1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */
11
12 /*
13 * Copyright 2018, Joyent, Inc.
14 */
15
16 /*
17 * This plugin implements the SDC VXLAN Protocol (SVP).
18 *
19 * This plugin is designed to work with a broader distributed system that
20 * mainains a database of mappings and provides a means of looking up data and
21 * provides a stream of updates. While it is named after VXLAN, there isn't
22 * anything specific to VXLAN baked into the protocol at this time, other than
23 * that it requires both an IP address and a port; however, if there's a good
24 * reason to support others here, we can modify that.
25 *
26 * -----------
27 * Terminology
28 * -----------
29 *
30 * Throughout this module we refer to a few different kinds of addresses:
31 *
32 * VL3
33 *
34 * A VL3 address, or virtual layer 3, refers to the layer three addreses
35 * that are used by entities on an overlay network. As far as we're
36 * concerned that means that this is the IP address of an interface on an
37 * overlay network.
38 *
39 * VL2
40 *
41 * A VL2 address, or a virtual layer 2, referes to the link-layer addresses
42 * that are used by entities on an overlay network. As far as we're
43 * concerned that means that this is the MAC addresses of an interface on
44 * an overlay network.
45 *
46 * UL3
47 *
48 * A UL3, or underlay layer 3, refers to the layer three (IP) address on
49 * the underlay network.
50 *
51 * The svp plugin provides lookups from VL3->VL2, eg. the equivalent of an ARP
52 * or NDP query, and then also provides VL2->UL3 lookups.
53 *
54 * -------------------
55 * Protocol Operations
56 * -------------------
57 *
58 * The svp protocol is defined in lib/varpd/svp/common/libvarpd_svp_prot.h. It
59 * defines the basic TCP protocol that we use to communicate to hosts. At this
60 * time, it is not quite 100% implemented in both this plug-in and our primary
61 * server, sdc-portolan (see https://github.com/joyent/sdc-portolan).
62 *
63 * At this time, we don't quite support everything that we need to. Including
64 * the SVP_R_BULK_REQ and SVP_R_SHOOTDOWN.
65 *
66 * ---------------------------------
67 * General Design and Considerations
68 * ---------------------------------
69 *
70 * Every instance of the svp plugin requires the hostname and port of a server
71 * to contact. Though, we have co-opted the port 1296 (the year of the oldest
72 * extant portolan) as our default port.
73 *
74 * Each of the different instance of the plugins has a corresponding remote
75 * backend. The remote backend represents the tuple of the [ host, port ].
76 * Different instances that share the same host and port tuple will use the same
77 * backend.
78 *
79 * The backend is actually in charge of performing lookups, resolving and
80 * updating the set of remote hosts based on the DNS resolution we've been
81 * provided, and taking care of things like shootdowns.
82 *
83 * The whole plugin itself maintains an event loop and a number of threads to
84 * service that event loop. On top of that event loop, we have a simple timer
85 * backend that ticks at one second intervals and performs various callbacks,
86 * such as idle query timers, DNS resolution, connection backoff, etc. Each of
87 * the remote hosts that we obtain is wrapped up in an svp_conn_t, which manages
88 * the connection state, reconnecting, etc.
89 *
90 * All in all, the general way that this all looks like is:
91 *
92 * +----------------------------+
93 * | Plugin Instance |
94 * | svp_t |
95 * | |
96 * | varpd_provider_handle_t * -+-> varpd handle
97 * | uint64_t ----+-> varpd ID
98 * | char * ----+-> remote host
99 * | uint16_t ----+-> remote port
100 * | svp_remote_t * ---+------+-> remote backend
101 * +---------------------+------+
102 * |
103 * v
104 * +----------------------+ +----------------+
105 * | Remote backend |------------------>| Remove Backend |---> ...
106 * | svp_remote_t | | svp_remote_t |
107 * | | +----------------+
108 * | svp_remote_state_t --+-> state flags
109 * | svp_degrade_state_t -+-> degraded reason
110 * | struct addrinfo * --+-> resolved hosts
111 * | uint_t ---+-> active hosts
112 * | uint_t ---+-> DNS generation
113 * | uint_t ---+-> Reference count
114 * | uint_t ---+-> active conns
115 * | uint_t ---+-> degraded conns
116 * | list_t ---+---+-> connection list
117 * +------------------+---+
118 * |
119 * +------------------------------+-----------------+
120 * | | |
121 * v v v
122 * +-------------------+ +----------------
123 * | SVP Connection | | SVP connection | ...
124 * | svp_conn_t | | svp_conn_t |
125 * | | +----------------+
126 * | svp_event_t ----+-> event loop handle
127 * | svp_timer_t ----+-> backoff timer
128 * | svp_timer_t ----+-> query timer
129 * | int ----+-> socket fd
130 * | uint_t ----+-> generation
131 * | uint_t ----+-> current backoff
132 * | svp_conn_flags_t -+-> connection flags
133 * | svp_conn_state_t -+-> connection state
134 * | svp_conn_error_t -+-> connection error
135 * | int ---+-> last errrno
136 * | hrtime_t ---+-> activity timestamp
137 * | svp_conn_out_t ---+-> outgoing data state
138 * | svp_conn_in_t ---+-> incoming data state
139 * | list_t ---+--+-> active queries
140 * +----------------+--+
141 * |
142 * +----------------------------------+-----------------+
143 * | | |
144 * v v v
145 * +--------------------+ +-------------+
146 * | SVP Query | | SVP Query | ...
147 * | svp_query_t | | svp_query_t |
148 * | | +-------------+
149 * | svp_query_f ---+-> callback function
150 * | void * ---+-> callback arg
151 * | svp_query_state_t -+-> state flags
152 * | svp_req_t ---+-> svp prot. header
153 * | svp_query_data_t --+-> read data
154 * | svp_query_data_t --+-> write data
155 * | svp_status_t ---+-> request status
156 * +--------------------+
157 *
158 * The svp_t is the instance that we assoicate with varpd. The instance itself
159 * maintains properties and then when it's started associates with an
160 * svp_remote_t, which is the remote backend. The remote backend itself,
161 * maintains the DNS state and spins up and downs connections based on the
162 * results from DNS. By default, we query DNS every 30 seconds. For more on the
163 * connection life cycle, see the next section.
164 *
165 * By default, each connection maintains its own back off timer and list of
166 * queries it's servicing. Only one request is generally outstanding at a time
167 * and requests are round robined across the various connections.
168 *
169 * The query itself represents the svp request that's going on and keep track of
170 * its state and is a place for data that's read and written to as part of the
171 * request.
172 *
173 * Connections maintain a query timer such that if we have not received data on
174 * a socket for a certain amount of time, we kill that socket and begin a
175 * reconnection cycle with backoff.
