1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #ifndef _INET_SADB_H
27 #define _INET_SADB_H
28
29 #ifdef __cplusplus
30 extern "C" {
31 #endif
32
33 #include <inet/ipsec_info.h>
34 #include <sys/crypto/common.h>
35 #include <sys/crypto/api.h>
36 #include <sys/note.h>
37
38 #define IPSA_MAX_ADDRLEN 4 /* Max address len. (in 32-bits) for an SA. */
39
40 #define MAXSALTSIZE 8
41
42 /*
43 * For combined mode ciphers, store the crypto_mechanism_t in the
44 * per-packet ipsec_in_t/ipsec_out_t structures. This is because the PARAMS
45 * and nonce values change for each packet. For non-combined mode
46 * ciphers, these values are constant for the life of the SA.
47 */
48 typedef struct ipsa_cm_mech_s {
49 crypto_mechanism_t combined_mech;
50 union {
51 CK_AES_CCM_PARAMS paramu_ccm;
52 CK_AES_GCM_PARAMS paramu_gcm;
53 } paramu;
54 uint8_t nonce[MAXSALTSIZE + sizeof (uint64_t)];
55 #define param_ulMACSize paramu.paramu_ccm.ulMACSize
56 #define param_ulNonceSize paramu.paramu_ccm.ipsa_ulNonceSize
57 #define param_ulAuthDataSize paramu.paramu_ccm.ipsa_ulAuthDataSize
58 #define param_ulDataSize paramu.paramu_ccm.ipsa_ulDataSize
59 #define param_nonce paramu.paramu_ccm.nonce
60 #define param_authData paramu.paramu_ccm.authData
61 #define param_pIv paramu.paramu_gcm.ipsa_pIv
62 #define param_ulIvLen paramu.paramu_gcm.ulIvLen
63 #define param_ulIvBits paramu.paramu_gcm.ulIvBits
64 #define param_pAAD paramu.paramu_gcm.pAAD
65 #define param_ulAADLen paramu.paramu_gcm.ulAADLen
66 #define param_ulTagBits paramu.paramu_gcm.ulTagBits
67 } ipsa_cm_mech_t;
68
69 /*
70 * The Initialization Vector (also known as IV or Nonce) used to
71 * initialize the Block Cipher, is made up of a Counter and a Salt.
72 * The Counter is fixed at 64 bits and is incremented for each packet.
73 * The Salt value can be any whole byte value upto 64 bits. This is
74 * algorithm mode specific and can be configured with ipsecalgs(1m).
75 *
76 * We only support whole byte salt lengths, this is because the salt is
77 * stored in an array of uint8_t's. This is enforced by ipsecalgs(1m)
78 * which configures the salt length as a number of bytes. Checks are
79 * made to ensure the salt length defined in ipsecalgs(1m) fits in
80 * the ipsec_nonce_t.
81 *
82 * The Salt value remains constant for the life of the SA, the Salt is
83 * know to both peers, but NOT transmitted on the network. The Counter
84 * portion of the nonce is transmitted over the network with each packet
85 * and is confusingly described as the Initialization Vector by RFCs
86 * 4309/4106.
87 *
88 * The maximum Initialization Vector length is 128 bits, if the actual
89 * size is less, its padded internally by the algorithm.
90 *
91 * The nonce structure is defined like this in the SA (ipsa_t)to ensure
92 * the Initilization Vector (counter) is 64 bit aligned, because it will
93 * be incremented as an uint64_t. The nonce as used by the algorithms is
94 * a straight uint8_t array.
95 *
96 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
97 * | | | | |x|x|x|x| |
98 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
99 * salt_offset <------>
100 * ipsa_saltlen <------->
101 * ipsa_nonce_buf------^
102 * ipsa_salt-------------~~~~~~^
103 * ipsa_nonce------------~~~~~~^
104 * ipsa_iv-----------------------------^
105 */
106 typedef struct ipsec_nonce_s {
107 uint8_t salt[MAXSALTSIZE];
108 uint64_t iv;
109 } ipsec_nonce_t;
110
111 /*
112 * IP security association. Synchronization assumes 32-bit loads, so
113 * the 64-bit quantities can't even be be read w/o locking it down!
114 */
115
116 /* keying info */
117 typedef struct ipsa_key_s {
118 uint8_t *sak_key; /* Algorithm key. */
119 uint_t sak_keylen; /* Algorithm key length (in bytes). */
120 uint_t sak_keybits; /* Algorithm key length (in bits) */
121 uint_t sak_algid; /* Algorithm ID number. */
122 } ipsa_key_t;
123
124 typedef struct ipsa_s {
125 struct ipsa_s *ipsa_next; /* Next in hash bucket */
126 struct ipsa_s **ipsa_ptpn; /* Pointer to previous next pointer. */
127 kmutex_t *ipsa_linklock; /* Pointer to hash-chain lock. */
128 void (*ipsa_freefunc)(struct ipsa_s *); /* freeassoc function */
129 void (*ipsa_noncefunc)(struct ipsa_s *, uchar_t *,
130 uint_t, uchar_t *, ipsa_cm_mech_t *, crypto_data_t *);
131 /*
132 * NOTE: I may need more pointers, depending on future SA
133 * requirements.
134 */
135 ipsa_key_t ipsa_authkeydata;
136 #define ipsa_authkey ipsa_authkeydata.sak_key
137 #define ipsa_authkeylen ipsa_authkeydata.sak_keylen
138 #define ipsa_authkeybits ipsa_authkeydata.sak_keybits
139 #define ipsa_auth_alg ipsa_authkeydata.sak_algid
140 ipsa_key_t ipsa_encrkeydata;
141 #define ipsa_encrkey ipsa_encrkeydata.sak_key
142 #define ipsa_encrkeylen ipsa_encrkeydata.sak_keylen
143 #define ipsa_encrkeybits ipsa_encrkeydata.sak_keybits
144 #define ipsa_encr_alg ipsa_encrkeydata.sak_algid
145
146 struct ipsid_s *ipsa_src_cid; /* Source certificate identity */
147 struct ipsid_s *ipsa_dst_cid; /* Destination certificate identity */
148 mblk_t *ipsa_lpkt; /* Packet received while larval (CAS me) */
149
150 /*
151 * PF_KEYv2 supports a replay window size of 255. Hence there is a
152 * need a bit vector to support a replay window of 255. 256 is a nice
153 * round number, so I support that.
