1 /*
   2  * This file and its contents are supplied under the terms of the
   3  * Common Development and Distribution License ("CDDL"), version 1.0.
   4  * You may only use this file in accordance with the terms of version
   5  * 1.0 of the CDDL.
   6  *
   7  * A full copy of the text of the CDDL should have accompanied this
   8  * source.  A copy of the CDDL is also available via the Internet at
   9  * http://www.illumos.org/license/CDDL.
  10  */
  11 
  12 /*
  13  * Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved.
  14  * Copyright 2019 Joyent, Inc.
  15  * Copyright 2017 Tegile Systems, Inc.  All rights reserved.
  16  * Copyright 2020 RackTop Systems, Inc.
  17  * Copyright 2020 Ryan Zezeski
  18  */
  19 
  20 /*
  21  * i40e - Intel 10/40 Gb Ethernet driver
  22  *
  23  * The i40e driver is the main software device driver for the Intel 40 Gb family
  24  * of devices. Note that these devices come in many flavors with both 40 GbE
  25  * ports and 10 GbE ports. This device is the successor to the 82599 family of
  26  * devices (ixgbe).
  27  *
  28  * Unlike previous generations of Intel 1 GbE and 10 GbE devices, the 40 GbE
  29  * devices defined in the XL710 controller (previously known as Fortville) are a
  30  * rather different beast and have a small switch embedded inside of them. In
  31  * addition, the way that most of the programming is done has been overhauled.
  32  * As opposed to just using PCIe memory mapped registers, it also has an
  33  * administrative queue which is used to communicate with firmware running on
  34  * the chip.
  35  *
  36  * Each physical function in the hardware shows up as a device that this driver
  37  * will bind to. The hardware splits many resources evenly across all of the
  38  * physical functions present on the device, while other resources are instead
  39  * shared across the entire card and its up to the device driver to
  40  * intelligently partition them.
  41  *
  42  * ------------
  43  * Organization
  44  * ------------
  45  *
  46  * This driver is made up of several files which have their own theory
  47  * statements spread across them. We'll touch on the high level purpose of each
  48  * file here, and then we'll get into more discussion on how the device is
  49  * generally modelled with respect to the interfaces in illumos.
  50  *
  51  * i40e_gld.c: This file contains all of the bindings to MAC and the networking
  52  *             stack.
  53  *
  54  * i40e_intr.c: This file contains all of the interrupt service routines and
  55  *              contains logic to enable and disable interrupts on the hardware.
  56  *              It also contains the logic to map hardware resources such as the
  57  *              rings to and from interrupts and controls their ability to fire.
  58  *
  59  *              There is a big theory statement on interrupts present there.
  60  *
  61  * i40e_main.c: The file that you're currently in. It interfaces with the
  62  *              traditional OS DDI interfaces and is in charge of configuring
  63  *              the device.
  64  *
  65  * i40e_osdep.[ch]: These files contain interfaces and definitions needed to
  66  *                  work with Intel's common code for the device.
  67  *
  68  * i40e_stats.c: This file contains the general work and logic around our
  69  *               kstats. A theory statement on their organization and use of the
  70  *               hardware exists there.
  71  *
  72  * i40e_sw.h: This header file contains all of the primary structure definitions
  73  *            and constants that are used across the entire driver.
  74  *
  75  * i40e_transceiver.c: This file contains all of the logic for sending and
  76  *                     receiving data. It contains all of the ring and DMA
  77  *                     allocation logic, as well as, the actual interfaces to
  78  *                     send and receive data.
  79  *
  80  *                     A big theory statement on ring management, descriptors,
  81  *                     and how it ties into the OS is present there.
  82  *
  83  * --------------
  84  * General Design
  85  * --------------
  86  *
  87  * Before we go too far into the general way we've laid out data structures and
  88  * the like, it's worth taking some time to explain how the hardware is
  89  * organized. This organization informs a lot of how we do things at this time
  90  * in the driver.
  91  *
  92  * Each physical device consists of a number of one or more ports, which are
  93  * considered physical functions in the PCI sense and thus each get enumerated
  94  * by the system, resulting in an instance being created and attached to. While
  95  * there are many resources that are unique to each physical function eg.
  96  * instance of the device, there are many that are shared across all of them.
  97  * Several resources have an amount reserved for each Virtual Station Interface
  98  * (VSI) and then a static pool of resources, available for all functions on the
  99  * card.
 100  *
 101  * The most important resource in hardware are its transmit and receive queue
 102  * pairs (i40e_trqpair_t). These should be thought of as rings in GLDv3
 103  * parlance. There are a set number of these on each device; however, they are
 104  * statically partitioned among all of the different physical functions.
 105  *
 106  * 'Fortville' (the code name for this device family) is basically a switch. To
 107  * map MAC addresses and other things to queues, we end up having to create
 108  * Virtual Station Interfaces (VSIs) and establish forwarding rules that direct
 109  * traffic to a queue. A VSI owns a collection of queues and has a series of
 110  * forwarding rules that point to it. One way to think of this is to treat it
 111  * like MAC does a VNIC. When MAC refers to a group, a collection of rings and
 112  * classification resources, that is a VSI in i40e.
 113  *
 114  * The sets of VSIs is shared across the entire device, though there may be some
 115  * amount that are reserved to each PF. Because the GLDv3 does not let us change
 116  * the number of groups dynamically, we instead statically divide this amount
 117  * evenly between all the functions that exist. In addition, we have the same
 118  * problem with the mac address forwarding rules. There are a static number that
 119  * exist shared across all the functions.
 120  *
 121  * To handle both of these resources, what we end up doing is going through and
 122  * determining which functions belong to the same device. Nominally one might do
 123  * this by having a nexus driver; however, a prime requirement for a nexus
 124  * driver is identifying the various children and activating them. While it is
 125  * possible to get this information from NVRAM, we would end up duplicating a
 126  * lot of the PCI enumeration logic. Really, at the end of the day, the device
 127  * doesn't give us the traditional identification properties we want from a
 128  * nexus driver.
 129  *
 130  * Instead, we rely on some properties that are guaranteed to be unique. While
 131  * it might be tempting to leverage the PBA or serial number of the device from
 132  * NVRAM, there is nothing that says that two devices can't be mis-programmed to
 133  * have the same values in NVRAM. Instead, we uniquely identify a group of
 134  * functions based on their parent in the /devices tree, their PCI bus and PCI
 135  * function identifiers. Using either on their own may not be sufficient.
 136  *
 137  * For each unique PCI device that we encounter, we'll create a i40e_device_t.
 138  * From there, because we don't have a good way to tell the GLDv3 about sharing
 139  * resources between everything, we'll end up just dividing the resources
 140  * evenly between all of the functions. Longer term, if we don't have to declare
 141  * to the GLDv3 that these resources are shared, then we'll maintain a pool and
 142  * have each PF allocate from the pool in the device, thus if only two of four
 143  * ports are being used, for example, then all of the resources can still be
 144  * used.
 145  *
 146  * -------------------------------------------
 147  * Transmit and Receive Queue Pair Allocations
 148  * -------------------------------------------
 149  *
 150  * NVRAM ends up assigning each PF its own share of the transmit and receive LAN
 151  * queue pairs, we have no way of modifying it, only observing it. From there,
 152  * it's up to us to map these queues to VSIs and VFs. Since we don't support any
 153  * VFs at this time, we only focus on assignments to VSIs.
 154  *
 155  * At the moment, we used a static mapping of transmit/receive queue pairs to a
 156  * given VSI (eg. rings to a group). Though in the fullness of time, we want to
 157  * make this something which is fully dynamic and take advantage of documented,
 158  * but not yet available functionality for adding filters based on VXLAN and
 159  * other encapsulation technologies.
 160  *
 161  * -------------------------------------
 162  * Broadcast, Multicast, and Promiscuous
 163  * -------------------------------------
 164  *
 165  * As part of the GLDv3, we need to make sure that we can handle receiving
 166  * broadcast and multicast traffic. As well as enabling promiscuous mode when
 167  * requested. GLDv3 requires that all broadcast and multicast traffic be
 168  * retrieved by the default group, eg. the first one. This is the same thing as
 169  * the default VSI.
 170  *
 171  * To receieve broadcast traffic, we enable it through the admin queue, rather
 172  * than use one of our filters for it. For multicast traffic, we reserve a
 173  * certain number of the hash filters and assign them to a given PF. When we
 174  * exceed those, we then switch to using promiscuous mode for multicast traffic.
 175  *
 176  * More specifically, once we exceed the number of filters (indicated because
 177  * the i40e_t`i40e_resources.ifr_nmcastfilt ==
 178  * i40e_t`i40e_resources.ifr_nmcastfilt_used), we then instead need to toggle
 179  * promiscuous mode. If promiscuous mode is toggled then we keep track of the
 180  * number of MACs added to it by incrementing i40e_t`i40e_mcast_promisc_count.
 181  * That will stay enabled until that count reaches zero indicating that we have
 182  * only added multicast addresses that we have a corresponding entry for.
 183  *
 184  * Because MAC itself wants to toggle promiscuous mode, which includes both
 185  * unicast and multicast traffic, we go through and keep track of that
 186  * ourselves. That is maintained through the use of the i40e_t`i40e_promisc_on
 187  * member.
 188  *
 189  * --------------
 190  * VSI Management
 191  * --------------
 192  *
 193  * The PFs share 384 VSIs. The firmware creates one VSI per PF by default.
 194  * During chip start we retrieve the SEID of this VSI and assign it as the
 195  * default VSI for our VEB (one VEB per PF). We then add additional VSIs to
 196  * the VEB up to the determined number of rx groups: i40e_t`i40e_num_rx_groups.
 197  * We currently cap this number to I40E_GROUP_MAX to a) make sure all PFs can
 198  * allocate the same number of VSIs, and b) to keep the interrupt multiplexing
 199  * under control. In the future, when we improve the interrupt allocation, we
 200  * may want to revisit this cap to make better use of the available VSIs. The
 201  * VSI allocation and configuration can be found in i40e_chip_start().
 202  *
 203  * ----------------
 204  * Structure Layout
 205  * ----------------
 206  *
 207  * The following images relates the core data structures together. The primary
 208  * structure in the system is the i40e_t. It itself contains multiple rings,
 209  * i40e_trqpair_t's which contain the various transmit and receive data. The
 210  * receive data is stored outside of the i40e_trqpair_t and instead in the
 211  * i40e_rx_data_t. The i40e_t has a corresponding i40e_device_t which keeps
 212  * track of per-physical device state. Finally, for every active descriptor,
 213  * there is a corresponding control block, which is where the
 214  * i40e_rx_control_block_t and the i40e_tx_control_block_t come from.
 215  *
 216  *   +-----------------------+       +-----------------------+
 217  *   | Global i40e_t list    |       | Global Device list    |
 218  *   |                       |    +--|                       |
 219  *   | i40e_glist            |    |  | i40e_dlist            |
 220  *   +-----------------------+    |  +-----------------------+
 221  *       |                        v
 222  *       |      +------------------------+      +-----------------------+
 223  *       |      | Device-wide Structure  |----->| Device-wide Structure |--> ...
 224  *       |      | i40e_device_t          |      | i40e_device_t         |
 225  *       |      |                        |      +-----------------------+
 226  *       |      | dev_info_t *     ------+--> Parent in devices tree.
 227  *       |      | uint_t           ------+--> PCI bus number
 228  *       |      | uint_t           ------+--> PCI device number
 229  *       |      | uint_t           ------+--> Number of functions
 230  *       |      | i40e_switch_rsrcs_t ---+--> Captured total switch resources
 231  *       |      | list_t           ------+-------------+
 232  *       |      +------------------------+             |
 233  *       |                           ^                 |
 234  *       |                           +--------+        |
 235  *       |                                    |        v
 236  *       |  +---------------------------+     |   +-------------------+
 237  *       +->| GLDv3 Device, per PF      |-----|-->| GLDv3 Device (PF) |--> ...
 238  *          | i40e_t                    |     |   | i40e_t            |
 239  *          | **Primary Structure**     |     |   +-------------------+
 240  *          |                           |     |
 241  *          | i40e_device_t *         --+-----+
 242  *          | i40e_state_t            --+---> Device State
 243  *          | i40e_hw_t               --+---> Intel common code structure
 244  *          | mac_handle_t            --+---> GLDv3 handle to MAC
 245  *          | ddi_periodic_t          --+---> Link activity timer
 246  *          | i40e_vsi_t *            --+---> Array of VSIs
 247  *          | i40e_func_rsrc_t        --+---> Available hardware resources
 248  *          | i40e_switch_rsrc_t *    --+---> Switch resource snapshot
 249  *          | i40e_sdu                --+---> Current MTU
 250  *          | i40e_frame_max          --+---> Current HW frame size
 251  *          | i40e_uaddr_t *          --+---> Array of assigned unicast MACs
 252  *          | i40e_maddr_t *          --+---> Array of assigned multicast MACs
 253  *          | i40e_mcast_promisccount --+---> Active multicast state
 254  *          | i40e_promisc_on         --+---> Current promiscuous mode state
 255  *          | uint_t                  --+---> Number of transmit/receive pairs
 256  *          | i40e_rx_group_t *       --+---> Array of Rx groups
 257  *          | kstat_t *               --+---> PF kstats
 258  *          | i40e_pf_stats_t         --+---> PF kstat backing data
 259  *          | i40e_trqpair_t *        --+---------+
 260  *          +---------------------------+         |
 261  *                                                |
 262  *                                                v
 263  *  +-------------------------------+       +-----------------------------+
 264  *  | Transmit/Receive Queue Pair   |-------| Transmit/Receive Queue Pair |->...
 265  *  | i40e_trqpair_t                |       | i40e_trqpair_t              |
 266  *  + Ring Data Structure           |       +-----------------------------+
 267  *  |                               |
 268  *  | mac_ring_handle_t             +--> MAC RX ring handle
 269  *  | mac_ring_handle_t             +--> MAC TX ring handle
 270  *  | i40e_rxq_stat_t             --+--> RX Queue stats
 271  *  | i40e_txq_stat_t             --+--> TX Queue stats
 272  *  | uint32_t (tx ring size)       +--> TX Ring Size
 273  *  | uint32_t (tx free list size)  +--> TX Free List Size
 274  *  | i40e_dma_buffer_t     --------+--> TX Descriptor ring DMA
 275  *  | i40e_tx_desc_t *      --------+--> TX descriptor ring
 276  *  | volatile unt32_t *            +--> TX Write back head
 277  *  | uint32_t               -------+--> TX ring head
 278  *  | uint32_t               -------+--> TX ring tail
 279  *  | uint32_t               -------+--> Num TX desc free
 280  *  | i40e_tx_control_block_t *   --+--> TX control block array  ---+
 281  *  | i40e_tx_control_block_t **  --+--> TCB work list          ----+
 282  *  | i40e_tx_control_block_t **  --+--> TCB free list           ---+
 283  *  | uint32_t               -------+--> Free TCB count             |
 284  *  | i40e_rx_data_t *       -------+--+                            v
 285  *  +-------------------------------+  |          +---------------------------+
 286  *                                     |          | Per-TX Frame Metadata     |
 287  *                                     |          | i40e_tx_control_block_t   |
 288  *                +--------------------+          |                           |
 289  *                |           mblk to transmit <--+---      mblk_t *          |
 290  *                |           type of transmit <--+---      i40e_tx_type_t    |
 291  *                |              TX DMA handle <--+---      ddi_dma_handle_t  |
 292  *                v              TX DMA buffer <--+---      i40e_dma_buffer_t |
 293  *    +------------------------------+            +---------------------------+
 294  *    | Core Receive Data            |
 295  *    | i40e_rx_data_t               |
 296  *    |                              |
 297  *    | i40e_dma_buffer_t          --+--> RX descriptor DMA Data
 298  *    | i40e_rx_desc_t             --+--> RX descriptor ring
 299  *    | uint32_t                   --+--> Next free desc.
 300  *    | i40e_rx_control_block_t *  --+--> RX Control Block Array  ---+
 301  *    | i40e_rx_control_block_t ** --+--> RCB work list           ---+
 302  *    | i40e_rx_control_block_t ** --+--> RCB free list           ---+
 303  *    +------------------------------+                               |
 304  *                ^                                                  |
 305  *                |     +---------------------------+                |
 306  *                |     | Per-RX Frame Metadata     |<---------------+
 307  *                |     | i40e_rx_control_block_t   |
 308  *                |     |                           |
 309  *                |     | mblk_t *              ----+--> Received mblk_t data
 310  *                |     | uint32_t              ----+--> Reference count
 311  *                |     | i40e_dma_buffer_t     ----+--> Receive data DMA info
 312  *                |     | frtn_t                ----+--> mblk free function info
 313  *                +-----+-- i40e_rx_data_t *        |
 314  *                      +---------------------------+
 315  *
 316  * -------------
 317  * Lock Ordering
 318  * -------------
 319  *
 320  * In order to ensure that we don't deadlock, the following represents the
 321  * lock order being used. When grabbing locks, follow the following order. Lower
 322  * numbers are more important. Thus, the i40e_glock which is number 0, must be
 323  * taken before any other locks in the driver. On the other hand, the
 324  * i40e_t`i40e_stat_lock, has the highest number because it's the least
 325  * important lock. Note, that just because one lock is higher than another does
 326  * not mean that all intermediary locks are required.
 327  *
 328  * 0) i40e_glock
 329  * 1) i40e_t`i40e_general_lock
 330  *
 331  * 2) i40e_trqpair_t`itrq_rx_lock
 332  * 3) i40e_trqpair_t`itrq_tx_lock
 333  * 4) i40e_trqpair_t`itrq_intr_lock
 334  * 5) i40e_t`i40e_rx_pending_lock
 335  * 6) i40e_trqpair_t`itrq_tcb_lock
 336  *
 337  * 7) i40e_t`i40e_stat_lock
 338  *
 339  * Rules and expectations:
 340  *
 341  * 1) A thread holding locks belong to one PF should not hold locks belonging to
 342  * a second. If for some reason this becomes necessary, locks should be grabbed
 343  * based on the list order in the i40e_device_t, which implies that the
 344  * i40e_glock is held.
 345  *
 346  * 2) When grabbing locks between multiple transmit and receive queues, the
 347  * locks for the lowest number transmit/receive queue should be grabbed first.
 348  *
 349  * 3) When grabbing both the transmit and receive lock for a given queue, always
 350  * grab i40e_trqpair_t`itrq_rx_lock before the i40e_trqpair_t`itrq_tx_lock.
 351  *
 352  * 4) The following pairs of locks are not expected to be held at the same time:
 353  *
 354  * o i40e_t`i40e_rx_pending_lock and i40e_trqpair_t`itrq_tcb_lock
 355  * o i40e_trqpair_t`itrq_intr_lock is not expected to be held with any
 356  *   other lock except i40e_t`i40e_general_lock in mc_start(9E) and
 357  *   mc_stop(9e).
 358  *
 359  * -----------
 360  * Future Work
 361  * -----------
 362  *
 363  * At the moment the i40e_t driver is rather bare bones, allowing us to start
 364  * getting data flowing and folks using it while we develop additional features.
 365  * While bugs have been filed to cover this future work, the following gives an
 366  * overview of expected work:
 367  *
 368  *  o DMA binding and breaking up the locking in ring recycling.
