1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 
  25 /*      Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T     */
  26 /*        All Rights Reserved   */
  27 /*
  28  * Copyright (c) 2018, Joyent, Inc.
  29  * Copyright 2012 Nexenta Systems, Inc.  All rights reserved.
  30  * Copyright 2023 Oxide Computer Company
  31  */
  32 
  33 #include <sys/param.h>
  34 #include <sys/types.h>
  35 #include <sys/vmparam.h>
  36 #include <sys/systm.h>
  37 #include <sys/signal.h>
  38 #include <sys/stack.h>
  39 #include <sys/regset.h>
  40 #include <sys/privregs.h>
  41 #include <sys/frame.h>
  42 #include <sys/proc.h>
  43 #include <sys/psw.h>
  44 #include <sys/siginfo.h>
  45 #include <sys/cpuvar.h>
  46 #include <sys/asm_linkage.h>
  47 #include <sys/kmem.h>
  48 #include <sys/errno.h>
  49 #include <sys/bootconf.h>
  50 #include <sys/archsystm.h>
  51 #include <sys/debug.h>
  52 #include <sys/elf.h>
  53 #include <sys/spl.h>
  54 #include <sys/time.h>
  55 #include <sys/atomic.h>
  56 #include <sys/sysmacros.h>
  57 #include <sys/cmn_err.h>
  58 #include <sys/modctl.h>
  59 #include <sys/kobj.h>
  60 #include <sys/panic.h>
  61 #include <sys/reboot.h>
  62 #include <sys/time.h>
  63 #include <sys/fp.h>
  64 #include <sys/x86_archext.h>
  65 #include <sys/auxv.h>
  66 #include <sys/auxv_386.h>
  67 #include <sys/dtrace.h>
  68 #include <sys/brand.h>
  69 #include <sys/machbrand.h>
  70 #include <sys/cmn_err.h>
  71 
  72 /*
  73  * Map an fnsave-formatted save area into an fxsave-formatted save area.
  74  *
  75  * Most fields are the same width, content and semantics.  However
  76  * the tag word is compressed.
  77  */
  78 static void
  79 fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx)
  80 {
  81         uint_t i, tagbits;
  82 
  83         fx->fx_fcw = fn->f_fcw;
  84         fx->fx_fsw = fn->f_fsw;
  85 
  86         /*
  87          * copy element by element (because of holes)
  88          */
  89         for (i = 0; i < 8; i++)
  90                 bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0],
  91                     sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
  92 
  93         /*
  94          * synthesize compressed tag bits
  95          */
  96         fx->fx_fctw = 0;
  97         for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2)
  98                 if ((tagbits & 3) != 3)
  99                         fx->fx_fctw |= (1 << i);
 100 
 101         fx->fx_fop = fn->f_fop;
 102 
 103         fx->fx_rip = (uint64_t)fn->f_eip;
 104         fx->fx_rdp = (uint64_t)fn->f_dp;
 105 }
 106 
 107 /*
 108  * Map from an fxsave-format save area to an fnsave-format save area.
 109  */
 110 static void
 111 fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn)
 112 {
 113         uint_t i, top, tagbits;
 114 
 115         fn->f_fcw = fx->fx_fcw;
 116         fn->__f_ign0 = 0;
 117         fn->f_fsw = fx->fx_fsw;
 118         fn->__f_ign1 = 0;
 119 
 120         top = (fx->fx_fsw & FPS_TOP) >> 11;
 121 
 122         /*
 123          * copy element by element (because of holes)
 124          */
 125         for (i = 0; i < 8; i++)
 126                 bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0],
 127                     sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
 128 
 129         /*
 130          * synthesize uncompressed tag bits
 131          */
 132         fn->f_ftw = 0;
 133         for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) {
 134                 uint_t ibit, expo;
 135                 const uint16_t *fpp;
 136                 static const uint16_t zero[5] = { 0, 0, 0, 0, 0 };
 137 
 138                 if ((tagbits & 1) == 0) {
 139                         fn->f_ftw |= 3 << (i << 1);      /* empty */
 140                         continue;
 141                 }
 142 
 143                 /*
 144                  * (tags refer to *physical* registers)
 145                  */
 146                 fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0];
 147                 ibit = fpp[3] >> 15;
 148                 expo = fpp[4] & 0x7fff;
 149 
 150                 if (ibit && expo != 0 && expo != 0x7fff)
 151                         continue;                       /* valid fp number */
 152 
 153                 if (bcmp(fpp, &zero, sizeof (zero)))
 154                         fn->f_ftw |= 2 << (i << 1);      /* NaN */
 155                 else
 156                         fn->f_ftw |= 1 << (i << 1);      /* fp zero */
 157         }
 158 
 159         fn->f_fop = fx->fx_fop;
 160 
 161         fn->__f_ign2 = 0;
 162         fn->f_eip = (uint32_t)fx->fx_rip;
 163         fn->f_cs = U32CS_SEL;
 164         fn->f_dp = (uint32_t)fx->fx_rdp;
 165         fn->f_ds = UDS_SEL;
 166         fn->__f_ign3 = 0;
 167 }
 168 
 169 /*
 170  * Map from an fpregset_t into an fxsave-format save area
 171  */
 172 static void
 173 fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx)
 174 {
 175         bcopy(fp, fx, sizeof (*fx));
 176         /*
 177          * avoid useless #gp exceptions - mask reserved bits
 178          */
 179         fx->fx_mxcsr &= sse_mxcsr_mask;
 180 }
 181 
 182 /*
 183  * Map from an fxsave-format save area into a fpregset_t
