1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 
  25 /*      Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T     */
  26 /*        All Rights Reserved   */
  27 /*
  28  * Copyright (c) 2018, Joyent, Inc.
  29  * Copyright 2012 Nexenta Systems, Inc.  All rights reserved.
  30  * Copyright 2023 Oxide Computer Company
  31  */
  32 
  33 #include <sys/param.h>
  34 #include <sys/types.h>
  35 #include <sys/vmparam.h>
  36 #include <sys/systm.h>
  37 #include <sys/signal.h>
  38 #include <sys/stack.h>
  39 #include <sys/regset.h>
  40 #include <sys/privregs.h>
  41 #include <sys/frame.h>
  42 #include <sys/proc.h>
  43 #include <sys/psw.h>
  44 #include <sys/siginfo.h>
  45 #include <sys/cpuvar.h>
  46 #include <sys/asm_linkage.h>
  47 #include <sys/kmem.h>
  48 #include <sys/errno.h>
  49 #include <sys/bootconf.h>
  50 #include <sys/archsystm.h>
  51 #include <sys/debug.h>
  52 #include <sys/elf.h>
  53 #include <sys/spl.h>
  54 #include <sys/time.h>
  55 #include <sys/atomic.h>
  56 #include <sys/sysmacros.h>
  57 #include <sys/cmn_err.h>
  58 #include <sys/modctl.h>
  59 #include <sys/kobj.h>
  60 #include <sys/panic.h>
  61 #include <sys/reboot.h>
  62 #include <sys/time.h>
  63 #include <sys/fp.h>
  64 #include <sys/x86_archext.h>
  65 #include <sys/auxv.h>
  66 #include <sys/auxv_386.h>
  67 #include <sys/dtrace.h>
  68 #include <sys/brand.h>
  69 #include <sys/machbrand.h>
  70 #include <sys/cmn_err.h>
  71 
  72 /*
  73  * Map an fnsave-formatted save area into an fxsave-formatted save area.
  74  *
  75  * Most fields are the same width, content and semantics.  However
  76  * the tag word is compressed.
  77  */
  78 static void
  79 fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx)
  80 {
  81         uint_t i, tagbits;
  82 
  83         fx->fx_fcw = fn->f_fcw;
  84         fx->fx_fsw = fn->f_fsw;
  85 
  86         /*
  87          * copy element by element (because of holes)
  88          */
  89         for (i = 0; i < 8; i++)
  90                 bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0],
  91                     sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
  92 
  93         /*
  94          * synthesize compressed tag bits
  95          */
  96         fx->fx_fctw = 0;
  97         for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2)
  98                 if ((tagbits & 3) != 3)
  99                         fx->fx_fctw |= (1 << i);
 100 
 101         fx->fx_fop = fn->f_fop;
 102 
 103         fx->fx_rip = (uint64_t)fn->f_eip;
 104         fx->fx_rdp = (uint64_t)fn->f_dp;
 105 }
 106 
 107 /*
 108  * Map from an fxsave-format save area to an fnsave-format save area.
 109  */
 110 static void
 111 fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn)
 112 {
 113         uint_t i, top, tagbits;
 114 
 115         fn->f_fcw = fx->fx_fcw;
 116         fn->__f_ign0 = 0;
 117         fn->f_fsw = fx->fx_fsw;
 118         fn->__f_ign1 = 0;
 119 
 120         top = (fx->fx_fsw & FPS_TOP) >> 11;
 121 
 122         /*
 123          * copy element by element (because of holes)
 124          */
 125         for (i = 0; i < 8; i++)
 126                 bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0],
 127                     sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
 128 
 129         /*
 130          * synthesize uncompressed tag bits
 131          */
 132         fn->f_ftw = 0;
 133         for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) {
 134                 uint_t ibit, expo;
 135                 const uint16_t *fpp;
 136                 static const uint16_t zero[5] = { 0, 0, 0, 0, 0 };
 137 
 138                 if ((tagbits & 1) == 0) {
 139                         fn->f_ftw |= 3 << (i << 1);      /* empty */
 140                         continue;
 141                 }
 142 
 143                 /*
 144                  * (tags refer to *physical* registers)
 145                  */
 146                 fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0];
 147                 ibit = fpp[3] >> 15;
 148                 expo = fpp[4] & 0x7fff;
 149 
 150                 if (ibit && expo != 0 && expo != 0x7fff)
 151                         continue;                       /* valid fp number */
 152 
 153                 if (bcmp(fpp, &zero, sizeof (zero)))
 154                         fn->f_ftw |= 2 << (i << 1);      /* NaN */
 155                 else
 156                         fn->f_ftw |= 1 << (i << 1);      /* fp zero */
 157         }
 158 
 159         fn->f_fop = fx->fx_fop;
 160 
 161         fn->__f_ign2 = 0;
 162         fn->f_eip = (uint32_t)fx->fx_rip;
 163         fn->f_cs = U32CS_SEL;
 164         fn->f_dp = (uint32_t)fx->fx_rdp;
 165         fn->f_ds = UDS_SEL;
 166         fn->__f_ign3 = 0;
 167 }
 168 
 169 /*
 170  * Map from an fpregset_t into an fxsave-format save area
 171  */
 172 static void
 173 fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx)
 174 {
 175         bcopy(fp, fx, sizeof (*fx));
 176         /*
 177          * avoid useless #gp exceptions - mask reserved bits
 178          */
 179         fx->fx_mxcsr &= sse_mxcsr_mask;
 180 }
 181 
 182 /*
 183  * Map from an fxsave-format save area into a fpregset_t
 184  */
 185 static void
 186 fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp)
 187 {