 369  *  o Enhanced detection of device errors
 370  *  o Participation in IRM
 371  *  o FMA device reset
 372  *  o Stall detection, temperature error detection, etc.
 373  *  o More dynamic resource pools
 374  */
 375 
 376 #include "i40e_sw.h"
 377 
 378 static char i40e_ident[] = "Intel 10/40Gb Ethernet v1.0.3";
 379 
 380 /*
 381  * The i40e_glock primarily protects the lists below and the i40e_device_t
 382  * structures.
 383  */
 384 static kmutex_t i40e_glock;
 385 static list_t i40e_glist;
 386 static list_t i40e_dlist;
 387 
 388 /*
 389  * Access attributes for register mapping.
 390  */
 391 static ddi_device_acc_attr_t i40e_regs_acc_attr = {
 392         DDI_DEVICE_ATTR_V1,
 393         DDI_STRUCTURE_LE_ACC,
 394         DDI_STRICTORDER_ACC,
 395         DDI_FLAGERR_ACC
 396 };
 397 
 398 /*
 399  * Logging function for this driver.
 400  */
 401 static void
 402 i40e_dev_err(i40e_t *i40e, int level, boolean_t console, const char *fmt,
 403     va_list ap)
 404 {
 405         char buf[1024];
 406 
 407         (void) vsnprintf(buf, sizeof (buf), fmt, ap);
 408 
 409         if (i40e == NULL) {
 410                 cmn_err(level, (console) ? "%s: %s" : "!%s: %s",
 411                     I40E_MODULE_NAME, buf);
 412         } else {
 413                 dev_err(i40e->i40e_dip, level, (console) ? "%s" : "!%s",
 414                     buf);
 415         }
 416 }
 417 
 418 /*
 419  * Because there's the stupid trailing-comma problem with the C preprocessor
 420  * and variable arguments, I need to instantiate these.  Pardon the redundant
 421  * code.
 422  */
 423 /*PRINTFLIKE2*/
 424 void
 425 i40e_error(i40e_t *i40e, const char *fmt, ...)
 426 {
 427         va_list ap;
 428 
 429         va_start(ap, fmt);
 430         i40e_dev_err(i40e, CE_WARN, B_FALSE, fmt, ap);
 431         va_end(ap);
 432 }
 433 
 434 /*PRINTFLIKE2*/
 435 void
 436 i40e_log(i40e_t *i40e, const char *fmt, ...)
 437 {
 438         va_list ap;
 439 
 440         va_start(ap, fmt);
 441         i40e_dev_err(i40e, CE_NOTE, B_FALSE, fmt, ap);
 442         va_end(ap);
 443 }
 444 
 445 /*PRINTFLIKE2*/
 446 void
 447 i40e_notice(i40e_t *i40e, const char *fmt, ...)
 448 {
 449         va_list ap;
 450 
 451         va_start(ap, fmt);
 452         i40e_dev_err(i40e, CE_NOTE, B_TRUE, fmt, ap);
 453         va_end(ap);
 454 }
 455 
 456 /*
 457  * Various parts of the driver need to know if the controller is from the X722
 458  * family, which has a few additional capabilities and different programming
 459  * means. We don't consider virtual functions as part of this as they are quite
 460  * different and will require substantially more work.
 461  */
 462 static boolean_t
 463 i40e_is_x722(i40e_t *i40e)
 464 {
 465         return (i40e->i40e_hw_space.mac.type == I40E_MAC_X722);
 466 }
 467 
 468 static void
 469 i40e_device_rele(i40e_t *i40e)
 470 {
 471         i40e_device_t *idp = i40e->i40e_device;
 472 
 473         if (idp == NULL)
 474                 return;
 475 
 476         mutex_enter(&i40e_glock);
 477         VERIFY(idp->id_nreg > 0);
 478         list_remove(&idp->id_i40e_list, i40e);
 479         idp->id_nreg--;
 480         if (idp->id_nreg == 0) {
 481                 list_remove(&i40e_dlist, idp);
 482                 list_destroy(&idp->id_i40e_list);
 483                 kmem_free(idp->id_rsrcs, sizeof (i40e_switch_rsrc_t) *
 484                     idp->id_rsrcs_alloc);
 485                 kmem_free(idp, sizeof (i40e_device_t));
 486         }
 487         i40e->i40e_device = NULL;
 488         mutex_exit(&i40e_glock);
 489 }
 490 
 491 static i40e_device_t *
 492 i40e_device_find(i40e_t *i40e, dev_info_t *parent, uint_t bus, uint_t device)
 493 {
 494         i40e_device_t *idp;
 495         mutex_enter(&i40e_glock);
 496         for (idp = list_head(&i40e_dlist); idp != NULL;
 497             idp = list_next(&i40e_dlist, idp)) {
 498                 if (idp->id_parent == parent && idp->id_pci_bus == bus &&
 499                     idp->id_pci_device == device) {
 500                         break;
 501                 }
 502         }
 503 
 504         if (idp != NULL) {
 505                 VERIFY(idp->id_nreg < idp->id_nfuncs);
 506                 idp->id_nreg++;
 507         } else {
 508                 i40e_hw_t *hw = &i40e->i40e_hw_space;
 509                 ASSERT(hw->num_ports > 0);
 510                 ASSERT(hw->num_partitions > 0);
 511 
 512                 /*
 513                  * The Intel common code doesn't exactly keep the number of PCI
 514                  * functions. But it calculates it during discovery of
 515                  * partitions and ports. So what we do is undo the calculation
 516                  * that it does originally, as functions are evenly spread
 517                  * across ports in the rare case of partitions.
 518                  */
 519                 idp = kmem_alloc(sizeof (i40e_device_t), KM_SLEEP);
 520                 idp->id_parent = parent;
 521                 idp->id_pci_bus = bus;
 522                 idp->id_pci_device = device;
 523                 idp->id_nfuncs = hw->num_ports * hw->num_partitions;
 524                 idp->id_nreg = 1;
 525                 idp->id_rsrcs_alloc = i40e->i40e_switch_rsrc_alloc;
 526                 idp->id_rsrcs_act = i40e->i40e_switch_rsrc_actual;
 527                 idp->id_rsrcs = kmem_alloc(sizeof (i40e_switch_rsrc_t) *
 528                     idp->id_rsrcs_alloc, KM_SLEEP);
 529                 bcopy(i40e->i40e_switch_rsrcs, idp->id_rsrcs,
 530                     sizeof (i40e_switch_rsrc_t) * idp->id_rsrcs_alloc);
 531                 list_create(&idp->id_i40e_list, sizeof (i40e_t),
 532                     offsetof(i40e_t, i40e_dlink));
 533 
 534                 list_insert_tail(&i40e_dlist, idp);
 535         }
 536 
 537         list_insert_tail(&idp->id_i40e_list, i40e);
 538         mutex_exit(&i40e_glock);
 539 
 540         return (idp);
 541 }
 542 
 543 static void
 544 i40e_link_state_set(i40e_t *i40e, link_state_t state)
 545 {
 546         if (i40e->i40e_link_state == state)
 547                 return;
 548 
 549         i40e->i40e_link_state = state;
 550         mac_link_update(i40e->i40e_mac_hdl, i40e->i40e_link_state);
 551 }
 552 
 553 /*
 554  * This is a basic link check routine. Mostly we're using this just to see
 555  * if we can get any accurate information about the state of the link being
 556  * up or down, as well as updating the link state, speed, etc. information.
 557  */
 558 void
 559 i40e_link_check(i40e_t *i40e)
 560 {
 561         i40e_hw_t *hw = &i40e->i40e_hw_space;
 562         boolean_t ls;
 563         int ret;
 564 
 565         ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
 566 
 567         hw->phy.get_link_info = B_TRUE;
 568         if ((ret = i40e_get_link_status(hw, &ls)) != I40E_SUCCESS) {
 569                 i40e->i40e_s_link_status_errs++;
 570                 i40e->i40e_s_link_status_lasterr = ret;
 571                 return;
 572         }
 573 
 574         /*
 575          * Firmware abstracts all of the mac and phy information for us, so we
 576          * can use i40e_get_link_status to determine the current state.
 577          */
 578         if (ls == B_TRUE) {
 579                 enum i40e_aq_link_speed speed;
 580 
 581                 speed = i40e_get_link_speed(hw);
 582 
 583                 /*
 584                  * Translate from an i40e value to a value in Mbits/s.
 585                  */
 586                 switch (speed) {
 587                 case I40E_LINK_SPEED_100MB:
 588                         i40e->i40e_link_speed = 100;
 589                         break;
 590                 case I40E_LINK_SPEED_1GB:
 591                         i40e->i40e_link_speed = 1000;
 592                         break;
 593                 case I40E_LINK_SPEED_10GB:
 594                         i40e->i40e_link_speed = 10000;
 595                         break;
 596                 case I40E_LINK_SPEED_20GB:
 597                         i40e->i40e_link_speed = 20000;
 598                         break;
 599                 case I40E_LINK_SPEED_40GB:
 600                         i40e->i40e_link_speed = 40000;
 601                         break;
 602                 case I40E_LINK_SPEED_25GB:
 603                         i40e->i40e_link_speed = 25000;
 604                         break;
 605                 default:
 606                         i40e->i40e_link_speed = 0;
 607                         break;
 608                 }
 609 
 610                 /*
 611                  * At this time, hardware does not support half-duplex
 612                  * operation, hence why we don't ask the hardware about our
 613                  * current speed.
 614                  */
 615                 i40e->i40e_link_duplex = LINK_DUPLEX_FULL;
 616                 i40e_link_state_set(i40e, LINK_STATE_UP);
 617         } else {
 618                 i40e->i40e_link_speed = 0;
 619                 i40e->i40e_link_duplex = 0;
 620                 i40e_link_state_set(i40e, LINK_STATE_DOWN);
 621         }
 622 }
 623 
 624 static void
 625 i40e_rem_intrs(i40e_t *i40e)
 626 {
 627         int i, rc;
 628 
 629         for (i = 0; i < i40e->i40e_intr_count; i++) {
 630                 rc = ddi_intr_free(i40e->i40e_intr_handles[i]);
 631                 if (rc != DDI_SUCCESS) {
 632                         i40e_log(i40e, "failed to free interrupt %d: %d",
 633                             i, rc);
 634                 }
 635         }
 636 
 637         kmem_free(i40e->i40e_intr_handles, i40e->i40e_intr_size);
 638         i40e->i40e_intr_handles = NULL;
 639 }
 640 
 641 static void
 642 i40e_rem_intr_handlers(i40e_t *i40e)
 643 {
 644         int i, rc;
 645 
 646         for (i = 0; i < i40e->i40e_intr_count; i++) {
 647                 rc = ddi_intr_remove_handler(i40e->i40e_intr_handles[i]);
 648                 if (rc != DDI_SUCCESS) {
 649                         i40e_log(i40e, "failed to remove interrupt %d: %d",
 650                             i, rc);
 651                 }
 652         }
 653 }
 654 
 655 /*
 656  * illumos Fault Management Architecture (FMA) support.
 657  */
 658 
 659 int
 660 i40e_check_acc_handle(ddi_acc_handle_t handle)
 661 {
 662         ddi_fm_error_t de;
 663 
 664         ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
 665         ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
 666         return (de.fme_status);
 667 }
 668 
 669 int
 670 i40e_check_dma_handle(ddi_dma_handle_t handle)
 671 {
 672         ddi_fm_error_t de;
 673 
 674         ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
 675         return (de.fme_status);
 676 }
 677 
 678 /*
 679  * Fault service error handling callback function.
 680  */
 681 /* ARGSUSED */
 682 static int
 683 i40e_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
 684 {
 685         pci_ereport_post(dip, err, NULL);
 686         return (err->fme_status);
 687 }
 688 
 689 static void
 690 i40e_fm_init(i40e_t *i40e)
 691 {
 692         ddi_iblock_cookie_t iblk;
 693 
 694         i40e->i40e_fm_capabilities = ddi_prop_get_int(DDI_DEV_T_ANY,
 695             i40e->i40e_dip, DDI_PROP_DONTPASS, "fm_capable",
 696             DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
 697             DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
 698 
 699         if (i40e->i40e_fm_capabilities < 0) {
 700                 i40e->i40e_fm_capabilities = 0;
 701         } else if (i40e->i40e_fm_capabilities > 0xf) {
 702                 i40e->i40e_fm_capabilities = DDI_FM_EREPORT_CAPABLE |
 703                     DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE |
 704                     DDI_FM_ERRCB_CAPABLE;
 705         }
 706 
 707         /*
 708          * Only register with IO Fault Services if we have some capability
 709          */
 710         if (i40e->i40e_fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
 711                 i40e_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
 712         } else {
 713                 i40e_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
 714         }
 715 
 716         if (i40e->i40e_fm_capabilities) {
 717                 ddi_fm_init(i40e->i40e_dip, &i40e->i40e_fm_capabilities, &iblk);
 718 
 719                 if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities) ||
 720                     DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities)) {
 721                         pci_ereport_setup(i40e->i40e_dip);
 722                 }
 723 
 724                 if (DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities)) {
 725                         ddi_fm_handler_register(i40e->i40e_dip,
 726                             i40e_fm_error_cb, (void*)i40e);
 727                 }
 728         }
 729 
 730         if (i40e->i40e_fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
 731                 i40e_init_dma_attrs(i40e, B_TRUE);
 732         } else {
 733                 i40e_init_dma_attrs(i40e, B_FALSE);
 734         }
 735 }
 736 
 737 static void
 738 i40e_fm_fini(i40e_t *i40e)
 739 {
 740         if (i40e->i40e_fm_capabilities) {
 741 
 742                 if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities) ||
 743                     DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities))
 744                         pci_ereport_teardown(i40e->i40e_dip);
 745 
 746                 if (DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities))
 747                         ddi_fm_handler_unregister(i40e->i40e_dip);
 748 
 749                 ddi_fm_fini(i40e->i40e_dip);
 750         }
 751 }
 752 
 753 void
 754 i40e_fm_ereport(i40e_t *i40e, char *detail)
 755 {
 756         uint64_t ena;
 757         char buf[FM_MAX_CLASS];
 758 
 759         (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
 760         ena = fm_ena_generate(0, FM_ENA_FMT1);
 761         if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities)) {
 762                 ddi_fm_ereport_post(i40e->i40e_dip, buf, ena, DDI_NOSLEEP,
 763                     FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
 764         }
 765 }
 766 
 767 /*
 768  * Here we're trying to set the SEID of the default VSI. In general,
 769  * when we come through and look at this shortly after attach, we
 770  * expect there to only be a single element present, which is the
 771  * default VSI. Importantly, each PF seems to not see any other
 772  * devices, in part because of the simple switch mode that we're
 773  * using. If for some reason, we see more artifacts, we'll need to
 774  * revisit what we're doing here.
 775  */
 776 static boolean_t
 777 i40e_set_def_vsi_seid(i40e_t *i40e)
 778 {
 779         i40e_hw_t *hw = &i40e->i40e_hw_space;
 780         struct i40e_aqc_get_switch_config_resp *sw_config;
 781         uint8_t aq_buf[I40E_AQ_LARGE_BUF];
 782         uint16_t next = 0;
 783         int rc;
 784 
 785         /* LINTED: E_BAD_PTR_CAST_ALIGN */
 786         sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf;
 787         rc = i40e_aq_get_switch_config(hw, sw_config, sizeof (aq_buf), &next,
 788             NULL);
 789         if (rc != I40E_SUCCESS) {
 790                 i40e_error(i40e, "i40e_aq_get_switch_config() failed %d: %d",
 791                     rc, hw->aq.asq_last_status);
 792                 return (B_FALSE);
 793         }
 794 
 795         if (LE_16(sw_config->header.num_reported) != 1) {
 796                 i40e_error(i40e, "encountered multiple (%d) switching units "
 797                     "during attach, not proceeding",
 798                     LE_16(sw_config->header.num_reported));
 799                 return (B_FALSE);
 800         }
 801 
 802         I40E_DEF_VSI_SEID(i40e) = sw_config->element[0].seid;
 803         return (B_TRUE);
 804 }
 805 
 806 /*
 807  * Get the SEID of the uplink MAC.
 808  */
 809 static int
 810 i40e_get_mac_seid(i40e_t *i40e)
 811 {
 812         i40e_hw_t *hw = &i40e->i40e_hw_space;
 813         struct i40e_aqc_get_switch_config_resp *sw_config;
 814         uint8_t aq_buf[I40E_AQ_LARGE_BUF];
 815         uint16_t next = 0;
 816         int rc;
 817 
 818         /* LINTED: E_BAD_PTR_CAST_ALIGN */
 819         sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf;
 820         rc = i40e_aq_get_switch_config(hw, sw_config, sizeof (aq_buf), &next,
 821             NULL);
 822         if (rc != I40E_SUCCESS) {
 823                 i40e_error(i40e, "i40e_aq_get_switch_config() failed %d: %d",
 824                     rc, hw->aq.asq_last_status);
 825                 return (-1);
 826         }
 827 
 828         return (LE_16(sw_config->element[0].uplink_seid));
 829 }
 830 
 831 /*
 832  * We need to fill the i40e_hw_t structure with the capabilities of this PF. We
 833  * must also provide the memory for it; however, we don't need to keep it around
 834  * to the call to the common code. It takes it and parses it into an internal
 835  * structure.
 836  */
 837 static boolean_t
 838 i40e_get_hw_capabilities(i40e_t *i40e, i40e_hw_t *hw)
 839 {
 840         struct i40e_aqc_list_capabilities_element_resp *buf;
 841         int rc;
 842         size_t len;
 843         uint16_t needed;
 844         int nelems = I40E_HW_CAP_DEFAULT;
 845 
 846         len = nelems * sizeof (*buf);
 847 
 848         for (;;) {
 849                 ASSERT(len > 0);
 850                 buf = kmem_alloc(len, KM_SLEEP);
 851                 rc = i40e_aq_discover_capabilities(hw, buf, len,
 852                     &needed, i40e_aqc_opc_list_func_capabilities, NULL);
 853                 kmem_free(buf, len);
 854 
 855                 if (hw->aq.asq_last_status == I40E_AQ_RC_ENOMEM &&
 856                     nelems == I40E_HW_CAP_DEFAULT) {
 857                         if (nelems == needed) {
 858                                 i40e_error(i40e, "Capability discovery failed "
 859                                     "due to byzantine common code");
 860                                 return (B_FALSE);
 861                         }
 862                         len = needed;
 863                         continue;
 864                 } else if (rc != I40E_SUCCESS ||
 865                     hw->aq.asq_last_status != I40E_AQ_RC_OK) {
 866                         i40e_error(i40e, "Capability discovery failed: %d", rc);
 867                         return (B_FALSE);
 868                 }
 869 
 870                 break;
 871         }
 872 
 873         return (B_TRUE);
 874 }
 875 
 876 /*
 877  * Obtain the switch's capabilities as seen by this PF and keep it around for
 878  * our later use.
