1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */
11
12 /*
13 * Copyright 2018, Joyent, Inc.
14 */
15
16 /*
17 * This plugin implements the SDC VXLAN Protocol (SVP).
18 *
19 * This plugin is designed to work with a broader distributed system that
20 * mainains a database of mappings and provides a means of looking up data and
21 * provides a stream of updates. While it is named after VXLAN, there isn't
22 * anything specific to VXLAN baked into the protocol at this time, other than
23 * that it requires both an IP address and a port; however, if there's a good
24 * reason to support others here, we can modify that.
25 *
26 * -----------
27 * Terminology
28 * -----------
29 *
30 * Throughout this module we refer to a few different kinds of addresses:
31 *
32 * VL3
33 *
34 * A VL3 address, or virtual layer 3, refers to the layer three addreses
35 * that are used by entities on an overlay network. As far as we're
36 * concerned that means that this is the IP address of an interface on an
37 * overlay network.
38 *
39 * VL2
40 *
41 * A VL2 address, or a virtual layer 2, referes to the link-layer addresses
42 * that are used by entities on an overlay network. As far as we're
43 * concerned that means that this is the MAC addresses of an interface on
44 * an overlay network.
45 *
46 * UL3
47 *
48 * A UL3, or underlay layer 3, refers to the layer three (IP) address on
49 * the underlay network.
50 *
51 * The svp plugin provides lookups from VL3->VL2, eg. the equivalent of an ARP
52 * or NDP query, and then also provides VL2->UL3 lookups.
53 *
54 * -------------------
55 * Protocol Operations
56 * -------------------
57 *
58 * The svp protocol is defined in lib/varpd/svp/common/libvarpd_svp_prot.h. It
59 * defines the basic TCP protocol that we use to communicate to hosts. At this
60 * time, it is not quite 100% implemented in both this plug-in and our primary
61 * server, sdc-portolan (see https://github.com/joyent/sdc-portolan).
62 *
63 * At this time, we don't quite support everything that we need to. Including
64 * the SVP_R_BULK_REQ and SVP_R_SHOOTDOWN.
65 *
66 * ---------------------------------
67 * General Design and Considerations
68 * ---------------------------------
69 *
70 * Every instance of the svp plugin requires the hostname and port of a server
71 * to contact. Though, we have co-opted the port 1296 (the year of the oldest
72 * extant portolan) as our default port.
73 *
74 * Each of the different instance of the plugins has a corresponding remote
75 * backend. The remote backend represents the tuple of the [ host, port ].
76 * Different instances that share the same host and port tuple will use the same
77 * backend.
78 *
79 * The backend is actually in charge of performing lookups, resolving and
80 * updating the set of remote hosts based on the DNS resolution we've been
81 * provided, and taking care of things like shootdowns.
82 *
83 * The whole plugin itself maintains an event loop and a number of threads to
84 * service that event loop. On top of that event loop, we have a simple timer
85 * backend that ticks at one second intervals and performs various callbacks,
86 * such as idle query timers, DNS resolution, connection backoff, etc. Each of
87 * the remote hosts that we obtain is wrapped up in an svp_conn_t, which manages
88 * the connection state, reconnecting, etc.
89 *
90 * All in all, the general way that this all looks like is:
91 *
92 * +----------------------------+
93 * | Plugin Instance |
94 * | svp_t |
95 * | |
96 * | varpd_provider_handle_t * -+-> varpd handle
97 * | uint64_t ----+-> varpd ID
98 * | char * ----+-> remote host
99 * | uint16_t ----+-> remote port
100 * | svp_remote_t * ---+------+-> remote backend
101 * +---------------------+------+
102 * |
103 * v
104 * +----------------------+ +----------------+
105 * | Remote backend |------------------>| Remove Backend |---> ...
106 * | svp_remote_t | | svp_remote_t |
107 * | | +----------------+
108 * | svp_remote_state_t --+-> state flags
109 * | svp_degrade_state_t -+-> degraded reason
110 * | struct addrinfo * --+-> resolved hosts
111 * | uint_t ---+-> active hosts
112 * | uint_t ---+-> DNS generation
113 * | uint_t ---+-> Reference count
114 * | uint_t ---+-> active conns
115 * | uint_t ---+-> degraded conns
116 * | list_t ---+---+-> connection list
117 * +------------------+---+
118 * |
119 * +------------------------------+-----------------+
120 * | | |
121 * v v v
122 * +-------------------+ +----------------
123 * | SVP Connection | | SVP connection | ...
124 * | svp_conn_t | | svp_conn_t |
125 * | | +----------------+
126 * | svp_event_t ----+-> event loop handle
127 * | svp_timer_t ----+-> backoff timer
128 * | svp_timer_t ----+-> query timer
129 * | int ----+-> socket fd
130 * | uint_t ----+-> generation
131 * | uint_t ----+-> current backoff
132 * | svp_conn_flags_t -+-> connection flags
133 * | svp_conn_state_t -+-> connection state
134 * | svp_conn_error_t -+-> connection error
135 * | int ---+-> last errrno
136 * | hrtime_t ---+-> activity timestamp
137 * | svp_conn_out_t ---+-> outgoing data state
138 * | svp_conn_in_t ---+-> incoming data state
139 * | list_t ---+--+-> active queries
140 * +----------------+--+
141 * |
142 * +----------------------------------+-----------------+
143 * | | |
144 * v v v
145 * +--------------------+ +-------------+
146 * | SVP Query | | SVP Query | ...
147 * | svp_query_t | | svp_query_t |
148 * | | +-------------+
149 * | svp_query_f ---+-> callback function
150 * | void * ---+-> callback arg
151 * | svp_query_state_t -+-> state flags
152 * | svp_req_t ---+-> svp prot. header
153 * | svp_query_data_t --+-> read data
154 * | svp_query_data_t --+-> write data
155 * | svp_status_t ---+-> request status
156 * +--------------------+
157 *
158 * The svp_t is the instance that we assoicate with varpd. The instance itself
159 * maintains properties and then when it's started associates with an
160 * svp_remote_t, which is the remote backend. The remote backend itself,
161 * maintains the DNS state and spins up and downs connections based on the
162 * results from DNS. By default, we query DNS every 30 seconds. For more on the
163 * connection life cycle, see the next section.
164 *
165 * By default, each connection maintains its own back off timer and list of
166 * queries it's servicing. Only one request is generally outstanding at a time
167 * and requests are round robined across the various connections.