 188         bcopy(fx, fp, sizeof (*fx));
 189 }
 190 
 191 #if defined(_SYSCALL32_IMPL)
 192 static void
 193 fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx)
 194 {
 195         const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
 196 
 197         fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
 198         /*
 199          * avoid useless #gp exceptions - mask reserved bits
 200          */
 201         fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr;
 202         bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
 203 }
 204 
 205 static void
 206 fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp)
 207 {
 208         struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
 209 
 210         fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
 211         fc->mxcsr = fx->fx_mxcsr;
 212         bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
 213 }
 214 
 215 static void
 216 fpregset_nto32(const fpregset_t *src, fpregset32_t *dst)
 217 {
 218         fxsave_to_fpregset32((struct fxsave_state *)src, dst);
 219         dst->fp_reg_set.fpchip_state.status =
 220             src->fp_reg_set.fpchip_state.status;
 221         dst->fp_reg_set.fpchip_state.xstatus =
 222             src->fp_reg_set.fpchip_state.xstatus;
 223 }
 224 
 225 static void
 226 fpregset_32ton(const fpregset32_t *src, fpregset_t *dst)
 227 {
 228         fpregset32_to_fxsave(src, (struct fxsave_state *)dst);
 229         dst->fp_reg_set.fpchip_state.status =
 230             src->fp_reg_set.fpchip_state.status;
 231         dst->fp_reg_set.fpchip_state.xstatus =
 232             src->fp_reg_set.fpchip_state.xstatus;
 233 }
 234 #endif
 235 
 236 /*
 237  * Set floating-point registers from a native fpregset_t.
 238  */
 239 void
 240 setfpregs(klwp_t *lwp, fpregset_t *fp)
 241 {
 242         fpu_set_fpregset(lwp, fp);
 243 }
 244 
 245 /*
 246  * Get floating-point registers into a native fpregset_t.
 247  */
 248 void
 249 getfpregs(klwp_t *lwp, fpregset_t *fp)
 250 {
 251         bzero(fp, sizeof (*fp));
 252         fpu_get_fpregset(lwp, fp);
 253 }
 254 
 255 #if defined(_SYSCALL32_IMPL)
 256 
 257 /*
 258  * Set floating-point registers from an fpregset32_t.
 259  */
 260 void
 261 setfpregs32(klwp_t *lwp, fpregset32_t *fp)
 262 {
 263         fpregset_t fpregs;
 264 
 265         fpregset_32ton(fp, &fpregs);
 266         setfpregs(lwp, &fpregs);
 267 }
 268 
 269 /*
 270  * Get floating-point registers into an fpregset32_t.
 271  */
 272 void
 273 getfpregs32(klwp_t *lwp, fpregset32_t *fp)
 274 {
 275         fpregset_t fpregs;
 276 
 277         getfpregs(lwp, &fpregs);
 278         fpregset_nto32(&fpregs, fp);
 279 }
 280 
 281 #endif  /* _SYSCALL32_IMPL */
 282 
 283 /*
 284  * Return the general registers
 285  */
 286 void
 287 getgregs(klwp_t *lwp, gregset_t grp)
 288 {
 289         struct regs *rp = lwptoregs(lwp);
 290         struct pcb *pcb = &lwp->lwp_pcb;
 291         int thisthread = lwptot(lwp) == curthread;
 292 
 293         grp[REG_RDI] = rp->r_rdi;
 294         grp[REG_RSI] = rp->r_rsi;
 295         grp[REG_RDX] = rp->r_rdx;
 296         grp[REG_RCX] = rp->r_rcx;
 297         grp[REG_R8] = rp->r_r8;
 298         grp[REG_R9] = rp->r_r9;
 299         grp[REG_RAX] = rp->r_rax;
 300         grp[REG_RBX] = rp->r_rbx;
 301         grp[REG_RBP] = rp->r_rbp;
 302         grp[REG_R10] = rp->r_r10;
 303         grp[REG_R11] = rp->r_r11;
 304         grp[REG_R12] = rp->r_r12;
 305         grp[REG_R13] = rp->r_r13;
 306         grp[REG_R14] = rp->r_r14;
 307         grp[REG_R15] = rp->r_r15;
 308         grp[REG_FSBASE] = pcb->pcb_fsbase;
 309         grp[REG_GSBASE] = pcb->pcb_gsbase;
 310         if (thisthread)
 311                 kpreempt_disable();
 312         if (PCB_NEED_UPDATE_SEGS(pcb)) {
 313                 grp[REG_DS] = pcb->pcb_ds;
 314                 grp[REG_ES] = pcb->pcb_es;
 315                 grp[REG_FS] = pcb->pcb_fs;
 316                 grp[REG_GS] = pcb->pcb_gs;
 317         } else {
 318                 grp[REG_DS] = rp->r_ds;
 319                 grp[REG_ES] = rp->r_es;
 320                 grp[REG_FS] = rp->r_fs;
 321                 grp[REG_GS] = rp->r_gs;
 322         }
 323         if (thisthread)
 324                 kpreempt_enable();
 325         grp[REG_TRAPNO] = rp->r_trapno;
 326         grp[REG_ERR] = rp->r_err;
 327         grp[REG_RIP] = rp->r_rip;
 328         grp[REG_CS] = rp->r_cs;
 329         grp[REG_SS] = rp->r_ss;
 330         grp[REG_RFL] = rp->r_rfl;
 331         grp[REG_RSP] = rp->r_rsp;
 332 }
 333 
 334 #if defined(_SYSCALL32_IMPL)
 335 
 336 void
 337 getgregs32(klwp_t *lwp, gregset32_t grp)
 338 {
 339         struct regs *rp = lwptoregs(lwp);
 340         struct pcb *pcb = &lwp->lwp_pcb;
 341         int thisthread = lwptot(lwp) == curthread;
 342 
 343         if (thisthread)
 344                 kpreempt_disable();
 345         if (PCB_NEED_UPDATE_SEGS(pcb)) {
 346                 grp[GS] = (uint16_t)pcb->pcb_gs;
 347                 grp[FS] = (uint16_t)pcb->pcb_fs;
 348                 grp[DS] = (uint16_t)pcb->pcb_ds;
 349                 grp[ES] = (uint16_t)pcb->pcb_es;
 350         } else {
 351                 grp[GS] = (uint16_t)rp->r_gs;
 352                 grp[FS] = (uint16_t)rp->r_fs;
 353                 grp[DS] = (uint16_t)rp->r_ds;
 354                 grp[ES] = (uint16_t)rp->r_es;
