1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
  24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
  25  * Copyright 2018, Joyent, Inc.
  26  * Copyright 2023 Oxide Computer Company
  27  */
  28 
  29 /*
  30  * Kernel memory allocator, as described in the following two papers and a
  31  * statement about the consolidator:
  32  *
  33  * Jeff Bonwick,
  34  * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
  35  * Proceedings of the Summer 1994 Usenix Conference.
  36  * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
  37  *
  38  * Jeff Bonwick and Jonathan Adams,
  39  * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
  40  * Arbitrary Resources.
  41  * Proceedings of the 2001 Usenix Conference.
  42  * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
  43  *
  44  * kmem Slab Consolidator Big Theory Statement:
  45  *
  46  * 1. Motivation
  47  *
  48  * As stated in Bonwick94, slabs provide the following advantages over other
  49  * allocation structures in terms of memory fragmentation:
  50  *
  51  *  - Internal fragmentation (per-buffer wasted space) is minimal.
  52  *  - Severe external fragmentation (unused buffers on the free list) is
  53  *    unlikely.
  54  *
  55  * Segregating objects by size eliminates one source of external fragmentation,
  56  * and according to Bonwick:
  57  *
  58  *   The other reason that slabs reduce external fragmentation is that all
  59  *   objects in a slab are of the same type, so they have the same lifetime
  60  *   distribution. The resulting segregation of short-lived and long-lived
  61  *   objects at slab granularity reduces the likelihood of an entire page being
  62  *   held hostage due to a single long-lived allocation [Barrett93, Hanson90].
  63  *
  64  * While unlikely, severe external fragmentation remains possible. Clients that
  65  * allocate both short- and long-lived objects from the same cache cannot
  66  * anticipate the distribution of long-lived objects within the allocator's slab
  67  * implementation. Even a small percentage of long-lived objects distributed
  68  * randomly across many slabs can lead to a worst case scenario where the client
  69  * frees the majority of its objects and the system gets back almost none of the
  70  * slabs. Despite the client doing what it reasonably can to help the system
  71  * reclaim memory, the allocator cannot shake free enough slabs because of
  72  * lonely allocations stubbornly hanging on. Although the allocator is in a
  73  * position to diagnose the fragmentation, there is nothing that the allocator
  74  * by itself can do about it. It only takes a single allocated object to prevent
  75  * an entire slab from being reclaimed, and any object handed out by
  76  * kmem_cache_alloc() is by definition in the client's control. Conversely,
  77  * although the client is in a position to move a long-lived object, it has no
  78  * way of knowing if the object is causing fragmentation, and if so, where to
  79  * move it. A solution necessarily requires further cooperation between the
  80  * allocator and the client.
  81  *
  82  * 2. Move Callback
  83  *
  84  * The kmem slab consolidator therefore adds a move callback to the
  85  * allocator/client interface, improving worst-case external fragmentation in
  86  * kmem caches that supply a function to move objects from one memory location
  87  * to another. In a situation of low memory kmem attempts to consolidate all of
  88  * a cache's slabs at once; otherwise it works slowly to bring external
  89  * fragmentation within the 1/8 limit guaranteed for internal fragmentation,
  90  * thereby helping to avoid a low memory situation in the future.
  91  *
  92  * The callback has the following signature:
  93  *
  94  *   kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg)
  95  *
  96  * It supplies the kmem client with two addresses: the allocated object that
  97  * kmem wants to move and a buffer selected by kmem for the client to use as the
  98  * copy destination. The callback is kmem's way of saying "Please get off of
  99  * this buffer and use this one instead." kmem knows where it wants to move the
 100  * object in order to best reduce fragmentation. All the client needs to know
 101  * about the second argument (void *new) is that it is an allocated, constructed
 102  * object ready to take the contents of the old object. When the move function
 103  * is called, the system is likely to be low on memory, and the new object
 104  * spares the client from having to worry about allocating memory for the
 105  * requested move. The third argument supplies the size of the object, in case a
 106  * single move function handles multiple caches whose objects differ only in
 107  * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional
 108  * user argument passed to the constructor, destructor, and reclaim functions is
 109  * also passed to the move callback.
 110  *
 111  * 2.1 Setting the Move Callback
 112  *
 113  * The client sets the move callback after creating the cache and before
 114  * allocating from it:
 115  *
 116  *      object_cache = kmem_cache_create(...);
 117  *      kmem_cache_set_move(object_cache, object_move);
 118  *
 119  * 2.2 Move Callback Return Values
 120  *
 121  * Only the client knows about its own data and when is a good time to move it.
 122  * The client is cooperating with kmem to return unused memory to the system,
 123  * and kmem respectfully accepts this help at the client's convenience. When
 124  * asked to move an object, the client can respond with any of the following:
 125  *
 126  *   typedef enum kmem_cbrc {
 127  *           KMEM_CBRC_YES,
 128  *           KMEM_CBRC_NO,
 129  *           KMEM_CBRC_LATER,
 130  *           KMEM_CBRC_DONT_NEED,
 131  *           KMEM_CBRC_DONT_KNOW
 132  *   } kmem_cbrc_t;
 133  *
 134  * The client must not explicitly kmem_cache_free() either of the objects passed
 135  * to the callback, since kmem wants to free them directly to the slab layer
 136  * (bypassing the per-CPU magazine layer). The response tells kmem which of the
 137  * objects to free:
 138  *
 139  *       YES: (Did it) The client moved the object, so kmem frees the old one.
 140  *        NO: (Never) The client refused, so kmem frees the new object (the
 141  *            unused copy destination). kmem also marks the slab of the old
 142  *            object so as not to bother the client with further callbacks for
 143  *            that object as long as the slab remains on the partial slab list.
 144  *            (The system won't be getting the slab back as long as the
 145  *            immovable object holds it hostage, so there's no point in moving
 146  *            any of its objects.)
 147  *     LATER: The client is using the object and cannot move it now, so kmem
 148  *            frees the new object (the unused copy destination). kmem still
 149  *            attempts to move other objects off the slab, since it expects to
 150  *            succeed in clearing the slab in a later callback. The client
 151  *            should use LATER instead of NO if the object is likely to become
 152  *            movable very soon.
 153  * DONT_NEED: The client no longer needs the object, so kmem frees the old along
 154  *            with the new object (the unused copy destination). This response
 155  *            is the client's opportunity to be a model citizen and give back as
 156  *            much as it can.
 157  * DONT_KNOW: The client does not know about the object because
 158  *            a) the client has just allocated the object and not yet put it
 159  *               wherever it expects to find known objects
 160  *            b) the client has removed the object from wherever it expects to
 161  *               find known objects and is about to free it, or
 162  *            c) the client has freed the object.
 163  *            In all these cases (a, b, and c) kmem frees the new object (the
 164  *            unused copy destination).  In the first case, the object is in
 165  *            use and the correct action is that for LATER; in the latter two
 166  *            cases, we know that the object is either freed or about to be
 167  *            freed, in which case it is either already in a magazine or about
 168  *            to be in one.  In these cases, we know that the object will either
 169  *            be reallocated and reused, or it will end up in a full magazine
 170  *            that will be reaped (thereby liberating the slab).  Because it
 171  *            is prohibitively expensive to differentiate these cases, and
 172  *            because the defrag code is executed when we're low on memory
 173  *            (thereby biasing the system to reclaim full magazines) we treat
 174  *            all DONT_KNOW cases as LATER and rely on cache reaping to
 175  *            generally clean up full magazines.  While we take the same action
 176  *            for these cases, we maintain their semantic distinction:  if
 177  *            defragmentation is not occurring, it is useful to know if this
 178  *            is due to objects in use (LATER) or objects in an unknown state
 179  *            of transition (DONT_KNOW).
 180  *
 181  * 2.3 Object States
 182  *
 183  * Neither kmem nor the client can be assumed to know the object's whereabouts
 184  * at the time of the callback. An object belonging to a kmem cache may be in
 185  * any of the following states:
 186  *
 187  * 1. Uninitialized on the slab
 188  * 2. Allocated from the slab but not constructed (still uninitialized)
 189  * 3. Allocated from the slab, constructed, but not yet ready for business
 190  *    (not in a valid state for the move callback)
 191  * 4. In use (valid and known to the client)
 192  * 5. About to be freed (no longer in a valid state for the move callback)
 193  * 6. Freed to a magazine (still constructed)
 194  * 7. Allocated from a magazine, not yet ready for business (not in a valid
 195  *    state for the move callback), and about to return to state #4
 196  * 8. Deconstructed on a magazine that is about to be freed
 197  * 9. Freed to the slab
 198  *
 199  * Since the move callback may be called at any time while the object is in any
 200  * of the above states (except state #1), the client needs a safe way to
 201  * determine whether or not it knows about the object. Specifically, the client
 202  * needs to know whether or not the object is in state #4, the only state in
 203  * which a move is valid. If the object is in any other state, the client should
 204  * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of
 205  * the object's fields.
 206  *
 207  * Note that although an object may be in state #4 when kmem initiates the move
 208  * request, the object may no longer be in that state by the time kmem actually
 209  * calls the move function. Not only does the client free objects
 210  * asynchronously, kmem itself puts move requests on a queue where thay are
 211  * pending until kmem processes them from another context. Also, objects freed
 212  * to a magazine appear allocated from the point of view of the slab layer, so
 213  * kmem may even initiate requests for objects in a state other than state #4.
 214  *
 215  * 2.3.1 Magazine Layer
 216  *
 217  * An important insight revealed by the states listed above is that the magazine
 218  * layer is populated only by kmem_cache_free(). Magazines of constructed
 219  * objects are never populated directly from the slab layer (which contains raw,
 220  * unconstructed objects). Whenever an allocation request cannot be satisfied
 221  * from the magazine layer, the magazines are bypassed and the request is
 222  * satisfied from the slab layer (creating a new slab if necessary). kmem calls
 223  * the object constructor only when allocating from the slab layer, and only in
 224  * response to kmem_cache_alloc() or to prepare the destination buffer passed in
 225  * the move callback. kmem does not preconstruct objects in anticipation of
 226  * kmem_cache_alloc().
 227  *
 228  * 2.3.2 Object Constructor and Destructor
 229  *
 230  * If the client supplies a destructor, it must be valid to call the destructor
 231  * on a newly created object (immediately after the constructor).
 232  *
 233  * 2.4 Recognizing Known Objects
 234  *
 235  * There is a simple test to determine safely whether or not the client knows
 236  * about a given object in the move callback. It relies on the fact that kmem
 237  * guarantees that the object of the move callback has only been touched by the
 238  * client itself or else by kmem. kmem does this by ensuring that none of the
 239  * cache's slabs are freed to the virtual memory (VM) subsystem while a move
 240  * callback is pending. When the last object on a slab is freed, if there is a
 241  * pending move, kmem puts the slab on a per-cache dead list and defers freeing
 242  * slabs on that list until all pending callbacks are completed. That way,
 243  * clients can be certain that the object of a move callback is in one of the
 244  * states listed above, making it possible to distinguish known objects (in
 245  * state #4) using the two low order bits of any pointer member (with the
 246  * exception of 'char *' or 'short *' which may not be 4-byte aligned on some
 247  * platforms).
 248  *
 249  * The test works as long as the client always transitions objects from state #4
 250  * (known, in use) to state #5 (about to be freed, invalid) by setting the low
 251  * order bit of the client-designated pointer member. Since kmem only writes
 252  * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and
 253  * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is
 254  * guaranteed to set at least one of the two low order bits. Therefore, given an
 255  * object with a back pointer to a 'container_t *o_container', the client can
 256  * test
 257  *
 258  *      container_t *container = object->o_container;
 259  *      if ((uintptr_t)container & 0x3) {
 260  *              return (KMEM_CBRC_DONT_KNOW);
 261  *      }
 262  *
 263  * Typically, an object will have a pointer to some structure with a list or
 264  * hash where objects from the cache are kept while in use. Assuming that the
 265  * client has some way of knowing that the container structure is valid and will
 266  * not go away during the move, and assuming that the structure includes a lock
 267  * to protect whatever collection is used, then the client would continue as
 268  * follows:
 269  *
 270  *      // Ensure that the container structure does not go away.
 271  *      if (container_hold(container) == 0) {
 272  *              return (KMEM_CBRC_DONT_KNOW);
 273  *      }
 274  *      mutex_enter(&container->c_objects_lock);
 275  *      if (container != object->o_container) {
 276  *              mutex_exit(&container->c_objects_lock);
 277  *              container_rele(container);
 278  *              return (KMEM_CBRC_DONT_KNOW);
 279  *      }
 280  *
 281  * At this point the client knows that the object cannot be freed as long as
 282  * c_objects_lock is held. Note that after acquiring the lock, the client must
 283  * recheck the o_container pointer in case the object was removed just before
 284  * acquiring the lock.
 285  *
 286  * When the client is about to free an object, it must first remove that object
 287  * from the list, hash, or other structure where it is kept. At that time, to
 288  * mark the object so it can be distinguished from the remaining, known objects,
 289  * the client sets the designated low order bit:
 290  *
 291  *      mutex_enter(&container->c_objects_lock);
 292  *      object->o_container = (void *)((uintptr_t)object->o_container | 0x1);
 293  *      list_remove(&container->c_objects, object);
 294  *      mutex_exit(&container->c_objects_lock);
 295  *
 296  * In the common case, the object is freed to the magazine layer, where it may
 297  * be reused on a subsequent allocation without the overhead of calling the
 298  * constructor. While in the magazine it appears allocated from the point of
 299  * view of the slab layer, making it a candidate for the move callback. Most
 300  * objects unrecognized by the client in the move callback fall into this
 301  * category and are cheaply distinguished from known objects by the test
 302  * described earlier. Because searching magazines is prohibitively expensive
 303  * for kmem, clients that do not mark freed objects (and therefore return
 304  * KMEM_CBRC_DONT_KNOW for large numbers of objects) may find defragmentation
 305  * efficacy reduced.
 306  *
 307  * Invalidating the designated pointer member before freeing the object marks
 308  * the object to be avoided in the callback, and conversely, assigning a valid
 309  * value to the designated pointer member after allocating the object makes the
 310  * object fair game for the callback:
 311  *
 312  *      ... allocate object ...
 313  *      ... set any initial state not set by the constructor ...
 314  *
 315  *      mutex_enter(&container->c_objects_lock);
 316  *      list_insert_tail(&container->c_objects, object);
 317  *      membar_producer();
 318  *      object->o_container = container;
 319  *      mutex_exit(&container->c_objects_lock);
 320  *
 321  * Note that everything else must be valid before setting o_container makes the
 322  * object fair game for the move callback. The membar_producer() call ensures
 323  * that all the object's state is written to memory before setting the pointer
 324  * that transitions the object from state #3 or #7 (allocated, constructed, not
 325  * yet in use) to state #4 (in use, valid). That's important because the move
 326  * function has to check the validity of the pointer before it can safely
 327  * acquire the lock protecting the collection where it expects to find known
 328  * objects.
 329  *
 330  * This method of distinguishing known objects observes the usual symmetry:
 331  * invalidating the designated pointer is the first thing the client does before
 332  * freeing the object, and setting the designated pointer is the last thing the
 333  * client does after allocating the object. Of course, the client is not
 334  * required to use this method. Fundamentally, how the client recognizes known
 335  * objects is completely up to the client, but this method is recommended as an
 336  * efficient and safe way to take advantage of the guarantees made by kmem. If
 337  * the entire object is arbitrary data without any markable bits from a suitable
 338  * pointer member, then the client must find some other method, such as
 339  * searching a hash table of known objects.
 340  *
 341  * 2.5 Preventing Objects From Moving
 342  *
 343  * Besides a way to distinguish known objects, the other thing that the client
 344  * needs is a strategy to ensure that an object will not move while the client
 345  * is actively using it. The details of satisfying this requirement tend to be
 346  * highly cache-specific. It might seem that the same rules that let a client
 347  * remove an object safely should also decide when an object can be moved
 348  * safely. However, any object state that makes a removal attempt invalid is
 349  * likely to be long-lasting for objects that the client does not expect to
 350  * remove. kmem knows nothing about the object state and is equally likely (from
 351  * the client's point of view) to request a move for any object in the cache,
 352  * whether prepared for removal or not. Even a low percentage of objects stuck
 353  * in place by unremovability will defeat the consolidator if the stuck objects
 354  * are the same long-lived allocations likely to hold slabs hostage.
 355  * Fundamentally, the consolidator is not aimed at common cases. Severe external
 356  * fragmentation is a worst case scenario manifested as sparsely allocated
 357  * slabs, by definition a low percentage of the cache's objects. When deciding
 358  * what makes an object movable, keep in mind the goal of the consolidator: to
 359  * bring worst-case external fragmentation within the limits guaranteed for
 360  * internal fragmentation. Removability is a poor criterion if it is likely to
 361  * exclude more than an insignificant percentage of objects for long periods of
 362  * time.
 363  *
 364  * A tricky general solution exists, and it has the advantage of letting you
 365  * move any object at almost any moment, practically eliminating the likelihood
 366  * that an object can hold a slab hostage. However, if there is a cache-specific
 367  * way to ensure that an object is not actively in use in the vast majority of
 368  * cases, a simpler solution that leverages this cache-specific knowledge is
 369  * preferred.
 370  *
 371  * 2.5.1 Cache-Specific Solution
 372  *
 373  * As an example of a cache-specific solution, the ZFS znode cache takes
 374  * advantage of the fact that the vast majority of znodes are only being
 375  * referenced from the DNLC. (A typical case might be a few hundred in active
 376  * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS
 377  * client has established that it recognizes the znode and can access its fields
 378  * safely (using the method described earlier), it then tests whether the znode
 379  * is referenced by anything other than the DNLC. If so, it assumes that the
 380  * znode may be in active use and is unsafe to move, so it drops its locks and
 381  * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere
 382  * else znodes are used, no change is needed to protect against the possibility
 383  * of the znode moving. The disadvantage is that it remains possible for an
 384  * application to hold a znode slab hostage with an open file descriptor.
 385  * However, this case ought to be rare and the consolidator has a way to deal
 386  * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same
 387  * object, kmem eventually stops believing it and treats the slab as if the
 388  * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can
 389  * then focus on getting it off of the partial slab list by allocating rather
 390  * than freeing all of its objects. (Either way of getting a slab off the
 391  * free list reduces fragmentation.)
 392  *
 393  * 2.5.2 General Solution
 394  *
 395  * The general solution, on the other hand, requires an explicit hold everywhere
 396  * the object is used to prevent it from moving. To keep the client locking
 397  * strategy as uncomplicated as possible, kmem guarantees the simplifying
 398  * assumption that move callbacks are sequential, even across multiple caches.
 399  * Internally, a global queue processed by a single thread supports all caches
 400  * implementing the callback function. No matter how many caches supply a move
 401  * function, the consolidator never moves more than one object at a time, so the
 402  * client does not have to worry about tricky lock ordering involving several
 403  * related objects from different kmem caches.
 404  *
 405  * The general solution implements the explicit hold as a read-write lock, which
 406  * allows multiple readers to access an object from the cache simultaneously
 407  * while a single writer is excluded from moving it. A single rwlock for the
 408  * entire cache would lock out all threads from using any of the cache's objects
 409  * even though only a single object is being moved, so to reduce contention,
 410  * the client can fan out the single rwlock into an array of rwlocks hashed by
 411  * the object address, making it probable that moving one object will not
 412  * prevent other threads from using a different object. The rwlock cannot be a
 413  * member of the object itself, because the possibility of the object moving
 414  * makes it unsafe to access any of the object's fields until the lock is
 415  * acquired.
 416  *
 417  * Assuming a small, fixed number of locks, it's possible that multiple objects
 418  * will hash to the same lock. A thread that needs to use multiple objects in
 419  * the same function may acquire the same lock multiple times. Since rwlocks are
 420  * reentrant for readers, and since there is never more than a single writer at
 421  * a time (assuming that the client acquires the lock as a writer only when
 422  * moving an object inside the callback), there would seem to be no problem.
 423  * However, a client locking multiple objects in the same function must handle
 424  * one case of potential deadlock: Assume that thread A needs to prevent both
 425  * object 1 and object 2 from moving, and thread B, the callback, meanwhile
 426  * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the
 427  * same lock, that thread A will acquire the lock for object 1 as a reader
 428  * before thread B sets the lock's write-wanted bit, preventing thread A from
 429  * reacquiring the lock for object 2 as a reader. Unable to make forward
 430  * progress, thread A will never release the lock for object 1, resulting in
 431  * deadlock.
 432  *
 433  * There are two ways of avoiding the deadlock just described. The first is to
 434  * use rw_tryenter() rather than rw_enter() in the callback function when
 435  * attempting to acquire the lock as a writer. If tryenter discovers that the
 436  * same object (or another object hashed to the same lock) is already in use, it
 437  * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use
 438  * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t,
 439  * since it allows a thread to acquire the lock as a reader in spite of a
 440  * waiting writer. This second approach insists on moving the object now, no
 441  * matter how many readers the move function must wait for in order to do so,
 442  * and could delay the completion of the callback indefinitely (blocking
 443  * callbacks to other clients). In practice, a less insistent callback using
 444  * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems
 445  * little reason to use anything else.
 446  *
 447  * Avoiding deadlock is not the only problem that an implementation using an
 448  * explicit hold needs to solve. Locking the object in the first place (to
 449  * prevent it from moving) remains a problem, since the object could move
 450  * between the time you obtain a pointer to the object and the time you acquire
 451  * the rwlock hashed to that pointer value. Therefore the client needs to
 452  * recheck the value of the pointer after acquiring the lock, drop the lock if
 453  * the value has changed, and try again. This requires a level of indirection:
 454  * something that points to the object rather than the object itself, that the
 455  * client can access safely while attempting to acquire the lock. (The object
 456  * itself cannot be referenced safely because it can move at any time.)
 457  * The following lock-acquisition function takes whatever is safe to reference
 458  * (arg), follows its pointer to the object (using function f), and tries as
 459  * often as necessary to acquire the hashed lock and verify that the object
 460  * still has not moved:
 461  *
 462  *      object_t *
 463  *      object_hold(object_f f, void *arg)
 464  *      {
 465  *              object_t *op;
 466  *
 467  *              op = f(arg);
 468  *              if (op == NULL) {
 469  *                      return (NULL);
 470  *              }
 471  *
 472  *              rw_enter(OBJECT_RWLOCK(op), RW_READER);
 473  *              while (op != f(arg)) {
 474  *                      rw_exit(OBJECT_RWLOCK(op));
 475  *                      op = f(arg);
 476  *                      if (op == NULL) {
 477  *                              break;
 478  *                      }
 479  *                      rw_enter(OBJECT_RWLOCK(op), RW_READER);
 480  *              }
 481  *
 482  *              return (op);
 483  *      }
 484  *
 485  * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The
 486  * lock reacquisition loop, while necessary, almost never executes. The function
 487  * pointer f (used to obtain the object pointer from arg) has the following type
 488  * definition:
 489  *
 490  *      typedef object_t *(*object_f)(void *arg);
 491  *
 492  * An object_f implementation is likely to be as simple as accessing a structure
 493  * member:
 494  *
 495  *      object_t *
 496  *      s_object(void *arg)
 497  *      {
 498  *              something_t *sp = arg;
 499  *              return (sp->s_object);
 500  *      }
 501  *
 502  * The flexibility of a function pointer allows the path to the object to be
 503  * arbitrarily complex and also supports the notion that depending on where you
 504  * are using the object, you may need to get it from someplace different.
 505  *
 506  * The function that releases the explicit hold is simpler because it does not
 507  * have to worry about the object moving:
 508  *
 509  *      void
 510  *      object_rele(object_t *op)
 511  *      {
 512  *              rw_exit(OBJECT_RWLOCK(op));
 513  *      }
 514  *
 515  * The caller is spared these details so that obtaining and releasing an
 516  * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller
 517  * of object_hold() only needs to know that the returned object pointer is valid
 518  * if not NULL and that the object will not move until released.
 519  *
 520  * Although object_hold() prevents an object from moving, it does not prevent it
 521  * from being freed. The caller must take measures before calling object_hold()
 522  * (afterwards is too late) to ensure that the held object cannot be freed. The
 523  * caller must do so without accessing the unsafe object reference, so any lock
 524  * or reference count used to ensure the continued existence of the object must
 525  * live outside the object itself.
 526  *
 527  * Obtaining a new object is a special case where an explicit hold is impossible
 528  * for the caller. Any function that returns a newly allocated object (either as
 529  * a return value, or as an in-out paramter) must return it already held; after
 530  * the caller gets it is too late, since the object cannot be safely accessed
 531  * without the level of indirection described earlier. The following
 532  * object_alloc() example uses the same code shown earlier to transition a new
 533  * object into the state of being recognized (by the client) as a known object.
 534  * The function must acquire the hold (rw_enter) before that state transition
 535  * makes the object movable:
 536  *
 537  *      static object_t *
 538  *      object_alloc(container_t *container)
 539  *      {
 540  *              object_t *object = kmem_cache_alloc(object_cache, 0);
 541  *              ... set any initial state not set by the constructor ...
 542  *              rw_enter(OBJECT_RWLOCK(object), RW_READER);
 543  *              mutex_enter(&container->c_objects_lock);
 544  *              list_insert_tail(&container->c_objects, object);
 545  *              membar_producer();
 546  *              object->o_container = container;
 547  *              mutex_exit(&container->c_objects_lock);
 548  *              return (object);
 549  *      }
 550  *
 551  * Functions that implicitly acquire an object hold (any function that calls
 552  * object_alloc() to supply an object for the caller) need to be carefully noted
 553  * so that the matching object_rele() is not neglected. Otherwise, leaked holds
 554  * prevent all objects hashed to the affected rwlocks from ever being moved.