176 *
177 * ------------------------
178 * Connection State Machine
179 * ------------------------
180 *
181 * We have a connection pool that's built upon DNS records. DNS describes the
182 * membership of the set of remote peers that make up our pool and we maintain
183 * one connection to each of them. In addition, we maintain an exponential
184 * backoff for each peer and will attempt to reconect immediately before backing
185 * off. The following are the valid states that a connection can be in:
186 *
187 * SVP_CS_ERROR An OS error has occurred on this connection,
188 * such as failure to create a socket or associate
189 * the socket with an event port. We also
190 * transition all connections to this state before
191 * we destroy them.
192 *
193 * SVP_CS_INITIAL This is the initial state of a connection, all
194 * that should exist is an unbound socket.
195 *
196 * SVP_CS_CONNECTING A call to connect has been made and we are
197 * polling for it to complete.
198 *
199 * SVP_CS_BACKOFF A connect attempt has failed and we are
200 * currently backing off, waiting to try again.
201 *
202 * SVP_CS_ACTIVE We have successfully connected to the remote
203 * system.
204 *
205 * SVP_CS_WINDDOWN This connection is going to valhalla. In other
206 * words, a previously active connection is no
207 * longer valid in DNS, so we should curb our use
208 * of it, and reap it as soon as we have other
209 * active connections.
210 *
211 * The following diagram attempts to describe our state transition scheme, and
212 * when we transition from one state to the next.
213 *
214 * |
215 * * New remote IP from DNS resolution,
216 * | not currently active in the system.
217 * |
218 * v Socket Error,
219 * +----------------+ still in DNS
220 * +----------------<---| SVP_CS_INITIAL |<----------------------*-----+
221 * | +----------------+ |
222 * | System | |
223 * | Connection . . . . . success * Successful |
224 * | failed . | connect() |
225 * | +----*---------+ | +-----------*--+ |
226 * | | | | | | |
227 * | V ^ v ^ V ^
228 * | +----------------+ +-------------------+ +---------------+
229 * +<-| SVP_CS_BACKOFF | | SVP_CS_CONNECTING | | SVP_CS_ACTIVE |
230 * | +----------------+ +-------------------+ +---------------+
231 * | V ^ V V V
232 * | Backoff wait * | | | * Removed
233 * v interval +--------------+ +-----------------<-----+ | from DNS
234 * | finished | |
235 * | V |
236 * | | V
237 * | | +-----------------+
238 * +----------------+----------<-----+-------<----| SVP_CS_WINDDOWN |
239 * | +-----------------+
240 * * . . . Fatal system, not
241 * | socket error or
242 * V quiesced after
243 * +--------------+ removal from DNS
244 * | SVP_CS_ERROR |
245 * +--------------+
246 * |
247 * * . . . Removed from DNS
248 * v
249 * +------------+
250 * | Connection |
251 * | Destroyed |
252 * +------------+
253 *
254 * --------------------------
255 * Connection Event Injection
256 * --------------------------
257 *
258 * For each connection that exists in the system, we have a timer in place that
259 * is in charge of performing timeout activity. It fires once every thirty
260 * seconds or so for a given connection and checks to ensure that we have had
261 * activity for the most recent query on the connection. If not, it terminates
262 * the connection. This is important as if we have sent all our data and are
263 * waiting for the remote end to reply, without enabling something like TCP
264 * keep-alive, we will not be notified that anything that has happened to the
265 * remote connection, for example a panic. In addition, this also protects
266 * against a server that is up, but a portolan that is not making forward
267 * progress.
268 *
269 * When a timeout occurs, we first try to disassociate any active events, which
270 * by definition must exist. Once that's done, we inject a port source user
271 * event. Now, there is a small gotcha. Let's assume for a moment that we have a
272 * pathological portolan. That means that it knows to inject activity right at
273 * the time out window. That means, that the event may be disassociated before
274 * we could get to it. If that's the case, we must _not_ inject the user event
275 * and instead, we'll let the pending event take care of it. We know that the
276 * pending event hasn't hit the main part of the loop yet, otherwise, it would
277 * have released the lock protecting our state and associated the event.
278 *
279 * ------------
280 * Notes on DNS
281 * ------------
282 *
283 * Unfortunately, doing host name resolution in a way that allows us to leverage
284 * the system's resolvers and the system's caching, require us to make blocking
285 * calls in libc via getaddrinfo(3SOCKET). If we can't reach a given server,
286 * that will tie up a thread for quite some time. To work around that fact,
287 * we're going to create a fixed number of threads and we'll use them to service
288 * our DNS requests. While this isn't ideal, until we have a sane means of
289 * integrating a DNS resolution into an event loop with say portfs, it's not
290 * going to be a fun day no matter what we do.
291 *
292 * ------
293 * Timers
294 * ------
295 *
296 * We maintain a single timer based on CLOCK_REALTIME. It's designed to fire
297 * every second. While we'd rather use CLOCK_HIGHRES just to alleviate ourselves
298 * from timer drift; however, as zones may not actually have CLOCK_HIGHRES
299 * access, we don't want them to end up in there. The timer itself is just a
300 * simple avl tree sorted by expiration time, which is stored as a tick in the
301 * future, a tick is just one second.
302 *
303 * ----------
304 * Shootdowns
305 * ----------
306 *
307 * As part of the protocol, we need to be able to handle shootdowns that inform
308 * us some of the information in the system is out of date. This information
309 * needs to be processed promptly; however, the information is hopefully going
310 * to be relatively infrequent relative to the normal flow of information.
311 *
312 * The shoot down information needs to be done on a per-backend basis. The
313 * general design is that we'll have a single query for this which can fire on a
314 * 5-10s period, we randmoize the latter part to give us a bit more load
315 * spreading. If we complete because there's no work to do, then we wait the
316 * normal period. If we complete, but there's still work to do, we'll go again
317 * after a second.
318 *
319 * A shootdown has a few different parts. We first receive a list of items to
320 * shootdown. After performing all of those, we need to acknowledge them. When
321 * that's been done successfully, we can move onto the next part. From a
322 * protocol perspective, we make a SVP_R_LOG_REQ, we get a reply, and then after
323 * processing them, send an SVP_R_LOG_RM. Only once that's been acked do we
324 * continue.
325 *
326 * However, one of the challenges that we have is that these invalidations are
327 * just that, an invalidation. For a virtual layer two request, that's fine,
328 * because the kernel supports that. However, for virtual layer three
329 * invalidations, we have a bit more work to do. These protocols, ARP and NDP,
330 * don't really support a notion of just an invalidation, instead you have to
331 * inject the new data in a gratuitous fashion.