168 *
169 * The query itself represents the svp request that's going on and keep track of
170 * its state and is a place for data that's read and written to as part of the
171 * request.
172 *
173 * Connections maintain a query timer such that if we have not received data on
174 * a socket for a certain amount of time, we kill that socket and begin a
175 * reconnection cycle with backoff.
176 *
177 * ------------------------
178 * Connection State Machine
179 * ------------------------
180 *
181 * We have a connection pool that's built upon DNS records. DNS describes the
182 * membership of the set of remote peers that make up our pool and we maintain
183 * one connection to each of them. In addition, we maintain an exponential
184 * backoff for each peer and will attempt to reconect immediately before backing
185 * off. The following are the valid states that a connection can be in:
186 *
187 * SVP_CS_ERROR An OS error has occurred on this connection,
188 * such as failure to create a socket or associate
189 * the socket with an event port. We also
190 * transition all connections to this state before
191 * we destroy them.
192 *
193 * SVP_CS_INITIAL This is the initial state of a connection, all
194 * that should exist is an unbound socket.
195 *
196 * SVP_CS_CONNECTING A call to connect has been made and we are
197 * polling for it to complete.
198 *
199 * SVP_CS_BACKOFF A connect attempt has failed and we are
200 * currently backing off, waiting to try again.
201 *
202 * SVP_CS_ACTIVE We have successfully connected to the remote
203 * system.
204 *
205 * SVP_CS_WINDDOWN This connection is going to valhalla. In other
206 * words, a previously active connection is no
207 * longer valid in DNS, so we should curb our use
208 * of it, and reap it as soon as we have other
209 * active connections.
210 *
211 * The following diagram attempts to describe our state transition scheme, and
212 * when we transition from one state to the next.
213 *
214 * |
215 * * New remote IP from DNS resolution,
216 * | not currently active in the system.
217 * |
218 * v Socket Error,
219 * +----------------+ still in DNS
220 * +----------------<---| SVP_CS_INITIAL |<----------------------*-----+
221 * | +----------------+ |
222 * | System | |
223 * | Connection . . . . . success * Successful |
224 * | failed . | connect() |
225 * | +----*---------+ | +-----------*--+ |
226 * | | | | | | |
227 * | V ^ v ^ V ^
228 * | +----------------+ +-------------------+ +---------------+
229 * +<-| SVP_CS_BACKOFF | | SVP_CS_CONNECTING | | SVP_CS_ACTIVE |
230 * | +----------------+ +-------------------+ +---------------+
231 * | V ^ V V V
232 * | Backoff wait * | | | * Removed
233 * v interval +--------------+ +-----------------<-----+ | from DNS
234 * | finished | |
235 * | V |
236 * | | V
237 * | | +-----------------+
238 * +----------------+----------<-----+-------<----| SVP_CS_WINDDOWN |
239 * | +-----------------+
240 * * . . . Fatal system, not
241 * | socket error or
242 * V quiesced after
243 * +--------------+ removal from DNS
244 * | SVP_CS_ERROR |
245 * +--------------+
246 * |
247 * * . . . Removed from DNS
248 * v
249 * +------------+
250 * | Connection |
251 * | Destroyed |
252 * +------------+
253 *
254 * --------------------------
255 * Connection Event Injection
256 * --------------------------
257 *
258 * For each connection that exists in the system, we have a timer in place that
259 * is in charge of performing timeout activity. It fires once every thirty
260 * seconds or so for a given connection and checks to ensure that we have had
261 * activity for the most recent query on the connection. If not, it terminates
262 * the connection. This is important as if we have sent all our data and are
263 * waiting for the remote end to reply, without enabling something like TCP
264 * keep-alive, we will not be notified that anything that has happened to the
265 * remote connection, for example a panic. In addition, this also protects
266 * against a server that is up, but a portolan that is not making forward
267 * progress.
268 *
269 * When a timeout occurs, we first try to disassociate any active events, which
270 * by definition must exist. Once that's done, we inject a port source user
271 * event. Now, there is a small gotcha. Let's assume for a moment that we have a
272 * pathological portolan. That means that it knows to inject activity right at
273 * the time out window. That means, that the event may be disassociated before
274 * we could get to it. If that's the case, we must _not_ inject the user event
275 * and instead, we'll let the pending event take care of it. We know that the
276 * pending event hasn't hit the main part of the loop yet, otherwise, it would
277 * have released the lock protecting our state and associated the event.
278 *
279 * ------------
280 * Notes on DNS
281 * ------------
282 *
283 * Unfortunately, doing host name resolution in a way that allows us to leverage
284 * the system's resolvers and the system's caching, require us to make blocking
285 * calls in libc via getaddrinfo(3SOCKET). If we can't reach a given server,
286 * that will tie up a thread for quite some time. To work around that fact,
287 * we're going to create a fixed number of threads and we'll use them to service
288 * our DNS requests. While this isn't ideal, until we have a sane means of
289 * integrating a DNS resolution into an event loop with say portfs, it's not
290 * going to be a fun day no matter what we do.
291 *
292 * ------
293 * Timers
294 * ------
295 *
296 * We maintain a single timer based on CLOCK_REALTIME. It's designed to fire
297 * every second. While we'd rather use CLOCK_HIGHRES just to alleviate ourselves
298 * from timer drift; however, as zones may not actually have CLOCK_HIGHRES
299 * access, we don't want them to end up in there. The timer itself is just a
300 * simple avl tree sorted by expiration time, which is stored as a tick in the
301 * future, a tick is just one second.
302 *
303 * ----------
304 * Shootdowns
305 * ----------
306 *
307 * As part of the protocol, we need to be able to handle shootdowns that inform
308 * us some of the information in the system is out of date. This information
309 * needs to be processed promptly; however, the information is hopefully going
310 * to be relatively infrequent relative to the normal flow of information.
311 *
312 * The shoot down information needs to be done on a per-backend basis. The
313 * general design is that we'll have a single query for this which can fire on a
314 * 5-10s period, we randmoize the latter part to give us a bit more load
315 * spreading. If we complete because there's no work to do, then we wait the
316 * normal period. If we complete, but there's still work to do, we'll go again
317 * after a second.