 555  *
 556  * The pointer to a held object can be hashed to the holding rwlock even after
 557  * the object has been freed. Although it is possible to release the hold
 558  * after freeing the object, you may decide to release the hold implicitly in
 559  * whatever function frees the object, so as to release the hold as soon as
 560  * possible, and for the sake of symmetry with the function that implicitly
 561  * acquires the hold when it allocates the object. Here, object_free() releases
 562  * the hold acquired by object_alloc(). Its implicit object_rele() forms a
 563  * matching pair with object_hold():
 564  *
 565  *      void
 566  *      object_free(object_t *object)
 567  *      {
 568  *              container_t *container;
 569  *
 570  *              ASSERT(object_held(object));
 571  *              container = object->o_container;
 572  *              mutex_enter(&container->c_objects_lock);
 573  *              object->o_container =
 574  *                  (void *)((uintptr_t)object->o_container | 0x1);
 575  *              list_remove(&container->c_objects, object);
 576  *              mutex_exit(&container->c_objects_lock);
 577  *              object_rele(object);
 578  *              kmem_cache_free(object_cache, object);
 579  *      }
 580  *
 581  * Note that object_free() cannot safely accept an object pointer as an argument
 582  * unless the object is already held. Any function that calls object_free()
 583  * needs to be carefully noted since it similarly forms a matching pair with
 584  * object_hold().
 585  *
 586  * To complete the picture, the following callback function implements the
 587  * general solution by moving objects only if they are currently unheld:
 588  *
 589  *      static kmem_cbrc_t
 590  *      object_move(void *buf, void *newbuf, size_t size, void *arg)
 591  *      {
 592  *              object_t *op = buf, *np = newbuf;
 593  *              container_t *container;
 594  *
 595  *              container = op->o_container;
 596  *              if ((uintptr_t)container & 0x3) {
 597  *                      return (KMEM_CBRC_DONT_KNOW);
 598  *              }
 599  *
 600  *              // Ensure that the container structure does not go away.
 601  *              if (container_hold(container) == 0) {
 602  *                      return (KMEM_CBRC_DONT_KNOW);
 603  *              }
 604  *
 605  *              mutex_enter(&container->c_objects_lock);
 606  *              if (container != op->o_container) {
 607  *                      mutex_exit(&container->c_objects_lock);
 608  *                      container_rele(container);
 609  *                      return (KMEM_CBRC_DONT_KNOW);
 610  *              }
 611  *
 612  *              if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) {
 613  *                      mutex_exit(&container->c_objects_lock);
 614  *                      container_rele(container);
 615  *                      return (KMEM_CBRC_LATER);
 616  *              }
 617  *
 618  *              object_move_impl(op, np); // critical section
 619  *              rw_exit(OBJECT_RWLOCK(op));
 620  *
 621  *              op->o_container = (void *)((uintptr_t)op->o_container | 0x1);
 622  *              list_link_replace(&op->o_link_node, &np->o_link_node);
 623  *              mutex_exit(&container->c_objects_lock);
 624  *              container_rele(container);
 625  *              return (KMEM_CBRC_YES);
 626  *      }
 627  *
 628  * Note that object_move() must invalidate the designated o_container pointer of
 629  * the old object in the same way that object_free() does, since kmem will free
 630  * the object in response to the KMEM_CBRC_YES return value.
 631  *
 632  * The lock order in object_move() differs from object_alloc(), which locks
 633  * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the
 634  * callback uses rw_tryenter() (preventing the deadlock described earlier), it's
 635  * not a problem. Holding the lock on the object list in the example above
 636  * through the entire callback not only prevents the object from going away, it
 637  * also allows you to lock the list elsewhere and know that none of its elements
 638  * will move during iteration.
 639  *
 640  * Adding an explicit hold everywhere an object from the cache is used is tricky
 641  * and involves much more change to client code than a cache-specific solution
 642  * that leverages existing state to decide whether or not an object is
 643  * movable. However, this approach has the advantage that no object remains
 644  * immovable for any significant length of time, making it extremely unlikely
 645  * that long-lived allocations can continue holding slabs hostage; and it works
 646  * for any cache.
 647  *
 648  * 3. Consolidator Implementation
 649  *
 650  * Once the client supplies a move function that a) recognizes known objects and
 651  * b) avoids moving objects that are actively in use, the remaining work is up
 652  * to the consolidator to decide which objects to move and when to issue
 653  * callbacks.
 654  *
 655  * The consolidator relies on the fact that a cache's slabs are ordered by
 656  * usage. Each slab has a fixed number of objects. Depending on the slab's
 657  * "color" (the offset of the first object from the beginning of the slab;
 658  * offsets are staggered to mitigate false sharing of cache lines) it is either
 659  * the maximum number of objects per slab determined at cache creation time or
 660  * else the number closest to the maximum that fits within the space remaining
 661  * after the initial offset. A completely allocated slab may contribute some
 662  * internal fragmentation (per-slab overhead) but no external fragmentation, so
 663  * it is of no interest to the consolidator. At the other extreme, slabs whose
 664  * objects have all been freed to the slab are released to the virtual memory
 665  * (VM) subsystem (objects freed to magazines are still allocated as far as the
 666  * slab is concerned). External fragmentation exists when there are slabs
 667  * somewhere between these extremes. A partial slab has at least one but not all
 668  * of its objects allocated. The more partial slabs, and the fewer allocated
 669  * objects on each of them, the higher the fragmentation. Hence the
 670  * consolidator's overall strategy is to reduce the number of partial slabs by
 671  * moving allocated objects from the least allocated slabs to the most allocated
 672  * slabs.
 673  *
 674  * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated
 675  * slabs are kept separately in an unordered list. Since the majority of slabs
 676  * tend to be completely allocated (a typical unfragmented cache may have
 677  * thousands of complete slabs and only a single partial slab), separating
 678  * complete slabs improves the efficiency of partial slab ordering, since the
 679  * complete slabs do not affect the depth or balance of the AVL tree. This
 680  * ordered sequence of partial slabs acts as a "free list" supplying objects for
 681  * allocation requests.
 682  *
 683  * Objects are always allocated from the first partial slab in the free list,
 684  * where the allocation is most likely to eliminate a partial slab (by
 685  * completely allocating it). Conversely, when a single object from a completely
 686  * allocated slab is freed to the slab, that slab is added to the front of the
 687  * free list. Since most free list activity involves highly allocated slabs
 688  * coming and going at the front of the list, slabs tend naturally toward the
 689  * ideal order: highly allocated at the front, sparsely allocated at the back.
 690  * Slabs with few allocated objects are likely to become completely free if they
 691  * keep a safe distance away from the front of the free list. Slab misorders
 692  * interfere with the natural tendency of slabs to become completely free or
 693  * completely allocated. For example, a slab with a single allocated object
 694  * needs only a single free to escape the cache; its natural desire is
 695  * frustrated when it finds itself at the front of the list where a second
 696  * allocation happens just before the free could have released it. Another slab
 697  * with all but one object allocated might have supplied the buffer instead, so
 698  * that both (as opposed to neither) of the slabs would have been taken off the
 699  * free list.
 700  *
 701  * Although slabs tend naturally toward the ideal order, misorders allowed by a
 702  * simple list implementation defeat the consolidator's strategy of merging
 703  * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem
 704  * needs another way to fix misorders to optimize its callback strategy. One
 705  * approach is to periodically scan a limited number of slabs, advancing a
 706  * marker to hold the current scan position, and to move extreme misorders to
 707  * the front or back of the free list and to the front or back of the current
 708  * scan range. By making consecutive scan ranges overlap by one slab, the least
 709  * allocated slab in the current range can be carried along from the end of one
 710  * scan to the start of the next.
 711  *
 712  * Maintaining partial slabs in an AVL tree relieves kmem of this additional
 713  * task, however. Since most of the cache's activity is in the magazine layer,
 714  * and allocations from the slab layer represent only a startup cost, the
 715  * overhead of maintaining a balanced tree is not a significant concern compared
 716  * to the opportunity of reducing complexity by eliminating the partial slab
 717  * scanner just described. The overhead of an AVL tree is minimized by
 718  * maintaining only partial slabs in the tree and keeping completely allocated
 719  * slabs separately in a list. To avoid increasing the size of the slab
 720  * structure the AVL linkage pointers are reused for the slab's list linkage,
 721  * since the slab will always be either partial or complete, never stored both
 722  * ways at the same time. To further minimize the overhead of the AVL tree the
 723  * compare function that orders partial slabs by usage divides the range of
 724  * allocated object counts into bins such that counts within the same bin are
 725  * considered equal. Binning partial slabs makes it less likely that allocating
 726  * or freeing a single object will change the slab's order, requiring a tree
 727  * reinsertion (an avl_remove() followed by an avl_add(), both potentially
 728  * requiring some rebalancing of the tree). Allocation counts closest to
 729  * completely free and completely allocated are left unbinned (finely sorted) to
 730  * better support the consolidator's strategy of merging slabs at either
 731  * extreme.
 732  *
 733  * 3.1 Assessing Fragmentation and Selecting Candidate Slabs
 734  *
 735  * The consolidator piggybacks on the kmem maintenance thread and is called on
 736  * the same interval as kmem_cache_update(), once per cache every fifteen
 737  * seconds. kmem maintains a running count of unallocated objects in the slab
 738  * layer (cache_bufslab). The consolidator checks whether that number exceeds
 739  * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether
 740  * there is a significant number of slabs in the cache (arbitrarily a minimum
 741  * 101 total slabs). Unused objects that have fallen out of the magazine layer's
 742  * working set are included in the assessment, and magazines in the depot are
 743  * reaped if those objects would lift cache_bufslab above the fragmentation
 744  * threshold. Once the consolidator decides that a cache is fragmented, it looks
 745  * for a candidate slab to reclaim, starting at the end of the partial slab free
 746  * list and scanning backwards. At first the consolidator is choosy: only a slab
 747  * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a
 748  * single allocated object, regardless of percentage). If there is difficulty
 749  * finding a candidate slab, kmem raises the allocation threshold incrementally,
 750  * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce
 751  * external fragmentation (unused objects on the free list) below 12.5% (1/8),
 752  * even in the worst case of every slab in the cache being almost 7/8 allocated.
 753  * The threshold can also be lowered incrementally when candidate slabs are easy
 754  * to find, and the threshold is reset to the minimum 1/8 as soon as the cache
 755  * is no longer fragmented.
 756  *
 757  * 3.2 Generating Callbacks
 758  *
 759  * Once an eligible slab is chosen, a callback is generated for every allocated
 760  * object on the slab, in the hope that the client will move everything off the
 761  * slab and make it reclaimable. Objects selected as move destinations are
 762  * chosen from slabs at the front of the free list. Assuming slabs in the ideal
 763  * order (most allocated at the front, least allocated at the back) and a
 764  * cooperative client, the consolidator will succeed in removing slabs from both
 765  * ends of the free list, completely allocating on the one hand and completely
 766  * freeing on the other. Objects selected as move destinations are allocated in
 767  * the kmem maintenance thread where move requests are enqueued. A separate
 768  * callback thread removes pending callbacks from the queue and calls the
 769  * client. The separate thread ensures that client code (the move function) does
 770  * not interfere with internal kmem maintenance tasks. A map of pending
 771  * callbacks keyed by object address (the object to be moved) is checked to
 772  * ensure that duplicate callbacks are not generated for the same object.
 773  * Allocating the move destination (the object to move to) prevents subsequent
 774  * callbacks from selecting the same destination as an earlier pending callback.
 775  *
 776  * Move requests can also be generated by kmem_cache_reap() when the system is
 777  * desperate for memory and by kmem_cache_move_notify(), called by the client to
 778  * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible.
 779  * The map of pending callbacks is protected by the same lock that protects the
 780  * slab layer.
 781  *
 782  * When the system is desperate for memory, kmem does not bother to determine
 783  * whether or not the cache exceeds the fragmentation threshold, but tries to
 784  * consolidate as many slabs as possible. Normally, the consolidator chews
 785  * slowly, one sparsely allocated slab at a time during each maintenance
 786  * interval that the cache is fragmented. When desperate, the consolidator
 787  * starts at the last partial slab and enqueues callbacks for every allocated
 788  * object on every partial slab, working backwards until it reaches the first
 789  * partial slab. The first partial slab, meanwhile, advances in pace with the
 790  * consolidator as allocations to supply move destinations for the enqueued
 791  * callbacks use up the highly allocated slabs at the front of the free list.
 792  * Ideally, the overgrown free list collapses like an accordion, starting at
 793  * both ends and ending at the center with a single partial slab.
 794  *
 795  * 3.3 Client Responses
 796  *
 797  * When the client returns KMEM_CBRC_NO in response to the move callback, kmem
 798  * marks the slab that supplied the stuck object non-reclaimable and moves it to
 799  * front of the free list. The slab remains marked as long as it remains on the
 800  * free list, and it appears more allocated to the partial slab compare function
 801  * than any unmarked slab, no matter how many of its objects are allocated.
 802  * Since even one immovable object ties up the entire slab, the goal is to
 803  * completely allocate any slab that cannot be completely freed. kmem does not
 804  * bother generating callbacks to move objects from a marked slab unless the
 805  * system is desperate.
 806  *
 807  * When the client responds KMEM_CBRC_LATER, kmem increments a count for the
 808  * slab. If the client responds LATER too many times, kmem disbelieves and
 809  * treats the response as a NO. The count is cleared when the slab is taken off
 810  * the partial slab list or when the client moves one of the slab's objects.
 811  *
 812  * 4. Observability
 813  *
 814  * A kmem cache's external fragmentation is best observed with 'mdb -k' using
 815  * the ::kmem_slabs dcmd. For a complete description of the command, enter
 816  * '::help kmem_slabs' at the mdb prompt.
 817  */
 818 
 819 #include <sys/kmem_impl.h>
 820 #include <sys/vmem_impl.h>
 821 #include <sys/param.h>
 822 #include <sys/sysmacros.h>
 823 #include <sys/vm.h>
 824 #include <sys/proc.h>
 825 #include <sys/tuneable.h>
 826 #include <sys/systm.h>
 827 #include <sys/cmn_err.h>
 828 #include <sys/debug.h>
 829 #include <sys/sdt.h>
 830 #include <sys/mutex.h>
 831 #include <sys/bitmap.h>
 832 #include <sys/atomic.h>
 833 #include <sys/kobj.h>
 834 #include <sys/disp.h>
 835 #include <vm/seg_kmem.h>
 836 #include <sys/log.h>
 837 #include <sys/callb.h>
 838 #include <sys/taskq.h>
 839 #include <sys/modctl.h>
 840 #include <sys/reboot.h>
 841 #include <sys/id32.h>
 842 #include <sys/zone.h>
 843 #include <sys/netstack.h>
 844 #ifdef  DEBUG
 845 #include <sys/random.h>
 846 #endif
 847 
 848 extern void streams_msg_init(void);
 849 extern int segkp_fromheap;
 850 extern void segkp_cache_free(void);
 851 extern int callout_init_done;
 852 
 853 struct kmem_cache_kstat {
 854         kstat_named_t   kmc_buf_size;
 855         kstat_named_t   kmc_align;
 856         kstat_named_t   kmc_chunk_size;
 857         kstat_named_t   kmc_slab_size;
 858         kstat_named_t   kmc_alloc;
 859         kstat_named_t   kmc_alloc_fail;
 860         kstat_named_t   kmc_free;
 861         kstat_named_t   kmc_depot_alloc;
 862         kstat_named_t   kmc_depot_free;
 863         kstat_named_t   kmc_depot_contention;
 864         kstat_named_t   kmc_slab_alloc;
 865         kstat_named_t   kmc_slab_free;
 866         kstat_named_t   kmc_buf_constructed;
 867         kstat_named_t   kmc_buf_avail;
 868         kstat_named_t   kmc_buf_inuse;
 869         kstat_named_t   kmc_buf_total;
 870         kstat_named_t   kmc_buf_max;
 871         kstat_named_t   kmc_slab_create;
 872         kstat_named_t   kmc_slab_destroy;
 873         kstat_named_t   kmc_vmem_source;
 874         kstat_named_t   kmc_hash_size;
 875         kstat_named_t   kmc_hash_lookup_depth;
 876         kstat_named_t   kmc_hash_rescale;
 877         kstat_named_t   kmc_full_magazines;
 878         kstat_named_t   kmc_empty_magazines;
 879         kstat_named_t   kmc_magazine_size;
 880         kstat_named_t   kmc_reap; /* number of kmem_cache_reap() calls */
 881         kstat_named_t   kmc_defrag; /* attempts to defrag all partial slabs */
 882         kstat_named_t   kmc_scan; /* attempts to defrag one partial slab */
 883         kstat_named_t   kmc_move_callbacks; /* sum of yes, no, later, dn, dk */
 884         kstat_named_t   kmc_move_yes;
 885         kstat_named_t   kmc_move_no;
 886         kstat_named_t   kmc_move_later;
 887         kstat_named_t   kmc_move_dont_need;
 888         kstat_named_t   kmc_move_dont_know; /* obj unrecognized by client ... */
 889         kstat_named_t   kmc_move_hunt_found; /* ... but found in mag layer */
 890         kstat_named_t   kmc_move_slabs_freed; /* slabs freed by consolidator */
 891         kstat_named_t   kmc_move_reclaimable; /* buffers, if consolidator ran */
 892 } kmem_cache_kstat = {
 893         { "buf_size",           KSTAT_DATA_UINT64 },
 894         { "align",              KSTAT_DATA_UINT64 },
 895         { "chunk_size",         KSTAT_DATA_UINT64 },
 896         { "slab_size",          KSTAT_DATA_UINT64 },
 897         { "alloc",              KSTAT_DATA_UINT64 },
 898         { "alloc_fail",         KSTAT_DATA_UINT64 },
 899         { "free",               KSTAT_DATA_UINT64 },
 900         { "depot_alloc",        KSTAT_DATA_UINT64 },
 901         { "depot_free",         KSTAT_DATA_UINT64 },
 902         { "depot_contention",   KSTAT_DATA_UINT64 },
 903         { "slab_alloc",         KSTAT_DATA_UINT64 },
 904         { "slab_free",          KSTAT_DATA_UINT64 },
 905         { "buf_constructed",    KSTAT_DATA_UINT64 },
 906         { "buf_avail",          KSTAT_DATA_UINT64 },
 907         { "buf_inuse",          KSTAT_DATA_UINT64 },
 908         { "buf_total",          KSTAT_DATA_UINT64 },
 909         { "buf_max",            KSTAT_DATA_UINT64 },
 910         { "slab_create",        KSTAT_DATA_UINT64 },
 911         { "slab_destroy",       KSTAT_DATA_UINT64 },
 912         { "vmem_source",        KSTAT_DATA_UINT64 },
 913         { "hash_size",          KSTAT_DATA_UINT64 },
 914         { "hash_lookup_depth",  KSTAT_DATA_UINT64 },
 915         { "hash_rescale",       KSTAT_DATA_UINT64 },
 916         { "full_magazines",     KSTAT_DATA_UINT64 },
 917         { "empty_magazines",    KSTAT_DATA_UINT64 },
 918         { "magazine_size",      KSTAT_DATA_UINT64 },
 919         { "reap",               KSTAT_DATA_UINT64 },
 920         { "defrag",             KSTAT_DATA_UINT64 },
 921         { "scan",               KSTAT_DATA_UINT64 },
 922         { "move_callbacks",     KSTAT_DATA_UINT64 },
 923         { "move_yes",           KSTAT_DATA_UINT64 },
 924         { "move_no",            KSTAT_DATA_UINT64 },
 925         { "move_later",         KSTAT_DATA_UINT64 },
 926         { "move_dont_need",     KSTAT_DATA_UINT64 },
 927         { "move_dont_know",     KSTAT_DATA_UINT64 },
 928         { "move_hunt_found",    KSTAT_DATA_UINT64 },
 929         { "move_slabs_freed",   KSTAT_DATA_UINT64 },
 930         { "move_reclaimable",   KSTAT_DATA_UINT64 },
 931 };
 932 
 933 static kmutex_t kmem_cache_kstat_lock;
 934 
 935 /*
 936  * The default set of caches to back kmem_alloc().
 937  * These sizes should be reevaluated periodically.
 938  *
 939  * We want allocations that are multiples of the coherency granularity
 940  * (64 bytes) to be satisfied from a cache which is a multiple of 64
 941  * bytes, so that it will be 64-byte aligned.  For all multiples of 64,
 942  * the next kmem_cache_size greater than or equal to it must be a
 943  * multiple of 64.
 944  *
 945  * We split the table into two sections:  size <= 4k and size > 4k.  This
 946  * saves a lot of space and cache footprint in our cache tables.
 947  */
 948 static const int kmem_alloc_sizes[] = {
 949         1 * 8,
 950         2 * 8,
 951         3 * 8,
 952         4 * 8,          5 * 8,          6 * 8,          7 * 8,
 953         4 * 16,         5 * 16,         6 * 16,         7 * 16,
 954         4 * 32,         5 * 32,         6 * 32,         7 * 32,
 955         4 * 64,         5 * 64,         6 * 64,         7 * 64,
 956         4 * 128,        5 * 128,        6 * 128,        7 * 128,
 957         P2ALIGN(8192 / 7, 64),
 958         P2ALIGN(8192 / 6, 64),
 959         P2ALIGN(8192 / 5, 64),
 960         P2ALIGN(8192 / 4, 64),
 961         P2ALIGN(8192 / 3, 64),
 962         P2ALIGN(8192 / 2, 64),
 963 };
 964 
 965 static const int kmem_big_alloc_sizes[] = {
 966         2 * 4096,       3 * 4096,
 967         2 * 8192,       3 * 8192,
 968         4 * 8192,       5 * 8192,       6 * 8192,       7 * 8192,
 969         8 * 8192,       9 * 8192,       10 * 8192,      11 * 8192,
 970         12 * 8192,      13 * 8192,      14 * 8192,      15 * 8192,
 971         16 * 8192
 972 };
 973 
 974 #define KMEM_MAXBUF             4096
 975 #define KMEM_BIG_MAXBUF_32BIT   32768
 976 #define KMEM_BIG_MAXBUF         131072
 977 
 978 #define KMEM_BIG_MULTIPLE       4096    /* big_alloc_sizes must be a multiple */
 979 #define KMEM_BIG_SHIFT          12      /* lg(KMEM_BIG_MULTIPLE) */
 980 
 981 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
 982 static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT];
 983 
 984 #define KMEM_ALLOC_TABLE_MAX    (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT)
 985 static size_t kmem_big_alloc_table_max = 0;     /* # of filled elements */
 986 
 987 static kmem_magtype_t kmem_magtype[] = {
 988         { 1,    8,      3200,   65536   },
 989         { 3,    16,     256,    32768   },
 990         { 7,    32,     64,     16384   },
 991         { 15,   64,     0,      8192    },
 992         { 31,   64,     0,      4096    },
 993         { 47,   64,     0,      2048    },
 994         { 63,   64,     0,      1024    },
 995         { 95,   64,     0,      512     },
 996         { 143,  64,     0,      0       },
 997 };
 998 
 999 static uint32_t kmem_reaping;
1000 static uint32_t kmem_reaping_idspace;
1001 
1002 /*
1003  * kmem tunables
1004  */
1005 clock_t kmem_reap_interval;     /* cache reaping rate [15 * HZ ticks] */
1006 int kmem_depot_contention = 3;  /* max failed tryenters per real interval */
1007 pgcnt_t kmem_reapahead = 0;     /* start reaping N pages before pageout */
1008 int kmem_panic = 1;             /* whether to panic on error */
1009 int kmem_logging = 1;           /* kmem_log_enter() override */
1010 uint32_t kmem_mtbf = 0;         /* mean time between failures [default: off] */
1011 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
1012 size_t kmem_content_log_size;   /* content log size [2% of memory] */
1013 size_t kmem_failure_log_size;   /* failure log [4 pages per CPU] */
1014 size_t kmem_slab_log_size;      /* slab create log [4 pages per CPU] */
1015 size_t kmem_zerosized_log_size; /* zero-sized log [4 pages per CPU] */
1016 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
1017 size_t kmem_lite_minsize = 0;   /* minimum buffer size for KMF_LITE */
1018 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
1019 int kmem_lite_pcs = 4;          /* number of PCs to store in KMF_LITE mode */
1020 size_t kmem_maxverify;          /* maximum bytes to inspect in debug routines */
1021 size_t kmem_minfirewall;        /* hardware-enforced redzone threshold */
1022 
1023 #ifdef DEBUG
1024 int kmem_warn_zerosized = 1;    /* whether to warn on zero-sized KM_SLEEP */
1025 #else
1026 int kmem_warn_zerosized = 0;    /* whether to warn on zero-sized KM_SLEEP */
1027 #endif
1028 
1029 int kmem_panic_zerosized = 0;   /* whether to panic on zero-sized KM_SLEEP */
1030 
1031 #ifdef _LP64
1032 size_t  kmem_max_cached = KMEM_BIG_MAXBUF;      /* maximum kmem_alloc cache */
1033 #else
1034 size_t  kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */
1035 #endif
1036 
1037 #ifdef DEBUG
1038 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
1039 #else
1040 int kmem_flags = 0;
1041 #endif
1042 int kmem_ready;
1043 
1044 static kmem_cache_t     *kmem_slab_cache;
1045 static kmem_cache_t     *kmem_bufctl_cache;
1046 static kmem_cache_t     *kmem_bufctl_audit_cache;
1047 
1048 static kmutex_t         kmem_cache_lock;        /* inter-cache linkage only */
1049 static list_t           kmem_caches;
1050 
1051 static taskq_t          *kmem_taskq;
1052 static kmutex_t         kmem_flags_lock;
1053 static vmem_t           *kmem_metadata_arena;
1054 static vmem_t           *kmem_msb_arena;        /* arena for metadata caches */
1055 static vmem_t           *kmem_cache_arena;
1056 static vmem_t           *kmem_hash_arena;
1057 static vmem_t           *kmem_log_arena;
1058 static vmem_t           *kmem_oversize_arena;
1059 static vmem_t           *kmem_va_arena;
1060 static vmem_t           *kmem_default_arena;
1061 static vmem_t           *kmem_firewall_va_arena;
1062 static vmem_t           *kmem_firewall_arena;
1063 
1064 static int              kmem_zerosized;         /* # of zero-sized allocs */
1065 
1066 /*
1067  * kmem slab consolidator thresholds (tunables)
1068  */
1069 size_t kmem_frag_minslabs = 101;        /* minimum total slabs */
1070 size_t kmem_frag_numer = 1;             /* free buffers (numerator) */
1071 size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */
1072 /*
1073  * Maximum number of slabs from which to move buffers during a single
1074  * maintenance interval while the system is not low on memory.
