------------+  .
  71  *   .           |              |      .     .   .       |            |  .
  72  *   .           |    Overlay   |======*=================|   Virtual  |  .
  73  *   .           | GLDv3 Device |========================| ARP Daemon |  .
  74  *   .           |              |            .   .       |            |  .
  75  *   .           +--------------+            .   .       +------------+  .
  76  *   .                  |                    .   .              |        .
  77  *   .                  |                    .   .              |        .
  78  *   .           +----------------+          .   .         +--------+    .
  79  *   .           |  Overlay       |          .   .         | varpd  |    .
  80  *   .           |  Encapsulation |          .   .         | Lookup |    .
  81  *   .           |  Plugin        |          .   .         | Plugin |    .
  82  *   .           +----------------+          .   .         +--------+    .
  83  *   . . . . . . . . . . . . . . . . . . . . .   . . . . . . . . . . . . .
  84  *
  85  *
  86  * This image shows the two different components and where they live.
  87  * Importantly, it also shows that both the kernel overlay device and the
  88  * userland varpd both support plugins. The plugins actually implement the
  89  * things that users care about and the APIs have been designed to try to
  90  * minimize the amount of things that a module writer needs to worry about it.
  91  *
  92  * IDENTIFIERS
  93  *
  94  * Every overlay device is defined by a unique identifier which is the overlay
  95  * identifier. Its purpose is similar to that of a VLAN identifier, it's a
  96  * unique number that is used to differentiate between different entries on the
  97  * wire.
  98  *
  99  * ENCAPSULATION
 100  *
 101  * An overlay encapsulation plugin is a kernel miscellaneous module whose
 102  * purpose is to contain knowledge about how to transform packets to put them
 103  * onto the wire and to take them off. An example of an encapsulation plugin is
 104  * vxlan. It's also how support for things like nvgre or geneve would be brought
 105  * into the system.
 106  *
 107  * Each encapsulation plugins defines a series of operation vectors and
 108  * properties. For the full details on everything they should provide, please
 109  * read uts/common/sys/overlay_plugin.h. The encapsulation plugin is responsible
 110  * for telling the system what information is required to send a packet. For
 111  * example, vxlan is defined to send everything over a UDP packet and therefore
 112  * requires a port and an IP address, while nvgre on the other hand is its own
 113  * IP type and therefore just requires an IP address. In addition, it also
 114  * provides information about the kind of socket that should be created. This is
 115  * used by the kernel multiplexor, more of that in the Kernel Components
 116  * section.
 117  *
 118  * LOOKUPS
 119  *
 120  * The kernel communicates requests for lookups over the character device
 121  * /dev/overlay. varpd is responsible for listening for requests on that device
 122  * and answering them. The character device is specific to the target path and
 123  * varpd.
 124  *
 125  * Much as the kernel overlay module handles the bulk of the scaffolding but
 126  * leaves the important work to the encapsulation plugin, varpd provides a
 127  * similar role and leaves the full brunt of lookups to a userland dynamic
 128  * shared object which implements the logic of lookups.
 129  *
 130  * Each lookup plugin defines a series of operation vectors and properties. For
 131  * the full details on everything that they should provide, please read
 132  * lib/varpd/libvarpd/libvarpd_provider.h. Essentially, they are given a MAC
 133  * address and asked to give an address on the physical network that it should
 134  * be sent to. In addition, they handle questions related to how to handle
 135  * things like broadcast and multicast traffic, etc.
 136  *
 137  * ----------
 138  * Properties
 139  * ----------
 140  *
 141  * A device from a dladm perspective has a unique set of properties that are
 142  * combined from three different sources:
 143  *
 144  *   1) Generic properties that every overlay device has
 145  *   2) Properties that are specific to the encapsulation plugin
 146  *   3) Properties that are specific to the lookup plugin
 147  *
 148  * All of these are exposed in a single set of properties in dladm. Note that
 149  * these are not necessarily traditional link properties. However, if something
 150  * is both a traditional GLDv3 link property, say the MTU of a device, and a
 151  * specific property here, than the driver ensures that all existing GLDv3
 152  * specific means of manipulating it are used and wraps up its private property
 153  * interfaces to ensure that works.
 154  *
 155  * Properties in the second and third category are prefixed with the name of
 156  * their module. For example, the vxlan encapsulation module has a property
 157  * called the 'listen_ip'. This property would show up in dladm as
 158  * 'vxlan/listen_ip'. This allows different plugins to both use similar names
 159  * for similar properties and to also have independent name spaces so that
 160  * overlapping names do not conflict with anything else.
 161  *
 162  * While the kernel combines both sets one and two into a single coherent view,
 163  * it does not do anything with respect to the properties that are owned by the
 164  * lookup plugin -- those are owned wholly by varpd. Instead, libdladm is in
 165  * charge of bridging these two worlds into one magical experience for the user.
 166  * It carries the burden of knowing about both overlay specific and varpd
 167  * specific properties. Importantly, we want to maintain this distinction. We
 168  * don't want to treat the kernel as an arbitrary key/value store for varpd and
 169  * we want the kernel to own its own data and not have to ask userland for
 170  * information that it owns.
 171  *
 172  * Every property in the system has the following attributes:
 173  *
 174  *   o A name
 175  *   o A type
 176  *   o A size
 177  *   o Permissions
 178  *   o Default value
 179  *   o Valid value ranges
 180  *   o A value
 181  *
 182  * Everything except for the value is obtained by callers through the propinfo
 183  * callbacks and a property has a maximum size of OVERLAY_PROP_SIZEMAX,
 184  * currently 256 bytes.
 185  *
 186  * The following are the supported types of properties:
 187  *
 188  *      OVERLAY_PROP_T_INT
 189  *
 190  *              A signed integer, its length is 8 bytes, corresponding to a
 191  *              int64_t.
 192  *
 193  *      OVERLAY_PROP_T_UINT
 194  *
 195  *              An unsigned integer, its length is 8 bytes, corresponding to a
 196  *              uint64_t.
 197  *
 198  *      OVERLAY_PROP_T_IP
 199  *
 200  *              A struct in6_addr, it has a fixed size.
 201  *
 202  *      OVERLAY_PROP_T_STRING
 203  *
 204  *              A null-terminated character string encoded in either ASCII or
 205  *              UTF-8. Note that the size of the string includes the null
 206  *              terminator.
 207  *
 208  *      OVERLAY_PROP_T_ETHER
 209  *
 210  *              An ether_addr_t, which has a fixed size.
 211  *
 212  * The next thing that we apply to a property is its permission. The permissions
 213  * are put together by the bitwise or of the following flags and values.
 214  *
 215  *      OVERLAY_PROP_PERM_REQ
 216  *
 217  *              This indicates a required property. A property that is required
 218  *              must be set by a consumer before the device can be created. If a
 219  *              required property has a default property, this constraint is
 220  *              loosened because the default property defines the value.
 221  *
 222  *      OVERLAY_PORP_PERM_READ
 223  *
 224  *              This indicates that a property can be read. All properties will
 225  *              have this value set.
 226  *
 227  *      OVERLAY_PROP_PERM_WRITE
 228  *
 229  *              This indicates that a property can be written to and thus
 230  *              updated by userland. Properties that are only intended to
 231  *              display information, will not have OVERLAY_PROP_PERM_WRITE set.
 232  *
 233  * In addition, a few additional values are defined as a convenience to
 234  * consumers. The first, OVERLAY_PROP_PERM_RW, is a combination of
 235  * OVERLAY_PROP_PERM_READ and OVERLAY_PERM_PROP_WRITE. The second,
 236  * OVERLAY_PROP_PERM_RRW, is a combination of OVERLAY_PROP_PERM_REQ,
 237  * OVERLAY_PROP_PERM_READ, and OVERLAY_PROP_PERM_WRITE. The protection mode of a
 238  * property should generally be a constant across its lifetime.
 239  *
 240  * A property may optionally have a default value. If it does have a default
 241  * value, and that property is not set to be a different value, then the default
 242  * value is inherited automatically. It also means that if the default value is
 243  * acceptable, there is no need to set the value for a required property. For
 244  * example, the vxlan module has the vxlan/listen_port property which is
 245  * required, but has a default value of 4789 (the IANA assigned port). Because
 246  * of that default value, there is no need for it to be set.
 247  *
 248  * Finally, a property may declare a list of valid values. These valid values
 249  * are used for display purposes, they are not enforced by the broader system,
 250  * but merely allow a means for the information to be communicated to the user
 251  * through dladm(1M). Like a default value, this is optional.
 252  *
 253  * The general scaffolding does not do very much with respect to the getting and
 254  * setting of properties. That is really owned by the individual plugins
 255  * themselves.
 256  *
 257  * -----------------------------
 258  * Destinations and Plugin Types
 259  * -----------------------------
 260  *
 261  * Both encapsulation and lookup plugins define the kinds of destinations that
 262  * they know how to support. There are three different pieces of information
 263  * that can be used to address to a destination currently, all of which is
 264  * summarized in the type overlay_point_t. Any combination of these is
 265  * supported.
 266  *
 267  *      OVERLAY_PLUGIN_D_ETHERNET
 268  *
 269  *              An Ethernet MAC address is required.
 270  *
 271  *      OVERLAY_PLUGIN_D_IP
 272  *
 273  *              An IP address is required. All IP addresses used by the overlay
 274  *              system are transmitted as IPv6 addresses. IPv4 addresses can be
 275  *              represented by using IPv4-mapped IPv6 addresses.
 276  *
 277  *      OVERLAY_PLUGIN_D_PORT
 278  *
 279  *              A TCP/UDP port is required.
 280  *
 281  * A kernel encapsulation plugin declares which of these that it requires, it's
 282  * a static set. On the other hand, a userland lookup plugin can be built to
 283  * support all of these or any combination thereof. It gets passed the required
 284  * destination type, based on the kernel encapsulation method, and then it makes
 285  * the determination as to whether or not it supports it. For example, the
 286  * direct plugin can support either an IP or both an IP and a port, it simply
 287  * doesn't display the direct/dest_port property in the cases where a port is
 288  * not required to support this.
 289  *
 290  * The user lookup plugins have two different modes of operation which
 291  * determines how they interact with the broader system and how look ups are
 292  * performed. These types are:
 293  *
 294  *      OVERLAY_TARGET_POINT
 295  *
 296  *              A point to point plugin has a single static definition for where
 297  *              to send all traffic. Every packet in the system always gets sent
 298  *              to the exact same destination which is programmed into the
 299  *              kernel when the general device is activated.
 300  *
 301  *      OVERLAY_TARGET_DYNAMIC
 302  *
 303  *              A dynamic plugin does not have a single static definition.
 304  *              Instead, for each destination, the kernel makes an asynchronous
 305  *              request to varpd to determine where the packet should be routed,
 306  *              and if a specific destination is found, then that destination is
 307  *              cached in the overlay device's target cache.
 308  *
 309  * This distinction, while important for the general overlay device's operation,
 310  * is not important to the encapsulation plugins. They don't need to know about
 311  * any of these pieces. It's just a concern for varpd, the userland plugin, and
 312  * the general overlay scaffolding.
 313  *
 314  * When an overlay device is set to OVERLAY_TARGET_POINT, then it does not
 315  * maintain a target cache, and instead just keeps track of the destination and
 316  * always sends encapsulated packets to that address. When the target type is of
 317  * OVERLAY_TARGET_DYNAMIC, then the kernel maintains a cache of all such
 318  * destinations. These destinations are kept around in an instance of a
 319  * reference hash that is specific to the given overlay device. Entries in the
 320  * cache can be invalidated and replaced by varpd and its lookup plugins.
 321  *
 322  * ----------------------------------
 323  * Kernel Components and Architecture
 324  * ----------------------------------
 325  *
 326  * There are multiple pieces inside the kernel that work together, there is the
 327  * general overlay_dev_t structure, which is the logical GLDv3 device, but it
 328  * itself has references to things like an instance of an encapsulation plugin,
 329  * a pointer to a mux and a target cache. It can roughly be summarized in the
 330  * following image:
 331  *
 332  *     +------------------+
 333  *     | global           |
 334  *     | overlay list     |
 335  *     | overlay_dev_list |
 336  *     +------------------+
 337  *        |
 338  *        |  +-----------------------+            +---------------+
 339  *        +->| GLDv3 Device          |----------->| GLDv3 Device  | -> ...