318 *
319 * A shootdown has a few different parts. We first receive a list of items to
320 * shootdown. After performing all of those, we need to acknowledge them. When
321 * that's been done successfully, we can move onto the next part. From a
322 * protocol perspective, we make a SVP_R_LOG_REQ, we get a reply, and then after
323 * processing them, send an SVP_R_LOG_RM. Only once that's been acked do we
324 * continue.
325 *
326 * However, one of the challenges that we have is that these invalidations are
327 * just that, an invalidation. For a virtual layer two request, that's fine,
328 * because the kernel supports that. However, for virtual layer three
329 * invalidations, we have a bit more work to do. These protocols, ARP and NDP,
330 * don't really support a notion of just an invalidation, instead you have to
331 * inject the new data in a gratuitous fashion.
332 *
333 * To that end, what we instead do is when we receive a VL3 invalidation, we
334 * turn that info a VL3 request. We hold the general request as outstanding
335 * until we receive all of the callbacks for the VL3 invalidations, at which
336 * point we go through and do the log removal request.
337 */
338
339 #include <umem.h>
340 #include <errno.h>
341 #include <stdlib.h>
342 #include <sys/types.h>
343 #include <sys/socket.h>
344 #include <netinet/in.h>
345 #include <arpa/inet.h>
346 #include <libnvpair.h>
347 #include <strings.h>
348 #include <string.h>
349 #include <assert.h>
350 #include <unistd.h>
351
352 #include <libvarpd_provider.h>
353 #include "libvarpd_svp.h"
354
355 bunyan_logger_t *svp_bunyan;
356 static int svp_defport = 1296;
357 static int svp_defuport = 1339;
358 static umem_cache_t *svp_lookup_cache;
359
360 typedef enum svp_lookup_type {
361 SVP_L_UNKNOWN = 0x0,
362 SVP_L_VL2 = 0x1,
363 SVP_L_VL3 = 0x2,
364 SVP_L_RVL3 = 0x3
365 } svp_lookup_type_t;
366
367 typedef struct svp_lookup {
368 int svl_type;
369 union {
370 struct svl_lookup_vl2 {
371 varpd_query_handle_t *svl_handle;
372 overlay_target_point_t *svl_point;
373 } svl_vl2;
374 struct svl_lookup_vl3 {
375 varpd_arp_handle_t *svl_vah;
376 uint8_t *svl_out;
377 } svl_vl3;
378 struct svl_lookup_rvl3 {
379 varpd_query_handle_t *svl_handle;
380 overlay_target_point_t *svl_point;
381 overlay_target_route_t *svl_route;
382 } svl_rvl3;
383 } svl_u;
384 svp_query_t svl_query;
385 } svp_lookup_t;
386
387 static const char *varpd_svp_props[] = {
388 "svp/host",
389 "svp/port",
390 "svp/underlay_ip",
391 "svp/underlay_port",
392 "svp/dcid",
393 "svp/router_mac"
394 };
395
396 static const uint8_t svp_bcast[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
397
398 int
399 svp_comparator(const void *l, const void *r)
400 {
401 const svp_t *ls = l;
402 const svp_t *rs = r;
403
404 if (ls->svp_vid > rs->svp_vid)
405 return (1);
406 if (ls->svp_vid < rs->svp_vid)
407 return (-1);
408 return (0);
409 }
410
411 static void
412 svp_vl2_lookup_cb(svp_t *svp, svp_status_t status, const struct in6_addr *uip,
413 const uint16_t uport, void *arg)
414 {
415 svp_lookup_t *svl = arg;
416 overlay_target_point_t *otp;
417
418 assert(svp != NULL);
419 assert(arg != NULL);
420
421 if (status != SVP_S_OK) {
422 libvarpd_plugin_query_reply(svl->svl_u.svl_vl2.svl_handle,
423 VARPD_LOOKUP_DROP);
424 umem_cache_free(svp_lookup_cache, svl);
425 return;
426 }
427
428 otp = svl->svl_u.svl_vl2.svl_point;
429 bcopy(uip, &otp->otp_ip, sizeof (struct in6_addr));
430 otp->otp_port = uport;
431 libvarpd_plugin_query_reply(svl->svl_u.svl_vl2.svl_handle,
432 VARPD_LOOKUP_OK);
433 umem_cache_free(svp_lookup_cache, svl);
434 }
435
436 static void
437 svp_vl3_lookup_cb(svp_t *svp, svp_status_t status, const uint8_t *vl2mac,
438 const struct in6_addr *uip, const uint16_t uport, void *arg)
439 {
440 overlay_target_point_t point;
441 svp_lookup_t *svl = arg;
442
443 assert(svp != NULL);
444 assert(svl != NULL);
445
446 if (status != SVP_S_OK) {
447 libvarpd_plugin_arp_reply(svl->svl_u.svl_vl3.svl_vah,
448 VARPD_LOOKUP_DROP);
449 umem_cache_free(svp_lookup_cache, svl);
450 return;
451 }
452
453 /* Inject the L2 mapping before the L3 */
454 bcopy(uip, &point.otp_ip, sizeof (struct in6_addr));
455 point.otp_port = uport;
456 libvarpd_inject_varp(svp->svp_hdl, vl2mac, &point);
457
458 bcopy(vl2mac, svl->svl_u.svl_vl3.svl_out, ETHERADDRL);
459 libvarpd_plugin_arp_reply(svl->svl_u.svl_vl3.svl_vah,
460 VARPD_LOOKUP_OK);
461 umem_cache_free(svp_lookup_cache, svl);
462 }
463
464 static void
465 svp_vl2_invalidate_cb(svp_t *svp, const uint8_t *vl2mac)
466 {
467 libvarpd_inject_varp(svp->svp_hdl, vl2mac, NULL);
468 }
469
470 static void
471 svp_vl3_inject_cb(svp_t *svp, const uint16_t vlan, const struct in6_addr *vl3ip,
472 const uint8_t *vl2mac, const uint8_t *targmac)
473 {
474 struct in_addr v4;
475
476 /*
477 * At the moment we don't support any IPv6 related log entries, this
478 * will change soon as we develop a bit more of the IPv6 related
479 * infrastructure so we can properly test the injection.
480 */
481 if (IN6_IS_ADDR_V4MAPPED(vl3ip) == 0) {
482 return;
483 } else {
484 IN6_V4MAPPED_TO_INADDR(vl3ip, &v4);
485 if (targmac == NULL)
486 targmac = svp_bcast;
487 libvarpd_inject_arp(svp->svp_hdl, vlan, vl2mac, &v4, targmac);
488 }
489 }
490
491 /* ARGSUSED */
492 static void
493 svp_shootdown_cb(svp_t *svp, const uint8_t *vl2mac, const struct in6_addr *uip,
494 const uint16_t uport)
495 {
496 /*
497 * We should probably do a conditional invlaidation here.