154 *
155 * Use an array of uint64_t for best performance on 64-bit
156 * processors. (And hope that 32-bit compilers can handle things
157 * okay.) The " >> 6 " is to get the appropriate number of 64-bit
158 * ints.
159 */
160 #define SADB_MAX_REPLAY 256 /* Must be 0 mod 64. */
161 uint64_t ipsa_replay_arr[SADB_MAX_REPLAY >> 6];
162
163 uint64_t ipsa_unique_id; /* Non-zero for unique SAs */
164 uint64_t ipsa_unique_mask; /* mask value for unique_id */
165
166 /*
167 * Reference count semantics:
168 *
169 * An SA has a reference count of 1 if something's pointing
170 * to it. This includes being in a hash table. So if an
171 * SA is in a hash table, it has a reference count of at least 1.
172 *
173 * When a ptr. to an IPSA is assigned, you MUST REFHOLD after
174 * said assignment. When a ptr. to an IPSA is released
175 * you MUST REFRELE. When the refcount hits 0, REFRELE
176 * will free the IPSA.
177 */
178 kmutex_t ipsa_lock; /* Locks non-linkage/refcnt fields. */
179 /* Q: Since I may be doing refcnts differently, will I need cv? */
180 uint_t ipsa_refcnt; /* Reference count. */
181
182 /*
183 * The following four time fields are the ones monitored by ah_ager()
184 * and esp_ager() respectively. They are all absolute wall-clock
185 * times. The times of creation (i.e. add time) and first use are
186 * pretty straightforward. The soft and hard expire times are
187 * derived from the times of first use and creation, plus the minimum
188 * expiration times in the fields that follow this.
189 *
190 * For example, if I had a hard add time of 30 seconds, and a hard
191 * use time of 15, the ipsa_hardexpiretime would be time of add, plus
192 * 30 seconds. If I USE the SA such that time of first use plus 15
193 * seconds would be earlier than the add time plus 30 seconds, then
194 * ipsa_hardexpiretime would become this earlier time.
195 */
196 time_t ipsa_addtime; /* Time I was added. */
197 time_t ipsa_usetime; /* Time of my first use. */
198 time_t ipsa_lastuse; /* Time of my last use. */
199 time_t ipsa_idletime; /* Seconds of idle time */
200 time_t ipsa_last_nat_t_ka; /* Time of my last NAT-T keepalive. */
201 time_t ipsa_softexpiretime; /* Time of my first soft expire. */
202 time_t ipsa_hardexpiretime; /* Time of my first hard expire. */
203 time_t ipsa_idleexpiretime; /* Time of my next idle expire time */
204
205 struct ipsec_nonce_s *ipsa_nonce_buf;
206 uint8_t *ipsa_nonce;
207 uint_t ipsa_nonce_len;
208 uint8_t *ipsa_salt;
209 uint_t ipsa_saltbits;
210 uint_t ipsa_saltlen;
211 uint64_t *ipsa_iv;
212
213 uint64_t ipsa_iv_hardexpire;
214 uint64_t ipsa_iv_softexpire;
215 /*
216 * The following fields are directly reflected in PF_KEYv2 LIFETIME
217 * extensions. The time_ts are in number-of-seconds, and the bytes
218 * are in... bytes.
219 */
220 time_t ipsa_softaddlt; /* Seconds of soft lifetime after add. */
221 time_t ipsa_softuselt; /* Seconds of soft lifetime after first use. */
222 time_t ipsa_hardaddlt; /* Seconds of hard lifetime after add. */
223 time_t ipsa_harduselt; /* Seconds of hard lifetime after first use. */
224 time_t ipsa_idleaddlt; /* Seconds of idle time after add */
225 time_t ipsa_idleuselt; /* Seconds of idle time after first use */
226 uint64_t ipsa_softbyteslt; /* Bytes of soft lifetime. */
227 uint64_t ipsa_hardbyteslt; /* Bytes of hard lifetime. */
228 uint64_t ipsa_bytes; /* Bytes encrypted/authed by this SA. */
229
230 /*
231 * "Allocations" are a concept mentioned in PF_KEYv2. We do not
232 * support them, except to record them per the PF_KEYv2 spec.
233 */
234 uint_t ipsa_softalloc; /* Allocations allowed (soft). */
235 uint_t ipsa_hardalloc; /* Allocations allowed (hard). */
236 uint_t ipsa_alloc; /* Allocations made. */
237
238 uint_t ipsa_type; /* Type of security association. (AH/etc.) */
239 uint_t ipsa_state; /* State of my association. */
240 uint_t ipsa_replay_wsize; /* Size of replay window */
241 uint32_t ipsa_flags; /* Flags for security association. */
242 uint32_t ipsa_spi; /* Security parameters index. */
243 uint32_t ipsa_replay; /* Highest seen replay value for this SA. */
244 uint32_t ipsa_kmp; /* key management proto */
245 uint32_t ipsa_kmc; /* key management cookie */
246
247 boolean_t ipsa_haspeer; /* Has peer in another table. */
248
249 /*
250 * Address storage.
251 * The source address can be INADDR_ANY, IN6ADDR_ANY, etc.