1075  */
1076 size_t kmem_reclaim_max_slabs = 1;
1077 /*
1078  * Number of slabs to scan backwards from the end of the partial slab list
1079  * when searching for buffers to relocate.
1080  */
1081 size_t kmem_reclaim_scan_range = 12;
1082 
1083 /* consolidator knobs */
1084 boolean_t kmem_move_noreap;
1085 boolean_t kmem_move_blocked;
1086 boolean_t kmem_move_fulltilt;
1087 boolean_t kmem_move_any_partial;
1088 
1089 #ifdef  DEBUG
1090 /*
1091  * kmem consolidator debug tunables:
1092  * Ensure code coverage by occasionally running the consolidator even when the
1093  * caches are not fragmented (they may never be). These intervals are mean time
1094  * in cache maintenance intervals (kmem_cache_update).
1095  */
1096 uint32_t kmem_mtb_move = 60;    /* defrag 1 slab (~15min) */
1097 uint32_t kmem_mtb_reap = 1800;  /* defrag all slabs (~7.5hrs) */
1098 #endif  /* DEBUG */
1099 
1100 static kmem_cache_t     *kmem_defrag_cache;
1101 static kmem_cache_t     *kmem_move_cache;
1102 static taskq_t          *kmem_move_taskq;
1103 
1104 static void kmem_cache_scan(kmem_cache_t *);
1105 static void kmem_cache_defrag(kmem_cache_t *);
1106 static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *);
1107 
1108 
1109 kmem_log_header_t       *kmem_transaction_log;
1110 kmem_log_header_t       *kmem_content_log;
1111 kmem_log_header_t       *kmem_failure_log;
1112 kmem_log_header_t       *kmem_slab_log;
1113 kmem_log_header_t       *kmem_zerosized_log;
1114 
1115 static int              kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
1116 
1117 #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller)                       \
1118         if ((count) > 0) {                                           \
1119                 pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \
1120                 pc_t *_e;                                               \
1121                 /* memmove() the old entries down one notch */          \
1122                 for (_e = &_s[(count) - 1]; _e > _s; _e--)               \
1123                         *_e = *(_e - 1);                                \
1124                 *_s = (uintptr_t)(caller);                              \
1125         }
1126 
1127 #define KMERR_MODIFIED  0       /* buffer modified while on freelist */
1128 #define KMERR_REDZONE   1       /* redzone violation (write past end of buf) */
1129 #define KMERR_DUPFREE   2       /* freed a buffer twice */
1130 #define KMERR_BADADDR   3       /* freed a bad (unallocated) address */
1131 #define KMERR_BADBUFTAG 4       /* buftag corrupted */
1132 #define KMERR_BADBUFCTL 5       /* bufctl corrupted */
1133 #define KMERR_BADCACHE  6       /* freed a buffer to the wrong cache */
1134 #define KMERR_BADSIZE   7       /* alloc size != free size */
1135 #define KMERR_BADBASE   8       /* buffer base address wrong */
1136 
1137 struct {
1138         hrtime_t        kmp_timestamp;  /* timestamp of panic */
1139         int             kmp_error;      /* type of kmem error */
1140         void            *kmp_buffer;    /* buffer that induced panic */
1141         void            *kmp_realbuf;   /* real start address for buffer */
1142         kmem_cache_t    *kmp_cache;     /* buffer's cache according to client */
1143         kmem_cache_t    *kmp_realcache; /* actual cache containing buffer */
1144         kmem_slab_t     *kmp_slab;      /* slab accoring to kmem_findslab() */
1145         kmem_bufctl_t   *kmp_bufctl;    /* bufctl */
1146 } kmem_panic_info;
1147 
1148 
1149 static void
1150 copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
1151 {
1152         uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1153         uint64_t *buf = buf_arg;
1154 
1155         while (buf < bufend)
1156                 *buf++ = pattern;
1157 }
1158 
1159 static void *
1160 verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
1161 {
1162         uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1163         uint64_t *buf;
1164 
1165         for (buf = buf_arg; buf < bufend; buf++)
1166                 if (*buf != pattern)
1167                         return (buf);
1168         return (NULL);
1169 }
1170 
1171 static void *
1172 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
1173 {
1174         uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1175         uint64_t *buf;
1176 
1177         for (buf = buf_arg; buf < bufend; buf++) {
1178                 if (*buf != old) {
1179                         copy_pattern(old, buf_arg,
1180                             (char *)buf - (char *)buf_arg);
1181                         return (buf);
1182                 }
1183                 *buf = new;
1184         }
1185 
1186         return (NULL);
1187 }
1188 
1189 static void
1190 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1191 {
1192         kmem_cache_t *cp;
1193 
1194         mutex_enter(&kmem_cache_lock);
1195         for (cp = list_head(&kmem_caches); cp != NULL;
1196             cp = list_next(&kmem_caches, cp))
1197                 if (tq != NULL)
1198                         (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1199                             tqflag);
1200                 else
1201                         func(cp);
1202         mutex_exit(&kmem_cache_lock);
1203 }
1204 
1205 static void
1206 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1207 {
1208         kmem_cache_t *cp;
1209 
1210         mutex_enter(&kmem_cache_lock);
1211         for (cp = list_head(&kmem_caches); cp != NULL;
1212             cp = list_next(&kmem_caches, cp)) {
1213                 if (!(cp->cache_cflags & KMC_IDENTIFIER))
1214                         continue;
1215                 if (tq != NULL)
1216                         (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1217                             tqflag);
1218                 else
1219                         func(cp);
1220         }
1221         mutex_exit(&kmem_cache_lock);
1222 }
1223 
1224 /*
1225  * Debugging support.  Given a buffer address, find its slab.
1226  */
1227 static kmem_slab_t *
1228 kmem_findslab(kmem_cache_t *cp, void *buf)
1229 {
1230         kmem_slab_t *sp;
1231 
1232         mutex_enter(&cp->cache_lock);
1233         for (sp = list_head(&cp->cache_complete_slabs); sp != NULL;
1234             sp = list_next(&cp->cache_complete_slabs, sp)) {
1235                 if (KMEM_SLAB_MEMBER(sp, buf)) {
1236                         mutex_exit(&cp->cache_lock);
1237                         return (sp);
1238                 }
1239         }
1240         for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL;
1241             sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) {
1242                 if (KMEM_SLAB_MEMBER(sp, buf)) {
1243                         mutex_exit(&cp->cache_lock);
1244                         return (sp);
1245                 }
1246         }
1247         mutex_exit(&cp->cache_lock);
1248 
1249         return (NULL);
1250 }
1251 
1252 static void
1253 kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
1254 {
1255         kmem_buftag_t *btp = NULL;
1256         kmem_bufctl_t *bcp = NULL;
1257         kmem_cache_t *cp = cparg;
1258         kmem_slab_t *sp;
1259         uint64_t *off;
1260         void *buf = bufarg;
1261 
1262         kmem_logging = 0;       /* stop logging when a bad thing happens */
1263 
1264         kmem_panic_info.kmp_timestamp = gethrtime();
1265 
1266         sp = kmem_findslab(cp, buf);
1267         if (sp == NULL) {
1268                 for (cp = list_tail(&kmem_caches); cp != NULL;
1269                     cp = list_prev(&kmem_caches, cp)) {
1270                         if ((sp = kmem_findslab(cp, buf)) != NULL)
1271                                 break;
1272                 }
1273         }
1274 
1275         if (sp == NULL) {
1276                 cp = NULL;
1277                 error = KMERR_BADADDR;
1278         } else {
1279                 if (cp != cparg)
1280                         error = KMERR_BADCACHE;
1281                 else
1282                         buf = (char *)bufarg - ((uintptr_t)bufarg -
1283                             (uintptr_t)sp->slab_base) % cp->cache_chunksize;
1284                 if (buf != bufarg)
1285                         error = KMERR_BADBASE;
1286                 if (cp->cache_flags & KMF_BUFTAG)
1287                         btp = KMEM_BUFTAG(cp, buf);
1288                 if (cp->cache_flags & KMF_HASH) {
1289                         mutex_enter(&cp->cache_lock);
1290                         for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
1291                                 if (bcp->bc_addr == buf)
1292                                         break;
1293                         mutex_exit(&cp->cache_lock);
1294                         if (bcp == NULL && btp != NULL)
1295                                 bcp = btp->bt_bufctl;
1296                         if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
1297                             NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
1298                             bcp->bc_addr != buf) {
1299                                 error = KMERR_BADBUFCTL;
1300                                 bcp = NULL;
1301                         }
1302                 }
1303         }
1304 
1305         kmem_panic_info.kmp_error = error;
1306         kmem_panic_info.kmp_buffer = bufarg;
1307         kmem_panic_info.kmp_realbuf = buf;
1308         kmem_panic_info.kmp_cache = cparg;
1309         kmem_panic_info.kmp_realcache = cp;
1310         kmem_panic_info.kmp_slab = sp;
1311         kmem_panic_info.kmp_bufctl = bcp;
1312 
1313         printf("kernel memory allocator: ");
1314 
1315         switch (error) {
1316 
1317         case KMERR_MODIFIED:
1318                 printf("buffer modified after being freed\n");
1319                 off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1320                 if (off == NULL)        /* shouldn't happen */
1321                         off = buf;
1322                 printf("modification occurred at offset 0x%lx "
1323                     "(0x%llx replaced by 0x%llx)\n",
1324                     (uintptr_t)off - (uintptr_t)buf,
1325                     (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
1326                 break;
1327 
1328         case KMERR_REDZONE:
1329                 printf("redzone violation: write past end of buffer\n");
1330                 break;
1331 
1332         case KMERR_BADADDR:
1333                 printf("invalid free: buffer not in cache\n");
1334                 break;
1335 
1336         case KMERR_DUPFREE:
1337                 printf("duplicate free: buffer freed twice\n");
1338                 break;
1339 
1340         case KMERR_BADBUFTAG:
1341                 printf("boundary tag corrupted\n");
1342                 printf("bcp ^ bxstat = %lx, should be %lx\n",
1343                     (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
1344                     KMEM_BUFTAG_FREE);
1345                 break;
1346 
1347         case KMERR_BADBUFCTL:
1348                 printf("bufctl corrupted\n");
1349                 break;
1350 
1351         case KMERR_BADCACHE:
1352                 printf("buffer freed to wrong cache\n");
1353                 printf("buffer was allocated from %s,\n", cp->cache_name);
1354                 printf("caller attempting free to %s.\n", cparg->cache_name);
1355                 break;
1356 
1357         case KMERR_BADSIZE:
1358                 printf("bad free: free size (%u) != alloc size (%u)\n",
1359                     KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
1360                     KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
1361                 break;
1362 
1363         case KMERR_BADBASE:
1364                 printf("bad free: free address (%p) != alloc address (%p)\n",
1365                     bufarg, buf);
1366                 break;
1367         }
1368 
1369         printf("buffer=%p  bufctl=%p  cache: %s\n",
1370             bufarg, (void *)bcp, cparg->cache_name);
1371 
1372         if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
1373             error != KMERR_BADBUFCTL) {
1374                 int d;
1375                 timestruc_t ts;
1376                 kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
1377 
1378                 hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
1379                 printf("previous transaction on buffer %p:\n", buf);
1380                 printf("thread=%p  time=T-%ld.%09ld  slab=%p  cache: %s\n",
1381                     (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
1382                     (void *)sp, cp->cache_name);
1383                 for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
1384                         ulong_t off;
1385                         char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
1386                         printf("%s+%lx\n", sym ? sym : "?", off);
1387                 }
1388         }
1389         if (kmem_panic > 0)
1390                 panic("kernel heap corruption detected");
1391         if (kmem_panic == 0)
1392                 debug_enter(NULL);
1393         kmem_logging = 1;       /* resume logging */
1394 }
1395 
1396 static kmem_log_header_t *
1397 kmem_log_init(size_t logsize)
1398 {
1399         kmem_log_header_t *lhp;
1400         int nchunks = 4 * max_ncpus;
1401         size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
1402         int i;
1403 
1404         /*
1405          * Make sure that lhp->lh_cpu[] is nicely aligned
1406          * to prevent false sharing of cache lines.
1407          */
1408         lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
1409         lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1410             NULL, NULL, VM_SLEEP);
1411         bzero(lhp, lhsize);
1412 
1413         mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
1414         lhp->lh_nchunks = nchunks;
1415         lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
1416         lhp->lh_base = vmem_alloc(kmem_log_arena,
1417             lhp->lh_chunksize * nchunks, VM_SLEEP);
1418         lhp->lh_free = vmem_alloc(kmem_log_arena,
1419             nchunks * sizeof (int), VM_SLEEP);
1420         bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1421 
1422         for (i = 0; i < max_ncpus; i++) {
1423                 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1424                 mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
1425                 clhp->clh_chunk = i;
1426         }
1427 
1428         for (i = max_ncpus; i < nchunks; i++)
1429                 lhp->lh_free[i] = i;
1430 
1431         lhp->lh_head = max_ncpus;
1432         lhp->lh_tail = 0;
1433 
1434         return (lhp);
1435 }
1436 
1437 static void *
1438 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
1439 {
1440         void *logspace;
1441         kmem_cpu_log_header_t *clhp;
1442 
1443         if (lhp == NULL || kmem_logging == 0 || panicstr)
1444                 return (NULL);
1445 
1446         clhp = &lhp->lh_cpu[CPU->cpu_seqid];
1447 
1448         mutex_enter(&clhp->clh_lock);
1449         clhp->clh_hits++;
1450         if (size > clhp->clh_avail) {
1451                 mutex_enter(&lhp->lh_lock);
1452                 lhp->lh_hits++;
1453                 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1454                 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1455                 clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1456                 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1457                 clhp->clh_current = lhp->lh_base +
1458                     clhp->clh_chunk * lhp->lh_chunksize;
1459                 clhp->clh_avail = lhp->lh_chunksize;
1460                 if (size > lhp->lh_chunksize)
1461                         size = lhp->lh_chunksize;
1462                 mutex_exit(&lhp->lh_lock);
1463         }
1464         logspace = clhp->clh_current;
1465         clhp->clh_current += size;
1466         clhp->clh_avail -= size;
1467         bcopy(data, logspace, size);
1468         mutex_exit(&clhp->clh_lock);
1469         return (logspace);
1470 }
1471 
1472 #define KMEM_AUDIT(lp, cp, bcp)                                         \
1473 {                                                                       \
1474         kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp);       \
1475         _bcp->bc_timestamp = gethrtime();                            \
1476         _bcp->bc_thread = curthread;                                 \
1477         _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH);    \
1478         _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp));       \
1479 }
1480 
1481 static void
1482 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
1483     kmem_slab_t *sp, void *addr)
1484 {
1485         kmem_bufctl_audit_t bca;
1486 
1487         bzero(&bca, sizeof (kmem_bufctl_audit_t));
1488         bca.bc_addr = addr;
1489         bca.bc_slab = sp;
1490         bca.bc_cache = cp;
1491         KMEM_AUDIT(lp, cp, &bca);
1492 }
1493 
1494 /*
1495  * Create a new slab for cache cp.
1496  */
1497 static kmem_slab_t *
1498 kmem_slab_create(kmem_cache_t *cp, int kmflag)
1499 {
1500         size_t slabsize = cp->cache_slabsize;
1501         size_t chunksize = cp->cache_chunksize;
1502         int cache_flags = cp->cache_flags;
1503         size_t color, chunks;
1504         char *buf, *slab;
1505         kmem_slab_t *sp;
1506         kmem_bufctl_t *bcp;
1507         vmem_t *vmp = cp->cache_arena;
1508 
1509         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1510 
1511         color = cp->cache_color + cp->cache_align;
1512         if (color > cp->cache_maxcolor)
1513                 color = cp->cache_mincolor;
1514         cp->cache_color = color;
1515 
1516         slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
1517 
1518         if (slab == NULL)
1519                 goto vmem_alloc_failure;
1520 
1521         ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1522 
1523         /*
1524          * Reverify what was already checked in kmem_cache_set_move(), since the
1525          * consolidator depends (for correctness) on slabs being initialized
1526          * with the 0xbaddcafe memory pattern (setting a low order bit usable by
1527          * clients to distinguish uninitialized memory from known objects).
1528          */
1529         ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH));
1530         if (!(cp->cache_cflags & KMC_NOTOUCH))
1531                 copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1532 
1533         if (cache_flags & KMF_HASH) {
1534                 if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
1535                         goto slab_alloc_failure;
1536                 chunks = (slabsize - color) / chunksize;
1537         } else {
1538                 sp = KMEM_SLAB(cp, slab);
1539                 chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
1540         }
1541 
1542         sp->slab_cache       = cp;
1543         sp->slab_head        = NULL;
1544         sp->slab_refcnt      = 0;
1545         sp->slab_base        = buf = slab + color;
1546         sp->slab_chunks      = chunks;
1547         sp->slab_stuck_offset = (uint32_t)-1;
1548         sp->slab_later_count = 0;
1549         sp->slab_flags = 0;
1550 
1551         ASSERT(chunks > 0);
1552         while (chunks-- != 0) {
1553                 if (cache_flags & KMF_HASH) {
1554                         bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
1555                         if (bcp == NULL)
1556                                 goto bufctl_alloc_failure;
1557                         if (cache_flags & KMF_AUDIT) {
1558                                 kmem_bufctl_audit_t *bcap =
1559                                     (kmem_bufctl_audit_t *)bcp;
1560                                 bzero(bcap, sizeof (kmem_bufctl_audit_t));
1561                                 bcap->bc_cache = cp;
1562                         }
1563                         bcp->bc_addr = buf;
1564                         bcp->bc_slab = sp;
1565                 } else {
1566                         bcp = KMEM_BUFCTL(cp, buf);
1567                 }
1568                 if (cache_flags & KMF_BUFTAG) {
1569                         kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1570                         btp->bt_redzone = KMEM_REDZONE_PATTERN;
1571                         btp->bt_bufctl = bcp;
1572                         btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1573                         if (cache_flags & KMF_DEADBEEF) {
1574                                 copy_pattern(KMEM_FREE_PATTERN, buf,
1575                                     cp->cache_verify);
1576                         }
1577                 }
1578                 bcp->bc_next = sp->slab_head;
1579                 sp->slab_head = bcp;
1580                 buf += chunksize;
1581         }
1582 
1583         kmem_log_event(kmem_slab_log, cp, sp, slab);
1584 
1585         return (sp);
1586 
1587 bufctl_alloc_failure:
1588 
1589         while ((bcp = sp->slab_head) != NULL) {
1590                 sp->slab_head = bcp->bc_next;
1591                 kmem_cache_free(cp->cache_bufctl_cache, bcp);
1592         }
1593         kmem_cache_free(kmem_slab_cache, sp);
1594 
1595 slab_alloc_failure:
1596 
1597         vmem_free(vmp, slab, slabsize);
1598 
1599 vmem_alloc_failure:
1600 
1601         kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1602         atomic_inc_64(&cp->cache_alloc_fail);
1603 
1604         return (NULL);
1605 }
1606 
1607 /*
1608  * Destroy a slab.
1609  */
1610 static void
1611 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
1612 {
1613         vmem_t *vmp = cp->cache_arena;
1614         void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1615 
1616         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1617         ASSERT(sp->slab_refcnt == 0);
1618 
1619         if (cp->cache_flags & KMF_HASH) {
1620                 kmem_bufctl_t *bcp;
1621                 while ((bcp = sp->slab_head) != NULL) {
1622                         sp->slab_head = bcp->bc_next;
1623                         kmem_cache_free(cp->cache_bufctl_cache, bcp);
1624                 }
1625                 kmem_cache_free(kmem_slab_cache, sp);
1626         }
1627         vmem_free(vmp, slab, cp->cache_slabsize);
1628 }
1629 
1630 static void *
1631 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill)
1632 {
1633         kmem_bufctl_t *bcp, **hash_bucket;
1634         void *buf;
1635         boolean_t new_slab = (sp->slab_refcnt == 0);
1636 
1637         ASSERT(MUTEX_HELD(&cp->cache_lock));
1638         /*
1639          * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we
1640          * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the
1641          * slab is newly created.
1642          */
1643         ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) &&
1644             (sp == avl_first(&cp->cache_partial_slabs))));
1645         ASSERT(sp->slab_cache == cp);
1646 
1647         cp->cache_slab_alloc++;
1648         cp->cache_bufslab--;
1649         sp->slab_refcnt++;
1650 
1651         bcp = sp->slab_head;
1652         sp->slab_head = bcp->bc_next;
1653 
1654         if (cp->cache_flags & KMF_HASH) {
1655                 /*
1656                  * Add buffer to allocated-address hash table.
1657                  */
1658                 buf = bcp->bc_addr;
1659                 hash_bucket = KMEM_HASH(cp, buf);
1660                 bcp->bc_next = *hash_bucket;
1661                 *hash_bucket = bcp;
1662                 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1663                         KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1664                 }
1665         } else {
1666                 buf = KMEM_BUF(cp, bcp);
1667         }
1668 
1669         ASSERT(KMEM_SLAB_MEMBER(sp, buf));
1670 
1671         if (sp->slab_head == NULL) {
1672                 ASSERT(KMEM_SLAB_IS_ALL_USED(sp));
1673                 if (new_slab) {
1674                         ASSERT(sp->slab_chunks == 1);
1675                 } else {
1676                         ASSERT(sp->slab_chunks > 1); /* the slab was partial */
1677                         avl_remove(&cp->cache_partial_slabs, sp);
1678                         sp->slab_later_count = 0; /* clear history */
1679                         sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
1680                         sp->slab_stuck_offset = (uint32_t)-1;
1681                 }
1682                 list_insert_head(&cp->cache_complete_slabs, sp);
1683                 cp->cache_complete_slab_count++;
1684                 return (buf);
1685         }
1686 
1687         ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
1688         /*
1689          * Peek to see if the magazine layer is enabled before
1690          * we prefill.  We're not holding the cpu cache lock,
1691          * so the peek could be wrong, but there's no harm in it.
1692          */
1693         if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) &&
1694             (KMEM_CPU_CACHE(cp)->cc_magsize != 0))  {
1695                 kmem_slab_prefill(cp, sp);
1696                 return (buf);
1697         }
1698 
1699         if (new_slab) {
1700                 avl_add(&cp->cache_partial_slabs, sp);
1701                 return (buf);
1702         }
1703 
1704         /*
1705          * The slab is now more allocated than it was, so the
1706          * order remains unchanged.
1707          */
1708         ASSERT(!avl_update(&cp->cache_partial_slabs, sp));
1709         return (buf);
1710 }
1711 
1712 /*
1713  * Allocate a raw (unconstructed) buffer from cp's slab layer.
1714  */
1715 static void *
1716 kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
1717 {
1718         kmem_slab_t *sp;
1719         void *buf;
1720         boolean_t test_destructor;
1721 
1722         mutex_enter(&cp->cache_lock);
1723         test_destructor = (cp->cache_slab_alloc == 0);
1724         sp = avl_first(&cp->cache_partial_slabs);
1725         if (sp == NULL) {
1726                 ASSERT(cp->cache_bufslab == 0);
1727 
1728                 /*
1729                  * The freelist is empty.  Create a new slab.
1730                  */
1731                 mutex_exit(&cp->cache_lock);
1732                 if ((sp = kmem_slab_create(cp, kmflag)) == NULL) {
1733                         return (NULL);
1734                 }
1735                 mutex_enter(&cp->cache_lock);
1736                 cp->cache_slab_create++;
1737                 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1738                         cp->cache_bufmax = cp->cache_buftotal;
1739                 cp->cache_bufslab += sp->slab_chunks;
1740         }
1741 
1742         buf = kmem_slab_alloc_impl(cp, sp, B_TRUE);
1743         ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1744             (cp->cache_complete_slab_count +
1745             avl_numnodes(&cp->cache_partial_slabs) +
1746             (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1747         mutex_exit(&cp->cache_lock);
1748 
1749         if (test_destructor && cp->cache_destructor != NULL) {
1750                 /*
1751                  * On the first kmem_slab_alloc(), assert that it is valid to
1752                  * call the destructor on a newly constructed object without any
1753                  * client involvement.
1754                  */
1755                 if ((cp->cache_constructor == NULL) ||
1756                     cp->cache_constructor(buf, cp->cache_private,
1757                     kmflag) == 0) {
1758                         cp->cache_destructor(buf, cp->cache_private);
1759                 }
1760                 copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf,
1761                     cp->cache_bufsize);
1762                 if (cp->cache_flags & KMF_DEADBEEF) {
1763                         copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1764                 }
1765         }
1766 
1767         return (buf);
1768 }
1769 
1770 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *);
1771 
1772 /*
1773  * Free a raw (unconstructed) buffer to cp's slab layer.
1774  */
1775 static void
1776 kmem_slab_free(kmem_cache_t *cp, void *buf)
1777 {
1778         kmem_slab_t *sp;
1779         kmem_bufctl_t *bcp, **prev_bcpp;
1780 
1781         ASSERT(buf != NULL);
1782 
1783         mutex_enter(&cp->cache_lock);
1784         cp->cache_slab_free++;
1785 
1786         if (cp->cache_flags & KMF_HASH) {
1787                 /*
1788                  * Look up buffer in allocated-address hash table.