 184  */
 185 static void
 186 fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp)
 187 {
 188         bcopy(fx, fp, sizeof (*fx));
 189 }
 190 
 191 #if defined(_SYSCALL32_IMPL)
 192 static void
 193 fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx)
 194 {
 195         const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
 196 
 197         fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
 198         /*
 199          * avoid useless #gp exceptions - mask reserved bits
 200          */
 201         fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr;
 202         bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
 203 }
 204 
 205 static void
 206 fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp)
 207 {
 208         struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
 209 
 210         fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
 211         fc->mxcsr = fx->fx_mxcsr;
 212         bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
 213 }
 214 
 215 static void
 216 fpregset_nto32(const fpregset_t *src, fpregset32_t *dst)
 217 {
 218         fxsave_to_fpregset32((struct fxsave_state *)src, dst);
 219         dst->fp_reg_set.fpchip_state.status =
 220             src->fp_reg_set.fpchip_state.status;
 221         dst->fp_reg_set.fpchip_state.xstatus =
 222             src->fp_reg_set.fpchip_state.xstatus;
 223 }
 224 
 225 static void
 226 fpregset_32ton(const fpregset32_t *src, fpregset_t *dst)
 227 {
 228         fpregset32_to_fxsave(src, (struct fxsave_state *)dst);
 229         dst->fp_reg_set.fpchip_state.status =
 230             src->fp_reg_set.fpchip_state.status;
 231         dst->fp_reg_set.fpchip_state.xstatus =
 232             src->fp_reg_set.fpchip_state.xstatus;
 233 }
 234 #endif
 235 
 236 /*
 237  * Set floating-point registers from a native fpregset_t.
 238  */
 239 void
 240 setfpregs(klwp_t *lwp, fpregset_t *fp)
 241 {
 242         fpu_set_fpregset(lwp, fp);
 243 }
 244 
 245 /*
 246  * Get floating-point registers into a native fpregset_t.
 247  */
 248 void
 249 getfpregs(klwp_t *lwp, fpregset_t *fp)
 250 {
 251         bzero(fp, sizeof (*fp));
 252         fpu_get_fpregset(lwp, fp);
 253 }
 254 
 255 #if defined(_SYSCALL32_IMPL)
 256 
 257 /*
 258  * Set floating-point registers from an fpregset32_t.
 259  */
 260 void
 261 setfpregs32(klwp_t *lwp, fpregset32_t *fp)
 262 {
 263         fpregset_t fpregs;
 264 
 265         fpregset_32ton(fp, &fpregs);
 266         setfpregs(lwp, &fpregs);
 267 }
 268 
 269 /*
 270  * Get floating-point registers into an fpregset32_t.
 271  */
 272 void
 273 getfpregs32(klwp_t *lwp, fpregset32_t *fp)
 274 {
 275         fpregset_t fpregs;
 276 
 277         getfpregs(lwp, &fpregs);
 278         fpregset_nto32(&fpregs, fp);
 279 }
 280 
 281 #endif  /* _SYSCALL32_IMPL */
 282 
 283 /*
 284  * Return the general registers
 285  */
 286 void
 287 getgregs(klwp_t *lwp, gregset_t grp)
 288 {
 289         struct regs *rp = lwptoregs(lwp);
 290         struct pcb *pcb = &lwp->lwp_pcb;
 291         int thisthread = lwptot(lwp) == curthread;
 292 
 293         grp[REG_RDI] = rp->r_rdi;
 294         grp[REG_RSI] = rp->r_rsi;
 295         grp[REG_RDX] = rp->r_rdx;
 296         grp[REG_RCX] = rp->r_rcx;
 297         grp[REG_R8] = rp->r_r8;
 298         grp[REG_R9] = rp->r_r9;
 299         grp[REG_RAX] = rp->r_rax;
 300         grp[REG_RBX] = rp->r_rbx;
 301         grp[REG_RBP] = rp->r_rbp;
 302         grp[REG_R10] = rp->r_r10;
 303         grp[REG_R11] = rp->r_r11;
 304         grp[REG_R12] = rp->r_r12;
 305         grp[REG_R13] = rp->r_r13;
 306         grp[REG_R14] = rp->r_r14;
 307         grp[REG_R15] = rp->r_r15;
 308         grp[REG_FSBASE] = pcb->pcb_fsbase;
 309         grp[REG_GSBASE] = pcb->pcb_gsbase;
 310         if (thisthread)
 311                 kpreempt_disable();
 312         if (PCB_NEED_UPDATE_SEGS(pcb)) {
 313                 grp[REG_DS] = pcb->pcb_ds;
 314                 grp[REG_ES] = pcb->pcb_es;
 315                 grp[REG_FS] = pcb->pcb_fs;
 316                 grp[REG_GS] = pcb->pcb_gs;
 317         } else {
 318                 grp[REG_DS] = rp->r_ds;
 319                 grp[REG_ES] = rp->r_es;
 320                 grp[REG_FS] = rp->r_fs;
 321                 grp[REG_GS] = rp->r_gs;
 322         }
 323         if (thisthread)
 324                 kpreempt_enable();
 325         grp[REG_TRAPNO] = rp->r_trapno;
 326         grp[REG_ERR] = rp->r_err;
 327         grp[REG_RIP] = rp->r_rip;
 328         grp[REG_CS] = rp->r_cs;
 329         grp[REG_SS] = rp->r_ss;
 330         grp[REG_RFL] = rp->r_rfl;
 331         grp[REG_RSP] = rp->r_rsp;
 332 }
 333 
 334 #if defined(_SYSCALL32_IMPL)
 335 
 336 void
 337 getgregs32(klwp_t *lwp, gregset32_t grp)
 338 {
 339         struct regs *rp = lwptoregs(lwp);
 340         struct pcb *pcb = &lwp->lwp_pcb;
 341         int thisthread = lwptot(lwp) == curthread;
 342 
 343         if (thisthread)
 344                 kpreempt_disable();
 345         if (PCB_NEED_UPDATE_SEGS(pcb)) {
 346                 grp[GS] = (uint16_t)pcb->pcb_gs;
 347                 grp[FS] = (uint16_t)pcb->pcb_fs;
 348                 grp[DS] = (uint16_t)pcb->pcb_ds;
 349                 grp[ES] = (uint16_t)pcb->pcb_es;
