Print this page
    
Update i40e for new devices, prototype changes
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/io/i40e/i40e_main.c
          +++ new/usr/src/uts/common/io/i40e/i40e_main.c
   1    1  /*
   2    2   * This file and its contents are supplied under the terms of the
   3    3   * Common Development and Distribution License ("CDDL"), version 1.0.
   4    4   * You may only use this file in accordance with the terms of version
   5    5   * 1.0 of the CDDL.
   6    6   *
   7    7   * A full copy of the text of the CDDL should have accompanied this
  
    | 
      ↓ open down ↓ | 
    7 lines elided | 
    
      ↑ open up ↑ | 
  
   8    8   * source.  A copy of the CDDL is also available via the Internet at
   9    9   * http://www.illumos.org/license/CDDL.
  10   10   */
  11   11  
  12   12  /*
  13   13   * Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved.
  14   14   * Copyright 2019 Joyent, Inc.
  15   15   * Copyright 2017 Tegile Systems, Inc.  All rights reserved.
  16   16   * Copyright 2020 RackTop Systems, Inc.
  17   17   * Copyright 2020 Ryan Zezeski
       18 + * Copyright 2021 Oxide Computer Company
  18   19   */
  19   20  
  20   21  /*
  21   22   * i40e - Intel 10/40 Gb Ethernet driver
  22   23   *
  23   24   * The i40e driver is the main software device driver for the Intel 40 Gb family
  24   25   * of devices. Note that these devices come in many flavors with both 40 GbE
  25   26   * ports and 10 GbE ports. This device is the successor to the 82599 family of
  26   27   * devices (ixgbe).
  27   28   *
  28   29   * Unlike previous generations of Intel 1 GbE and 10 GbE devices, the 40 GbE
  29   30   * devices defined in the XL710 controller (previously known as Fortville) are a
  30   31   * rather different beast and have a small switch embedded inside of them. In
  31   32   * addition, the way that most of the programming is done has been overhauled.
  32   33   * As opposed to just using PCIe memory mapped registers, it also has an
  33   34   * administrative queue which is used to communicate with firmware running on
  34   35   * the chip.
  35   36   *
  36   37   * Each physical function in the hardware shows up as a device that this driver
  37   38   * will bind to. The hardware splits many resources evenly across all of the
  38   39   * physical functions present on the device, while other resources are instead
  39   40   * shared across the entire card and its up to the device driver to
  40   41   * intelligently partition them.
  41   42   *
  42   43   * ------------
  43   44   * Organization
  44   45   * ------------
  45   46   *
  46   47   * This driver is made up of several files which have their own theory
  47   48   * statements spread across them. We'll touch on the high level purpose of each
  48   49   * file here, and then we'll get into more discussion on how the device is
  49   50   * generally modelled with respect to the interfaces in illumos.
  50   51   *
  51   52   * i40e_gld.c: This file contains all of the bindings to MAC and the networking
  52   53   *             stack.
  53   54   *
  54   55   * i40e_intr.c: This file contains all of the interrupt service routines and
  55   56   *              contains logic to enable and disable interrupts on the hardware.
  56   57   *              It also contains the logic to map hardware resources such as the
  57   58   *              rings to and from interrupts and controls their ability to fire.
  58   59   *
  59   60   *              There is a big theory statement on interrupts present there.
  60   61   *
  61   62   * i40e_main.c: The file that you're currently in. It interfaces with the
  62   63   *              traditional OS DDI interfaces and is in charge of configuring
  63   64   *              the device.
  64   65   *
  65   66   * i40e_osdep.[ch]: These files contain interfaces and definitions needed to
  66   67   *                  work with Intel's common code for the device.
  67   68   *
  68   69   * i40e_stats.c: This file contains the general work and logic around our
  69   70   *               kstats. A theory statement on their organization and use of the
  70   71   *               hardware exists there.
  71   72   *
  72   73   * i40e_sw.h: This header file contains all of the primary structure definitions
  73   74   *            and constants that are used across the entire driver.
  74   75   *
  75   76   * i40e_transceiver.c: This file contains all of the logic for sending and
  76   77   *                     receiving data. It contains all of the ring and DMA
  77   78   *                     allocation logic, as well as, the actual interfaces to
  78   79   *                     send and receive data.
  79   80   *
  80   81   *                     A big theory statement on ring management, descriptors,
  81   82   *                     and how it ties into the OS is present there.
  82   83   *
  83   84   * --------------
  84   85   * General Design
  85   86   * --------------
  86   87   *
  87   88   * Before we go too far into the general way we've laid out data structures and
  88   89   * the like, it's worth taking some time to explain how the hardware is
  89   90   * organized. This organization informs a lot of how we do things at this time
  90   91   * in the driver.
  91   92   *
  92   93   * Each physical device consists of a number of one or more ports, which are
  93   94   * considered physical functions in the PCI sense and thus each get enumerated
  94   95   * by the system, resulting in an instance being created and attached to. While
  95   96   * there are many resources that are unique to each physical function eg.
  96   97   * instance of the device, there are many that are shared across all of them.
  97   98   * Several resources have an amount reserved for each Virtual Station Interface
  98   99   * (VSI) and then a static pool of resources, available for all functions on the
  99  100   * card.
 100  101   *
 101  102   * The most important resource in hardware are its transmit and receive queue
 102  103   * pairs (i40e_trqpair_t). These should be thought of as rings in GLDv3
 103  104   * parlance. There are a set number of these on each device; however, they are
 104  105   * statically partitioned among all of the different physical functions.
 105  106   *
 106  107   * 'Fortville' (the code name for this device family) is basically a switch. To
 107  108   * map MAC addresses and other things to queues, we end up having to create
 108  109   * Virtual Station Interfaces (VSIs) and establish forwarding rules that direct
 109  110   * traffic to a queue. A VSI owns a collection of queues and has a series of
 110  111   * forwarding rules that point to it. One way to think of this is to treat it
 111  112   * like MAC does a VNIC. When MAC refers to a group, a collection of rings and
 112  113   * classification resources, that is a VSI in i40e.