1789                  */
1790                 prev_bcpp = KMEM_HASH(cp, buf);
1791                 while ((bcp = *prev_bcpp) != NULL) {
1792                         if (bcp->bc_addr == buf) {
1793                                 *prev_bcpp = bcp->bc_next;
1794                                 sp = bcp->bc_slab;
1795                                 break;
1796                         }
1797                         cp->cache_lookup_depth++;
1798                         prev_bcpp = &bcp->bc_next;
1799                 }
1800         } else {
1801                 bcp = KMEM_BUFCTL(cp, buf);
1802                 sp = KMEM_SLAB(cp, buf);
1803         }
1804 
1805         if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
1806                 mutex_exit(&cp->cache_lock);
1807                 kmem_error(KMERR_BADADDR, cp, buf);
1808                 return;
1809         }
1810 
1811         if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) {
1812                 /*
1813                  * If this is the buffer that prevented the consolidator from
1814                  * clearing the slab, we can reset the slab flags now that the
1815                  * buffer is freed. (It makes sense to do this in
1816                  * kmem_cache_free(), where the client gives up ownership of the
1817                  * buffer, but on the hot path the test is too expensive.)
1818                  */
1819                 kmem_slab_move_yes(cp, sp, buf);
1820         }
1821 
1822         if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1823                 if (cp->cache_flags & KMF_CONTENTS)
1824                         ((kmem_bufctl_audit_t *)bcp)->bc_contents =
1825                             kmem_log_enter(kmem_content_log, buf,
1826                             cp->cache_contents);
1827                 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1828         }
1829 
1830         bcp->bc_next = sp->slab_head;
1831         sp->slab_head = bcp;
1832 
1833         cp->cache_bufslab++;
1834         ASSERT(sp->slab_refcnt >= 1);
1835 
1836         if (--sp->slab_refcnt == 0) {
1837                 /*
1838                  * There are no outstanding allocations from this slab,
1839                  * so we can reclaim the memory.
1840                  */
1841                 if (sp->slab_chunks == 1) {
1842                         list_remove(&cp->cache_complete_slabs, sp);
1843                         cp->cache_complete_slab_count--;
1844                 } else {
1845                         avl_remove(&cp->cache_partial_slabs, sp);
1846                 }
1847 
1848                 cp->cache_buftotal -= sp->slab_chunks;
1849                 cp->cache_bufslab -= sp->slab_chunks;
1850                 /*
1851                  * Defer releasing the slab to the virtual memory subsystem
1852                  * while there is a pending move callback, since we guarantee
1853                  * that buffers passed to the move callback have only been
1854                  * touched by kmem or by the client itself. Since the memory
1855                  * patterns baddcafe (uninitialized) and deadbeef (freed) both
1856                  * set at least one of the two lowest order bits, the client can
1857                  * test those bits in the move callback to determine whether or
1858                  * not it knows about the buffer (assuming that the client also
1859                  * sets one of those low order bits whenever it frees a buffer).
1860                  */
1861                 if (cp->cache_defrag == NULL ||
1862                     (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) &&
1863                     !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) {
1864                         cp->cache_slab_destroy++;
1865                         mutex_exit(&cp->cache_lock);
1866                         kmem_slab_destroy(cp, sp);
1867                 } else {
1868                         list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
1869                         /*
1870                          * Slabs are inserted at both ends of the deadlist to
1871                          * distinguish between slabs freed while move callbacks
1872                          * are pending (list head) and a slab freed while the
1873                          * lock is dropped in kmem_move_buffers() (list tail) so
1874                          * that in both cases slab_destroy() is called from the
1875                          * right context.
1876                          */
1877                         if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
1878                                 list_insert_tail(deadlist, sp);
1879                         } else {
1880                                 list_insert_head(deadlist, sp);
1881                         }
1882                         cp->cache_defrag->kmd_deadcount++;
1883                         mutex_exit(&cp->cache_lock);
1884                 }
1885                 return;
1886         }
1887 
1888         if (bcp->bc_next == NULL) {
1889                 /* Transition the slab from completely allocated to partial. */
1890                 ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1));
1891                 ASSERT(sp->slab_chunks > 1);
1892                 list_remove(&cp->cache_complete_slabs, sp);
1893                 cp->cache_complete_slab_count--;
1894                 avl_add(&cp->cache_partial_slabs, sp);
1895         } else {
1896                 (void) avl_update_gt(&cp->cache_partial_slabs, sp);
1897         }
1898 
1899         ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1900             (cp->cache_complete_slab_count +
1901             avl_numnodes(&cp->cache_partial_slabs) +
1902             (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1903         mutex_exit(&cp->cache_lock);
1904 }
1905 
1906 /*
1907  * Return -1 if kmem_error, 1 if constructor fails, 0 if successful.
1908  */
1909 static int
1910 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
1911     caddr_t caller)
1912 {
1913         kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1914         kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1915         uint32_t mtbf;
1916 
1917         if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1918                 kmem_error(KMERR_BADBUFTAG, cp, buf);
1919                 return (-1);
1920         }
1921 
1922         btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
1923 
1924         if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1925                 kmem_error(KMERR_BADBUFCTL, cp, buf);
1926                 return (-1);
1927         }
1928 
1929         if (cp->cache_flags & KMF_DEADBEEF) {
1930                 if (!construct && (cp->cache_flags & KMF_LITE)) {
1931                         if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
1932                                 kmem_error(KMERR_MODIFIED, cp, buf);
1933                                 return (-1);
1934                         }
1935                         if (cp->cache_constructor != NULL)
1936                                 *(uint64_t *)buf = btp->bt_redzone;
1937                         else
1938                                 *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
1939                 } else {
1940                         construct = 1;
1941                         if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
1942                             KMEM_UNINITIALIZED_PATTERN, buf,
1943                             cp->cache_verify)) {
1944                                 kmem_error(KMERR_MODIFIED, cp, buf);
1945                                 return (-1);
1946                         }
1947                 }
1948         }
1949         btp->bt_redzone = KMEM_REDZONE_PATTERN;
1950 
1951         if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
1952             gethrtime() % mtbf == 0 &&
1953             (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
1954                 kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1955                 if (!construct && cp->cache_destructor != NULL)
1956                         cp->cache_destructor(buf, cp->cache_private);
1957         } else {
1958                 mtbf = 0;
1959         }
1960 
1961         if (mtbf || (construct && cp->cache_constructor != NULL &&
1962             cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
1963                 atomic_inc_64(&cp->cache_alloc_fail);
1964                 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1965                 if (cp->cache_flags & KMF_DEADBEEF)
1966                         copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1967                 kmem_slab_free(cp, buf);
1968                 return (1);
1969         }
1970 
1971         if (cp->cache_flags & KMF_AUDIT) {
1972                 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1973         }
1974 
1975         if ((cp->cache_flags & KMF_LITE) &&
1976             !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
1977                 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
1978         }
1979 
1980         return (0);
1981 }
1982 
1983 static int
1984 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
1985 {
1986         kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1987         kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1988         kmem_slab_t *sp;
1989 
1990         if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
1991                 if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1992                         kmem_error(KMERR_DUPFREE, cp, buf);
1993                         return (-1);
1994                 }
1995                 sp = kmem_findslab(cp, buf);
1996                 if (sp == NULL || sp->slab_cache != cp)
1997                         kmem_error(KMERR_BADADDR, cp, buf);
1998                 else
1999                         kmem_error(KMERR_REDZONE, cp, buf);
2000                 return (-1);
2001         }
2002 
2003         btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
2004 
2005         if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
2006                 kmem_error(KMERR_BADBUFCTL, cp, buf);
2007                 return (-1);
2008         }
2009 
2010         if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
2011                 kmem_error(KMERR_REDZONE, cp, buf);
2012                 return (-1);
2013         }
2014 
2015         if (cp->cache_flags & KMF_AUDIT) {
2016                 if (cp->cache_flags & KMF_CONTENTS)
2017                         bcp->bc_contents = kmem_log_enter(kmem_content_log,
2018                             buf, cp->cache_contents);
2019                 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
2020         }
2021 
2022         if ((cp->cache_flags & KMF_LITE) &&
2023             !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
2024                 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
2025         }
2026 
2027         if (cp->cache_flags & KMF_DEADBEEF) {
2028                 if (cp->cache_flags & KMF_LITE)
2029                         btp->bt_redzone = *(uint64_t *)buf;
2030                 else if (cp->cache_destructor != NULL)
2031                         cp->cache_destructor(buf, cp->cache_private);
2032 
2033                 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
2034         }
2035 
2036         return (0);
2037 }
2038 
2039 /*
2040  * Free each object in magazine mp to cp's slab layer, and free mp itself.
2041  */
2042 static void
2043 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
2044 {
2045         int round;
2046 
2047         ASSERT(!list_link_active(&cp->cache_link) ||
2048             taskq_member(kmem_taskq, curthread));
2049 
2050         for (round = 0; round < nrounds; round++) {
2051                 void *buf = mp->mag_round[round];
2052 
2053                 if (cp->cache_flags & KMF_DEADBEEF) {
2054                         if (verify_pattern(KMEM_FREE_PATTERN, buf,
2055                             cp->cache_verify) != NULL) {
2056                                 kmem_error(KMERR_MODIFIED, cp, buf);
2057                                 continue;
2058                         }
2059                         if ((cp->cache_flags & KMF_LITE) &&
2060                             cp->cache_destructor != NULL) {
2061                                 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2062                                 *(uint64_t *)buf = btp->bt_redzone;
2063                                 cp->cache_destructor(buf, cp->cache_private);
2064                                 *(uint64_t *)buf = KMEM_FREE_PATTERN;
2065                         }
2066                 } else if (cp->cache_destructor != NULL) {
2067                         cp->cache_destructor(buf, cp->cache_private);
2068                 }
2069 
2070                 kmem_slab_free(cp, buf);
2071         }
2072         ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2073         kmem_cache_free(cp->cache_magtype->mt_cache, mp);
2074 }
2075 
2076 /*
2077  * Allocate a magazine from the depot.
2078  */
2079 static kmem_magazine_t *
2080 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
2081 {
2082         kmem_magazine_t *mp;
2083 
2084         /*
2085          * If we can't get the depot lock without contention,
2086          * update our contention count.  We use the depot
2087          * contention rate to determine whether we need to
2088          * increase the magazine size for better scalability.
2089          */
2090         if (!mutex_tryenter(&cp->cache_depot_lock)) {
2091                 mutex_enter(&cp->cache_depot_lock);
2092                 cp->cache_depot_contention++;
2093         }
2094 
2095         if ((mp = mlp->ml_list) != NULL) {
2096                 ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2097                 mlp->ml_list = mp->mag_next;
2098                 if (--mlp->ml_total < mlp->ml_min)
2099                         mlp->ml_min = mlp->ml_total;
2100                 mlp->ml_alloc++;
2101         }
2102 
2103         mutex_exit(&cp->cache_depot_lock);
2104 
2105         return (mp);
2106 }
2107 
2108 /*
2109  * Free a magazine to the depot.
2110  */
2111 static void
2112 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
2113 {
2114         mutex_enter(&cp->cache_depot_lock);
2115         ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2116         mp->mag_next = mlp->ml_list;
2117         mlp->ml_list = mp;
2118         mlp->ml_total++;
2119         mutex_exit(&cp->cache_depot_lock);
2120 }
2121 
2122 /*
2123  * Update the working set statistics for cp's depot.
2124  */
2125 static void
2126 kmem_depot_ws_update(kmem_cache_t *cp)
2127 {
2128         mutex_enter(&cp->cache_depot_lock);
2129         cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
2130         cp->cache_full.ml_min = cp->cache_full.ml_total;
2131         cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
2132         cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2133         mutex_exit(&cp->cache_depot_lock);
2134 }
2135 
2136 /*
2137  * Set the working set statistics for cp's depot to zero.  (Everything is
2138  * eligible for reaping.)
2139  */
2140 static void
2141 kmem_depot_ws_zero(kmem_cache_t *cp)
2142 {
2143         mutex_enter(&cp->cache_depot_lock);
2144         cp->cache_full.ml_reaplimit = cp->cache_full.ml_total;
2145         cp->cache_full.ml_min = cp->cache_full.ml_total;
2146         cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total;
2147         cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2148         mutex_exit(&cp->cache_depot_lock);
2149 }
2150 
2151 /*
2152  * The number of bytes to reap before we call kpreempt(). The default (1MB)
2153  * causes us to preempt reaping up to hundreds of times per second. Using a
2154  * larger value (1GB) causes this to have virtually no effect.
2155  */
2156 size_t kmem_reap_preempt_bytes = 1024 * 1024;
2157 
2158 /*
2159  * Reap all magazines that have fallen out of the depot's working set.
2160  */
2161 static void
2162 kmem_depot_ws_reap(kmem_cache_t *cp)
2163 {
2164         size_t bytes = 0;
2165         long reap;
2166         kmem_magazine_t *mp;
2167 
2168         ASSERT(!list_link_active(&cp->cache_link) ||
2169             taskq_member(kmem_taskq, curthread));
2170 
2171         reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
2172         while (reap-- &&
2173             (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) {
2174                 kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
2175                 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2176                 if (bytes > kmem_reap_preempt_bytes) {
2177                         kpreempt(KPREEMPT_SYNC);
2178                         bytes = 0;
2179                 }
2180         }
2181 
2182         reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
2183         while (reap-- &&
2184             (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) {
2185                 kmem_magazine_destroy(cp, mp, 0);
2186                 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2187                 if (bytes > kmem_reap_preempt_bytes) {
2188                         kpreempt(KPREEMPT_SYNC);
2189                         bytes = 0;
2190                 }
2191         }
2192 }
2193 
2194 static void
2195 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
2196 {
2197         ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
2198             (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
2199         ASSERT(ccp->cc_magsize > 0);
2200 
2201         ccp->cc_ploaded = ccp->cc_loaded;
2202         ccp->cc_prounds = ccp->cc_rounds;
2203         ccp->cc_loaded = mp;
2204         ccp->cc_rounds = rounds;
2205 }
2206 
2207 /*
2208  * Intercept kmem alloc/free calls during crash dump in order to avoid
2209  * changing kmem state while memory is being saved to the dump device.
2210  * Otherwise, ::kmem_verify will report "corrupt buffers".  Note that
2211  * there are no locks because only one CPU calls kmem during a crash
2212  * dump. To enable this feature, first create the associated vmem
2213  * arena with VMC_DUMPSAFE.
2214  */
2215 static void *kmem_dump_start;   /* start of pre-reserved heap */
2216 static void *kmem_dump_end;     /* end of heap area */
2217 static void *kmem_dump_curr;    /* current free heap pointer */
2218 static size_t kmem_dump_size;   /* size of heap area */
2219 
2220 /* append to each buf created in the pre-reserved heap */
2221 typedef struct kmem_dumpctl {
2222         void    *kdc_next;      /* cache dump free list linkage */
2223 } kmem_dumpctl_t;
2224 
2225 #define KMEM_DUMPCTL(cp, buf)   \
2226         ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \
2227             sizeof (void *)))
2228 
2229 /* set non zero for full report */
2230 uint_t kmem_dump_verbose = 0;
2231 
2232 /* stats for overize heap */
2233 uint_t kmem_dump_oversize_allocs = 0;
2234 uint_t kmem_dump_oversize_max = 0;
2235 
2236 static void
2237 kmem_dumppr(char **pp, char *e, const char *format, ...)
2238 {
2239         char *p = *pp;
2240 
2241         if (p < e) {
2242                 int n;
2243                 va_list ap;
2244 
2245                 va_start(ap, format);
2246                 n = vsnprintf(p, e - p, format, ap);
2247                 va_end(ap);
2248                 *pp = p + n;
2249         }
2250 }
2251 
2252 /*
2253  * Called when dumpadm(8) configures dump parameters.
2254  */
2255 void
2256 kmem_dump_init(size_t size)
2257 {
2258         /* Our caller ensures size is always set. */
2259         ASSERT3U(size, >, 0);
2260 
2261         if (kmem_dump_start != NULL)
2262                 kmem_free(kmem_dump_start, kmem_dump_size);
2263 
2264         kmem_dump_start = kmem_alloc(size, KM_SLEEP);
2265         kmem_dump_size = size;
2266         kmem_dump_curr = kmem_dump_start;
2267         kmem_dump_end = (void *)((char *)kmem_dump_start + size);
2268         copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size);
2269 }
2270 
2271 /*
2272  * Set flag for each kmem_cache_t if is safe to use alternate dump
2273  * memory. Called just before panic crash dump starts. Set the flag
2274  * for the calling CPU.
2275  */
2276 void
2277 kmem_dump_begin(void)
2278 {
2279         kmem_cache_t *cp;
2280 
2281         ASSERT(panicstr != NULL);
2282 
2283         for (cp = list_head(&kmem_caches); cp != NULL;
2284             cp = list_next(&kmem_caches, cp)) {
2285                 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2286 
2287                 if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) {
2288                         cp->cache_flags |= KMF_DUMPDIVERT;
2289                         ccp->cc_flags |= KMF_DUMPDIVERT;
2290                         ccp->cc_dump_rounds = ccp->cc_rounds;
2291                         ccp->cc_dump_prounds = ccp->cc_prounds;
2292                         ccp->cc_rounds = ccp->cc_prounds = -1;
2293                 } else {
2294                         cp->cache_flags |= KMF_DUMPUNSAFE;
2295                         ccp->cc_flags |= KMF_DUMPUNSAFE;
2296                 }
2297         }
2298 }
2299 
2300 /*
2301  * finished dump intercept
2302  * print any warnings on the console
2303  * return verbose information to dumpsys() in the given buffer
2304  */
2305 size_t
2306 kmem_dump_finish(char *buf, size_t size)
2307 {
2308         int percent = 0;
2309         size_t used;
2310         char *e = buf + size;
2311         char *p = buf;
2312 
2313         if (kmem_dump_curr == kmem_dump_end) {
2314                 cmn_err(CE_WARN, "exceeded kmem_dump space of %lu "
2315                     "bytes: kmem state in dump may be inconsistent",
2316                     kmem_dump_size);
2317         }
2318 
2319         if (kmem_dump_verbose == 0)
2320                 return (0);
2321 
2322         used = (char *)kmem_dump_curr - (char *)kmem_dump_start;
2323         percent = (used * 100) / kmem_dump_size;
2324 
2325         kmem_dumppr(&p, e, "%% heap used,%d\n", percent);
2326         kmem_dumppr(&p, e, "used bytes,%ld\n", used);
2327         kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size);
2328         kmem_dumppr(&p, e, "Oversize allocs,%d\n",
2329             kmem_dump_oversize_allocs);
2330         kmem_dumppr(&p, e, "Oversize max size,%ld\n",
2331             kmem_dump_oversize_max);
2332 
2333         /* return buffer size used */
2334         if (p < e)
2335                 bzero(p, e - p);
2336         return (p - buf);
2337 }
2338 
2339 /*
2340  * Allocate a constructed object from alternate dump memory.
2341  */
2342 void *
2343 kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag)
2344 {
2345         void *buf;
2346         void *curr;
2347         char *bufend;
2348 
2349         /* return a constructed object */
2350         if ((buf = cp->cache_dump.kd_freelist) != NULL) {
2351                 cp->cache_dump.kd_freelist = KMEM_DUMPCTL(cp, buf)->kdc_next;
2352                 return (buf);
2353         }
2354 
2355         /* create a new constructed object */
2356         curr = kmem_dump_curr;
2357         buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align);
2358         bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t);
2359 
2360         /* hat layer objects cannot cross a page boundary */
2361         if (cp->cache_align < PAGESIZE) {
2362                 char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE);
2363                 if (bufend > page) {
2364                         bufend += page - (char *)buf;
2365                         buf = (void *)page;
2366                 }
2367         }
2368 
2369         /* fall back to normal alloc if reserved area is used up */
2370         if (bufend > (char *)kmem_dump_end) {
2371                 kmem_dump_curr = kmem_dump_end;
2372                 cp->cache_dump.kd_alloc_fails++;
2373                 return (NULL);
2374         }
2375 
2376         /*
2377          * Must advance curr pointer before calling a constructor that
2378          * may also allocate memory.
2379          */
2380         kmem_dump_curr = bufend;
2381 
2382         /* run constructor */
2383         if (cp->cache_constructor != NULL &&
2384             cp->cache_constructor(buf, cp->cache_private, kmflag)
2385             != 0) {
2386 #ifdef DEBUG
2387                 printf("name='%s' cache=0x%p: kmem cache constructor failed\n",
2388                     cp->cache_name, (void *)cp);
2389 #endif
2390                 /* reset curr pointer iff no allocs were done */
2391                 if (kmem_dump_curr == bufend)
2392                         kmem_dump_curr = curr;
2393 
2394                 cp->cache_dump.kd_alloc_fails++;
2395                 /* fall back to normal alloc if the constructor fails */
2396                 return (NULL);
2397         }
2398 
2399         return (buf);
2400 }
2401 
2402 /*
2403  * Free a constructed object in alternate dump memory.
2404  */
2405 int
2406 kmem_cache_free_dump(kmem_cache_t *cp, void *buf)
2407 {
2408         /* save constructed buffers for next time */
2409         if ((char *)buf >= (char *)kmem_dump_start &&
2410             (char *)buf < (char *)kmem_dump_end) {
2411                 KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dump.kd_freelist;
2412                 cp->cache_dump.kd_freelist = buf;
2413                 return (0);
2414         }
2415 
2416         /* just drop buffers that were allocated before dump started */
2417         if (kmem_dump_curr < kmem_dump_end)
2418                 return (0);
2419 
2420         /* fall back to normal free if reserved area is used up */
2421         return (1);
2422 }
2423 
2424 /*
2425  * Allocate a constructed object from cache cp.
2426  */
2427 void *
2428 kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
2429 {
2430         kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2431         kmem_magazine_t *fmp;
2432         void *buf;
2433 
2434         mutex_enter(&ccp->cc_lock);
2435         for (;;) {
2436                 /*
2437                  * If there's an object available in the current CPU's
2438                  * loaded magazine, just take it and return.
2439                  */
2440                 if (ccp->cc_rounds > 0) {
2441                         buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
2442                         ccp->cc_alloc++;
2443                         mutex_exit(&ccp->cc_lock);
2444                         if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) {
2445                                 if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2446                                         ASSERT(!(ccp->cc_flags &
2447                                             KMF_DUMPDIVERT));
2448                                         cp->cache_dump.kd_unsafe++;
2449                                 }
2450                                 if ((ccp->cc_flags & KMF_BUFTAG) &&
2451                                     kmem_cache_alloc_debug(cp, buf, kmflag, 0,
2452                                     caller()) != 0) {
2453                                         if (kmflag & KM_NOSLEEP)
2454                                                 return (NULL);
2455                                         mutex_enter(&ccp->cc_lock);
2456                                         continue;
2457                                 }
2458                         }
2459                         return (buf);
2460                 }
2461 
2462                 /*
2463                  * The loaded magazine is empty.  If the previously loaded
2464                  * magazine was full, exchange them and try again.
2465                  */
2466                 if (ccp->cc_prounds > 0) {
2467                         kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2468                         continue;
2469                 }
2470 
2471                 /*
2472                  * Return an alternate buffer at dump time to preserve
2473                  * the heap.
2474                  */
2475                 if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2476                         if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2477                                 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2478                                 /* log it so that we can warn about it */
2479                                 cp->cache_dump.kd_unsafe++;
2480                         } else {
2481                                 if ((buf = kmem_cache_alloc_dump(cp, kmflag)) !=
2482                                     NULL) {
2483                                         mutex_exit(&ccp->cc_lock);
2484                                         return (buf);
2485                                 }
2486                                 break;          /* fall back to slab layer */
2487                         }
2488                 }
2489 
2490                 /*
2491                  * If the magazine layer is disabled, break out now.
2492                  */
2493                 if (ccp->cc_magsize == 0)
2494                         break;
2495 
2496                 /*
2497                  * Try to get a full magazine from the depot.
2498                  */
2499                 fmp = kmem_depot_alloc(cp, &cp->cache_full);
2500                 if (fmp != NULL) {
2501                         if (ccp->cc_ploaded != NULL)
2502                                 kmem_depot_free(cp, &cp->cache_empty,
2503                                     ccp->cc_ploaded);
2504                         kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
2505                         continue;
2506                 }
2507 
2508                 /*
2509                  * There are no full magazines in the depot,
2510                  * so fall through to the slab layer.
2511                  */
2512                 break;
2513         }
2514         mutex_exit(&ccp->cc_lock);
2515 
2516         /*
2517          * We couldn't allocate a constructed object from the magazine layer,
2518          * so get a raw buffer from the slab layer and apply its constructor.
2519          */
2520         buf = kmem_slab_alloc(cp, kmflag);
2521 
2522         if (buf == NULL)
2523                 return (NULL);
2524 
2525         if (cp->cache_flags & KMF_BUFTAG) {
2526                 /*
2527                  * Make kmem_cache_alloc_debug() apply the constructor for us.
2528                  */
2529                 int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller());
2530                 if (rc != 0) {
2531                         if (kmflag & KM_NOSLEEP)
2532                                 return (NULL);
2533                         /*
2534                          * kmem_cache_alloc_debug() detected corruption
2535                          * but didn't panic (kmem_panic <= 0). We should not be
2536                          * here because the constructor failed (indicated by a
2537                          * return code of 1). Try again.
2538                          */
2539                         ASSERT(rc == -1);
2540                         return (kmem_cache_alloc(cp, kmflag));
2541                 }
2542                 return (buf);
2543         }
2544 
2545         if (cp->cache_constructor != NULL &&
2546             cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
2547                 atomic_inc_64(&cp->cache_alloc_fail);
2548                 kmem_slab_free(cp, buf);
2549                 return (NULL);
2550         }
2551 
2552         return (buf);
2553 }
2554 
2555 /*
2556  * The freed argument tells whether or not kmem_cache_free_debug() has already
2557  * been called so that we can avoid the duplicate free error. For example, a
2558  * buffer on a magazine has already been freed by the client but is still
2559  * constructed.