 350         } else {
 351                 grp[GS] = (uint16_t)rp->r_gs;
 352                 grp[FS] = (uint16_t)rp->r_fs;
 353                 grp[DS] = (uint16_t)rp->r_ds;
 354                 grp[ES] = (uint16_t)rp->r_es;
 355         }
 356         if (thisthread)
 357                 kpreempt_enable();
 358         grp[EDI] = (greg32_t)rp->r_rdi;
 359         grp[ESI] = (greg32_t)rp->r_rsi;
 360         grp[EBP] = (greg32_t)rp->r_rbp;
 361         grp[ESP] = 0;
 362         grp[EBX] = (greg32_t)rp->r_rbx;
 363         grp[EDX] = (greg32_t)rp->r_rdx;
 364         grp[ECX] = (greg32_t)rp->r_rcx;
 365         grp[EAX] = (greg32_t)rp->r_rax;
 366         grp[TRAPNO] = (greg32_t)rp->r_trapno;
 367         grp[ERR] = (greg32_t)rp->r_err;
 368         grp[EIP] = (greg32_t)rp->r_rip;
 369         grp[CS] = (uint16_t)rp->r_cs;
 370         grp[EFL] = (greg32_t)rp->r_rfl;
 371         grp[UESP] = (greg32_t)rp->r_rsp;
 372         grp[SS] = (uint16_t)rp->r_ss;
 373 }
 374 
 375 void
 376 ucontext_32ton(const ucontext32_t *src, ucontext_t *dst)
 377 {
 378         mcontext_t *dmc = &dst->uc_mcontext;
 379         const mcontext32_t *smc = &src->uc_mcontext;
 380 
 381         bzero(dst, sizeof (*dst));
 382         dst->uc_flags = src->uc_flags;
 383         dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link;
 384 
 385         bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask));
 386 
 387         dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp;
 388         dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size;
 389         dst->uc_stack.ss_flags = src->uc_stack.ss_flags;
 390 
 391         dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS];
 392         dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS];
 393         dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES];
 394         dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS];
 395         dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI];
 396         dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI];
 397         dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP];
 398         dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX];
 399         dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX];
 400         dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX];
 401         dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX];
 402         dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO];
 403         dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR];
 404         dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP];
 405         dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS];
 406         dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL];
 407         dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP];
 408         dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS];
 409 
 410         /*
 411          * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set
 412          * otherwise there is no guarantee that anything in fpregs is valid.
 413          */
 414         if (src->uc_flags & UC_FPU)
 415                 fpregset_32ton(&src->uc_mcontext.fpregs,
 416                     &dst->uc_mcontext.fpregs);
 417 
 418         if (src->uc_flags & UC_XSAVE) {
 419                 dst->uc_xsave = (long)(uint32_t)src->uc_xsave;
 420         } else {
 421                 dst->uc_xsave = 0;
 422         }
 423 }
 424 
 425 #endif  /* _SYSCALL32_IMPL */
 426 
 427 /*
 428  * Return the user-level PC.
 429  * If in a system call, return the address of the syscall trap.
 430  */
 431 greg_t
 432 getuserpc(void)
 433 {
 434         greg_t upc = lwptoregs(ttolwp(curthread))->r_pc;
 435         uint32_t insn;
 436 
 437         if (curthread->t_sysnum == 0)
 438                 return (upc);
 439 
 440         /*
 441          * We might've gotten here from sysenter (0xf 0x34),
 442          * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0).
 443          *
 444          * Go peek at the binary to figure it out..
 445          */
 446         if (fuword32((void *)(upc - 2), &insn) != -1 &&
 447             (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f)
 448                 return (upc - 2);
 449         return (upc - 7);
 450 }
 451 
 452 /*
 453  * Protect segment registers from non-user privilege levels and GDT selectors
 454  * other than USER_CS, USER_DS and lwp FS and GS values.  If the segment
 455  * selector is non-null and not USER_CS/USER_DS, we make sure that the
 456  * TI bit is set to point into the LDT and that the RPL is set to 3.
 457  *
 458  * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we
 459  * also explicitly zero the top 16 bits since they may be coming from the
 460  * user's address space via setcontext(2) or /proc.
 461  *
 462  * Note about null selector. When running on the hypervisor if we allow a
 463  * process to set its %cs to null selector with RPL of 0 the hypervisor will
 464  * crash the domain. If running on bare metal we would get a #gp fault and
 465  * be able to kill the process and continue on. Therefore we make sure to
 466  * force RPL to SEL_UPL even for null selector when setting %cs.