498 */
499 libvarpd_inject_varp(svp->svp_hdl, vl2mac, NULL);
500 }
501
502 static void
503 svp_rvl3_lookup_cb(svp_t *svp, svp_status_t status, /* XXX KEBE SAYS MORE */
504 void *arg)
505 {
506 svp_lookup_t *svl = arg;
507 overlay_target_point_t *otp;
508 overlay_target_route_t *otr;
509
510 if (status != SVP_S_OK) {
511 libvarpd_plugin_query_reply(svl->svl_u.svl_rvl3.svl_handle,
512 VARPD_LOOKUP_DROP);
513 umem_cache_free(svp_lookup_cache, svl);
514 return;
515 }
516
517 otp = svl->svl_u.svl_rvl3.svl_point;
518 otr = svl->svl_u.svl_rvl3.svl_route;
519 /* XXX KEBE SAYS FILL ME IN! */
520
521 libvarpd_plugin_query_reply(svl->svl_u.svl_rvl3.svl_handle,
522 VARPD_LOOKUP_OK);
523 umem_cache_free(svp_lookup_cache, svl);
524 }
525
526 static svp_cb_t svp_defops = {
527 svp_vl2_lookup_cb,
528 svp_vl3_lookup_cb,
529 svp_vl2_invalidate_cb,
530 svp_vl3_inject_cb,
531 svp_shootdown_cb,
532 svp_rvl3_lookup_cb,
533 };
534
535 static boolean_t
536 varpd_svp_valid_dest(overlay_plugin_dest_t dest)
537 {
538 if (dest != (OVERLAY_PLUGIN_D_IP | OVERLAY_PLUGIN_D_PORT))
539 return (B_FALSE);
540
541 return (B_TRUE);
542 }
543
544 static int
545 varpd_svp_create(varpd_provider_handle_t *hdl, void **outp,
546 overlay_plugin_dest_t dest)
547 {
548 int ret;
549 svp_t *svp;
550
551 if (varpd_svp_valid_dest(dest) == B_FALSE)
552 return (ENOTSUP);
553
554 svp = umem_zalloc(sizeof (svp_t), UMEM_DEFAULT);
555 if (svp == NULL)
556 return (ENOMEM);
557
558 if ((ret = mutex_init(&svp->svp_lock, USYNC_THREAD | LOCK_ERRORCHECK,
559 NULL)) != 0) {
560 umem_free(svp, sizeof (svp_t));
561 return (ret);
562 }
563
564 svp->svp_port = svp_defport;
565 svp->svp_uport = svp_defuport;
566 svp->svp_cb = svp_defops;
567 svp->svp_hdl = hdl;
568 svp->svp_vid = libvarpd_plugin_vnetid(svp->svp_hdl);
569 *outp = svp;
570 return (0);
571 }
572
573 static int
574 varpd_svp_start(void *arg)
575 {
576 int ret;
577 svp_remote_t *srp;
578 svp_t *svp = arg;
579
580 mutex_enter(&svp->svp_lock);
581 if (svp->svp_host == NULL || svp->svp_port == 0 ||
582 svp->svp_huip == B_FALSE || svp->svp_uport == 0) {
583 mutex_exit(&svp->svp_lock);
584 return (EAGAIN);
585 }
586 mutex_exit(&svp->svp_lock);
587
588 if ((ret = svp_remote_find(svp->svp_host, svp->svp_port, &svp->svp_uip,
589 &srp)) != 0)
590 return (ret);
591
592 if ((ret = svp_remote_attach(srp, svp)) != 0) {
593 svp_remote_release(srp);
594 return (ret);
595 }
596
597 return (0);
598 }
599
600 static void
601 varpd_svp_stop(void *arg)
602 {
603 svp_t *svp = arg;
604
605 svp_remote_detach(svp);
606 }
607
608 static void
609 varpd_svp_destroy(void *arg)
610 {
611 svp_t *svp = arg;
612
613 if (svp->svp_host != NULL)
614 umem_free(svp->svp_host, strlen(svp->svp_host) + 1);
615
616 if (mutex_destroy(&svp->svp_lock) != 0)
617 libvarpd_panic("failed to destroy svp_t`svp_lock");
618
619 umem_free(svp, sizeof (svp_t));
620 }
621
622 static void
623 varpd_svp_lookup_l3(svp_t *svp, varpd_query_handle_t *vqh,
624 const overlay_targ_lookup_t *otl, overlay_target_point_t *otp,
625 overlay_target_route_t *otr)
626 {
627 svp_lookup_t *slp;
628 uint32_t type;
629 const struct in6_addr *src = &otl->otl_addru.otlu_l3.otl3_srcip,
630 *dst = &otl->otl_addru.otlu_l3.otl3_dstip;
631
632 /*
633 * otl is an L3 request, so we have src/dst IPs for the inner packet.
634 * We also have the vlan.
635 *
636 * Assume kernel's overlay module is caching well, so we are directly
637 * going to query (i.e. no caching up here of actual destinations).
638 *
639 * Our existing remote sever (svp_remote), but with the new message
640 * SVP_R_REMOTE_VL3_REQ. Our naming of these functions already has
641 * "remote" in it, but we'll use "rvl3" instead of "vl3".
642 */
643
644 /* XXX KEBE SAYS DO SOME otl verification too... */
645 if (IN6_IS_ADDR_V4MAPPED(src)) {
646 if (!IN6_IS_ADDR_V4MAPPED(dst)) {
647 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
648 return;
649 }
650 type = SVP_VL3_IP;
651 } else {
652 if (IN6_IS_ADDR_V4MAPPED(dst)) {
653 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
654 return;
655 }
656 type = SVP_VL3_IPV6;
657 }
658
659 slp = umem_cache_alloc(svp_lookup_cache, UMEM_DEFAULT);
660 if (slp == NULL) {
661 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
662 return;
663 }
664
665 slp->svl_type = SVP_L_RVL3;
666 slp->svl_u.svl_rvl3.svl_handle = vqh;
667 slp->svl_u.svl_rvl3.svl_point = otp;
668 slp->svl_u.svl_rvl3.svl_route = otr;
669
670 /* XXX KEBE SAYS FILL IN ARGS PROPERLY... */
671 svp_remote_rvl3_lookup(svp, &slp->svl_query, src, dst, type,
672 otl->otl_vnetid, (uint16_t)otl->otl_vlan, slp);
673 }
674
675 static void
676 varpd_svp_lookup(void *arg, varpd_query_handle_t *vqh,
677 const overlay_targ_lookup_t *otl, overlay_target_point_t *otp,
678 overlay_target_route_t *otr)
679 {
680 svp_lookup_t *slp;
681 svp_t *svp = arg;
682
683 /*
684 * Shuffle off L3 lookups to their own codepath.