 340  *           | overlay_dev_t         |            | overlay_dev_t |
 341  *           |                       |            +---------------+
 342  *           |                       |
 343  *           | mac_handle_t     -----+---> GLDv3 handle to MAC
 344  *           | datalink_id_t    -----+---> Datalink ID used by DLS
 345  *           | overlay_dev_flag_t ---+---> Device state
 346  *           | uint_t           -----+---> Curent device MTU
 347  *           | uint_t           -----+---> In-progress RX operations
 348  *           | uint_t           -----+---> In-progress TX operations
 349  *           | char[]           -----+---> FMA degraded message
 350  *           | void *           -----+---> plugin private data
 351  *           | overlay_target_t * ---+---------------------+
 352  *           | overlay_plugin_t * ---+---------+           |
 353  *           +-----------------------+         |           |
 354  *                           ^                 |           |
 355  *   +--------------------+  |                 |           |
 356  *   | Kernel Socket      |  |                 |           |
 357  *   | Multiplexor        |  |                 |           |
 358  *   | overlay_mux_t      |  |                 |           |
 359  *   |                    |  |                 |           |
 360  *   | avl_tree_t        -+--+                 |           |
 361  *   | uint_t            -+--> socket family   |           |
 362  *   | uint_t            -+--> socket type     |           |
 363  *   | uint_t            -+--> socket protocol |           |
 364  *   | ksocket_t         -+--> I/O socket      |           |
 365  *   | struct sockaddr * -+--> ksocket address |           |
 366  *   | overlay_plugin_t --+--------+           |           |
 367  *   +--------------------+        |           |           |
 368  *                                 |           |           |
 369  *   +-------------------------+   |           |           |
 370  *   | Encap Plugin            |<--+-----------+           |
 371  *   | overlay_plugin_t        |                           |
 372  *   |                         |                           |
 373  *   | char *               ---+--> plugin name            |
 374  *   | overlay_plugin_ops_t * -+--> plugin downcalls       |
 375  *   | char ** (props)      ---+--> property list          |
 376  *   | uint_t               ---+--> id length              |
 377  *   | overlay_plugin_flags_t -+--> plugin flags           |
 378  *   | overlay_plugin_dest_t --+--> destination type       v
 379  *   +-------------------------+                    +-------------------------+
 380  *                                                  |   Target Cache          |
 381  *                                                  |   overlay_target_t      |
 382  *                                                  |                         |
 383  *                                    cache mode <--+- overlay_target_mode_t  |
 384  *                                     dest type <--+- overlay_plugin_dest_t  |
 385  *                                   cache flags <--+- overlay_target_flag_t  |
 386  *                                     varpd id  <--+- uint64_t               |
 387  *                       outstanding varpd reqs. <--+- uint_t                 |
 388  *                   OVERLAY_TARGET_POINT state  <--+- overlay_target_point_t |
 389  *               OVERLAY_TARGET_DYNAMIC state <-+---+- overlay_target_dyn_t   |
 390  *                                              |   +-------------------------+
 391  *                      +-----------------------+
 392  *                      |
 393  *                      v
 394  *   +-------------------------------+   +------------------------+
 395  *   | Target Entry                  |-->| Target Entry           |--> ...
 396  *   | overlay_target_entry_t        |   | overlay_target_entry_t |
 397  *   |                               |   +------------------------+
 398  *   |                               |
 399  *   | overlay_target_entry_flags_t -+--> Entry flags
 400  *   | uint8_t[ETHERADDRL]        ---+--> Target MAC address
 401  *   | overlay_target_point_t     ---+--> Target underlay address
 402  *   | mblk_t *                   ---+--> outstanding mblk head
 403  *   | mblk_t *                   ---+--> outstanding mblk tail
 404  *   | size_t                     ---+--> outstanding mblk size
 405  *   +-------------------------------+
 406  *
 407  * The primary entries that we care about are the overlay_dev_t, which
 408  * correspond to each overlay device that is created with dladm(1M). Globally,
 409  * these devices are maintained in a simple list_t which is protected with a
 410  * lock.  Hence, these include important information such as the mac_handle_t
 411  * and a datalink_id_t which is used to interact with the broader MAC and DLS
 412  * ecosystem. We also maintain additional information such as the current state,
 413  * outstanding operations, the mtu, and importantly, the plugin's private data.
 414  * This is the instance of an encapsulation plugin that gets created as part of
 415  * creating an overlay device. Another aspect of this is that the overlay_dev_t
 416  * also includes information with respect to FMA. For more information, see the
 417  * FMA section.
 418  *
 419  * Each overlay_dev_t has a pointer to a plugin, a mux, and a target. The plugin
 420  * is the encapsulation plugin. This allows the device to make downcalls into it
 421  * based on doing things like getting and setting properties. Otherwise, the
 422  * plugin itself is a fairly straightforward entity. They are maintained in an
 423  * (not pictured above) list. The plugins themselves mostly maintain things like
 424  * the static list of properties, what kind of destination they require, and the
 425  * operations vector. A given module may contain more if necessary.
 426  *
 427  * The next piece of the puzzle is the mux, or a multiplexor. The mux itself
 428  * maintains a ksocket and it is through the mux that we send and receive
 429  * message blocks. The mux represents a socket type and address, as well as a
 430  * plugin. Multiple overlay_dev_t devices may then share the same mux. For
 431  * example, consider the case where you have different instances of vxlan all on
 432  * the same underlay network. These would all logically share the same IP
 433  * address and port that packets are sent and received on; however, what differs
 434  * is the decapuslation ID.
 435  *
 436  * Each mux maintains a ksocket_t which is similar to a socket(3SOCKET). Unlike
 437  * a socket, we enable a direct callback on the ksocket. This means that
 438  * whenever a message block chain is received, rather than sitting there and
 439  * getting a callback in a context and kicking that back out to a taskq. Instead
 440  * data comes into the callback function overlay_mux_recv().
 441  *
 442  * The mux is given encapsulated packets (via overlay_m_tx, the GLDv3 tx
 443  * function) to transmit. It receives encapsulated packets, decapsulates them to
 444  * determine the overlay identifier, looks up the given device that matches that
 445  * identifier, and then causes the broader MAC world to receive the packet with
 446  * a call to mac_rx().
 447  *
 448  * Today, we don't do too much that's special with the ksocket; however, as
 449  * hardware is gaining understanding for these encapuslation protocols, we'll
 450  * probably want to think of better ways to get those capabilities passed down
 451  * and potentially better ways to program receive filters so they get directly
 452  * to us. Though, that's all fantasy future land.
 453  *
 454  * The next part of the puzzle is the target cache. The purpose of the target
 455  * cache is to cache where we should send a packet on the underlay network,
 456  * given its mac address. The target cache operates in two modes depending on
 457  * whether the lookup module was declared to OVERLAY_TARGET_POINT or
 458  * OVERLAY_TARGET_DYANMIC.
 459  *
 460  * In the case where the target cache has been programmed to be
 461  * OVERLAY_TARGET_POINT, then we only maintain a single overlay_target_point_t
 462  * which has the destination that we send everything, no matter the destination
 463  * mac address.
 464  *
 465  * On the other hand, when we have an instance of OVERLAY_TARGET_DYNAMIC, things
 466  * are much more interesting and as a result, more complicated. We primarily
 467  * store lists of overlay_target_entry_t's which are stored in both an avl tree
 468  * and a refhash_t. The primary look up path uses the refhash_t and the avl tree
 469  * is only used for a few of the target ioctls used to dump data such that we
 470  * can get a consistent iteration order for things like dladm show-overlay -t.
 471  * The key that we use for the reference hashtable is based on the mac address
 472  * in the cache and currently we just do a simple CRC32 to transform it into a
 473  * hash.
 474  *
 475  * Each entry maintains a set of flags to indicate the current status of the
 476  * request. The flags may indicate one of three states: that current cache entry
 477  * is valid, that the current cache entry has been directed to drop all output,
 478  * and that the current cache entry is invalid and may be being looked up. In
 479  * the case where it's valid, we just take the destination address and run with
 480  * it.
 481  *
 482  * If it's invalid and a lookup has not been made, then we start the process
 483  * that prepares a query that will make its way up to varpd. The cache entry
 484  * entry maintains a message block chain of outstanding message blocks and a
 485  * size. These lists are populated only when we don't know the answer as to
 486  * where should these be sent. The size entry is used to cap the amount of
 487  * outstanding data that we don't know the answer to. If we exceed a cap on the
 488  * amount of outstanding data (currently 1 Mb), then we'll drop any additional
 489  * packets. Once we get an answer indicating a valid destination, we transmit
 490  * any outstanding data to that place. For the full story on how we look that up
 491  * will be discussed in the section on the Target Cache Lifecycle.
 492  *
 493  * ------------------------
 494  * FMA and Degraded Devices
 495  * ------------------------
 496  *
 497  * Every kernel overlay device keeps track of its FMA state. Today in FMA we
 498  * cannot represent partitions between resources nor can we represent that a
 499  * given minor node of a psuedo device has failed -- if we degrade the overlay
 500  * device, then the entire dev_info_t is degraded. However, we still want to be
 501  * able to indicate to administrators that things may go wrong.
 502  *
 503  * To this end, we've added a notion of a degraded state to every overlay
 504  * device. This state is primarily dictated by userland and it can happen for
 505  * various reasons. Generally, because a userland lookup plugin has been
 506  * partitioned, or something has gone wrong such that there is no longer any
 507  * userland lookup module for a device, then we'll mark it degraded.
 508  *
 509  * As long as any of our minor instances is degraded, then we'll fire off the
 510  * FMA event to note that. Once the last degraded instance is no longer
 511  * degraded, then we'll end up telling FMA that we're all clean.
 512  *
 513  * To help administrators get a better sense of which of the various minor
 514  * devices is wrong, we store the odd_fmamsg[] character array. This character
 515  * array can be fetched with doing a dladm show-overlay -f.
 516  *
 517  * Note, that it's important that we do not update the link status of the
 518  * devices. We want to remain up as much as possible. By changing the link in a
 519  * degraded state, this may end up making things worse. We may still actually
 520  * have information in the target cache and if we mark the link down, that'll
 521  * result in not being able to use it. The reason being that this'll mark all
 522  * the downstream VNICs down which will go to IP and from there we end up
 523  * dealing with sadness.
 524  *
 525  * -----------------------
 526  * Target Cache Life Cycle
 527  * -----------------------
 528  *
 529  * This section only applies when we have a lookup plugin of
 530  * OVERLAY_TARGET_DYNAMIC. None of this applies to those of type
 531  * OVERLAY_TARGET_POINT.
 532  *
 533  * While we got into the target cache in the general architecture section, it's
 534  * worth going into more details as to how this actually works and showing some
 535  * examples and state machines. Recall that a target cache entry basically has
 536  * the following state transition diagram:
 537  *
 538  * Initial state
 539  *    . . .           . . . first access       . . . varpd lookup enqueued
 540  *        .           .                        .
 541  *        .           .                        .
 542  *     +-------+      .     +----------+       .
 543  *     |  No   |------*---->| Invalid  |-------*----+
 544  *     | Entry |            |  Entry   |            |
 545  *     +-------+            +----------+            |
 546  *                 varpd      ^      ^   varpd      |
 547  *                 invalidate |      |   drop       |
 548  *                      . . . *      * . .          v
 549  *          +-------+         |      |         +---------+
 550  *          | Entry |--->-----+      +----<----| Entry   |
 551  *          | Valid |<----------*---------<----| Pending |->-+     varpd
 552  *          +-------+           .              +---------+   * . . drop, but
 553  *                              . varpd                ^     |     other queued
 554  *                              . success              |     |     entries
 555  *                                                     +-----+
 556  *
 557  * When the table is first created, it is empty. As we attempt to lookup entries
 558  * and we find there is no entry at all, we'll create a new table entry for it.
 559  * At that point the entry is technically in an invalid state, that means that
 560  * we have no valid data from varpd. In that case, we'll go ahead and queue the
 561  * packet into the entry's pending chain, and queue a varpd lookup, setting the
 562  * OVERLAY_ENTRY_F_PENDING flag in the progress.