 879  */
 880 static boolean_t
 881 i40e_get_switch_resources(i40e_t *i40e)
 882 {
 883         i40e_hw_t *hw = &i40e->i40e_hw_space;
 884         uint8_t cnt = 2;
 885         uint8_t act;
 886         size_t size;
 887         i40e_switch_rsrc_t *buf;
 888 
 889         for (;;) {
 890                 enum i40e_status_code ret;
 891                 size = cnt * sizeof (i40e_switch_rsrc_t);
 892                 ASSERT(size > 0);
 893                 if (size > UINT16_MAX)
 894                         return (B_FALSE);
 895                 buf = kmem_alloc(size, KM_SLEEP);
 896 
 897                 ret = i40e_aq_get_switch_resource_alloc(hw, &act, buf,
 898                     cnt, NULL);
 899                 if (ret == I40E_ERR_ADMIN_QUEUE_ERROR &&
 900                     hw->aq.asq_last_status == I40E_AQ_RC_EINVAL) {
 901                         kmem_free(buf, size);
 902                         cnt += I40E_SWITCH_CAP_DEFAULT;
 903                         continue;
 904                 } else if (ret != I40E_SUCCESS) {
 905                         kmem_free(buf, size);
 906                         i40e_error(i40e,
 907                             "failed to retrieve switch statistics: %d", ret);
 908                         return (B_FALSE);
 909                 }
 910 
 911                 break;
 912         }
 913 
 914         i40e->i40e_switch_rsrc_alloc = cnt;
 915         i40e->i40e_switch_rsrc_actual = act;
 916         i40e->i40e_switch_rsrcs = buf;
 917 
 918         return (B_TRUE);
 919 }
 920 
 921 static void
 922 i40e_cleanup_resources(i40e_t *i40e)
 923 {
 924         if (i40e->i40e_uaddrs != NULL) {
 925                 kmem_free(i40e->i40e_uaddrs, sizeof (i40e_uaddr_t) *
 926                     i40e->i40e_resources.ifr_nmacfilt);
 927                 i40e->i40e_uaddrs = NULL;
 928         }
 929 
 930         if (i40e->i40e_maddrs != NULL) {
 931                 kmem_free(i40e->i40e_maddrs, sizeof (i40e_maddr_t) *
 932                     i40e->i40e_resources.ifr_nmcastfilt);
 933                 i40e->i40e_maddrs = NULL;
 934         }
 935 
 936         if (i40e->i40e_switch_rsrcs != NULL) {
 937                 size_t sz = sizeof (i40e_switch_rsrc_t) *
 938                     i40e->i40e_switch_rsrc_alloc;
 939                 ASSERT(sz > 0);
 940                 kmem_free(i40e->i40e_switch_rsrcs, sz);
 941                 i40e->i40e_switch_rsrcs = NULL;
 942         }
 943 
 944         if (i40e->i40e_device != NULL)
 945                 i40e_device_rele(i40e);
 946 }
 947 
 948 static boolean_t
 949 i40e_get_available_resources(i40e_t *i40e)
 950 {
 951         dev_info_t *parent;
 952         uint16_t bus, device, func;
 953         uint_t nregs;
 954         int *regs, i;
 955         i40e_device_t *idp;
 956         i40e_hw_t *hw = &i40e->i40e_hw_space;
 957 
 958         parent = ddi_get_parent(i40e->i40e_dip);
 959 
 960         if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, i40e->i40e_dip, 0, "reg",
 961             ®s, &nregs) != DDI_PROP_SUCCESS) {
 962                 return (B_FALSE);
 963         }
 964 
 965         if (nregs < 1) {
 966                 ddi_prop_free(regs);
 967                 return (B_FALSE);
 968         }
 969 
 970         bus = PCI_REG_BUS_G(regs[0]);
 971         device = PCI_REG_DEV_G(regs[0]);
 972         func = PCI_REG_FUNC_G(regs[0]);
 973         ddi_prop_free(regs);
 974 
 975         i40e->i40e_hw_space.bus.func = func;
 976         i40e->i40e_hw_space.bus.device = device;
 977 
 978         if (i40e_get_switch_resources(i40e) == B_FALSE) {
 979                 return (B_FALSE);
 980         }
 981 
 982         /*
 983          * To calculate the total amount of a resource we have available, we
 984          * need to add how many our i40e_t thinks it has guaranteed, if any, and
 985          * then we need to go through and divide the number of available on the
 986          * device, which was snapshotted before anyone should have allocated
 987          * anything, and use that to derive how many are available from the
 988          * pool. Longer term, we may want to turn this into something that's
 989          * more of a pool-like resource that everything can share (though that
 990          * may require some more assistance from MAC).
 991          *
 992          * Though for transmit and receive queue pairs, we just have to ask
 993          * firmware instead.
 994          */
 995         idp = i40e_device_find(i40e, parent, bus, device);
 996         i40e->i40e_device = idp;
 997         i40e->i40e_resources.ifr_nvsis = 0;
 998         i40e->i40e_resources.ifr_nvsis_used = 0;
 999         i40e->i40e_resources.ifr_nmacfilt = 0;
1000         i40e->i40e_resources.ifr_nmacfilt_used = 0;
1001         i40e->i40e_resources.ifr_nmcastfilt = 0;
1002         i40e->i40e_resources.ifr_nmcastfilt_used = 0;
1003 
1004         for (i = 0; i < i40e->i40e_switch_rsrc_actual; i++) {
1005                 i40e_switch_rsrc_t *srp = &i40e->i40e_switch_rsrcs[i];
1006 
1007                 switch (srp->resource_type) {
1008                 case I40E_AQ_RESOURCE_TYPE_VSI:
1009                         i40e->i40e_resources.ifr_nvsis +=
1010                             LE_16(srp->guaranteed);
1011                         i40e->i40e_resources.ifr_nvsis_used = LE_16(srp->used);
1012                         break;
1013                 case I40E_AQ_RESOURCE_TYPE_MACADDR:
1014                         i40e->i40e_resources.ifr_nmacfilt +=
1015                             LE_16(srp->guaranteed);
1016                         i40e->i40e_resources.ifr_nmacfilt_used =
1017                             LE_16(srp->used);
1018                         break;
1019                 case I40E_AQ_RESOURCE_TYPE_MULTICAST_HASH:
1020                         i40e->i40e_resources.ifr_nmcastfilt +=
1021                             LE_16(srp->guaranteed);
1022                         i40e->i40e_resources.ifr_nmcastfilt_used =
1023                             LE_16(srp->used);
1024                         break;
1025                 default:
1026                         break;
1027                 }
1028         }
1029 
1030         for (i = 0; i < idp->id_rsrcs_act; i++) {
1031                 i40e_switch_rsrc_t *srp = &i40e->i40e_switch_rsrcs[i];
1032                 switch (srp->resource_type) {
1033                 case I40E_AQ_RESOURCE_TYPE_VSI:
1034                         i40e->i40e_resources.ifr_nvsis +=
1035                             LE_16(srp->total_unalloced) / idp->id_nfuncs;
1036                         break;
1037                 case I40E_AQ_RESOURCE_TYPE_MACADDR:
1038                         i40e->i40e_resources.ifr_nmacfilt +=
1039                             LE_16(srp->total_unalloced) / idp->id_nfuncs;
1040                         break;
1041                 case I40E_AQ_RESOURCE_TYPE_MULTICAST_HASH:
1042                         i40e->i40e_resources.ifr_nmcastfilt +=
1043                             LE_16(srp->total_unalloced) / idp->id_nfuncs;
1044                 default:
1045                         break;
1046                 }
1047         }
1048 
1049         i40e->i40e_resources.ifr_nrx_queue = hw->func_caps.num_rx_qp;
1050         i40e->i40e_resources.ifr_ntx_queue = hw->func_caps.num_tx_qp;
1051 
1052         i40e->i40e_uaddrs = kmem_zalloc(sizeof (i40e_uaddr_t) *
1053             i40e->i40e_resources.ifr_nmacfilt, KM_SLEEP);
1054         i40e->i40e_maddrs = kmem_zalloc(sizeof (i40e_maddr_t) *
1055             i40e->i40e_resources.ifr_nmcastfilt, KM_SLEEP);
1056 
1057         /*
1058          * Initialize these as multicast addresses to indicate it's invalid for
1059          * sanity purposes. Think of it like 0xdeadbeef.
1060          */
1061         for (i = 0; i < i40e->i40e_resources.ifr_nmacfilt; i++)
1062                 i40e->i40e_uaddrs[i].iua_mac[0] = 0x01;
1063 
1064         return (B_TRUE);
1065 }
1066 
1067 static boolean_t
1068 i40e_enable_interrupts(i40e_t *i40e)
1069 {
1070         int i, rc;
1071 
1072         if (i40e->i40e_intr_cap & DDI_INTR_FLAG_BLOCK) {
1073                 rc = ddi_intr_block_enable(i40e->i40e_intr_handles,
1074                     i40e->i40e_intr_count);
1075                 if (rc != DDI_SUCCESS) {
1076                         i40e_error(i40e, "Interrupt block-enable failed: %d",
1077                             rc);
1078                         return (B_FALSE);
1079                 }
1080         } else {
1081                 for (i = 0; i < i40e->i40e_intr_count; i++) {
1082                         rc = ddi_intr_enable(i40e->i40e_intr_handles[i]);
1083                         if (rc != DDI_SUCCESS) {
1084                                 i40e_error(i40e,
1085                                     "Failed to enable interrupt %d: %d", i, rc);
1086                                 while (--i >= 0) {
1087                                         (void) ddi_intr_disable(
1088                                             i40e->i40e_intr_handles[i]);
1089                                 }
1090                                 return (B_FALSE);
1091                         }
1092                 }
1093         }
1094 
1095         return (B_TRUE);
1096 }
1097 
1098 static boolean_t
1099 i40e_disable_interrupts(i40e_t *i40e)
1100 {
1101         int i, rc;
1102 
1103         if (i40e->i40e_intr_cap & DDI_INTR_FLAG_BLOCK) {
1104                 rc = ddi_intr_block_disable(i40e->i40e_intr_handles,
1105                     i40e->i40e_intr_count);
1106                 if (rc != DDI_SUCCESS) {
1107                         i40e_error(i40e,
1108                             "Interrupt block-disabled failed: %d", rc);
1109                         return (B_FALSE);
1110                 }
1111         } else {
1112                 for (i = 0; i < i40e->i40e_intr_count; i++) {
1113                         rc = ddi_intr_disable(i40e->i40e_intr_handles[i]);
1114                         if (rc != DDI_SUCCESS) {
1115                                 i40e_error(i40e,
1116                                     "Failed to disable interrupt %d: %d",
1117                                     i, rc);
1118                                 return (B_FALSE);
1119                         }
1120                 }
1121         }
1122 
1123         return (B_TRUE);
1124 }
1125 
1126 /*
1127  * Free receive & transmit rings.
1128  */
1129 static void
1130 i40e_free_trqpairs(i40e_t *i40e)
1131 {
1132         i40e_trqpair_t *itrq;
1133 
1134         if (i40e->i40e_rx_groups != NULL) {
1135                 kmem_free(i40e->i40e_rx_groups,
1136                     sizeof (i40e_rx_group_t) * i40e->i40e_num_rx_groups);
1137                 i40e->i40e_rx_groups = NULL;
1138         }
1139 
1140         if (i40e->i40e_trqpairs != NULL) {
1141                 for (uint_t i = 0; i < i40e->i40e_num_trqpairs; i++) {
1142                         itrq = &i40e->i40e_trqpairs[i];
1143                         mutex_destroy(&itrq->itrq_intr_lock);
1144                         mutex_destroy(&itrq->itrq_rx_lock);
1145                         mutex_destroy(&itrq->itrq_tx_lock);
1146                         mutex_destroy(&itrq->itrq_tcb_lock);
1147                         cv_destroy(&itrq->itrq_intr_cv);
1148                         cv_destroy(&itrq->itrq_tx_cv);
1149 
1150                         i40e_stats_trqpair_fini(itrq);
1151                 }
1152 
1153                 kmem_free(i40e->i40e_trqpairs,
1154                     sizeof (i40e_trqpair_t) * i40e->i40e_num_trqpairs);
1155                 i40e->i40e_trqpairs = NULL;
1156         }
1157 
1158         cv_destroy(&i40e->i40e_rx_pending_cv);
1159         mutex_destroy(&i40e->i40e_rx_pending_lock);
1160         mutex_destroy(&i40e->i40e_general_lock);
1161 }
1162 
1163 /*
1164  * Allocate transmit and receive rings, as well as other data structures that we
1165  * need.
1166  */
1167 static boolean_t
1168 i40e_alloc_trqpairs(i40e_t *i40e)
1169 {
1170         void *mutexpri = DDI_INTR_PRI(i40e->i40e_intr_pri);
1171 
1172         /*
1173          * Now that we have the priority for the interrupts, initialize
1174          * all relevant locks.
1175          */
1176         mutex_init(&i40e->i40e_general_lock, NULL, MUTEX_DRIVER, mutexpri);
1177         mutex_init(&i40e->i40e_rx_pending_lock, NULL, MUTEX_DRIVER, mutexpri);
1178         cv_init(&i40e->i40e_rx_pending_cv, NULL, CV_DRIVER, NULL);
1179 
1180         i40e->i40e_trqpairs = kmem_zalloc(sizeof (i40e_trqpair_t) *
1181             i40e->i40e_num_trqpairs, KM_SLEEP);
1182         for (uint_t i = 0; i < i40e->i40e_num_trqpairs; i++) {
1183                 i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
1184 
1185                 itrq->itrq_i40e = i40e;
1186                 mutex_init(&itrq->itrq_intr_lock, NULL, MUTEX_DRIVER, mutexpri);
1187                 mutex_init(&itrq->itrq_rx_lock, NULL, MUTEX_DRIVER, mutexpri);
1188                 mutex_init(&itrq->itrq_tx_lock, NULL, MUTEX_DRIVER, mutexpri);
1189                 mutex_init(&itrq->itrq_tcb_lock, NULL, MUTEX_DRIVER, mutexpri);
1190                 cv_init(&itrq->itrq_intr_cv, NULL, CV_DRIVER, NULL);
1191                 cv_init(&itrq->itrq_tx_cv, NULL, CV_DRIVER, NULL);
1192                 itrq->itrq_index = i;
1193                 itrq->itrq_intr_quiesce = B_TRUE;
1194                 itrq->itrq_tx_quiesce = B_TRUE;
1195         }
1196 
1197         for (uint_t i = 0; i < i40e->i40e_num_trqpairs; i++) {
1198                 /*
1199                  * Keeping this in a separate iteration makes the
1200                  * clean up path safe.
1201                  */
1202                 if (!i40e_stats_trqpair_init(&i40e->i40e_trqpairs[i])) {
1203                         i40e_free_trqpairs(i40e);
1204                         return (B_FALSE);
1205                 }
1206         }
1207 
1208         i40e->i40e_rx_groups = kmem_zalloc(sizeof (i40e_rx_group_t) *
1209             i40e->i40e_num_rx_groups, KM_SLEEP);
1210 
1211         for (uint_t i = 0; i < i40e->i40e_num_rx_groups; i++) {
1212                 i40e_rx_group_t *rxg = &i40e->i40e_rx_groups[i];
1213 
1214                 rxg->irg_index = i;
1215                 rxg->irg_i40e = i40e;
1216         }
1217 
1218         return (B_TRUE);
1219 }
1220 
1221 
1222 
1223 /*
1224  * Unless a .conf file already overrode i40e_t structure values, they will
1225  * be 0, and need to be set in conjunction with the now-available HW report.
1226  */
1227 /* ARGSUSED */
1228 static void
1229 i40e_hw_to_instance(i40e_t *i40e, i40e_hw_t *hw)
1230 {
1231         if (i40e->i40e_num_trqpairs_per_vsi == 0) {
1232                 if (i40e_is_x722(i40e)) {
1233                         i40e->i40e_num_trqpairs_per_vsi =
1234                             I40E_722_MAX_TC_QUEUES;
1235                 } else {
1236                         i40e->i40e_num_trqpairs_per_vsi =
1237                             I40E_710_MAX_TC_QUEUES;
1238                 }
1239         }
1240 
1241         if (i40e->i40e_num_rx_groups == 0) {
1242                 i40e->i40e_num_rx_groups = I40E_DEF_NUM_RX_GROUPS;
1243         }
1244 }
1245 
1246 /*
1247  * Free any resources required by, or setup by, the Intel common code.
1248  */
1249 static void
1250 i40e_common_code_fini(i40e_t *i40e)
1251 {
1252         i40e_hw_t *hw = &i40e->i40e_hw_space;
1253         int rc;
1254 
1255         rc = i40e_shutdown_lan_hmc(hw);
1256         if (rc != I40E_SUCCESS)
1257                 i40e_error(i40e, "failed to shutdown LAN hmc: %d", rc);
1258 
1259         rc = i40e_shutdown_adminq(hw);
1260         if (rc != I40E_SUCCESS)
1261                 i40e_error(i40e, "failed to shutdown admin queue: %d", rc);
1262 }
1263 
1264 /*
1265  * Initialize and call Intel common-code routines, includes some setup
1266  * the common code expects from the driver.  Also prints on failure, so
1267  * the caller doesn't have to.
1268  */
1269 static boolean_t
1270 i40e_common_code_init(i40e_t *i40e, i40e_hw_t *hw)
1271 {
1272         int rc;
1273 
1274         i40e_clear_hw(hw);
1275         rc = i40e_pf_reset(hw);
1276         if (rc != 0) {
1277                 i40e_error(i40e, "failed to reset hardware: %d", rc);
1278                 i40e_fm_ereport(i40e, DDI_FM_DEVICE_NO_RESPONSE);
1279                 return (B_FALSE);
1280         }
1281 
1282         rc = i40e_init_shared_code(hw);
1283         if (rc != 0) {
1284                 i40e_error(i40e, "failed to initialize i40e core: %d", rc);
1285                 return (B_FALSE);
1286         }
1287 
1288         hw->aq.num_arq_entries = I40E_DEF_ADMINQ_SIZE;
1289         hw->aq.num_asq_entries =  I40E_DEF_ADMINQ_SIZE;
1290         hw->aq.arq_buf_size = I40E_ADMINQ_BUFSZ;
1291         hw->aq.asq_buf_size = I40E_ADMINQ_BUFSZ;
1292 
1293         rc = i40e_init_adminq(hw);
1294         if (rc != 0) {
1295                 i40e_error(i40e, "failed to initialize firmware admin queue: "
1296                     "%d, potential firmware version mismatch", rc);
1297                 i40e_fm_ereport(i40e, DDI_FM_DEVICE_INVAL_STATE);
1298                 return (B_FALSE);
1299         }
1300 
1301         if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR &&
1302             hw->aq.api_min_ver > I40E_FW_MINOR_VERSION(hw)) {
1303                 i40e_log(i40e, "The driver for the device detected a newer "
1304                     "version of the NVM image (%d.%d) than expected (%d.%d).\n"
1305                     "Please install the most recent version of the network "
1306                     "driver.\n", hw->aq.api_maj_ver, hw->aq.api_min_ver,
1307                     I40E_FW_API_VERSION_MAJOR, I40E_FW_MINOR_VERSION(hw));
1308         } else if (hw->aq.api_maj_ver < I40E_FW_API_VERSION_MAJOR ||
1309             hw->aq.api_min_ver < (I40E_FW_MINOR_VERSION(hw) - 1)) {
1310                 i40e_log(i40e, "The driver for the device detected an older"
1311                     " version of the NVM image (%d.%d) than expected (%d.%d)."