 467  */
 468 
 469 #if defined(IS_CS) || defined(IS_NOT_CS)
 470 #error  "IS_CS and IS_NOT_CS already defined"
 471 #endif
 472 
 473 #define IS_CS           1
 474 #define IS_NOT_CS       0
 475 
 476 /*ARGSUSED*/
 477 static greg_t
 478 fix_segreg(greg_t sr, int iscs, model_t datamodel)
 479 {
 480         switch (sr &= 0xffff) {
 481 
 482         case 0:
 483                 if (iscs == IS_CS)
 484                         return (0 | SEL_UPL);
 485                 else
 486                         return (0);
 487 
 488         /*
 489          * If lwp attempts to switch data model then force their
 490          * code selector to be null selector.
 491          */
 492         case U32CS_SEL:
 493                 if (datamodel == DATAMODEL_NATIVE)
 494                         return (0 | SEL_UPL);
 495                 else
 496                         return (sr);
 497 
 498         case UCS_SEL:
 499                 if (datamodel == DATAMODEL_ILP32)
 500                         return (0 | SEL_UPL);
 501         /*FALLTHROUGH*/
 502         case UDS_SEL:
 503         case LWPFS_SEL:
 504         case LWPGS_SEL:
 505         case SEL_UPL:
 506                 return (sr);
 507         default:
 508                 break;
 509         }
 510 
 511         /*
 512          * Force it into the LDT in ring 3 for 32-bit processes, which by
 513          * default do not have an LDT, so that any attempt to use an invalid
 514          * selector will reference the (non-existant) LDT, and cause a #gp
 515          * fault for the process.
 516          *
 517          * 64-bit processes get the null gdt selector since they
 518          * are not allowed to have a private LDT.
 519          */
 520         if (datamodel == DATAMODEL_ILP32) {
 521                 return (sr | SEL_TI_LDT | SEL_UPL);
 522         } else {
 523                 if (iscs == IS_CS)
 524                         return (0 | SEL_UPL);
 525                 else
 526                         return (0);
 527         }
 528 
 529 }
 530 
 531 /*
 532  * Set general registers.
 533  */
 534 void
 535 setgregs(klwp_t *lwp, gregset_t grp)
 536 {
 537         struct regs *rp = lwptoregs(lwp);
 538         model_t datamodel = lwp_getdatamodel(lwp);
 539 
 540         struct pcb *pcb = &lwp->lwp_pcb;
 541         int thisthread = lwptot(lwp) == curthread;
 542 
 543         if (datamodel == DATAMODEL_NATIVE) {
 544                 if (thisthread)
 545                         (void) save_syscall_args();     /* copy the args */
 546 
 547                 rp->r_rdi = grp[REG_RDI];
 548                 rp->r_rsi = grp[REG_RSI];
 549                 rp->r_rdx = grp[REG_RDX];
 550                 rp->r_rcx = grp[REG_RCX];
 551                 rp->r_r8 = grp[REG_R8];
 552                 rp->r_r9 = grp[REG_R9];
 553                 rp->r_rax = grp[REG_RAX];
 554                 rp->r_rbx = grp[REG_RBX];
 555                 rp->r_rbp = grp[REG_RBP];
 556                 rp->r_r10 = grp[REG_R10];
 557                 rp->r_r11 = grp[REG_R11];
 558                 rp->r_r12 = grp[REG_R12];
 559                 rp->r_r13 = grp[REG_R13];
 560                 rp->r_r14 = grp[REG_R14];
 561                 rp->r_r15 = grp[REG_R15];
 562                 rp->r_trapno = grp[REG_TRAPNO];
 563                 rp->r_err = grp[REG_ERR];
 564                 rp->r_rip = grp[REG_RIP];
 565                 /*
 566                  * Setting %cs or %ss to anything else is quietly but
 567                  * quite definitely forbidden!
 568                  */
 569                 rp->r_cs = UCS_SEL;
 570                 rp->r_ss = UDS_SEL;
 571                 rp->r_rsp = grp[REG_RSP];
 572 
 573                 if (thisthread)
 574                         kpreempt_disable();
 575 
 576                 pcb->pcb_ds = UDS_SEL;
 577                 pcb->pcb_es = UDS_SEL;
 578 
 579                 /*
 580                  * 64-bit processes -are- allowed to set their fsbase/gsbase
 581                  * values directly, but only if they're using the segment
 582                  * selectors that allow that semantic.
 583                  *
 584                  * (32-bit processes must use lwp_set_private().)