 113  114   *
 114  115   * The sets of VSIs is shared across the entire device, though there may be some
 115  116   * amount that are reserved to each PF. Because the GLDv3 does not let us change
 116  117   * the number of groups dynamically, we instead statically divide this amount
 117  118   * evenly between all the functions that exist. In addition, we have the same
 118  119   * problem with the mac address forwarding rules. There are a static number that
 119  120   * exist shared across all the functions.
 120  121   *
 121  122   * To handle both of these resources, what we end up doing is going through and
 122  123   * determining which functions belong to the same device. Nominally one might do
 123  124   * this by having a nexus driver; however, a prime requirement for a nexus
 124  125   * driver is identifying the various children and activating them. While it is
 125  126   * possible to get this information from NVRAM, we would end up duplicating a
 126  127   * lot of the PCI enumeration logic. Really, at the end of the day, the device
 127  128   * doesn't give us the traditional identification properties we want from a
 128  129   * nexus driver.
 129  130   *
 130  131   * Instead, we rely on some properties that are guaranteed to be unique. While
 131  132   * it might be tempting to leverage the PBA or serial number of the device from
 132  133   * NVRAM, there is nothing that says that two devices can't be mis-programmed to
 133  134   * have the same values in NVRAM. Instead, we uniquely identify a group of
 134  135   * functions based on their parent in the /devices tree, their PCI bus and PCI
 135  136   * function identifiers. Using either on their own may not be sufficient.
 136  137   *
 137  138   * For each unique PCI device that we encounter, we'll create a i40e_device_t.
 138  139   * From there, because we don't have a good way to tell the GLDv3 about sharing
 139  140   * resources between everything, we'll end up just dividing the resources
 140  141   * evenly between all of the functions. Longer term, if we don't have to declare
 141  142   * to the GLDv3 that these resources are shared, then we'll maintain a pool and
 142  143   * have each PF allocate from the pool in the device, thus if only two of four
 143  144   * ports are being used, for example, then all of the resources can still be
 144  145   * used.
 145  146   *
 146  147   * -------------------------------------------
 147  148   * Transmit and Receive Queue Pair Allocations
 148  149   * -------------------------------------------
 149  150   *
 150  151   * NVRAM ends up assigning each PF its own share of the transmit and receive LAN
 151  152   * queue pairs, we have no way of modifying it, only observing it. From there,
 152  153   * it's up to us to map these queues to VSIs and VFs. Since we don't support any
 153  154   * VFs at this time, we only focus on assignments to VSIs.
 154  155   *
 155  156   * At the moment, we used a static mapping of transmit/receive queue pairs to a
 156  157   * given VSI (eg. rings to a group). Though in the fullness of time, we want to
 157  158   * make this something which is fully dynamic and take advantage of documented,
 158  159   * but not yet available functionality for adding filters based on VXLAN and
 159  160   * other encapsulation technologies.
 160  161   *
 161  162   * -------------------------------------
 162  163   * Broadcast, Multicast, and Promiscuous
 163  164   * -------------------------------------
 164  165   *
 165  166   * As part of the GLDv3, we need to make sure that we can handle receiving
 166  167   * broadcast and multicast traffic. As well as enabling promiscuous mode when
 167  168   * requested. GLDv3 requires that all broadcast and multicast traffic be
 168  169   * retrieved by the default group, eg. the first one. This is the same thing as
 169  170   * the default VSI.
 170  171   *
 171  172   * To receieve broadcast traffic, we enable it through the admin queue, rather
 172  173   * than use one of our filters for it. For multicast traffic, we reserve a
 173  174   * certain number of the hash filters and assign them to a given PF. When we
 174  175   * exceed those, we then switch to using promiscuous mode for multicast traffic.
 175  176   *
 176  177   * More specifically, once we exceed the number of filters (indicated because
 177  178   * the i40e_t`i40e_resources.ifr_nmcastfilt ==
 178  179   * i40e_t`i40e_resources.ifr_nmcastfilt_used), we then instead need to toggle
 179  180   * promiscuous mode. If promiscuous mode is toggled then we keep track of the
 180  181   * number of MACs added to it by incrementing i40e_t`i40e_mcast_promisc_count.
 181  182   * That will stay enabled until that count reaches zero indicating that we have
 182  183   * only added multicast addresses that we have a corresponding entry for.
 183  184   *
 184  185   * Because MAC itself wants to toggle promiscuous mode, which includes both
 185  186   * unicast and multicast traffic, we go through and keep track of that
 186  187   * ourselves. That is maintained through the use of the i40e_t`i40e_promisc_on
 187  188   * member.
 188  189   *
 189  190   * --------------
 190  191   * VSI Management
 191  192   * --------------
 192  193   *
 193  194   * The PFs share 384 VSIs. The firmware creates one VSI per PF by default.
 194  195   * During chip start we retrieve the SEID of this VSI and assign it as the
 195  196   * default VSI for our VEB (one VEB per PF). We then add additional VSIs to
 196  197   * the VEB up to the determined number of rx groups: i40e_t`i40e_num_rx_groups.
 197  198   * We currently cap this number to I40E_GROUP_MAX to a) make sure all PFs can
 198  199   * allocate the same number of VSIs, and b) to keep the interrupt multiplexing
 199  200   * under control. In the future, when we improve the interrupt allocation, we
 200  201   * may want to revisit this cap to make better use of the available VSIs. The
 201  202   * VSI allocation and configuration can be found in i40e_chip_start().
 202  203   *
 203  204   * ----------------
 204  205   * Structure Layout
 205  206   * ----------------
 206  207   *
 207  208   * The following images relates the core data structures together. The primary
 208  209   * structure in the system is the i40e_t. It itself contains multiple rings,
 209  210   * i40e_trqpair_t's which contain the various transmit and receive data. The
 210  211   * receive data is stored outside of the i40e_trqpair_t and instead in the
 211  212   * i40e_rx_data_t. The i40e_t has a corresponding i40e_device_t which keeps
 212  213   * track of per-physical device state. Finally, for every active descriptor,
 213  214   * there is a corresponding control block, which is where the
 214  215   * i40e_rx_control_block_t and the i40e_tx_control_block_t come from.