1312                     "\nPlease update the NVM image.\n",
1313                     hw->aq.api_maj_ver, hw->aq.api_min_ver,
1314                     I40E_FW_API_VERSION_MAJOR, I40E_FW_MINOR_VERSION(hw) - 1);
1315         }
1316 
1317         i40e_clear_pxe_mode(hw);
1318 
1319         /*
1320          * We need to call this so that the common code can discover
1321          * capabilities of the hardware, which it uses throughout the rest.
1322          */
1323         if (!i40e_get_hw_capabilities(i40e, hw)) {
1324                 i40e_error(i40e, "failed to obtain hardware capabilities");
1325                 return (B_FALSE);
1326         }
1327 
1328         if (i40e_get_available_resources(i40e) == B_FALSE) {
1329                 i40e_error(i40e, "failed to obtain hardware resources");
1330                 return (B_FALSE);
1331         }
1332 
1333         i40e_hw_to_instance(i40e, hw);
1334 
1335         rc = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
1336             hw->func_caps.num_rx_qp, 0, 0);
1337         if (rc != 0) {
1338                 i40e_error(i40e, "failed to initialize hardware memory cache: "
1339                     "%d", rc);
1340                 return (B_FALSE);
1341         }
1342 
1343         rc = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
1344         if (rc != 0) {
1345                 i40e_error(i40e, "failed to configure hardware memory cache: "
1346                     "%d", rc);
1347                 return (B_FALSE);
1348         }
1349 
1350         (void) i40e_aq_stop_lldp(hw, TRUE, NULL);
1351 
1352         rc = i40e_get_mac_addr(hw, hw->mac.addr);
1353         if (rc != I40E_SUCCESS) {
1354                 i40e_error(i40e, "failed to retrieve hardware mac address: %d",
1355                     rc);
1356                 return (B_FALSE);
1357         }
1358 
1359         rc = i40e_validate_mac_addr(hw->mac.addr);
1360         if (rc != 0) {
1361                 i40e_error(i40e, "failed to validate internal mac address: "
1362                     "%d", rc);
1363                 return (B_FALSE);
1364         }
1365         bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
1366         if ((rc = i40e_get_port_mac_addr(hw, hw->mac.port_addr)) !=
1367             I40E_SUCCESS) {
1368                 i40e_error(i40e, "failed to retrieve port mac address: %d",
1369                     rc);
1370                 return (B_FALSE);
1371         }
1372 
1373         /*
1374          * We need to obtain the Default Virtual Station SEID (VSI)
1375          * before we can perform other operations on the device.
1376          */
1377         if (!i40e_set_def_vsi_seid(i40e)) {
1378                 i40e_error(i40e, "failed to obtain Default VSI SEID");
1379                 return (B_FALSE);
1380         }
1381 
1382         return (B_TRUE);
1383 }
1384 
1385 static void
1386 i40e_unconfigure(dev_info_t *devinfo, i40e_t *i40e)
1387 {
1388         int rc;
1389 
1390         if (i40e->i40e_attach_progress & I40E_ATTACH_ENABLE_INTR)
1391                 (void) i40e_disable_interrupts(i40e);
1392 
1393         if ((i40e->i40e_attach_progress & I40E_ATTACH_LINK_TIMER) &&
1394             i40e->i40e_periodic_id != 0) {
1395                 ddi_periodic_delete(i40e->i40e_periodic_id);
1396                 i40e->i40e_periodic_id = 0;
1397         }
1398 
1399         if (i40e->i40e_attach_progress & I40E_ATTACH_UFM_INIT)
1400                 ddi_ufm_fini(i40e->i40e_ufmh);
1401 
1402         if (i40e->i40e_attach_progress & I40E_ATTACH_MAC) {
1403                 rc = mac_unregister(i40e->i40e_mac_hdl);
1404                 if (rc != 0) {
1405                         i40e_error(i40e, "failed to unregister from mac: %d",
1406                             rc);
1407                 }
1408         }
1409 
1410         if (i40e->i40e_attach_progress & I40E_ATTACH_STATS) {
1411                 i40e_stats_fini(i40e);
1412         }
1413 
1414         if (i40e->i40e_attach_progress & I40E_ATTACH_ADD_INTR)
1415                 i40e_rem_intr_handlers(i40e);
1416 
1417         if (i40e->i40e_attach_progress & I40E_ATTACH_ALLOC_RINGSLOCKS)
1418                 i40e_free_trqpairs(i40e);
1419 
1420         if (i40e->i40e_attach_progress & I40E_ATTACH_ALLOC_INTR)
1421                 i40e_rem_intrs(i40e);
1422 
1423         if (i40e->i40e_attach_progress & I40E_ATTACH_COMMON_CODE)
1424                 i40e_common_code_fini(i40e);
1425 
1426         i40e_cleanup_resources(i40e);
1427 
1428         if (i40e->i40e_attach_progress & I40E_ATTACH_PROPS)
1429                 (void) ddi_prop_remove_all(devinfo);
1430 
1431         if (i40e->i40e_attach_progress & I40E_ATTACH_REGS_MAP &&
1432             i40e->i40e_osdep_space.ios_reg_handle != NULL) {
1433                 ddi_regs_map_free(&i40e->i40e_osdep_space.ios_reg_handle);
1434                 i40e->i40e_osdep_space.ios_reg_handle = NULL;
1435         }
1436 
1437         if ((i40e->i40e_attach_progress & I40E_ATTACH_PCI_CONFIG) &&
1438             i40e->i40e_osdep_space.ios_cfg_handle != NULL) {
1439                 pci_config_teardown(&i40e->i40e_osdep_space.ios_cfg_handle);
1440                 i40e->i40e_osdep_space.ios_cfg_handle = NULL;
1441         }
1442 
1443         if (i40e->i40e_attach_progress & I40E_ATTACH_FM_INIT)
1444                 i40e_fm_fini(i40e);
1445 
1446         kmem_free(i40e->i40e_aqbuf, I40E_ADMINQ_BUFSZ);
1447         kmem_free(i40e, sizeof (i40e_t));
1448 
1449         ddi_set_driver_private(devinfo, NULL);
1450 }
1451 
1452 static boolean_t
1453 i40e_final_init(i40e_t *i40e)
1454 {
1455         i40e_hw_t *hw = &i40e->i40e_hw_space;
1456         struct i40e_osdep *osdep = OS_DEP(hw);
1457         uint8_t pbanum[I40E_PBANUM_STRLEN];
1458         enum i40e_status_code irc;
1459         char buf[I40E_DDI_PROP_LEN];
1460 
1461         pbanum[0] = '\0';
1462         irc = i40e_read_pba_string(hw, pbanum, sizeof (pbanum));
1463         if (irc != I40E_SUCCESS) {
1464                 i40e_log(i40e, "failed to read PBA string: %d", irc);
1465         } else {
1466                 (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1467                     "printed-board-assembly", (char *)pbanum);
1468         }
1469 
1470 #ifdef  DEBUG
1471         ASSERT(snprintf(NULL, 0, "%d.%d", hw->aq.fw_maj_ver,
1472             hw->aq.fw_min_ver) < sizeof (buf));
1473         ASSERT(snprintf(NULL, 0, "%x", hw->aq.fw_build) < sizeof (buf));
1474         ASSERT(snprintf(NULL, 0, "%d.%d", hw->aq.api_maj_ver,
1475             hw->aq.api_min_ver) < sizeof (buf));
1476 #endif
1477 
1478         (void) snprintf(buf, sizeof (buf), "%d.%d", hw->aq.fw_maj_ver,
1479             hw->aq.fw_min_ver);
1480         (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1481             "firmware-version", buf);
1482         (void) snprintf(buf, sizeof (buf), "%x", hw->aq.fw_build);
1483         (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1484             "firmware-build", buf);
1485         (void) snprintf(buf, sizeof (buf), "%d.%d", hw->aq.api_maj_ver,
1486             hw->aq.api_min_ver);
1487         (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1488             "api-version", buf);
1489 
1490         if (!i40e_set_hw_bus_info(hw))
1491                 return (B_FALSE);
1492 
1493         if (i40e_check_acc_handle(osdep->ios_reg_handle) != DDI_FM_OK) {
1494                 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
1495                 return (B_FALSE);
1496         }
1497 
1498         return (B_TRUE);
1499 }
1500 
1501 static void
1502 i40e_identify_hardware(i40e_t *i40e)
1503 {
1504         i40e_hw_t *hw = &i40e->i40e_hw_space;
1505         struct i40e_osdep *osdep = &i40e->i40e_osdep_space;
1506 
1507         hw->vendor_id = pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_VENID);
1508         hw->device_id = pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_DEVID);
1509         hw->revision_id = pci_config_get8(osdep->ios_cfg_handle,
1510             PCI_CONF_REVID);
1511         hw->subsystem_device_id =
1512             pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_SUBSYSID);
1513         hw->subsystem_vendor_id =
1514             pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_SUBVENID);
1515 
1516         /*
1517          * Note that we set the hardware's bus information later on, in
1518          * i40e_get_available_resources(). The common code doesn't seem to
1519          * require that it be set in any ways, it seems to be mostly for
1520          * book-keeping.
1521          */
1522 }
1523 
1524 static boolean_t
1525 i40e_regs_map(i40e_t *i40e)
1526 {
1527         dev_info_t *devinfo = i40e->i40e_dip;
1528         i40e_hw_t *hw = &i40e->i40e_hw_space;
1529         struct i40e_osdep *osdep = &i40e->i40e_osdep_space;
1530         off_t memsize;
1531         int ret;
1532 
1533         if (ddi_dev_regsize(devinfo, I40E_ADAPTER_REGSET, &memsize) !=
1534             DDI_SUCCESS) {
1535                 i40e_error(i40e, "Used invalid register set to map PCIe regs");
1536                 return (B_FALSE);
1537         }
1538 
1539         if ((ret = ddi_regs_map_setup(devinfo, I40E_ADAPTER_REGSET,
1540             (caddr_t *)&hw->hw_addr, 0, memsize, &i40e_regs_acc_attr,
1541             &osdep->ios_reg_handle)) != DDI_SUCCESS) {
1542                 i40e_error(i40e, "failed to map device registers: %d", ret);
1543                 return (B_FALSE);
1544         }
1545 
1546         osdep->ios_reg_size = memsize;
1547         return (B_TRUE);
1548 }
1549 
1550 /*
1551  * Update parameters required when a new MTU has been configured.  Calculate the
1552  * maximum frame size, as well as, size our DMA buffers which we size in
1553  * increments of 1K.
1554  */
1555 void
1556 i40e_update_mtu(i40e_t *i40e)
1557 {
1558         uint32_t rx, tx;
1559 
1560         i40e->i40e_frame_max = i40e->i40e_sdu +
1561             sizeof (struct ether_vlan_header) + ETHERFCSL;
1562 
1563         rx = i40e->i40e_frame_max + I40E_BUF_IPHDR_ALIGNMENT;
1564         i40e->i40e_rx_buf_size = ((rx >> 10) +
1565             ((rx & (((uint32_t)1 << 10) -1)) > 0 ? 1 : 0)) << 10;
1566 
1567         tx = i40e->i40e_frame_max;
1568         i40e->i40e_tx_buf_size = ((tx >> 10) +
1569             ((tx & (((uint32_t)1 << 10) -1)) > 0 ? 1 : 0)) << 10;
1570 }
1571 
1572 static int
1573 i40e_get_prop(i40e_t *i40e, char *prop, int min, int max, int def)
1574 {
1575         int val;
1576 
1577         val = ddi_prop_get_int(DDI_DEV_T_ANY, i40e->i40e_dip, DDI_PROP_DONTPASS,
1578             prop, def);
1579         if (val > max)
1580                 val = max;
1581         if (val < min)
1582                 val = min;
1583         return (val);
1584 }
1585 
1586 static void
1587 i40e_init_properties(i40e_t *i40e)
1588 {
1589         i40e->i40e_sdu = i40e_get_prop(i40e, "default_mtu",
1590             I40E_MIN_MTU, I40E_MAX_MTU, I40E_DEF_MTU);
1591 
1592         i40e->i40e_intr_force = i40e_get_prop(i40e, "intr_force",
1593             I40E_INTR_NONE, I40E_INTR_LEGACY, I40E_INTR_NONE);
1594 
1595         i40e->i40e_mr_enable = i40e_get_prop(i40e, "mr_enable",
1596             B_FALSE, B_TRUE, B_TRUE);
1597 
1598         i40e->i40e_tx_ring_size = i40e_get_prop(i40e, "tx_ring_size",
1599             I40E_MIN_TX_RING_SIZE, I40E_MAX_TX_RING_SIZE,
1600             I40E_DEF_TX_RING_SIZE);
1601         if ((i40e->i40e_tx_ring_size % I40E_DESC_ALIGN) != 0) {
1602                 i40e->i40e_tx_ring_size = P2ROUNDUP(i40e->i40e_tx_ring_size,
1603                     I40E_DESC_ALIGN);
1604         }
1605 
1606         i40e->i40e_tx_block_thresh = i40e_get_prop(i40e, "tx_resched_threshold",
1607             I40E_MIN_TX_BLOCK_THRESH,
1608             i40e->i40e_tx_ring_size - I40E_TX_MAX_COOKIE,
1609             I40E_DEF_TX_BLOCK_THRESH);
1610 
1611         i40e->i40e_num_rx_groups = i40e_get_prop(i40e, "rx_num_groups",
1612             I40E_MIN_NUM_RX_GROUPS, I40E_MAX_NUM_RX_GROUPS,
1613             I40E_DEF_NUM_RX_GROUPS);
1614 
1615         i40e->i40e_rx_ring_size = i40e_get_prop(i40e, "rx_ring_size",
1616             I40E_MIN_RX_RING_SIZE, I40E_MAX_RX_RING_SIZE,
1617             I40E_DEF_RX_RING_SIZE);
1618         if ((i40e->i40e_rx_ring_size % I40E_DESC_ALIGN) != 0) {
1619                 i40e->i40e_rx_ring_size = P2ROUNDUP(i40e->i40e_rx_ring_size,
1620                     I40E_DESC_ALIGN);
1621         }
1622 
1623         i40e->i40e_rx_limit_per_intr = i40e_get_prop(i40e, "rx_limit_per_intr",
1624             I40E_MIN_RX_LIMIT_PER_INTR, I40E_MAX_RX_LIMIT_PER_INTR,
1625             I40E_DEF_RX_LIMIT_PER_INTR);
1626 
1627         i40e->i40e_tx_hcksum_enable = i40e_get_prop(i40e, "tx_hcksum_enable",
1628             B_FALSE, B_TRUE, B_TRUE);
1629 
1630         i40e->i40e_tx_lso_enable = i40e_get_prop(i40e, "tx_lso_enable",
1631             B_FALSE, B_TRUE, B_TRUE);
1632 
1633         i40e->i40e_rx_hcksum_enable = i40e_get_prop(i40e, "rx_hcksum_enable",
1634             B_FALSE, B_TRUE, B_TRUE);
1635 
1636         i40e->i40e_rx_dma_min = i40e_get_prop(i40e, "rx_dma_threshold",
1637             I40E_MIN_RX_DMA_THRESH, I40E_MAX_RX_DMA_THRESH,
1638             I40E_DEF_RX_DMA_THRESH);
1639 
1640         i40e->i40e_tx_dma_min = i40e_get_prop(i40e, "tx_dma_threshold",
1641             I40E_MIN_TX_DMA_THRESH, I40E_MAX_TX_DMA_THRESH,
1642             I40E_DEF_TX_DMA_THRESH);
1643 
1644         i40e->i40e_tx_itr = i40e_get_prop(i40e, "tx_intr_throttle",
1645             I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_TX_ITR);
1646 
1647         i40e->i40e_rx_itr = i40e_get_prop(i40e, "rx_intr_throttle",
1648             I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_RX_ITR);
1649 
1650         i40e->i40e_other_itr = i40e_get_prop(i40e, "other_intr_throttle",
1651             I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_OTHER_ITR);
1652 
1653         if (!i40e->i40e_mr_enable) {
1654                 i40e->i40e_num_trqpairs = I40E_TRQPAIR_NOMSIX;
1655                 i40e->i40e_num_rx_groups = I40E_GROUP_NOMSIX;
1656         }
1657 
1658         i40e_update_mtu(i40e);
1659 }
1660 
1661 /*
1662  * There are a few constraints on interrupts that we're currently imposing, some
1663  * of which are restrictions from hardware. For a fuller treatment, see
1664  * i40e_intr.c.
1665  *
1666  * Currently, to use MSI-X we require two interrupts be available though in
1667  * theory we should participate in IRM and happily use more interrupts.
1668  *
1669  * Hardware only supports a single MSI being programmed and therefore if we
1670  * don't have MSI-X interrupts available at this time, then we ratchet down the
1671  * number of rings and groups available. Obviously, we only bother with a single
1672  * fixed interrupt.
1673  */
1674 static boolean_t
1675 i40e_alloc_intr_handles(i40e_t *i40e, dev_info_t *devinfo, int intr_type)
1676 {
1677         i40e_hw_t *hw = &i40e->i40e_hw_space;
1678         ddi_acc_handle_t rh = i40e->i40e_osdep_space.ios_reg_handle;
1679         int request, count, actual, rc, min;
1680         uint32_t reg;
1681 
1682         switch (intr_type) {
1683         case DDI_INTR_TYPE_FIXED:
1684         case DDI_INTR_TYPE_MSI:
1685                 request = 1;
1686                 min = 1;
1687                 break;
1688         case DDI_INTR_TYPE_MSIX:
1689                 min = 2;
1690                 if (!i40e->i40e_mr_enable) {
1691                         request = 2;
1692                         break;
1693                 }
1694                 reg = I40E_READ_REG(hw, I40E_GLPCI_CNF2);
1695                 /*
1696                  * Should this read fail, we will drop back to using
1697                  * MSI or fixed interrupts.