 585                  */
 586                 pcb->pcb_fsbase = grp[REG_FSBASE];
 587                 pcb->pcb_gsbase = grp[REG_GSBASE];
 588                 pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
 589                 pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
 590 
 591                 /*
 592                  * Ensure that we go out via update_sregs
 593                  */
 594                 PCB_SET_UPDATE_SEGS(pcb);
 595                 lwptot(lwp)->t_post_sys = 1;
 596                 if (thisthread)
 597                         kpreempt_enable();
 598 #if defined(_SYSCALL32_IMPL)
 599         } else {
 600                 rp->r_rdi = (uint32_t)grp[REG_RDI];
 601                 rp->r_rsi = (uint32_t)grp[REG_RSI];
 602                 rp->r_rdx = (uint32_t)grp[REG_RDX];
 603                 rp->r_rcx = (uint32_t)grp[REG_RCX];
 604                 rp->r_rax = (uint32_t)grp[REG_RAX];
 605                 rp->r_rbx = (uint32_t)grp[REG_RBX];
 606                 rp->r_rbp = (uint32_t)grp[REG_RBP];
 607                 rp->r_trapno = (uint32_t)grp[REG_TRAPNO];
 608                 rp->r_err = (uint32_t)grp[REG_ERR];
 609                 rp->r_rip = (uint32_t)grp[REG_RIP];
 610 
 611                 rp->r_cs = fix_segreg(grp[REG_CS], IS_CS, datamodel);
 612                 rp->r_ss = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
 613 
 614                 rp->r_rsp = (uint32_t)grp[REG_RSP];
 615 
 616                 if (thisthread)
 617                         kpreempt_disable();
 618 
 619                 pcb->pcb_ds = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
 620                 pcb->pcb_es = fix_segreg(grp[REG_ES], IS_NOT_CS, datamodel);
 621 
 622                 /*
 623                  * (See fsbase/gsbase commentary above)
 624                  */
 625                 pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
 626                 pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
 627 
 628                 /*
 629                  * Ensure that we go out via update_sregs
 630                  */
 631                 PCB_SET_UPDATE_SEGS(pcb);
 632                 lwptot(lwp)->t_post_sys = 1;
 633                 if (thisthread)
 634                         kpreempt_enable();
 635 #endif
 636         }
 637 
 638         /*
 639          * Only certain bits of the flags register can be modified.
 640          */
 641         rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) |
 642             (grp[REG_RFL] & PSL_USERMASK);
 643 }
 644 
 645 /*
 646  * Determine whether eip is likely to have an interrupt frame
 647  * on the stack.  We do this by comparing the address to the
 648  * range of addresses spanned by several well-known routines.
 649  */
 650 extern void _interrupt();
 651 extern void _allsyscalls();
 652 extern void _cmntrap();
 653 extern void fakesoftint();
 654 
 655 extern size_t _interrupt_size;
 656 extern size_t _allsyscalls_size;
 657 extern size_t _cmntrap_size;
 658 extern size_t _fakesoftint_size;
 659 
 660 /*
 661  * Get a pc-only stacktrace.  Used for kmem_alloc() buffer ownership tracking.
 662  * Returns MIN(current stack depth, pcstack_limit).
 663  */
 664 int
 665 getpcstack(pc_t *pcstack, int pcstack_limit)
 666 {
 667         struct frame *fp = (struct frame *)getfp();
 668         struct frame *nextfp, *minfp, *stacktop;
 669         int depth = 0;
 670         int on_intr;
 671         uintptr_t pc;
 672 
 673         if ((on_intr = CPU_ON_INTR(CPU)) != 0)
 674                 stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME));
 675         else
 676                 stacktop = (struct frame *)curthread->t_stk;
 677         minfp = fp;
 678 
 679         pc = ((struct regs *)fp)->r_pc;
 680 
 681         while (depth < pcstack_limit) {
 682                 nextfp = (struct frame *)fp->fr_savfp;
 683                 pc = fp->fr_savpc;
 684                 if (nextfp <= minfp || nextfp >= stacktop) {
 685                         if (on_intr) {
 686                                 /*
 687                                  * Hop from interrupt stack to thread stack.
 688                                  */
 689                                 stacktop = (struct frame *)curthread->t_stk;
 690                                 minfp = (struct frame *)curthread->t_stkbase;
 691                                 on_intr = 0;
 692                                 continue;
 693                         }
 694                         break;
 695                 }
 696                 pcstack[depth++] = (pc_t)pc;
 697                 fp = nextfp;
 698                 minfp = fp;
 699         }
 700         return (depth);
 701 }
 702 
 703 /*
 704  * The following ELF header fields are defined as processor-specific
 705  * in the V8 ABI:
 706  *
 707  *      e_ident[EI_DATA]        encoding of the processor-specific
 708  *                              data in the object file
 709  *      e_machine               processor identification
 710  *      e_flags                 processor-specific flags associated
 711  *                              with the file
 712  */
 713 
 714 /*
 715  * The value of at_flags reflects a platform's cpu module support.
 716  * at_flags is used to check for allowing a binary to execute and
 717  * is passed as the value of the AT_FLAGS auxiliary vector.
 718  */
 719 int at_flags = 0;
 720 
 721 /*
 722  * Check the processor-specific fields of an ELF header.
 723  *
 724  * returns 1 if the fields are valid, 0 otherwise
 725  */
 726 /*ARGSUSED2*/
 727 int
 728 elfheadcheck(
 729         unsigned char e_data,
 730         Elf32_Half e_machine,
 731         Elf32_Word e_flags)
 732 {
 733         if (e_data != ELFDATA2LSB)
 734                 return (0);
 735         if (e_machine == EM_AMD64)
 736                 return (1);
 737         return (e_machine == EM_386);
 738 }
 739 
 740 uint_t auxv_hwcap_include = 0;  /* patch to enable unrecognized features */
 741 uint_t auxv_hwcap_include_2 = 0;        /* second word */
 742 uint_t auxv_hwcap_exclude = 0;  /* patch for broken cpus, debugging */
 743 uint_t auxv_hwcap_exclude_2 = 0;        /* second word */
 744 #if defined(_SYSCALL32_IMPL)
 745 uint_t auxv_hwcap32_include = 0;        /* ditto for 32-bit apps */
 746 uint_t auxv_hwcap32_include_2 = 0;      /* ditto for 32-bit apps */
 747 uint_t auxv_hwcap32_exclude = 0;        /* ditto for 32-bit apps */
 748 uint_t auxv_hwcap32_exclude_2 = 0;      /* ditto for 32-bit apps */
 749 #endif
 750 
 751 /*
 752  * Gather information about the processor and place it into auxv_hwcap
 753  * so that it can be exported to the linker via the aux vector.