252 *
253 * Address families (per sys/socket.h) guide us. We could have just
254 * used sockaddr_storage
255 */
256 sa_family_t ipsa_addrfam;
257 sa_family_t ipsa_innerfam; /* Inner AF can be != src/dst AF. */
258
259 uint32_t ipsa_srcaddr[IPSA_MAX_ADDRLEN];
260 uint32_t ipsa_dstaddr[IPSA_MAX_ADDRLEN];
261 uint32_t ipsa_innersrc[IPSA_MAX_ADDRLEN];
262 uint32_t ipsa_innerdst[IPSA_MAX_ADDRLEN];
263
264 uint8_t ipsa_innersrcpfx;
265 uint8_t ipsa_innerdstpfx;
266
267 uint16_t ipsa_inbound_cksum; /* cksum correction for inbound packets */
268 uint16_t ipsa_local_nat_port; /* Local NAT-T port. (0 --> 4500) */
269 uint16_t ipsa_remote_nat_port; /* The other port that isn't 4500 */
270
271 /* these can only be v4 */
272 uint32_t ipsa_natt_addr_loc;
273 uint32_t ipsa_natt_addr_rem;
274
275 /*
276 * icmp type and code. *_end are to specify ranges. if only
277 * a single value, * and *_end are the same value.
278 */
279 uint8_t ipsa_icmp_type;
280 uint8_t ipsa_icmp_type_end;
281 uint8_t ipsa_icmp_code;
282 uint8_t ipsa_icmp_code_end;
283
284 /*
285 * For the kernel crypto framework.
286 */
287 crypto_key_t ipsa_kcfauthkey; /* authentication key */
288 crypto_key_t ipsa_kcfencrkey; /* encryption key */
289 crypto_ctx_template_t ipsa_authtmpl; /* auth context template */
290 crypto_ctx_template_t ipsa_encrtmpl; /* encr context template */
291 crypto_mechanism_t ipsa_amech; /* auth mech type and ICV len */
292 crypto_mechanism_t ipsa_emech; /* encr mech type */
293 size_t ipsa_mac_len; /* auth MAC/ICV length */
294 size_t ipsa_iv_len; /* encr IV length */
295 size_t ipsa_datalen; /* block length in bytes. */
296
297 /*
298 * Input and output processing functions called from IP.
299 * The mblk_t is the data; the IPsec information is in the attributes
300 * Returns NULL if the mblk is consumed which it is if there was
301 * a failure or if pending. If failure then
302 * the ipIfInDiscards/OutDiscards counters are increased.
303 */
304 mblk_t *(*ipsa_output_func)(mblk_t *, ip_xmit_attr_t *);
305 mblk_t *(*ipsa_input_func)(mblk_t *, void *, ip_recv_attr_t *);
306
307 /*
308 * Soft reference to paired SA
309 */
310 uint32_t ipsa_otherspi;
311 netstack_t *ipsa_netstack; /* Does not have a netstack_hold */
312
313 ts_label_t *ipsa_tsl; /* MLS: label attributes */
314 ts_label_t *ipsa_otsl; /* MLS: outer label */
315 uint8_t ipsa_mac_exempt; /* MLS: mac exempt flag */
316 uchar_t ipsa_opt_storage[IP_MAX_OPT_LENGTH];
317 } ipsa_t;
318
319 /*
320 * ipsa_t address handling macros. We want these to be inlined, and deal
321 * with 32-bit words to avoid bcmp/bcopy calls.
322 *
323 * Assume we only have AF_INET and AF_INET6 addresses for now. Also assume
324 * that we have 32-bit alignment on everything.
325 */
326 #define IPSA_IS_ADDR_UNSPEC(addr, fam) ((((uint32_t *)(addr))[0] == 0) && \
327 (((fam) == AF_INET) || (((uint32_t *)(addr))[3] == 0 && \
328 ((uint32_t *)(addr))[2] == 0 && ((uint32_t *)(addr))[1] == 0)))
329 #define IPSA_ARE_ADDR_EQUAL(addr1, addr2, fam) \
330 ((((uint32_t *)(addr1))[0] == ((uint32_t *)(addr2))[0]) && \
331 (((fam) == AF_INET) || \
332 (((uint32_t *)(addr1))[3] == ((uint32_t *)(addr2))[3] && \
333 ((uint32_t *)(addr1))[2] == ((uint32_t *)(addr2))[2] && \
334 ((uint32_t *)(addr1))[1] == ((uint32_t *)(addr2))[1])))
335 #define IPSA_COPY_ADDR(dstaddr, srcaddr, fam) { \
336 ((uint32_t *)(dstaddr))[0] = ((uint32_t *)(srcaddr))[0]; \
337 if ((fam) == AF_INET6) {\
338 ((uint32_t *)(dstaddr))[1] = ((uint32_t *)(srcaddr))[1]; \
339 ((uint32_t *)(dstaddr))[2] = ((uint32_t *)(srcaddr))[2]; \
340 ((uint32_t *)(dstaddr))[3] = ((uint32_t *)(srcaddr))[3]; } }
341
342 /*
343 * ipsa_t reference hold/release macros.
344 *
345 * If you have a pointer, you REFHOLD. If you are releasing a pointer, you
346 * REFRELE. An ipsa_t that is newly inserted into the table should have
347 * a reference count of 1 (for the table's pointer), plus 1 more for every
348 * pointer that is referencing the ipsa_t.
349 */
350
351 #define IPSA_REFHOLD(ipsa) { \
352 atomic_inc_32(&(ipsa)->ipsa_refcnt); \
353 ASSERT((ipsa)->ipsa_refcnt != 0); \
354 }
355
356 /*
357 * Decrement the reference count on the SA.
358 * In architectures e.g sun4u, where atomic_add_32_nv is just
359 * a cas, we need to maintain the right memory barrier semantics
360 * as that of mutex_exit i.e all the loads and stores should complete
361 * before the cas is executed. membar_exit() does that here.