1698                  */
1699                 if (i40e_check_acc_handle(rh) != DDI_FM_OK) {
1700                         ddi_fm_service_impact(i40e->i40e_dip,
1701                             DDI_SERVICE_DEGRADED);
1702                         return (B_FALSE);
1703                 }
1704                 request = (reg & I40E_GLPCI_CNF2_MSI_X_PF_N_MASK) >>
1705                     I40E_GLPCI_CNF2_MSI_X_PF_N_SHIFT;
1706                 request++;      /* the register value is n - 1 */
1707                 break;
1708         default:
1709                 panic("bad interrupt type passed to i40e_alloc_intr_handles: "
1710                     "%d", intr_type);
1711         }
1712 
1713         rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
1714         if (rc != DDI_SUCCESS || count < min) {
1715                 i40e_log(i40e, "Get interrupt number failed, "
1716                     "returned %d, count %d", rc, count);
1717                 return (B_FALSE);
1718         }
1719 
1720         rc = ddi_intr_get_navail(devinfo, intr_type, &count);
1721         if (rc != DDI_SUCCESS || count < min) {
1722                 i40e_log(i40e, "Get AVAILABLE interrupt number failed, "
1723                     "returned %d, count %d", rc, count);
1724                 return (B_FALSE);
1725         }
1726 
1727         actual = 0;
1728         i40e->i40e_intr_count = 0;
1729         i40e->i40e_intr_count_max = 0;
1730         i40e->i40e_intr_count_min = 0;
1731 
1732         i40e->i40e_intr_size = request * sizeof (ddi_intr_handle_t);
1733         ASSERT(i40e->i40e_intr_size != 0);
1734         i40e->i40e_intr_handles = kmem_alloc(i40e->i40e_intr_size, KM_SLEEP);
1735 
1736         rc = ddi_intr_alloc(devinfo, i40e->i40e_intr_handles, intr_type, 0,
1737             min(request, count), &actual, DDI_INTR_ALLOC_NORMAL);
1738         if (rc != DDI_SUCCESS) {
1739                 i40e_log(i40e, "Interrupt allocation failed with %d.", rc);
1740                 goto alloc_handle_fail;
1741         }
1742 
1743         i40e->i40e_intr_count = actual;
1744         i40e->i40e_intr_count_max = request;
1745         i40e->i40e_intr_count_min = min;
1746 
1747         if (actual < min) {
1748                 i40e_log(i40e, "actual (%d) is less than minimum (%d).",
1749                     actual, min);
1750                 goto alloc_handle_fail;
1751         }
1752 
1753         /*
1754          * Record the priority and capabilities for our first vector.  Once
1755          * we have it, that's our priority until detach time.  Even if we
1756          * eventually participate in IRM, our priority shouldn't change.
1757          */
1758         rc = ddi_intr_get_pri(i40e->i40e_intr_handles[0], &i40e->i40e_intr_pri);
1759         if (rc != DDI_SUCCESS) {
1760                 i40e_log(i40e,
1761                     "Getting interrupt priority failed with %d.", rc);
1762                 goto alloc_handle_fail;
1763         }
1764 
1765         rc = ddi_intr_get_cap(i40e->i40e_intr_handles[0], &i40e->i40e_intr_cap);
1766         if (rc != DDI_SUCCESS) {
1767                 i40e_log(i40e,
1768                     "Getting interrupt capabilities failed with %d.", rc);
1769                 goto alloc_handle_fail;
1770         }
1771 
1772         i40e->i40e_intr_type = intr_type;
1773         return (B_TRUE);
1774 
1775 alloc_handle_fail:
1776 
1777         i40e_rem_intrs(i40e);
1778         return (B_FALSE);
1779 }
1780 
1781 static boolean_t
1782 i40e_alloc_intrs(i40e_t *i40e, dev_info_t *devinfo)
1783 {
1784         i40e_hw_t *hw = &i40e->i40e_hw_space;
1785         int intr_types, rc;
1786         uint_t max_trqpairs;
1787 
1788         if (i40e_is_x722(i40e)) {
1789                 max_trqpairs = I40E_722_MAX_TC_QUEUES;
1790         } else {
1791                 max_trqpairs = I40E_710_MAX_TC_QUEUES;
1792         }
1793 
1794         rc = ddi_intr_get_supported_types(devinfo, &intr_types);
1795         if (rc != DDI_SUCCESS) {
1796                 i40e_error(i40e, "failed to get supported interrupt types: %d",
1797                     rc);
1798                 return (B_FALSE);
1799         }
1800 
1801         i40e->i40e_intr_type = 0;
1802 
1803         /*
1804          * We need to determine the number of queue pairs per traffic
1805          * class. We only have one traffic class (TC0), so we'll base
1806          * this off the number of interrupts provided. Furthermore,
1807          * since we only use one traffic class, the number of queues
1808          * per traffic class and per VSI are the same.
1809          */
1810         if ((intr_types & DDI_INTR_TYPE_MSIX) &&
1811             (i40e->i40e_intr_force <= I40E_INTR_MSIX) &&
1812             (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_MSIX))) {
1813                 uint32_t n, qp_cap, num_trqpairs;
1814 
1815                 /*
1816                  * While we want the number of queue pairs to match
1817                  * the number of interrupts, we must keep stay in
1818                  * bounds of the maximum number of queues per traffic
1819                  * class. We subtract one from i40e_intr_count to
1820                  * account for interrupt zero; which is currently
1821                  * restricted to admin queue commands and other
1822                  * interrupt causes.
1823                  */
1824                 n = MIN(i40e->i40e_intr_count - 1, max_trqpairs);
1825                 ASSERT3U(n, >, 0);
1826 
1827                 /*
1828                  * Round up to the nearest power of two to ensure that
1829                  * the QBASE aligns with the TC size which must be
1830                  * programmed as a power of two. See the queue mapping
1831                  * description in section 7.4.9.5.5.1.
1832                  *
1833                  * If i40e_intr_count - 1 is not a power of two then
1834                  * some queue pairs on the same VSI will have to share
1835                  * an interrupt.
1836                  *
1837                  * We may want to revisit this logic in a future where
1838                  * we have more interrupts and more VSIs. Otherwise,
1839                  * each VSI will use as many interrupts as possible.
1840                  * Using more QPs per VSI means better RSS for each
1841                  * group, but at the same time may require more
1842                  * sharing of interrupts across VSIs. This may be a
1843                  * good candidate for a .conf tunable.
1844                  */
1845                 n = 0x1 << ddi_fls(n);
1846                 i40e->i40e_num_trqpairs_per_vsi = n;
1847 
1848                 /*
1849                  * Make sure the number of tx/rx qpairs does not exceed
1850                  * the device's capabilities.
1851                  */
1852                 ASSERT3U(i40e->i40e_num_rx_groups, >, 0);
1853                 qp_cap = MIN(hw->func_caps.num_rx_qp, hw->func_caps.num_tx_qp);
1854                 num_trqpairs = i40e->i40e_num_trqpairs_per_vsi *
1855                     i40e->i40e_num_rx_groups;
1856                 if (num_trqpairs > qp_cap) {
1857                         i40e->i40e_num_rx_groups = MAX(1, qp_cap /
1858                             i40e->i40e_num_trqpairs_per_vsi);
1859                         num_trqpairs = i40e->i40e_num_trqpairs_per_vsi *
1860                             i40e->i40e_num_rx_groups;
1861                         i40e_log(i40e, "Rx groups restricted to %u",
1862                             i40e->i40e_num_rx_groups);
1863                 }
1864                 ASSERT3U(num_trqpairs, >, 0);
1865                 i40e->i40e_num_trqpairs = num_trqpairs;
1866                 return (B_TRUE);
1867         }
1868 
1869         /*
1870          * We only use multiple transmit/receive pairs when MSI-X interrupts are
1871          * available due to the fact that the device basically only supports a
1872          * single MSI interrupt.
1873          */
1874         i40e->i40e_num_trqpairs = I40E_TRQPAIR_NOMSIX;
1875         i40e->i40e_num_trqpairs_per_vsi = i40e->i40e_num_trqpairs;
1876         i40e->i40e_num_rx_groups = I40E_GROUP_NOMSIX;
1877 
1878         if ((intr_types & DDI_INTR_TYPE_MSI) &&
1879             (i40e->i40e_intr_force <= I40E_INTR_MSI)) {
1880                 if (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_MSI))
1881                         return (B_TRUE);
1882         }
1883 
1884         if (intr_types & DDI_INTR_TYPE_FIXED) {
1885                 if (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_FIXED))
1886                         return (B_TRUE);
1887         }
1888 
1889         return (B_FALSE);
1890 }
1891 
1892 /*
1893  * Map different interrupts to MSI-X vectors.
1894  */
1895 static boolean_t
1896 i40e_map_intrs_to_vectors(i40e_t *i40e)
1897 {
1898         if (i40e->i40e_intr_type != DDI_INTR_TYPE_MSIX) {
1899                 return (B_TRUE);
1900         }
1901 
1902         /*
1903          * Each queue pair is mapped to a single interrupt, so
1904          * transmit and receive interrupts for a given queue share the
1905          * same vector. Vector zero is reserved for the admin queue.
1906          */
1907         for (uint_t i = 0; i < i40e->i40e_num_trqpairs; i++) {
1908                 uint_t vector = i % (i40e->i40e_intr_count - 1);
1909 
1910                 i40e->i40e_trqpairs[i].itrq_rx_intrvec = vector + 1;
1911                 i40e->i40e_trqpairs[i].itrq_tx_intrvec = vector + 1;
1912         }
1913 
1914         return (B_TRUE);
1915 }
1916 
1917 static boolean_t
1918 i40e_add_intr_handlers(i40e_t *i40e)
1919 {
1920         int rc, vector;
1921 
1922         switch (i40e->i40e_intr_type) {
1923         case DDI_INTR_TYPE_MSIX:
1924                 for (vector = 0; vector < i40e->i40e_intr_count; vector++) {
1925                         rc = ddi_intr_add_handler(
1926                             i40e->i40e_intr_handles[vector],
1927                             (ddi_intr_handler_t *)i40e_intr_msix, i40e,
1928                             (void *)(uintptr_t)vector);
1929                         if (rc != DDI_SUCCESS) {
1930                                 i40e_log(i40e, "Add interrupt handler (MSI-X) "
1931                                     "failed: return %d, vector %d", rc, vector);
1932                                 for (vector--; vector >= 0; vector--) {
1933                                         (void) ddi_intr_remove_handler(
1934                                             i40e->i40e_intr_handles[vector]);
1935                                 }
1936                                 return (B_FALSE);
1937                         }
1938                 }
1939                 break;
1940         case DDI_INTR_TYPE_MSI:
1941                 rc = ddi_intr_add_handler(i40e->i40e_intr_handles[0],
1942                     (ddi_intr_handler_t *)i40e_intr_msi, i40e, NULL);
1943                 if (rc != DDI_SUCCESS) {
1944                         i40e_log(i40e, "Add interrupt handler (MSI) failed: "
1945                             "return %d", rc);
1946                         return (B_FALSE);
1947                 }
1948                 break;
1949         case DDI_INTR_TYPE_FIXED:
1950                 rc = ddi_intr_add_handler(i40e->i40e_intr_handles[0],
1951                     (ddi_intr_handler_t *)i40e_intr_legacy, i40e, NULL);
1952                 if (rc != DDI_SUCCESS) {
1953                         i40e_log(i40e, "Add interrupt handler (legacy) failed:"
1954                             " return %d", rc);
1955                         return (B_FALSE);
1956                 }
1957                 break;
1958         default:
1959                 /* Cast to pacify lint */
1960                 panic("i40e_intr_type %p contains an unknown type: %d",
1961                     (void *)i40e, i40e->i40e_intr_type);
1962         }
1963 
1964         return (B_TRUE);
1965 }
1966 
1967 /*
1968  * Perform periodic checks. Longer term, we should be thinking about additional
1969  * things here:
1970  *
1971  * o Stall Detection
1972  * o Temperature sensor detection
1973  * o Device resetting
1974  * o Statistics updating to avoid wraparound
1975  */
1976 static void
1977 i40e_timer(void *arg)
1978 {
1979         i40e_t *i40e = arg;
1980 
1981         mutex_enter(&i40e->i40e_general_lock);
1982         i40e_link_check(i40e);
1983         mutex_exit(&i40e->i40e_general_lock);
1984 }
1985 
1986 /*
1987  * Get the hardware state, and scribble away anything that needs scribbling.
1988  */
1989 static void
1990 i40e_get_hw_state(i40e_t *i40e, i40e_hw_t *hw)
1991 {
1992         int rc;
1993 
1994         ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
1995 
1996         (void) i40e_aq_get_link_info(hw, TRUE, NULL, NULL);
1997         i40e_link_check(i40e);
1998 
1999         /*
2000          * Try and determine our PHY. Note that we may have to retry to and
2001          * delay to detect fiber correctly.
2002          */
2003         rc = i40e_aq_get_phy_capabilities(hw, B_FALSE, B_TRUE, &i40e->i40e_phy,
2004             NULL);
2005         if (rc == I40E_ERR_UNKNOWN_PHY) {
2006                 i40e_msec_delay(200);
2007                 rc = i40e_aq_get_phy_capabilities(hw, B_FALSE, B_TRUE,
2008                     &i40e->i40e_phy, NULL);
2009         }
2010 
2011         if (rc != I40E_SUCCESS) {
2012                 if (rc == I40E_ERR_UNKNOWN_PHY) {
2013                         i40e_error(i40e, "encountered unknown PHY type, "
2014                             "not attaching.");
2015                 } else {
2016                         i40e_error(i40e, "error getting physical capabilities: "
2017                             "%d, %d", rc, hw->aq.asq_last_status);
2018                 }
2019         }
2020 
2021         rc = i40e_update_link_info(hw);
2022         if (rc != I40E_SUCCESS) {
2023                 i40e_error(i40e, "failed to update link information: %d", rc);
2024         }
2025 
2026         /*
2027          * In general, we don't want to mask off (as in stop from being a cause)
2028          * any of the interrupts that the phy might be able to generate.
2029          */
2030         rc = i40e_aq_set_phy_int_mask(hw, 0, NULL);
2031         if (rc != I40E_SUCCESS) {
2032                 i40e_error(i40e, "failed to update phy link mask: %d", rc);
2033         }
2034 }
2035 
2036 /*
2037  * Go through and re-initialize any existing filters that we may have set up for
2038  * this device. Note that we would only expect them to exist if hardware had
2039  * already been initialized and we had just reset it. While we're not
2040  * implementing this yet, we're keeping this around for when we add reset
2041  * capabilities, so this isn't forgotten.
2042  */
2043 /* ARGSUSED */
2044 static void
2045 i40e_init_macaddrs(i40e_t *i40e, i40e_hw_t *hw)
2046 {
2047 }
2048 
2049 /*
2050  * Set the properties which have common values across all the VSIs.
2051  * Consult the "Add VSI" command section (7.4.9.5.5.1) for a
2052  * complete description of these properties.
2053  */
2054 static void
2055 i40e_set_shared_vsi_props(i40e_t *i40e,
2056     struct i40e_aqc_vsi_properties_data *info, uint_t vsi_idx)
2057 {
2058         uint_t tc_queues;
2059         uint16_t vsi_qp_base;
2060 
2061         /*
2062          * It's important that we use bitwise-OR here; callers to this
2063          * function might enable other sections before calling this
2064          * function.
2065          */
2066         info->valid_sections |= LE_16(I40E_AQ_VSI_PROP_QUEUE_MAP_VALID |
2067             I40E_AQ_VSI_PROP_VLAN_VALID);
2068 
2069         /*
2070          * Calculate the starting QP index for this VSI. This base is
2071          * relative to the PF queue space; so a value of 0 for PF#1
2072          * represents the absolute index PFLAN_QALLOC_FIRSTQ for PF#1.
2073          */
2074         vsi_qp_base = vsi_idx * i40e->i40e_num_trqpairs_per_vsi;
2075         info->mapping_flags = LE_16(I40E_AQ_VSI_QUE_MAP_CONTIG);
2076         info->queue_mapping[0] =
2077             LE_16((vsi_qp_base << I40E_AQ_VSI_QUEUE_SHIFT) &
2078             I40E_AQ_VSI_QUEUE_MASK);
2079 
2080         /*
2081          * tc_queues determines the size of the traffic class, where
2082          * the size is 2^^tc_queues to a maximum of 64 for the X710
2083          * and 128 for the X722.
2084          *
2085          * Some examples:
2086          *      i40e_num_trqpairs_per_vsi == 1 =>  tc_queues = 0, 2^^0 = 1.
2087          *      i40e_num_trqpairs_per_vsi == 7 =>  tc_queues = 3, 2^^3 = 8.
2088          *      i40e_num_trqpairs_per_vsi == 8 =>  tc_queues = 3, 2^^3 = 8.
2089          *      i40e_num_trqpairs_per_vsi == 9 =>  tc_queues = 4, 2^^4 = 16.
2090          *      i40e_num_trqpairs_per_vsi == 17 => tc_queues = 5, 2^^5 = 32.
2091          *      i40e_num_trqpairs_per_vsi == 64 => tc_queues = 6, 2^^6 = 64.
2092          */
2093         tc_queues = ddi_fls(i40e->i40e_num_trqpairs_per_vsi - 1);
2094 
2095         /*
2096          * The TC queue mapping is in relation to the VSI queue space.
2097          * Since we are only using one traffic class (TC0) we always
2098          * start at queue offset 0.
2099          */
2100         info->tc_mapping[0] =
2101             LE_16(((0 << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) &
2102             I40E_AQ_VSI_TC_QUE_OFFSET_MASK) |
2103             ((tc_queues << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT) &
2104             I40E_AQ_VSI_TC_QUE_NUMBER_MASK));
2105 
2106         /*
2107          * I40E_AQ_VSI_PVLAN_MODE_ALL ("VLAN driver insertion mode")
2108          *
2109          *      Allow tagged and untagged packets to be sent to this
2110          *      VSI from the host.
2111          *
2112          * I40E_AQ_VSI_PVLAN_EMOD_NOTHING ("VLAN and UP expose mode")
2113          *
2114          *      Leave the tag on the frame and place no VLAN
2115          *      information in the descriptor. We want this mode
2116          *      because our MAC layer will take care of the VLAN tag,
2117          *      if there is one.
2118          */
2119         info->port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
2120             I40E_AQ_VSI_PVLAN_EMOD_NOTHING;
2121 }
2122 
2123 /*
2124  * Delete the VSI at this index, if one exists. We assume there is no
2125  * action we can take if this command fails but to log the failure.
2126  */
2127 static void
2128 i40e_delete_vsi(i40e_t *i40e, uint_t idx)
2129 {
2130         i40e_hw_t       *hw = &i40e->i40e_hw_space;
2131         uint16_t        seid = i40e->i40e_vsis[idx].iv_seid;
2132 
2133         if (seid != 0) {
2134                 int rc;
2135 
2136                 rc = i40e_aq_delete_element(hw, seid, NULL);
2137 
2138                 if (rc != I40E_SUCCESS) {
2139                         i40e_error(i40e, "Failed to delete VSI %d: %d",
2140                             rc, hw->aq.asq_last_status);
2141                 }
2142 
2143                 i40e->i40e_vsis[idx].iv_seid = 0;
2144         }
2145 }
2146 
2147 /*
2148  * Add a new VSI.
2149  */
2150 static boolean_t
2151 i40e_add_vsi(i40e_t *i40e, i40e_hw_t *hw, uint_t idx)
2152 {
2153         struct i40e_vsi_context ctx;
2154         i40e_rx_group_t         *rxg;
2155         int                     rc;
2156 
2157         /*
2158          * The default VSI is created by the controller. This function
2159          * creates new, non-defualt VSIs only.