 563  *
 564  * If additional mblk_t's come in for this entry, we end up appending them to
 565  * the tail of the chain, if and only if, we don't exceed the threshold for the
 566  * amount of space they can take up. An entry remains pending until we get a
 567  * varpd reply. If varpd replies with a valid results, we move to the valid
 568  * entry state, and remove the OVERLAY_ENTRY_F_PENDING flag and set it with one
 569  * of OVERLAY_ENTRY_F_VALID or OVERLAY_ENTRY_F_DROP as appropriate.
 570  *
 571  * Once an entry is valid, it stays valid until user land tells us to invalidate
 572  * it with an ioctl or replace it, OVERLAY_TARG_CACHE_REMOE and
 573  * OVERLAY_TARG_CACHE_SET respectively.
 574  *
 575  * If the lookup fails with a call to drop the packet, then the next state is
 576  * determined by the state of the queue. If the set of outstanding entries is
 577  * empty, then we just transition back to the invalid state. If instead, the
 578  * set of outstanding entries is not empty, then we'll queue another entry and
 579  * stay in the same state, repeating this until the number of requests is
 580  * drained.
 581  *
 582  * The following images describes the flow of a given lookup and where the
 583  * overlay_target_entry_t is at any given time.
 584  *
 585  *     +-------------------+
 586  *     | Invalid Entry     |            An entry starts off as an invalid entry
 587  *     | de:ad:be:ef:00:00 |            and only exists in the target cache.
 588  *     +-------------------+
 589  *
 590  *      ~~~~
 591  *
 592  *     +---------------------+
 593  *     | Global list_t       |          A mblk_t comes in for an entry. We
 594  *     | overlay_target_list |          append it to the overlay_target_list.
 595  *     +---------------------+
 596  *                   |
 597  *                   v
 598  *             +-------------------+      +-------------------+
 599  *             | Pending Entry     |----->| Pending Entry     |--->...
 600  *             | 42:5e:1a:10:d6:2d |      | de:ad:be:ef:00:00 |
 601  *             +-------------------+      +-------------------+
 602  *
 603  *      ~~~~
 604  *
 605  *     +--------------------------+
 606  *     | /dev/overlay minor state |     User land said that it would look up an
 607  *     | overlay_target_hdl_t     |     entry for us. We remove it from the
 608  *     +--------------------------+     global list and add it to the handle's
 609  *                  |                   outstanding list.
 610  *                  |
 611  *                  v
 612  *            +-------------------+      +-------------------+
 613  *            | Pending Entry     |----->| Pending Entry     |
 614  *            | 90:b8:d0:79:02:dd |      | de:ad:be:ef:00:00 |
 615  *            +-------------------+      +-------------------+
 616  *
 617  *      ~~~~
 618  *
 619  *     +-------------------+
 620  *     | Valid Entry       |            varpd returned an answer with
 621  *     | de:ad:be:ef:00:00 |            OVERLAY_IOC_RESPOND and the target cache
 622  *     | 10.169.23.42:4789 |            entry is now populated with a
 623  *     +-------------------+            destination and marked as valid
 624  *
 625  *
 626  * The lookup mechanism is performed via a series of operations on the character
 627  * psuedo-device /dev/overlay. The only thing that uses this device is the
 628  * userland daemon varpd. /dev/overlay is a cloneable device, each open of it
 629  * granting a new minor number which maintains its own state. We maintain this
 630  * state so that way if an outstanding lookup was queued to something that
 631  * crashed or closed its handle without responding, we can know about this and
 632  * thus handle it appropriately.
 633  *
 634  * When a lookup is first created it's added to our global list of outstanding
 635  * lookups. To service requests, userland is required to perform an ioctl to ask
 636  * for a request. We will block it in the kernel a set amount of time waiting
 637  * for a request. When we give a request to a given minor instance of the
 638  * device, we remove it from the global list and append the request to the
 639  * device's list of outstanding entries, for the reasons we discussed above.
 640  * When a lookup comes in, we give user land a smaller amount of information
 641  * specific to that packet, the overlay_targ_lookup_t. It includes a request id
 642  * to identify this, and then the overlay id, the varpd id, the header and
 643  * packet size, the source and destination mac address, the SAP, and any
 644  * potential VLAN header.
 645  *
 646  * At that point, it stays in that outstanding list until one of two ioctls are
 647  * returned: OVERLAY_TARG_RESPOND or OVERLAY_TARG_DROP. During this time,
 648  * userland may also perform other operations. For example, it may use
 649  * OVERLAY_TARG_PKT to get a copy of this packet so it can perform more in-depth
 650  * analysis of what to do beyond what we gave it initially. This is useful for
 651  * providing proxy arp and the like. Finally, there are two other ioctls that
 652  * varpd can then do. The first is OVERLAY_TARG_INJECT which injects the
 653  * non-jumbo frame packet up into that mac device and OVERLAY_TARG_RESEND which
 654  * causes us to encapsulate and send out the packet they've given us.
 655  *
 656  *
 657  * Finally, through the target cache, several ioctls are provided to allow for
 658  * interrogation and management of the cache. They allow for individual entries
 659  * to be retrieved, set, or have the entire table flushed. For the full set of
 660  * ioctls here and what they do, take a look at uts/common/sys/overlay_target.h.
 661  *
 662  * ------------------
 663  * Sample Packet Flow
 664  * ------------------
 665  *
 666  * There's a lot of pieces here, hopefully an example of how this all fits
 667  * together will help clarify and elucidate what's going on. We're going to
 668  * first track an outgoing packet, eg. one that is sent from an IP interface on
 669  * a VNIC on top of an overlay device, and then we'll look at what it means to
 670  * respond to that.
 671  *
 672  *
 673  *    +----------------+        +--------------+            +------------------+
 674  *    | IP/DLS send    |------->| MAC sends it |----------->| mblk_t reaches   |
 675  *    | packet to MAC  |        | to the GLDv3 |            | overlay GLDv3 tx |
 676  *    +----------------+        | VNIC device  |            | overlay_m_tx()   |
 677  *                              +--------------+            +------------------+
 678  *                                                                   |
 679  *                             . lookup              . cache         |
 680  *                             . drop                . miss          v
 681  *            +---------+      .       +--------+    .      +------------------+
 682  *            | freemsg |<-----*-------| varpd  |<---*------| Lookup each mblk |
 683  *            | mblk_t  |              | lookup |           | in the target    |
 684  *            +---------+              | queued |           | cache            |
 685  *                ^                    +--------+           +------------------+
 686  *      on send   |                        |                         |     cache
 687  *      error . . *                        *. . lookup               * . . hit
 688  *                |                        |    success              v
 689  *                |                        |                +------------------+
 690  *    +-----------------+                  +--------------->| call plugin      |
 691  *    | Send out        |                                   | ovpo_encap() to  |
 692  *    | overlay_mux_t's |<----------------------------------| get encap mblk_t |
 693  *    | ksocket         |                                   +------------------+
 694  *    +-----------------+
 695  *
 696  * The receive end point looks a little different and looks more like:
 697  *
 698  *  +------------------+     +----------------+    +-----------+
 699  *  | mblk_t comes off |---->| enter netstack |--->| delivered |---+
 700  *  | the physical     |     | IP stack       |    |     to    |   * . . direct
 701  *  | device           |     +----------------+    |  ksocket  |   |   callback
 702  *  +------------------+                           +-----------+   |
 703  *                       . overlay id                              |
 704  *                       . not found                               v
 705  *       +-----------+   .      +-----------------+       +--------------------+
 706  *       | freemsg   |<--*------| call plugin     |<------| overlay_mux_recv() |
 707  *       | mblk_t    |          | ovpo_decap() to |       +--------------------+
 708  *       +-----------+          | decap mblk_t    |
 709  *                              +-----------------+
 710  *                                     |
 711  *                                     * . . overlay id
 712  *                                     v     found
 713  *                                 +--------+      +----------------+
 714  *                                 | adjust |----->| call mac_rx    |
 715  *                                 | mblk_t |      | on original    |
 716  *                                 +--------+      | decaped packet |
 717  *                                                 +----------------+
 718  *
 719  * ------------------
 720  * Netstack Awareness
 721  * ------------------
 722  *
 723  * In the above image we note that this enters a netstack. Today the only
 724  * netstack that can be is the global zone as the overlay driver itself is not
 725  * exactly netstack aware. What this really means is that varpd cannot run in a
 726  * non-global zone and an overlay device cannot belong to a non-global zone.
 727  * Non-global zones can still have a VNIC assigned to them that's been created
 728  * over the overlay device the same way they would if it had been created over
 729  * an etherstub or a physical device.
 730  *
 731  * The majority of the work to make it netstack aware is straightforward and the
 732  * biggest thing is to create a netstack module that allows us to hook into
 733  * netstack (and thus zone) creation and destruction.  From there, we need to
 734  * amend the target cache lookup routines that we discussed earlier to not have
 735  * a global outstanding list and a global list of handles, but rather, one per
 736  * netstack.
 737  *
 738  * For the mux, we'll need to open the ksocket in the context of the zone, we
 739  * can likely do this with a properly composed credential, but we'll need to do
 740  * some more work on that path. Finally, we'll want to make sure the dld ioctls
 741  * are aware of the zoneid of the caller and we use that appropriately and store
 742  * it in the overlay_dev_t.
 743  *
 744  * -----------
 745  * GLDv3 Notes
 746  * -----------
 747  *
 748  * The overlay driver implements a GLDv3 device. Parts of GLDv3 are more
 749  * relevant and other parts are much less relevant for us. For example, the
 750  * GLDv3 is used to toggle the device being put into and out of promiscuous
 751  * mode, to program MAC addresses for unicast and multicast hardware filters.
 752  * Today, an overlay device doesn't have a notion of promiscuous mode nor does
 753  * it have a notion of unicast and multicast addresses programmed into the
 754  * device. Instead, for the purposes of the hardware filter, we don't do
 755  * anything and just always accept new addresses being added and removed.
 756  *
 757  * If the GLDv3 start function has not been called, then we will not use this
 758  * device for I/O purposes. Any calls to transmit or receive should be dropped,
 759  * though the GLDv3 guarantees us that transmit will not be called without
 760  * calling start. Similarly, once stop is called, then no packets can be dealt
 761  * with.
 762  *
 763  * Today we don't support the stat interfaces, though there's no good reason
 764  * that we shouldn't assemble some of the stats based on what we have in the
 765  * future.
 766  *
 767  * When it comes to link properties, many of the traditional link properties do
 768  * not apply and many others MAC handles for us. For example, we don't need to
 769  * implement anything for overlay_m_getprop() to deal with returning the MTU, as
 770  * MAC never calls into us for that. As such, there isn't much of anything to
 771  * support in terms of properties.
 772  *
 773  * Today, we don't support any notion of hardware capabilities. However, if
 774  * future NIC hardware or other changes to the system cause it to make sense for
 775  * us to emulate logical groups, then we should do that. However, we still do
 776  * implement a capab function so that we can identify ourselves as an overlay
 777  * device to the broader MAC framework. This is done mostly so that a device
 778  * created on top of us can have fanout rings as we don't try to lie about a
 779  * speed for our device.
 780  *
 781  * The other question is what should be done for a device's MTU and margin. We
 782  * set our minimum supported MTU to be the minimum value that an IP network may
 783  * be set to 576 -- which mimics what an etherstub does. On the flip side, we
 784  * have our upper bound set to 8900. This value comes from the fact that a lot
 785  * of jumbo networks use their maximum as 9000. As such, we want to reserve 100
 786  * bytes, which isn't exactly the most accurate number, but it'll be good enough
 787  * for now. Because of that, our default MTU off of these devices is 1400, as
 788  * the default MTU for everything is usually 1500 or whatever the underlying
 789  * device is at; however, this is a bit simpler than asking the netstack what
 790  * are all the IP interfaces at. It also calls into question how PMTU and PMTU
 791  * discovery should work here. The challenge, especially for
 792  * OVERLAY_TARG_DYNAMIC is that the MTU to any of the places will vary and it's
 793  * not clear that if you have a single bad entry that the overall MTU should be
 794  * lowered. Instead, we should figure out a better way of determining these
 795  * kinds of PMTU errors and appropriately alerting the administrator via FMA.