685 */
686 if (otl->otl_l3req) {
687 varpd_svp_lookup_l3(svp, vqh, otl, otp, otr);
688 return;
689 }
690 /*
691 * At this point, the traditional overlay_target_point_t is all that
692 * needs filling in. Zero-out the otr for safety.
693 */
694 bzero(otr, sizeof (*otr));
695
696
697 /*
698 * Check if this is something that we need to proxy, eg. arp or ndp.
699 */
700 if (otl->otl_addru.otlu_l2.otl2_sap == ETHERTYPE_ARP) {
701 libvarpd_plugin_proxy_arp(svp->svp_hdl, vqh, otl);
702 return;
703 }
704
705 if (otl->otl_addru.otlu_l2.otl2_dstaddr[0] == 0x33 &&
706 otl->otl_addru.otlu_l2.otl2_dstaddr[1] == 0x33) {
707 if (otl->otl_addru.otlu_l2.otl2_sap == ETHERTYPE_IPV6) {
708 libvarpd_plugin_proxy_ndp(svp->svp_hdl, vqh, otl);
709 } else {
710 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
711 }
712 return;
713 }
714
715 /*
716 * Watch out for various multicast and broadcast addresses. We've
717 * already taken care of the IPv6 range above. Now we just need to
718 * handle broadcast and if the multicast bit is set, lowest bit of the
719 * first octet of the MAC, then we drop it now.
720 */
721 if (bcmp(otl->otl_addru.otlu_l2.otl2_dstaddr, svp_bcast,
722 ETHERADDRL) == 0 ||
723 (otl->otl_addru.otlu_l2.otl2_dstaddr[0] & 0x01) == 0x01) {
724 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
725 return;
726 }
727
728 /*
729 * If we have a failure to allocate memory for this, that's not good.
730 * However, telling the kernel to just drop this packet is much better
731 * than the alternative at this moment. At least we'll try again and we
732 * may have something more available to us in a little bit.
733 */
734 slp = umem_cache_alloc(svp_lookup_cache, UMEM_DEFAULT);
735 if (slp == NULL) {
736 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
737 return;
738 }
739
740 slp->svl_type = SVP_L_VL2;
741 slp->svl_u.svl_vl2.svl_handle = vqh;
742 slp->svl_u.svl_vl2.svl_point = otp;
743
744 svp_remote_vl2_lookup(svp, &slp->svl_query,
745 otl->otl_addru.otlu_l2.otl2_dstaddr, slp);
746 }
747
748 /* ARGSUSED */
749 static int
750 varpd_svp_nprops(void *arg, uint_t *nprops)
751 {
752 *nprops = sizeof (varpd_svp_props) / sizeof (char *);
753 return (0);
754 }
755
756 /* ARGSUSED */
757 static int
758 varpd_svp_propinfo(void *arg, uint_t propid, varpd_prop_handle_t *vph)
759 {
760 switch (propid) {
761 case 0:
762 /* svp/host */
763 libvarpd_prop_set_name(vph, varpd_svp_props[0]);
764 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
765 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_STRING);
766 libvarpd_prop_set_nodefault(vph);
767 break;
768 case 1:
769 /* svp/port */
770 libvarpd_prop_set_name(vph, varpd_svp_props[1]);
771 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
772 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_UINT);
773 (void) libvarpd_prop_set_default(vph, &svp_defport,
774 sizeof (svp_defport));
775 libvarpd_prop_set_range_uint32(vph, 1, UINT16_MAX);
776 break;
777 case 2:
778 /* svp/underlay_ip */
779 libvarpd_prop_set_name(vph, varpd_svp_props[2]);
780 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
781 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_IP);
782 libvarpd_prop_set_nodefault(vph);
783 break;
784 case 3:
785 /* svp/underlay_port */
786 libvarpd_prop_set_name(vph, varpd_svp_props[3]);
787 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
788 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_UINT);
789 (void) libvarpd_prop_set_default(vph, &svp_defuport,
790 sizeof (svp_defuport));
791 libvarpd_prop_set_range_uint32(vph, 1, UINT16_MAX);
792 break;
793 case 4:
794 /* svp/dcid */
795 libvarpd_prop_set_name(vph, varpd_svp_props[4]);
796 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
797 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_UINT);
798 libvarpd_prop_set_nodefault(vph);
799 /* XXX KEBE ASKS should I just set high to UINT32_MAX? */
800 libvarpd_prop_set_range_uint32(vph, 1, UINT32_MAX - 1);
801 break;
802 case 5:
803 /* svp/router_mac */
804 libvarpd_prop_set_name(vph, varpd_svp_props[5]);
805 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
806 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_ETHER);
807 libvarpd_prop_set_nodefault(vph);
808 break;
809 default:
810 return (EINVAL);
811 }
812 return (0);
813 }
814
815 static int
816 varpd_svp_getprop(void *arg, const char *pname, void *buf, uint32_t *sizep)
817 {
818 svp_t *svp = arg;
819
820 /* svp/host */
821 if (strcmp(pname, varpd_svp_props[0]) == 0) {