2160          */
2161         ASSERT3U(idx, !=, 0);
2162 
2163         bzero(&ctx, sizeof (struct i40e_vsi_context));
2164         ctx.uplink_seid = i40e->i40e_veb_seid;
2165         ctx.pf_num = hw->pf_id;
2166         ctx.flags = I40E_AQ_VSI_TYPE_PF;
2167         ctx.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
2168         i40e_set_shared_vsi_props(i40e, &ctx.info, idx);
2169 
2170         rc = i40e_aq_add_vsi(hw, &ctx, NULL);
2171         if (rc != I40E_SUCCESS) {
2172                 i40e_error(i40e, "i40e_aq_add_vsi() failed %d: %d", rc,
2173                     hw->aq.asq_last_status);
2174                 return (B_FALSE);
2175         }
2176 
2177         rxg = &i40e->i40e_rx_groups[idx];
2178         rxg->irg_vsi_seid = ctx.seid;
2179         i40e->i40e_vsis[idx].iv_number = ctx.vsi_number;
2180         i40e->i40e_vsis[idx].iv_seid = ctx.seid;
2181         i40e->i40e_vsis[idx].iv_stats_id = LE_16(ctx.info.stat_counter_idx);
2182 
2183         if (i40e_stat_vsi_init(i40e, idx) == B_FALSE)
2184                 return (B_FALSE);
2185 
2186         return (B_TRUE);
2187 }
2188 
2189 /*
2190  * Configure the hardware for the Default Virtual Station Interface (VSI).
2191  */
2192 static boolean_t
2193 i40e_config_def_vsi(i40e_t *i40e, i40e_hw_t *hw)
2194 {
2195         struct i40e_vsi_context ctx;
2196         i40e_rx_group_t *def_rxg;
2197         int err;
2198         struct i40e_aqc_remove_macvlan_element_data filt;
2199 
2200         bzero(&ctx, sizeof (struct i40e_vsi_context));
2201         ctx.seid = I40E_DEF_VSI_SEID(i40e);
2202         ctx.pf_num = hw->pf_id;
2203         err = i40e_aq_get_vsi_params(hw, &ctx, NULL);
2204         if (err != I40E_SUCCESS) {
2205                 i40e_error(i40e, "get VSI params failed with %d", err);
2206                 return (B_FALSE);
2207         }
2208 
2209         ctx.info.valid_sections = 0;
2210         i40e->i40e_vsis[0].iv_number = ctx.vsi_number;
2211         i40e->i40e_vsis[0].iv_stats_id = LE_16(ctx.info.stat_counter_idx);
2212         if (i40e_stat_vsi_init(i40e, 0) == B_FALSE)
2213                 return (B_FALSE);
2214 
2215         i40e_set_shared_vsi_props(i40e, &ctx.info, I40E_DEF_VSI_IDX);
2216 
2217         err = i40e_aq_update_vsi_params(hw, &ctx, NULL);
2218         if (err != I40E_SUCCESS) {
2219                 i40e_error(i40e, "Update VSI params failed with %d", err);
2220                 return (B_FALSE);
2221         }
2222 
2223         def_rxg = &i40e->i40e_rx_groups[0];
2224         def_rxg->irg_vsi_seid = I40E_DEF_VSI_SEID(i40e);
2225 
2226         /*
2227          * We have seen three different behaviors in regards to the
2228          * Default VSI and its implicit L2 MAC+VLAN filter.
2229          *
2230          * 1. It has an implicit filter for the factory MAC address
2231          *    and this filter counts against 'ifr_nmacfilt_used'.
2232          *
2233          * 2. It has an implicit filter for the factory MAC address
2234          *    and this filter DOES NOT count against 'ifr_nmacfilt_used'.
2235          *
2236          * 3. It DOES NOT have an implicit filter.
2237          *
2238          * All three of these cases are accounted for below. If we
2239          * fail to remove the L2 filter (ENOENT) then we assume there
2240          * wasn't one. Otherwise, if we successfully remove the
2241          * filter, we make sure to update the 'ifr_nmacfilt_used'
2242          * count accordingly.
2243          *
2244          * We remove this filter to prevent duplicate delivery of
2245          * packets destined for the primary MAC address as DLS will
2246          * create the same filter on a non-default VSI for the primary
2247          * MAC client.
2248          *
2249          * If you change the following code please test it across as
2250          * many X700 series controllers and firmware revisions as you
2251          * can.
2252          */
2253         bzero(&filt, sizeof (filt));
2254         bcopy(hw->mac.port_addr, filt.mac_addr, ETHERADDRL);
2255         filt.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
2256         filt.vlan_tag = 0;
2257 
2258         ASSERT3U(i40e->i40e_resources.ifr_nmacfilt_used, <=, 1);
2259         i40e_log(i40e, "Num L2 filters: %u",
2260             i40e->i40e_resources.ifr_nmacfilt_used);
2261 
2262         err = i40e_aq_remove_macvlan(hw, I40E_DEF_VSI_SEID(i40e), &filt, 1,
2263             NULL);
2264         if (err == I40E_SUCCESS) {
2265                 i40e_log(i40e,
2266                     "Removed L2 filter from Default VSI with SEID %u",
2267                     I40E_DEF_VSI_SEID(i40e));
2268         } else if (hw->aq.asq_last_status == ENOENT) {
2269                 i40e_log(i40e,
2270                     "No L2 filter for Default VSI with SEID %u",
2271                     I40E_DEF_VSI_SEID(i40e));
2272         } else {
2273                 i40e_error(i40e, "Failed to remove L2 filter from"
2274                     " Default VSI with SEID %u: %d (%d)",
2275                     I40E_DEF_VSI_SEID(i40e), err, hw->aq.asq_last_status);
2276 
2277                 return (B_FALSE);
2278         }
2279 
2280         /*
2281          *  As mentioned above, the controller created an implicit L2
2282          *  filter for the primary MAC. We want to remove both the
2283          *  filter and decrement the filter count. However, not all
2284          *  controllers count this implicit filter against the total
2285          *  MAC filter count. So here we are making sure it is either
2286          *  one or zero. If it is one, then we know it is for the
2287          *  implicit filter and we should decrement since we just
2288          *  removed the filter above. If it is zero then we know the
2289          *  controller that does not count the implicit filter, and it
2290          *  was enough to just remove it; we leave the count alone.
2291          *  But if it is neither, then we have never seen a controller
2292          *  like this before and we should fail to attach.
2293          *
2294          *  It is unfortunate that this code must exist but the
2295          *  behavior of this implicit L2 filter and its corresponding
2296          *  count were dicovered through empirical testing. The
2297          *  programming manuals hint at this filter but do not
2298          *  explicitly call out the exact behavior.
2299          */
2300         if (i40e->i40e_resources.ifr_nmacfilt_used == 1) {
2301                 i40e->i40e_resources.ifr_nmacfilt_used--;
2302         } else {
2303                 if (i40e->i40e_resources.ifr_nmacfilt_used != 0) {
2304                         i40e_error(i40e, "Unexpected L2 filter count: %u"
2305                             " (expected 0)",
2306                             i40e->i40e_resources.ifr_nmacfilt_used);
2307                         return (B_FALSE);
2308                 }
2309         }
2310 
2311         return (B_TRUE);
2312 }
2313 
2314 static boolean_t
2315 i40e_config_rss_key_x722(i40e_t *i40e, i40e_hw_t *hw)
2316 {
2317         for (uint_t i = 0; i < i40e->i40e_num_rx_groups; i++) {
2318                 uint32_t seed[I40E_PFQF_HKEY_MAX_INDEX + 1];
2319                 struct i40e_aqc_get_set_rss_key_data key;
2320                 const char *u8seed;
2321                 enum i40e_status_code status;
2322                 uint16_t vsi_number = i40e->i40e_vsis[i].iv_number;
2323 
2324                 (void) random_get_pseudo_bytes((uint8_t *)seed, sizeof (seed));
2325                 u8seed = (char *)seed;
2326 
2327                 CTASSERT(sizeof (key) >= (sizeof (key.standard_rss_key) +
2328                     sizeof (key.extended_hash_key)));
2329 
2330                 bcopy(u8seed, key.standard_rss_key,
2331                     sizeof (key.standard_rss_key));
2332                 bcopy(&u8seed[sizeof (key.standard_rss_key)],
2333                     key.extended_hash_key, sizeof (key.extended_hash_key));
2334 
2335                 ASSERT3U(vsi_number, !=, 0);
2336                 status = i40e_aq_set_rss_key(hw, vsi_number, &key);
2337 
2338                 if (status != I40E_SUCCESS) {
2339                         i40e_error(i40e, "failed to set RSS key for VSI %u: %d",
2340                             vsi_number, status);
2341                         return (B_FALSE);
2342                 }
2343         }
2344 
2345         return (B_TRUE);
2346 }
2347 
2348 /*
2349  * Configure the RSS key. For the X710 controller family, this is set on a
2350  * per-PF basis via registers. For the X722, this is done on a per-VSI basis
2351  * through the admin queue.
2352  */
2353 static boolean_t
2354 i40e_config_rss_key(i40e_t *i40e, i40e_hw_t *hw)
2355 {
2356         if (i40e_is_x722(i40e)) {
2357                 if (!i40e_config_rss_key_x722(i40e, hw))
2358                         return (B_FALSE);
2359         } else {
2360                 uint32_t seed[I40E_PFQF_HKEY_MAX_INDEX + 1];
2361 
2362                 (void) random_get_pseudo_bytes((uint8_t *)seed, sizeof (seed));
2363                 for (uint_t i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
2364                         i40e_write_rx_ctl(hw, I40E_PFQF_HKEY(i), seed[i]);
2365         }
2366 
2367         return (B_TRUE);
2368 }
2369 
2370 /*
2371  * Populate the LUT. The size of each entry in the LUT depends on the controller
2372  * family, with the X722 using a known 7-bit width. On the X710 controller, this
2373  * is programmed through its control registers where as on the X722 this is
2374  * configured through the admin queue. Also of note, the X722 allows the LUT to
2375  * be set on a per-PF or VSI basis. At this time we use the PF setting. If we
2376  * decide to use the per-VSI LUT in the future, then we will need to modify the
2377  * i40e_add_vsi() function to set the RSS LUT bits in the queueing section.
2378  *
2379  * We populate the LUT in a round robin fashion with the rx queue indices from 0
2380  * to i40e_num_trqpairs_per_vsi - 1.
2381  */
2382 static boolean_t
2383 i40e_config_rss_hlut(i40e_t *i40e, i40e_hw_t *hw)
2384 {
2385         uint32_t *hlut;
2386         uint8_t lut_mask;
2387         uint_t i;
2388         boolean_t ret = B_FALSE;
2389 
2390         /*
2391          * We always configure the PF with a table size of 512 bytes in
2392          * i40e_chip_start().
2393          */
2394         hlut = kmem_alloc(I40E_HLUT_TABLE_SIZE, KM_NOSLEEP);
2395         if (hlut == NULL) {
2396                 i40e_error(i40e, "i40e_config_rss() buffer allocation failed");
2397                 return (B_FALSE);
2398         }
2399 
2400         /*
2401          * The width of the X722 is apparently defined to be 7 bits, regardless
2402          * of the capability.
2403          */
2404         if (i40e_is_x722(i40e)) {
2405                 lut_mask = (1 << 7) - 1;
2406         } else {
2407                 lut_mask = (1 << hw->func_caps.rss_table_entry_width) - 1;
2408         }
2409 
2410         for (i = 0; i < I40E_HLUT_TABLE_SIZE; i++) {
2411                 ((uint8_t *)hlut)[i] =
2412                     (i % i40e->i40e_num_trqpairs_per_vsi) & lut_mask;
2413         }
2414 
2415         if (i40e_is_x722(i40e)) {
2416                 enum i40e_status_code status;
2417 
2418                 status = i40e_aq_set_rss_lut(hw, 0, B_TRUE, (uint8_t *)hlut,
2419                     I40E_HLUT_TABLE_SIZE);
2420 
2421                 if (status != I40E_SUCCESS) {
2422                         i40e_error(i40e, "failed to set RSS LUT %d: %d",
2423                             status, hw->aq.asq_last_status);
2424                         goto out;
2425                 }
2426         } else {
2427                 for (i = 0; i < I40E_HLUT_TABLE_SIZE >> 2; i++) {
2428                         I40E_WRITE_REG(hw, I40E_PFQF_HLUT(i), hlut[i]);
2429                 }
2430         }
2431         ret = B_TRUE;
2432 out:
2433         kmem_free(hlut, I40E_HLUT_TABLE_SIZE);
2434         return (ret);
2435 }
2436 
2437 /*
2438  * Set up RSS.
2439  *      1. Seed the hash key.
2440  *      2. Enable PCTYPEs for the hash filter.
2441  *      3. Populate the LUT.
2442  */
2443 static boolean_t
2444 i40e_config_rss(i40e_t *i40e, i40e_hw_t *hw)
2445 {
2446         uint64_t hena;
2447 
2448         /*
2449          * 1. Seed the hash key
2450          */
2451         if (!i40e_config_rss_key(i40e, hw))
2452                 return (B_FALSE);
2453 
2454         /*
2455          * 2. Configure PCTYPES
2456          */
2457         hena = (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) |
2458             (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP) |
2459             (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) |
2460             (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP) |
2461             (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4) |
2462             (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) |
2463             (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP) |
2464             (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) |
2465             (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP) |
2466             (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6) |
2467             (1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD);
2468 
2469         /*
2470          * Add additional types supported by the X722 controller.
2471          */
2472         if (i40e_is_x722(i40e)) {
2473                 hena |= (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) |
2474                     (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) |
2475                     (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) |
2476                     (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) |
2477                     (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP) |
2478                     (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK);
2479         }
2480 
2481         i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (uint32_t)hena);
2482         i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (uint32_t)(hena >> 32));
2483 
2484         /*
2485          * 3. Populate LUT
2486          */
2487         return (i40e_config_rss_hlut(i40e, hw));
2488 }
2489 
2490 /*
2491  * Wrapper to kick the chipset on.
2492  */
2493 static boolean_t
2494 i40e_chip_start(i40e_t *i40e)
2495 {
2496         i40e_hw_t *hw = &i40e->i40e_hw_space;
2497         struct i40e_filter_control_settings filter;
2498         int rc;
2499         uint8_t err;
2500 
2501         if (((hw->aq.fw_maj_ver == 4) && (hw->aq.fw_min_ver < 33)) ||
2502             (hw->aq.fw_maj_ver < 4)) {
2503                 i40e_msec_delay(75);
2504                 if (i40e_aq_set_link_restart_an(hw, TRUE, NULL) !=
2505                     I40E_SUCCESS) {
2506                         i40e_error(i40e, "failed to restart link: admin queue "
2507                             "error: %d", hw->aq.asq_last_status);
2508                         return (B_FALSE);
2509                 }
2510         }
2511 
2512         /* Determine hardware state */
2513         i40e_get_hw_state(i40e, hw);
2514 
2515         /* For now, we always disable Ethernet Flow Control. */
2516         hw->fc.requested_mode = I40E_FC_NONE;
2517         rc = i40e_set_fc(hw, &err, B_TRUE);
2518         if (rc != I40E_SUCCESS) {
2519                 i40e_error(i40e, "Setting flow control failed, returned %d"
2520                     " with error: 0x%x", rc, err);
2521                 return (B_FALSE);
2522         }
2523 
2524         /* Initialize mac addresses. */
2525         i40e_init_macaddrs(i40e, hw);
2526 
2527         /*
2528          * Set up the filter control. If the hash lut size is changed from
2529          * I40E_HASH_LUT_SIZE_512 then I40E_HLUT_TABLE_SIZE and
2530          * i40e_config_rss_hlut() will need to be updated.
2531          */
2532         bzero(&filter, sizeof (filter));
2533         filter.enable_ethtype = TRUE;
2534         filter.enable_macvlan = TRUE;
2535         filter.hash_lut_size = I40E_HASH_LUT_SIZE_512;
2536 
2537         rc = i40e_set_filter_control(hw, &filter);
2538         if (rc != I40E_SUCCESS) {
2539                 i40e_error(i40e, "i40e_set_filter_control() returned %d", rc);
2540                 return (B_FALSE);
2541         }
2542 
2543         i40e_intr_chip_init(i40e);
2544 
2545         rc = i40e_get_mac_seid(i40e);
2546         if (rc == -1) {
2547                 i40e_error(i40e, "failed to obtain MAC Uplink SEID");
2548                 return (B_FALSE);
2549         }
2550         i40e->i40e_mac_seid = (uint16_t)rc;
2551 
2552         /*
2553          * Create a VEB in order to support multiple VSIs. Each VSI
2554          * functions as a MAC group. This call sets the PF's MAC as
2555          * the uplink port and the PF's default VSI as the default
2556          * downlink port.
2557          */
2558         rc = i40e_aq_add_veb(hw, i40e->i40e_mac_seid, I40E_DEF_VSI_SEID(i40e),
2559             0x1, B_TRUE, &i40e->i40e_veb_seid, B_FALSE, NULL);
2560         if (rc != I40E_SUCCESS) {
2561                 i40e_error(i40e, "i40e_aq_add_veb() failed %d: %d", rc,
2562                     hw->aq.asq_last_status);
2563                 return (B_FALSE);
2564         }
2565 
2566         if (!i40e_config_def_vsi(i40e, hw))
2567                 return (B_FALSE);
2568 
2569         for (uint_t i = 1; i < i40e->i40e_num_rx_groups; i++) {
2570                 if (!i40e_add_vsi(i40e, hw, i))
2571                         return (B_FALSE);
2572         }
2573 
2574         if (!i40e_config_rss(i40e, hw))
2575                 return (B_FALSE);
2576 
2577         i40e_flush(hw);
2578 
2579         return (B_TRUE);
2580 }
2581 
2582 /*
2583  * Take care of tearing down the rx ring. See 8.3.3.1.2 for more information.
2584  */
2585 static void
2586 i40e_shutdown_rx_ring(i40e_trqpair_t *itrq)
2587 {
2588         i40e_t *i40e = itrq->itrq_i40e;
2589         i40e_hw_t *hw = &i40e->i40e_hw_space;
2590         uint32_t reg;
2591 
2592         /*
2593          * Step 1. 8.3.3.1.2 suggests the interrupt is removed from the
2594          * hardware interrupt linked list (see i40e_intr.c) but for
2595          * simplicity we keep this list immutable until the device
2596          * (distinct from an individual ring) is stopped.
2597          */
2598 
2599         /*
2600          * Step 2. Request the queue by clearing QENA_REQ. It may not be
2601          * set due to unwinding from failures and a partially enabled
2602          * ring set.
2603          */
2604         reg = I40E_READ_REG(hw, I40E_QRX_ENA(itrq->itrq_index));
2605         if (!(reg & I40E_QRX_ENA_QENA_REQ_MASK))
2606                 return;
2607         VERIFY((reg & I40E_QRX_ENA_QENA_REQ_MASK) ==
2608             I40E_QRX_ENA_QENA_REQ_MASK);
2609         reg &= ~I40E_QRX_ENA_QENA_REQ_MASK;
2610         I40E_WRITE_REG(hw, I40E_QRX_ENA(itrq->itrq_index), reg);
2611 
2612         /*
2613          * Step 3. Wait for the disable to take, by having QENA_STAT in the FPM
2614          * be cleared. Note that we could still receive data in the queue during
2615          * this time. We don't actually wait for this now and instead defer this
2616          * to i40e_shutdown_ring_wait(), after we've interleaved disabling the
2617          * TX queue as well.
2618          */
2619 }
2620 
2621 static void
2622 i40e_shutdown_tx_ring(i40e_trqpair_t *itrq)
2623 {
2624         i40e_t *i40e = itrq->itrq_i40e;
2625         i40e_hw_t *hw = &i40e->i40e_hw_space;
2626         uint32_t reg;
2627 
2628         /*
2629          * Step 2. Set the SET_QDIS flag for the queue.