362 */
363
364 #define IPSA_REFRELE(ipsa) { \
365 ASSERT((ipsa)->ipsa_refcnt != 0); \
366 membar_exit(); \
367 if (atomic_dec_32_nv(&(ipsa)->ipsa_refcnt) == 0) \
368 ((ipsa)->ipsa_freefunc)(ipsa); \
369 }
370
371 /*
372 * Security association hash macros and definitions. For now, assume the
373 * IPsec model, and hash outbounds on destination address, and inbounds on
374 * SPI.
375 */
376
377 #define IPSEC_DEFAULT_HASH_SIZE 256
378
379 #define INBOUND_HASH(sadb, spi) ((spi) % ((sadb)->sdb_hashsize))
380 #define OUTBOUND_HASH_V4(sadb, v4addr) ((v4addr) % ((sadb)->sdb_hashsize))
381 #define OUTBOUND_HASH_V6(sadb, v6addr) OUTBOUND_HASH_V4((sadb), \
382 (*(uint32_t *)&(v6addr)) ^ (*(((uint32_t *)&(v6addr)) + 1)) ^ \
383 (*(((uint32_t *)&(v6addr)) + 2)) ^ (*(((uint32_t *)&(v6addr)) + 3)))
384
385 /*
386 * Syntactic sugar to find the appropriate hash bucket directly.
387 */
388
389 #define INBOUND_BUCKET(sadb, spi) &(((sadb)->sdb_if)[INBOUND_HASH(sadb, spi)])
390 #define OUTBOUND_BUCKET_V4(sadb, v4addr) \
391 &(((sadb)->sdb_of)[OUTBOUND_HASH_V4(sadb, v4addr)])
392 #define OUTBOUND_BUCKET_V6(sadb, v6addr) \
393 &(((sadb)->sdb_of)[OUTBOUND_HASH_V6(sadb, v6addr)])
394
395 #define IPSA_F_PFS SADB_SAFLAGS_PFS /* PFS in use for this SA? */
396 #define IPSA_F_NOREPFLD SADB_SAFLAGS_NOREPLAY /* No replay field, for */
397 /* backward compat. */
398 #define IPSA_F_USED SADB_X_SAFLAGS_USED /* SA has been used. */
399 #define IPSA_F_UNIQUE SADB_X_SAFLAGS_UNIQUE /* SA is unique */
400 #define IPSA_F_AALG1 SADB_X_SAFLAGS_AALG1 /* Auth alg flag 1 */
401 #define IPSA_F_AALG2 SADB_X_SAFLAGS_AALG2 /* Auth alg flag 2 */
402 #define IPSA_F_EALG1 SADB_X_SAFLAGS_EALG1 /* Encrypt alg flag 1 */
403 #define IPSA_F_EALG2 SADB_X_SAFLAGS_EALG2 /* Encrypt alg flag 2 */
404
405 #define IPSA_F_ASYNC 0x200000 /* Call KCF asynchronously? */
406 #define IPSA_F_NATT_LOC SADB_X_SAFLAGS_NATT_LOC
407 #define IPSA_F_NATT_REM SADB_X_SAFLAGS_NATT_REM
408 #define IPSA_F_BEHIND_NAT SADB_X_SAFLAGS_NATTED
409 #define IPSA_F_NATT (SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM | \
410 SADB_X_SAFLAGS_NATTED)
411 #define IPSA_F_CINVALID 0x40000 /* SA shouldn't be cached */
412 #define IPSA_F_PAIRED SADB_X_SAFLAGS_PAIRED /* SA is one of a pair */
413 #define IPSA_F_OUTBOUND SADB_X_SAFLAGS_OUTBOUND /* SA direction bit */
414 #define IPSA_F_INBOUND SADB_X_SAFLAGS_INBOUND /* SA direction bit */
415 #define IPSA_F_TUNNEL SADB_X_SAFLAGS_TUNNEL
416 /*
417 * These flags are only defined here to prevent a flag value collision.
418 */
419 #define IPSA_F_COMBINED SADB_X_SAFLAGS_EALG1 /* Defined in pfkeyv2.h */
420 #define IPSA_F_COUNTERMODE SADB_X_SAFLAGS_EALG2 /* Defined in pfkeyv2.h */
421
422 /*
423 * Sets of flags that are allowed to by set or modified by PF_KEY apps.
424 */
425 #define AH_UPDATE_SETTABLE_FLAGS \
426 (SADB_X_SAFLAGS_PAIRED | SADB_SAFLAGS_NOREPLAY | \
427 SADB_X_SAFLAGS_OUTBOUND | SADB_X_SAFLAGS_INBOUND | \
428 SADB_X_SAFLAGS_KM1 | SADB_X_SAFLAGS_KM2 | \
429 SADB_X_SAFLAGS_KM3 | SADB_X_SAFLAGS_KM4)
430
431 /* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */
432 #define ESP_UPDATE_SETTABLE_FLAGS (AH_UPDATE_SETTABLE_FLAGS | IPSA_F_NATT)
433
434 #define AH_ADD_SETTABLE_FLAGS \
435 (AH_UPDATE_SETTABLE_FLAGS | SADB_X_SAFLAGS_AALG1 | \
436 SADB_X_SAFLAGS_AALG2 | SADB_X_SAFLAGS_TUNNEL | \
437 SADB_SAFLAGS_NOREPLAY)
438
439 /* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */
440 #define ESP_ADD_SETTABLE_FLAGS (AH_ADD_SETTABLE_FLAGS | IPSA_F_NATT | \
441 SADB_X_SAFLAGS_EALG1 | SADB_X_SAFLAGS_EALG2)
442
443
444
445 /* SA states are important for handling UPDATE PF_KEY messages. */
446 #define IPSA_STATE_LARVAL SADB_SASTATE_LARVAL
447 #define IPSA_STATE_MATURE SADB_SASTATE_MATURE
448 #define IPSA_STATE_DYING SADB_SASTATE_DYING
449 #define IPSA_STATE_DEAD SADB_SASTATE_DEAD
450 /* Deprecated */
451 /* #define IPSA_STATE_IDLE SADB_X_SASTATE_IDLE */
452 /* #define IPSA_STATE_ACTIVE_ELSEWHERE SADB_X_SASTATE_ACTIVE_ELSEWHERE */
453
454 /*
455 * NOTE: If the document authors do things right in defining algorithms, we'll
456 * probably have flags for what all is here w.r.t. replay, ESP w/HMAC,
457 * etc.