 796  *
 797  * Regarding margin, we allow a margin of up to VLAN_TAGSZ depending on whether
 798  * or not the underlying encapsulation device supports VLAN tags. If it does,
 799  * then we'll set the margin to allow for it, otherwise, we will not.
 800  */
 801 
 802 #include <sys/conf.h>
 803 #include <sys/errno.h>
 804 #include <sys/stat.h>
 805 #include <sys/ddi.h>
 806 #include <sys/sunddi.h>
 807 #include <sys/modctl.h>
 808 #include <sys/policy.h>
 809 #include <sys/stream.h>
 810 #include <sys/strsubr.h>
 811 #include <sys/strsun.h>
 812 #include <sys/types.h>
 813 #include <sys/kmem.h>
 814 #include <sys/param.h>
 815 #include <sys/sysmacros.h>
 816 #include <sys/ddifm.h>
 817 
 818 #include <sys/dls.h>
 819 #include <sys/dld_ioc.h>
 820 #include <sys/mac_provider.h>
 821 #include <sys/mac_client_priv.h>
 822 #include <sys/mac_ether.h>
 823 #include <sys/vlan.h>
 824 
 825 #include <sys/overlay_impl.h>
 826 
 827 dev_info_t *overlay_dip;
 828 static kmutex_t overlay_dev_lock;
 829 static list_t overlay_dev_list;
 830 static uint8_t overlay_macaddr[ETHERADDRL] =
 831         { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 832 
 833 typedef enum overlay_dev_prop {
 834         OVERLAY_DEV_P_MTU = 0,
 835         OVERLAY_DEV_P_VNETID,
 836         OVERLAY_DEV_P_ENCAP,
 837         OVERLAY_DEV_P_VARPDID,
 838         OVERLAY_DEV_P_DCID
 839 } overlay_dev_prop_t;
 840 
 841 #define OVERLAY_DEV_NPROPS      5
 842 static const char *overlay_dev_props[] = {
 843         "mtu",
 844         "vnetid",
 845         "encap",
 846         "varpd/id",
 847         "dcid"
 848 };
 849 
 850 #define OVERLAY_MTU_MIN 576
 851 #define OVERLAY_MTU_DEF 1400
 852 #define OVERLAY_MTU_MAX 8900
 853 
 854 overlay_dev_t *
 855 overlay_hold_by_dlid(datalink_id_t id)
 856 {
 857         overlay_dev_t *o;
 858 
 859         mutex_enter(&overlay_dev_lock);
 860         for (o = list_head(&overlay_dev_list); o != NULL;
 861             o = list_next(&overlay_dev_list, o)) {
 862                 if (id == o->odd_linkid) {
 863                         mutex_enter(&o->odd_lock);
 864                         o->odd_ref++;
 865                         mutex_exit(&o->odd_lock);
 866                         mutex_exit(&overlay_dev_lock);
 867                         return (o);
 868                 }
 869         }
 870 
 871         mutex_exit(&overlay_dev_lock);
 872         return (NULL);
 873 }
 874 
 875 void
 876 overlay_hold_rele(overlay_dev_t *odd)
 877 {
 878         mutex_enter(&odd->odd_lock);
 879         ASSERT(odd->odd_ref > 0);
 880         odd->odd_ref--;
 881         mutex_exit(&odd->odd_lock);
 882 }
 883 
 884 void
 885 overlay_io_start(overlay_dev_t *odd, overlay_dev_flag_t flag)
 886 {
 887         ASSERT(flag == OVERLAY_F_IN_RX || flag == OVERLAY_F_IN_TX);
 888         ASSERT(MUTEX_HELD(&odd->odd_lock));
 889 
 890         if (flag & OVERLAY_F_IN_RX)
 891                 odd->odd_rxcount++;
 892         if (flag & OVERLAY_F_IN_TX)
 893                 odd->odd_txcount++;
 894         odd->odd_flags |= flag;
 895 }
 896 
 897 void
 898 overlay_io_done(overlay_dev_t *odd, overlay_dev_flag_t flag)
 899 {
 900         boolean_t signal = B_FALSE;
 901 
 902         ASSERT(flag == OVERLAY_F_IN_RX || flag == OVERLAY_F_IN_TX);
 903         ASSERT(MUTEX_HELD(&odd->odd_lock));
 904 
 905         if (flag & OVERLAY_F_IN_RX) {
 906                 ASSERT(odd->odd_rxcount > 0);
 907                 odd->odd_rxcount--;
 908                 if (odd->odd_rxcount == 0) {
 909                         signal = B_TRUE;
 910                         odd->odd_flags &= ~OVERLAY_F_IN_RX;
 911                 }
 912         }
 913         if (flag & OVERLAY_F_IN_TX) {
 914                 ASSERT(odd->odd_txcount > 0);
 915                 odd->odd_txcount--;
 916                 if (odd->odd_txcount == 0) {
 917                         signal = B_TRUE;
 918                         odd->odd_flags &= ~OVERLAY_F_IN_TX;
 919                 }
 920         }
 921 
 922         if (signal == B_TRUE)
 923                 cv_broadcast(&odd->odd_iowait);
 924 }
 925 
 926 static void
 927 overlay_io_wait(overlay_dev_t *odd, overlay_dev_flag_t flag)
 928 {
 929         ASSERT((flag & ~OVERLAY_F_IOMASK) == 0);
 930         ASSERT(MUTEX_HELD(&odd->odd_lock));
 931 
 932         while (odd->odd_flags & flag) {
 933                 cv_wait(&odd->odd_iowait, &odd->odd_lock);
 934         }
 935 }
 936 
 937 void
 938 overlay_dev_iter(overlay_dev_iter_f func, void *arg)
 939 {
 940         overlay_dev_t *odd;
 941 
 942         mutex_enter(&overlay_dev_lock);
 943         for (odd = list_head(&overlay_dev_list); odd != NULL;
 944             odd = list_next(&overlay_dev_list, odd)) {
 945                 if (func(odd, arg) != 0) {
 946                         mutex_exit(&overlay_dev_lock);
 947                         return;
 948                 }
 949         }
 950         mutex_exit(&overlay_dev_lock);
 951 }
 952 
 953 /* ARGSUSED */
 954 static int
 955 overlay_m_stat(void *arg, uint_t stat, uint64_t *val)
 956 {
 957         return (ENOTSUP);
 958 }
 959 
 960 static int
 961 overlay_m_start(void *arg)
 962 {
 963         overlay_dev_t *odd = arg;
 964         overlay_mux_t *mux;
 965         int ret, domain, family, prot;
 966         struct sockaddr_storage storage;
 967         socklen_t slen;
 968 
 969         mutex_enter(&odd->odd_lock);
 970         if ((odd->odd_flags & OVERLAY_F_ACTIVATED) == 0) {
 971                 mutex_exit(&odd->odd_lock);
 972                 return (EAGAIN);
 973         }
 974         mutex_exit(&odd->odd_lock);
 975 
 976         ret = odd->odd_plugin->ovp_ops->ovpo_socket(odd->odd_pvoid, &domain,
 977             &family, &prot, (struct sockaddr *)&storage, &slen);
 978         if (ret != 0)
 979                 return (ret);
 980 
 981         mux = overlay_mux_open(odd->odd_plugin, domain, family, prot,
 982             (struct sockaddr *)&storage, slen, &ret);
 983         if (mux == NULL)
 984                 return (ret);
 985 
 986         overlay_mux_add_dev(mux, odd);
 987         odd->odd_mux = mux;
 988         mutex_enter(&odd->odd_lock);
 989         ASSERT(!(odd->odd_flags & OVERLAY_F_IN_MUX));
 990         odd->odd_flags |= OVERLAY_F_IN_MUX;
 991         mutex_exit(&odd->odd_lock);
 992 
 993         return (0);
 994 }
 995 
 996 static void
 997 overlay_m_stop(void *arg)
 998 {
 999         overlay_dev_t *odd = arg;
1000 
1001         /*
1002          * The MAC Perimeter is held here, so we don't have to worry about
1003          * synchornizing this with respect to metadata operations.
1004          */
1005         mutex_enter(&odd->odd_lock);
1006         VERIFY(odd->odd_flags & OVERLAY_F_IN_MUX);
1007         VERIFY(!(odd->odd_flags & OVERLAY_F_MDDROP));
1008         odd->odd_flags |= OVERLAY_F_MDDROP;
1009         overlay_io_wait(odd, OVERLAY_F_IOMASK);
1010         mutex_exit(&odd->odd_lock);
1011 
1012         overlay_mux_remove_dev(odd->odd_mux, odd);
1013         overlay_mux_close(odd->odd_mux);
1014         odd->odd_mux = NULL;
1015 
1016         mutex_enter(&odd->odd_lock);
1017         odd->odd_flags &= ~OVERLAY_F_IN_MUX;
1018         odd->odd_flags &= ~OVERLAY_F_MDDROP;
1019         VERIFY((odd->odd_flags & OVERLAY_F_STOPMASK) == 0);
1020         mutex_exit(&odd->odd_lock);
1021 }
1022 
1023 /*
1024  * For more info on this, see the big theory statement.
1025  */
1026 /* ARGSUSED */
1027 static int
1028 overlay_m_promisc(void *arg, boolean_t on)
1029 {
1030         return (0);
1031 }
1032 
1033 /*
1034  * For more info on this, see the big theory statement.
1035  */
1036 /* ARGSUSED */
1037 static int
1038 overlay_m_multicast(void *arg, boolean_t add, const uint8_t *addrp)
1039 {
1040         return (0);
1041 }
1042 
1043 /*
1044  * For more info on this, see the big theory statement.
1045  */
1046 /* ARGSUSED */
1047 static int
1048 overlay_m_unicast(void *arg, const uint8_t *macaddr)
1049 {
1050         return (0);
1051 }
1052 
1053 mblk_t *
1054 overlay_m_tx(void *arg, mblk_t *mp_chain)
1055 {
1056         overlay_dev_t *odd = arg;
1057         mblk_t *mp, *ep;
1058         int ret;
1059         ovep_encap_info_t einfo;
1060         struct msghdr hdr;
1061 
1062         mutex_enter(&odd->odd_lock);
1063         if ((odd->odd_flags & OVERLAY_F_MDDROP) ||
1064             !(odd->odd_flags & OVERLAY_F_IN_MUX)) {
1065                 mutex_exit(&odd->odd_lock);
1066                 freemsgchain(mp_chain);
1067                 return (NULL);
1068         }
1069         overlay_io_start(odd, OVERLAY_F_IN_TX);
1070         mutex_exit(&odd->odd_lock);
1071 
1072         bzero(&hdr, sizeof (struct msghdr));
1073 
1074         bzero(&einfo, sizeof (ovep_encap_info_t));
1075         einfo.ovdi_id = odd->odd_vid;
1076         mp = mp_chain;
1077         while (mp != NULL) {
1078                 socklen_t slen;
1079                 struct sockaddr_storage storage;
1080 
1081                 mp_chain = mp->b_next;
1082                 mp->b_next = NULL;
1083                 ep = NULL;
1084 
1085                 /*
1086                  * TODO: we probably need to change 'storage' to a
1087                  * refheld overlay_target_entry_t and also maybe set
1088                  * local vlan from packet header for check below
1089                  */
1090                 ret = overlay_target_lookup(odd, mp,
1091                     (struct sockaddr *)&storage, &slen);
1092                 if (ret != OVERLAY_TARGET_OK) {
1093                         if (ret == OVERLAY_TARGET_DROP)
1094                                 freemsg(mp);
1095                         mp = mp_chain;
1096                         continue;
1097                 }
1098 
1099                 /*
1100                  * TODO:
1101                  *      set hdr.msg_name from target_entry
1102                  *
1103                  *      if !local:
1104                  *              check fabric attachment
1105                  *              modify vlan tag, VL2 mac addresses
1106                  *
1107                  *      set einfo.ovdi_id to vnet id (move into loop since
1108                  *      things cannot assume to all have same vnet id anymore)
1109                  */
1110                 hdr.msg_name = &storage;
1111                 hdr.msg_namelen = slen;
1112 
1113                 ret = odd->odd_plugin->ovp_ops->ovpo_encap(odd->odd_mh, mp,
1114                     &einfo, &ep);
1115                 if (ret != 0 || ep == NULL) {
1116                         freemsg(mp);
1117                         goto out;
1118                 }
1119 
1120                 ep->b_cont = mp;
1121                 ret = overlay_mux_tx(odd->odd_mux, &hdr, ep);
1122                 if (ret != 0)
1123                         goto out;
1124 
1125                 mp = mp_chain;
1126         }
1127 
1128 out:
1129         mutex_enter(&odd->odd_lock);
1130         overlay_io_done(odd, OVERLAY_F_IN_TX);
1131         mutex_exit(&odd->odd_lock);
1132         return (mp_chain);
1133 }
1134 
1135 /* ARGSUSED */
1136 static void
1137 overlay_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1138 {
1139         miocnak(q, mp, 0, ENOTSUP);
1140 }
1141 
1142 /* ARGSUSED */
1143 static boolean_t
1144 overlay_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
1145 {
1146         /*
1147          * Tell MAC we're an overlay.