 355         }
 356         if (thisthread)
 357                 kpreempt_enable();
 358         grp[EDI] = (greg32_t)rp->r_rdi;
 359         grp[ESI] = (greg32_t)rp->r_rsi;
 360         grp[EBP] = (greg32_t)rp->r_rbp;
 361         grp[ESP] = 0;
 362         grp[EBX] = (greg32_t)rp->r_rbx;
 363         grp[EDX] = (greg32_t)rp->r_rdx;
 364         grp[ECX] = (greg32_t)rp->r_rcx;
 365         grp[EAX] = (greg32_t)rp->r_rax;
 366         grp[TRAPNO] = (greg32_t)rp->r_trapno;
 367         grp[ERR] = (greg32_t)rp->r_err;
 368         grp[EIP] = (greg32_t)rp->r_rip;
 369         grp[CS] = (uint16_t)rp->r_cs;
 370         grp[EFL] = (greg32_t)rp->r_rfl;
 371         grp[UESP] = (greg32_t)rp->r_rsp;
 372         grp[SS] = (uint16_t)rp->r_ss;
 373 }
 374 
 375 void
 376 ucontext_32ton(const ucontext32_t *src, ucontext_t *dst)
 377 {
 378         mcontext_t *dmc = &dst->uc_mcontext;
 379         const mcontext32_t *smc = &src->uc_mcontext;
 380 
 381         bzero(dst, sizeof (*dst));
 382         dst->uc_flags = src->uc_flags;
 383         dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link;
 384 
 385         bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask));
 386 
 387         dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp;
 388         dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size;
 389         dst->uc_stack.ss_flags = src->uc_stack.ss_flags;
 390 
 391         dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS];
 392         dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS];
 393         dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES];
 394         dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS];
 395         dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI];
 396         dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI];
 397         dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP];
 398         dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX];
 399         dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX];
 400         dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX];
 401         dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX];
 402         dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO];
 403         dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR];
 404         dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP];
 405         dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS];
 406         dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL];
 407         dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP];
 408         dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS];
 409 
 410         /*
 411          * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set
 412          * otherwise there is no guarantee that anything in fpregs is valid.
 413          */
 414         if (src->uc_flags & UC_FPU)
 415                 fpregset_32ton(&src->uc_mcontext.fpregs,
 416                     &dst->uc_mcontext.fpregs);
 417 
 418         /*
 419          * Copy the brand-private data:
 420          */
 421         dst->uc_brand_data[0] = (void *)(uintptr_t)src->uc_brand_data[0];
 422         dst->uc_brand_data[1] = (void *)(uintptr_t)src->uc_brand_data[1];
 423         dst->uc_brand_data[2] = (void *)(uintptr_t)src->uc_brand_data[2];
 424 
 425         if (src->uc_flags & UC_XSAVE) {
 426                 dst->uc_xsave = (long)(uint32_t)src->uc_xsave;
 427         } else {
 428                 dst->uc_xsave = 0;
 429         }
 430 }
 431 
 432 #endif  /* _SYSCALL32_IMPL */
 433 
 434 /*
 435  * Return the user-level PC.
 436  * If in a system call, return the address of the syscall trap.
 437  */
 438 greg_t
 439 getuserpc(void)
 440 {
 441         greg_t upc = lwptoregs(ttolwp(curthread))->r_pc;
 442         uint32_t insn;
 443 
 444         if (curthread->t_sysnum == 0)
 445                 return (upc);
 446 
 447         /*
 448          * We might've gotten here from sysenter (0xf 0x34),
 449          * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0).
 450          *
 451          * Go peek at the binary to figure it out..
 452          */
 453         if (fuword32((void *)(upc - 2), &insn) != -1 &&
 454             (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f)
 455                 return (upc - 2);
 456         return (upc - 7);
 457 }
 458 
 459 /*
 460  * Protect segment registers from non-user privilege levels and GDT selectors
 461  * other than USER_CS, USER_DS and lwp FS and GS values.  If the segment
 462  * selector is non-null and not USER_CS/USER_DS, we make sure that the
 463  * TI bit is set to point into the LDT and that the RPL is set to 3.
 464  *
 465  * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we
 466  * also explicitly zero the top 16 bits since they may be coming from the
 467  * user's address space via setcontext(2) or /proc.
 468  *
 469  * Note about null selector. When running on the hypervisor if we allow a
 470  * process to set its %cs to null selector with RPL of 0 the hypervisor will
 471  * crash the domain. If running on bare metal we would get a #gp fault and
 472  * be able to kill the process and continue on. Therefore we make sure to
 473  * force RPL to SEL_UPL even for null selector when setting %cs.