 215  216   *
 216  217   *   +-----------------------+       +-----------------------+
 217  218   *   | Global i40e_t list    |       | Global Device list    |
 218  219   *   |                       |    +--|                       |
 219  220   *   | i40e_glist            |    |  | i40e_dlist            |
 220  221   *   +-----------------------+    |  +-----------------------+
 221  222   *       |                        v
 222  223   *       |      +------------------------+      +-----------------------+
 223  224   *       |      | Device-wide Structure  |----->| Device-wide Structure |--> ...
 224  225   *       |      | i40e_device_t          |      | i40e_device_t         |
 225  226   *       |      |                        |      +-----------------------+
 226  227   *       |      | dev_info_t *     ------+--> Parent in devices tree.
 227  228   *       |      | uint_t           ------+--> PCI bus number
 228  229   *       |      | uint_t           ------+--> PCI device number
 229  230   *       |      | uint_t           ------+--> Number of functions
 230  231   *       |      | i40e_switch_rsrcs_t ---+--> Captured total switch resources
 231  232   *       |      | list_t           ------+-------------+
 232  233   *       |      +------------------------+             |
 233  234   *       |                           ^                 |
 234  235   *       |                           +--------+        |
 235  236   *       |                                    |        v
 236  237   *       |  +---------------------------+     |   +-------------------+
 237  238   *       +->| GLDv3 Device, per PF      |-----|-->| GLDv3 Device (PF) |--> ...
 238  239   *          | i40e_t                    |     |   | i40e_t            |
 239  240   *          | **Primary Structure**     |     |   +-------------------+
 240  241   *          |                           |     |
 241  242   *          | i40e_device_t *         --+-----+
 242  243   *          | i40e_state_t            --+---> Device State
 243  244   *          | i40e_hw_t               --+---> Intel common code structure
 244  245   *          | mac_handle_t            --+---> GLDv3 handle to MAC
 245  246   *          | ddi_periodic_t          --+---> Link activity timer
 246  247   *          | i40e_vsi_t *            --+---> Array of VSIs
 247  248   *          | i40e_func_rsrc_t        --+---> Available hardware resources
 248  249   *          | i40e_switch_rsrc_t *    --+---> Switch resource snapshot
 249  250   *          | i40e_sdu                --+---> Current MTU
 250  251   *          | i40e_frame_max          --+---> Current HW frame size
 251  252   *          | i40e_uaddr_t *          --+---> Array of assigned unicast MACs
 252  253   *          | i40e_maddr_t *          --+---> Array of assigned multicast MACs
 253  254   *          | i40e_mcast_promisccount --+---> Active multicast state
 254  255   *          | i40e_promisc_on         --+---> Current promiscuous mode state
 255  256   *          | uint_t                  --+---> Number of transmit/receive pairs
 256  257   *          | i40e_rx_group_t *       --+---> Array of Rx groups
 257  258   *          | kstat_t *               --+---> PF kstats
 258  259   *          | i40e_pf_stats_t         --+---> PF kstat backing data
 259  260   *          | i40e_trqpair_t *        --+---------+
 260  261   *          +---------------------------+         |
 261  262   *                                                |
 262  263   *                                                v
 263  264   *  +-------------------------------+       +-----------------------------+
 264  265   *  | Transmit/Receive Queue Pair   |-------| Transmit/Receive Queue Pair |->...
 265  266   *  | i40e_trqpair_t                |       | i40e_trqpair_t              |
 266  267   *  + Ring Data Structure           |       +-----------------------------+
 267  268   *  |                               |
 268  269   *  | mac_ring_handle_t             +--> MAC RX ring handle
 269  270   *  | mac_ring_handle_t             +--> MAC TX ring handle
 270  271   *  | i40e_rxq_stat_t             --+--> RX Queue stats
 271  272   *  | i40e_txq_stat_t             --+--> TX Queue stats
 272  273   *  | uint32_t (tx ring size)       +--> TX Ring Size
 273  274   *  | uint32_t (tx free list size)  +--> TX Free List Size
 274  275   *  | i40e_dma_buffer_t     --------+--> TX Descriptor ring DMA
 275  276   *  | i40e_tx_desc_t *      --------+--> TX descriptor ring
 276  277   *  | volatile unt32_t *            +--> TX Write back head
 277  278   *  | uint32_t               -------+--> TX ring head
 278  279   *  | uint32_t               -------+--> TX ring tail
 279  280   *  | uint32_t               -------+--> Num TX desc free
 280  281   *  | i40e_tx_control_block_t *   --+--> TX control block array  ---+
 281  282   *  | i40e_tx_control_block_t **  --+--> TCB work list          ----+
 282  283   *  | i40e_tx_control_block_t **  --+--> TCB free list           ---+
 283  284   *  | uint32_t               -------+--> Free TCB count             |
 284  285   *  | i40e_rx_data_t *       -------+--+                            v
 285  286   *  +-------------------------------+  |          +---------------------------+
 286  287   *                                     |          | Per-TX Frame Metadata     |
 287  288   *                                     |          | i40e_tx_control_block_t   |
 288  289   *                +--------------------+          |                           |
 289  290   *                |           mblk to transmit <--+---      mblk_t *          |
 290  291   *                |           type of transmit <--+---      i40e_tx_type_t    |
 291  292   *                |              TX DMA handle <--+---      ddi_dma_handle_t  |
 292  293   *                v              TX DMA buffer <--+---      i40e_dma_buffer_t |
 293  294   *    +------------------------------+            +---------------------------+
 294  295   *    | Core Receive Data            |
 295  296   *    | i40e_rx_data_t               |
 296  297   *    |                              |
 297  298   *    | i40e_dma_buffer_t          --+--> RX descriptor DMA Data
 298  299   *    | i40e_rx_desc_t             --+--> RX descriptor ring
 299  300   *    | uint32_t                   --+--> Next free desc.