1148          */
1149         if (cap == MAC_CAPAB_OVERLAY)
1150                 return (B_TRUE);
1151         return (B_FALSE);
1152 }
1153 
1154 /* ARGSUSED */
1155 static int
1156 overlay_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
1157     uint_t pr_valsize, const void *pr_val)
1158 {
1159         uint32_t mtu, old;
1160         int err;
1161         overlay_dev_t *odd = arg;
1162 
1163         if (pr_num != MAC_PROP_MTU)
1164                 return (ENOTSUP);
1165 
1166         bcopy(pr_val, &mtu, sizeof (mtu));
1167         if (mtu < OVERLAY_MTU_MIN || mtu > OVERLAY_MTU_MAX)
1168                 return (EINVAL);
1169 
1170         mutex_enter(&odd->odd_lock);
1171         old = odd->odd_mtu;
1172         odd->odd_mtu = mtu;
1173         err = mac_maxsdu_update(odd->odd_mh, mtu);
1174         if (err != 0)
1175                 odd->odd_mtu = old;
1176         mutex_exit(&odd->odd_lock);
1177 
1178         return (err);
1179 }
1180 
1181 /* ARGSUSED */
1182 static int
1183 overlay_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
1184     uint_t pr_valsize, void *pr_val)
1185 {
1186         return (ENOTSUP);
1187 }
1188 
1189 /* ARGSUSED */
1190 static void
1191 overlay_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t pr_num,
1192     mac_prop_info_handle_t prh)
1193 {
1194         if (pr_num != MAC_PROP_MTU)
1195                 return;
1196 
1197         mac_prop_info_set_default_uint32(prh, OVERLAY_MTU_DEF);
1198         mac_prop_info_set_range_uint32(prh, OVERLAY_MTU_MIN, OVERLAY_MTU_MAX);
1199 }
1200 
1201 static mac_callbacks_t overlay_m_callbacks = {
1202         .mc_callbacks = (MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP |
1203             MC_PROPINFO),
1204         .mc_getstat = overlay_m_stat,
1205         .mc_start = overlay_m_start,
1206         .mc_stop = overlay_m_stop,
1207         .mc_setpromisc = overlay_m_promisc,
1208         .mc_multicst = overlay_m_multicast,
1209         .mc_unicst = overlay_m_unicast,
1210         .mc_tx = overlay_m_tx,
1211         .mc_ioctl = overlay_m_ioctl,
1212         .mc_getcapab = overlay_m_getcapab,
1213         .mc_getprop = overlay_m_getprop,
1214         .mc_setprop = overlay_m_setprop,
1215         .mc_propinfo = overlay_m_propinfo
1216 };
1217 
1218 static boolean_t
1219 overlay_valid_name(const char *name, size_t buflen)
1220 {
1221         size_t actlen;
1222         int err, i;
1223 
1224         for (i = 0; i < buflen; i++) {
1225                 if (name[i] == '\0')
1226                         break;
1227         }
1228 
1229         if (i == 0 || i == buflen)
1230                 return (B_FALSE);
1231         actlen = i;
1232         if (strchr(name, '/') != NULL)
1233                 return (B_FALSE);
1234         if (u8_validate((char *)name, actlen, NULL,
1235             U8_VALIDATE_ENTIRE, &err) < 0)
1236                 return (B_FALSE);
1237         return (B_TRUE);
1238 }
1239 
1240 /* ARGSUSED */
1241 static int
1242 overlay_i_create(void *karg, intptr_t arg, int mode, cred_t *cred, int *rvalp)
1243 {
1244         int err;
1245         uint64_t maxid;
1246         overlay_dev_t *odd, *o;
1247         mac_register_t *mac;
1248         overlay_ioc_create_t *oicp = karg;
1249 
1250         if (overlay_valid_name(oicp->oic_encap, MAXLINKNAMELEN) == B_FALSE)
1251                 return (EINVAL);
1252 
1253         odd = kmem_zalloc(sizeof (overlay_dev_t), KM_SLEEP);
1254         odd->odd_linkid = oicp->oic_linkid;
1255         odd->odd_plugin = overlay_plugin_lookup(oicp->oic_encap);
1256         if (odd->odd_plugin == NULL) {
1257                 kmem_free(odd, sizeof (overlay_dev_t));
1258                 return (ENOENT);
1259         }
1260         err = odd->odd_plugin->ovp_ops->ovpo_init((overlay_handle_t)odd,
1261             &odd->odd_pvoid);
1262         if (err != 0) {
1263                 odd->odd_plugin->ovp_ops->ovpo_fini(odd->odd_pvoid);
1264                 overlay_plugin_rele(odd->odd_plugin);
1265                 kmem_free(odd, sizeof (overlay_dev_t));
1266                 return (EINVAL);
1267         }
1268 
1269         /*
1270          * Make sure that our virtual network id is valid for the given plugin
1271          * that we're working with.
1272          */
1273         ASSERT(odd->odd_plugin->ovp_id_size <= 8);
1274         maxid = UINT64_MAX;
1275         if (odd->odd_plugin->ovp_id_size != 8)
1276                 maxid = (1ULL << (odd->odd_plugin->ovp_id_size * 8)) - 1ULL;
1277         if (oicp->oic_vnetid > maxid) {
1278                 odd->odd_plugin->ovp_ops->ovpo_fini(odd->odd_pvoid);
1279                 overlay_plugin_rele(odd->odd_plugin);
1280                 kmem_free(odd, sizeof (overlay_dev_t));
1281                 return (EINVAL);
1282         }
1283         odd->odd_vid = oicp->oic_vnetid;
1284 
1285         if (oicp->oic_dcid > UINT32_MAX) {
1286                 odd->odd_plugin->ovp_ops->ovpo_fini(odd->odd_pvoid);
1287                 overlay_plugin_rele(odd->odd_plugin);
1288                 kmem_free(odd, sizeof (overlay_dev_t));
1289                 return (EINVAL);
1290         }
1291         odd->odd_dcid = oicp->oic_dcid;
1292 
1293         mac = mac_alloc(MAC_VERSION);
1294         if (mac == NULL) {
1295                 mutex_exit(&overlay_dev_lock);
1296                 odd->odd_plugin->ovp_ops->ovpo_fini(odd->odd_pvoid);
1297                 overlay_plugin_rele(odd->odd_plugin);
1298                 kmem_free(odd, sizeof (overlay_dev_t));
1299                 return (EINVAL);
1300         }
1301 
1302         mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
1303         mac->m_driver = odd;
1304         mac->m_dip = overlay_dip;
1305         mac->m_dst_addr = NULL;
1306         mac->m_callbacks = &overlay_m_callbacks;
1307         mac->m_pdata = NULL;
1308         mac->m_pdata_size = 0;
1309 
1310         mac->m_priv_props = NULL;
1311 
1312         /* Let mac handle this itself. */
1313         mac->m_instance = (uint_t)-1;
1314 
1315         /*
1316          * There is no real source address that should be used here, but saying
1317          * that we're not ethernet is going to cause its own problems. At the
1318          * end of the say, this is fine.
1319          */
1320         mac->m_src_addr = overlay_macaddr;
1321 
1322         /*
1323          * Start with the default MTU as the max SDU. If the MTU is changed, the
1324          * SDU will be changed to reflect that.
1325          */
1326         mac->m_min_sdu = 1;
1327         mac->m_max_sdu = OVERLAY_MTU_DEF;
1328         mac->m_multicast_sdu = 0;
1329 
1330         /*
1331          * The underlying device doesn't matter, instead this comes from the
1332          * encapsulation protocol and whether or not they allow VLAN tags.
1333          */
1334         if (odd->odd_plugin->ovp_flags & OVEP_F_VLAN_TAG) {
1335                 mac->m_margin = VLAN_TAGSZ;
1336         } else {
1337                 mac->m_margin = 0;
1338         }
1339 
1340         /*
1341          * Today, we have no MAC virtualization, it may make sense in the future
1342          * to go ahead and emulate some subset of this, but it doesn't today.