458 */
459
460 #define IPSA_T_ACQUIRE SEC_TYPE_NONE /* If this typed returned, sa needed */
461 #define IPSA_T_AH SEC_TYPE_AH /* IPsec AH association */
462 #define IPSA_T_ESP SEC_TYPE_ESP /* IPsec ESP association */
463
464 #define IPSA_AALG_NONE SADB_AALG_NONE /* No auth. algorithm */
465 #define IPSA_AALG_MD5H SADB_AALG_MD5HMAC /* MD5-HMAC algorithm */
466 #define IPSA_AALG_SHA1H SADB_AALG_SHA1HMAC /* SHA1-HMAC algorithm */
467
468 #define IPSA_EALG_NONE SADB_EALG_NONE /* No encryption algorithm */
469 #define IPSA_EALG_DES_CBC SADB_EALG_DESCBC
470 #define IPSA_EALG_3DES SADB_EALG_3DESCBC
471
472 /*
473 * Protect each ipsa_t bucket (and linkage) with a lock.
474 */
475
476 typedef struct isaf_s {
477 ipsa_t *isaf_ipsa;
478 kmutex_t isaf_lock;
479 uint64_t isaf_gen;
480 } isaf_t;
481
482 /*
483 * ACQUIRE record. If AH/ESP/whatever cannot find an association for outbound
484 * traffic, it sends up an SADB_ACQUIRE message and create an ACQUIRE record.
485 */
486
487 #define IPSACQ_MAXPACKETS 4 /* Number of packets that can be queued up */
488 /* waiting for an ACQUIRE to finish. */
489
490 typedef struct ipsacq_s {
491 struct ipsacq_s *ipsacq_next;
492 struct ipsacq_s **ipsacq_ptpn;
493 kmutex_t *ipsacq_linklock;
494 struct ipsec_policy_s *ipsacq_policy;
495 struct ipsec_action_s *ipsacq_act;
496
497 sa_family_t ipsacq_addrfam; /* Address family. */
498 sa_family_t ipsacq_inneraddrfam; /* Inner-packet address family. */
499 int ipsacq_numpackets; /* How many packets queued up so far. */
500 uint32_t ipsacq_seq; /* PF_KEY sequence number. */
501 uint64_t ipsacq_unique_id; /* Unique ID for SAs that need it. */
502
503 kmutex_t ipsacq_lock; /* Protects non-linkage fields. */
504 time_t ipsacq_expire; /* Wall-clock time when this record expires. */
505 mblk_t *ipsacq_mp; /* List of datagrams waiting for an SA. */
506
507 /* These two point inside the last mblk inserted. */
508 uint32_t *ipsacq_srcaddr;
509 uint32_t *ipsacq_dstaddr;
510
511 /* Cache these instead of point so we can mask off accordingly */
512 uint32_t ipsacq_innersrc[IPSA_MAX_ADDRLEN];
513 uint32_t ipsacq_innerdst[IPSA_MAX_ADDRLEN];
514
515 /* These may change per-acquire. */
516 uint16_t ipsacq_srcport;
517 uint16_t ipsacq_dstport;
518 uint8_t ipsacq_proto;
519 uint8_t ipsacq_inner_proto;
520 uint8_t ipsacq_innersrcpfx;
521 uint8_t ipsacq_innerdstpfx;
522
523 /* icmp type and code of triggering packet (if applicable) */
524 uint8_t ipsacq_icmp_type;
525 uint8_t ipsacq_icmp_code;
526
527 /* label associated with triggering packet */
528 ts_label_t *ipsacq_tsl;
529 } ipsacq_t;
530
531 /*
532 * Kernel-generated sequence numbers will be no less than 0x80000000 to
533 * forestall any cretinous problems with manual keying accidentally updating
534 * an ACQUIRE entry.
535 */
536 #define IACQF_LOWEST_SEQ 0x80000000
537
538 #define SADB_AGE_INTERVAL_DEFAULT 8000
539
540 /*
541 * ACQUIRE fanout. Protect each linkage with a lock.
542 */
543
544 typedef struct iacqf_s {
545 ipsacq_t *iacqf_ipsacq;
546 kmutex_t iacqf_lock;
547 } iacqf_t;
548
549 /*
550 * A (network protocol, ipsec protocol) specific SADB.
551 * (i.e., one each for {ah, esp} and {v4, v6}.
552 *
553 * Keep outbound assocs in a simple hash table for now.
554 * One danger point, multiple SAs for a single dest will clog a bucket.
555 * For the future, consider two-level hashing (2nd hash on IPC?), then probe.
556 */
557
558 typedef struct sadb_s
559 {
560 isaf_t *sdb_of;
561 isaf_t *sdb_if;
562 iacqf_t *sdb_acq;
563 int sdb_hashsize;
564 } sadb_t;
565
566 /*
567 * A pair of SADB's (one for v4, one for v6), and related state (including
568 * acquire callbacks).
569 */
570
571 typedef struct sadbp_s
572 {
573 uint32_t s_satype;
574 uint32_t *s_acquire_timeout;
575 void (*s_acqfn)(ipsacq_t *, mblk_t *, netstack_t *);
576 sadb_t s_v4;
577 sadb_t s_v6;
578 uint32_t s_addflags;
579 uint32_t s_updateflags;
580 } sadbp_t;
581
582 /*
583 * A pair of SA's for a single connection, the structure contains a
584 * pointer to a SA and the SA its paired with (opposite direction) as well
585 * as the SA's respective hash buckets.