 300  301   *    | i40e_rx_control_block_t *  --+--> RX Control Block Array  ---+
 301  302   *    | i40e_rx_control_block_t ** --+--> RCB work list           ---+
 302  303   *    | i40e_rx_control_block_t ** --+--> RCB free list           ---+
 303  304   *    +------------------------------+                               |
 304  305   *                ^                                                  |
 305  306   *                |     +---------------------------+                |
 306  307   *                |     | Per-RX Frame Metadata     |<---------------+
 307  308   *                |     | i40e_rx_control_block_t   |
 308  309   *                |     |                           |
 309  310   *                |     | mblk_t *              ----+--> Received mblk_t data
 310  311   *                |     | uint32_t              ----+--> Reference count
 311  312   *                |     | i40e_dma_buffer_t     ----+--> Receive data DMA info
 312  313   *                |     | frtn_t                ----+--> mblk free function info
 313  314   *                +-----+-- i40e_rx_data_t *        |
 314  315   *                      +---------------------------+
 315  316   *
 316  317   * -------------
 317  318   * Lock Ordering
 318  319   * -------------
 319  320   *
 320  321   * In order to ensure that we don't deadlock, the following represents the
 321  322   * lock order being used. When grabbing locks, follow the following order. Lower
 322  323   * numbers are more important. Thus, the i40e_glock which is number 0, must be
 323  324   * taken before any other locks in the driver. On the other hand, the
 324  325   * i40e_t`i40e_stat_lock, has the highest number because it's the least
 325  326   * important lock. Note, that just because one lock is higher than another does
 326  327   * not mean that all intermediary locks are required.
 327  328   *
 328  329   * 0) i40e_glock
 329  330   * 1) i40e_t`i40e_general_lock
 330  331   *
 331  332   * 2) i40e_trqpair_t`itrq_rx_lock
 332  333   * 3) i40e_trqpair_t`itrq_tx_lock
 333  334   * 4) i40e_trqpair_t`itrq_intr_lock
 334  335   * 5) i40e_t`i40e_rx_pending_lock
 335  336   * 6) i40e_trqpair_t`itrq_tcb_lock
 336  337   *
 337  338   * 7) i40e_t`i40e_stat_lock
 338  339   *
 339  340   * Rules and expectations:
 340  341   *
 341  342   * 1) A thread holding locks belong to one PF should not hold locks belonging to
 342  343   * a second. If for some reason this becomes necessary, locks should be grabbed
 343  344   * based on the list order in the i40e_device_t, which implies that the
 344  345   * i40e_glock is held.
 345  346   *
 346  347   * 2) When grabbing locks between multiple transmit and receive queues, the
 347  348   * locks for the lowest number transmit/receive queue should be grabbed first.
 348  349   *
 349  350   * 3) When grabbing both the transmit and receive lock for a given queue, always
 350  351   * grab i40e_trqpair_t`itrq_rx_lock before the i40e_trqpair_t`itrq_tx_lock.
 351  352   *
 352  353   * 4) The following pairs of locks are not expected to be held at the same time:
 353  354   *
 354  355   * o i40e_t`i40e_rx_pending_lock and i40e_trqpair_t`itrq_tcb_lock
 355  356   * o i40e_trqpair_t`itrq_intr_lock is not expected to be held with any
 356  357   *   other lock except i40e_t`i40e_general_lock in mc_start(9E) and
 357  358   *   mc_stop(9e).
 358  359   *
 359  360   * -----------
 360  361   * Future Work
 361  362   * -----------
 362  363   *
 363  364   * At the moment the i40e_t driver is rather bare bones, allowing us to start
 364  365   * getting data flowing and folks using it while we develop additional features.
 365  366   * While bugs have been filed to cover this future work, the following gives an
 366  367   * overview of expected work:
 367  368   *
 368  369   *  o DMA binding and breaking up the locking in ring recycling.
 369  370   *  o Enhanced detection of device errors
 370  371   *  o Participation in IRM
 371  372   *  o FMA device reset
 372  373   *  o Stall detection, temperature error detection, etc.
 373  374   *  o More dynamic resource pools
 374  375   */
 375  376  
 376  377  #include "i40e_sw.h"
 377  378  
 378  379  static char i40e_ident[] = "Intel 10/40Gb Ethernet v1.0.3";
 379  380  
 380  381  /*
 381  382   * The i40e_glock primarily protects the lists below and the i40e_device_t
 382  383   * structures.
 383  384   */
 384  385  static kmutex_t i40e_glock;
 385  386  static list_t i40e_glist;
 386  387  static list_t i40e_dlist;
 387  388  
 388  389  /*
 389  390   * Access attributes for register mapping.
 390  391   */
 391  392  static ddi_device_acc_attr_t i40e_regs_acc_attr = {
 392  393          DDI_DEVICE_ATTR_V1,
 393  394          DDI_STRUCTURE_LE_ACC,
 394  395          DDI_STRICTORDER_ACC,
 395  396          DDI_FLAGERR_ACC
 396  397  };
 397  398  
 398  399  /*
 399  400   * Logging function for this driver.
 400  401   */
 401  402  static void
 402  403  i40e_dev_err(i40e_t *i40e, int level, boolean_t console, const char *fmt,
 403  404      va_list ap)
 404  405  {
 405  406          char buf[1024];
 406  407  
 407  408          (void) vsnprintf(buf, sizeof (buf), fmt, ap);
 408  409  
 409  410          if (i40e == NULL) {
 410  411                  cmn_err(level, (console) ? "%s: %s" : "!%s: %s",
 411  412                      I40E_MODULE_NAME, buf);
 412  413          } else {
 413  414                  dev_err(i40e->i40e_dip, level, (console) ? "%s" : "!%s",
 414  415                      buf);
 415  416          }
 416  417  }
 417  418  
 418  419  /*
 419  420   * Because there's the stupid trailing-comma problem with the C preprocessor
 420  421   * and variable arguments, I need to instantiate these.  Pardon the redundant
 421  422   * code.