 754  *
 755  * We use this seemingly complicated mechanism so that we can ensure
 756  * that /etc/system can be used to override what the system can or
 757  * cannot discover for itself. Due to a lack of use, this has not
 758  * been extended to the 3rd word.
 759  */
 760 void
 761 bind_hwcap(void)
 762 {
 763         uint_t cpu_hwcap_flags[3];
 764         cpuid_execpass(NULL, CPUID_PASS_RESOLVE, cpu_hwcap_flags);
 765 
 766         auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags[0]) &
 767             ~auxv_hwcap_exclude;
 768         auxv_hwcap_2 = (auxv_hwcap_include_2 | cpu_hwcap_flags[1]) &
 769             ~auxv_hwcap_exclude_2;
 770         auxv_hwcap_3 = cpu_hwcap_flags[2];
 771 
 772         /*
 773          * On AMD processors, sysenter just doesn't work at all
 774          * when the kernel is in long mode.  On IA-32e processors
 775          * it does, but there's no real point in all the alternate
 776          * mechanism when syscall works on both.
 777          *
 778          * Besides, the kernel's sysenter handler is expecting a
 779          * 32-bit lwp ...
 780          */
 781         auxv_hwcap &= ~AV_386_SEP;
 782 
 783         if (auxv_hwcap_include || auxv_hwcap_exclude || auxv_hwcap_include_2 ||
 784             auxv_hwcap_exclude_2) {
 785                 /*
 786                  * The below assignment is regrettably required to get lint
 787                  * to accept the validity of our format string.  The format
 788                  * string is in fact valid, but whatever intelligence in lint
 789                  * understands the cmn_err()-specific %b appears to have an
 790                  * off-by-one error:  it (mistakenly) complains about bit
 791                  * number 32 (even though this is explicitly permitted).
 792                  * Normally, one would will away such warnings with a "LINTED"
 793                  * directive, but for reasons unclear and unknown, lint
 794                  * refuses to be assuaged in this case.  Fortunately, lint
 795                  * doesn't pretend to have solved the Halting Problem --
 796                  * and as soon as the format string is programmatic, it
 797                  * knows enough to shut up.
 798                  */
 799                 char *fmt = "?user ABI extensions: %b\n";
 800                 cmn_err(CE_CONT, fmt, auxv_hwcap, FMT_AV_386);
 801                 fmt = "?user ABI extensions (word 2): %b\n";
 802                 cmn_err(CE_CONT, fmt, auxv_hwcap_2, FMT_AV_386_2);
 803                 fmt = "?user ABI extensions (word 2): %b\n";
 804                 cmn_err(CE_CONT, fmt, auxv_hwcap_3, FMT_AV_386_3);
 805         }
 806 
 807 #if defined(_SYSCALL32_IMPL)
 808         auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags[0]) &
 809             ~auxv_hwcap32_exclude;
 810         auxv_hwcap32_2 = (auxv_hwcap32_include_2 | cpu_hwcap_flags[1]) &
 811             ~auxv_hwcap32_exclude_2;
 812         auxv_hwcap32_3 = auxv_hwcap_3;
 813 
 814         /*
 815          * If this is an amd64 architecture machine from Intel, then
 816          * syscall -doesn't- work in compatibility mode, only sysenter does.
 817          *
 818          * Sigh.
 819          */
 820         if (!cpuid_syscall32_insn(NULL))
 821                 auxv_hwcap32 &= ~AV_386_AMD_SYSC;
 822 
 823         /*
 824          * 32-bit processes can -always- use the lahf/sahf instructions
 825          */
 826         auxv_hwcap32 |= AV_386_AHF;
 827 
 828         /*
 829          * 32-bit processes can -never- use fsgsbase instructions.
 830          */
 831         auxv_hwcap32_2 &= ~AV_386_2_FSGSBASE;
 832 
 833         if (auxv_hwcap32_include || auxv_hwcap32_exclude ||
 834             auxv_hwcap32_include_2 || auxv_hwcap32_exclude_2) {
 835                 /*
 836                  * See the block comment in the cmn_err() of auxv_hwcap, above.
 837                  */
 838                 char *fmt = "?32-bit user ABI extensions: %b\n";
 839                 cmn_err(CE_CONT, fmt, auxv_hwcap32, FMT_AV_386);
 840                 fmt = "?32-bit user ABI extensions (word 2): %b\n";
 841                 cmn_err(CE_CONT, fmt, auxv_hwcap32_2, FMT_AV_386_2);
 842                 fmt = "?32-bit user ABI extensions (word 3): %b\n";
 843                 cmn_err(CE_CONT, fmt, auxv_hwcap32_3, FMT_AV_386_3);
 844         }
 845 #endif
 846 }
 847 
 848 /*
 849  *      sync_icache() - this is called
 850  *      in proc/fs/prusrio.c. x86 has an unified cache and therefore
 851  *      this is a nop.