2560  */
2561 static void
2562 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed)
2563 {
2564         if (!freed && (cp->cache_flags & KMF_BUFTAG))
2565                 if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2566                         return;
2567 
2568         /*
2569          * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
2570          * kmem_cache_free_debug() will have already applied the destructor.
2571          */
2572         if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
2573             cp->cache_destructor != NULL) {
2574                 if (cp->cache_flags & KMF_DEADBEEF) {    /* KMF_LITE implied */
2575                         kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2576                         *(uint64_t *)buf = btp->bt_redzone;
2577                         cp->cache_destructor(buf, cp->cache_private);
2578                         *(uint64_t *)buf = KMEM_FREE_PATTERN;
2579                 } else {
2580                         cp->cache_destructor(buf, cp->cache_private);
2581                 }
2582         }
2583 
2584         kmem_slab_free(cp, buf);
2585 }
2586 
2587 /*
2588  * Used when there's no room to free a buffer to the per-CPU cache.
2589  * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the
2590  * caller should try freeing to the per-CPU cache again.
2591  * Note that we don't directly install the magazine in the cpu cache,
2592  * since its state may have changed wildly while the lock was dropped.
2593  */
2594 static int
2595 kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp)
2596 {
2597         kmem_magazine_t *emp;
2598         kmem_magtype_t *mtp;
2599 
2600         ASSERT(MUTEX_HELD(&ccp->cc_lock));
2601         ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize ||
2602             ((uint_t)ccp->cc_rounds == -1)) &&
2603             ((uint_t)ccp->cc_prounds == ccp->cc_magsize ||
2604             ((uint_t)ccp->cc_prounds == -1)));
2605 
2606         emp = kmem_depot_alloc(cp, &cp->cache_empty);
2607         if (emp != NULL) {
2608                 if (ccp->cc_ploaded != NULL)
2609                         kmem_depot_free(cp, &cp->cache_full,
2610                             ccp->cc_ploaded);
2611                 kmem_cpu_reload(ccp, emp, 0);
2612                 return (1);
2613         }
2614         /*
2615          * There are no empty magazines in the depot,
2616          * so try to allocate a new one.  We must drop all locks
2617          * across kmem_cache_alloc() because lower layers may
2618          * attempt to allocate from this cache.
2619          */
2620         mtp = cp->cache_magtype;
2621         mutex_exit(&ccp->cc_lock);
2622         emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
2623         mutex_enter(&ccp->cc_lock);
2624 
2625         if (emp != NULL) {
2626                 /*
2627                  * We successfully allocated an empty magazine.
2628                  * However, we had to drop ccp->cc_lock to do it,
2629                  * so the cache's magazine size may have changed.
2630                  * If so, free the magazine and try again.
2631                  */
2632                 if (ccp->cc_magsize != mtp->mt_magsize) {
2633                         mutex_exit(&ccp->cc_lock);
2634                         kmem_cache_free(mtp->mt_cache, emp);
2635                         mutex_enter(&ccp->cc_lock);
2636                         return (1);
2637                 }
2638 
2639                 /*
2640                  * We got a magazine of the right size.  Add it to
2641                  * the depot and try the whole dance again.
2642                  */
2643                 kmem_depot_free(cp, &cp->cache_empty, emp);
2644                 return (1);
2645         }
2646 
2647         /*
2648          * We couldn't allocate an empty magazine,
2649          * so fall through to the slab layer.
2650          */
2651         return (0);
2652 }
2653 
2654 /*
2655  * Free a constructed object to cache cp.
2656  */
2657 void
2658 kmem_cache_free(kmem_cache_t *cp, void *buf)
2659 {
2660         kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2661 
2662         /*
2663          * The client must not free either of the buffers passed to the move
2664          * callback function.
2665          */
2666         ASSERT(cp->cache_defrag == NULL ||
2667             cp->cache_defrag->kmd_thread != curthread ||
2668             (buf != cp->cache_defrag->kmd_from_buf &&
2669             buf != cp->cache_defrag->kmd_to_buf));
2670 
2671         if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2672                 if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2673                         ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2674                         /* log it so that we can warn about it */
2675                         cp->cache_dump.kd_unsafe++;
2676                 } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) {
2677                         return;
2678                 }
2679                 if (ccp->cc_flags & KMF_BUFTAG) {
2680                         if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2681                                 return;
2682                 }
2683         }
2684 
2685         mutex_enter(&ccp->cc_lock);
2686         /*
2687          * Any changes to this logic should be reflected in kmem_slab_prefill()
2688          */
2689         for (;;) {
2690                 /*
2691                  * If there's a slot available in the current CPU's
2692                  * loaded magazine, just put the object there and return.
2693                  */
2694                 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2695                         ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
2696                         ccp->cc_free++;
2697                         mutex_exit(&ccp->cc_lock);
2698                         return;
2699                 }
2700 
2701                 /*
2702                  * The loaded magazine is full.  If the previously loaded
2703                  * magazine was empty, exchange them and try again.
2704                  */
2705                 if (ccp->cc_prounds == 0) {
2706                         kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2707                         continue;
2708                 }
2709 
2710                 /*
2711                  * If the magazine layer is disabled, break out now.
2712                  */
2713                 if (ccp->cc_magsize == 0)
2714                         break;
2715 
2716                 if (!kmem_cpucache_magazine_alloc(ccp, cp)) {
2717                         /*
2718                          * We couldn't free our constructed object to the
2719                          * magazine layer, so apply its destructor and free it
2720                          * to the slab layer.
2721                          */
2722                         break;
2723                 }
2724         }
2725         mutex_exit(&ccp->cc_lock);
2726         kmem_slab_free_constructed(cp, buf, B_TRUE);
2727 }
2728 
2729 static void
2730 kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp)
2731 {
2732         kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2733         int cache_flags = cp->cache_flags;
2734 
2735         kmem_bufctl_t *next, *head;
2736         size_t nbufs;
2737 
2738         /*
2739          * Completely allocate the newly created slab and put the pre-allocated
2740          * buffers in magazines. Any of the buffers that cannot be put in
2741          * magazines must be returned to the slab.
2742          */
2743         ASSERT(MUTEX_HELD(&cp->cache_lock));
2744         ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL);
2745         ASSERT(cp->cache_constructor == NULL);
2746         ASSERT(sp->slab_cache == cp);
2747         ASSERT(sp->slab_refcnt == 1);
2748         ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt);
2749         ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL);
2750 
2751         head = sp->slab_head;
2752         nbufs = (sp->slab_chunks - sp->slab_refcnt);
2753         sp->slab_head = NULL;
2754         sp->slab_refcnt += nbufs;
2755         cp->cache_bufslab -= nbufs;
2756         cp->cache_slab_alloc += nbufs;
2757         list_insert_head(&cp->cache_complete_slabs, sp);
2758         cp->cache_complete_slab_count++;
2759         mutex_exit(&cp->cache_lock);
2760         mutex_enter(&ccp->cc_lock);
2761 
2762         while (head != NULL) {
2763                 void *buf = KMEM_BUF(cp, head);
2764                 /*
2765                  * If there's a slot available in the current CPU's
2766                  * loaded magazine, just put the object there and
2767                  * continue.
2768                  */
2769                 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2770                         ccp->cc_loaded->mag_round[ccp->cc_rounds++] =
2771                             buf;
2772                         ccp->cc_free++;
2773                         nbufs--;
2774                         head = head->bc_next;
2775                         continue;
2776                 }
2777 
2778                 /*
2779                  * The loaded magazine is full.  If the previously
2780                  * loaded magazine was empty, exchange them and try
2781                  * again.
2782                  */
2783                 if (ccp->cc_prounds == 0) {
2784                         kmem_cpu_reload(ccp, ccp->cc_ploaded,
2785                             ccp->cc_prounds);
2786                         continue;
2787                 }
2788 
2789                 /*
2790                  * If the magazine layer is disabled, break out now.
2791                  */
2792 
2793                 if (ccp->cc_magsize == 0) {
2794                         break;
2795                 }
2796 
2797                 if (!kmem_cpucache_magazine_alloc(ccp, cp))
2798                         break;
2799         }
2800         mutex_exit(&ccp->cc_lock);
2801         if (nbufs != 0) {
2802                 ASSERT(head != NULL);
2803 
2804                 /*
2805                  * If there was a failure, return remaining objects to
2806                  * the slab
2807                  */
2808                 while (head != NULL) {
2809                         ASSERT(nbufs != 0);
2810                         next = head->bc_next;
2811                         head->bc_next = NULL;
2812                         kmem_slab_free(cp, KMEM_BUF(cp, head));
2813                         head = next;
2814                         nbufs--;
2815                 }
2816         }
2817         ASSERT(head == NULL);
2818         ASSERT(nbufs == 0);
2819         mutex_enter(&cp->cache_lock);
2820 }
2821 
2822 /*
2823  * kmem_rezalloc() is currently considered private until we sort out how we want
2824  * to handle realloc vs. reallocf style interfaces.
2825  */
2826 void *
2827 kmem_rezalloc(void *oldbuf, size_t oldsize, size_t newsize, int kmflag)
2828 {
2829         void *newbuf = kmem_alloc(newsize, kmflag);
2830         if (newbuf == NULL) {
2831                 return (NULL);
2832         }
2833 
2834         bcopy(oldbuf, newbuf, MIN(oldsize, newsize));
2835         if (newsize > oldsize) {
2836                 void *start = (void *)((uintptr_t)newbuf + oldsize);
2837                 bzero(start, newsize - oldsize);
2838         }
2839 
2840         if (oldbuf != NULL) {
2841                 ASSERT3U(oldsize, !=, 0);
2842                 kmem_free(oldbuf, oldsize);
2843         }
2844 
2845         return (newbuf);
2846 }
2847 
2848 void *
2849 kmem_zalloc(size_t size, int kmflag)
2850 {
2851         size_t index;
2852         void *buf;
2853 
2854         if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2855                 kmem_cache_t *cp = kmem_alloc_table[index];
2856                 buf = kmem_cache_alloc(cp, kmflag);
2857                 if (buf != NULL) {
2858                         if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2859                                 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2860                                 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2861                                 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2862 
2863                                 if (cp->cache_flags & KMF_LITE) {
2864                                         KMEM_BUFTAG_LITE_ENTER(btp,
2865                                             kmem_lite_count, caller());
2866                                 }
2867                         }
2868                         bzero(buf, size);
2869                 }
2870         } else {
2871                 buf = kmem_alloc(size, kmflag);
2872                 if (buf != NULL)
2873                         bzero(buf, size);
2874         }
2875         return (buf);
2876 }
2877 
2878 void *
2879 kmem_alloc(size_t size, int kmflag)
2880 {
2881         size_t index;
2882         kmem_cache_t *cp;
2883         void *buf;
2884 
2885         if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2886                 cp = kmem_alloc_table[index];
2887                 /* fall through to kmem_cache_alloc() */
2888 
2889         } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2890             kmem_big_alloc_table_max) {
2891                 cp = kmem_big_alloc_table[index];
2892                 /* fall through to kmem_cache_alloc() */
2893 
2894         } else {
2895                 if (size == 0) {
2896                         if (kmflag != KM_SLEEP && !(kmflag & KM_PANIC))
2897                                 return (NULL);
2898 
2899                         /*
2900                          * If this is a sleeping allocation or one that has
2901                          * been specified to panic on allocation failure, we
2902                          * consider it to be deprecated behavior to allocate
2903                          * 0 bytes.  If we have been configured to panic under
2904                          * this condition, we panic; if to warn, we warn -- and
2905                          * regardless, we log to the kmem_zerosized_log that
2906                          * that this condition has occurred (which gives us
2907                          * enough information to be able to debug it).
2908                          */
2909                         if (kmem_panic && kmem_panic_zerosized)
2910                                 panic("attempted to kmem_alloc() size of 0");
2911 
2912                         if (kmem_warn_zerosized) {
2913                                 cmn_err(CE_WARN, "kmem_alloc(): sleeping "
2914                                     "allocation with size of 0; "
2915                                     "see kmem_zerosized_log for details");
2916                         }
2917 
2918                         kmem_log_event(kmem_zerosized_log, NULL, NULL, NULL);
2919 
2920                         return (NULL);
2921                 }
2922 
2923                 buf = vmem_alloc(kmem_oversize_arena, size,
2924                     kmflag & KM_VMFLAGS);
2925                 if (buf == NULL)
2926                         kmem_log_event(kmem_failure_log, NULL, NULL,
2927                             (void *)size);
2928                 else if (KMEM_DUMP(kmem_slab_cache)) {
2929                         /* stats for dump intercept */
2930                         kmem_dump_oversize_allocs++;
2931                         if (size > kmem_dump_oversize_max)
2932                                 kmem_dump_oversize_max = size;
2933                 }
2934                 return (buf);
2935         }
2936 
2937         buf = kmem_cache_alloc(cp, kmflag);
2938         if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) {
2939                 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2940                 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2941                 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2942 
2943                 if (cp->cache_flags & KMF_LITE) {
2944                         KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller());
2945                 }
2946         }
2947         return (buf);
2948 }
2949 
2950 void
2951 kmem_free(void *buf, size_t size)
2952 {
2953         size_t index;
2954         kmem_cache_t *cp;
2955 
2956         if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) {
2957                 cp = kmem_alloc_table[index];
2958                 /* fall through to kmem_cache_free() */
2959 
2960         } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2961             kmem_big_alloc_table_max) {
2962                 cp = kmem_big_alloc_table[index];
2963                 /* fall through to kmem_cache_free() */
2964 
2965         } else {
2966                 EQUIV(buf == NULL, size == 0);
2967                 if (buf == NULL && size == 0)
2968                         return;
2969                 vmem_free(kmem_oversize_arena, buf, size);
2970                 return;
2971         }
2972 
2973         if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2974                 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2975                 uint32_t *ip = (uint32_t *)btp;
2976                 if (ip[1] != KMEM_SIZE_ENCODE(size)) {
2977                         if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
2978                                 kmem_error(KMERR_DUPFREE, cp, buf);
2979                                 return;
2980                         }
2981                         if (KMEM_SIZE_VALID(ip[1])) {
2982                                 ip[0] = KMEM_SIZE_ENCODE(size);
2983                                 kmem_error(KMERR_BADSIZE, cp, buf);
2984                         } else {
2985                                 kmem_error(KMERR_REDZONE, cp, buf);
2986                         }
2987                         return;
2988                 }
2989                 if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
2990                         kmem_error(KMERR_REDZONE, cp, buf);
2991                         return;
2992                 }
2993                 btp->bt_redzone = KMEM_REDZONE_PATTERN;
2994                 if (cp->cache_flags & KMF_LITE) {
2995                         KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
2996                             caller());
2997                 }
2998         }
2999         kmem_cache_free(cp, buf);
3000 }
3001 
3002 void *
3003 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
3004 {
3005         size_t realsize = size + vmp->vm_quantum;
3006         void *addr;
3007 
3008         /*
3009          * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
3010          * vm_quantum will cause integer wraparound.  Check for this, and
3011          * blow off the firewall page in this case.  Note that such a
3012          * giant allocation (the entire kernel address space) can never
3013          * be satisfied, so it will either fail immediately (VM_NOSLEEP)
3014          * or sleep forever (VM_SLEEP).  Thus, there is no need for a
3015          * corresponding check in kmem_firewall_va_free().
3016          */
3017         if (realsize < size)
3018                 realsize = size;
3019 
3020         /*
3021          * While boot still owns resource management, make sure that this
3022          * redzone virtual address allocation is properly accounted for in
3023          * OBPs "virtual-memory" "available" lists because we're
3024          * effectively claiming them for a red zone.  If we don't do this,
3025          * the available lists become too fragmented and too large for the
3026          * current boot/kernel memory list interface.
3027          */
3028         addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
3029 
3030         if (addr != NULL && kvseg.s_base == NULL && realsize != size)
3031                 (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
3032 
3033         return (addr);
3034 }
3035 
3036 void
3037 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
3038 {
3039         ASSERT((kvseg.s_base == NULL ?
3040             va_to_pfn((char *)addr + size) :
3041             hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
3042 
3043         vmem_free(vmp, addr, size + vmp->vm_quantum);
3044 }
3045 
3046 /*
3047  * Try to allocate at least `size' bytes of memory without sleeping or
3048  * panicking. Return actual allocated size in `asize'. If allocation failed,
3049  * try final allocation with sleep or panic allowed.
3050  */
3051 void *
3052 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
3053 {
3054         void *p;
3055 
3056         *asize = P2ROUNDUP(size, KMEM_ALIGN);
3057         do {
3058                 p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
3059                 if (p != NULL)
3060                         return (p);
3061                 *asize += KMEM_ALIGN;
3062         } while (*asize <= PAGESIZE);
3063 
3064         *asize = P2ROUNDUP(size, KMEM_ALIGN);
3065         return (kmem_alloc(*asize, kmflag));
3066 }
3067 
3068 /*
3069  * Reclaim all unused memory from a cache.
3070  */
3071 static void
3072 kmem_cache_reap(kmem_cache_t *cp)
3073 {
3074         ASSERT(taskq_member(kmem_taskq, curthread));
3075         cp->cache_reap++;
3076 
3077         /*
3078          * Ask the cache's owner to free some memory if possible.
3079          * The idea is to handle things like the inode cache, which
3080          * typically sits on a bunch of memory that it doesn't truly
3081          * *need*.  Reclaim policy is entirely up to the owner; this
3082          * callback is just an advisory plea for help.
3083          */
3084         if (cp->cache_reclaim != NULL) {
3085                 long delta;
3086 
3087                 /*
3088                  * Reclaimed memory should be reapable (not included in the
3089                  * depot's working set).
3090                  */
3091                 delta = cp->cache_full.ml_total;
3092                 cp->cache_reclaim(cp->cache_private);
3093                 delta = cp->cache_full.ml_total - delta;
3094                 if (delta > 0) {
3095                         mutex_enter(&cp->cache_depot_lock);
3096                         cp->cache_full.ml_reaplimit += delta;
3097                         cp->cache_full.ml_min += delta;
3098                         mutex_exit(&cp->cache_depot_lock);
3099                 }
3100         }
3101 
3102         kmem_depot_ws_reap(cp);
3103 
3104         if (cp->cache_defrag != NULL && !kmem_move_noreap) {
3105                 kmem_cache_defrag(cp);
3106         }
3107 }
3108 
3109 static void
3110 kmem_reap_timeout(void *flag_arg)
3111 {
3112         uint32_t *flag = (uint32_t *)flag_arg;
3113 
3114         ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3115         *flag = 0;
3116 }
3117 
3118 static void
3119 kmem_reap_done(void *flag)
3120 {
3121         if (!callout_init_done) {
3122                 /* can't schedule a timeout at this point */
3123                 kmem_reap_timeout(flag);
3124         } else {
3125                 (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
3126         }
3127 }
3128 
3129 static void
3130 kmem_reap_start(void *flag)
3131 {
3132         ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3133 
3134         if (flag == &kmem_reaping) {
3135                 kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3136                 /*
3137                  * if we have segkp under heap, reap segkp cache.
3138                  */
3139                 if (segkp_fromheap)
3140                         segkp_cache_free();
3141         }
3142         else
3143                 kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3144 
3145         /*
3146          * We use taskq_dispatch() to schedule a timeout to clear
3147          * the flag so that kmem_reap() becomes self-throttling:
3148          * we won't reap again until the current reap completes *and*
3149          * at least kmem_reap_interval ticks have elapsed.
3150          */
3151         if (taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP) ==
3152             TASKQID_INVALID)
3153                 kmem_reap_done(flag);
3154 }
3155 
3156 static void
3157 kmem_reap_common(void *flag_arg)
3158 {
3159         uint32_t *flag = (uint32_t *)flag_arg;
3160 
3161         if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
3162             atomic_cas_32(flag, 0, 1) != 0)
3163                 return;
3164 
3165         /*
3166          * It may not be kosher to do memory allocation when a reap is called
3167          * (for example, if vmem_populate() is in the call chain).  So we
3168          * start the reap going with a TQ_NOALLOC dispatch.  If the dispatch
3169          * fails, we reset the flag, and the next reap will try again.
3170          */
3171         if (taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC) ==
3172             TASKQID_INVALID)
3173                 *flag = 0;
3174 }
3175 
3176 /*
3177  * Reclaim all unused memory from all caches.  Called from the VM system
3178  * when memory gets tight.
3179  */
3180 void
3181 kmem_reap(void)
3182 {
3183         kmem_reap_common(&kmem_reaping);
3184 }
3185 
3186 /*
3187  * Reclaim all unused memory from identifier arenas, called when a vmem
3188  * arena not back by memory is exhausted.  Since reaping memory-backed caches
3189  * cannot help with identifier exhaustion, we avoid both a large amount of
3190  * work and unwanted side-effects from reclaim callbacks.
3191  */
3192 void
3193 kmem_reap_idspace(void)
3194 {
3195         kmem_reap_common(&kmem_reaping_idspace);
3196 }
3197 
3198 /*
3199  * Purge all magazines from a cache and set its magazine limit to zero.
3200  * All calls are serialized by the kmem_taskq lock, except for the final
3201  * call from kmem_cache_destroy().
3202  */
3203 static void
3204 kmem_cache_magazine_purge(kmem_cache_t *cp)
3205 {
3206         kmem_cpu_cache_t *ccp;
3207         kmem_magazine_t *mp, *pmp;
3208         int rounds, prounds, cpu_seqid;
3209 
3210         ASSERT(!list_link_active(&cp->cache_link) ||
3211             taskq_member(kmem_taskq, curthread));
3212         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
3213 
3214         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3215                 ccp = &cp->cache_cpu[cpu_seqid];
3216 
3217                 mutex_enter(&ccp->cc_lock);
3218                 mp = ccp->cc_loaded;
3219                 pmp = ccp->cc_ploaded;
3220                 rounds = ccp->cc_rounds;
3221                 prounds = ccp->cc_prounds;
3222                 ccp->cc_loaded = NULL;
3223                 ccp->cc_ploaded = NULL;
3224                 ccp->cc_rounds = -1;
3225                 ccp->cc_prounds = -1;
3226                 ccp->cc_magsize = 0;
3227                 mutex_exit(&ccp->cc_lock);
3228 
3229                 if (mp)
3230                         kmem_magazine_destroy(cp, mp, rounds);
3231                 if (pmp)
3232                         kmem_magazine_destroy(cp, pmp, prounds);
3233         }
3234 
3235         kmem_depot_ws_zero(cp);
3236         kmem_depot_ws_reap(cp);
3237 }
3238 
3239 /*
3240  * Enable per-cpu magazines on a cache.
3241  */
3242 static void
3243 kmem_cache_magazine_enable(kmem_cache_t *cp)
3244 {
3245         int cpu_seqid;
3246 
3247         if (cp->cache_flags & KMF_NOMAGAZINE)
3248                 return;
3249 
3250         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3251                 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3252                 mutex_enter(&ccp->cc_lock);
3253                 ccp->cc_magsize = cp->cache_magtype->mt_magsize;
3254                 mutex_exit(&ccp->cc_lock);
3255         }
3256 
3257 }
3258 
3259 /*
3260  * Allow our caller to determine if there are running reaps.
3261  *
3262  * This call is very conservative and may return B_TRUE even when
3263  * reaping activity isn't active. If it returns B_FALSE, then reaping
3264  * activity is definitely inactive.
3265  */
3266 boolean_t
3267 kmem_cache_reap_active(void)
3268 {
3269         return (!taskq_empty(kmem_taskq));
3270 }
3271 
3272 /*
3273  * Reap (almost) everything soon.
3274  *
3275  * Note: this does not wait for the reap-tasks to complete. Caller
3276  * should use kmem_cache_reap_active() (above) and/or moderation to
3277  * avoid scheduling too many reap-tasks.
3278  */
3279 void
3280 kmem_cache_reap_soon(kmem_cache_t *cp)
3281 {
3282         ASSERT(list_link_active(&cp->cache_link));
3283 
3284         kmem_depot_ws_zero(cp);
3285 
3286         (void) taskq_dispatch(kmem_taskq,
3287             (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
3288 }
3289 
3290 /*
3291  * Recompute a cache's magazine size.  The trade-off is that larger magazines
3292  * provide a higher transfer rate with the depot, while smaller magazines
3293  * reduce memory consumption.  Magazine resizing is an expensive operation;
3294  * it should not be done frequently.
3295  *
3296  * Changes to the magazine size are serialized by the kmem_taskq lock.
3297  *
3298  * Note: at present this only grows the magazine size.  It might be useful
3299  * to allow shrinkage too.
3300  */
3301 static void
3302 kmem_cache_magazine_resize(kmem_cache_t *cp)
3303 {
3304         kmem_magtype_t *mtp = cp->cache_magtype;
3305 
3306         ASSERT(taskq_member(kmem_taskq, curthread));
3307 
3308         if (cp->cache_chunksize < mtp->mt_maxbuf) {
3309                 kmem_cache_magazine_purge(cp);
3310                 mutex_enter(&cp->cache_depot_lock);
3311                 cp->cache_magtype = ++mtp;
3312                 cp->cache_depot_contention_prev =
3313                     cp->cache_depot_contention + INT_MAX;
3314                 mutex_exit(&cp->cache_depot_lock);
3315                 kmem_cache_magazine_enable(cp);
3316         }
3317 }
3318 
3319 /*
3320  * Rescale a cache's hash table, so that the table size is roughly the
3321  * cache size.  We want the average lookup time to be extremely small.