 474  */
 475 
 476 #if defined(IS_CS) || defined(IS_NOT_CS)
 477 #error  "IS_CS and IS_NOT_CS already defined"
 478 #endif
 479 
 480 #define IS_CS           1
 481 #define IS_NOT_CS       0
 482 
 483 /*ARGSUSED*/
 484 greg_t
 485 fix_segreg(greg_t sr, int iscs, model_t datamodel)
 486 {
 487         kthread_t *t = curthread;
 488 
 489         switch (sr &= 0xffff) {
 490 
 491         case 0:
 492                 if (iscs == IS_CS)
 493                         return (0 | SEL_UPL);
 494                 else
 495                         return (0);
 496 
 497         /*
 498          * If lwp attempts to switch data model then force their
 499          * code selector to be null selector.
 500          */
 501         case U32CS_SEL:
 502                 if (datamodel == DATAMODEL_NATIVE)
 503                         return (0 | SEL_UPL);
 504                 else
 505                         return (sr);
 506 
 507         case UCS_SEL:
 508                 if (datamodel == DATAMODEL_ILP32)
 509                         return (0 | SEL_UPL);
 510         /*FALLTHROUGH*/
 511         case UDS_SEL:
 512         case LWPFS_SEL:
 513         case LWPGS_SEL:
 514         case SEL_UPL:
 515                 return (sr);
 516         default:
 517                 break;
 518         }
 519 
 520         /*
 521          * Allow this process's brand to do any necessary segment register
 522          * manipulation.
 523          */
 524         if (PROC_IS_BRANDED(t->t_procp) && BRMOP(t->t_procp)->b_fixsegreg) {
 525                 greg_t bsr = BRMOP(t->t_procp)->b_fixsegreg(sr, datamodel);
 526 
 527                 if (bsr == 0 && iscs == IS_CS)
 528                         return (0 | SEL_UPL);
 529                 else
 530                         return (bsr);
 531         }
 532 
 533         /*
 534          * Force it into the LDT in ring 3 for 32-bit processes, which by
 535          * default do not have an LDT, so that any attempt to use an invalid
 536          * selector will reference the (non-existant) LDT, and cause a #gp
 537          * fault for the process.
 538          *
 539          * 64-bit processes get the null gdt selector since they
 540          * are not allowed to have a private LDT.
 541          */
 542         if (datamodel == DATAMODEL_ILP32) {
 543                 return (sr | SEL_TI_LDT | SEL_UPL);
 544         } else {
 545                 if (iscs == IS_CS)
 546                         return (0 | SEL_UPL);
 547                 else
 548                         return (0);
 549         }
 550 
 551 }
 552 
 553 /*
 554  * Set general registers.
 555  */
 556 void
 557 setgregs(klwp_t *lwp, gregset_t grp)
 558 {
 559         struct regs *rp = lwptoregs(lwp);
 560         model_t datamodel = lwp_getdatamodel(lwp);
 561 
 562         struct pcb *pcb = &lwp->lwp_pcb;
 563         int thisthread = lwptot(lwp) == curthread;
 564 
 565         if (datamodel == DATAMODEL_NATIVE) {
 566                 if (thisthread)
 567                         (void) save_syscall_args();     /* copy the args */
 568 
 569                 rp->r_rdi = grp[REG_RDI];
 570                 rp->r_rsi = grp[REG_RSI];
 571                 rp->r_rdx = grp[REG_RDX];
 572                 rp->r_rcx = grp[REG_RCX];
 573                 rp->r_r8 = grp[REG_R8];
 574                 rp->r_r9 = grp[REG_R9];
 575                 rp->r_rax = grp[REG_RAX];
 576                 rp->r_rbx = grp[REG_RBX];
 577                 rp->r_rbp = grp[REG_RBP];
 578                 rp->r_r10 = grp[REG_R10];
 579                 rp->r_r11 = grp[REG_R11];
 580                 rp->r_r12 = grp[REG_R12];
 581                 rp->r_r13 = grp[REG_R13];
 582                 rp->r_r14 = grp[REG_R14];
 583                 rp->r_r15 = grp[REG_R15];
 584                 rp->r_trapno = grp[REG_TRAPNO];
 585                 rp->r_err = grp[REG_ERR];
 586                 rp->r_rip = grp[REG_RIP];
 587                 /*
 588                  * Setting %cs or %ss to anything else is quietly but
 589                  * quite definitely forbidden!
 590                  */
 591                 rp->r_cs = UCS_SEL;
 592                 rp->r_ss = UDS_SEL;
 593                 rp->r_rsp = grp[REG_RSP];
 594 
 595                 if (thisthread)
 596                         kpreempt_disable();
 597 
 598                 pcb->pcb_ds = UDS_SEL;
 599                 pcb->pcb_es = UDS_SEL;
 600 
 601                 /*
 602                  * 64-bit processes -are- allowed to set their fsbase/gsbase
 603                  * values directly, but only if they're using the segment
 604                  * selectors that allow that semantic.
 605                  *
 606                  * (32-bit processes must use lwp_set_private().)