586 */
587 typedef struct ipsap_s
588 {
589 boolean_t in_inbound_table;
590 isaf_t *ipsap_bucket;
591 ipsa_t *ipsap_sa_ptr;
592 isaf_t *ipsap_pbucket;
593 ipsa_t *ipsap_psa_ptr;
594 } ipsap_t;
595
596 typedef struct templist_s
597 {
598 ipsa_t *ipsa;
599 struct templist_s *next;
600 } templist_t;
601
602 /* Pointer to an all-zeroes IPv6 address. */
603 #define ALL_ZEROES_PTR ((uint32_t *)&ipv6_all_zeros)
604
605 /*
606 * Form unique id from ip_xmit_attr_t.
607 */
608 #define SA_FORM_UNIQUE_ID(ixa) \
609 SA_UNIQUE_ID((ixa)->ixa_ipsec_src_port, (ixa)->ixa_ipsec_dst_port, \
610 (((ixa)->ixa_flags & IXAF_IPSEC_TUNNEL) ? \
611 ((ixa)->ixa_ipsec_inaf == AF_INET6 ? \
612 IPPROTO_IPV6 : IPPROTO_ENCAP) : \
613 (ixa)->ixa_ipsec_proto), \
614 (((ixa)->ixa_flags & IXAF_IPSEC_TUNNEL) ? \
615 (ixa)->ixa_ipsec_proto : 0))
616
617 /*
618 * This macro is used to generate unique ids (along with the addresses, both
619 * inner and outer) for outbound datagrams that require unique SAs.
620 *
621 * N.B. casts and unsigned shift amounts discourage unwarranted
622 * sign extension of dstport, proto, and iproto.
623 *
624 * Unique ID is 64-bits allocated as follows (pardon my big-endian bias):
625 *
626 * 6 4 43 33 11
627 * 3 7 09 21 65 0
628 * +---------------*-------+-------+--------------+---------------+
629 * | MUST-BE-ZERO |<iprot>|<proto>| <src port> | <dest port> |
630 * +---------------*-------+-------+--------------+---------------+
631 *
632 * If there are inner addresses (tunnel mode) the ports come from the
633 * inner addresses. If there are no inner addresses, the ports come from
634 * the outer addresses (transport mode). Tunnel mode MUST have <proto>
635 * set to either IPPROTO_ENCAP or IPPPROTO_IPV6.
636 */
637 #define SA_UNIQUE_ID(srcport, dstport, proto, iproto) \
638 ((srcport) | ((uint64_t)(dstport) << 16U) | \
639 ((uint64_t)(proto) << 32U) | ((uint64_t)(iproto) << 40U))
640
641 /*
642 * SA_UNIQUE_MASK generates a mask value to use when comparing the unique value
643 * from a packet to an SA.
644 */
645
646 #define SA_UNIQUE_MASK(srcport, dstport, proto, iproto) \
647 SA_UNIQUE_ID((srcport != 0) ? 0xffff : 0, \
648 (dstport != 0) ? 0xffff : 0, \
649 (proto != 0) ? 0xff : 0, \
650 (iproto != 0) ? 0xff : 0)
651
652 /*
653 * Decompose unique id back into its original fields.
654 */
655 #define SA_IPROTO(ipsa) ((ipsa)->ipsa_unique_id>>40)&0xff
656 #define SA_PROTO(ipsa) ((ipsa)->ipsa_unique_id>>32)&0xff
657 #define SA_SRCPORT(ipsa) ((ipsa)->ipsa_unique_id & 0xffff)
658 #define SA_DSTPORT(ipsa) (((ipsa)->ipsa_unique_id >> 16) & 0xffff)
659
660 typedef struct ipsa_query_s ipsa_query_t;
661
662 typedef boolean_t (*ipsa_match_fn_t)(ipsa_query_t *, ipsa_t *);
663
664 #define IPSA_NMATCH 10
665
666 /*
667 * SADB query structure.
668 *
669 * Provide a generalized mechanism for matching entries in the SADB;
670 * one of these structures is initialized using sadb_form_query(),
671 * and then can be used as a parameter to sadb_match_query() which returns
672 * B_TRUE if the SA matches the query.
673 *
674 * Under the covers, sadb_form_query populates the matchers[] array with
675 * functions which are called one at a time until one fails to match.
676 */
677 struct ipsa_query_s {
678 uint32_t req, match;
679 sadb_address_t *srcext, *dstext;
680 sadb_ident_t *srcid, *dstid;
681 sadb_x_kmc_t *kmcext;
682 sadb_sa_t *assoc;
683 uint32_t spi;
684 struct sockaddr_in *src;
685 struct sockaddr_in6 *src6;
686 struct sockaddr_in *dst;
687 struct sockaddr_in6 *dst6;
688 sa_family_t af;
689 uint32_t *srcaddr, *dstaddr;
690 uint32_t ifindex;
691 uint32_t kmc, kmp;
692 char *didstr, *sidstr;
693 uint16_t didtype, sidtype;
694 sadbp_t *spp;
695 sadb_t *sp;
696 isaf_t *inbound, *outbound;
697 uint32_t outhash;
698 uint32_t inhash;
699 ipsa_match_fn_t matchers[IPSA_NMATCH];
700 };
701
702 #define IPSA_Q_SA 0x00000001
703 #define IPSA_Q_DST 0x00000002
704 #define IPSA_Q_SRC 0x00000004
705 #define IPSA_Q_DSTID 0x00000008
706 #define IPSA_Q_SRCID 0x00000010
707 #define IPSA_Q_KMC 0x00000020
708 #define IPSA_Q_INBOUND 0x00000040 /* fill in inbound isaf_t */
709 #define IPSA_Q_OUTBOUND 0x00000080 /* fill in outbound isaf_t */
710
711 int sadb_form_query(keysock_in_t *, uint32_t, uint32_t, ipsa_query_t *, int *);
712 boolean_t sadb_match_query(ipsa_query_t *q, ipsa_t *sa);
713
714
715 /*
716 * All functions that return an ipsa_t will return it with IPSA_REFHOLD()
717 * already called.