 422  423   */
 423  424  /*PRINTFLIKE2*/
 424  425  void
 425  426  i40e_error(i40e_t *i40e, const char *fmt, ...)
 426  427  {
 427  428          va_list ap;
 428  429  
 429  430          va_start(ap, fmt);
 430  431          i40e_dev_err(i40e, CE_WARN, B_FALSE, fmt, ap);
 431  432          va_end(ap);
 432  433  }
 433  434  
 434  435  /*PRINTFLIKE2*/
 435  436  void
 436  437  i40e_log(i40e_t *i40e, const char *fmt, ...)
 437  438  {
 438  439          va_list ap;
 439  440  
 440  441          va_start(ap, fmt);
 441  442          i40e_dev_err(i40e, CE_NOTE, B_FALSE, fmt, ap);
 442  443          va_end(ap);
 443  444  }
 444  445  
 445  446  /*PRINTFLIKE2*/
 446  447  void
 447  448  i40e_notice(i40e_t *i40e, const char *fmt, ...)
 448  449  {
 449  450          va_list ap;
 450  451  
 451  452          va_start(ap, fmt);
 452  453          i40e_dev_err(i40e, CE_NOTE, B_TRUE, fmt, ap);
 453  454          va_end(ap);
 454  455  }
 455  456  
 456  457  /*
 457  458   * Various parts of the driver need to know if the controller is from the X722
 458  459   * family, which has a few additional capabilities and different programming
 459  460   * means. We don't consider virtual functions as part of this as they are quite
 460  461   * different and will require substantially more work.
 461  462   */
 462  463  static boolean_t
 463  464  i40e_is_x722(i40e_t *i40e)
 464  465  {
 465  466          return (i40e->i40e_hw_space.mac.type == I40E_MAC_X722);
 466  467  }
 467  468  
 468  469  static void
 469  470  i40e_device_rele(i40e_t *i40e)
 470  471  {
 471  472          i40e_device_t *idp = i40e->i40e_device;
 472  473  
 473  474          if (idp == NULL)
 474  475                  return;
 475  476  
 476  477          mutex_enter(&i40e_glock);
 477  478          VERIFY(idp->id_nreg > 0);
 478  479          list_remove(&idp->id_i40e_list, i40e);
 479  480          idp->id_nreg--;
 480  481          if (idp->id_nreg == 0) {
 481  482                  list_remove(&i40e_dlist, idp);
 482  483                  list_destroy(&idp->id_i40e_list);
 483  484                  kmem_free(idp->id_rsrcs, sizeof (i40e_switch_rsrc_t) *
 484  485                      idp->id_rsrcs_alloc);
 485  486                  kmem_free(idp, sizeof (i40e_device_t));
 486  487          }
 487  488          i40e->i40e_device = NULL;
 488  489          mutex_exit(&i40e_glock);
 489  490  }
 490  491  
 491  492  static i40e_device_t *
 492  493  i40e_device_find(i40e_t *i40e, dev_info_t *parent, uint_t bus, uint_t device)
 493  494  {
 494  495          i40e_device_t *idp;
 495  496          mutex_enter(&i40e_glock);
 496  497          for (idp = list_head(&i40e_dlist); idp != NULL;
 497  498              idp = list_next(&i40e_dlist, idp)) {
 498  499                  if (idp->id_parent == parent && idp->id_pci_bus == bus &&
 499  500                      idp->id_pci_device == device) {
 500  501                          break;
 501  502                  }
 502  503          }
 503  504  
 504  505          if (idp != NULL) {
 505  506                  VERIFY(idp->id_nreg < idp->id_nfuncs);
 506  507                  idp->id_nreg++;
 507  508          } else {
 508  509                  i40e_hw_t *hw = &i40e->i40e_hw_space;
 509  510                  ASSERT(hw->num_ports > 0);
 510  511                  ASSERT(hw->num_partitions > 0);
 511  512  
 512  513                  /*
 513  514                   * The Intel common code doesn't exactly keep the number of PCI
 514  515                   * functions. But it calculates it during discovery of
 515  516                   * partitions and ports. So what we do is undo the calculation
 516  517                   * that it does originally, as functions are evenly spread
 517  518                   * across ports in the rare case of partitions.
 518  519                   */
 519  520                  idp = kmem_alloc(sizeof (i40e_device_t), KM_SLEEP);
 520  521                  idp->id_parent = parent;
 521  522                  idp->id_pci_bus = bus;
 522  523                  idp->id_pci_device = device;
 523  524                  idp->id_nfuncs = hw->num_ports * hw->num_partitions;
 524  525                  idp->id_nreg = 1;
 525  526                  idp->id_rsrcs_alloc = i40e->i40e_switch_rsrc_alloc;
 526  527                  idp->id_rsrcs_act = i40e->i40e_switch_rsrc_actual;
 527  528                  idp->id_rsrcs = kmem_alloc(sizeof (i40e_switch_rsrc_t) *
 528  529                      idp->id_rsrcs_alloc, KM_SLEEP);
 529  530                  bcopy(i40e->i40e_switch_rsrcs, idp->id_rsrcs,
 530  531                      sizeof (i40e_switch_rsrc_t) * idp->id_rsrcs_alloc);
 531  532                  list_create(&idp->id_i40e_list, sizeof (i40e_t),
 532  533                      offsetof(i40e_t, i40e_dlink));
 533  534  
 534  535                  list_insert_tail(&i40e_dlist, idp);
 535  536          }
 536  537  
 537  538          list_insert_tail(&idp->id_i40e_list, i40e);
 538  539          mutex_exit(&i40e_glock);
 539  540  
 540  541          return (idp);
 541  542  }
 542  543  
 543  544  static void
 544  545  i40e_link_state_set(i40e_t *i40e, link_state_t state)
 545  546  {
 546  547          if (i40e->i40e_link_state == state)
 547  548                  return;
 548  549  
 549  550          i40e->i40e_link_state = state;
 550  551          mac_link_update(i40e->i40e_mac_hdl, i40e->i40e_link_state);
 551  552  }
 552  553  
 553  554  /*
 554  555   * This is a basic link check routine. Mostly we're using this just to see
 555  556   * if we can get any accurate information about the state of the link being
 556  557   * up or down, as well as updating the link state, speed, etc. information.