 607                  */
 608                 pcb->pcb_fsbase = grp[REG_FSBASE];
 609                 pcb->pcb_gsbase = grp[REG_GSBASE];
 610                 pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
 611                 pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
 612 
 613                 /*
 614                  * Ensure that we go out via update_sregs
 615                  */
 616                 PCB_SET_UPDATE_SEGS(pcb);
 617                 lwptot(lwp)->t_post_sys = 1;
 618                 if (thisthread)
 619                         kpreempt_enable();
 620 #if defined(_SYSCALL32_IMPL)
 621         } else {
 622                 rp->r_rdi = (uint32_t)grp[REG_RDI];
 623                 rp->r_rsi = (uint32_t)grp[REG_RSI];
 624                 rp->r_rdx = (uint32_t)grp[REG_RDX];
 625                 rp->r_rcx = (uint32_t)grp[REG_RCX];
 626                 rp->r_rax = (uint32_t)grp[REG_RAX];
 627                 rp->r_rbx = (uint32_t)grp[REG_RBX];
 628                 rp->r_rbp = (uint32_t)grp[REG_RBP];
 629                 rp->r_trapno = (uint32_t)grp[REG_TRAPNO];
 630                 rp->r_err = (uint32_t)grp[REG_ERR];
 631                 rp->r_rip = (uint32_t)grp[REG_RIP];
 632 
 633                 rp->r_cs = fix_segreg(grp[REG_CS], IS_CS, datamodel);
 634                 rp->r_ss = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
 635 
 636                 rp->r_rsp = (uint32_t)grp[REG_RSP];
 637 
 638                 if (thisthread)
 639                         kpreempt_disable();
 640 
 641                 pcb->pcb_ds = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
 642                 pcb->pcb_es = fix_segreg(grp[REG_ES], IS_NOT_CS, datamodel);
 643 
 644                 /*
 645                  * (See fsbase/gsbase commentary above)
 646                  */
 647                 pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
 648                 pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
 649 
 650                 /*
 651                  * Ensure that we go out via update_sregs
 652                  */
 653                 PCB_SET_UPDATE_SEGS(pcb);
 654                 lwptot(lwp)->t_post_sys = 1;
 655                 if (thisthread)
 656                         kpreempt_enable();
 657 #endif
 658         }
 659 
 660         /*
 661          * Only certain bits of the flags register can be modified.
 662          */
 663         rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) |
 664             (grp[REG_RFL] & PSL_USERMASK);
 665 }
 666 
 667 /*
 668  * Determine whether eip is likely to have an interrupt frame
 669  * on the stack.  We do this by comparing the address to the
 670  * range of addresses spanned by several well-known routines.
 671  */
 672 extern void _interrupt();
 673 extern void _allsyscalls();
 674 extern void _cmntrap();
 675 extern void fakesoftint();
 676 
 677 extern size_t _interrupt_size;
 678 extern size_t _allsyscalls_size;
 679 extern size_t _cmntrap_size;
 680 extern size_t _fakesoftint_size;
 681 
 682 /*
 683  * Get a pc-only stacktrace.  Used for kmem_alloc() buffer ownership tracking.
 684  * Returns MIN(current stack depth, pcstack_limit).
 685  */
 686 int
 687 getpcstack(pc_t *pcstack, int pcstack_limit)
 688 {
 689         struct frame *fp = (struct frame *)getfp();
 690         struct frame *nextfp, *minfp, *stacktop;
 691         int depth = 0;
 692         int on_intr;
 693         uintptr_t pc;
 694 
 695         if ((on_intr = CPU_ON_INTR(CPU)) != 0)
 696                 stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME));
 697         else
 698                 stacktop = (struct frame *)curthread->t_stk;
 699         minfp = fp;
 700 
 701         pc = ((struct regs *)fp)->r_pc;
 702 
 703         while (depth < pcstack_limit) {
 704                 nextfp = (struct frame *)fp->fr_savfp;
 705                 pc = fp->fr_savpc;
 706                 if (nextfp <= minfp || nextfp >= stacktop) {
 707                         if (on_intr) {
 708                                 /*
 709                                  * Hop from interrupt stack to thread stack.
 710                                  */
 711                                 stacktop = (struct frame *)curthread->t_stk;
 712                                 minfp = (struct frame *)curthread->t_stkbase;
 713                                 on_intr = 0;
 714                                 continue;
 715                         }
 716                         break;
 717                 }
 718                 pcstack[depth++] = (pc_t)pc;
 719                 fp = nextfp;
 720                 minfp = fp;
 721         }
 722         return (depth);
 723 }
 724 
 725 /*
 726  * The following ELF header fields are defined as processor-specific
 727  * in the V8 ABI:
 728  *
 729  *      e_ident[EI_DATA]        encoding of the processor-specific
 730  *                              data in the object file
 731  *      e_machine               processor identification
 732  *      e_flags                 processor-specific flags associated
 733  *                              with the file
 734  */
 735 
 736 /*
 737  * The value of at_flags reflects a platform's cpu module support.
 738  * at_flags is used to check for allowing a binary to execute and
 739  * is passed as the value of the AT_FLAGS auxiliary vector.
 740  */
 741 int at_flags = 0;
 742 
 743 /*
 744  * Check the processor-specific fields of an ELF header.