1343          */
1344         mac->m_v12n = MAC_VIRT_NONE;
1345 
1346         mutex_enter(&overlay_dev_lock);
1347         for (o = list_head(&overlay_dev_list); o != NULL;
1348             o = list_next(&overlay_dev_list, o)) {
1349                 if (o->odd_linkid == oicp->oic_linkid) {
1350                         mutex_exit(&overlay_dev_lock);
1351                         odd->odd_plugin->ovp_ops->ovpo_fini(odd->odd_pvoid);
1352                         overlay_plugin_rele(odd->odd_plugin);
1353                         kmem_free(odd, sizeof (overlay_dev_t));
1354                         return (EEXIST);
1355                 }
1356 
1357                 if (o->odd_vid == oicp->oic_vnetid &&
1358                     o->odd_plugin == odd->odd_plugin) {
1359                         mutex_exit(&overlay_dev_lock);
1360                         odd->odd_plugin->ovp_ops->ovpo_fini(odd->odd_pvoid);
1361                         overlay_plugin_rele(odd->odd_plugin);
1362                         kmem_free(odd, sizeof (overlay_dev_t));
1363                         return (EEXIST);
1364                 }
1365         }
1366 
1367         err = mac_register(mac, &odd->odd_mh);
1368         mac_free(mac);
1369         if (err != 0) {
1370                 mutex_exit(&overlay_dev_lock);
1371                 odd->odd_plugin->ovp_ops->ovpo_fini(odd->odd_pvoid);
1372                 overlay_plugin_rele(odd->odd_plugin);
1373                 kmem_free(odd, sizeof (overlay_dev_t));
1374                 return (err);
1375         }
1376 
1377         err = dls_devnet_create(odd->odd_mh, odd->odd_linkid,
1378             crgetzoneid(cred));
1379         if (err != 0) {
1380                 mutex_exit(&overlay_dev_lock);
1381                 (void) mac_unregister(odd->odd_mh);
1382                 odd->odd_plugin->ovp_ops->ovpo_fini(odd->odd_pvoid);
1383                 overlay_plugin_rele(odd->odd_plugin);
1384                 kmem_free(odd, sizeof (overlay_dev_t));
1385                 return (err);
1386         }
1387 
1388         mutex_init(&odd->odd_lock, NULL, MUTEX_DRIVER, NULL);
1389         cv_init(&odd->odd_iowait, NULL, CV_DRIVER, NULL);
1390         odd->odd_ref = 0;
1391         odd->odd_flags = 0;
1392         list_insert_tail(&overlay_dev_list, odd);
1393         mutex_exit(&overlay_dev_lock);
1394 
1395         return (0);
1396 }
1397 
1398 /* ARGSUSED */
1399 static int
1400 overlay_i_activate(void *karg, intptr_t arg, int mode, cred_t *cred, int *rvalp)
1401 {
1402         int i, ret;
1403         overlay_dev_t *odd;
1404         mac_perim_handle_t mph;
1405         overlay_ioc_activate_t *oiap = karg;
1406         overlay_ioc_propinfo_t *infop;
1407         overlay_ioc_prop_t *oip;
1408         overlay_prop_handle_t phdl;
1409 
1410         odd = overlay_hold_by_dlid(oiap->oia_linkid);
1411         if (odd == NULL)
1412                 return (ENOENT);
1413 
1414         infop = kmem_alloc(sizeof (overlay_ioc_propinfo_t), KM_SLEEP);
1415         oip = kmem_alloc(sizeof (overlay_ioc_prop_t), KM_SLEEP);
1416         phdl = (overlay_prop_handle_t)infop;
1417 
1418         mac_perim_enter_by_mh(odd->odd_mh, &mph);
1419         mutex_enter(&odd->odd_lock);
1420         if (odd->odd_flags & OVERLAY_F_ACTIVATED) {
1421                 mutex_exit(&odd->odd_lock);
1422                 mac_perim_exit(mph);
1423                 overlay_hold_rele(odd);
1424                 kmem_free(infop, sizeof (overlay_ioc_propinfo_t));
1425                 kmem_free(oip, sizeof (overlay_ioc_prop_t));
1426                 return (EEXIST);
1427         }
1428         mutex_exit(&odd->odd_lock);
1429 
1430         for (i = 0; i < odd->odd_plugin->ovp_nprops; i++) {
1431                 const char *pname = odd->odd_plugin->ovp_props[i];
1432                 bzero(infop, sizeof (overlay_ioc_propinfo_t));
1433                 overlay_prop_init(phdl);
1434                 ret = odd->odd_plugin->ovp_ops->ovpo_propinfo(pname, phdl);
1435                 if (ret != 0) {
1436                         mac_perim_exit(mph);
1437                         overlay_hold_rele(odd);
1438                         kmem_free(infop, sizeof (overlay_ioc_propinfo_t));
1439                         kmem_free(oip, sizeof (overlay_ioc_prop_t));
1440                         return (ret);
1441                 }
1442 
1443                 if ((infop->oipi_prot & OVERLAY_PROP_PERM_REQ) == 0)
1444                         continue;
1445                 bzero(oip, sizeof (overlay_ioc_prop_t));
1446                 oip->oip_size = sizeof (oip->oip_value);
1447                 ret = odd->odd_plugin->ovp_ops->ovpo_getprop(odd->odd_pvoid,
1448                     pname, oip->oip_value, &oip->oip_size);
1449                 if (ret != 0) {
1450                         mac_perim_exit(mph);
1451                         overlay_hold_rele(odd);
1452                         kmem_free(infop, sizeof (overlay_ioc_propinfo_t));
1453                         kmem_free(oip, sizeof (overlay_ioc_prop_t));
1454                         return (ret);
1455                 }
1456                 if (oip->oip_size == 0) {
1457                         mac_perim_exit(mph);
1458                         overlay_hold_rele(odd);
1459                         kmem_free(infop, sizeof (overlay_ioc_propinfo_t));
1460                         kmem_free(oip, sizeof (overlay_ioc_prop_t));
1461                         return (EINVAL);
1462                 }
1463         }
1464 
1465         mutex_enter(&odd->odd_lock);
1466         if ((odd->odd_flags & OVERLAY_F_VARPD) == 0) {
1467                 mutex_exit(&odd->odd_lock);
1468                 mac_perim_exit(mph);
1469                 overlay_hold_rele(odd);
1470                 kmem_free(infop, sizeof (overlay_ioc_propinfo_t));
1471                 kmem_free(oip, sizeof (overlay_ioc_prop_t));
1472                 return (ENXIO);
1473         }
1474 
1475         ASSERT((odd->odd_flags & OVERLAY_F_ACTIVATED) == 0);
1476         odd->odd_flags |= OVERLAY_F_ACTIVATED;
1477 
1478         /*
1479          * Now that we've activated ourselves, we should indicate to the world
1480          * that we're up. Note that we may not be able to perform lookups at
1481          * this time, but our notion of being 'up' isn't dependent on that
1482          * ability.
1483          */
1484         mac_link_update(odd->odd_mh, LINK_STATE_UP);
1485         mutex_exit(&odd->odd_lock);
1486 
1487         mac_perim_exit(mph);
1488         overlay_hold_rele(odd);
1489         kmem_free(infop, sizeof (overlay_ioc_propinfo_t));
1490         kmem_free(oip, sizeof (overlay_ioc_prop_t));
1491 
1492         return (0);
1493 }
1494 
1495 /* ARGSUSED */
1496 static int
1497 overlay_i_delete(void *karg, intptr_t arg, int mode, cred_t *cred, int *rvalp)
1498 {
1499         overlay_ioc_delete_t *oidp = karg;
1500         overlay_dev_t *odd;
1501         datalink_id_t tid;
1502         int ret;
1503 
1504         odd = overlay_hold_by_dlid(oidp->oid_linkid);
1505         if (odd == NULL) {
1506                 return (ENOENT);
1507         }
1508 
1509         mutex_enter(&odd->odd_lock);
1510         /* If we're not the only hold, we're busy */
1511         if (odd->odd_ref != 1) {
1512                 mutex_exit(&odd->odd_lock);
1513                 overlay_hold_rele(odd);
1514                 return (EBUSY);
1515         }
1516 
1517         if (odd->odd_flags & OVERLAY_F_IN_MUX) {
1518                 mutex_exit(&odd->odd_lock);
1519                 overlay_hold_rele(odd);
1520                 return (EBUSY);
1521         }
1522 
1523         /*
1524          * To remove this, we need to first remove it from dls and then remove
1525          * it from mac. The act of removing it from mac will check if there are
1526          * devices on top of this, eg. vnics. If there are, then that will fail
1527          * and we'll have to go through and recreate the dls entry. Only after
1528          * mac_unregister has succeeded, then we'll go through and actually free
1529          * everything and drop the dev lock.
1530          */
1531         ret = dls_devnet_destroy(odd->odd_mh, &tid, B_TRUE);
1532         if (ret != 0) {
1533                 overlay_hold_rele(odd);
1534                 return (ret);
1535         }
1536 
1537         ASSERT(oidp->oid_linkid == tid);
1538         ret = mac_disable(odd->odd_mh);
1539         if (ret != 0) {
1540                 (void) dls_devnet_create(odd->odd_mh, odd->odd_linkid,
1541                     crgetzoneid(cred));
1542                 overlay_hold_rele(odd);
1543                 return (ret);
1544         }
1545 
1546         overlay_target_quiesce(odd->odd_target);
1547 
1548         mutex_enter(&overlay_dev_lock);
1549         list_remove(&overlay_dev_list, odd);
1550         mutex_exit(&overlay_dev_lock);
1551 
1552         cv_destroy(&odd->odd_iowait);
1553         mutex_destroy(&odd->odd_lock);
1554         overlay_target_free(odd);
1555         odd->odd_plugin->ovp_ops->ovpo_fini(odd->odd_pvoid);
1556         overlay_plugin_rele(odd->odd_plugin);
1557         kmem_free(odd, sizeof (overlay_dev_t));
1558 
1559         return (0);
1560 }
1561 
1562 /* ARGSUSED */
1563 static int
1564 overlay_i_nprops(void *karg, intptr_t arg, int mode, cred_t *cred,
1565     int *rvalp)
1566 {
1567         overlay_dev_t *odd;
1568         overlay_ioc_nprops_t *on = karg;
1569 
1570         odd = overlay_hold_by_dlid(on->oipn_linkid);
1571         if (odd == NULL)
1572                 return (ENOENT);
1573         on->oipn_nprops = odd->odd_plugin->ovp_nprops + OVERLAY_DEV_NPROPS;
1574         overlay_hold_rele(odd);
1575 
1576         return (0);
1577 }
1578 
1579 static int
1580 overlay_propinfo_plugin_cb(overlay_plugin_t *opp, void *arg)
1581 {
1582         overlay_prop_handle_t phdl = arg;
1583         overlay_prop_set_range_str(phdl, opp->ovp_name);
1584         return (0);
1585 }
1586 
1587 static int
1588 overlay_i_name_to_propid(overlay_dev_t *odd, const char *name, uint_t *id)
1589 {
1590         int i;
1591 
1592         for (i = 0; i < OVERLAY_DEV_NPROPS; i++) {
1593                 if (strcmp(overlay_dev_props[i], name) == 0) {
1594                         *id = i;
1595                         return (0);
1596                 }
1597         }
1598 
1599         for (i = 0; i < odd->odd_plugin->ovp_nprops; i++) {
1600                 if (strcmp(odd->odd_plugin->ovp_props[i], name) == 0) {
1601                         *id = i + OVERLAY_DEV_NPROPS;
1602                         return (0);
1603                 }
1604         }
1605 
1606         return (ENOENT);
1607 }
1608 
1609 static void
1610 overlay_i_propinfo_mtu(overlay_dev_t *odd, overlay_prop_handle_t phdl)
1611 {
1612         uint32_t def;
1613         mac_propval_range_t range;
1614         uint_t perm;
1615 
1616         ASSERT(MAC_PERIM_HELD(odd->odd_mh));
1617 
1618         bzero(&range, sizeof (mac_propval_range_t));
1619         range.mpr_count = 1;
1620         if (mac_prop_info(odd->odd_mh, MAC_PROP_MTU, "mtu", &def,
1621             sizeof (def), &range, &perm) != 0)
1622                 return;
1623 
1624         if (perm == MAC_PROP_PERM_READ)
1625                 overlay_prop_set_prot(phdl, OVERLAY_PROP_PERM_READ);
1626         else if (perm == MAC_PROP_PERM_WRITE)
1627                 overlay_prop_set_prot(phdl, OVERLAY_PROP_PERM_WRITE);
1628         else if (perm == MAC_PROP_PERM_RW)
1629                 overlay_prop_set_prot(phdl, OVERLAY_PROP_PERM_RW);
1630 
1631         overlay_prop_set_type(phdl, OVERLAY_PROP_T_UINT);
1632         overlay_prop_set_default(phdl, &def, sizeof (def));
1633         overlay_prop_set_range_uint32(phdl, range.mpr_range_uint32[0].mpur_min,
1634             range.mpr_range_uint32[0].mpur_max);
1635 }
1636 
1637 /* ARGSUSED */
1638 static int
1639 overlay_i_propinfo(void *karg, intptr_t arg, int mode, cred_t *cred,
1640     int *rvalp)
1641 {
1642         overlay_dev_t *odd;
1643         int ret;
1644         mac_perim_handle_t mph;
1645         uint_t propid = UINT_MAX;
1646         overlay_ioc_propinfo_t *oip = karg;
1647         overlay_prop_handle_t phdl = (overlay_prop_handle_t)oip;
1648 
1649         odd = overlay_hold_by_dlid(oip->oipi_linkid);
1650         if (odd == NULL)
1651                 return (ENOENT);
1652 
1653         overlay_prop_init(phdl);
1654         mac_perim_enter_by_mh(odd->odd_mh, &mph);
1655 
1656         /*
1657          * If the id is -1, then the property that we're looking for is named in
1658          * oipi_name and we should fill in its id. Otherwise, we've been given
1659          * an id and we need to turn that into a name for our plugin's sake. The
1660          * id is our own fabrication for property discovery.
1661          */
1662         if (oip->oipi_id == -1) {
1663                 /*
1664                  * Determine if it's a known generic property or it belongs to a
1665                  * module by checking against the list of known names.