 557  558   */
 558  559  void
 559  560  i40e_link_check(i40e_t *i40e)
 560  561  {
 561  562          i40e_hw_t *hw = &i40e->i40e_hw_space;
 562  563          boolean_t ls;
 563  564          int ret;
 564  565  
 565  566          ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
 566  567  
 567  568          hw->phy.get_link_info = B_TRUE;
 568  569          if ((ret = i40e_get_link_status(hw, &ls)) != I40E_SUCCESS) {
 569  570                  i40e->i40e_s_link_status_errs++;
 570  571                  i40e->i40e_s_link_status_lasterr = ret;
 571  572                  return;
 572  573          }
 573  574  
 574  575          /*
 575  576           * Firmware abstracts all of the mac and phy information for us, so we
 576  577           * can use i40e_get_link_status to determine the current state.
 577  578           */
 578  579          if (ls == B_TRUE) {
 579  580                  enum i40e_aq_link_speed speed;
 580  581  
 581  582                  speed = i40e_get_link_speed(hw);
 582  583  
  
    | 
      ↓ open down ↓ | 
    555 lines elided | 
    
      ↑ open up ↑ | 
  
 583  584                  /*
 584  585                   * Translate from an i40e value to a value in Mbits/s.
 585  586                   */
 586  587                  switch (speed) {
 587  588                  case I40E_LINK_SPEED_100MB:
 588  589                          i40e->i40e_link_speed = 100;
 589  590                          break;
 590  591                  case I40E_LINK_SPEED_1GB:
 591  592                          i40e->i40e_link_speed = 1000;
 592  593                          break;
      594 +                case I40E_LINK_SPEED_2_5GB:
      595 +                        i40e->i40e_link_speed = 2500;
      596 +                        break;
      597 +                case I40E_LINK_SPEED_5GB:
      598 +                        i40e->i40e_link_speed = 5000;
      599 +                        break;
 593  600                  case I40E_LINK_SPEED_10GB:
 594  601                          i40e->i40e_link_speed = 10000;
 595  602                          break;
 596  603                  case I40E_LINK_SPEED_20GB:
 597  604                          i40e->i40e_link_speed = 20000;
 598  605                          break;
 599  606                  case I40E_LINK_SPEED_40GB:
 600  607                          i40e->i40e_link_speed = 40000;
 601  608                          break;
 602  609                  case I40E_LINK_SPEED_25GB:
 603  610                          i40e->i40e_link_speed = 25000;
 604  611                          break;
 605  612                  default:
 606  613                          i40e->i40e_link_speed = 0;
 607  614                          break;
 608  615                  }
 609  616  
 610  617                  /*
 611  618                   * At this time, hardware does not support half-duplex
 612  619                   * operation, hence why we don't ask the hardware about our
 613  620                   * current speed.
 614  621                   */
 615  622                  i40e->i40e_link_duplex = LINK_DUPLEX_FULL;
 616  623                  i40e_link_state_set(i40e, LINK_STATE_UP);
 617  624          } else {
 618  625                  i40e->i40e_link_speed = 0;
 619  626                  i40e->i40e_link_duplex = 0;
 620  627                  i40e_link_state_set(i40e, LINK_STATE_DOWN);
 621  628          }
 622  629  }
 623  630  
 624  631  static void
 625  632  i40e_rem_intrs(i40e_t *i40e)
 626  633  {
 627  634          int i, rc;
 628  635  
 629  636          for (i = 0; i < i40e->i40e_intr_count; i++) {
 630  637                  rc = ddi_intr_free(i40e->i40e_intr_handles[i]);
 631  638                  if (rc != DDI_SUCCESS) {
 632  639                          i40e_log(i40e, "failed to free interrupt %d: %d",
 633  640                              i, rc);
 634  641                  }
 635  642          }
 636  643  
 637  644          kmem_free(i40e->i40e_intr_handles, i40e->i40e_intr_size);
 638  645          i40e->i40e_intr_handles = NULL;
 639  646  }
 640  647  
 641  648  static void
 642  649  i40e_rem_intr_handlers(i40e_t *i40e)
 643  650  {
 644  651          int i, rc;
 645  652  
 646  653          for (i = 0; i < i40e->i40e_intr_count; i++) {
 647  654                  rc = ddi_intr_remove_handler(i40e->i40e_intr_handles[i]);
 648  655                  if (rc != DDI_SUCCESS) {
 649  656                          i40e_log(i40e, "failed to remove interrupt %d: %d",
 650  657                              i, rc);
 651  658                  }
 652  659          }
 653  660  }
 654  661  
 655  662  /*
 656  663   * illumos Fault Management Architecture (FMA) support.
 657  664   */
 658  665  
 659  666  int
 660  667  i40e_check_acc_handle(ddi_acc_handle_t handle)
 661  668  {
 662  669          ddi_fm_error_t de;
 663  670  
 664  671          ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
 665  672          ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
 666  673          return (de.fme_status);
 667  674  }
 668  675  
 669  676  int
 670  677  i40e_check_dma_handle(ddi_dma_handle_t handle)
 671  678  {
 672  679          ddi_fm_error_t de;
 673  680  
 674  681          ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
 675  682          return (de.fme_status);
 676  683  }
 677  684  
 678  685  /*
 679  686   * Fault service error handling callback function.