2630          */
2631         i40e_pre_tx_queue_cfg(hw, itrq->itrq_index, B_FALSE);
2632 
2633         /*
2634          * Step 3. Wait at least 400 usec.
2635          */
2636         drv_usecwait(500);
2637 
2638         /*
2639          * Step 4. Clear the QENA_REQ flag which tells hardware to
2640          * quiesce. If QENA_REQ is not already set then that means that
2641          * we likely already tried to disable this queue.
2642          */
2643         reg = I40E_READ_REG(hw, I40E_QTX_ENA(itrq->itrq_index));
2644         if ((reg & I40E_QTX_ENA_QENA_REQ_MASK) != 0) {
2645                 reg &= ~I40E_QTX_ENA_QENA_REQ_MASK;
2646                 I40E_WRITE_REG(hw, I40E_QTX_ENA(itrq->itrq_index), reg);
2647         }
2648 
2649         /*
2650          * Step 5. Wait for the drain to finish. This will be done by the
2651          * hardware removing the QENA_STAT flag from the queue. Rather than
2652          * waiting here, we interleave it with the receive shutdown in
2653          * i40e_shutdown_ring_wait().
2654          */
2655 }
2656 
2657 /*
2658  * Wait for a ring to be shut down. e.g. Steps 2 and 5 from the above
2659  * functions.
2660  */
2661 static boolean_t
2662 i40e_shutdown_ring_wait(i40e_trqpair_t *itrq)
2663 {
2664         i40e_t *i40e = itrq->itrq_i40e;
2665         i40e_hw_t *hw = &i40e->i40e_hw_space;
2666         uint32_t reg;
2667         int try;
2668 
2669         for (try = 0; try < I40E_RING_WAIT_NTRIES; try++) {
2670                 reg = I40E_READ_REG(hw, I40E_QRX_ENA(itrq->itrq_index));
2671                 if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) == 0)
2672                         break;
2673                 i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2674         }
2675 
2676         if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) != 0) {
2677                 i40e_error(i40e, "timed out disabling rx queue %d",
2678                     itrq->itrq_index);
2679                 return (B_FALSE);
2680         }
2681 
2682         for (try = 0; try < I40E_RING_WAIT_NTRIES; try++) {
2683                 reg = I40E_READ_REG(hw, I40E_QTX_ENA(itrq->itrq_index));
2684                 if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) == 0)
2685                         break;
2686                 i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2687         }
2688 
2689         if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) != 0) {
2690                 i40e_error(i40e, "timed out disabling tx queue %d",
2691                     itrq->itrq_index);
2692                 return (B_FALSE);
2693         }
2694 
2695         return (B_TRUE);
2696 }
2697 
2698 
2699 /*
2700  * Shutdown an individual ring and release any memory.
2701  */
2702 boolean_t
2703 i40e_shutdown_ring(i40e_trqpair_t *itrq)
2704 {
2705         boolean_t rv = B_TRUE;
2706 
2707         /*
2708          * Tell transmit path to quiesce, and wait until done.
2709          */
2710         if (i40e_ring_tx_quiesce(itrq)) {
2711                 /* Already quiesced. */
2712                 return (B_TRUE);
2713         }
2714 
2715         i40e_shutdown_rx_ring(itrq);
2716         i40e_shutdown_tx_ring(itrq);
2717         if (!i40e_shutdown_ring_wait(itrq))
2718                 rv = B_FALSE;
2719 
2720         /*
2721          * After the ring has stopped, we need to wait 50ms before
2722          * programming it again. Rather than wait here, we'll record
2723          * the time the ring was stopped. When the ring is started, we'll
2724          * check if enough time has expired and then wait if necessary.
2725          */
2726         itrq->irtq_time_stopped = gethrtime();
2727 
2728         /*
2729          * The rings have been stopped in the hardware, now wait for
2730          * a possibly active interrupt thread.
2731          */
2732         i40e_intr_quiesce(itrq);
2733 
2734         mutex_enter(&itrq->itrq_tx_lock);
2735         i40e_tx_cleanup_ring(itrq);
2736         mutex_exit(&itrq->itrq_tx_lock);
2737 
2738         i40e_free_ring_mem(itrq, B_FALSE);
2739 
2740         return (rv);
2741 }
2742 
2743 /*
2744  * Shutdown all the rings.
2745  * Called from i40e_stop(), and hopefully the mac layer has already
2746  * called ring stop for each ring, which would make this almost a no-op.
2747  */
2748 static boolean_t
2749 i40e_shutdown_rings(i40e_t *i40e)
2750 {
2751         boolean_t rv = B_TRUE;
2752         int i;
2753 
2754         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2755                 if (!i40e_shutdown_ring(&i40e->i40e_trqpairs[i]))
2756                         rv = B_FALSE;
2757         }
2758 
2759         return (rv);
2760 }
2761 
2762 static void
2763 i40e_setup_rx_descs(i40e_trqpair_t *itrq)
2764 {
2765         int i;
2766         i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2767 
2768         for (i = 0; i < rxd->rxd_ring_size; i++) {
2769                 i40e_rx_control_block_t *rcb;
2770                 i40e_rx_desc_t *rdesc;
2771 
2772                 rcb = rxd->rxd_work_list[i];
2773                 rdesc = &rxd->rxd_desc_ring[i];
2774 
2775                 rdesc->read.pkt_addr =
2776                     CPU_TO_LE64((uintptr_t)rcb->rcb_dma.dmab_dma_address);
2777                 rdesc->read.hdr_addr = 0;
2778         }
2779 }
2780 
2781 static boolean_t
2782 i40e_setup_rx_hmc(i40e_trqpair_t *itrq)
2783 {
2784         i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2785         i40e_t *i40e = itrq->itrq_i40e;
2786         i40e_hw_t *hw = &i40e->i40e_hw_space;
2787 
2788         struct i40e_hmc_obj_rxq rctx;
2789         int err;
2790 
2791         bzero(&rctx, sizeof (struct i40e_hmc_obj_rxq));
2792         rctx.base = rxd->rxd_desc_area.dmab_dma_address /
2793             I40E_HMC_RX_CTX_UNIT;
2794         rctx.qlen = rxd->rxd_ring_size;
2795         VERIFY(i40e->i40e_rx_buf_size >= I40E_HMC_RX_DBUFF_MIN);
2796         VERIFY(i40e->i40e_rx_buf_size <= I40E_HMC_RX_DBUFF_MAX);
2797         rctx.dbuff = i40e->i40e_rx_buf_size >> I40E_RXQ_CTX_DBUFF_SHIFT;
2798         rctx.hbuff = 0 >> I40E_RXQ_CTX_HBUFF_SHIFT;
2799         rctx.dtype = I40E_HMC_RX_DTYPE_NOSPLIT;
2800         rctx.dsize = I40E_HMC_RX_DSIZE_32BYTE;
2801         rctx.crcstrip = I40E_HMC_RX_CRCSTRIP_ENABLE;
2802         rctx.fc_ena = I40E_HMC_RX_FC_DISABLE;
2803         rctx.l2tsel = I40E_HMC_RX_L2TAGORDER;
2804         rctx.hsplit_0 = I40E_HMC_RX_HDRSPLIT_DISABLE;
2805         rctx.hsplit_1 = I40E_HMC_RX_HDRSPLIT_DISABLE;
2806         rctx.showiv = I40E_HMC_RX_INVLAN_DONTSTRIP;
2807         rctx.rxmax = i40e->i40e_frame_max;
2808         rctx.tphrdesc_ena = I40E_HMC_RX_TPH_DISABLE;
2809         rctx.tphwdesc_ena = I40E_HMC_RX_TPH_DISABLE;
2810         rctx.tphdata_ena = I40E_HMC_RX_TPH_DISABLE;
2811         rctx.tphhead_ena = I40E_HMC_RX_TPH_DISABLE;
2812         rctx.lrxqthresh = I40E_HMC_RX_LOWRXQ_NOINTR;
2813 
2814         /*
2815          * This must be set to 0x1, see Table 8-12 in section 8.3.3.2.2.
2816          */
2817         rctx.prefena = I40E_HMC_RX_PREFENA;
2818 
2819         err = i40e_clear_lan_rx_queue_context(hw, itrq->itrq_index);
2820         if (err != I40E_SUCCESS) {
2821                 i40e_error(i40e, "failed to clear rx queue %d context: %d",
2822                     itrq->itrq_index, err);
2823                 return (B_FALSE);
2824         }
2825 
2826         err = i40e_set_lan_rx_queue_context(hw, itrq->itrq_index, &rctx);
2827         if (err != I40E_SUCCESS) {
2828                 i40e_error(i40e, "failed to set rx queue %d context: %d",
2829                     itrq->itrq_index, err);
2830                 return (B_FALSE);
2831         }
2832 
2833         return (B_TRUE);
2834 }
2835 
2836 /*
2837  * Take care of setting up the descriptor ring and actually programming the
2838  * device. See 8.3.3.1.1 for the full list of steps we need to do to enable the
2839  * rx rings.
2840  */
2841 static boolean_t
2842 i40e_setup_rx_ring(i40e_trqpair_t *itrq)
2843 {
2844         i40e_t *i40e = itrq->itrq_i40e;
2845         i40e_hw_t *hw = &i40e->i40e_hw_space;
2846         i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2847         uint32_t reg;
2848         int i;
2849 
2850         /*
2851          * Step 1. Program all receive ring descriptors.
2852          */
2853         i40e_setup_rx_descs(itrq);
2854 
2855         /*
2856          * Step 2. Program the queue's FPM/HMC context.
2857          */
2858         if (!i40e_setup_rx_hmc(itrq))
2859                 return (B_FALSE);
2860 
2861         /*
2862          * Step 3. Clear the queue's tail pointer and set it to the end
2863          * of the space.
2864          */
2865         I40E_WRITE_REG(hw, I40E_QRX_TAIL(itrq->itrq_index), 0);
2866         I40E_WRITE_REG(hw, I40E_QRX_TAIL(itrq->itrq_index),
2867             rxd->rxd_ring_size - 1);
2868 
2869         /*
2870          * Step 4. Enable the queue via the QENA_REQ.
2871          */
2872         reg = I40E_READ_REG(hw, I40E_QRX_ENA(itrq->itrq_index));
2873         VERIFY0(reg & (I40E_QRX_ENA_QENA_REQ_MASK |
2874             I40E_QRX_ENA_QENA_STAT_MASK));
2875         reg |= I40E_QRX_ENA_QENA_REQ_MASK;
2876         I40E_WRITE_REG(hw, I40E_QRX_ENA(itrq->itrq_index), reg);
2877 
2878         /*
2879          * Step 5. Verify that QENA_STAT has been set. It's promised
2880          * that this should occur within about 10 us, but like other
2881          * systems, we give the card a bit more time.
2882          */
2883         for (i = 0; i < I40E_RING_WAIT_NTRIES; i++) {
2884                 reg = I40E_READ_REG(hw, I40E_QRX_ENA(itrq->itrq_index));
2885 
2886                 if (reg & I40E_QRX_ENA_QENA_STAT_MASK)
2887                         break;
2888                 i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2889         }
2890 
2891         if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) == 0) {
2892                 i40e_error(i40e, "failed to enable rx queue %d, timed "
2893                     "out.", itrq->itrq_index);
2894                 return (B_FALSE);
2895         }
2896 
2897         return (B_TRUE);
2898 }
2899 
2900 static boolean_t
2901 i40e_setup_tx_hmc(i40e_trqpair_t *itrq)
2902 {
2903         i40e_t *i40e = itrq->itrq_i40e;
2904         i40e_hw_t *hw = &i40e->i40e_hw_space;
2905 
2906         struct i40e_hmc_obj_txq tctx;
2907         struct i40e_vsi_context context;
2908         int err;
2909 
2910         bzero(&tctx, sizeof (struct i40e_hmc_obj_txq));
2911         tctx.new_context = I40E_HMC_TX_NEW_CONTEXT;
2912         tctx.base = itrq->itrq_desc_area.dmab_dma_address /
2913             I40E_HMC_TX_CTX_UNIT;
2914         tctx.fc_ena = I40E_HMC_TX_FC_DISABLE;
2915         tctx.timesync_ena = I40E_HMC_TX_TS_DISABLE;
2916         tctx.fd_ena = I40E_HMC_TX_FD_DISABLE;
2917         tctx.alt_vlan_ena = I40E_HMC_TX_ALT_VLAN_DISABLE;
2918         tctx.head_wb_ena = I40E_HMC_TX_WB_ENABLE;
2919         tctx.qlen = itrq->itrq_tx_ring_size;
2920         tctx.tphrdesc_ena = I40E_HMC_TX_TPH_DISABLE;
2921         tctx.tphrpacket_ena = I40E_HMC_TX_TPH_DISABLE;
2922         tctx.tphwdesc_ena = I40E_HMC_TX_TPH_DISABLE;
2923         tctx.head_wb_addr = itrq->itrq_desc_area.dmab_dma_address +
2924             sizeof (i40e_tx_desc_t) * itrq->itrq_tx_ring_size;
2925 
2926         /*
2927          * This field isn't actually documented, like crc, but it suggests that
2928          * it should be zeroed. We leave both of these here because of that for
2929          * now. We should check with Intel on why these are here even.
2930          */
2931         tctx.crc = 0;
2932         tctx.rdylist_act = 0;
2933 
2934         /*
2935          * We're supposed to assign the rdylist field with the value of the
2936          * traffic class index for the first device. We query the VSI parameters
2937          * again to get what the handle is. Note that every queue is always
2938          * assigned to traffic class zero, because we don't actually use them.
2939          */
2940         bzero(&context, sizeof (struct i40e_vsi_context));
2941         context.seid = I40E_DEF_VSI_SEID(i40e);
2942         context.pf_num = hw->pf_id;
2943         err = i40e_aq_get_vsi_params(hw, &context, NULL);
2944         if (err != I40E_SUCCESS) {
2945                 i40e_error(i40e, "get VSI params failed with %d", err);
2946                 return (B_FALSE);
2947         }
2948         tctx.rdylist = LE_16(context.info.qs_handle[0]);
2949 
2950         err = i40e_clear_lan_tx_queue_context(hw, itrq->itrq_index);
2951         if (err != I40E_SUCCESS) {
2952                 i40e_error(i40e, "failed to clear tx queue %d context: %d",
2953                     itrq->itrq_index, err);
2954                 return (B_FALSE);
2955         }
2956 
2957         err = i40e_set_lan_tx_queue_context(hw, itrq->itrq_index, &tctx);
2958         if (err != I40E_SUCCESS) {
2959                 i40e_error(i40e, "failed to set tx queue %d context: %d",
2960                     itrq->itrq_index, err);
2961                 return (B_FALSE);
2962         }
2963 
2964         return (B_TRUE);
2965 }
2966 
2967 /*
2968  * Take care of setting up the descriptor ring and actually programming the
2969  * device. See 8.4.3.1.1 for what we need to do here.
2970  */
2971 static boolean_t
2972 i40e_setup_tx_ring(i40e_trqpair_t *itrq)
2973 {
2974         i40e_t *i40e = itrq->itrq_i40e;
2975         i40e_hw_t *hw = &i40e->i40e_hw_space;
2976         uint32_t reg;
2977         int i;
2978 
2979         /*
2980          * Step 1. Clear the queue disable flag and verify that the
2981          * index is set correctly.
2982          */
2983         i40e_pre_tx_queue_cfg(hw, itrq->itrq_index, B_TRUE);
2984 
2985         /*
2986          * Step 2. Prepare the queue's FPM/HMC context.
2987          */
2988         if (!i40e_setup_tx_hmc(itrq))
2989                 return (B_FALSE);
2990 
2991         /*
2992          * Step 3. Verify that it's clear that this PF owns this queue.
2993          */
2994         reg = I40E_QTX_CTL_PF_QUEUE;
2995         reg |= (hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2996             I40E_QTX_CTL_PF_INDX_MASK;
2997         I40E_WRITE_REG(hw, I40E_QTX_CTL(itrq->itrq_index), reg);
2998         i40e_flush(hw);
2999 
3000         /*
3001          * Step 4. Set the QENA_REQ flag.
3002          */
3003         reg = I40E_READ_REG(hw, I40E_QTX_ENA(itrq->itrq_index));
3004         VERIFY0(reg & (I40E_QTX_ENA_QENA_REQ_MASK |
3005             I40E_QTX_ENA_QENA_STAT_MASK));
3006         reg |= I40E_QTX_ENA_QENA_REQ_MASK;
3007         I40E_WRITE_REG(hw, I40E_QTX_ENA(itrq->itrq_index), reg);
3008 
3009         /*
3010          * Step 5. Verify that QENA_STAT has been set. It's promised
3011          * that this should occur within about 10 us, but like BSD,
3012          * we'll try for up to 100 ms for this queue.
3013          */
3014         for (i = 0; i < I40E_RING_WAIT_NTRIES; i++) {
3015                 reg = I40E_READ_REG(hw, I40E_QTX_ENA(itrq->itrq_index));
3016 
3017                 if (reg & I40E_QTX_ENA_QENA_STAT_MASK)
3018                         break;
3019                 i40e_msec_delay(I40E_RING_WAIT_PAUSE);
3020         }
3021 
3022         if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) == 0) {
3023                 i40e_error(i40e, "failed to enable tx queue %d, timed "
3024                     "out", itrq->itrq_index);
3025                 return (B_FALSE);
3026         }
3027 
3028         return (B_TRUE);
3029 }
3030 
3031 int
3032 i40e_setup_ring(i40e_trqpair_t *itrq)
3033 {
3034         i40e_t *i40e = itrq->itrq_i40e;
3035         hrtime_t now, gap;
3036 
3037         if (!i40e_alloc_ring_mem(itrq)) {
3038                 i40e_error(i40e, "Failed to allocate ring memory");
3039                 return (ENOMEM);
3040         }
3041 
3042         /*
3043          * 8.3.3.1.1 Receive Queue Enable Flow states software should
3044          * wait at least 50ms between ring disable and enable. See how
3045          * long we need to wait, and wait only if required.
3046          */
3047         now = gethrtime();
3048         gap = NSEC2MSEC(now - itrq->irtq_time_stopped);
3049         if (gap < I40E_RING_ENABLE_GAP && gap != 0)
3050                 delay(drv_usectohz(gap * 1000));
3051 
3052         mutex_enter(&itrq->itrq_intr_lock);
3053         if (!i40e_setup_rx_ring(itrq))
3054                 goto failed;
3055 
3056         if (!i40e_setup_tx_ring(itrq))
3057                 goto failed;
3058 
3059         if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_reg_handle) !=
3060             DDI_FM_OK)
3061                 goto failed;
3062 
3063         itrq->itrq_intr_quiesce = B_FALSE;
3064         mutex_exit(&itrq->itrq_intr_lock);
3065 
3066         mutex_enter(&itrq->itrq_tx_lock);
3067         itrq->itrq_tx_quiesce = B_FALSE;
3068         mutex_exit(&itrq->itrq_tx_lock);
3069 
3070         return (0);
3071 
3072 failed:
3073         mutex_exit(&itrq->itrq_intr_lock);
3074         i40e_free_ring_mem(itrq, B_TRUE);
3075         ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3076 
3077         return (EIO);
3078 }
3079 
3080 void
3081 i40e_stop(i40e_t *i40e)
3082 {
3083         uint_t i;
3084         i40e_hw_t *hw = &i40e->i40e_hw_space;
3085 
3086         ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
3087 
3088         /*
3089          * Shutdown and drain the tx and rx pipeline. We do this using the
3090          * following steps.