 745  *
 746  * returns 1 if the fields are valid, 0 otherwise
 747  */
 748 /*ARGSUSED2*/
 749 int
 750 elfheadcheck(
 751         unsigned char e_data,
 752         Elf32_Half e_machine,
 753         Elf32_Word e_flags)
 754 {
 755         if (e_data != ELFDATA2LSB)
 756                 return (0);
 757         if (e_machine == EM_AMD64)
 758                 return (1);
 759         return (e_machine == EM_386);
 760 }
 761 
 762 uint_t auxv_hwcap_include = 0;  /* patch to enable unrecognized features */
 763 uint_t auxv_hwcap_include_2 = 0;        /* second word */
 764 uint_t auxv_hwcap_exclude = 0;  /* patch for broken cpus, debugging */
 765 uint_t auxv_hwcap_exclude_2 = 0;        /* second word */
 766 #if defined(_SYSCALL32_IMPL)
 767 uint_t auxv_hwcap32_include = 0;        /* ditto for 32-bit apps */
 768 uint_t auxv_hwcap32_include_2 = 0;      /* ditto for 32-bit apps */
 769 uint_t auxv_hwcap32_exclude = 0;        /* ditto for 32-bit apps */
 770 uint_t auxv_hwcap32_exclude_2 = 0;      /* ditto for 32-bit apps */
 771 #endif
 772 
 773 /*
 774  * Gather information about the processor and place it into auxv_hwcap
 775  * so that it can be exported to the linker via the aux vector.
 776  *
 777  * We use this seemingly complicated mechanism so that we can ensure
 778  * that /etc/system can be used to override what the system can or
 779  * cannot discover for itself. Due to a lack of use, this has not
 780  * been extended to the 3rd word.
 781  */
 782 void
 783 bind_hwcap(void)
 784 {
 785         uint_t cpu_hwcap_flags[3];
 786         cpuid_execpass(NULL, CPUID_PASS_RESOLVE, cpu_hwcap_flags);
 787 
 788         auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags[0]) &
 789             ~auxv_hwcap_exclude;
 790         auxv_hwcap_2 = (auxv_hwcap_include_2 | cpu_hwcap_flags[1]) &
 791             ~auxv_hwcap_exclude_2;
 792         auxv_hwcap_3 = cpu_hwcap_flags[2];
 793 
 794         /*
 795          * On AMD processors, sysenter just doesn't work at all
 796          * when the kernel is in long mode.  On IA-32e processors
 797          * it does, but there's no real point in all the alternate
 798          * mechanism when syscall works on both.
 799          *
 800          * Besides, the kernel's sysenter handler is expecting a
 801          * 32-bit lwp ...
 802          */
 803         auxv_hwcap &= ~AV_386_SEP;
 804 
 805         if (auxv_hwcap_include || auxv_hwcap_exclude || auxv_hwcap_include_2 ||
 806             auxv_hwcap_exclude_2) {
 807                 /*
 808                  * The below assignment is regrettably required to get lint
 809                  * to accept the validity of our format string.  The format
 810                  * string is in fact valid, but whatever intelligence in lint
 811                  * understands the cmn_err()-specific %b appears to have an
 812                  * off-by-one error:  it (mistakenly) complains about bit
 813                  * number 32 (even though this is explicitly permitted).
 814                  * Normally, one would will away such warnings with a "LINTED"
 815                  * directive, but for reasons unclear and unknown, lint
 816                  * refuses to be assuaged in this case.  Fortunately, lint
 817                  * doesn't pretend to have solved the Halting Problem --
 818                  * and as soon as the format string is programmatic, it
 819                  * knows enough to shut up.
 820                  */
 821                 char *fmt = "?user ABI extensions: %b\n";
 822                 cmn_err(CE_CONT, fmt, auxv_hwcap, FMT_AV_386);
 823                 fmt = "?user ABI extensions (word 2): %b\n";
 824                 cmn_err(CE_CONT, fmt, auxv_hwcap_2, FMT_AV_386_2);
 825                 fmt = "?user ABI extensions (word 2): %b\n";
 826                 cmn_err(CE_CONT, fmt, auxv_hwcap_3, FMT_AV_386_3);
 827         }
 828 
 829 #if defined(_SYSCALL32_IMPL)
 830         auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags[0]) &
 831             ~auxv_hwcap32_exclude;
 832         auxv_hwcap32_2 = (auxv_hwcap32_include_2 | cpu_hwcap_flags[1]) &
 833             ~auxv_hwcap32_exclude_2;
 834         auxv_hwcap32_3 = auxv_hwcap_3;
 835 
 836         /*
 837          * If this is an amd64 architecture machine from Intel, then
 838          * syscall -doesn't- work in compatibility mode, only sysenter does.
 839          *
 840          * Sigh.
 841          */
 842         if (!cpuid_syscall32_insn(NULL))
 843                 auxv_hwcap32 &= ~AV_386_AMD_SYSC;
 844 
 845         /*
 846          * 32-bit processes can -always- use the lahf/sahf instructions
 847          */
 848         auxv_hwcap32 |= AV_386_AHF;
 849 
 850         /*
 851          * 32-bit processes can -never- use fsgsbase instructions.
 852          */
 853         auxv_hwcap32_2 &= ~AV_386_2_FSGSBASE;
 854 
 855         if (auxv_hwcap32_include || auxv_hwcap32_exclude ||
 856             auxv_hwcap32_include_2 || auxv_hwcap32_exclude_2) {
 857                 /*
 858                  * See the block comment in the cmn_err() of auxv_hwcap, above.
 859                  */
 860                 char *fmt = "?32-bit user ABI extensions: %b\n";
 861                 cmn_err(CE_CONT, fmt, auxv_hwcap32, FMT_AV_386);
 862                 fmt = "?32-bit user ABI extensions (word 2): %b\n";
 863                 cmn_err(CE_CONT, fmt, auxv_hwcap32_2, FMT_AV_386_2);
 864                 fmt = "?32-bit user ABI extensions (word 3): %b\n";
 865                 cmn_err(CE_CONT, fmt, auxv_hwcap32_3, FMT_AV_386_3);
 866         }
 867 #endif
 868 }
 869 
 870 /*
 871  *      sync_icache() - this is called
 872  *      in proc/fs/prusrio.c. x86 has an unified cache and therefore
 873  *      this is a nop.