332 *
333 * To that end, what we instead do is when we receive a VL3 invalidation, we
334 * turn that info a VL3 request. We hold the general request as outstanding
335 * until we receive all of the callbacks for the VL3 invalidations, at which
336 * point we go through and do the log removal request.
337 */
338
339 #include <umem.h>
340 #include <errno.h>
341 #include <stdlib.h>
342 #include <sys/types.h>
343 #include <sys/socket.h>
344 #include <netinet/in.h>
345 #include <arpa/inet.h>
346 #include <libnvpair.h>
347 #include <strings.h>
348 #include <string.h>
349 #include <assert.h>
350 #include <unistd.h>
351
352 #include <libvarpd_provider.h>
353 #include "libvarpd_svp.h"
354
355 bunyan_logger_t *svp_bunyan;
356 static int svp_defport = 1296;
357 static int svp_defuport = 1339;
358 static umem_cache_t *svp_lookup_cache;
359
360 typedef enum svp_lookup_type {
361 SVP_L_UNKNOWN = 0x0,
362 SVP_L_VL2 = 0x1,
363 SVP_L_VL3 = 0x2,
364 SVP_L_ROUTE = 0x3
365 } svp_lookup_type_t;
366
367 typedef struct svp_lookup {
368 int svl_type;
369 union {
370 struct svl_lookup_vl2 {
371 varpd_query_handle_t *svl_handle;
372 overlay_target_point_t *svl_point;
373 } svl_vl2;
374 struct svl_lookup_vl3 {
375 varpd_arp_handle_t *svl_vah;
376 uint8_t *svl_out;
377 } svl_vl3;
378 struct svl_lookup_route {
379 varpd_query_handle_t *svl_handle;
380 overlay_target_point_t *svl_point;
381 overlay_target_route_t *svl_route;
382 } svl_route;
383 } svl_u;
384 svp_query_t svl_query;
385 } svp_lookup_t;
386
387 static const char *varpd_svp_props[] = {
388 "svp/host",
389 "svp/port",
390 "svp/underlay_ip",
391 "svp/underlay_port",
392 "svp/dcid",
393 "svp/router_oui"
394 };
395
396 static const uint8_t svp_bcast[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
397
398 int
399 svp_comparator(const void *l, const void *r)
400 {
401 const svp_t *ls = l;
402 const svp_t *rs = r;
403
404 if (ls->svp_vid > rs->svp_vid)
405 return (1);
406 if (ls->svp_vid < rs->svp_vid)
407 return (-1);
408 return (0);
409 }
410
411 static void
412 svp_vl2_lookup_cb(svp_t *svp, svp_status_t status, const struct in6_addr *uip,
413 const uint16_t uport, void *arg)
414 {
415 svp_lookup_t *svl = arg;
416 overlay_target_point_t *otp;
417
418 assert(svp != NULL);
419 assert(arg != NULL);
420
421 if (status != SVP_S_OK) {
422 libvarpd_plugin_query_reply(svl->svl_u.svl_vl2.svl_handle,
423 VARPD_LOOKUP_DROP);
424 umem_cache_free(svp_lookup_cache, svl);
425 return;
426 }
427
428 otp = svl->svl_u.svl_vl2.svl_point;
429 bcopy(uip, &otp->otp_ip, sizeof (struct in6_addr));
430 otp->otp_port = uport;
431 libvarpd_plugin_query_reply(svl->svl_u.svl_vl2.svl_handle,
432 VARPD_LOOKUP_OK);
433 umem_cache_free(svp_lookup_cache, svl);
434 }
435
436 static void
437 svp_vl3_lookup_cb(svp_t *svp, svp_status_t status, const uint8_t *vl2mac,
438 const struct in6_addr *uip, const uint16_t uport, void *arg)
439 {
440 /* Initialize address-holders to 0 for comparisons-to-zeroes later. */
441 overlay_target_point_t point = { 0 };
442 svp_lookup_t *svl = arg;
443 uint8_t nexthop_mac[6] = { 0, 0, 0, 0, 0, 0 };
444
445 assert(svp != NULL);
446 assert(svl != NULL);
447
448 if (status != SVP_S_OK) {
449 libvarpd_plugin_arp_reply(svl->svl_u.svl_vl3.svl_vah,
450 VARPD_LOOKUP_DROP);
451 umem_cache_free(svp_lookup_cache, svl);
452 return;
453 }
454
455 /* Inject the L2 mapping before the L3 */
456 if (uport != 0 &&
457 bcmp(uip, &point.otp_ip, sizeof (struct in6_addr)) != 0) {
458 /* Normal L3 lookup result... */
459 bcopy(uip, &point.otp_ip, sizeof (struct in6_addr));
460 point.otp_port = uport;
461 libvarpd_inject_varp(svp->svp_hdl, vl2mac, &point);
462 } else {
463 /*
464 * Oh my, we have a next-hop router IP.
465 * Set the MAC to the ouid+vid concatenated
466 * special-router-MAC. Overlay down below will know
467 * that uport == 0 means the MAC is a special one.
468 */
469 if (bcmp(svp->svp_router_oui, nexthop_mac, ETHERADDRL) == 0) {
470 /*
471 * We don't have a router_oui, so we can't support
472 * special-router-MAC. Drop it.
473 */
474 libvarpd_plugin_arp_reply(svl->svl_u.svl_vl3.svl_vah,
475 VARPD_LOOKUP_DROP);
476 umem_cache_free(svp_lookup_cache, svl);
477 return;
478 }
479 bcopy(svp->svp_router_oui, nexthop_mac, 3);
480 nexthop_mac[3] = (svp->svp_vid >> 16) & 0xff;
481 nexthop_mac[4] = (svp->svp_vid >> 8) & 0xff;
482 nexthop_mac[5] = svp->svp_vid & 0xff;
483 vl2mac = nexthop_mac;
484 }
485
486 bcopy(vl2mac, svl->svl_u.svl_vl3.svl_out, ETHERADDRL);
487 libvarpd_plugin_arp_reply(svl->svl_u.svl_vl3.svl_vah,
488 VARPD_LOOKUP_OK);
489 umem_cache_free(svp_lookup_cache, svl);
490 }
491
492 static void
493 svp_vl2_invalidate_cb(svp_t *svp, const uint8_t *vl2mac)
494 {
495 libvarpd_inject_varp(svp->svp_hdl, vl2mac, NULL);
496 }
497
498 static void
499 svp_vl3_inject_cb(svp_t *svp, const uint16_t vlan, const struct in6_addr *vl3ip,
500 const uint8_t *vl2mac, const uint8_t *targmac)
501 {
502 struct in_addr v4;
503
504 /*
505 * At the moment we don't support any IPv6 related log entries, this
506 * will change soon as we develop a bit more of the IPv6 related
507 * infrastructure so we can properly test the injection.