3322  */
3323 static void
3324 kmem_hash_rescale(kmem_cache_t *cp)
3325 {
3326         kmem_bufctl_t **old_table, **new_table, *bcp;
3327         size_t old_size, new_size, h;
3328 
3329         ASSERT(taskq_member(kmem_taskq, curthread));
3330 
3331         new_size = MAX(KMEM_HASH_INITIAL,
3332             1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
3333         old_size = cp->cache_hash_mask + 1;
3334 
3335         if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
3336                 return;
3337 
3338         new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
3339             VM_NOSLEEP);
3340         if (new_table == NULL)
3341                 return;
3342         bzero(new_table, new_size * sizeof (void *));
3343 
3344         mutex_enter(&cp->cache_lock);
3345 
3346         old_size = cp->cache_hash_mask + 1;
3347         old_table = cp->cache_hash_table;
3348 
3349         cp->cache_hash_mask = new_size - 1;
3350         cp->cache_hash_table = new_table;
3351         cp->cache_rescale++;
3352 
3353         for (h = 0; h < old_size; h++) {
3354                 bcp = old_table[h];
3355                 while (bcp != NULL) {
3356                         void *addr = bcp->bc_addr;
3357                         kmem_bufctl_t *next_bcp = bcp->bc_next;
3358                         kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
3359                         bcp->bc_next = *hash_bucket;
3360                         *hash_bucket = bcp;
3361                         bcp = next_bcp;
3362                 }
3363         }
3364 
3365         mutex_exit(&cp->cache_lock);
3366 
3367         vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
3368 }
3369 
3370 /*
3371  * Perform periodic maintenance on a cache: hash rescaling, depot working-set
3372  * update, magazine resizing, and slab consolidation.
3373  */
3374 static void
3375 kmem_cache_update(kmem_cache_t *cp)
3376 {
3377         int need_hash_rescale = 0;
3378         int need_magazine_resize = 0;
3379 
3380         ASSERT(MUTEX_HELD(&kmem_cache_lock));
3381 
3382         /*
3383          * If the cache has become much larger or smaller than its hash table,
3384          * fire off a request to rescale the hash table.
3385          */
3386         mutex_enter(&cp->cache_lock);
3387 
3388         if ((cp->cache_flags & KMF_HASH) &&
3389             (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
3390             (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
3391             cp->cache_hash_mask > KMEM_HASH_INITIAL)))
3392                 need_hash_rescale = 1;
3393 
3394         mutex_exit(&cp->cache_lock);
3395 
3396         /*
3397          * Update the depot working set statistics.
3398          */
3399         kmem_depot_ws_update(cp);
3400 
3401         /*
3402          * If there's a lot of contention in the depot,
3403          * increase the magazine size.
3404          */
3405         mutex_enter(&cp->cache_depot_lock);
3406 
3407         if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
3408             (int)(cp->cache_depot_contention -
3409             cp->cache_depot_contention_prev) > kmem_depot_contention)
3410                 need_magazine_resize = 1;
3411 
3412         cp->cache_depot_contention_prev = cp->cache_depot_contention;
3413 
3414         mutex_exit(&cp->cache_depot_lock);
3415 
3416         if (need_hash_rescale)
3417                 (void) taskq_dispatch(kmem_taskq,
3418                     (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
3419 
3420         if (need_magazine_resize)
3421                 (void) taskq_dispatch(kmem_taskq,
3422                     (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
3423 
3424         if (cp->cache_defrag != NULL)
3425                 (void) taskq_dispatch(kmem_taskq,
3426                     (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP);
3427 }
3428 
3429 static void kmem_update(void *);
3430 
3431 static void
3432 kmem_update_timeout(void *dummy)
3433 {
3434         (void) timeout(kmem_update, dummy, kmem_reap_interval);
3435 }
3436 
3437 static void
3438 kmem_update(void *dummy)
3439 {
3440         kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
3441 
3442         /*
3443          * We use taskq_dispatch() to reschedule the timeout so that
3444          * kmem_update() becomes self-throttling: it won't schedule
3445          * new tasks until all previous tasks have completed.
3446          */
3447         if (taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP)
3448             == TASKQID_INVALID)
3449                 kmem_update_timeout(NULL);
3450 }
3451 
3452 static int
3453 kmem_cache_kstat_update(kstat_t *ksp, int rw)
3454 {
3455         struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
3456         kmem_cache_t *cp = ksp->ks_private;
3457         uint64_t cpu_buf_avail;
3458         uint64_t buf_avail = 0;
3459         int cpu_seqid;
3460         long reap;
3461 
3462         ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
3463 
3464         if (rw == KSTAT_WRITE)
3465                 return (EACCES);
3466 
3467         mutex_enter(&cp->cache_lock);
3468 
3469         kmcp->kmc_alloc_fail.value.ui64              = cp->cache_alloc_fail;
3470         kmcp->kmc_alloc.value.ui64           = cp->cache_slab_alloc;
3471         kmcp->kmc_free.value.ui64            = cp->cache_slab_free;
3472         kmcp->kmc_slab_alloc.value.ui64              = cp->cache_slab_alloc;
3473         kmcp->kmc_slab_free.value.ui64               = cp->cache_slab_free;
3474 
3475         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3476                 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3477 
3478                 mutex_enter(&ccp->cc_lock);
3479 
3480                 cpu_buf_avail = 0;
3481                 if (ccp->cc_rounds > 0)
3482                         cpu_buf_avail += ccp->cc_rounds;
3483                 if (ccp->cc_prounds > 0)
3484                         cpu_buf_avail += ccp->cc_prounds;
3485 
3486                 kmcp->kmc_alloc.value.ui64   += ccp->cc_alloc;
3487                 kmcp->kmc_free.value.ui64    += ccp->cc_free;
3488                 buf_avail                       += cpu_buf_avail;
3489 
3490                 mutex_exit(&ccp->cc_lock);
3491         }
3492 
3493         mutex_enter(&cp->cache_depot_lock);
3494 
3495         kmcp->kmc_depot_alloc.value.ui64     = cp->cache_full.ml_alloc;
3496         kmcp->kmc_depot_free.value.ui64              = cp->cache_empty.ml_alloc;
3497         kmcp->kmc_depot_contention.value.ui64        = cp->cache_depot_contention;
3498         kmcp->kmc_full_magazines.value.ui64  = cp->cache_full.ml_total;
3499         kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total;
3500         kmcp->kmc_magazine_size.value.ui64   =
3501             (cp->cache_flags & KMF_NOMAGAZINE) ?
3502             0 : cp->cache_magtype->mt_magsize;
3503 
3504         kmcp->kmc_alloc.value.ui64           += cp->cache_full.ml_alloc;
3505         kmcp->kmc_free.value.ui64            += cp->cache_empty.ml_alloc;
3506         buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
3507 
3508         reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
3509         reap = MIN(reap, cp->cache_full.ml_total);
3510 
3511         mutex_exit(&cp->cache_depot_lock);
3512 
3513         kmcp->kmc_buf_size.value.ui64        = cp->cache_bufsize;
3514         kmcp->kmc_align.value.ui64   = cp->cache_align;
3515         kmcp->kmc_chunk_size.value.ui64      = cp->cache_chunksize;
3516         kmcp->kmc_slab_size.value.ui64       = cp->cache_slabsize;
3517         kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
3518         buf_avail += cp->cache_bufslab;
3519         kmcp->kmc_buf_avail.value.ui64       = buf_avail;
3520         kmcp->kmc_buf_inuse.value.ui64       = cp->cache_buftotal - buf_avail;
3521         kmcp->kmc_buf_total.value.ui64       = cp->cache_buftotal;
3522         kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax;
3523         kmcp->kmc_slab_create.value.ui64     = cp->cache_slab_create;
3524         kmcp->kmc_slab_destroy.value.ui64    = cp->cache_slab_destroy;
3525         kmcp->kmc_hash_size.value.ui64       = (cp->cache_flags & KMF_HASH) ?
3526             cp->cache_hash_mask + 1 : 0;
3527         kmcp->kmc_hash_lookup_depth.value.ui64       = cp->cache_lookup_depth;
3528         kmcp->kmc_hash_rescale.value.ui64    = cp->cache_rescale;
3529         kmcp->kmc_vmem_source.value.ui64     = cp->cache_arena->vm_id;
3530         kmcp->kmc_reap.value.ui64    = cp->cache_reap;
3531 
3532         if (cp->cache_defrag == NULL) {
3533                 kmcp->kmc_move_callbacks.value.ui64  = 0;
3534                 kmcp->kmc_move_yes.value.ui64                = 0;
3535                 kmcp->kmc_move_no.value.ui64         = 0;
3536                 kmcp->kmc_move_later.value.ui64              = 0;
3537                 kmcp->kmc_move_dont_need.value.ui64  = 0;
3538                 kmcp->kmc_move_dont_know.value.ui64  = 0;
3539                 kmcp->kmc_move_hunt_found.value.ui64 = 0;
3540                 kmcp->kmc_move_slabs_freed.value.ui64        = 0;
3541                 kmcp->kmc_defrag.value.ui64          = 0;
3542                 kmcp->kmc_scan.value.ui64            = 0;
3543                 kmcp->kmc_move_reclaimable.value.ui64        = 0;
3544         } else {
3545                 int64_t reclaimable;
3546 
3547                 kmem_defrag_t *kd = cp->cache_defrag;
3548                 kmcp->kmc_move_callbacks.value.ui64  = kd->kmd_callbacks;
3549                 kmcp->kmc_move_yes.value.ui64                = kd->kmd_yes;
3550                 kmcp->kmc_move_no.value.ui64         = kd->kmd_no;
3551                 kmcp->kmc_move_later.value.ui64              = kd->kmd_later;
3552                 kmcp->kmc_move_dont_need.value.ui64  = kd->kmd_dont_need;
3553                 kmcp->kmc_move_dont_know.value.ui64  = kd->kmd_dont_know;
3554                 kmcp->kmc_move_hunt_found.value.ui64 = 0;
3555                 kmcp->kmc_move_slabs_freed.value.ui64        = kd->kmd_slabs_freed;
3556                 kmcp->kmc_defrag.value.ui64          = kd->kmd_defrags;
3557                 kmcp->kmc_scan.value.ui64            = kd->kmd_scans;
3558 
3559                 reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1);
3560                 reclaimable = MAX(reclaimable, 0);
3561                 reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
3562                 kmcp->kmc_move_reclaimable.value.ui64        = reclaimable;
3563         }
3564 
3565         mutex_exit(&cp->cache_lock);
3566         return (0);
3567 }
3568 
3569 /*
3570  * Return a named statistic about a particular cache.
3571  * This shouldn't be called very often, so it's currently designed for
3572  * simplicity (leverages existing kstat support) rather than efficiency.
3573  */
3574 uint64_t
3575 kmem_cache_stat(kmem_cache_t *cp, char *name)
3576 {
3577         int i;
3578         kstat_t *ksp = cp->cache_kstat;
3579         kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
3580         uint64_t value = 0;
3581 
3582         if (ksp != NULL) {
3583                 mutex_enter(&kmem_cache_kstat_lock);
3584                 (void) kmem_cache_kstat_update(ksp, KSTAT_READ);
3585                 for (i = 0; i < ksp->ks_ndata; i++) {
3586                         if (strcmp(knp[i].name, name) == 0) {
3587                                 value = knp[i].value.ui64;
3588                                 break;
3589                         }
3590                 }
3591                 mutex_exit(&kmem_cache_kstat_lock);
3592         }
3593         return (value);
3594 }
3595 
3596 /*
3597  * Return an estimate of currently available kernel heap memory.
3598  * On 32-bit systems, physical memory may exceed virtual memory,
3599  * we just truncate the result at 1GB.
3600  */
3601 size_t
3602 kmem_avail(void)
3603 {
3604         spgcnt_t rmem = availrmem - tune.t_minarmem;
3605         spgcnt_t fmem = freemem - minfree;
3606 
3607         return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
3608             1 << (30 - PAGESHIFT))));
3609 }
3610 
3611 /*
3612  * Return the maximum amount of memory that is (in theory) allocatable
3613  * from the heap. This may be used as an estimate only since there
3614  * is no guarentee this space will still be available when an allocation
3615  * request is made, nor that the space may be allocated in one big request
3616  * due to kernel heap fragmentation.
3617  */
3618 size_t
3619 kmem_maxavail(void)
3620 {
3621         spgcnt_t pmem = availrmem - tune.t_minarmem;
3622         spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
3623 
3624         return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
3625 }
3626 
3627 /*
3628  * Indicate whether memory-intensive kmem debugging is enabled.
3629  */
3630 int
3631 kmem_debugging(void)
3632 {
3633         return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
3634 }
3635 
3636 /* binning function, sorts finely at the two extremes */
3637 #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift)                          \
3638         ((((sp)->slab_refcnt <= (binshift)) ||                            \
3639             (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift)))   \
3640             ? -(sp)->slab_refcnt                                     \
3641             : -((binshift) + ((sp)->slab_refcnt >> (binshift))))
3642 
3643 /*
3644  * Minimizing the number of partial slabs on the freelist minimizes
3645  * fragmentation (the ratio of unused buffers held by the slab layer). There are
3646  * two ways to get a slab off of the freelist: 1) free all the buffers on the
3647  * slab, and 2) allocate all the buffers on the slab. It follows that we want
3648  * the most-used slabs at the front of the list where they have the best chance
3649  * of being completely allocated, and the least-used slabs at a safe distance
3650  * from the front to improve the odds that the few remaining buffers will all be
3651  * freed before another allocation can tie up the slab. For that reason a slab
3652  * with a higher slab_refcnt sorts less than than a slab with a lower
3653  * slab_refcnt.
3654  *
3655  * However, if a slab has at least one buffer that is deemed unfreeable, we
3656  * would rather have that slab at the front of the list regardless of
3657  * slab_refcnt, since even one unfreeable buffer makes the entire slab
3658  * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move()
3659  * callback, the slab is marked unfreeable for as long as it remains on the
3660  * freelist.
3661  */
3662 static int
3663 kmem_partial_slab_cmp(const void *p0, const void *p1)
3664 {
3665         const kmem_cache_t *cp;
3666         const kmem_slab_t *s0 = p0;
3667         const kmem_slab_t *s1 = p1;
3668         int w0, w1;
3669         size_t binshift;
3670 
3671         ASSERT(KMEM_SLAB_IS_PARTIAL(s0));
3672         ASSERT(KMEM_SLAB_IS_PARTIAL(s1));
3673         ASSERT(s0->slab_cache == s1->slab_cache);
3674         cp = s1->slab_cache;
3675         ASSERT(MUTEX_HELD(&cp->cache_lock));
3676         binshift = cp->cache_partial_binshift;
3677 
3678         /* weight of first slab */
3679         w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift);
3680         if (s0->slab_flags & KMEM_SLAB_NOMOVE) {
3681                 w0 -= cp->cache_maxchunks;
3682         }
3683 
3684         /* weight of second slab */
3685         w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift);
3686         if (s1->slab_flags & KMEM_SLAB_NOMOVE) {
3687                 w1 -= cp->cache_maxchunks;
3688         }
3689 
3690         if (w0 < w1)
3691                 return (-1);
3692         if (w0 > w1)
3693                 return (1);
3694 
3695         /* compare pointer values */
3696         if ((uintptr_t)s0 < (uintptr_t)s1)
3697                 return (-1);
3698         if ((uintptr_t)s0 > (uintptr_t)s1)
3699                 return (1);
3700 
3701         return (0);
3702 }
3703 
3704 /*
3705  * It must be valid to call the destructor (if any) on a newly created object.
3706  * That is, the constructor (if any) must leave the object in a valid state for
3707  * the destructor.
3708  */
3709 kmem_cache_t *
3710 kmem_cache_create(
3711         char *name,             /* descriptive name for this cache */
3712         size_t bufsize,         /* size of the objects it manages */
3713         size_t align,           /* required object alignment */
3714         int (*constructor)(void *, void *, int), /* object constructor */
3715         void (*destructor)(void *, void *),     /* object destructor */
3716         void (*reclaim)(void *), /* memory reclaim callback */
3717         void *private,          /* pass-thru arg for constr/destr/reclaim */
3718         vmem_t *vmp,            /* vmem source for slab allocation */
3719         int cflags)             /* cache creation flags */
3720 {
3721         int cpu_seqid;
3722         size_t chunksize;
3723         kmem_cache_t *cp;
3724         kmem_magtype_t *mtp;
3725         size_t csize = KMEM_CACHE_SIZE(max_ncpus);
3726 
3727 #ifdef  DEBUG
3728         /*
3729          * Cache names should conform to the rules for valid C identifiers
3730          */
3731         if (!strident_valid(name)) {
3732                 cmn_err(CE_CONT,
3733                     "kmem_cache_create: '%s' is an invalid cache name\n"
3734                     "cache names must conform to the rules for "
3735                     "C identifiers\n", name);
3736         }
3737 #endif  /* DEBUG */
3738 
3739         if (vmp == NULL)
3740                 vmp = kmem_default_arena;
3741 
3742         /*
3743          * If this kmem cache has an identifier vmem arena as its source, mark
3744          * it such to allow kmem_reap_idspace().
3745          */
3746         ASSERT(!(cflags & KMC_IDENTIFIER));   /* consumer should not set this */
3747         if (vmp->vm_cflags & VMC_IDENTIFIER)
3748                 cflags |= KMC_IDENTIFIER;
3749 
3750         /*
3751          * Get a kmem_cache structure.  We arrange that cp->cache_cpu[]
3752          * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
3753          * false sharing of per-CPU data.
3754          */
3755         cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
3756             P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
3757         bzero(cp, csize);
3758         list_link_init(&cp->cache_link);
3759 
3760         if (align == 0)
3761                 align = KMEM_ALIGN;
3762 
3763         /*
3764          * If we're not at least KMEM_ALIGN aligned, we can't use free
3765          * memory to hold bufctl information (because we can't safely
3766          * perform word loads and stores on it).
3767          */
3768         if (align < KMEM_ALIGN)
3769                 cflags |= KMC_NOTOUCH;
3770 
3771         if (!ISP2(align) || align > vmp->vm_quantum)
3772                 panic("kmem_cache_create: bad alignment %lu", align);
3773 
3774         mutex_enter(&kmem_flags_lock);
3775         if (kmem_flags & KMF_RANDOMIZE)
3776                 kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
3777                     KMF_RANDOMIZE;
3778         cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
3779         mutex_exit(&kmem_flags_lock);
3780 
3781         /*
3782          * Make sure all the various flags are reasonable.
3783          */
3784         ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
3785 
3786         if (cp->cache_flags & KMF_LITE) {
3787                 if (bufsize >= kmem_lite_minsize &&
3788                     align <= kmem_lite_maxalign &&
3789                     P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
3790                         cp->cache_flags |= KMF_BUFTAG;
3791                         cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3792                 } else {
3793                         cp->cache_flags &= ~KMF_DEBUG;
3794                 }
3795         }
3796 
3797         if (cp->cache_flags & KMF_DEADBEEF)
3798                 cp->cache_flags |= KMF_REDZONE;
3799 
3800         if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
3801                 cp->cache_flags |= KMF_NOMAGAZINE;
3802 
3803         if (cflags & KMC_NODEBUG)
3804                 cp->cache_flags &= ~KMF_DEBUG;
3805 
3806         if (cflags & KMC_NOTOUCH)
3807                 cp->cache_flags &= ~KMF_TOUCH;
3808 
3809         if (cflags & KMC_PREFILL)
3810                 cp->cache_flags |= KMF_PREFILL;
3811 
3812         if (cflags & KMC_NOHASH)
3813                 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3814 
3815         if (cflags & KMC_NOMAGAZINE)
3816                 cp->cache_flags |= KMF_NOMAGAZINE;
3817 
3818         if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
3819                 cp->cache_flags |= KMF_REDZONE;
3820 
3821         if (!(cp->cache_flags & KMF_AUDIT))
3822                 cp->cache_flags &= ~KMF_CONTENTS;
3823 
3824         if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
3825             !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
3826                 cp->cache_flags |= KMF_FIREWALL;
3827 
3828         if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
3829                 cp->cache_flags &= ~KMF_FIREWALL;
3830 
3831         if (cp->cache_flags & KMF_FIREWALL) {
3832                 cp->cache_flags &= ~KMF_BUFTAG;
3833                 cp->cache_flags |= KMF_NOMAGAZINE;
3834                 ASSERT(vmp == kmem_default_arena);
3835                 vmp = kmem_firewall_arena;
3836         }
3837 
3838         /*
3839          * Set cache properties.
3840          */
3841         (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
3842         strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1);
3843         cp->cache_bufsize = bufsize;
3844         cp->cache_align = align;
3845         cp->cache_constructor = constructor;
3846         cp->cache_destructor = destructor;
3847         cp->cache_reclaim = reclaim;
3848         cp->cache_private = private;
3849         cp->cache_arena = vmp;
3850         cp->cache_cflags = cflags;
3851 
3852         /*
3853          * Determine the chunk size.
3854          */
3855         chunksize = bufsize;
3856 
3857         if (align >= KMEM_ALIGN) {
3858                 chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
3859                 cp->cache_bufctl = chunksize - KMEM_ALIGN;
3860         }
3861 
3862         if (cp->cache_flags & KMF_BUFTAG) {
3863                 cp->cache_bufctl = chunksize;
3864                 cp->cache_buftag = chunksize;
3865                 if (cp->cache_flags & KMF_LITE)
3866                         chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
3867                 else
3868                         chunksize += sizeof (kmem_buftag_t);
3869         }
3870 
3871         if (cp->cache_flags & KMF_DEADBEEF) {
3872                 cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
3873                 if (cp->cache_flags & KMF_LITE)
3874                         cp->cache_verify = sizeof (uint64_t);
3875         }
3876 
3877         cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
3878 
3879         cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
3880 
3881         /*
3882          * Now that we know the chunk size, determine the optimal slab size.
3883          */
3884         if (vmp == kmem_firewall_arena) {
3885                 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
3886                 cp->cache_mincolor = cp->cache_slabsize - chunksize;
3887                 cp->cache_maxcolor = cp->cache_mincolor;
3888                 cp->cache_flags |= KMF_HASH;
3889                 ASSERT(!(cp->cache_flags & KMF_BUFTAG));
3890         } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
3891             !(cp->cache_flags & KMF_AUDIT) &&
3892             chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
3893                 cp->cache_slabsize = vmp->vm_quantum;
3894                 cp->cache_mincolor = 0;
3895                 cp->cache_maxcolor =
3896                     (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
3897                 ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
3898                 ASSERT(!(cp->cache_flags & KMF_AUDIT));
3899         } else {
3900                 size_t chunks, bestfit, waste, slabsize;
3901                 size_t minwaste = LONG_MAX;
3902 
3903                 bestfit = 0;
3904                 for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
3905                         slabsize = P2ROUNDUP(chunksize * chunks,
3906                             vmp->vm_quantum);
3907                         chunks = slabsize / chunksize;
3908                         waste = (slabsize % chunksize) / chunks;
3909                         if (waste < minwaste) {
3910                                 minwaste = waste;
3911                                 bestfit = slabsize;
3912                         }
3913                 }
3914                 if (cflags & KMC_QCACHE)
3915                         bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
3916                 cp->cache_slabsize = bestfit;
3917                 cp->cache_mincolor = 0;
3918                 cp->cache_maxcolor = bestfit % chunksize;
3919                 cp->cache_flags |= KMF_HASH;
3920         }
3921 
3922         cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize);
3923         cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1;
3924 
3925         /*
3926          * Disallowing prefill when either the DEBUG or HASH flag is set or when
3927          * there is a constructor avoids some tricky issues with debug setup
3928          * that may be revisited later. We cannot allow prefill in a
3929          * metadata cache because of potential recursion.
3930          */
3931         if (vmp == kmem_msb_arena ||
3932             cp->cache_flags & (KMF_HASH | KMF_BUFTAG) ||
3933             cp->cache_constructor != NULL)
3934                 cp->cache_flags &= ~KMF_PREFILL;
3935 
3936         if (cp->cache_flags & KMF_HASH) {
3937                 ASSERT(!(cflags & KMC_NOHASH));
3938                 cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
3939                     kmem_bufctl_audit_cache : kmem_bufctl_cache;
3940         }
3941 
3942         if (cp->cache_maxcolor >= vmp->vm_quantum)
3943                 cp->cache_maxcolor = vmp->vm_quantum - 1;
3944 
3945         cp->cache_color = cp->cache_mincolor;
3946 
3947         /*
3948          * Initialize the rest of the slab layer.
3949          */
3950         mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
3951 
3952         avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp,
3953             sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3954         /* LINTED: E_TRUE_LOGICAL_EXPR */
3955         ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3956         /* reuse partial slab AVL linkage for complete slab list linkage */
3957         list_create(&cp->cache_complete_slabs,
3958             sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3959 
3960         if (cp->cache_flags & KMF_HASH) {
3961                 cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
3962                     KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
3963                 bzero(cp->cache_hash_table,
3964                     KMEM_HASH_INITIAL * sizeof (void *));
3965                 cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
3966                 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
3967         }
3968 
3969         /*
3970          * Initialize the depot.
3971          */
3972         mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
3973 
3974         for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
3975                 continue;
3976 
3977         cp->cache_magtype = mtp;
3978 
3979         /*
3980          * Initialize the CPU layer.
3981          */
3982         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3983                 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3984                 mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
3985                 ccp->cc_flags = cp->cache_flags;
3986                 ccp->cc_rounds = -1;
3987                 ccp->cc_prounds = -1;
3988         }
3989 
3990         /*
3991          * Create the cache's kstats.
3992          */
3993         if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
3994             "kmem_cache", KSTAT_TYPE_NAMED,
3995             sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
3996             KSTAT_FLAG_VIRTUAL)) != NULL) {
3997                 cp->cache_kstat->ks_data = &kmem_cache_kstat;
3998                 cp->cache_kstat->ks_update = kmem_cache_kstat_update;
3999                 cp->cache_kstat->ks_private = cp;
4000                 cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
4001                 kstat_install(cp->cache_kstat);
4002         }
4003 
4004         /*
4005          * Add the cache to the global list.  This makes it visible
4006          * to kmem_update(), so the cache must be ready for business.