 874  */
 875 /* ARGSUSED */
 876 void
 877 sync_icache(caddr_t addr, uint_t len)
 878 {
 879         /* Do nothing for now */
 880 }
 881 
 882 /*ARGSUSED*/
 883 void
 884 sync_data_memory(caddr_t va, size_t len)
 885 {
 886         /* Not implemented for this platform */
 887 }
 888 
 889 int
 890 __ipltospl(int ipl)
 891 {
 892         return (ipltospl(ipl));
 893 }
 894 
 895 /*
 896  * The panic code invokes panic_saveregs() to record the contents of a
 897  * regs structure into the specified panic_data structure for debuggers.
 898  */
 899 void
 900 panic_saveregs(panic_data_t *pdp, struct regs *rp)
 901 {
 902         panic_nv_t *pnv = PANICNVGET(pdp);
 903 
 904         struct cregs    creg;
 905 
 906         getcregs(&creg);
 907 
 908         PANICNVADD(pnv, "rdi", rp->r_rdi);
 909         PANICNVADD(pnv, "rsi", rp->r_rsi);
 910         PANICNVADD(pnv, "rdx", rp->r_rdx);
 911         PANICNVADD(pnv, "rcx", rp->r_rcx);
 912         PANICNVADD(pnv, "r8", rp->r_r8);
 913         PANICNVADD(pnv, "r9", rp->r_r9);
 914         PANICNVADD(pnv, "rax", rp->r_rax);
 915         PANICNVADD(pnv, "rbx", rp->r_rbx);
 916         PANICNVADD(pnv, "rbp", rp->r_rbp);
 917         PANICNVADD(pnv, "r10", rp->r_r10);
 918         PANICNVADD(pnv, "r11", rp->r_r11);
 919         PANICNVADD(pnv, "r12", rp->r_r12);
 920         PANICNVADD(pnv, "r13", rp->r_r13);
 921         PANICNVADD(pnv, "r14", rp->r_r14);
 922         PANICNVADD(pnv, "r15", rp->r_r15);
 923         PANICNVADD(pnv, "fsbase", rdmsr(MSR_AMD_FSBASE));
 924         PANICNVADD(pnv, "gsbase", rdmsr(MSR_AMD_GSBASE));
 925         PANICNVADD(pnv, "ds", rp->r_ds);
 926         PANICNVADD(pnv, "es", rp->r_es);
 927         PANICNVADD(pnv, "fs", rp->r_fs);
 928         PANICNVADD(pnv, "gs", rp->r_gs);
 929         PANICNVADD(pnv, "trapno", rp->r_trapno);
 930         PANICNVADD(pnv, "err", rp->r_err);
 931         PANICNVADD(pnv, "rip", rp->r_rip);
 932         PANICNVADD(pnv, "cs", rp->r_cs);
 933         PANICNVADD(pnv, "rflags", rp->r_rfl);
 934         PANICNVADD(pnv, "rsp", rp->r_rsp);
 935         PANICNVADD(pnv, "ss", rp->r_ss);
 936         PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3]));
 937         PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0]));
 938         PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3]));
 939         PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0]));
 940 
 941         PANICNVADD(pnv, "ldt", creg.cr_ldt);
 942         PANICNVADD(pnv, "task", creg.cr_task);
 943         PANICNVADD(pnv, "cr0", creg.cr_cr0);
 944         PANICNVADD(pnv, "cr2", creg.cr_cr2);
 945         PANICNVADD(pnv, "cr3", creg.cr_cr3);
 946         if (creg.cr_cr4)
 947                 PANICNVADD(pnv, "cr4", creg.cr_cr4);
 948 
 949         PANICNVSET(pdp, pnv);
 950 }
 951 
 952 #define TR_ARG_MAX 6    /* Max args to print, same as SPARC */
 953 
 954 
 955 /*
 956  * Print a stack backtrace using the specified frame pointer.  We delay two
 957  * seconds before continuing, unless this is the panic traceback.
 958  * If we are in the process of panicking, we also attempt to write the
 959  * stack backtrace to a staticly assigned buffer, to allow the panic
 960  * code to find it and write it in to uncompressed pages within the
 961  * system crash dump.
 962  * Note that the frame for the starting stack pointer value is omitted because
 963  * the corresponding %eip is not known.
 964  */
 965 
 966 extern char *dump_stack_scratch;
 967 
 968 
 969 void
 970 traceback(caddr_t fpreg)
 971 {
 972         struct frame    *fp = (struct frame *)fpreg;
 973         struct frame    *nextfp;
 974         uintptr_t       pc, nextpc;
 975         ulong_t         off;
 976         char            args[TR_ARG_MAX * 2 + 16], *sym;
 977         uint_t    offset = 0;
 978         uint_t    next_offset = 0;
 979         char        stack_buffer[1024];
 980 
 981         if (!panicstr)
 982                 printf("traceback: %%fp = %p\n", (void *)fp);
 983 
 984         if (panicstr && !dump_stack_scratch) {
 985                 printf("Warning - stack not written to the dump buffer\n");
 986         }
 987 
 988         fp = (struct frame *)plat_traceback(fpreg);
 989         if ((uintptr_t)fp < KERNELBASE)
 990                 goto out;
 991 
 992         pc = fp->fr_savpc;
 993         fp = (struct frame *)fp->fr_savfp;
 994 
 995         while ((uintptr_t)fp >= KERNELBASE) {
 996                 /*
 997                  * XX64 Until port is complete tolerate 8-byte aligned
 998                  * frame pointers but flag with a warning so they can
 999                  * be fixed.