508 */
509 if (IN6_IS_ADDR_V4MAPPED(vl3ip) == 0) {
510 return;
511 } else {
512 IN6_V4MAPPED_TO_INADDR(vl3ip, &v4);
513 if (targmac == NULL)
514 targmac = svp_bcast;
515 libvarpd_inject_arp(svp->svp_hdl, vlan, vl2mac, &v4, targmac);
516 }
517 }
518
519 /* ARGSUSED */
520 static void
521 svp_shootdown_cb(svp_t *svp, const uint8_t *vl2mac, const struct in6_addr *uip,
522 const uint16_t uport)
523 {
524 /*
525 * We should probably do a conditional invalidation here.
526 */
527 libvarpd_inject_varp(svp->svp_hdl, vl2mac, NULL);
528 }
529
530 static void
531 svp_route_lookup_cb(svp_t *svp, svp_status_t status, uint32_t dcid,
532 uint32_t vnetid, uint16_t vlan, uint8_t *srcmac, uint8_t *dstmac,
533 uint16_t ul3_port, uint8_t *ul3_addr, uint8_t srcpfx, uint8_t dstpfx,
534 void *arg)
535 {
536 svp_lookup_t *svl = arg;
537 overlay_target_point_t *otp;
538 overlay_target_route_t *otr;
539
540 if (status != SVP_S_OK) {
541 libvarpd_plugin_query_reply(svl->svl_u.svl_route.svl_handle,
542 VARPD_LOOKUP_DROP);
543 umem_cache_free(svp_lookup_cache, svl);
544 return;
545 }
546
547 otp = svl->svl_u.svl_route.svl_point;
548 bcopy(dstmac, otp->otp_mac, ETHERADDRL);
549 bcopy(ul3_addr, &otp->otp_ip, sizeof (struct in6_addr));
550 otp->otp_port = ul3_port;
551
552 otr = svl->svl_u.svl_route.svl_route;
553 otr->otr_vnet = vnetid;
554 otr->otr_vlan = vlan;
555 bcopy(srcmac, otr->otr_srcmac, ETHERADDRL);
556 otr->otr_dcid = dcid;
557 otr->otr_src_prefixlen = srcpfx;
558 otr->otr_dst_prefixlen = dstpfx;
559
560 libvarpd_plugin_query_reply(svl->svl_u.svl_route.svl_handle,
561 VARPD_LOOKUP_OK);
562 umem_cache_free(svp_lookup_cache, svl);
563 }
564
565 static svp_cb_t svp_defops = {
566 svp_vl2_lookup_cb,
567 svp_vl3_lookup_cb,
568 svp_vl2_invalidate_cb,
569 svp_vl3_inject_cb,
570 svp_shootdown_cb,
571 svp_route_lookup_cb,
572 };
573
574 static boolean_t
575 varpd_svp_valid_dest(overlay_plugin_dest_t dest)
576 {
577 if (dest != (OVERLAY_PLUGIN_D_IP | OVERLAY_PLUGIN_D_PORT))
578 return (B_FALSE);
579
580 return (B_TRUE);
581 }
582
583 static int
584 varpd_svp_create(varpd_provider_handle_t *hdl, void **outp,
585 overlay_plugin_dest_t dest)
586 {
587 int ret;
588 svp_t *svp;
589
590 if (varpd_svp_valid_dest(dest) == B_FALSE)
591 return (ENOTSUP);
592
593 svp = umem_zalloc(sizeof (svp_t), UMEM_DEFAULT);
594 if (svp == NULL)
595 return (ENOMEM);
596
597 if ((ret = mutex_init(&svp->svp_lock, USYNC_THREAD | LOCK_ERRORCHECK,
598 NULL)) != 0) {
599 umem_free(svp, sizeof (svp_t));
600 return (ret);
601 }
602
603 svp->svp_port = svp_defport;
604 svp->svp_uport = svp_defuport;
605 svp->svp_cb = svp_defops;
606 svp->svp_hdl = hdl;
607 svp->svp_vid = libvarpd_plugin_vnetid(svp->svp_hdl);
608 *outp = svp;
609 return (0);
610 }
611
612 static int
613 varpd_svp_start(void *arg)
614 {
615 int ret;
616 svp_remote_t *srp;
617 svp_t *svp = arg;
618
619 mutex_enter(&svp->svp_lock);
620 if (svp->svp_host == NULL || svp->svp_port == 0 ||
621 svp->svp_huip == B_FALSE || svp->svp_uport == 0) {
622 mutex_exit(&svp->svp_lock);
623 return (EAGAIN);
624 }
625 mutex_exit(&svp->svp_lock);
626
627 if ((ret = svp_remote_find(svp->svp_host, svp->svp_port, &svp->svp_uip,
628 &srp)) != 0)
629 return (ret);
630
631 if ((ret = svp_remote_attach(srp, svp)) != 0) {
632 svp_remote_release(srp);
633 return (ret);
634 }
635
636 return (0);
637 }
638
639 static void
640 varpd_svp_stop(void *arg)
641 {
642 svp_t *svp = arg;
643
644 svp_remote_detach(svp);
645 }
646
647 static void
648 varpd_svp_destroy(void *arg)
649 {
650 svp_t *svp = arg;
651
652 if (svp->svp_host != NULL)
653 umem_free(svp->svp_host, strlen(svp->svp_host) + 1);
654
655 if (mutex_destroy(&svp->svp_lock) != 0)
656 libvarpd_panic("failed to destroy svp_t`svp_lock");
657
658 umem_free(svp, sizeof (svp_t));
659 }
660
661 static void
662 varpd_svp_lookup_l3(svp_t *svp, varpd_query_handle_t *vqh,
663 const overlay_targ_lookup_t *otl, overlay_target_point_t *otp,
664 overlay_target_route_t *otr)
665 {
666 svp_lookup_t *slp;
667 uint32_t type;
668 const struct in6_addr *src = &otl->otl_addru.otlu_l3.otl3_srcip,
669 *dst = &otl->otl_addru.otlu_l3.otl3_dstip;
670
671 /*
672 * otl is an L3 request, so we have src/dst IPs for the inner packet.
673 * We also have the vlan.
674 *
675 * Assume kernel's overlay module is caching well, so we are directly
676 * going to query (i.e. no caching up here of actual destinations).
677 *
678 * Our existing remote sever (svp_remote), but with the new message
679 * SVP_R_ROUTE_REQ.