 852  */
 853 /* ARGSUSED */
 854 void
 855 sync_icache(caddr_t addr, uint_t len)
 856 {
 857         /* Do nothing for now */
 858 }
 859 
 860 /*ARGSUSED*/
 861 void
 862 sync_data_memory(caddr_t va, size_t len)
 863 {
 864         /* Not implemented for this platform */
 865 }
 866 
 867 int
 868 __ipltospl(int ipl)
 869 {
 870         return (ipltospl(ipl));
 871 }
 872 
 873 /*
 874  * The panic code invokes panic_saveregs() to record the contents of a
 875  * regs structure into the specified panic_data structure for debuggers.
 876  */
 877 void
 878 panic_saveregs(panic_data_t *pdp, struct regs *rp)
 879 {
 880         panic_nv_t *pnv = PANICNVGET(pdp);
 881 
 882         struct cregs    creg;
 883 
 884         getcregs(&creg);
 885 
 886         PANICNVADD(pnv, "rdi", rp->r_rdi);
 887         PANICNVADD(pnv, "rsi", rp->r_rsi);
 888         PANICNVADD(pnv, "rdx", rp->r_rdx);
 889         PANICNVADD(pnv, "rcx", rp->r_rcx);
 890         PANICNVADD(pnv, "r8", rp->r_r8);
 891         PANICNVADD(pnv, "r9", rp->r_r9);
 892         PANICNVADD(pnv, "rax", rp->r_rax);
 893         PANICNVADD(pnv, "rbx", rp->r_rbx);
 894         PANICNVADD(pnv, "rbp", rp->r_rbp);
 895         PANICNVADD(pnv, "r10", rp->r_r10);
 896         PANICNVADD(pnv, "r11", rp->r_r11);
 897         PANICNVADD(pnv, "r12", rp->r_r12);
 898         PANICNVADD(pnv, "r13", rp->r_r13);
 899         PANICNVADD(pnv, "r14", rp->r_r14);
 900         PANICNVADD(pnv, "r15", rp->r_r15);
 901         PANICNVADD(pnv, "fsbase", rdmsr(MSR_AMD_FSBASE));
 902         PANICNVADD(pnv, "gsbase", rdmsr(MSR_AMD_GSBASE));
 903         PANICNVADD(pnv, "ds", rp->r_ds);
 904         PANICNVADD(pnv, "es", rp->r_es);
 905         PANICNVADD(pnv, "fs", rp->r_fs);
 906         PANICNVADD(pnv, "gs", rp->r_gs);
 907         PANICNVADD(pnv, "trapno", rp->r_trapno);
 908         PANICNVADD(pnv, "err", rp->r_err);
 909         PANICNVADD(pnv, "rip", rp->r_rip);
 910         PANICNVADD(pnv, "cs", rp->r_cs);
 911         PANICNVADD(pnv, "rflags", rp->r_rfl);
 912         PANICNVADD(pnv, "rsp", rp->r_rsp);
 913         PANICNVADD(pnv, "ss", rp->r_ss);
 914         PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3]));
 915         PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0]));
 916         PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3]));
 917         PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0]));
 918 
 919         PANICNVADD(pnv, "ldt", creg.cr_ldt);
 920         PANICNVADD(pnv, "task", creg.cr_task);
 921         PANICNVADD(pnv, "cr0", creg.cr_cr0);
 922         PANICNVADD(pnv, "cr2", creg.cr_cr2);
 923         PANICNVADD(pnv, "cr3", creg.cr_cr3);
 924         if (creg.cr_cr4)
 925                 PANICNVADD(pnv, "cr4", creg.cr_cr4);
 926 
 927         PANICNVSET(pdp, pnv);
 928 }
 929 
 930 #define TR_ARG_MAX 6    /* Max args to print, same as SPARC */
 931 
 932 
 933 /*
 934  * Print a stack backtrace using the specified frame pointer.  We delay two
 935  * seconds before continuing, unless this is the panic traceback.
 936  * If we are in the process of panicking, we also attempt to write the
 937  * stack backtrace to a staticly assigned buffer, to allow the panic
 938  * code to find it and write it in to uncompressed pages within the
 939  * system crash dump.
 940  * Note that the frame for the starting stack pointer value is omitted because
 941  * the corresponding %eip is not known.
 942  */
 943 
 944 extern char *dump_stack_scratch;
 945 
 946 
 947 void
 948 traceback(caddr_t fpreg)
 949 {
 950         struct frame    *fp = (struct frame *)fpreg;
 951         struct frame    *nextfp;
 952         uintptr_t       pc, nextpc;
 953         ulong_t         off;
 954         char            args[TR_ARG_MAX * 2 + 16], *sym;
 955         uint_t    offset = 0;
 956         uint_t    next_offset = 0;
 957         char        stack_buffer[1024];
 958 
 959         if (!panicstr)
 960                 printf("traceback: %%fp = %p\n", (void *)fp);
 961 
 962         if (panicstr && !dump_stack_scratch) {
 963                 printf("Warning - stack not written to the dump buffer\n");
 964         }
 965 
 966         fp = (struct frame *)plat_traceback(fpreg);
 967         if ((uintptr_t)fp < KERNELBASE)
 968                 goto out;
 969 
 970         pc = fp->fr_savpc;
 971         fp = (struct frame *)fp->fr_savfp;
 972 
 973         while ((uintptr_t)fp >= KERNELBASE) {
 974                 /*
 975                  * XX64 Until port is complete tolerate 8-byte aligned
 976                  * frame pointers but flag with a warning so they can
 977                  * be fixed.