4007          */
4008         mutex_enter(&kmem_cache_lock);
4009         list_insert_tail(&kmem_caches, cp);
4010         mutex_exit(&kmem_cache_lock);
4011 
4012         if (kmem_ready)
4013                 kmem_cache_magazine_enable(cp);
4014 
4015         return (cp);
4016 }
4017 
4018 static int
4019 kmem_move_cmp(const void *buf, const void *p)
4020 {
4021         const kmem_move_t *kmm = p;
4022         uintptr_t v1 = (uintptr_t)buf;
4023         uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf;
4024         return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0));
4025 }
4026 
4027 static void
4028 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd)
4029 {
4030         kmd->kmd_reclaim_numer = 1;
4031 }
4032 
4033 /*
4034  * Initially, when choosing candidate slabs for buffers to move, we want to be
4035  * very selective and take only slabs that are less than
4036  * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate
4037  * slabs, then we raise the allocation ceiling incrementally. The reclaim
4038  * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no
4039  * longer fragmented.
4040  */
4041 static void
4042 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction)
4043 {
4044         if (direction > 0) {
4045                 /* make it easier to find a candidate slab */
4046                 if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) {
4047                         kmd->kmd_reclaim_numer++;
4048                 }
4049         } else {
4050                 /* be more selective */
4051                 if (kmd->kmd_reclaim_numer > 1) {
4052                         kmd->kmd_reclaim_numer--;
4053                 }
4054         }
4055 }
4056 
4057 void
4058 kmem_cache_set_move(kmem_cache_t *cp,
4059     kmem_cbrc_t (*move)(void *, void *, size_t, void *))
4060 {
4061         kmem_defrag_t *defrag;
4062 
4063         ASSERT(move != NULL);
4064         /*
4065          * The consolidator does not support NOTOUCH caches because kmem cannot
4066          * initialize their slabs with the 0xbaddcafe memory pattern, which sets
4067          * a low order bit usable by clients to distinguish uninitialized memory
4068          * from known objects (see kmem_slab_create).
4069          */
4070         ASSERT(!(cp->cache_cflags & KMC_NOTOUCH));
4071         ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER));
4072 
4073         /*
4074          * We should not be holding anyone's cache lock when calling
4075          * kmem_cache_alloc(), so allocate in all cases before acquiring the
4076          * lock.
4077          */
4078         defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP);
4079 
4080         mutex_enter(&cp->cache_lock);
4081 
4082         if (KMEM_IS_MOVABLE(cp)) {
4083                 if (cp->cache_move == NULL) {
4084                         ASSERT(cp->cache_slab_alloc == 0);
4085 
4086                         cp->cache_defrag = defrag;
4087                         defrag = NULL; /* nothing to free */
4088                         bzero(cp->cache_defrag, sizeof (kmem_defrag_t));
4089                         avl_create(&cp->cache_defrag->kmd_moves_pending,
4090                             kmem_move_cmp, sizeof (kmem_move_t),
4091                             offsetof(kmem_move_t, kmm_entry));
4092                         /* LINTED: E_TRUE_LOGICAL_EXPR */
4093                         ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
4094                         /* reuse the slab's AVL linkage for deadlist linkage */
4095                         list_create(&cp->cache_defrag->kmd_deadlist,
4096                             sizeof (kmem_slab_t),
4097                             offsetof(kmem_slab_t, slab_link));
4098                         kmem_reset_reclaim_threshold(cp->cache_defrag);
4099                 }
4100                 cp->cache_move = move;
4101         }
4102 
4103         mutex_exit(&cp->cache_lock);
4104 
4105         if (defrag != NULL) {
4106                 kmem_cache_free(kmem_defrag_cache, defrag); /* unused */
4107         }
4108 }
4109 
4110 void
4111 kmem_cache_destroy(kmem_cache_t *cp)
4112 {
4113         int cpu_seqid;
4114 
4115         /*
4116          * Remove the cache from the global cache list so that no one else
4117          * can schedule tasks on its behalf, wait for any pending tasks to
4118          * complete, purge the cache, and then destroy it.
4119          */
4120         mutex_enter(&kmem_cache_lock);
4121         list_remove(&kmem_caches, cp);
4122         mutex_exit(&kmem_cache_lock);
4123 
4124         if (kmem_taskq != NULL)
4125                 taskq_wait(kmem_taskq);
4126 
4127         if (kmem_move_taskq != NULL && cp->cache_defrag != NULL)
4128                 taskq_wait(kmem_move_taskq);
4129 
4130         kmem_cache_magazine_purge(cp);
4131 
4132         mutex_enter(&cp->cache_lock);
4133         if (cp->cache_buftotal != 0)
4134                 cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
4135                     cp->cache_name, (void *)cp);
4136         if (cp->cache_defrag != NULL) {
4137                 avl_destroy(&cp->cache_defrag->kmd_moves_pending);
4138                 list_destroy(&cp->cache_defrag->kmd_deadlist);
4139                 kmem_cache_free(kmem_defrag_cache, cp->cache_defrag);
4140                 cp->cache_defrag = NULL;
4141         }
4142         /*
4143          * The cache is now dead.  There should be no further activity.  We
4144          * enforce this by setting land mines in the constructor, destructor,
4145          * reclaim, and move routines that induce a kernel text fault if
4146          * invoked.
4147          */
4148         cp->cache_constructor = (int (*)(void *, void *, int))1;
4149         cp->cache_destructor = (void (*)(void *, void *))2;
4150         cp->cache_reclaim = (void (*)(void *))3;
4151         cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4;
4152         mutex_exit(&cp->cache_lock);
4153 
4154         kstat_delete(cp->cache_kstat);
4155 
4156         if (cp->cache_hash_table != NULL)
4157                 vmem_free(kmem_hash_arena, cp->cache_hash_table,
4158                     (cp->cache_hash_mask + 1) * sizeof (void *));
4159 
4160         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
4161                 mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
4162 
4163         mutex_destroy(&cp->cache_depot_lock);
4164         mutex_destroy(&cp->cache_lock);
4165 
4166         vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
4167 }
4168 
4169 /*ARGSUSED*/
4170 static int
4171 kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
4172 {
4173         ASSERT(MUTEX_HELD(&cpu_lock));
4174         if (what == CPU_UNCONFIG) {
4175                 kmem_cache_applyall(kmem_cache_magazine_purge,
4176                     kmem_taskq, TQ_SLEEP);
4177                 kmem_cache_applyall(kmem_cache_magazine_enable,
4178                     kmem_taskq, TQ_SLEEP);
4179         }
4180         return (0);
4181 }
4182 
4183 static void
4184 kmem_alloc_caches_create(const int *array, size_t count,
4185     kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift)
4186 {
4187         char name[KMEM_CACHE_NAMELEN + 1];
4188         size_t table_unit = (1 << shift); /* range of one alloc_table entry */
4189         size_t size = table_unit;
4190         int i;
4191 
4192         for (i = 0; i < count; i++) {
4193                 size_t cache_size = array[i];
4194                 size_t align = KMEM_ALIGN;
4195                 kmem_cache_t *cp;
4196 
4197                 /* if the table has an entry for maxbuf, we're done */
4198                 if (size > maxbuf)
4199                         break;
4200 
4201                 /* cache size must be a multiple of the table unit */
4202                 ASSERT(P2PHASE(cache_size, table_unit) == 0);
4203 
4204                 /*
4205                  * If they allocate a multiple of the coherency granularity,
4206                  * they get a coherency-granularity-aligned address.
4207                  */
4208                 if (IS_P2ALIGNED(cache_size, 64))
4209                         align = 64;
4210                 if (IS_P2ALIGNED(cache_size, PAGESIZE))
4211                         align = PAGESIZE;
4212                 (void) snprintf(name, sizeof (name),
4213                     "kmem_alloc_%lu", cache_size);
4214                 cp = kmem_cache_create(name, cache_size, align,
4215                     NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
4216 
4217                 while (size <= cache_size) {
4218                         alloc_table[(size - 1) >> shift] = cp;
4219                         size += table_unit;
4220                 }
4221         }
4222 
4223         ASSERT(size > maxbuf);               /* i.e. maxbuf <= max(cache_size) */
4224 }
4225 
4226 static void
4227 kmem_cache_init(int pass, int use_large_pages)
4228 {
4229         int i;
4230         size_t maxbuf;
4231         kmem_magtype_t *mtp;
4232 
4233         for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
4234                 char name[KMEM_CACHE_NAMELEN + 1];
4235 
4236                 mtp = &kmem_magtype[i];
4237                 (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
4238                 mtp->mt_cache = kmem_cache_create(name,
4239                     (mtp->mt_magsize + 1) * sizeof (void *),
4240                     mtp->mt_align, NULL, NULL, NULL, NULL,
4241                     kmem_msb_arena, KMC_NOHASH);
4242         }
4243 
4244         kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
4245             sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
4246             kmem_msb_arena, KMC_NOHASH);
4247 
4248         kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
4249             sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
4250             kmem_msb_arena, KMC_NOHASH);
4251 
4252         kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
4253             sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
4254             kmem_msb_arena, KMC_NOHASH);
4255 
4256         if (pass == 2) {
4257                 kmem_va_arena = vmem_create("kmem_va",
4258                     NULL, 0, PAGESIZE,
4259                     vmem_alloc, vmem_free, heap_arena,
4260                     8 * PAGESIZE, VM_SLEEP);
4261 
4262                 if (use_large_pages) {
4263                         kmem_default_arena = vmem_xcreate("kmem_default",
4264                             NULL, 0, PAGESIZE,
4265                             segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
4266                             0, VMC_DUMPSAFE | VM_SLEEP);
4267                 } else {
4268                         kmem_default_arena = vmem_create("kmem_default",
4269                             NULL, 0, PAGESIZE,
4270                             segkmem_alloc, segkmem_free, kmem_va_arena,
4271                             0, VMC_DUMPSAFE | VM_SLEEP);
4272                 }
4273 
4274                 /* Figure out what our maximum cache size is */
4275                 maxbuf = kmem_max_cached;
4276                 if (maxbuf <= KMEM_MAXBUF) {
4277                         maxbuf = 0;
4278                         kmem_max_cached = KMEM_MAXBUF;
4279                 } else {
4280                         size_t size = 0;
4281                         size_t max =
4282                             sizeof (kmem_big_alloc_sizes) / sizeof (int);
4283                         /*
4284                          * Round maxbuf up to an existing cache size.  If maxbuf
4285                          * is larger than the largest cache, we truncate it to
4286                          * the largest cache's size.
4287                          */
4288                         for (i = 0; i < max; i++) {
4289                                 size = kmem_big_alloc_sizes[i];
4290                                 if (maxbuf <= size)
4291                                         break;
4292                         }
4293                         kmem_max_cached = maxbuf = size;
4294                 }
4295 
4296                 /*
4297                  * The big alloc table may not be completely overwritten, so
4298                  * we clear out any stale cache pointers from the first pass.
4299                  */
4300                 bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table));
4301         } else {
4302                 /*
4303                  * During the first pass, the kmem_alloc_* caches
4304                  * are treated as metadata.
4305                  */
4306                 kmem_default_arena = kmem_msb_arena;
4307                 maxbuf = KMEM_BIG_MAXBUF_32BIT;
4308         }
4309 
4310         /*
4311          * Set up the default caches to back kmem_alloc()
4312          */
4313         kmem_alloc_caches_create(
4314             kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int),
4315             kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT);
4316 
4317         kmem_alloc_caches_create(
4318             kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int),
4319             kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT);
4320 
4321         kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT;
4322 }
4323 
4324 void
4325 kmem_init(void)
4326 {
4327         kmem_cache_t *cp;
4328         int old_kmem_flags = kmem_flags;
4329         int use_large_pages = 0;
4330         size_t maxverify, minfirewall;
4331 
4332         kstat_init();
4333 
4334         /*
4335          * Don't do firewalled allocations if the heap is less than 1TB
4336          * (i.e. on a 32-bit kernel)
4337          * The resulting VM_NEXTFIT allocations would create too much
4338          * fragmentation in a small heap.
4339          */
4340 #if defined(_LP64)
4341         maxverify = minfirewall = PAGESIZE / 2;
4342 #else
4343         maxverify = minfirewall = ULONG_MAX;
4344 #endif
4345 
4346         /* LINTED */
4347         ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
4348 
4349         list_create(&kmem_caches, sizeof (kmem_cache_t),
4350             offsetof(kmem_cache_t, cache_link));
4351 
4352         kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
4353             vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
4354             VM_SLEEP | VMC_NO_QCACHE);
4355 
4356         kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
4357             PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
4358             VMC_DUMPSAFE | VM_SLEEP);
4359 
4360         kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
4361             segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4362 
4363         kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
4364             segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4365 
4366         kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
4367             segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4368 
4369         kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
4370             NULL, 0, PAGESIZE,
4371             kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
4372             0, VM_SLEEP);
4373 
4374         kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
4375             segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0,
4376             VMC_DUMPSAFE | VM_SLEEP);
4377 
4378         /* temporary oversize arena for mod_read_system_file */
4379         kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
4380             segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4381 
4382         kmem_reap_interval = 15 * hz;
4383 
4384         /*
4385          * Read /etc/system.  This is a chicken-and-egg problem because
4386          * kmem_flags may be set in /etc/system, but mod_read_system_file()
4387          * needs to use the allocator.  The simplest solution is to create
4388          * all the standard kmem caches, read /etc/system, destroy all the
4389          * caches we just created, and then create them all again in light
4390          * of the (possibly) new kmem_flags and other kmem tunables.
4391          */
4392         kmem_cache_init(1, 0);
4393 
4394         mod_read_system_file(boothowto & RB_ASKNAME);
4395 
4396         while ((cp = list_tail(&kmem_caches)) != NULL)
4397                 kmem_cache_destroy(cp);
4398 
4399         vmem_destroy(kmem_oversize_arena);
4400 
4401         if (old_kmem_flags & KMF_STICKY)
4402                 kmem_flags = old_kmem_flags;
4403 
4404         if (!(kmem_flags & KMF_AUDIT))
4405                 vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
4406 
4407         if (kmem_maxverify == 0)
4408                 kmem_maxverify = maxverify;
4409 
4410         if (kmem_minfirewall == 0)
4411                 kmem_minfirewall = minfirewall;
4412 
4413         /*
4414          * give segkmem a chance to figure out if we are using large pages
4415          * for the kernel heap
4416          */
4417         use_large_pages = segkmem_lpsetup();
4418 
4419         /*
4420          * To protect against corruption, we keep the actual number of callers
4421          * KMF_LITE records seperate from the tunable.  We arbitrarily clamp
4422          * to 16, since the overhead for small buffers quickly gets out of
4423          * hand.
4424          *
4425          * The real limit would depend on the needs of the largest KMC_NOHASH
4426          * cache.
4427          */
4428         kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
4429         kmem_lite_pcs = kmem_lite_count;
4430 
4431         /*
4432          * Normally, we firewall oversized allocations when possible, but
4433          * if we are using large pages for kernel memory, and we don't have
4434          * any non-LITE debugging flags set, we want to allocate oversized
4435          * buffers from large pages, and so skip the firewalling.
4436          */
4437         if (use_large_pages &&
4438             ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
4439                 kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
4440                     PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
4441                     0, VMC_DUMPSAFE | VM_SLEEP);
4442         } else {
4443                 kmem_oversize_arena = vmem_create("kmem_oversize",
4444                     NULL, 0, PAGESIZE,
4445                     segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
4446                     kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE |
4447                     VM_SLEEP);
4448         }
4449 
4450         kmem_cache_init(2, use_large_pages);
4451 
4452         if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
4453                 if (kmem_transaction_log_size == 0)
4454                         kmem_transaction_log_size = kmem_maxavail() / 50;
4455                 kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
4456         }
4457 
4458         if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
4459                 if (kmem_content_log_size == 0)
4460                         kmem_content_log_size = kmem_maxavail() / 50;
4461                 kmem_content_log = kmem_log_init(kmem_content_log_size);
4462         }
4463 
4464         kmem_failure_log = kmem_log_init(kmem_failure_log_size);
4465         kmem_slab_log = kmem_log_init(kmem_slab_log_size);
4466         kmem_zerosized_log = kmem_log_init(kmem_zerosized_log_size);
4467 
4468         /*
4469          * Initialize STREAMS message caches so allocb() is available.
4470          * This allows us to initialize the logging framework (cmn_err(9F),
4471          * strlog(9F), etc) so we can start recording messages.
4472          */
4473         streams_msg_init();
4474 
4475         /*
4476          * Initialize the ZSD framework in Zones so modules loaded henceforth
4477          * can register their callbacks.
4478          */
4479         zone_zsd_init();
4480 
4481         log_init();
4482         taskq_init();
4483 
4484         /*
4485          * Warn about invalid or dangerous values of kmem_flags.
4486          * Always warn about unsupported values.
4487          */
4488         if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
4489             KMF_CONTENTS | KMF_LITE)) != 0) ||
4490             ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
4491                 cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x.",
4492                     kmem_flags);
4493 
4494 #ifdef DEBUG
4495         if ((kmem_flags & KMF_DEBUG) == 0)
4496                 cmn_err(CE_NOTE, "kmem debugging disabled.");
4497 #else
4498         /*
4499          * For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
4500          * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
4501          * if KMF_AUDIT is set). We should warn the user about the performance
4502          * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
4503          * isn't set (since that disables AUDIT).
4504          */
4505         if (!(kmem_flags & KMF_LITE) &&
4506             (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
4507                 cmn_err(CE_WARN, "High-overhead kmem debugging features "
4508                     "enabled (kmem_flags = 0x%x).  Performance degradation "
4509                     "and large memory overhead possible.", kmem_flags);
4510 #endif /* not DEBUG */
4511 
4512         kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
4513 
4514         kmem_ready = 1;
4515 
4516         /*
4517          * Initialize the platform-specific aligned/DMA memory allocator.
4518          */
4519         ka_init();
4520 
4521         /*
4522          * Initialize 32-bit ID cache.
4523          */
4524         id32_init();
4525 
4526         /*
4527          * Initialize the networking stack so modules loaded can
4528          * register their callbacks.
4529          */
4530         netstack_init();
4531 }
4532 
4533 static void
4534 kmem_move_init(void)
4535 {
4536         kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache",
4537             sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL,
4538             kmem_msb_arena, KMC_NOHASH);
4539         kmem_move_cache = kmem_cache_create("kmem_move_cache",
4540             sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL,
4541             kmem_msb_arena, KMC_NOHASH);
4542 
4543         /*
4544          * kmem guarantees that move callbacks are sequential and that even
4545          * across multiple caches no two moves ever execute simultaneously.
4546          * Move callbacks are processed on a separate taskq so that client code
4547          * does not interfere with internal maintenance tasks.
4548          */
4549         kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1,
4550             minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE);
4551 }
4552 
4553 void
4554 kmem_thread_init(void)
4555 {
4556         kmem_move_init();
4557 
4558         /*
4559          * This taskq is used for various kmem maintenance functions, including
4560          * kmem_reap().   When maintenance is required on every cache,
4561          * kmem_cache_applyall() dispatches one task per cache onto this queue.
4562          *
4563          * In the case of kmem_reap(), the system may be under increasingly
4564          * dire memory pressure and may not be able to allocate a new task
4565          * entry.  The count of entries to prepopulate (below) should cover at
4566          * least as many caches as we generally expect to exist on the system
4567          * so that they may all be scheduled for reaping under those
4568          * conditions.
4569          */
4570         kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
4571             600, INT_MAX, TASKQ_PREPOPULATE);
4572 }
4573 
4574 void
4575 kmem_mp_init(void)
4576 {
4577         mutex_enter(&cpu_lock);
4578         register_cpu_setup_func(kmem_cpu_setup, NULL);
4579         mutex_exit(&cpu_lock);
4580 
4581         kmem_update_timeout(NULL);
4582 
4583         taskq_mp_init();
4584 }
4585 
4586 /*
4587  * Return the slab of the allocated buffer, or NULL if the buffer is not
4588  * allocated. This function may be called with a known slab address to determine
4589  * whether or not the buffer is allocated, or with a NULL slab address to obtain
4590  * an allocated buffer's slab.
4591  */
4592 static kmem_slab_t *
4593 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf)
4594 {
4595         kmem_bufctl_t *bcp, *bufbcp;
4596 
4597         ASSERT(MUTEX_HELD(&cp->cache_lock));
4598         ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf));
4599 
4600         if (cp->cache_flags & KMF_HASH) {
4601                 for (bcp = *KMEM_HASH(cp, buf);
4602                     (bcp != NULL) && (bcp->bc_addr != buf);
4603                     bcp = bcp->bc_next) {
4604                         continue;
4605                 }
4606                 ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1);
4607                 return (bcp == NULL ? NULL : bcp->bc_slab);
4608         }
4609 
4610         if (sp == NULL) {
4611                 sp = KMEM_SLAB(cp, buf);
4612         }
4613         bufbcp = KMEM_BUFCTL(cp, buf);
4614         for (bcp = sp->slab_head;
4615             (bcp != NULL) && (bcp != bufbcp);
4616             bcp = bcp->bc_next) {
4617                 continue;
4618         }
4619         return (bcp == NULL ? sp : NULL);
4620 }
4621 
4622 static boolean_t
4623 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags)
4624 {
4625         long refcnt = sp->slab_refcnt;
4626 
4627         ASSERT(cp->cache_defrag != NULL);
4628 
4629         /*
4630          * For code coverage we want to be able to move an object within the
4631          * same slab (the only partial slab) even if allocating the destination
4632          * buffer resulted in a completely allocated slab.
4633          */
4634         if (flags & KMM_DEBUG) {
4635                 return ((flags & KMM_DESPERATE) ||
4636                     ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0));
4637         }
4638 
4639         /* If we're desperate, we don't care if the client said NO. */
4640         if (flags & KMM_DESPERATE) {
4641                 return (refcnt < sp->slab_chunks); /* any partial */
4642         }
4643 
4644         if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4645                 return (B_FALSE);
4646         }
4647 
4648         if ((refcnt == 1) || kmem_move_any_partial) {
4649                 return (refcnt < sp->slab_chunks);
4650         }
4651 
4652         /*
4653          * The reclaim threshold is adjusted at each kmem_cache_scan() so that
4654          * slabs with a progressively higher percentage of used buffers can be
4655          * reclaimed until the cache as a whole is no longer fragmented.
4656          *
4657          *      sp->slab_refcnt   kmd_reclaim_numer
4658          *      --------------- < ------------------
4659          *      sp->slab_chunks   KMEM_VOID_FRACTION
4660          */
4661         return ((refcnt * KMEM_VOID_FRACTION) <
4662             (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer));
4663 }
4664 
4665 /*
4666  * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(),
4667  * or when the buffer is freed.
4668  */
4669 static void
4670 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4671 {
4672         ASSERT(MUTEX_HELD(&cp->cache_lock));
4673         ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4674 
4675         if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4676                 return;
4677         }
4678 
4679         if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4680                 if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) {
4681                         avl_remove(&cp->cache_partial_slabs, sp);
4682                         sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
4683                         sp->slab_stuck_offset = (uint32_t)-1;
4684                         avl_add(&cp->cache_partial_slabs, sp);
4685                 }
4686         } else {
4687                 sp->slab_later_count = 0;
4688                 sp->slab_stuck_offset = (uint32_t)-1;
4689         }
4690 }
4691 
4692 static void
4693 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4694 {
4695         ASSERT(taskq_member(kmem_move_taskq, curthread));
4696         ASSERT(MUTEX_HELD(&cp->cache_lock));
4697         ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4698 
4699         if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4700                 return;
4701         }
4702 
4703         avl_remove(&cp->cache_partial_slabs, sp);
4704         sp->slab_later_count = 0;
4705         sp->slab_flags |= KMEM_SLAB_NOMOVE;
4706         sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf);
4707         avl_add(&cp->cache_partial_slabs, sp);
4708 }
4709 
4710 static void kmem_move_end(kmem_cache_t *, kmem_move_t *);
4711 
4712 /*
4713  * The move callback takes two buffer addresses, the buffer to be moved, and a
4714  * newly allocated and constructed buffer selected by kmem as the destination.
4715  * It also takes the size of the buffer and an optional user argument specified
4716  * at cache creation time. kmem guarantees that the buffer to be moved has not
4717  * been unmapped by the virtual memory subsystem. Beyond that, it cannot
4718  * guarantee the present whereabouts of the buffer to be moved, so it is up to
4719  * the client to safely determine whether or not it is still using the buffer.
4720  * The client must not free either of the buffers passed to the move callback,
4721  * since kmem wants to free them directly to the slab layer. The client response
4722  * tells kmem which of the two buffers to free:
4723  *
4724  * YES          kmem frees the old buffer (the move was successful)
4725  * NO           kmem frees the new buffer, marks the slab of the old buffer
4726  *              non-reclaimable to avoid bothering the client again
4727  * LATER        kmem frees the new buffer, increments slab_later_count
4728  * DONT_KNOW    kmem frees the new buffer
4729  * DONT_NEED    kmem frees both the old buffer and the new buffer
4730  *
4731  * The pending callback argument now being processed contains both of the
4732  * buffers (old and new) passed to the move callback function, the slab of the
4733  * old buffer, and flags related to the move request, such as whether or not the
4734  * system was desperate for memory.
4735  *
4736  * Slabs are not freed while there is a pending callback, but instead are kept
4737  * on a deadlist, which is drained after the last callback completes. This means
4738  * that slabs are safe to access until kmem_move_end(), no matter how many of
4739  * their buffers have been freed. Once slab_refcnt reaches zero, it stays at
4740  * zero for as long as the slab remains on the deadlist and until the slab is
4741  * freed.