680 */
681
682 /* XXX KEBE SAYS DO SOME otl verification too... */
683 if (IN6_IS_ADDR_V4MAPPED(src)) {
684 if (!IN6_IS_ADDR_V4MAPPED(dst)) {
685 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
686 return;
687 }
688 type = SVP_VL3_IP;
689 } else {
690 if (IN6_IS_ADDR_V4MAPPED(dst)) {
691 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
692 return;
693 }
694 type = SVP_VL3_IPV6;
695 }
696
697 slp = umem_cache_alloc(svp_lookup_cache, UMEM_DEFAULT);
698 if (slp == NULL) {
699 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
700 return;
701 }
702
703 slp->svl_type = SVP_L_ROUTE;
704 slp->svl_u.svl_route.svl_handle = vqh;
705 slp->svl_u.svl_route.svl_point = otp;
706 slp->svl_u.svl_route.svl_route = otr;
707
708 svp_remote_route_lookup(svp, &slp->svl_query, src, dst,
709 otl->otl_vnetid, (uint16_t)otl->otl_vlan, slp);
710 }
711
712 static void
713 varpd_svp_lookup(void *arg, varpd_query_handle_t *vqh,
714 const overlay_targ_lookup_t *otl, overlay_target_point_t *otp,
715 overlay_target_route_t *otr)
716 {
717 svp_lookup_t *slp;
718 svp_t *svp = arg;
719
720 /*
721 * Shuffle off L3 lookups to their own codepath.
722 */
723 if (otl->otl_l3req) {
724 varpd_svp_lookup_l3(svp, vqh, otl, otp, otr);
725 return;
726 }
727 /*
728 * At this point, the traditional overlay_target_point_t is all that
729 * needs filling in. Zero-out the otr for safety.
730 */
731 bzero(otr, sizeof (*otr));
732
733
734 /*
735 * Check if this is something that we need to proxy, eg. arp or ndp.
736 */
737 if (otl->otl_addru.otlu_l2.otl2_sap == ETHERTYPE_ARP) {
738 libvarpd_plugin_proxy_arp(svp->svp_hdl, vqh, otl);
739 return;
740 }
741
742 if (otl->otl_addru.otlu_l2.otl2_dstaddr[0] == 0x33 &&
743 otl->otl_addru.otlu_l2.otl2_dstaddr[1] == 0x33) {
744 if (otl->otl_addru.otlu_l2.otl2_sap == ETHERTYPE_IPV6) {
745 libvarpd_plugin_proxy_ndp(svp->svp_hdl, vqh, otl);
746 } else {
747 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
748 }
749 return;
750 }
751
752 /*
753 * Watch out for various multicast and broadcast addresses. We've
754 * already taken care of the IPv6 range above. Now we just need to
755 * handle broadcast and if the multicast bit is set, lowest bit of the
756 * first octet of the MAC, then we drop it now.
757 */
758 if (bcmp(otl->otl_addru.otlu_l2.otl2_dstaddr, svp_bcast,
759 ETHERADDRL) == 0 ||
760 (otl->otl_addru.otlu_l2.otl2_dstaddr[0] & 0x01) == 0x01) {
761 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
762 return;
763 }
764
765 /*
766 * If we have a failure to allocate memory for this, that's not good.
767 * However, telling the kernel to just drop this packet is much better
768 * than the alternative at this moment. At least we'll try again and we
769 * may have something more available to us in a little bit.
770 */
771 slp = umem_cache_alloc(svp_lookup_cache, UMEM_DEFAULT);
772 if (slp == NULL) {
773 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
774 return;
775 }
776
777 slp->svl_type = SVP_L_VL2;
778 slp->svl_u.svl_vl2.svl_handle = vqh;
779 slp->svl_u.svl_vl2.svl_point = otp;
780
781 svp_remote_vl2_lookup(svp, &slp->svl_query,
782 otl->otl_addru.otlu_l2.otl2_dstaddr, slp);
783 }
784
785 /* ARGSUSED */
786 static int
787 varpd_svp_nprops(void *arg, uint_t *nprops)
788 {
789 *nprops = sizeof (varpd_svp_props) / sizeof (char *);
790 return (0);
791 }
792
793 /* ARGSUSED */
794 static int
795 varpd_svp_propinfo(void *arg, uint_t propid, varpd_prop_handle_t *vph)
796 {
797 switch (propid) {
798 case 0:
799 /* svp/host */
800 libvarpd_prop_set_name(vph, varpd_svp_props[0]);
801 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
802 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_STRING);
803 libvarpd_prop_set_nodefault(vph);
804 break;
805 case 1:
806 /* svp/port */
807 libvarpd_prop_set_name(vph, varpd_svp_props[1]);
808 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
809 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_UINT);
810 (void) libvarpd_prop_set_default(vph, &svp_defport,
811 sizeof (svp_defport));
812 libvarpd_prop_set_range_uint32(vph, 1, UINT16_MAX);
813 break;
814 case 2:
815 /* svp/underlay_ip */
816 libvarpd_prop_set_name(vph, varpd_svp_props[2]);
817 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
818 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_IP);
819 libvarpd_prop_set_nodefault(vph);
820 break;
821 case 3:
822 /* svp/underlay_port */
823 libvarpd_prop_set_name(vph, varpd_svp_props[3]);
824 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
825 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_UINT);
826 (void) libvarpd_prop_set_default(vph, &svp_defuport,
827 sizeof (svp_defuport));
828 libvarpd_prop_set_range_uint32(vph, 1, UINT16_MAX);
829 break;
830 case 4:
831 /* svp/dcid */
832 libvarpd_prop_set_name(vph, varpd_svp_props[4]);