 978                  */
 979                 if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) {
 980                         if (((uintptr_t)fp & (8 - 1)) == 0) {
 981                                 printf("  >> warning! 8-byte"
 982                                     " aligned %%fp = %p\n", (void *)fp);
 983                         } else {
 984                                 printf(
 985                                     "  >> mis-aligned %%fp = %p\n", (void *)fp);
 986                                 break;
 987                         }
 988                 }
 989 
 990                 args[0] = '\0';
 991                 nextpc = (uintptr_t)fp->fr_savpc;
 992                 nextfp = (struct frame *)fp->fr_savfp;
 993                 if ((sym = kobj_getsymname(pc, &off)) != NULL) {
 994                         printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
 995                             mod_containing_pc((caddr_t)pc), sym, off, args);
 996                         (void) snprintf(stack_buffer, sizeof (stack_buffer),
 997                             "%s:%s+%lx (%s) | ",
 998                             mod_containing_pc((caddr_t)pc), sym, off, args);
 999                 } else {
1000                         printf("%016lx %lx (%s)\n",
1001                             (uintptr_t)fp, pc, args);
1002                         (void) snprintf(stack_buffer, sizeof (stack_buffer),
1003                             "%lx (%s) | ", pc, args);
1004                 }
1005 
1006                 if (panicstr && dump_stack_scratch) {
1007                         next_offset = offset + strlen(stack_buffer);
1008                         if (next_offset < STACK_BUF_SIZE) {
1009                                 bcopy(stack_buffer, dump_stack_scratch + offset,
1010                                     strlen(stack_buffer));
1011                                 offset = next_offset;
1012                         } else {
1013                                 /*
1014                                  * In attempting to save the panic stack
1015                                  * to the dumpbuf we have overflowed that area.
1016                                  * Print a warning and continue to printf the
1017                                  * stack to the msgbuf
1018                                  */
1019                                 printf("Warning: stack in the dump buffer"
1020                                     " may be incomplete\n");
1021                                 offset = next_offset;
1022                         }
1023                 }
1024 
1025                 pc = nextpc;
1026                 fp = nextfp;
1027         }
1028 out:
1029         if (!panicstr) {
1030                 printf("end of traceback\n");
1031                 DELAY(2 * MICROSEC);
1032         } else if (dump_stack_scratch) {
1033                 dump_stack_scratch[offset] = '\0';
1034         }
1035 }
1036 
1037 
1038 /*
1039  * Generate a stack backtrace from a saved register set.
1040  */
1041 void
1042 traceregs(struct regs *rp)
1043 {
1044         traceback((caddr_t)rp->r_fp);
1045 }
1046 
1047 void
1048 exec_set_sp(size_t stksize)
1049 {
1050         klwp_t *lwp = ttolwp(curthread);
1051 
1052         lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize;
1053 }
1054 
1055 hrtime_t
1056 gethrtime_waitfree(void)
1057 {
1058         return (dtrace_gethrtime());
1059 }
1060 
1061 hrtime_t
1062 gethrtime(void)
1063 {
1064         return (gethrtimef());
1065 }
1066 
1067 hrtime_t
1068 gethrtime_unscaled(void)
1069 {
1070         return (gethrtimeunscaledf());
1071 }
1072 
1073 void
1074 scalehrtime(hrtime_t *hrt)
1075 {
1076         scalehrtimef(hrt);
1077 }
1078 
1079 uint64_t
1080 unscalehrtime(hrtime_t nsecs)
1081 {
1082         return (unscalehrtimef(nsecs));
1083 }
1084 
1085 void
1086 gethrestime(timespec_t *tp)
1087 {
1088         gethrestimef(tp);
1089 }
1090 
1091 /*
1092  * Part of the implementation of hres_tick(); this routine is
1093  * easier in C than assembler .. called with the hres_lock held.
1094  *
1095  * XX64 Many of these timekeeping variables need to be extern'ed in a header
1096  */
1097 
1098 #include <sys/time.h>
1099 #include <sys/machlock.h>
1100 
1101 extern int one_sec;
1102 extern int max_hres_adj;
1103 
1104 void
1105 __adj_hrestime(void)
1106 {
1107         long long adj;
1108 
1109         if (hrestime_adj == 0)
1110                 adj = 0;
1111         else if (hrestime_adj > 0) {
1112                 if (hrestime_adj < max_hres_adj)
1113                         adj = hrestime_adj;
1114                 else
1115                         adj = max_hres_adj;
1116         } else {
1117                 if (hrestime_adj < -max_hres_adj)
1118                         adj = -max_hres_adj;
1119                 else
1120                         adj = hrestime_adj;
1121         }
1122 
1123         timedelta -= adj;
1124         hrestime_adj = timedelta;
1125         hrestime.tv_nsec += adj;
1126 
1127         while (hrestime.tv_nsec >= NANOSEC) {
1128                 one_sec++;
1129                 hrestime.tv_sec++;
1130                 hrestime.tv_nsec -= NANOSEC;
1131         }
1132 }
1133 
1134 /*
1135  * Wrapper functions to maintain backwards compability
1136  */
1137 int
1138 xcopyin(const void *uaddr, void *kaddr, size_t count)
1139 {
1140         return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED));
1141 }
1142 
1143 int
1144 xcopyout(const void *kaddr, void *uaddr, size_t count)
1145 {
1146         return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED));
1147 }