1666                  */
1667                 oip->oipi_name[OVERLAY_PROP_NAMELEN-1] = '\0';
1668                 if ((ret = overlay_i_name_to_propid(odd, oip->oipi_name,
1669                     &propid)) != 0) {
1670                         overlay_hold_rele(odd);
1671                         mac_perim_exit(mph);
1672                         return (ret);
1673                 }
1674                 oip->oipi_id = propid;
1675                 if (propid >= OVERLAY_DEV_NPROPS) {
1676                         ret = odd->odd_plugin->ovp_ops->ovpo_propinfo(
1677                             oip->oipi_name, phdl);
1678                         overlay_hold_rele(odd);
1679                         mac_perim_exit(mph);
1680                         return (ret);
1681 
1682                 }
1683         } else if (oip->oipi_id >= OVERLAY_DEV_NPROPS) {
1684                 uint_t id = oip->oipi_id - OVERLAY_DEV_NPROPS;
1685 
1686                 if (id >= odd->odd_plugin->ovp_nprops) {
1687                         overlay_hold_rele(odd);
1688                         mac_perim_exit(mph);
1689                         return (EINVAL);
1690                 }
1691                 ret = odd->odd_plugin->ovp_ops->ovpo_propinfo(
1692                     odd->odd_plugin->ovp_props[id], phdl);
1693                 overlay_hold_rele(odd);
1694                 mac_perim_exit(mph);
1695                 return (ret);
1696         } else if (oip->oipi_id < -1) {
1697                 overlay_hold_rele(odd);
1698                 mac_perim_exit(mph);
1699                 return (EINVAL);
1700         } else {
1701                 ASSERT(oip->oipi_id < OVERLAY_DEV_NPROPS);
1702                 ASSERT(oip->oipi_id >= 0);
1703                 propid = oip->oipi_id;
1704                 (void) strlcpy(oip->oipi_name, overlay_dev_props[propid],
1705                     sizeof (oip->oipi_name));
1706         }
1707 
1708         switch (propid) {
1709         case OVERLAY_DEV_P_MTU:
1710                 overlay_i_propinfo_mtu(odd, phdl);
1711                 break;
1712         case OVERLAY_DEV_P_VNETID:
1713                 overlay_prop_set_prot(phdl, OVERLAY_PROP_PERM_RW);
1714                 overlay_prop_set_type(phdl, OVERLAY_PROP_T_UINT);
1715                 overlay_prop_set_nodefault(phdl);
1716                 break;
1717         case OVERLAY_DEV_P_ENCAP:
1718                 overlay_prop_set_prot(phdl, OVERLAY_PROP_PERM_READ);
1719                 overlay_prop_set_type(phdl, OVERLAY_PROP_T_STRING);
1720                 overlay_prop_set_nodefault(phdl);
1721                 overlay_plugin_walk(overlay_propinfo_plugin_cb, phdl);
1722                 break;
1723         case OVERLAY_DEV_P_VARPDID:
1724                 overlay_prop_set_prot(phdl, OVERLAY_PROP_PERM_READ);
1725                 overlay_prop_set_type(phdl, OVERLAY_PROP_T_UINT);
1726                 overlay_prop_set_nodefault(phdl);
1727                 break;
1728         case OVERLAY_DEV_P_DCID:
1729                 overlay_prop_set_prot(phdl, OVERLAY_PROP_PERM_READ);
1730                 overlay_prop_set_type(phdl, OVERLAY_PROP_T_UINT);
1731                 overlay_prop_set_nodefault(phdl);
1732                 overlay_prop_set_range_uint32(phdl, 0, UINT32_MAX);
1733                 break;
1734         default:
1735                 overlay_hold_rele(odd);
1736                 mac_perim_exit(mph);
1737                 return (ENOENT);
1738         }
1739 
1740         overlay_hold_rele(odd);
1741         mac_perim_exit(mph);
1742         return (0);
1743 }
1744 
1745 /* ARGSUSED */
1746 static int
1747 overlay_i_getprop(void *karg, intptr_t arg, int mode, cred_t *cred,
1748     int *rvalp)
1749 {
1750         int ret;
1751         overlay_dev_t *odd;
1752         mac_perim_handle_t mph;
1753         overlay_ioc_prop_t *oip = karg;
1754         uint_t propid, mtu;
1755 
1756         odd = overlay_hold_by_dlid(oip->oip_linkid);
1757         if (odd == NULL)
1758                 return (ENOENT);
1759 
1760         mac_perim_enter_by_mh(odd->odd_mh, &mph);
1761         oip->oip_size = OVERLAY_PROP_SIZEMAX;
1762         oip->oip_name[OVERLAY_PROP_NAMELEN-1] = '\0';
1763         if (oip->oip_id == -1) {
1764                 int i;
1765 
1766                 for (i = 0; i < OVERLAY_DEV_NPROPS; i++) {
1767                         if (strcmp(overlay_dev_props[i], oip->oip_name) == 0)
1768                                 break;
1769                         if (i == OVERLAY_DEV_NPROPS) {
1770                                 ret = odd->odd_plugin->ovp_ops->ovpo_getprop(
1771                                     odd->odd_pvoid, oip->oip_name,
1772                                     oip->oip_value, &oip->oip_size);
1773                                 overlay_hold_rele(odd);
1774                                 mac_perim_exit(mph);
1775                                 return (ret);
1776                         }
1777                 }
1778 
1779                 propid = i;
1780         } else if (oip->oip_id >= OVERLAY_DEV_NPROPS) {
1781                 uint_t id = oip->oip_id - OVERLAY_DEV_NPROPS;
1782 
1783                 if (id > odd->odd_plugin->ovp_nprops) {
1784                         overlay_hold_rele(odd);
1785                         mac_perim_exit(mph);
1786                         return (EINVAL);
1787                 }
1788                 ret = odd->odd_plugin->ovp_ops->ovpo_getprop(odd->odd_pvoid,
1789                     odd->odd_plugin->ovp_props[id], oip->oip_value,
1790                     &oip->oip_size);
1791                 overlay_hold_rele(odd);
1792                 mac_perim_exit(mph);
1793                 return (ret);
1794         } else if (oip->oip_id < -1) {
1795                 overlay_hold_rele(odd);
1796                 mac_perim_exit(mph);
1797                 return (EINVAL);
1798         } else {
1799                 ASSERT(oip->oip_id < OVERLAY_DEV_NPROPS);
1800                 ASSERT(oip->oip_id >= 0);
1801                 propid = oip->oip_id;
1802         }
1803 
1804         ret = 0;
1805         switch (propid) {
1806         case OVERLAY_DEV_P_MTU:
1807                 /*
1808                  * The MTU is always set and retrieved through MAC, to allow for
1809                  * MAC to do whatever it wants, as really that property belongs
1810                  * to MAC. This is important for things where vnics have hold on
1811                  * the MTU.
1812                  */
1813                 mac_sdu_get(odd->odd_mh, NULL, &mtu);
1814                 bcopy(&mtu, oip->oip_value, sizeof (uint_t));
1815                 oip->oip_size = sizeof (uint_t);
1816                 break;
1817         case OVERLAY_DEV_P_VNETID:
1818                 /*
1819                  * While it's read-only while inside of a mux, we're not in a
1820                  * context that can guarantee that. Therefore we always grab the
1821                  * overlay_dev_t's odd_lock.
1822                  */
1823                 mutex_enter(&odd->odd_lock);
1824                 bcopy(&odd->odd_vid, oip->oip_value, sizeof (uint64_t));
1825                 mutex_exit(&odd->odd_lock);
1826                 oip->oip_size = sizeof (uint64_t);
1827                 break;
1828         case OVERLAY_DEV_P_ENCAP:
1829                 oip->oip_size = strlcpy((char *)oip->oip_value,
1830                     odd->odd_plugin->ovp_name, oip->oip_size);
1831                 break;
1832         case OVERLAY_DEV_P_VARPDID:
1833                 mutex_enter(&odd->odd_lock);
1834                 if (odd->odd_flags & OVERLAY_F_VARPD) {
1835                         const uint64_t val = odd->odd_target->ott_id;
1836                         bcopy(&val, oip->oip_value, sizeof (uint64_t));
1837                         oip->oip_size = sizeof (uint64_t);
1838                 } else {
1839                         oip->oip_size = 0;
1840                 }
1841                 mutex_exit(&odd->odd_lock);
1842                 break;
1843         case OVERLAY_DEV_P_DCID:
1844                 /*
1845                  * While it's read-only while inside of a mux, we're not in a
1846                  * context that can guarantee that. Therefore we always grab the
1847                  * overlay_dev_t's odd_lock.
1848                  */
1849                 mutex_enter(&odd->odd_lock);
1850                 bcopy(&odd->odd_dcid, oip->oip_value, sizeof (uint32_t));
1851                 mutex_exit(&odd->odd_lock);
1852                 oip->oip_size = sizeof (uint32_t);
1853                 break;
1854 
1855         default:
1856                 ret = ENOENT;
1857         }
1858 
1859         overlay_hold_rele(odd);
1860         mac_perim_exit(mph);
1861         return (ret);
1862 }
1863 
1864 static void
1865 overlay_setprop_vnetid(overlay_dev_t *odd, uint64_t vnetid)
1866 {
1867         mutex_enter(&odd->odd_lock);
1868 
1869         /* Simple case, not active */
1870         if (!(odd->odd_flags & OVERLAY_F_IN_MUX)) {
1871                 odd->odd_vid = vnetid;
1872                 mutex_exit(&odd->odd_lock);
1873                 return;
1874         }
1875 
1876         /*
1877          * In the hard case, we need to set the drop flag, quiesce I/O and then
1878          * we can go ahead and do everything.
1879          */
1880         odd->odd_flags |= OVERLAY_F_MDDROP;
1881         overlay_io_wait(odd, OVERLAY_F_IOMASK);
1882         mutex_exit(&odd->odd_lock);
1883 
1884         overlay_mux_remove_dev(odd->odd_mux, odd);
1885         mutex_enter(&odd->odd_lock);
1886         odd->odd_vid = vnetid;
1887         mutex_exit(&odd->odd_lock);
1888         overlay_mux_add_dev(odd->odd_mux, odd);
1889 
1890         mutex_enter(&odd->odd_lock);
1891         ASSERT(odd->odd_flags & OVERLAY_F_IN_MUX);
1892         odd->odd_flags &= ~OVERLAY_F_IN_MUX;
1893         mutex_exit(&odd->odd_lock);
1894 }
1895 
1896 static void
1897 overlay_setprop_dcid(overlay_dev_t *odd, uint32_t dcid)
1898 {
1899         mutex_enter(&odd->odd_lock);
1900 
1901         /* Simple case, not active */
1902         if (!(odd->odd_flags & OVERLAY_F_IN_MUX)) {
1903                 odd->odd_dcid = dcid;
1904                 mutex_exit(&odd->odd_lock);
1905                 return;
1906         }
1907 
1908         /*
1909          * In the hard case, we need to set the drop flag, quiesce I/O and then
1910          * we can go ahead and do everything.