1000                  */
1001                 if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) {
1002                         if (((uintptr_t)fp & (8 - 1)) == 0) {
1003                                 printf("  >> warning! 8-byte"
1004                                     " aligned %%fp = %p\n", (void *)fp);
1005                         } else {
1006                                 printf(
1007                                     "  >> mis-aligned %%fp = %p\n", (void *)fp);
1008                                 break;
1009                         }
1010                 }
1011 
1012                 args[0] = '\0';
1013                 nextpc = (uintptr_t)fp->fr_savpc;
1014                 nextfp = (struct frame *)fp->fr_savfp;
1015                 if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1016                         printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1017                             mod_containing_pc((caddr_t)pc), sym, off, args);
1018                         (void) snprintf(stack_buffer, sizeof (stack_buffer),
1019                             "%s:%s+%lx (%s) | ",
1020                             mod_containing_pc((caddr_t)pc), sym, off, args);
1021                 } else {
1022                         printf("%016lx %lx (%s)\n",
1023                             (uintptr_t)fp, pc, args);
1024                         (void) snprintf(stack_buffer, sizeof (stack_buffer),
1025                             "%lx (%s) | ", pc, args);
1026                 }
1027 
1028                 if (panicstr && dump_stack_scratch) {
1029                         next_offset = offset + strlen(stack_buffer);
1030                         if (next_offset < STACK_BUF_SIZE) {
1031                                 bcopy(stack_buffer, dump_stack_scratch + offset,
1032                                     strlen(stack_buffer));
1033                                 offset = next_offset;
1034                         } else {
1035                                 /*
1036                                  * In attempting to save the panic stack
1037                                  * to the dumpbuf we have overflowed that area.
1038                                  * Print a warning and continue to printf the
1039                                  * stack to the msgbuf
1040                                  */
1041                                 printf("Warning: stack in the dump buffer"
1042                                     " may be incomplete\n");
1043                                 offset = next_offset;
1044                         }
1045                 }
1046 
1047                 pc = nextpc;
1048                 fp = nextfp;
1049         }
1050 out:
1051         if (!panicstr) {
1052                 printf("end of traceback\n");
1053                 DELAY(2 * MICROSEC);
1054         } else if (dump_stack_scratch) {
1055                 dump_stack_scratch[offset] = '\0';
1056         }
1057 }
1058 
1059 
1060 /*
1061  * Generate a stack backtrace from a saved register set.
1062  */
1063 void
1064 traceregs(struct regs *rp)
1065 {
1066         traceback((caddr_t)rp->r_fp);
1067 }
1068 
1069 void
1070 exec_set_sp(size_t stksize)
1071 {
1072         klwp_t *lwp = ttolwp(curthread);
1073 
1074         lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize;
1075 }
1076 
1077 hrtime_t
1078 gethrtime_waitfree(void)
1079 {
1080         return (dtrace_gethrtime());
1081 }
1082 
1083 hrtime_t
1084 gethrtime(void)
1085 {
1086         return (gethrtimef());
1087 }
1088 
1089 hrtime_t
1090 gethrtime_unscaled(void)
1091 {
1092         return (gethrtimeunscaledf());
1093 }
1094 
1095 void
1096 scalehrtime(hrtime_t *hrt)
1097 {
1098         scalehrtimef(hrt);
1099 }
1100 
1101 uint64_t
1102 unscalehrtime(hrtime_t nsecs)
1103 {
1104         return (unscalehrtimef(nsecs));
1105 }
1106 
1107 void
1108 gethrestime(timespec_t *tp)
1109 {
1110         gethrestimef(tp);
1111 }
1112 
1113 /*
1114  * Part of the implementation of hres_tick(); this routine is
1115  * easier in C than assembler .. called with the hres_lock held.
1116  *
1117  * XX64 Many of these timekeeping variables need to be extern'ed in a header
1118  */
1119 
1120 #include <sys/time.h>
1121 #include <sys/machlock.h>
1122 
1123 extern int one_sec;
1124 extern int max_hres_adj;
1125 
1126 void
1127 __adj_hrestime(void)
1128 {
1129         long long adj;
1130 
1131         if (hrestime_adj == 0)
1132                 adj = 0;
1133         else if (hrestime_adj > 0) {
1134                 if (hrestime_adj < max_hres_adj)
1135                         adj = hrestime_adj;
1136                 else
1137                         adj = max_hres_adj;
1138         } else {
1139                 if (hrestime_adj < -max_hres_adj)
1140                         adj = -max_hres_adj;
1141                 else
1142                         adj = hrestime_adj;
1143         }
1144 
1145         timedelta -= adj;
1146         hrestime_adj = timedelta;
1147         hrestime.tv_nsec += adj;
1148 
1149         while (hrestime.tv_nsec >= NANOSEC) {
1150                 one_sec++;
1151                 hrestime.tv_sec++;
1152                 hrestime.tv_nsec -= NANOSEC;
1153         }
1154 }
1155 
1156 /*
1157  * Wrapper functions to maintain backwards compability
1158  */
1159 int
1160 xcopyin(const void *uaddr, void *kaddr, size_t count)
1161 {
1162         return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED));
1163 }
1164 
1165 int
1166 xcopyout(const void *kaddr, void *uaddr, size_t count)
1167 {
1168         return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED));
1169 }