4742  */
4743 static void
4744 kmem_move_buffer(kmem_move_t *callback)
4745 {
4746         kmem_cbrc_t response;
4747         kmem_slab_t *sp = callback->kmm_from_slab;
4748         kmem_cache_t *cp = sp->slab_cache;
4749         boolean_t free_on_slab;
4750 
4751         ASSERT(taskq_member(kmem_move_taskq, curthread));
4752         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4753         ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf));
4754 
4755         /*
4756          * The number of allocated buffers on the slab may have changed since we
4757          * last checked the slab's reclaimability (when the pending move was
4758          * enqueued), or the client may have responded NO when asked to move
4759          * another buffer on the same slab.
4760          */
4761         if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) {
4762                 kmem_slab_free(cp, callback->kmm_to_buf);
4763                 kmem_move_end(cp, callback);
4764                 return;
4765         }
4766 
4767         /*
4768          * Checking the slab layer is easy, so we might as well do that here
4769          * in case we can avoid bothering the client.
4770          */
4771         mutex_enter(&cp->cache_lock);
4772         free_on_slab = (kmem_slab_allocated(cp, sp,
4773             callback->kmm_from_buf) == NULL);
4774         mutex_exit(&cp->cache_lock);
4775 
4776         if (free_on_slab) {
4777                 kmem_slab_free(cp, callback->kmm_to_buf);
4778                 kmem_move_end(cp, callback);
4779                 return;
4780         }
4781 
4782         if (cp->cache_flags & KMF_BUFTAG) {
4783                 /*
4784                  * Make kmem_cache_alloc_debug() apply the constructor for us.
4785                  */
4786                 if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf,
4787                     KM_NOSLEEP, 1, caller()) != 0) {
4788                         kmem_move_end(cp, callback);
4789                         return;
4790                 }
4791         } else if (cp->cache_constructor != NULL &&
4792             cp->cache_constructor(callback->kmm_to_buf, cp->cache_private,
4793             KM_NOSLEEP) != 0) {
4794                 atomic_inc_64(&cp->cache_alloc_fail);
4795                 kmem_slab_free(cp, callback->kmm_to_buf);
4796                 kmem_move_end(cp, callback);
4797                 return;
4798         }
4799 
4800         cp->cache_defrag->kmd_callbacks++;
4801         cp->cache_defrag->kmd_thread = curthread;
4802         cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf;
4803         cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf;
4804         DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *,
4805             callback);
4806 
4807         response = cp->cache_move(callback->kmm_from_buf,
4808             callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private);
4809 
4810         DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *,
4811             callback, kmem_cbrc_t, response);
4812         cp->cache_defrag->kmd_thread = NULL;
4813         cp->cache_defrag->kmd_from_buf = NULL;
4814         cp->cache_defrag->kmd_to_buf = NULL;
4815 
4816         if (response == KMEM_CBRC_YES) {
4817                 cp->cache_defrag->kmd_yes++;
4818                 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4819                 /* slab safe to access until kmem_move_end() */
4820                 if (sp->slab_refcnt == 0)
4821                         cp->cache_defrag->kmd_slabs_freed++;
4822                 mutex_enter(&cp->cache_lock);
4823                 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4824                 mutex_exit(&cp->cache_lock);
4825                 kmem_move_end(cp, callback);
4826                 return;
4827         }
4828 
4829         switch (response) {
4830         case KMEM_CBRC_NO:
4831                 cp->cache_defrag->kmd_no++;
4832                 mutex_enter(&cp->cache_lock);
4833                 kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4834                 mutex_exit(&cp->cache_lock);
4835                 break;
4836         case KMEM_CBRC_LATER:
4837                 cp->cache_defrag->kmd_later++;
4838                 mutex_enter(&cp->cache_lock);
4839                 if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4840                         mutex_exit(&cp->cache_lock);
4841                         break;
4842                 }
4843 
4844                 if (++sp->slab_later_count >= KMEM_DISBELIEF) {
4845                         kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4846                 } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) {
4847                         sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp,
4848                             callback->kmm_from_buf);
4849                 }
4850                 mutex_exit(&cp->cache_lock);
4851                 break;
4852         case KMEM_CBRC_DONT_NEED:
4853                 cp->cache_defrag->kmd_dont_need++;
4854                 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4855                 if (sp->slab_refcnt == 0)
4856                         cp->cache_defrag->kmd_slabs_freed++;
4857                 mutex_enter(&cp->cache_lock);
4858                 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4859                 mutex_exit(&cp->cache_lock);
4860                 break;
4861         case KMEM_CBRC_DONT_KNOW:
4862                 /*
4863                  * If we don't know if we can move this buffer or not, we'll
4864                  * just assume that we can't:  if the buffer is in fact free,
4865                  * then it is sitting in one of the per-CPU magazines or in
4866                  * a full magazine in the depot layer.  Either way, because
4867                  * defrag is induced in the same logic that reaps a cache,
4868                  * it's likely that full magazines will be returned to the
4869                  * system soon (thereby accomplishing what we're trying to
4870                  * accomplish here: return those magazines to their slabs).
4871                  * Given this, any work that we might do now to locate a buffer
4872                  * in a magazine is wasted (and expensive!) work; we bump
4873                  * a counter in this case and otherwise assume that we can't
4874                  * move it.
4875                  */
4876                 cp->cache_defrag->kmd_dont_know++;
4877                 break;
4878         default:
4879                 panic("'%s' (%p) unexpected move callback response %d\n",
4880                     cp->cache_name, (void *)cp, response);
4881         }
4882 
4883         kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE);
4884         kmem_move_end(cp, callback);
4885 }
4886 
4887 /* Return B_FALSE if there is insufficient memory for the move request. */
4888 static boolean_t
4889 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags)
4890 {
4891         void *to_buf;
4892         avl_index_t index;
4893         kmem_move_t *callback, *pending;
4894         ulong_t n;
4895 
4896         ASSERT(taskq_member(kmem_taskq, curthread));
4897         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4898         ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4899 
4900         callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP);
4901 
4902         if (callback == NULL)
4903                 return (B_FALSE);
4904 
4905         callback->kmm_from_slab = sp;
4906         callback->kmm_from_buf = buf;
4907         callback->kmm_flags = flags;
4908 
4909         mutex_enter(&cp->cache_lock);
4910 
4911         n = avl_numnodes(&cp->cache_partial_slabs);
4912         if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) {
4913                 mutex_exit(&cp->cache_lock);
4914                 kmem_cache_free(kmem_move_cache, callback);
4915                 return (B_TRUE); /* there is no need for the move request */
4916         }
4917 
4918         pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index);
4919         if (pending != NULL) {
4920                 /*
4921                  * If the move is already pending and we're desperate now,
4922                  * update the move flags.
4923                  */
4924                 if (flags & KMM_DESPERATE) {
4925                         pending->kmm_flags |= KMM_DESPERATE;
4926                 }
4927                 mutex_exit(&cp->cache_lock);
4928                 kmem_cache_free(kmem_move_cache, callback);
4929                 return (B_TRUE);
4930         }
4931 
4932         to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs),
4933             B_FALSE);
4934         callback->kmm_to_buf = to_buf;
4935         avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index);
4936 
4937         mutex_exit(&cp->cache_lock);
4938 
4939         if (taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer,
4940             callback, TQ_NOSLEEP) == TASKQID_INVALID) {
4941                 mutex_enter(&cp->cache_lock);
4942                 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4943                 mutex_exit(&cp->cache_lock);
4944                 kmem_slab_free(cp, to_buf);
4945                 kmem_cache_free(kmem_move_cache, callback);
4946                 return (B_FALSE);
4947         }
4948 
4949         return (B_TRUE);
4950 }
4951 
4952 static void
4953 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback)
4954 {
4955         avl_index_t index;
4956 
4957         ASSERT(cp->cache_defrag != NULL);
4958         ASSERT(taskq_member(kmem_move_taskq, curthread));
4959         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4960 
4961         mutex_enter(&cp->cache_lock);
4962         VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending,
4963             callback->kmm_from_buf, &index) != NULL);
4964         avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4965         if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) {
4966                 list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
4967                 kmem_slab_t *sp;
4968 
4969                 /*
4970                  * The last pending move completed. Release all slabs from the
4971                  * front of the dead list except for any slab at the tail that
4972                  * needs to be released from the context of kmem_move_buffers().
4973                  * kmem deferred unmapping the buffers on these slabs in order
4974                  * to guarantee that buffers passed to the move callback have
4975                  * been touched only by kmem or by the client itself.
4976                  */
4977                 while ((sp = list_remove_head(deadlist)) != NULL) {
4978                         if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
4979                                 list_insert_tail(deadlist, sp);
4980                                 break;
4981                         }
4982                         cp->cache_defrag->kmd_deadcount--;
4983                         cp->cache_slab_destroy++;
4984                         mutex_exit(&cp->cache_lock);
4985                         kmem_slab_destroy(cp, sp);
4986                         mutex_enter(&cp->cache_lock);
4987                 }
4988         }
4989         mutex_exit(&cp->cache_lock);
4990         kmem_cache_free(kmem_move_cache, callback);
4991 }
4992 
4993 /*
4994  * Move buffers from least used slabs first by scanning backwards from the end
4995  * of the partial slab list. Scan at most max_scan candidate slabs and move
4996  * buffers from at most max_slabs slabs (0 for all partial slabs in both cases).
4997  * If desperate to reclaim memory, move buffers from any partial slab, otherwise
4998  * skip slabs with a ratio of allocated buffers at or above the current
4999  * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the
5000  * scan is aborted) so that the caller can adjust the reclaimability threshold
5001  * depending on how many reclaimable slabs it finds.
5002  *
5003  * kmem_move_buffers() drops and reacquires cache_lock every time it issues a
5004  * move request, since it is not valid for kmem_move_begin() to call
5005  * kmem_cache_alloc() or taskq_dispatch() with cache_lock held.
5006  */
5007 static int
5008 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs,
5009     int flags)
5010 {
5011         kmem_slab_t *sp;
5012         void *buf;
5013         int i, j; /* slab index, buffer index */
5014         int s; /* reclaimable slabs */
5015         int b; /* allocated (movable) buffers on reclaimable slab */
5016         boolean_t success;
5017         int refcnt;
5018         int nomove;
5019 
5020         ASSERT(taskq_member(kmem_taskq, curthread));
5021         ASSERT(MUTEX_HELD(&cp->cache_lock));
5022         ASSERT(kmem_move_cache != NULL);
5023         ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL);
5024         ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) :
5025             avl_numnodes(&cp->cache_partial_slabs) > 1);
5026 
5027         if (kmem_move_blocked) {
5028                 return (0);
5029         }
5030 
5031         if (kmem_move_fulltilt) {
5032                 flags |= KMM_DESPERATE;
5033         }
5034 
5035         if (max_scan == 0 || (flags & KMM_DESPERATE)) {
5036                 /*
5037                  * Scan as many slabs as needed to find the desired number of
5038                  * candidate slabs.
5039                  */
5040                 max_scan = (size_t)-1;
5041         }
5042 
5043         if (max_slabs == 0 || (flags & KMM_DESPERATE)) {
5044                 /* Find as many candidate slabs as possible. */
5045                 max_slabs = (size_t)-1;
5046         }
5047 
5048         sp = avl_last(&cp->cache_partial_slabs);
5049         ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
5050         for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) &&
5051             ((sp != avl_first(&cp->cache_partial_slabs)) ||
5052             (flags & KMM_DEBUG));
5053             sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) {
5054 
5055                 if (!kmem_slab_is_reclaimable(cp, sp, flags)) {
5056                         continue;
5057                 }
5058                 s++;
5059 
5060                 /* Look for allocated buffers to move. */
5061                 for (j = 0, b = 0, buf = sp->slab_base;
5062                     (j < sp->slab_chunks) && (b < sp->slab_refcnt);
5063                     buf = (((char *)buf) + cp->cache_chunksize), j++) {
5064 
5065                         if (kmem_slab_allocated(cp, sp, buf) == NULL) {
5066                                 continue;
5067                         }
5068 
5069                         b++;
5070 
5071                         /*
5072                          * Prevent the slab from being destroyed while we drop
5073                          * cache_lock and while the pending move is not yet
5074                          * registered. Flag the pending move while
5075                          * kmd_moves_pending may still be empty, since we can't
5076                          * yet rely on a non-zero pending move count to prevent
5077                          * the slab from being destroyed.
5078                          */
5079                         ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5080                         sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5081                         /*
5082                          * Recheck refcnt and nomove after reacquiring the lock,
5083                          * since these control the order of partial slabs, and
5084                          * we want to know if we can pick up the scan where we
5085                          * left off.
5086                          */
5087                         refcnt = sp->slab_refcnt;
5088                         nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
5089                         mutex_exit(&cp->cache_lock);
5090 
5091                         success = kmem_move_begin(cp, sp, buf, flags);
5092 
5093                         /*
5094                          * Now, before the lock is reacquired, kmem could
5095                          * process all pending move requests and purge the
5096                          * deadlist, so that upon reacquiring the lock, sp has
5097                          * been remapped. Or, the client may free all the
5098                          * objects on the slab while the pending moves are still
5099                          * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING
5100                          * flag causes the slab to be put at the end of the
5101                          * deadlist and prevents it from being destroyed, since
5102                          * we plan to destroy it here after reacquiring the
5103                          * lock.
5104                          */
5105                         mutex_enter(&cp->cache_lock);
5106                         ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5107                         sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5108 
5109                         if (sp->slab_refcnt == 0) {
5110                                 list_t *deadlist =
5111                                     &cp->cache_defrag->kmd_deadlist;
5112                                 list_remove(deadlist, sp);
5113 
5114                                 if (!avl_is_empty(
5115                                     &cp->cache_defrag->kmd_moves_pending)) {
5116                                         /*
5117                                          * A pending move makes it unsafe to
5118                                          * destroy the slab, because even though
5119                                          * the move is no longer needed, the
5120                                          * context where that is determined
5121                                          * requires the slab to exist.
5122                                          * Fortunately, a pending move also
5123                                          * means we don't need to destroy the
5124                                          * slab here, since it will get
5125                                          * destroyed along with any other slabs
5126                                          * on the deadlist after the last
5127                                          * pending move completes.
5128                                          */
5129                                         list_insert_head(deadlist, sp);
5130                                         return (-1);
5131                                 }
5132 
5133                                 /*
5134                                  * Destroy the slab now if it was completely
5135                                  * freed while we dropped cache_lock and there
5136                                  * are no pending moves. Since slab_refcnt
5137                                  * cannot change once it reaches zero, no new
5138                                  * pending moves from that slab are possible.
5139                                  */
5140                                 cp->cache_defrag->kmd_deadcount--;
5141                                 cp->cache_slab_destroy++;
5142                                 mutex_exit(&cp->cache_lock);
5143                                 kmem_slab_destroy(cp, sp);
5144                                 mutex_enter(&cp->cache_lock);
5145                                 /*
5146                                  * Since we can't pick up the scan where we left
5147                                  * off, abort the scan and say nothing about the
5148                                  * number of reclaimable slabs.
5149                                  */
5150                                 return (-1);
5151                         }
5152 
5153                         if (!success) {
5154                                 /*
5155                                  * Abort the scan if there is not enough memory
5156                                  * for the request and say nothing about the
5157                                  * number of reclaimable slabs.
5158                                  */
5159                                 return (-1);
5160                         }
5161 
5162                         /*
5163                          * The slab's position changed while the lock was
5164                          * dropped, so we don't know where we are in the
5165                          * sequence any more.
5166                          */
5167                         if (sp->slab_refcnt != refcnt) {
5168                                 /*
5169                                  * If this is a KMM_DEBUG move, the slab_refcnt
5170                                  * may have changed because we allocated a
5171                                  * destination buffer on the same slab. In that
5172                                  * case, we're not interested in counting it.
5173                                  */
5174                                 return (-1);
5175                         }
5176                         if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove)
5177                                 return (-1);
5178 
5179                         /*
5180                          * Generating a move request allocates a destination
5181                          * buffer from the slab layer, bumping the first partial
5182                          * slab if it is completely allocated. If the current
5183                          * slab becomes the first partial slab as a result, we
5184                          * can't continue to scan backwards.
5185                          *
5186                          * If this is a KMM_DEBUG move and we allocated the
5187                          * destination buffer from the last partial slab, then
5188                          * the buffer we're moving is on the same slab and our
5189                          * slab_refcnt has changed, causing us to return before
5190                          * reaching here if there are no partial slabs left.
5191                          */
5192                         ASSERT(!avl_is_empty(&cp->cache_partial_slabs));
5193                         if (sp == avl_first(&cp->cache_partial_slabs)) {
5194                                 /*
5195                                  * We're not interested in a second KMM_DEBUG
5196                                  * move.
5197                                  */
5198                                 goto end_scan;
5199                         }
5200                 }
5201         }
5202 end_scan:
5203 
5204         return (s);
5205 }
5206 
5207 typedef struct kmem_move_notify_args {
5208         kmem_cache_t *kmna_cache;
5209         void *kmna_buf;
5210 } kmem_move_notify_args_t;
5211 
5212 static void
5213 kmem_cache_move_notify_task(void *arg)
5214 {
5215         kmem_move_notify_args_t *args = arg;
5216         kmem_cache_t *cp = args->kmna_cache;
5217         void *buf = args->kmna_buf;
5218         kmem_slab_t *sp;
5219 
5220         ASSERT(taskq_member(kmem_taskq, curthread));
5221         ASSERT(list_link_active(&cp->cache_link));
5222 
5223         kmem_free(args, sizeof (kmem_move_notify_args_t));
5224         mutex_enter(&cp->cache_lock);
5225         sp = kmem_slab_allocated(cp, NULL, buf);
5226 
5227         /* Ignore the notification if the buffer is no longer allocated. */
5228         if (sp == NULL) {
5229                 mutex_exit(&cp->cache_lock);
5230                 return;
5231         }
5232 
5233         /* Ignore the notification if there's no reason to move the buffer. */
5234         if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5235                 /*
5236                  * So far the notification is not ignored. Ignore the
5237                  * notification if the slab is not marked by an earlier refusal
5238                  * to move a buffer.
5239                  */
5240                 if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) &&
5241                     (sp->slab_later_count == 0)) {
5242                         mutex_exit(&cp->cache_lock);
5243                         return;
5244                 }
5245 
5246                 kmem_slab_move_yes(cp, sp, buf);
5247                 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5248                 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5249                 mutex_exit(&cp->cache_lock);
5250                 /* see kmem_move_buffers() about dropping the lock */
5251                 (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY);
5252                 mutex_enter(&cp->cache_lock);
5253                 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5254                 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5255                 if (sp->slab_refcnt == 0) {
5256                         list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
5257                         list_remove(deadlist, sp);
5258 
5259                         if (!avl_is_empty(
5260                             &cp->cache_defrag->kmd_moves_pending)) {
5261                                 list_insert_head(deadlist, sp);
5262                                 mutex_exit(&cp->cache_lock);
5263                                 return;
5264                         }
5265 
5266                         cp->cache_defrag->kmd_deadcount--;
5267                         cp->cache_slab_destroy++;
5268                         mutex_exit(&cp->cache_lock);
5269                         kmem_slab_destroy(cp, sp);
5270                         return;
5271                 }
5272         } else {
5273                 kmem_slab_move_yes(cp, sp, buf);
5274         }
5275         mutex_exit(&cp->cache_lock);
5276 }
5277 
5278 void
5279 kmem_cache_move_notify(kmem_cache_t *cp, void *buf)
5280 {
5281         kmem_move_notify_args_t *args;
5282 
5283         args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP);
5284         if (args != NULL) {
5285                 args->kmna_cache = cp;
5286                 args->kmna_buf = buf;
5287                 if (taskq_dispatch(kmem_taskq,
5288                     (task_func_t *)kmem_cache_move_notify_task, args,
5289                     TQ_NOSLEEP) == TASKQID_INVALID)
5290                         kmem_free(args, sizeof (kmem_move_notify_args_t));
5291         }
5292 }
5293 
5294 static void
5295 kmem_cache_defrag(kmem_cache_t *cp)
5296 {
5297         size_t n;
5298 
5299         ASSERT(cp->cache_defrag != NULL);
5300 
5301         mutex_enter(&cp->cache_lock);
5302         n = avl_numnodes(&cp->cache_partial_slabs);
5303         if (n > 1) {
5304                 /* kmem_move_buffers() drops and reacquires cache_lock */
5305                 cp->cache_defrag->kmd_defrags++;
5306                 (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE);
5307         }
5308         mutex_exit(&cp->cache_lock);
5309 }
5310 
5311 /* Is this cache above the fragmentation threshold? */
5312 static boolean_t
5313 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree)
5314 {
5315         /*
5316          *      nfree           kmem_frag_numer
5317          * ------------------ > ---------------
5318          * cp->cache_buftotal        kmem_frag_denom
5319          */
5320         return ((nfree * kmem_frag_denom) >
5321             (cp->cache_buftotal * kmem_frag_numer));
5322 }
5323 
5324 static boolean_t
5325 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap)
5326 {
5327         boolean_t fragmented;
5328         uint64_t nfree;
5329 
5330         ASSERT(MUTEX_HELD(&cp->cache_lock));
5331         *doreap = B_FALSE;
5332 
5333         if (kmem_move_fulltilt) {
5334                 if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5335                         return (B_TRUE);
5336                 }
5337         } else {
5338                 if ((cp->cache_complete_slab_count + avl_numnodes(
5339                     &cp->cache_partial_slabs)) < kmem_frag_minslabs) {
5340                         return (B_FALSE);
5341                 }
5342         }
5343 
5344         nfree = cp->cache_bufslab;
5345         fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) &&
5346             kmem_cache_frag_threshold(cp, nfree));
5347 
5348         /*
5349          * Free buffers in the magazine layer appear allocated from the point of
5350          * view of the slab layer. We want to know if the slab layer would
5351          * appear fragmented if we included free buffers from magazines that
5352          * have fallen out of the working set.
5353          */
5354         if (!fragmented) {
5355                 long reap;
5356 
5357                 mutex_enter(&cp->cache_depot_lock);
5358                 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
5359                 reap = MIN(reap, cp->cache_full.ml_total);
5360                 mutex_exit(&cp->cache_depot_lock);
5361 
5362                 nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
5363                 if (kmem_cache_frag_threshold(cp, nfree)) {
5364                         *doreap = B_TRUE;
5365                 }
5366         }
5367 
5368         return (fragmented);
5369 }
5370 
5371 /* Called periodically from kmem_taskq */
5372 static void
5373 kmem_cache_scan(kmem_cache_t *cp)
5374 {
5375         boolean_t reap = B_FALSE;
5376         kmem_defrag_t *kmd;
5377 
5378         ASSERT(taskq_member(kmem_taskq, curthread));
5379 
5380         mutex_enter(&cp->cache_lock);
5381 
5382         kmd = cp->cache_defrag;
5383         if (kmd->kmd_consolidate > 0) {
5384                 kmd->kmd_consolidate--;
5385                 mutex_exit(&cp->cache_lock);
5386                 kmem_cache_reap(cp);
5387                 return;
5388         }
5389 
5390         if (kmem_cache_is_fragmented(cp, &reap)) {
5391                 int slabs_found;
5392 
5393                 /*
5394                  * Consolidate reclaimable slabs from the end of the partial
5395                  * slab list (scan at most kmem_reclaim_scan_range slabs to find
5396                  * reclaimable slabs). Keep track of how many candidate slabs we
5397                  * looked for and how many we actually found so we can adjust
5398                  * the definition of a candidate slab if we're having trouble
5399                  * finding them.
5400                  *
5401                  * kmem_move_buffers() drops and reacquires cache_lock.
5402                  */
5403                 kmd->kmd_scans++;
5404                 slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range,
5405                     kmem_reclaim_max_slabs, 0);
5406                 if (slabs_found >= 0) {
5407                         kmd->kmd_slabs_sought += kmem_reclaim_max_slabs;
5408                         kmd->kmd_slabs_found += slabs_found;
5409                 }
5410 
5411                 if (++kmd->kmd_tries >= kmem_reclaim_scan_range) {
5412                         kmd->kmd_tries = 0;
5413 
5414                         /*
5415                          * If we had difficulty finding candidate slabs in
5416                          * previous scans, adjust the threshold so that
5417                          * candidates are easier to find.
5418                          */
5419                         if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) {
5420                                 kmem_adjust_reclaim_threshold(kmd, -1);
5421                         } else if ((kmd->kmd_slabs_found * 2) <
5422                             kmd->kmd_slabs_sought) {
5423                                 kmem_adjust_reclaim_threshold(kmd, 1);
5424                         }
5425                         kmd->kmd_slabs_sought = 0;
5426                         kmd->kmd_slabs_found = 0;
5427                 }
5428         } else {
5429                 kmem_reset_reclaim_threshold(cp->cache_defrag);
5430 #ifdef  DEBUG
5431                 if (!avl_is_empty(&cp->cache_partial_slabs)) {
5432                         /*
5433                          * In a debug kernel we want the consolidator to
5434                          * run occasionally even when there is plenty of
5435                          * memory.
5436                          */
5437                         uint16_t debug_rand;
5438 
5439                         (void) random_get_bytes((uint8_t *)&debug_rand, 2);
5440                         if (!kmem_move_noreap &&
5441                             ((debug_rand % kmem_mtb_reap) == 0)) {
5442                                 mutex_exit(&cp->cache_lock);
5443                                 kmem_cache_reap(cp);
5444                                 return;
5445                         } else if ((debug_rand % kmem_mtb_move) == 0) {
5446                                 kmd->kmd_scans++;
5447                                 (void) kmem_move_buffers(cp,
5448                                     kmem_reclaim_scan_range, 1, KMM_DEBUG);
5449                         }
5450                 }
5451 #endif  /* DEBUG */
5452         }
5453 
5454         mutex_exit(&cp->cache_lock);
5455 
5456         if (reap)
5457                 kmem_depot_ws_reap(cp);
5458 }