 680  687   */
 681  688  /* ARGSUSED */
 682  689  static int
 683  690  i40e_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
 684  691  {
 685  692          pci_ereport_post(dip, err, NULL);
 686  693          return (err->fme_status);
 687  694  }
 688  695  
 689  696  static void
 690  697  i40e_fm_init(i40e_t *i40e)
 691  698  {
 692  699          ddi_iblock_cookie_t iblk;
 693  700  
 694  701          i40e->i40e_fm_capabilities = ddi_prop_get_int(DDI_DEV_T_ANY,
 695  702              i40e->i40e_dip, DDI_PROP_DONTPASS, "fm_capable",
 696  703              DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
 697  704              DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
 698  705  
 699  706          if (i40e->i40e_fm_capabilities < 0) {
 700  707                  i40e->i40e_fm_capabilities = 0;
 701  708          } else if (i40e->i40e_fm_capabilities > 0xf) {
 702  709                  i40e->i40e_fm_capabilities = DDI_FM_EREPORT_CAPABLE |
 703  710                      DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE |
 704  711                      DDI_FM_ERRCB_CAPABLE;
 705  712          }
 706  713  
 707  714          /*
 708  715           * Only register with IO Fault Services if we have some capability
 709  716           */
 710  717          if (i40e->i40e_fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
 711  718                  i40e_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
 712  719          } else {
 713  720                  i40e_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
 714  721          }
 715  722  
 716  723          if (i40e->i40e_fm_capabilities) {
 717  724                  ddi_fm_init(i40e->i40e_dip, &i40e->i40e_fm_capabilities, &iblk);
 718  725  
 719  726                  if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities) ||
 720  727                      DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities)) {
 721  728                          pci_ereport_setup(i40e->i40e_dip);
 722  729                  }
 723  730  
 724  731                  if (DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities)) {
 725  732                          ddi_fm_handler_register(i40e->i40e_dip,
 726  733                              i40e_fm_error_cb, (void*)i40e);
 727  734                  }
 728  735          }
 729  736  
 730  737          if (i40e->i40e_fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
 731  738                  i40e_init_dma_attrs(i40e, B_TRUE);
 732  739          } else {
 733  740                  i40e_init_dma_attrs(i40e, B_FALSE);
 734  741          }
 735  742  }
 736  743  
 737  744  static void
 738  745  i40e_fm_fini(i40e_t *i40e)
 739  746  {
 740  747          if (i40e->i40e_fm_capabilities) {
 741  748  
 742  749                  if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities) ||
 743  750                      DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities))
 744  751                          pci_ereport_teardown(i40e->i40e_dip);
 745  752  
 746  753                  if (DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities))
 747  754                          ddi_fm_handler_unregister(i40e->i40e_dip);
 748  755  
 749  756                  ddi_fm_fini(i40e->i40e_dip);
 750  757          }
 751  758  }
 752  759  
 753  760  void
 754  761  i40e_fm_ereport(i40e_t *i40e, char *detail)
 755  762  {
 756  763          uint64_t ena;
 757  764          char buf[FM_MAX_CLASS];
 758  765  
 759  766          (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
 760  767          ena = fm_ena_generate(0, FM_ENA_FMT1);
 761  768          if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities)) {
 762  769                  ddi_fm_ereport_post(i40e->i40e_dip, buf, ena, DDI_NOSLEEP,
 763  770                      FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
 764  771          }
 765  772  }
 766  773  
 767  774  /*
 768  775   * Here we're trying to set the SEID of the default VSI. In general,
 769  776   * when we come through and look at this shortly after attach, we
 770  777   * expect there to only be a single element present, which is the
 771  778   * default VSI. Importantly, each PF seems to not see any other
 772  779   * devices, in part because of the simple switch mode that we're
 773  780   * using. If for some reason, we see more artifacts, we'll need to
 774  781   * revisit what we're doing here.
 775  782   */
 776  783  static boolean_t
 777  784  i40e_set_def_vsi_seid(i40e_t *i40e)
 778  785  {
 779  786          i40e_hw_t *hw = &i40e->i40e_hw_space;
 780  787          struct i40e_aqc_get_switch_config_resp *sw_config;
 781  788          uint8_t aq_buf[I40E_AQ_LARGE_BUF];
 782  789          uint16_t next = 0;
 783  790          int rc;
 784  791  
 785  792          /* LINTED: E_BAD_PTR_CAST_ALIGN */
 786  793          sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf;
 787  794          rc = i40e_aq_get_switch_config(hw, sw_config, sizeof (aq_buf), &next,
 788  795              NULL);
 789  796          if (rc != I40E_SUCCESS) {
 790  797                  i40e_error(i40e, "i40e_aq_get_switch_config() failed %d: %d",
 791  798                      rc, hw->aq.asq_last_status);
 792  799                  return (B_FALSE);
 793  800          }
 794  801  
 795  802          if (LE_16(sw_config->header.num_reported) != 1) {
 796  803                  i40e_error(i40e, "encountered multiple (%d) switching units "
 797  804                      "during attach, not proceeding",
 798  805                      LE_16(sw_config->header.num_reported));
 799  806                  return (B_FALSE);
 800  807          }
 801  808  
 802  809          I40E_DEF_VSI_SEID(i40e) = sw_config->element[0].seid;
 803  810          return (B_TRUE);
 804  811  }
 805  812  
 806  813  /*
 807  814   * Get the SEID of the uplink MAC.
 808  815   */
 809  816  static int
 810  817  i40e_get_mac_seid(i40e_t *i40e)
 811  818  {
 812  819          i40e_hw_t *hw = &i40e->i40e_hw_space;
 813  820          struct i40e_aqc_get_switch_config_resp *sw_config;
 814  821          uint8_t aq_buf[I40E_AQ_LARGE_BUF];
 815  822          uint16_t next = 0;
 816  823          int rc;
 817  824  
 818  825          /* LINTED: E_BAD_PTR_CAST_ALIGN */
 819  826          sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf;
 820  827          rc = i40e_aq_get_switch_config(hw, sw_config, sizeof (aq_buf), &next,
 821  828              NULL);
 822  829          if (rc != I40E_SUCCESS) {
 823  830                  i40e_error(i40e, "i40e_aq_get_switch_config() failed %d: %d",
 824  831                      rc, hw->aq.asq_last_status);
 825  832                  return (-1);
 826  833          }
 827  834  
 828  835          return (LE_16(sw_config->element[0].uplink_seid));
 829  836  }
 830  837  
 831  838  /*
 832  839   * We need to fill the i40e_hw_t structure with the capabilities of this PF. We
 833  840   * must also provide the memory for it; however, we don't need to keep it around
 834  841   * to the call to the common code. It takes it and parses it into an internal
 835  842   * structure.