718 */
719
720 /* SA retrieval (inbound and outbound) */
721 ipsa_t *ipsec_getassocbyspi(isaf_t *, uint32_t, uint32_t *, uint32_t *,
722 sa_family_t);
723 ipsa_t *ipsec_getassocbyconn(isaf_t *, ip_xmit_attr_t *, uint32_t *, uint32_t *,
724 sa_family_t, uint8_t, ts_label_t *);
725
726 /* SA insertion. */
727 int sadb_insertassoc(ipsa_t *, isaf_t *);
728
729 /* SA table construction and destruction. */
730 void sadbp_init(const char *name, sadbp_t *, int, int, netstack_t *);
731 void sadbp_flush(sadbp_t *, netstack_t *);
732 void sadbp_destroy(sadbp_t *, netstack_t *);
733
734 /* SA insertion and deletion. */
735 int sadb_insertassoc(ipsa_t *, isaf_t *);
736 void sadb_unlinkassoc(ipsa_t *);
737
738 /* Support routines to interface a keysock consumer to PF_KEY. */
739 mblk_t *sadb_keysock_out(minor_t);
740 int sadb_hardsoftchk(sadb_lifetime_t *, sadb_lifetime_t *, sadb_lifetime_t *);
741 int sadb_labelchk(struct keysock_in_s *);
742 void sadb_pfkey_echo(queue_t *, mblk_t *, sadb_msg_t *, struct keysock_in_s *,
743 ipsa_t *);
744 void sadb_pfkey_error(queue_t *, mblk_t *, int, int, uint_t);
745 void sadb_keysock_hello(queue_t **, queue_t *, mblk_t *, void (*)(void *),
746 void *, timeout_id_t *, int);
747 int sadb_addrcheck(queue_t *, mblk_t *, sadb_ext_t *, uint_t, netstack_t *);
748 boolean_t sadb_addrfix(keysock_in_t *, queue_t *, mblk_t *, netstack_t *);
749 int sadb_addrset(ire_t *);
750 int sadb_delget_sa(mblk_t *, keysock_in_t *, sadbp_t *, int *, queue_t *,
751 uint8_t);
752
753 int sadb_purge_sa(mblk_t *, keysock_in_t *, sadb_t *, int *, queue_t *);
754 int sadb_common_add(queue_t *, mblk_t *, sadb_msg_t *,
755 keysock_in_t *, isaf_t *, isaf_t *, ipsa_t *, boolean_t, boolean_t, int *,
756 netstack_t *, sadbp_t *);
757 void sadb_set_usetime(ipsa_t *);
758 boolean_t sadb_age_bytes(queue_t *, ipsa_t *, uint64_t, boolean_t);
759 int sadb_update_sa(mblk_t *, keysock_in_t *, sadbp_t *,
760 int *, queue_t *, int (*)(mblk_t *, keysock_in_t *, int *, netstack_t *),
761 netstack_t *, uint8_t);
762 void sadb_acquire(mblk_t *, ip_xmit_attr_t *, boolean_t, boolean_t);
763 void gcm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
764 crypto_data_t *);
765 void ccm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
766 crypto_data_t *);
767 void cbc_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
768 crypto_data_t *);
769
770 void sadb_destroy_acquire(ipsacq_t *, netstack_t *);
771 struct ipsec_stack;
772 mblk_t *sadb_setup_acquire(ipsacq_t *, uint8_t, struct ipsec_stack *);
773 ipsa_t *sadb_getspi(keysock_in_t *, uint32_t, int *, netstack_t *);
774 void sadb_in_acquire(sadb_msg_t *, sadbp_t *, queue_t *, netstack_t *);
775 boolean_t sadb_replay_check(ipsa_t *, uint32_t);
776 boolean_t sadb_replay_peek(ipsa_t *, uint32_t);
777 int sadb_dump(queue_t *, mblk_t *, keysock_in_t *, sadb_t *);
778 void sadb_replay_delete(ipsa_t *);
779 void sadb_ager(sadb_t *, queue_t *, int, netstack_t *);
780
781 timeout_id_t sadb_retimeout(hrtime_t, queue_t *, void (*)(void *), void *,
782 uint_t *, uint_t, short);
783 void sadb_sa_refrele(void *target);
784 mblk_t *sadb_set_lpkt(ipsa_t *, mblk_t *, ip_recv_attr_t *);
785 mblk_t *sadb_clear_lpkt(ipsa_t *);
786
787 /*
788 * Two IPsec rate-limiting routines.
789 */
790 /*PRINTFLIKE6*/
791 extern void ipsec_rl_strlog(netstack_t *, short, short, char,
792 ushort_t, char *, ...)
793 __KPRINTFLIKE(6);
794 extern void ipsec_assocfailure(short, short, char, ushort_t, char *, uint32_t,
795 void *, int, netstack_t *);
796
797 /*
798 * Algorithm types.
799 */
800
801 #define IPSEC_NALGTYPES 2
802
803 typedef enum ipsec_algtype {
804 IPSEC_ALG_AUTH = 0,
805 IPSEC_ALG_ENCR = 1,
806 IPSEC_ALG_ALL = 2
807 } ipsec_algtype_t;
808
809 /*
810 * Definitions as per IPsec/ISAKMP DOI.
811 */
812
813 #define IPSEC_MAX_ALGS 256
814 #define PROTO_IPSEC_AH 2
815 #define PROTO_IPSEC_ESP 3
816
817 /*
818 * Common algorithm info.