822 size_t len;
823
824 mutex_enter(&svp->svp_lock);
825 if (svp->svp_host == NULL) {
826 *sizep = 0;
827 } else {
828 len = strlen(svp->svp_host) + 1;
829 if (*sizep < len) {
830 mutex_exit(&svp->svp_lock);
831 return (EOVERFLOW);
832 }
833 *sizep = len;
834 (void) strlcpy(buf, svp->svp_host, *sizep);
835 }
836 mutex_exit(&svp->svp_lock);
837 return (0);
838 }
839
840 /* svp/port */
841 if (strcmp(pname, varpd_svp_props[1]) == 0) {
842 uint64_t val;
843
844 if (*sizep < sizeof (uint64_t))
845 return (EOVERFLOW);
846
847 mutex_enter(&svp->svp_lock);
848 if (svp->svp_port == 0) {
849 *sizep = 0;
850 } else {
851 val = svp->svp_port;
852 bcopy(&val, buf, sizeof (uint64_t));
853 *sizep = sizeof (uint64_t);
854 }
855 mutex_exit(&svp->svp_lock);
856 return (0);
857 }
858
859 /* svp/underlay_ip */
860 if (strcmp(pname, varpd_svp_props[2]) == 0) {
861 if (*sizep < sizeof (struct in6_addr))
862 return (EOVERFLOW);
863 mutex_enter(&svp->svp_lock);
864 if (svp->svp_huip == B_FALSE) {
865 *sizep = 0;
866 } else {
867 bcopy(&svp->svp_uip, buf, sizeof (struct in6_addr));
868 *sizep = sizeof (struct in6_addr);
869 }
870 mutex_exit(&svp->svp_lock);
871 return (0);
872 }
873
874 /* svp/underlay_port */
875 if (strcmp(pname, varpd_svp_props[3]) == 0) {
876 uint64_t val;
877
878 if (*sizep < sizeof (uint64_t))
879 return (EOVERFLOW);
880
881 mutex_enter(&svp->svp_lock);
882 if (svp->svp_uport == 0) {
883 *sizep = 0;
884 } else {
885 val = svp->svp_uport;
886 bcopy(&val, buf, sizeof (uint64_t));
887 *sizep = sizeof (uint64_t);
888 }
889
890 mutex_exit(&svp->svp_lock);
891 return (0);
892 }
893
894 /* svp/dcid */
895 if (strcmp(pname, varpd_svp_props[4]) == 0) {
896 uint64_t val;
897
898 if (*sizep < sizeof (uint64_t))
899 return (EOVERFLOW);
900
901 mutex_enter(&svp->svp_lock);
902 if (svp->svp_uport == 0) {
903 *sizep = 0;
904 } else {
905 val = svp->svp_dcid;
906 bcopy(&val, buf, sizeof (uint64_t));
907 *sizep = sizeof (uint64_t);
908 }
909
910 mutex_exit(&svp->svp_lock);
911 return (0);
912 }
913
914 /* svp/router_mac */
915 if (strcmp(pname, varpd_svp_props[5]) == 0) {
916 if (*sizep < ETHERADDRL)
917 return (EOVERFLOW);
918 mutex_enter(&svp->svp_lock);
919
920 if (ether_is_zero(&svp->svp_router_mac)) {
921 *sizep = 0;
922 } else {
923 bcopy(&svp->svp_router_mac, buf, ETHERADDRL);
924 *sizep = ETHERADDRL;
925 }
926
927 mutex_exit(&svp->svp_lock);
928 return (0);
929 }
930 return (EINVAL);
931 }
932
933 static int
934 varpd_svp_setprop(void *arg, const char *pname, const void *buf,
935 const uint32_t size)
936 {
937 svp_t *svp = arg;
938
939 /* svp/host */
940 if (strcmp(pname, varpd_svp_props[0]) == 0) {
941 char *dup;
942 dup = umem_alloc(size, UMEM_DEFAULT);
943 (void) strlcpy(dup, buf, size);
944 if (dup == NULL)
945 return (ENOMEM);
946 mutex_enter(&svp->svp_lock);
947 if (svp->svp_host != NULL)
948 umem_free(svp->svp_host, strlen(svp->svp_host) + 1);
949 svp->svp_host = dup;
950 mutex_exit(&svp->svp_lock);
951 return (0);
952 }
953
954 /* svp/port */
955 if (strcmp(pname, varpd_svp_props[1]) == 0) {
956 const uint64_t *valp = buf;
957 if (size < sizeof (uint64_t))
958 return (EOVERFLOW);
959
960 if (*valp == 0 || *valp > UINT16_MAX)
961 return (EINVAL);
962
963 mutex_enter(&svp->svp_lock);
964 svp->svp_port = (uint16_t)*valp;
965 mutex_exit(&svp->svp_lock);
966 return (0);
967 }
968
969 /* svp/underlay_ip */
970 if (strcmp(pname, varpd_svp_props[2]) == 0) {
971 const struct in6_addr *ipv6 = buf;
972
973 if (size < sizeof (struct in6_addr))
974 return (EOVERFLOW);
975
976 if (IN6_IS_ADDR_V4COMPAT(ipv6))
977 return (EINVAL);
978
979 if (IN6_IS_ADDR_MULTICAST(ipv6))
980 return (EINVAL);
981
982 if (IN6_IS_ADDR_6TO4(ipv6))
983 return (EINVAL);
984
985 if (IN6_IS_ADDR_V4MAPPED(ipv6)) {
986 ipaddr_t v4;
987 IN6_V4MAPPED_TO_IPADDR(ipv6, v4);
988 if (IN_MULTICAST(v4))
989 return (EINVAL);
990 }
991
992 mutex_enter(&svp->svp_lock);
993 bcopy(buf, &svp->svp_uip, sizeof (struct in6_addr));
994 svp->svp_huip = B_TRUE;
995 mutex_exit(&svp->svp_lock);
996 return (0);
997 }
998
999 /* svp/underlay_port */
1000 if (strcmp(pname, varpd_svp_props[3]) == 0) {
1001 const uint64_t *valp = buf;
1002 if (size < sizeof (uint64_t))
1003 return (EOVERFLOW);
1004
1005 if (*valp == 0 || *valp > UINT16_MAX)
1006 return (EINVAL);
1007
1008 mutex_enter(&svp->svp_lock);
1009 svp->svp_uport = (uint16_t)*valp;
1010 mutex_exit(&svp->svp_lock);
1011
1012 return (0);
1013 }
1014
1015 /* svp/dcid */
1016 if (strcmp(pname, varpd_svp_props[4]) == 0) {