1911          */
1912         odd->odd_flags |= OVERLAY_F_MDDROP;
1913         overlay_io_wait(odd, OVERLAY_F_IOMASK);
1914         mutex_exit(&odd->odd_lock);
1915 
1916         overlay_mux_remove_dev(odd->odd_mux, odd);
1917         mutex_enter(&odd->odd_lock);
1918         odd->odd_dcid = dcid;
1919         mutex_exit(&odd->odd_lock);
1920         overlay_mux_add_dev(odd->odd_mux, odd);
1921 
1922         mutex_enter(&odd->odd_lock);
1923         ASSERT(odd->odd_flags & OVERLAY_F_IN_MUX);
1924         odd->odd_flags &= ~OVERLAY_F_IN_MUX;
1925         mutex_exit(&odd->odd_lock);
1926 }
1927 
1928 /* ARGSUSED */
1929 static int
1930 overlay_i_setprop(void *karg, intptr_t arg, int mode, cred_t *cred,
1931     int *rvalp)
1932 {
1933         int ret;
1934         overlay_dev_t *odd;
1935         overlay_ioc_prop_t *oip = karg;
1936         uint_t propid = UINT_MAX;
1937         mac_perim_handle_t mph;
1938         uint64_t maxid, *vidp, *dcidp;
1939 
1940         if (oip->oip_size > OVERLAY_PROP_SIZEMAX)
1941                 return (EINVAL);
1942 
1943         odd = overlay_hold_by_dlid(oip->oip_linkid);
1944         if (odd == NULL)
1945                 return (ENOENT);
1946 
1947         oip->oip_name[OVERLAY_PROP_NAMELEN-1] = '\0';
1948         mac_perim_enter_by_mh(odd->odd_mh, &mph);
1949         mutex_enter(&odd->odd_lock);
1950         if (odd->odd_flags & OVERLAY_F_ACTIVATED) {
1951                 mac_perim_exit(mph);
1952                 mutex_exit(&odd->odd_lock);
1953                 return (ENOTSUP);
1954         }
1955         mutex_exit(&odd->odd_lock);
1956         if (oip->oip_id == -1) {
1957                 int i;
1958 
1959                 for (i = 0; i < OVERLAY_DEV_NPROPS; i++) {
1960                         if (strcmp(overlay_dev_props[i], oip->oip_name) == 0)
1961                                 break;
1962                         if (i == OVERLAY_DEV_NPROPS) {
1963                                 ret = odd->odd_plugin->ovp_ops->ovpo_setprop(
1964                                     odd->odd_pvoid, oip->oip_name,
1965                                     oip->oip_value, oip->oip_size);
1966                                 overlay_hold_rele(odd);
1967                                 mac_perim_exit(mph);
1968                                 return (ret);
1969                         }
1970                 }
1971 
1972                 propid = i;
1973         } else if (oip->oip_id >= OVERLAY_DEV_NPROPS) {
1974                 uint_t id = oip->oip_id - OVERLAY_DEV_NPROPS;
1975 
1976                 if (id > odd->odd_plugin->ovp_nprops) {
1977                         mac_perim_exit(mph);
1978                         overlay_hold_rele(odd);
1979                         return (EINVAL);
1980                 }
1981                 ret = odd->odd_plugin->ovp_ops->ovpo_setprop(odd->odd_pvoid,
1982                     odd->odd_plugin->ovp_props[id], oip->oip_value,
1983                     oip->oip_size);
1984                 mac_perim_exit(mph);
1985                 overlay_hold_rele(odd);
1986                 return (ret);
1987         } else if (oip->oip_id < -1) {
1988                 mac_perim_exit(mph);
1989                 overlay_hold_rele(odd);
1990                 return (EINVAL);
1991         } else {
1992                 ASSERT(oip->oip_id < OVERLAY_DEV_NPROPS);
1993                 ASSERT(oip->oip_id >= 0);
1994                 propid = oip->oip_id;
1995         }
1996 
1997         ret = 0;
1998         switch (propid) {
1999         case OVERLAY_DEV_P_MTU:
2000                 ret = mac_set_prop(odd->odd_mh, MAC_PROP_MTU, "mtu",
2001                     oip->oip_value, oip->oip_size);
2002                 break;
2003         case OVERLAY_DEV_P_VNETID:
2004                 if (oip->oip_size != sizeof (uint64_t)) {
2005                         ret = EINVAL;
2006                         break;
2007                 }
2008                 vidp = (uint64_t *)oip->oip_value;
2009                 ASSERT(odd->odd_plugin->ovp_id_size <= 8);
2010                 maxid = UINT64_MAX;
2011                 if (odd->odd_plugin->ovp_id_size != 8)
2012                         maxid = (1ULL << (odd->odd_plugin->ovp_id_size * 8)) -
2013                             1ULL;
2014                 if (*vidp >= maxid) {
2015                         ret = EINVAL;
2016                         break;
2017                 }
2018                 overlay_setprop_vnetid(odd, *vidp);
2019                 break;
2020         case OVERLAY_DEV_P_ENCAP:
2021         case OVERLAY_DEV_P_VARPDID:
2022                 ret = EPERM;
2023                 break;
2024         case OVERLAY_DEV_P_DCID:
2025                 if (oip->oip_size != sizeof (uint64_t)) {
2026                         ret = EINVAL;
2027                         break;
2028                 }
2029                 dcidp = (uint64_t *)oip->oip_value;
2030                 if (*dcidp > UINT32_MAX) {
2031                         ret = EINVAL;
2032                         break;
2033                 }
2034                 overlay_setprop_dcid(odd, *dcidp);
2035                 break;
2036 
2037         default:
2038                 ret = ENOENT;
2039         }
2040 
2041         mac_perim_exit(mph);
2042         overlay_hold_rele(odd);
2043         return (ret);
2044 }
2045 
2046 /* ARGSUSED */
2047 static int
2048 overlay_i_status(void *karg, intptr_t arg, int mode, cred_t *cred,
2049     int *rvalp)
2050 {
2051         overlay_dev_t *odd;
2052         overlay_ioc_status_t *os = karg;
2053 
2054         odd = overlay_hold_by_dlid(os->ois_linkid);
2055         if (odd == NULL)
2056                 return (ENOENT);
2057 
2058         mutex_enter(&odd->odd_lock);
2059         if ((odd->odd_flags & OVERLAY_F_DEGRADED) != 0) {
2060                 os->ois_status = OVERLAY_I_DEGRADED;
2061                 if (odd->odd_fmamsg != NULL) {
2062                         (void) strlcpy(os->ois_message, odd->odd_fmamsg,
2063                             OVERLAY_STATUS_BUFLEN);
2064                 } else {
2065                         os->ois_message[0] = '\0';
2066                 }
2067 
2068         } else {
2069                 os->ois_status = OVERLAY_I_OK;
2070                 os->ois_message[0] = '\0';
2071         }
2072         mutex_exit(&odd->odd_lock);
2073         overlay_hold_rele(odd);
2074 
2075         return (0);
2076 }
2077 
2078 static dld_ioc_info_t overlay_ioc_list[] = {
2079         { OVERLAY_IOC_CREATE, DLDCOPYIN, sizeof (overlay_ioc_create_t),
2080                 overlay_i_create, secpolicy_dl_config },
2081         { OVERLAY_IOC_ACTIVATE, DLDCOPYIN, sizeof (overlay_ioc_activate_t),
2082                 overlay_i_activate, secpolicy_dl_config },
2083         { OVERLAY_IOC_DELETE, DLDCOPYIN, sizeof (overlay_ioc_delete_t),
2084                 overlay_i_delete, secpolicy_dl_config },
2085         { OVERLAY_IOC_PROPINFO, DLDCOPYIN | DLDCOPYOUT,
2086                 sizeof (overlay_ioc_propinfo_t), overlay_i_propinfo,
2087                 secpolicy_dl_config },
2088         { OVERLAY_IOC_GETPROP, DLDCOPYIN | DLDCOPYOUT,
2089                 sizeof (overlay_ioc_prop_t), overlay_i_getprop,
2090                 secpolicy_dl_config },
2091         { OVERLAY_IOC_SETPROP, DLDCOPYIN,
2092                 sizeof (overlay_ioc_prop_t), overlay_i_setprop,
2093                 secpolicy_dl_config },
2094         { OVERLAY_IOC_NPROPS, DLDCOPYIN | DLDCOPYOUT,
2095                 sizeof (overlay_ioc_nprops_t), overlay_i_nprops,
2096                 secpolicy_dl_config },
2097         { OVERLAY_IOC_STATUS, DLDCOPYIN | DLDCOPYOUT,
2098                 sizeof (overlay_ioc_status_t), overlay_i_status,
2099                 NULL }
2100 };
2101 
2102 static int
2103 overlay_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2104 {
2105         int fmcap = DDI_FM_EREPORT_CAPABLE;
2106         if (cmd != DDI_ATTACH)
2107                 return (DDI_FAILURE);
2108 
2109         if (overlay_dip != NULL || ddi_get_instance(dip) != 0)
2110                 return (DDI_FAILURE);
2111 
2112         ddi_fm_init(dip, &fmcap, NULL);
2113 
2114         if (ddi_create_minor_node(dip, OVERLAY_CTL, S_IFCHR,
2115             ddi_get_instance(dip), DDI_PSEUDO, 0) == DDI_FAILURE)
2116                 return (DDI_FAILURE);
2117 
2118         if (dld_ioc_register(OVERLAY_IOC, overlay_ioc_list,
2119             DLDIOCCNT(overlay_ioc_list)) != 0) {
2120                 ddi_remove_minor_node(dip, OVERLAY_CTL);
2121                 return (DDI_FAILURE);
2122         }
2123 
2124         overlay_dip = dip;
2125         return (DDI_SUCCESS);
2126 }
2127 
2128 /* ARGSUSED */
2129 static int
2130 overlay_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **resp)
2131 {
2132         int error;
2133 
2134         switch (cmd) {
2135         case DDI_INFO_DEVT2DEVINFO:
2136                 *resp = (void *)overlay_dip;
2137                 error = DDI_SUCCESS;
2138                 break;
2139         case DDI_INFO_DEVT2INSTANCE:
2140                 *resp = (void *)0;
2141                 error = DDI_SUCCESS;
2142                 break;
2143         default:
2144                 error = DDI_FAILURE;
2145                 break;
2146         }
2147 
2148         return (error);
2149 }
2150 
2151 static int
2152 overlay_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2153 {
2154         if (cmd != DDI_DETACH)
2155                 return (DDI_FAILURE);
2156 
2157         mutex_enter(&overlay_dev_lock);
2158         if (!list_is_empty(&overlay_dev_list) || overlay_target_busy()) {
2159                 mutex_exit(&overlay_dev_lock);
2160                 return (EBUSY);
2161         }
2162         mutex_exit(&overlay_dev_lock);
2163 
2164 
2165         dld_ioc_unregister(OVERLAY_IOC);
2166         ddi_remove_minor_node(dip, OVERLAY_CTL);
2167         ddi_fm_fini(dip);
2168         overlay_dip = NULL;
2169         return (DDI_SUCCESS);
2170 }
2171 
2172 static struct cb_ops overlay_cbops = {
2173         overlay_target_open,    /* cb_open */
2174         overlay_target_close,   /* cb_close */
2175         nodev,                  /* cb_strategy */
2176         nodev,                  /* cb_print */
2177         nodev,                  /* cb_dump */
2178         nodev,                  /* cb_read */
2179         nodev,                  /* cb_write */
2180         overlay_target_ioctl,   /* cb_ioctl */
2181         nodev,                  /* cb_devmap */
2182         nodev,                  /* cb_mmap */
2183         nodev,                  /* cb_segmap */
2184         nochpoll,               /* cb_chpoll */
2185         ddi_prop_op,            /* cb_prop_op */
2186         NULL,                   /* cb_stream */
2187         D_MP,                   /* cb_flag */
2188         CB_REV,                 /* cb_rev */
2189         nodev,                  /* cb_aread */
2190         nodev,                  /* cb_awrite */
2191 };
2192 
2193 static struct dev_ops overlay_dev_ops = {
2194         DEVO_REV,               /* devo_rev */
2195         0,                      /* devo_refcnt */
2196         overlay_getinfo,        /* devo_getinfo */
2197         nulldev,                /* devo_identify */
2198         nulldev,                /* devo_probe */
2199         overlay_attach,         /* devo_attach */
2200         overlay_detach,         /* devo_detach */
2201         nulldev,                /* devo_reset */
2202         &overlay_cbops,             /* devo_cb_ops */
2203         NULL,                   /* devo_bus_ops */
2204         NULL,                   /* devo_power */
2205         ddi_quiesce_not_supported       /* devo_quiesce */
2206 };
2207 
2208 static struct modldrv overlay_modldrv = {
2209         &mod_driverops,
2210         "Overlay Network Driver",
2211         &overlay_dev_ops
2212 };
2213 
2214 static struct modlinkage overlay_linkage = {
2215         MODREV_1,
2216         &overlay_modldrv
2217 };
2218 
2219 static int
2220 overlay_init(void)
2221 {
2222         mutex_init(&overlay_dev_lock, NULL, MUTEX_DRIVER, NULL);
2223         list_create(&overlay_dev_list, sizeof (overlay_dev_t),
2224             offsetof(overlay_dev_t, odd_link));
2225         overlay_mux_init();
2226         overlay_plugin_init();
2227         overlay_target_init();
2228 
2229         return (DDI_SUCCESS);
2230 }
2231 
2232 static void
2233 overlay_fini(void)
2234 {
2235         overlay_target_fini();
2236         overlay_plugin_fini();
2237         overlay_mux_fini();
2238         mutex_destroy(&overlay_dev_lock);
2239         list_destroy(&overlay_dev_list);
2240 }
2241 
2242 int
2243 _init(void)
2244 {
2245         int err;
2246 
2247         if ((err = overlay_init()) != DDI_SUCCESS)
2248                 return (err);
2249 
2250         mac_init_ops(NULL, "overlay");
2251         err = mod_install(&overlay_linkage);
2252         if (err != DDI_SUCCESS) {
2253                 overlay_fini();
2254                 return (err);
2255         }
2256 
2257         return (0);
2258 }
2259 
2260 int
2261 _info(struct modinfo *modinfop)
2262 {
2263         return (mod_info(&overlay_linkage, modinfop));
2264 }
2265 
2266 int
2267 _fini(void)
2268 {
2269         int err;
2270 
2271         err = mod_remove(&overlay_linkage);
2272         if (err != 0)
2273                 return (err);
2274 
2275         overlay_fini();
2276         return (0);
2277 }