3091          *
3092          * 1) Shutdown interrupts to all the queues (trying to keep the admin
3093          *    queue alive).
3094          *
3095          * 2) Remove all of the interrupt tx and rx causes by setting the
3096          *    interrupt linked lists to zero.
3097          *
3098          * 2) Shutdown the tx and rx rings. Because i40e_shutdown_rings() should
3099          *    wait for all the queues to be disabled, once we reach that point
3100          *    it should be safe to free associated data.
3101          *
3102          * 4) Wait 50ms after all that is done. This ensures that the rings are
3103          *    ready for programming again and we don't have to think about this
3104          *    in other parts of the driver.
3105          *
3106          * 5) Disable remaining chip interrupts, (admin queue, etc.)
3107          *
3108          * 6) Verify that FM is happy with all the register accesses we
3109          *    performed.
3110          */
3111         i40e_intr_io_disable_all(i40e);
3112         i40e_intr_io_clear_cause(i40e);
3113 
3114         if (!i40e_shutdown_rings(i40e))
3115                 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3116 
3117         /*
3118          * We don't delete the default VSI because it replaces the VEB
3119          * after VEB deletion (see the "Delete Element" section).
3120          * Furthermore, since the default VSI is provided by the
3121          * firmware, we never attempt to delete it.
3122          */
3123         for (i = 1; i < i40e->i40e_num_rx_groups; i++) {
3124                 i40e_delete_vsi(i40e, i);
3125         }
3126 
3127         if (i40e->i40e_veb_seid != 0) {
3128                 int rc = i40e_aq_delete_element(hw, i40e->i40e_veb_seid, NULL);
3129 
3130                 if (rc != I40E_SUCCESS) {
3131                         i40e_error(i40e, "Failed to delete VEB %d: %d", rc,
3132                             hw->aq.asq_last_status);
3133                 }
3134 
3135                 i40e->i40e_veb_seid = 0;
3136         }
3137 
3138         i40e_intr_chip_fini(i40e);
3139 
3140         if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_cfg_handle) !=
3141             DDI_FM_OK) {
3142                 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3143         }
3144 
3145         for (i = 0; i < i40e->i40e_num_rx_groups; i++) {
3146                 i40e_stat_vsi_fini(i40e, i);
3147         }
3148 
3149         i40e->i40e_link_speed = 0;
3150         i40e->i40e_link_duplex = 0;
3151         i40e_link_state_set(i40e, LINK_STATE_UNKNOWN);
3152 }
3153 
3154 boolean_t
3155 i40e_start(i40e_t *i40e)
3156 {
3157         i40e_hw_t *hw = &i40e->i40e_hw_space;
3158         boolean_t rc = B_TRUE;
3159         int err;
3160 
3161         ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
3162 
3163         if (!i40e_chip_start(i40e)) {
3164                 i40e_fm_ereport(i40e, DDI_FM_DEVICE_INVAL_STATE);
3165                 rc = B_FALSE;
3166                 goto done;
3167         }
3168 
3169         /*
3170          * Enable broadcast traffic; however, do not enable multicast traffic.
3171          * That's handle exclusively through MAC's mc_multicst routines.
3172          */
3173         err = i40e_aq_set_vsi_broadcast(hw, I40E_DEF_VSI_SEID(i40e), B_TRUE,
3174             NULL);
3175         if (err != I40E_SUCCESS) {
3176                 i40e_error(i40e, "failed to set default VSI: %d", err);
3177                 rc = B_FALSE;
3178                 goto done;
3179         }
3180 
3181         err = i40e_aq_set_mac_config(hw, i40e->i40e_frame_max, B_TRUE, 0, NULL);
3182         if (err != I40E_SUCCESS) {
3183                 i40e_error(i40e, "failed to set MAC config: %d", err);
3184                 rc = B_FALSE;
3185                 goto done;
3186         }
3187 
3188         /*
3189          * Finally, make sure that we're happy from an FM perspective.
3190          */
3191         if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_reg_handle) !=
3192             DDI_FM_OK) {
3193                 rc = B_FALSE;
3194                 goto done;
3195         }
3196 
3197         /* Clear state bits prior to final interrupt enabling. */
3198         atomic_and_32(&i40e->i40e_state,
3199             ~(I40E_ERROR | I40E_STALL | I40E_OVERTEMP));
3200 
3201         i40e_intr_io_enable_all(i40e);
3202 
3203 done:
3204         if (rc == B_FALSE) {
3205                 i40e_stop(i40e);
3206                 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3207         }
3208 
3209         return (rc);
3210 }
3211 
3212 /*
3213  * We may have loaned up descriptors to the stack. As such, if we still have
3214  * them outstanding, then we will not continue with detach.
3215  */
3216 static boolean_t
3217 i40e_drain_rx(i40e_t *i40e)
3218 {
3219         mutex_enter(&i40e->i40e_rx_pending_lock);
3220         while (i40e->i40e_rx_pending > 0) {
3221                 if (cv_reltimedwait(&i40e->i40e_rx_pending_cv,
3222                     &i40e->i40e_rx_pending_lock,
3223                     drv_usectohz(I40E_DRAIN_RX_WAIT), TR_CLOCK_TICK) == -1) {
3224                         mutex_exit(&i40e->i40e_rx_pending_lock);
3225                         return (B_FALSE);
3226                 }
3227         }
3228         mutex_exit(&i40e->i40e_rx_pending_lock);
3229 
3230         return (B_TRUE);
3231 }
3232 
3233 /*
3234  * DDI UFM Callbacks
3235  */
3236 static int
3237 i40e_ufm_fill_image(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
3238     ddi_ufm_image_t *img)
3239 {
3240         if (imgno != 0)
3241                 return (EINVAL);
3242 
3243         ddi_ufm_image_set_desc(img, "Firmware");
3244         ddi_ufm_image_set_nslots(img, 1);
3245 
3246         return (0);
3247 }
3248 
3249 static int
3250 i40e_ufm_fill_slot(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
3251     uint_t slotno, ddi_ufm_slot_t *slot)
3252 {
3253         i40e_t *i40e = (i40e_t *)arg;
3254         char *fw_ver = NULL, *fw_bld = NULL, *api_ver = NULL;
3255         nvlist_t *misc = NULL;
3256         uint_t flags = DDI_PROP_DONTPASS;
3257         int err;
3258 
3259         if (imgno != 0 || slotno != 0 ||
3260             ddi_prop_lookup_string(DDI_DEV_T_ANY, i40e->i40e_dip, flags,
3261             "firmware-version", &fw_ver) != DDI_PROP_SUCCESS ||
3262             ddi_prop_lookup_string(DDI_DEV_T_ANY, i40e->i40e_dip, flags,
3263             "firmware-build", &fw_bld) != DDI_PROP_SUCCESS ||
3264             ddi_prop_lookup_string(DDI_DEV_T_ANY, i40e->i40e_dip, flags,
3265             "api-version", &api_ver) != DDI_PROP_SUCCESS) {
3266                 err = EINVAL;
3267                 goto err;
3268         }
3269 
3270         ddi_ufm_slot_set_attrs(slot, DDI_UFM_ATTR_ACTIVE);
3271         ddi_ufm_slot_set_version(slot, fw_ver);
3272 
3273         (void) nvlist_alloc(&misc, NV_UNIQUE_NAME, KM_SLEEP);
3274         if ((err = nvlist_add_string(misc, "firmware-build", fw_bld)) != 0 ||
3275             (err = nvlist_add_string(misc, "api-version", api_ver)) != 0) {
3276                 goto err;
3277         }
3278         ddi_ufm_slot_set_misc(slot, misc);
3279 
3280         ddi_prop_free(fw_ver);
3281         ddi_prop_free(fw_bld);
3282         ddi_prop_free(api_ver);
3283 
3284         return (0);
3285 err:
3286         nvlist_free(misc);
3287         if (fw_ver != NULL)
3288                 ddi_prop_free(fw_ver);
3289         if (fw_bld != NULL)
3290                 ddi_prop_free(fw_bld);
3291         if (api_ver != NULL)
3292                 ddi_prop_free(api_ver);
3293 
3294         return (err);
3295 }
3296 
3297 static int
3298 i40e_ufm_getcaps(ddi_ufm_handle_t *ufmh, void *arg, ddi_ufm_cap_t *caps)
3299 {
3300         *caps = DDI_UFM_CAP_REPORT;
3301 
3302         return (0);
3303 }
3304 
3305 static ddi_ufm_ops_t i40e_ufm_ops = {
3306         NULL,
3307         i40e_ufm_fill_image,
3308         i40e_ufm_fill_slot,
3309         i40e_ufm_getcaps
3310 };
3311 
3312 static int
3313 i40e_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
3314 {
3315         i40e_t *i40e;
3316         struct i40e_osdep *osdep;
3317         i40e_hw_t *hw;
3318         int instance;
3319 
3320         if (cmd != DDI_ATTACH)
3321                 return (DDI_FAILURE);
3322 
3323         instance = ddi_get_instance(devinfo);
3324         i40e = kmem_zalloc(sizeof (i40e_t), KM_SLEEP);
3325 
3326         i40e->i40e_aqbuf = kmem_zalloc(I40E_ADMINQ_BUFSZ, KM_SLEEP);
3327         i40e->i40e_instance = instance;
3328         i40e->i40e_dip = devinfo;
3329 
3330         hw = &i40e->i40e_hw_space;
3331         osdep = &i40e->i40e_osdep_space;
3332         hw->back = osdep;
3333         osdep->ios_i40e = i40e;
3334 
3335         ddi_set_driver_private(devinfo, i40e);
3336 
3337         i40e_fm_init(i40e);
3338         i40e->i40e_attach_progress |= I40E_ATTACH_FM_INIT;
3339 
3340         if (pci_config_setup(devinfo, &osdep->ios_cfg_handle) != DDI_SUCCESS) {
3341                 i40e_error(i40e, "Failed to map PCI configurations.");
3342                 goto attach_fail;
3343         }
3344         i40e->i40e_attach_progress |= I40E_ATTACH_PCI_CONFIG;
3345 
3346         i40e_identify_hardware(i40e);
3347 
3348         if (!i40e_regs_map(i40e)) {
3349                 i40e_error(i40e, "Failed to map device registers.");
3350                 goto attach_fail;
3351         }
3352         i40e->i40e_attach_progress |= I40E_ATTACH_REGS_MAP;
3353 
3354         i40e_init_properties(i40e);
3355         i40e->i40e_attach_progress |= I40E_ATTACH_PROPS;
3356 
3357         if (!i40e_common_code_init(i40e, hw))
3358                 goto attach_fail;
3359         i40e->i40e_attach_progress |= I40E_ATTACH_COMMON_CODE;
3360 
3361         /*
3362          * When we participate in IRM, we should make sure that we register
3363          * ourselves with it before callbacks.
3364          */
3365         if (!i40e_alloc_intrs(i40e, devinfo)) {
3366                 i40e_error(i40e, "Failed to allocate interrupts.");
3367                 goto attach_fail;
3368         }
3369         i40e->i40e_attach_progress |= I40E_ATTACH_ALLOC_INTR;
3370 
3371         if (!i40e_alloc_trqpairs(i40e)) {
3372                 i40e_error(i40e,
3373                     "Failed to allocate receive & transmit rings.");
3374                 goto attach_fail;
3375         }
3376         i40e->i40e_attach_progress |= I40E_ATTACH_ALLOC_RINGSLOCKS;
3377 
3378         if (!i40e_map_intrs_to_vectors(i40e)) {
3379                 i40e_error(i40e, "Failed to map interrupts to vectors.");
3380                 goto attach_fail;
3381         }
3382 
3383         if (!i40e_add_intr_handlers(i40e)) {
3384                 i40e_error(i40e, "Failed to add the interrupt handlers.");
3385                 goto attach_fail;
3386         }
3387         i40e->i40e_attach_progress |= I40E_ATTACH_ADD_INTR;
3388 
3389         if (!i40e_final_init(i40e)) {
3390                 i40e_error(i40e, "Final initialization failed.");
3391                 goto attach_fail;
3392         }
3393         i40e->i40e_attach_progress |= I40E_ATTACH_INIT;
3394 
3395         if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_cfg_handle) !=
3396             DDI_FM_OK) {
3397                 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3398                 goto attach_fail;
3399         }
3400 
3401         if (!i40e_stats_init(i40e)) {
3402                 i40e_error(i40e, "Stats initialization failed.");
3403                 goto attach_fail;
3404         }
3405         i40e->i40e_attach_progress |= I40E_ATTACH_STATS;
3406 
3407         if (!i40e_register_mac(i40e)) {
3408                 i40e_error(i40e, "Failed to register to MAC/GLDv3");
3409                 goto attach_fail;
3410         }
3411         i40e->i40e_attach_progress |= I40E_ATTACH_MAC;
3412 
3413         i40e->i40e_periodic_id = ddi_periodic_add(i40e_timer, i40e,
3414             I40E_CYCLIC_PERIOD, DDI_IPL_0);
3415         if (i40e->i40e_periodic_id == 0) {
3416                 i40e_error(i40e, "Failed to add the link-check timer");
3417                 goto attach_fail;
3418         }
3419         i40e->i40e_attach_progress |= I40E_ATTACH_LINK_TIMER;
3420 
3421         if (!i40e_enable_interrupts(i40e)) {
3422                 i40e_error(i40e, "Failed to enable DDI interrupts");
3423                 goto attach_fail;
3424         }
3425         i40e->i40e_attach_progress |= I40E_ATTACH_ENABLE_INTR;
3426 
3427         if (i40e->i40e_hw_space.bus.func == 0) {
3428                 if (ddi_ufm_init(i40e->i40e_dip, DDI_UFM_CURRENT_VERSION,
3429                     &i40e_ufm_ops, &i40e->i40e_ufmh, i40e) != 0) {
3430                         i40e_error(i40e, "failed to initialize UFM subsystem");
3431                         goto attach_fail;
3432                 }
3433                 ddi_ufm_update(i40e->i40e_ufmh);
3434                 i40e->i40e_attach_progress |= I40E_ATTACH_UFM_INIT;
3435         }
3436 
3437         atomic_or_32(&i40e->i40e_state, I40E_INITIALIZED);
3438 
3439         mutex_enter(&i40e_glock);
3440         list_insert_tail(&i40e_glist, i40e);
3441         mutex_exit(&i40e_glock);
3442 
3443         return (DDI_SUCCESS);
3444 
3445 attach_fail:
3446         i40e_unconfigure(devinfo, i40e);
3447         return (DDI_FAILURE);
3448 }
3449 
3450 static int
3451 i40e_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
3452 {
3453         i40e_t *i40e;
3454 
3455         if (cmd != DDI_DETACH)
3456                 return (DDI_FAILURE);
3457 
3458         i40e = (i40e_t *)ddi_get_driver_private(devinfo);
3459         if (i40e == NULL) {
3460                 i40e_log(NULL, "i40e_detach() called with no i40e pointer!");
3461                 return (DDI_FAILURE);
3462         }
3463 
3464         if (i40e_drain_rx(i40e) == B_FALSE) {
3465                 i40e_log(i40e, "timed out draining DMA resources, %d buffers "
3466                     "remain", i40e->i40e_rx_pending);
3467                 return (DDI_FAILURE);
3468         }
3469 
3470         mutex_enter(&i40e_glock);
3471         list_remove(&i40e_glist, i40e);
3472         mutex_exit(&i40e_glock);
3473 
3474         i40e_unconfigure(devinfo, i40e);
3475 
3476         return (DDI_SUCCESS);
3477 }
3478 
3479 static struct cb_ops i40e_cb_ops = {
3480         nulldev,                /* cb_open */
3481         nulldev,                /* cb_close */
3482         nodev,                  /* cb_strategy */
3483         nodev,                  /* cb_print */
3484         nodev,                  /* cb_dump */
3485         nodev,                  /* cb_read */
3486         nodev,                  /* cb_write */
3487         nodev,                  /* cb_ioctl */
3488         nodev,                  /* cb_devmap */
3489         nodev,                  /* cb_mmap */
3490         nodev,                  /* cb_segmap */
3491         nochpoll,               /* cb_chpoll */
3492         ddi_prop_op,            /* cb_prop_op */
3493         NULL,                   /* cb_stream */
3494         D_MP | D_HOTPLUG,       /* cb_flag */
3495         CB_REV,                 /* cb_rev */
3496         nodev,                  /* cb_aread */
3497         nodev                   /* cb_awrite */
3498 };
3499 
3500 static struct dev_ops i40e_dev_ops = {
3501         DEVO_REV,               /* devo_rev */
3502         0,                      /* devo_refcnt */
3503         NULL,                   /* devo_getinfo */
3504         nulldev,                /* devo_identify */
3505         nulldev,                /* devo_probe */
3506         i40e_attach,            /* devo_attach */
3507         i40e_detach,            /* devo_detach */
3508         nodev,                  /* devo_reset */
3509         &i40e_cb_ops,               /* devo_cb_ops */
3510         NULL,                   /* devo_bus_ops */
3511         nulldev,                /* devo_power */
3512         ddi_quiesce_not_supported /* devo_quiesce */
3513 };
3514 
3515 static struct modldrv i40e_modldrv = {
3516         &mod_driverops,
3517         i40e_ident,
3518         &i40e_dev_ops
3519 };
3520 
3521 static struct modlinkage i40e_modlinkage = {
3522         MODREV_1,
3523         &i40e_modldrv,
3524         NULL
3525 };
3526 
3527 /*
3528  * Module Initialization Functions.
3529  */
3530 int
3531 _init(void)
3532 {
3533         int status;
3534 
3535         list_create(&i40e_glist, sizeof (i40e_t), offsetof(i40e_t, i40e_glink));
3536         list_create(&i40e_dlist, sizeof (i40e_device_t),
3537             offsetof(i40e_device_t, id_link));
3538         mutex_init(&i40e_glock, NULL, MUTEX_DRIVER, NULL);
3539         mac_init_ops(&i40e_dev_ops, I40E_MODULE_NAME);
3540 
3541         status = mod_install(&i40e_modlinkage);
3542         if (status != DDI_SUCCESS) {
3543                 mac_fini_ops(&i40e_dev_ops);
3544                 mutex_destroy(&i40e_glock);
3545                 list_destroy(&i40e_dlist);
3546                 list_destroy(&i40e_glist);
3547         }
3548 
3549         return (status);
3550 }
3551 
3552 int
3553 _info(struct modinfo *modinfop)
3554 {
3555         return (mod_info(&i40e_modlinkage, modinfop));
3556 }
3557 
3558 int
3559 _fini(void)
3560 {
3561         int status;
3562 
3563         status = mod_remove(&i40e_modlinkage);
3564         if (status == DDI_SUCCESS) {
3565                 mac_fini_ops(&i40e_dev_ops);
3566                 mutex_destroy(&i40e_glock);
3567                 list_destroy(&i40e_dlist);
3568                 list_destroy(&i40e_glist);
3569         }
3570 
3571         return (status);
3572 }