819 */
820 typedef struct ipsec_alginfo
821 {
822 uint8_t alg_id;
823 uint8_t alg_flags;
824 uint16_t *alg_key_sizes;
825 uint16_t *alg_block_sizes;
826 uint16_t *alg_params;
827 uint16_t alg_nkey_sizes;
828 uint16_t alg_ivlen;
829 uint16_t alg_icvlen;
830 uint8_t alg_saltlen;
831 uint16_t alg_nblock_sizes;
832 uint16_t alg_nparams;
833 uint16_t alg_minbits;
834 uint16_t alg_maxbits;
835 uint16_t alg_datalen;
836 /*
837 * increment: number of bits from keysize to keysize
838 * default: # of increments from min to default key len
839 */
840 uint16_t alg_increment;
841 uint16_t alg_default;
842 uint16_t alg_default_bits;
843 /*
844 * Min, max, and default key sizes effectively supported
845 * by the encryption framework.
846 */
847 uint16_t alg_ef_minbits;
848 uint16_t alg_ef_maxbits;
849 uint16_t alg_ef_default;
850 uint16_t alg_ef_default_bits;
851
852 crypto_mech_type_t alg_mech_type; /* KCF mechanism type */
853 crypto_mech_name_t alg_mech_name; /* KCF mechanism name */
854 } ipsec_alginfo_t;
855
856 #define alg_datalen alg_block_sizes[0]
857 #define ALG_VALID(_alg) ((_alg)->alg_flags & ALG_FLAG_VALID)
858
859 /*
860 * Software crypto execution mode.
861 */
862 typedef enum {
863 IPSEC_ALGS_EXEC_SYNC = 0,
864 IPSEC_ALGS_EXEC_ASYNC = 1
865 } ipsec_algs_exec_mode_t;
866
867 extern void ipsec_alg_reg(ipsec_algtype_t, ipsec_alginfo_t *, netstack_t *);
868 extern void ipsec_alg_unreg(ipsec_algtype_t, uint8_t, netstack_t *);
869 extern void ipsec_alg_fix_min_max(ipsec_alginfo_t *, ipsec_algtype_t,
870 netstack_t *ns);
871 extern void alg_flag_check(ipsec_alginfo_t *);
872 extern void ipsec_alg_free(ipsec_alginfo_t *);
873 extern void ipsec_register_prov_update(void);
874 extern void sadb_alg_update(ipsec_algtype_t, uint8_t, boolean_t, netstack_t *);
875
876 extern int sadb_sens_len_from_label(ts_label_t *);
877 extern void sadb_sens_from_label(sadb_sens_t *, int, ts_label_t *, int);
878
879 /*
880 * Context templates management.
881 */
882
883 #define IPSEC_CTX_TMPL_ALLOC ((crypto_ctx_template_t)-1)
884 #define IPSEC_CTX_TMPL(_sa, _which, _type, _tmpl) { \
885 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) { \
886 mutex_enter(&assoc->ipsa_lock); \
887 if ((_sa)->_which == IPSEC_CTX_TMPL_ALLOC) { \
888 ipsec_stack_t *ipss; \
889 \
890 ipss = assoc->ipsa_netstack->netstack_ipsec; \
891 mutex_enter(&ipss->ipsec_alg_lock); \
892 (void) ipsec_create_ctx_tmpl(_sa, _type); \
893 mutex_exit(&ipss->ipsec_alg_lock); \
894 } \
895 mutex_exit(&assoc->ipsa_lock); \
896 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) \
897 _tmpl = NULL; \
898 } \
899 }
900
901 extern int ipsec_create_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
902 extern void ipsec_destroy_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
903
904 /* key checking */
905 extern int ipsec_check_key(crypto_mech_type_t, sadb_key_t *, boolean_t, int *);
906
907 typedef struct ipsec_kstats_s {
908 kstat_named_t esp_stat_in_requests;
909 kstat_named_t esp_stat_in_discards;
910 kstat_named_t esp_stat_lookup_failure;
911 kstat_named_t ah_stat_in_requests;
912 kstat_named_t ah_stat_in_discards;
913 kstat_named_t ah_stat_lookup_failure;
914 kstat_named_t sadb_acquire_maxpackets;
915 kstat_named_t sadb_acquire_qhiwater;
916 } ipsec_kstats_t;
917
918 /*
919 * (ipss)->ipsec_kstats is equal to (ipss)->ipsec_ksp->ks_data if
920 * kstat_create_netstack for (ipss)->ipsec_ksp succeeds, but when it
921 * fails, it will be NULL. Note this is done for all stack instances,
922 * so it *could* fail. hence a non-NULL checking is done for
923 * IP_ESP_BUMP_STAT, IP_AH_BUMP_STAT and IP_ACQUIRE_STAT
924 */
925 #define IP_ESP_BUMP_STAT(ipss, x) \
926 do { \
927 if ((ipss)->ipsec_kstats != NULL) \
928 ((ipss)->ipsec_kstats->esp_stat_ ## x).value.ui64++; \
929 _NOTE(CONSTCOND) \
930 } while (0)
931
932 #define IP_AH_BUMP_STAT(ipss, x) \
933 do { \
934 if ((ipss)->ipsec_kstats != NULL) \
935 ((ipss)->ipsec_kstats->ah_stat_ ## x).value.ui64++; \
936 _NOTE(CONSTCOND) \
937 } while (0)
938
939 #define IP_ACQUIRE_STAT(ipss, val, new) \
940 do { \
941 if ((ipss)->ipsec_kstats != NULL && \
942 ((uint64_t)(new)) > \
943 ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64) \
944 ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64 = \
945 ((uint64_t)(new)); \
946 _NOTE(CONSTCOND) \
947 } while (0)
948
949
950 #ifdef __cplusplus
951 }
952 #endif
953
954 #endif /* _INET_SADB_H */