833 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
834 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_UINT);
835 libvarpd_prop_set_nodefault(vph);
836 /* XXX KEBE ASKS should I just set high to UINT32_MAX? */
837 libvarpd_prop_set_range_uint32(vph, 1, UINT32_MAX - 1);
838 break;
839 case 5:
840 /* svp/router_oui */
841 libvarpd_prop_set_name(vph, varpd_svp_props[5]);
842 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
843 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_ETHER);
844 libvarpd_prop_set_nodefault(vph);
845 break;
846 default:
847 return (EINVAL);
848 }
849 return (0);
850 }
851
852 static int
853 varpd_svp_getprop(void *arg, const char *pname, void *buf, uint32_t *sizep)
854 {
855 svp_t *svp = arg;
856
857 /* svp/host */
858 if (strcmp(pname, varpd_svp_props[0]) == 0) {
859 size_t len;
860
861 mutex_enter(&svp->svp_lock);
862 if (svp->svp_host == NULL) {
863 *sizep = 0;
864 } else {
865 len = strlen(svp->svp_host) + 1;
866 if (*sizep < len) {
867 mutex_exit(&svp->svp_lock);
868 return (EOVERFLOW);
869 }
870 *sizep = len;
871 (void) strlcpy(buf, svp->svp_host, *sizep);
872 }
873 mutex_exit(&svp->svp_lock);
874 return (0);
875 }
876
877 /* svp/port */
878 if (strcmp(pname, varpd_svp_props[1]) == 0) {
879 uint64_t val;
880
881 if (*sizep < sizeof (uint64_t))
882 return (EOVERFLOW);
883
884 mutex_enter(&svp->svp_lock);
885 if (svp->svp_port == 0) {
886 *sizep = 0;
887 } else {
888 val = svp->svp_port;
889 bcopy(&val, buf, sizeof (uint64_t));
890 *sizep = sizeof (uint64_t);
891 }
892 mutex_exit(&svp->svp_lock);
893 return (0);
894 }
895
896 /* svp/underlay_ip */
897 if (strcmp(pname, varpd_svp_props[2]) == 0) {
898 if (*sizep < sizeof (struct in6_addr))
899 return (EOVERFLOW);
900 mutex_enter(&svp->svp_lock);
901 if (svp->svp_huip == B_FALSE) {
902 *sizep = 0;
903 } else {
904 bcopy(&svp->svp_uip, buf, sizeof (struct in6_addr));
905 *sizep = sizeof (struct in6_addr);
906 }
907 mutex_exit(&svp->svp_lock);
908 return (0);
909 }
910
911 /* svp/underlay_port */
912 if (strcmp(pname, varpd_svp_props[3]) == 0) {
913 uint64_t val;
914
915 if (*sizep < sizeof (uint64_t))
916 return (EOVERFLOW);
917
918 mutex_enter(&svp->svp_lock);
919 if (svp->svp_uport == 0) {
920 *sizep = 0;
921 } else {
922 val = svp->svp_uport;
923 bcopy(&val, buf, sizeof (uint64_t));
924 *sizep = sizeof (uint64_t);
925 }
926
927 mutex_exit(&svp->svp_lock);
928 return (0);
929 }
930
931 /* svp/dcid */
932 if (strcmp(pname, varpd_svp_props[4]) == 0) {
933 uint64_t val;
934
935 if (*sizep < sizeof (uint64_t))
936 return (EOVERFLOW);
937
938 mutex_enter(&svp->svp_lock);
939 if (svp->svp_uport == 0) {
940 *sizep = 0;
941 } else {
942 val = svp->svp_dcid;
943 bcopy(&val, buf, sizeof (uint64_t));
944 *sizep = sizeof (uint64_t);
945 }
946
947 mutex_exit(&svp->svp_lock);
948 return (0);
949 }
950
951 /* svp/router_oui */
952 if (strcmp(pname, varpd_svp_props[5]) == 0) {
953 if (*sizep < ETHERADDRL)
954 return (EOVERFLOW);
955 mutex_enter(&svp->svp_lock);
956
957 if (ether_is_zero(&svp->svp_router_oui)) {
958 *sizep = 0;
959 } else {
960 bcopy(&svp->svp_router_oui, buf, ETHERADDRL);
961 *sizep = ETHERADDRL;
962 }
963
964 mutex_exit(&svp->svp_lock);
965 return (0);
966 }
967 return (EINVAL);
968 }
969
970 static int
971 varpd_svp_setprop(void *arg, const char *pname, const void *buf,
972 const uint32_t size)
973 {
974 svp_t *svp = arg;
975
976 /* svp/host */
977 if (strcmp(pname, varpd_svp_props[0]) == 0) {
978 char *dup;
979 dup = umem_alloc(size, UMEM_DEFAULT);
980 (void) strlcpy(dup, buf, size);
981 if (dup == NULL)
982 return (ENOMEM);
983 mutex_enter(&svp->svp_lock);
984 if (svp->svp_host != NULL)
985 umem_free(svp->svp_host, strlen(svp->svp_host) + 1);
986 svp->svp_host = dup;
987 mutex_exit(&svp->svp_lock);
988 return (0);
989 }
990
991 /* svp/port */
992 if (strcmp(pname, varpd_svp_props[1]) == 0) {
993 const uint64_t *valp = buf;
994 if (size < sizeof (uint64_t))
995 return (EOVERFLOW);
996
997 if (*valp == 0 || *valp > UINT16_MAX)
998 return (EINVAL);
999
1000 mutex_enter(&svp->svp_lock);
1001 svp->svp_port = (uint16_t)*valp;
1002 mutex_exit(&svp->svp_lock);
1003 return (0);
1004 }
1005
1006 /* svp/underlay_ip */
1007 if (strcmp(pname, varpd_svp_props[2]) == 0) {
1008 const struct in6_addr *ipv6 = buf;
1009
1010 if (size < sizeof (struct in6_addr))
1011 return (EOVERFLOW);
1012
1013 if (IN6_IS_ADDR_V4COMPAT(ipv6))
1014 return (EINVAL);
1015
1016 if (IN6_IS_ADDR_MULTICAST(ipv6))
1017 return (EINVAL);
1018
1019 if (IN6_IS_ADDR_6TO4(ipv6))
1020 return (EINVAL);
1021
1022 if (IN6_IS_ADDR_V4MAPPED(ipv6)) {
1023 ipaddr_t v4;
1024 IN6_V4MAPPED_TO_IPADDR(ipv6, v4);
1025 if (IN_MULTICAST(v4))
1026 return (EINVAL);
1027 }
1028
1029 mutex_enter(&svp->svp_lock);
1030 bcopy(buf, &svp->svp_uip, sizeof (struct in6_addr));
1031 svp->svp_huip = B_TRUE;
1032 mutex_exit(&svp->svp_lock);