1017 const uint64_t *valp = buf;
1018 if (size < sizeof (uint64_t))
1019 return (EOVERFLOW);
1020
1021 /* XXX KEBE ASKS, use UINT32_MAX instead? */
1022 if (*valp == 0 || *valp > UINT32_MAX - 1)
1023 return (EINVAL);
1024
1025 mutex_enter(&svp->svp_lock);
1026 svp->svp_dcid = (uint32_t)*valp;
1027 mutex_exit(&svp->svp_lock);
1028
1029 return (0);
1030 }
1031
1032 /* svp/router_mac */
1033 if (strcmp(pname, varpd_svp_props[5]) == 0) {
1034 if (size < ETHERADDRL)
1035 return (EOVERFLOW);
1036 mutex_enter(&svp->svp_lock);
1037 bcopy(buf, &svp->svp_router_mac, ETHERADDRL);
1038 mutex_exit(&svp->svp_lock);
1039 return (0);
1040 }
1041
1042 return (EINVAL);
1043 }
1044
1045 static int
1046 varpd_svp_save(void *arg, nvlist_t *nvp)
1047 {
1048 int ret;
1049 svp_t *svp = arg;
1050
1051 mutex_enter(&svp->svp_lock);
1052 /* svp/host */
1053 if (svp->svp_host != NULL) {
1054 if ((ret = nvlist_add_string(nvp, varpd_svp_props[0],
1055 svp->svp_host)) != 0) {
1056 mutex_exit(&svp->svp_lock);
1057 return (ret);
1058 }
1059 }
1060
1061 /* svp/port */
1062 if (svp->svp_port != 0) {
1063 if ((ret = nvlist_add_uint16(nvp, varpd_svp_props[1],
1064 svp->svp_port)) != 0) {
1065 mutex_exit(&svp->svp_lock);
1066 return (ret);
1067 }
1068 }
1069
1070 /* svp/underlay_ip */
1071 if (svp->svp_huip == B_TRUE) {
1072 char buf[INET6_ADDRSTRLEN];
1073
1074 if (inet_ntop(AF_INET6, &svp->svp_uip, buf, sizeof (buf)) ==
1075 NULL)
1076 libvarpd_panic("unexpected inet_ntop failure: %d",
1077 errno);
1078
1079 if ((ret = nvlist_add_string(nvp, varpd_svp_props[2],
1080 buf)) != 0) {
1081 mutex_exit(&svp->svp_lock);
1082 return (ret);
1083 }
1084 }
1085
1086 /* svp/underlay_port */
1087 if (svp->svp_uport != 0) {
1088 if ((ret = nvlist_add_uint16(nvp, varpd_svp_props[3],
1089 svp->svp_uport)) != 0) {
1090 mutex_exit(&svp->svp_lock);
1091 return (ret);
1092 }
1093 }
1094
1095 /* svp/dcid */
1096 if (svp->svp_dcid != 0) {
1097 if ((ret = nvlist_add_uint32(nvp, varpd_svp_props[4],
1098 svp->svp_dcid)) != 0) {
1099 mutex_exit(&svp->svp_lock);
1100 return (ret);
1101 }
1102 }
1103
1104 /* svp/router_mac */
1105 if (!ether_is_zero(&svp->svp_router_mac)) {
1106 char buf[ETHERADDRSTRL];
1107
1108 /* XXX KEBE SAYS See underlay_ip... */
1109 if (ether_ntoa_r(&svp->svp_router_mac, buf) == NULL) {
1110 libvarpd_panic("unexpected ether_ntoa_r failure: %d",
1111 errno);
1112 }
1113
1114 if ((ret = nvlist_add_string(nvp, varpd_svp_props[5],
1115 buf)) != 0) {
1116 mutex_exit(&svp->svp_lock);
1117 return (ret);
1118 }
1119 }
1120
1121 mutex_exit(&svp->svp_lock);
1122 return (0);
1123 }
1124
1125 static int
1126 varpd_svp_restore(nvlist_t *nvp, varpd_provider_handle_t *hdl,
1127 overlay_plugin_dest_t dest, void **outp)
1128 {
1129 int ret;
1130 svp_t *svp;
1131 char *ipstr, *hstr, *etherstr;
1132
1133 if (varpd_svp_valid_dest(dest) == B_FALSE)
1134 return (ENOTSUP);
1135
1136 if ((ret = varpd_svp_create(hdl, (void **)&svp, dest)) != 0)
1137 return (ret);
1138
1139 /* svp/host */
1140 if ((ret = nvlist_lookup_string(nvp, varpd_svp_props[0],
1141 &hstr)) != 0) {
1142 if (ret != ENOENT) {
1143 varpd_svp_destroy(svp);
1144 return (ret);
1145 }
1146 svp->svp_host = NULL;
1147 } else {
1148 size_t blen = strlen(hstr) + 1;
1149 svp->svp_host = umem_alloc(blen, UMEM_DEFAULT);
1150 (void) strlcpy(svp->svp_host, hstr, blen);
1151 }
1152
1153 /* svp/port */
1154 if ((ret = nvlist_lookup_uint16(nvp, varpd_svp_props[1],
1155 &svp->svp_port)) != 0) {
1156 if (ret != ENOENT) {
1157 varpd_svp_destroy(svp);
1158 return (ret);
1159 }
1160 svp->svp_port = 0;
1161 }
1162
1163 /* svp/underlay_ip */
1164 if ((ret = nvlist_lookup_string(nvp, varpd_svp_props[2],
1165 &ipstr)) != 0) {
1166 if (ret != ENOENT) {
1167 varpd_svp_destroy(svp);
1168 return (ret);
1169 }
1170 svp->svp_huip = B_FALSE;
1171 } else {
1172 ret = inet_pton(AF_INET6, ipstr, &svp->svp_uip);
1173 if (ret == -1) {
1174 assert(errno == EAFNOSUPPORT);
1175 libvarpd_panic("unexpected inet_pton failure: %d",
1176 errno);
1177 }
1178
1179 if (ret == 0) {
1180 varpd_svp_destroy(svp);
1181 return (EINVAL);
1182 }
1183 svp->svp_huip = B_TRUE;
1184 }
1185
1186 /* svp/underlay_port */
1187 if ((ret = nvlist_lookup_uint16(nvp, varpd_svp_props[3],
1188 &svp->svp_uport)) != 0) {
1189 if (ret != ENOENT) {
1190 varpd_svp_destroy(svp);
1191 return (ret);
1192 }
1193 svp->svp_uport = 0;
1194 }
1195
1196 /* svp/dcid */
1197 if ((ret = nvlist_lookup_uint32(nvp, varpd_svp_props[4],
1198 &svp->svp_dcid)) != 0) {
1199 if (ret != ENOENT) {
1200 varpd_svp_destroy(svp);
1201 return (ret);
1202 }
1203 svp->svp_dcid = 0;
1204 }
1205
1206 /* svp/router_mac */
1207 if ((ret = nvlist_lookup_string(nvp, varpd_svp_props[5],
1208 ðerstr)) != 0) {
1209 if (ret != ENOENT) {
1210 varpd_svp_destroy(svp);
1211 return (ret);
1212 }
1213 bzero(&svp->svp_router_mac, ETHERADDRL);
1214 } else if (ether_aton_r(etherstr, &svp->svp_router_mac) == NULL) {
1215 libvarpd_panic("unexpected ether_aton_r failure: %d", errno);
1216 }
1217
1218 svp->svp_hdl = hdl;
1219 *outp = svp;
1220 return (0);
1221 }
1222
1223 static void
1224 varpd_svp_arp(void *arg, varpd_arp_handle_t *vah, int type,
1225 const struct sockaddr *sock, uint8_t *out)
1226 {
1227 svp_t *svp = arg;
1228 svp_lookup_t *svl;
1229
1230 if (type != VARPD_QTYPE_ETHERNET) {
1231 libvarpd_plugin_arp_reply(vah, VARPD_LOOKUP_DROP);
1232 return;
1233 }
1234
1235 svl = umem_cache_alloc(svp_lookup_cache, UMEM_DEFAULT);
1236 if (svl == NULL) {
1237 libvarpd_plugin_arp_reply(vah, VARPD_LOOKUP_DROP);
1238 return;
1239 }
1240
1241 svl->svl_type = SVP_L_VL3;
1242 svl->svl_u.svl_vl3.svl_vah = vah;
1243 svl->svl_u.svl_vl3.svl_out = out;
1244 svp_remote_vl3_lookup(svp, &svl->svl_query, sock, svl);
1245 }
1246
1247 static const varpd_plugin_ops_t varpd_svp_ops = {
1248 0,
1249 varpd_svp_create,
1250 varpd_svp_start,
1251 varpd_svp_stop,
1252 varpd_svp_destroy,
1253 NULL,
1254 varpd_svp_lookup,
1255 varpd_svp_nprops,
1256 varpd_svp_propinfo,
1257 varpd_svp_getprop,
1258 varpd_svp_setprop,
1259 varpd_svp_save,
1260 varpd_svp_restore,
1261 varpd_svp_arp,
1262 NULL
1263 };
1264
1265 static int
1266 svp_bunyan_init(void)
1267 {
1268 int ret;
1269
1270 if ((ret = bunyan_init("svp", &svp_bunyan)) != 0)
1271 return (ret);
1272 ret = bunyan_stream_add(svp_bunyan, "stderr", BUNYAN_L_INFO,
1273 bunyan_stream_fd, (void *)STDERR_FILENO);
1274 if (ret != 0)
1275 bunyan_fini(svp_bunyan);
1276 return (ret);
1277 }
1278
1279 static void
1280 svp_bunyan_fini(void)
1281 {
1282 if (svp_bunyan != NULL)
1283 bunyan_fini(svp_bunyan);
1284 }
1285
1286 #pragma init(varpd_svp_init)
1287 static void
1288 varpd_svp_init(void)
1289 {
1290 int err;
1291 varpd_plugin_register_t *vpr;
1292
1293 if (svp_bunyan_init() != 0)
1294 return;
1295
1296 if ((err = svp_host_init()) != 0) {
1297 (void) bunyan_error(svp_bunyan, "failed to init host subsystem",
1298 BUNYAN_T_INT32, "error", err,
1299 BUNYAN_T_END);
1300 svp_bunyan_fini();
1301 return;
1302 }
1303
1304 svp_lookup_cache = umem_cache_create("svp_lookup",
1305 sizeof (svp_lookup_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
1306 if (svp_lookup_cache == NULL) {
1307 (void) bunyan_error(svp_bunyan,
1308 "failed to create svp_lookup cache",
1309 BUNYAN_T_INT32, "error", errno,
1310 BUNYAN_T_END);
1311 svp_bunyan_fini();
1312 return;
1313 }
1314
1315 if ((err = svp_event_init()) != 0) {
1316 (void) bunyan_error(svp_bunyan,
1317 "failed to init event subsystem",
1318 BUNYAN_T_INT32, "error", err,
1319 BUNYAN_T_END);
1320 svp_bunyan_fini();
1321 umem_cache_destroy(svp_lookup_cache);
1322 return;
1323 }
1324
1325 if ((err = svp_timer_init()) != 0) {
1326 (void) bunyan_error(svp_bunyan,
1327 "failed to init timer subsystem",
1328 BUNYAN_T_INT32, "error", err,
1329 BUNYAN_T_END);
1330 svp_event_fini();
1331 umem_cache_destroy(svp_lookup_cache);
1332 svp_bunyan_fini();
1333 return;
1334 }
1335
1336 if ((err = svp_remote_init()) != 0) {
1337 (void) bunyan_error(svp_bunyan,
1338 "failed to init remote subsystem",
1339 BUNYAN_T_INT32, "error", err,
1340 BUNYAN_T_END);
1341 svp_event_fini();
1342 umem_cache_destroy(svp_lookup_cache);
1343 svp_bunyan_fini();
1344 return;
1345 }
1346
1347 vpr = libvarpd_plugin_alloc(VARPD_CURRENT_VERSION, &err);
1348 if (vpr == NULL) {
1349 (void) bunyan_error(svp_bunyan,
1350 "failed to alloc varpd plugin",
1351 BUNYAN_T_INT32, "error", err,
1352 BUNYAN_T_END);
1353 svp_remote_fini();
1354 svp_event_fini();
1355 umem_cache_destroy(svp_lookup_cache);
1356 svp_bunyan_fini();
1357 return;
1358 }
1359
1360 vpr->vpr_mode = OVERLAY_TARGET_DYNAMIC;
1361 vpr->vpr_name = "svp";
1362 vpr->vpr_ops = &varpd_svp_ops;
1363
1364 if ((err = libvarpd_plugin_register(vpr)) != 0) {
1365 (void) bunyan_error(svp_bunyan,
1366 "failed to register varpd plugin",
1367 BUNYAN_T_INT32, "error", err,
1368 BUNYAN_T_END);
1369 svp_remote_fini();
1370 svp_event_fini();
1371 umem_cache_destroy(svp_lookup_cache);
1372 svp_bunyan_fini();
1373
1374 }
1375 libvarpd_plugin_free(vpr);
1376 }