1033 return (0);
1034 }
1035
1036 /* svp/underlay_port */
1037 if (strcmp(pname, varpd_svp_props[3]) == 0) {
1038 const uint64_t *valp = buf;
1039 if (size < sizeof (uint64_t))
1040 return (EOVERFLOW);
1041
1042 if (*valp == 0 || *valp > UINT16_MAX)
1043 return (EINVAL);
1044
1045 mutex_enter(&svp->svp_lock);
1046 svp->svp_uport = (uint16_t)*valp;
1047 mutex_exit(&svp->svp_lock);
1048
1049 return (0);
1050 }
1051
1052 /* svp/dcid */
1053 if (strcmp(pname, varpd_svp_props[4]) == 0) {
1054 const uint64_t *valp = buf;
1055 if (size < sizeof (uint64_t))
1056 return (EOVERFLOW);
1057
1058 /* XXX KEBE ASKS, use UINT32_MAX instead? */
1059 if (*valp == 0 || *valp > UINT32_MAX - 1)
1060 return (EINVAL);
1061
1062 mutex_enter(&svp->svp_lock);
1063 svp->svp_dcid = (uint32_t)*valp;
1064 mutex_exit(&svp->svp_lock);
1065
1066 return (0);
1067 }
1068
1069 /* svp/router_oui */
1070 if (strcmp(pname, varpd_svp_props[5]) == 0) {
1071 if (size < ETHERADDRL)
1072 return (EOVERFLOW);
1073 mutex_enter(&svp->svp_lock);
1074 bcopy(buf, &svp->svp_router_oui, ETHERADDRL);
1075 /* Zero-out the low three bytes. */
1076 svp->svp_router_oui[3] = 0;
1077 svp->svp_router_oui[4] = 0;
1078 svp->svp_router_oui[5] = 0;
1079 mutex_exit(&svp->svp_lock);
1080 return (0);
1081 }
1082
1083 return (EINVAL);
1084 }
1085
1086 static int
1087 varpd_svp_save(void *arg, nvlist_t *nvp)
1088 {
1089 int ret;
1090 svp_t *svp = arg;
1091
1092 mutex_enter(&svp->svp_lock);
1093 /* svp/host */
1094 if (svp->svp_host != NULL) {
1095 if ((ret = nvlist_add_string(nvp, varpd_svp_props[0],
1096 svp->svp_host)) != 0) {
1097 mutex_exit(&svp->svp_lock);
1098 return (ret);
1099 }
1100 }
1101
1102 /* svp/port */
1103 if (svp->svp_port != 0) {
1104 if ((ret = nvlist_add_uint16(nvp, varpd_svp_props[1],
1105 svp->svp_port)) != 0) {
1106 mutex_exit(&svp->svp_lock);
1107 return (ret);
1108 }
1109 }
1110
1111 /* svp/underlay_ip */
1112 if (svp->svp_huip == B_TRUE) {
1113 char buf[INET6_ADDRSTRLEN];
1114
1115 if (inet_ntop(AF_INET6, &svp->svp_uip, buf, sizeof (buf)) ==
1116 NULL)
1117 libvarpd_panic("unexpected inet_ntop failure: %d",
1118 errno);
1119
1120 if ((ret = nvlist_add_string(nvp, varpd_svp_props[2],
1121 buf)) != 0) {
1122 mutex_exit(&svp->svp_lock);
1123 return (ret);
1124 }
1125 }
1126
1127 /* svp/underlay_port */
1128 if (svp->svp_uport != 0) {
1129 if ((ret = nvlist_add_uint16(nvp, varpd_svp_props[3],
1130 svp->svp_uport)) != 0) {
1131 mutex_exit(&svp->svp_lock);
1132 return (ret);
1133 }
1134 }
1135
1136 /* svp/dcid */
1137 if (svp->svp_dcid != 0) {
1138 if ((ret = nvlist_add_uint32(nvp, varpd_svp_props[4],
1139 svp->svp_dcid)) != 0) {
1140 mutex_exit(&svp->svp_lock);
1141 return (ret);
1142 }
1143 }
1144
1145 /* svp/router_oui */
1146 if (!ether_is_zero(&svp->svp_router_oui)) {
1147 char buf[ETHERADDRSTRL];
1148
1149 /* XXX KEBE SAYS See underlay_ip... */
1150 if (ether_ntoa_r((struct ether_addr *)&svp->svp_router_oui,
1151 buf) == NULL) {
1152 libvarpd_panic("unexpected ether_ntoa_r failure: %d",
1153 errno);
1154 }
1155
1156 if ((ret = nvlist_add_string(nvp, varpd_svp_props[5],
1157 buf)) != 0) {
1158 mutex_exit(&svp->svp_lock);
1159 return (ret);
1160 }
1161 }
1162
1163 mutex_exit(&svp->svp_lock);
1164 return (0);
1165 }
1166
1167 static int
1168 varpd_svp_restore(nvlist_t *nvp, varpd_provider_handle_t *hdl,
1169 overlay_plugin_dest_t dest, void **outp)
1170 {
1171 int ret;
1172 svp_t *svp;
1173 char *ipstr, *hstr, *etherstr;
1174
1175 if (varpd_svp_valid_dest(dest) == B_FALSE)
1176 return (ENOTSUP);
1177
1178 if ((ret = varpd_svp_create(hdl, (void **)&svp, dest)) != 0)
1179 return (ret);
1180
1181 /* svp/host */
1182 if ((ret = nvlist_lookup_string(nvp, varpd_svp_props[0],
1183 &hstr)) != 0) {
1184 if (ret != ENOENT) {
1185 varpd_svp_destroy(svp);
1186 return (ret);
1187 }
1188 svp->svp_host = NULL;
1189 } else {
1190 size_t blen = strlen(hstr) + 1;
1191 svp->svp_host = umem_alloc(blen, UMEM_DEFAULT);
1192 (void) strlcpy(svp->svp_host, hstr, blen);
1193 }
1194
1195 /* svp/port */
1196 if ((ret = nvlist_lookup_uint16(nvp, varpd_svp_props[1],
1197 &svp->svp_port)) != 0) {
1198 if (ret != ENOENT) {
1199 varpd_svp_destroy(svp);
1200 return (ret);
1201 }
1202 svp->svp_port = 0;
1203 }
1204
1205 /* svp/underlay_ip */
1206 if ((ret = nvlist_lookup_string(nvp, varpd_svp_props[2],
1207 &ipstr)) != 0) {
1208 if (ret != ENOENT) {
1209 varpd_svp_destroy(svp);
1210 return (ret);
1211 }
1212 svp->svp_huip = B_FALSE;
1213 } else {
1214 ret = inet_pton(AF_INET6, ipstr, &svp->svp_uip);
1215 if (ret == -1) {
1216 assert(errno == EAFNOSUPPORT);
1217 libvarpd_panic("unexpected inet_pton failure: %d",
1218 errno);
1219 }
1220
1221 if (ret == 0) {
1222 varpd_svp_destroy(svp);
1223 return (EINVAL);
1224 }
1225 svp->svp_huip = B_TRUE;
1226 }
1227
1228 /* svp/underlay_port */
1229 if ((ret = nvlist_lookup_uint16(nvp, varpd_svp_props[3],
1230 &svp->svp_uport)) != 0) {
1231 if (ret != ENOENT) {
1232 varpd_svp_destroy(svp);
1233 return (ret);
1234 }
1235 svp->svp_uport = 0;
1236 }
1237
1238 /* svp/dcid */
1239 if ((ret = nvlist_lookup_uint32(nvp, varpd_svp_props[4],
1240 &svp->svp_dcid)) != 0) {
1241 if (ret != ENOENT) {
1242 varpd_svp_destroy(svp);
1243 return (ret);
1244 }
1245 svp->svp_dcid = 0;
1246 }
1247
1248 /* svp/router_oui */
1249 if ((ret = nvlist_lookup_string(nvp, varpd_svp_props[5],
1250 ðerstr)) != 0) {
1251 if (ret != ENOENT) {
1252 varpd_svp_destroy(svp);
1253 return (ret);
1254 }
1255 bzero(&svp->svp_router_oui, ETHERADDRL);
1256 } else if (ether_aton_r(etherstr,
1257 (struct ether_addr *)&svp->svp_router_oui) == NULL) {
1258 libvarpd_panic("unexpected ether_aton_r failure: %d", errno);
1259 }
1260
1261 svp->svp_hdl = hdl;
1262 *outp = svp;
1263 return (0);
1264 }
1265
1266 static void
1267 varpd_svp_arp(void *arg, varpd_arp_handle_t *vah, int type,
1268 const struct sockaddr *sock, uint8_t *out)
1269 {
1270 svp_t *svp = arg;
1271 svp_lookup_t *svl;
1272
1273 if (type != VARPD_QTYPE_ETHERNET) {
1274 libvarpd_plugin_arp_reply(vah, VARPD_LOOKUP_DROP);
1275 return;
1276 }
1277
1278 svl = umem_cache_alloc(svp_lookup_cache, UMEM_DEFAULT);
1279 if (svl == NULL) {
1280 libvarpd_plugin_arp_reply(vah, VARPD_LOOKUP_DROP);
1281 return;
1282 }
1283
1284 svl->svl_type = SVP_L_VL3;
1285 svl->svl_u.svl_vl3.svl_vah = vah;
1286 svl->svl_u.svl_vl3.svl_out = out;
1287 svp_remote_vl3_lookup(svp, &svl->svl_query, sock, svl);
1288 }
1289
1290 static const varpd_plugin_ops_t varpd_svp_ops = {
1291 0,
1292 varpd_svp_create,
1293 varpd_svp_start,
1294 varpd_svp_stop,
1295 varpd_svp_destroy,
1296 NULL,
1297 varpd_svp_lookup,
1298 varpd_svp_nprops,
1299 varpd_svp_propinfo,
1300 varpd_svp_getprop,
1301 varpd_svp_setprop,
1302 varpd_svp_save,
1303 varpd_svp_restore,
1304 varpd_svp_arp,
1305 NULL
1306 };
1307
1308 static int
1309 svp_bunyan_init(void)
1310 {
1311 int ret;
1312
1313 if ((ret = bunyan_init("svp", &svp_bunyan)) != 0)
1314 return (ret);
1315 ret = bunyan_stream_add(svp_bunyan, "stderr", BUNYAN_L_INFO,
1316 bunyan_stream_fd, (void *)STDERR_FILENO);
1317 if (ret != 0)
1318 bunyan_fini(svp_bunyan);
1319 return (ret);
1320 }
1321
1322 static void
1323 svp_bunyan_fini(void)
1324 {
1325 if (svp_bunyan != NULL)
1326 bunyan_fini(svp_bunyan);
1327 }
1328
1329 #pragma init(varpd_svp_init)
1330 static void
1331 varpd_svp_init(void)
1332 {
1333 int err;
1334 varpd_plugin_register_t *vpr;
1335
1336 if (svp_bunyan_init() != 0)
1337 return;
1338
1339 if ((err = svp_host_init()) != 0) {
1340 (void) bunyan_error(svp_bunyan, "failed to init host subsystem",
1341 BUNYAN_T_INT32, "error", err,
1342 BUNYAN_T_END);
1343 svp_bunyan_fini();
1344 return;
1345 }
1346
1347 svp_lookup_cache = umem_cache_create("svp_lookup",
1348 sizeof (svp_lookup_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
1349 if (svp_lookup_cache == NULL) {
1350 (void) bunyan_error(svp_bunyan,
1351 "failed to create svp_lookup cache",
1352 BUNYAN_T_INT32, "error", errno,
1353 BUNYAN_T_END);
1354 svp_bunyan_fini();
1355 return;
1356 }
1357
1358 if ((err = svp_event_init()) != 0) {
1359 (void) bunyan_error(svp_bunyan,
1360 "failed to init event subsystem",
1361 BUNYAN_T_INT32, "error", err,
1362 BUNYAN_T_END);
1363 svp_bunyan_fini();
1364 umem_cache_destroy(svp_lookup_cache);
1365 return;
1366 }
1367
1368 if ((err = svp_timer_init()) != 0) {
1369 (void) bunyan_error(svp_bunyan,
1370 "failed to init timer subsystem",
1371 BUNYAN_T_INT32, "error", err,
1372 BUNYAN_T_END);
1373 svp_event_fini();
1374 umem_cache_destroy(svp_lookup_cache);
1375 svp_bunyan_fini();
1376 return;
1377 }
1378
1379 if ((err = svp_remote_init()) != 0) {
1380 (void) bunyan_error(svp_bunyan,
1381 "failed to init remote subsystem",
1382 BUNYAN_T_INT32, "error", err,
1383 BUNYAN_T_END);
1384 svp_event_fini();
1385 umem_cache_destroy(svp_lookup_cache);
1386 svp_bunyan_fini();
1387 return;
1388 }
1389
1390 vpr = libvarpd_plugin_alloc(VARPD_CURRENT_VERSION, &err);
1391 if (vpr == NULL) {
1392 (void) bunyan_error(svp_bunyan,
1393 "failed to alloc varpd plugin",
1394 BUNYAN_T_INT32, "error", err,
1395 BUNYAN_T_END);
1396 svp_remote_fini();
1397 svp_event_fini();
1398 umem_cache_destroy(svp_lookup_cache);
1399 svp_bunyan_fini();
1400 return;
1401 }
1402
1403 vpr->vpr_mode = OVERLAY_TARGET_DYNAMIC;
1404 vpr->vpr_name = "svp";
1405 vpr->vpr_ops = &varpd_svp_ops;
1406
1407 if ((err = libvarpd_plugin_register(vpr)) != 0) {
1408 (void) bunyan_error(svp_bunyan,
1409 "failed to register varpd plugin",
1410 BUNYAN_T_INT32, "error", err,
1411 BUNYAN_T_END);
1412 svp_remote_fini();
1413 svp_event_fini();
1414 umem_cache_destroy(svp_lookup_cache);
1415 svp_bunyan_fini();
1416
1417 }
1418 libvarpd_plugin_free(vpr);
1419 }