 836  843   */
 837  844  static boolean_t
 838  845  i40e_get_hw_capabilities(i40e_t *i40e, i40e_hw_t *hw)
 839  846  {
 840  847          struct i40e_aqc_list_capabilities_element_resp *buf;
 841  848          int rc;
 842  849          size_t len;
 843  850          uint16_t needed;
 844  851          int nelems = I40E_HW_CAP_DEFAULT;
 845  852  
 846  853          len = nelems * sizeof (*buf);
 847  854  
 848  855          for (;;) {
 849  856                  ASSERT(len > 0);
 850  857                  buf = kmem_alloc(len, KM_SLEEP);
 851  858                  rc = i40e_aq_discover_capabilities(hw, buf, len,
 852  859                      &needed, i40e_aqc_opc_list_func_capabilities, NULL);
 853  860                  kmem_free(buf, len);
 854  861  
 855  862                  if (hw->aq.asq_last_status == I40E_AQ_RC_ENOMEM &&
 856  863                      nelems == I40E_HW_CAP_DEFAULT) {
 857  864                          if (nelems == needed) {
 858  865                                  i40e_error(i40e, "Capability discovery failed "
 859  866                                      "due to byzantine common code");
 860  867                                  return (B_FALSE);
 861  868                          }
 862  869                          len = needed;
 863  870                          continue;
 864  871                  } else if (rc != I40E_SUCCESS ||
 865  872                      hw->aq.asq_last_status != I40E_AQ_RC_OK) {
 866  873                          i40e_error(i40e, "Capability discovery failed: %d", rc);
 867  874                          return (B_FALSE);
 868  875                  }
 869  876  
 870  877                  break;
 871  878          }
 872  879  
 873  880          return (B_TRUE);
 874  881  }
 875  882  
 876  883  /*
 877  884   * Obtain the switch's capabilities as seen by this PF and keep it around for
 878  885   * our later use.
 879  886   */
 880  887  static boolean_t
 881  888  i40e_get_switch_resources(i40e_t *i40e)
 882  889  {
 883  890          i40e_hw_t *hw = &i40e->i40e_hw_space;
 884  891          uint8_t cnt = 2;
 885  892          uint8_t act;
 886  893          size_t size;
 887  894          i40e_switch_rsrc_t *buf;
 888  895  
 889  896          for (;;) {
 890  897                  enum i40e_status_code ret;
 891  898                  size = cnt * sizeof (i40e_switch_rsrc_t);
 892  899                  ASSERT(size > 0);
 893  900                  if (size > UINT16_MAX)
 894  901                          return (B_FALSE);
 895  902                  buf = kmem_alloc(size, KM_SLEEP);
 896  903  
 897  904                  ret = i40e_aq_get_switch_resource_alloc(hw, &act, buf,
 898  905                      cnt, NULL);
 899  906                  if (ret == I40E_ERR_ADMIN_QUEUE_ERROR &&
 900  907                      hw->aq.asq_last_status == I40E_AQ_RC_EINVAL) {
 901  908                          kmem_free(buf, size);
 902  909                          cnt += I40E_SWITCH_CAP_DEFAULT;
 903  910                          continue;
 904  911                  } else if (ret != I40E_SUCCESS) {
 905  912                          kmem_free(buf, size);
 906  913                          i40e_error(i40e,
 907  914                              "failed to retrieve switch statistics: %d", ret);
 908  915                          return (B_FALSE);
 909  916                  }
 910  917  
 911  918                  break;
 912  919          }
 913  920  
 914  921          i40e->i40e_switch_rsrc_alloc = cnt;
 915  922          i40e->i40e_switch_rsrc_actual = act;
 916  923          i40e->i40e_switch_rsrcs = buf;
 917  924  
 918  925          return (B_TRUE);
 919  926  }
 920  927  
 921  928  static void
 922  929  i40e_cleanup_resources(i40e_t *i40e)
 923  930  {
 924  931          if (i40e->i40e_uaddrs != NULL) {
 925  932                  kmem_free(i40e->i40e_uaddrs, sizeof (i40e_uaddr_t) *
 926  933                      i40e->i40e_resources.ifr_nmacfilt);
 927  934                  i40e->i40e_uaddrs = NULL;
 928  935          }
 929  936  
 930  937          if (i40e->i40e_maddrs != NULL) {
 931  938                  kmem_free(i40e->i40e_maddrs, sizeof (i40e_maddr_t) *
 932  939                      i40e->i40e_resources.ifr_nmcastfilt);
 933  940                  i40e->i40e_maddrs = NULL;
 934  941          }
 935  942  
 936  943          if (i40e->i40e_switch_rsrcs != NULL) {
 937  944                  size_t sz = sizeof (i40e_switch_rsrc_t) *
 938  945                      i40e->i40e_switch_rsrc_alloc;
 939  946                  ASSERT(sz > 0);
 940  947                  kmem_free(i40e->i40e_switch_rsrcs, sz);
 941  948                  i40e->i40e_switch_rsrcs = NULL;
 942  949          }
 943  950  
 944  951          if (i40e->i40e_device != NULL)
 945  952                  i40e_device_rele(i40e);
 946  953  }
 947  954  
 948  955  static boolean_t
 949  956  i40e_get_available_resources(i40e_t *i40e)
 950  957  {
 951  958          dev_info_t *parent;
 952  959          uint16_t bus, device, func;
 953  960          uint_t nregs;
 954  961          int *regs, i;
 955  962          i40e_device_t *idp;
 956  963          i40e_hw_t *hw = &i40e->i40e_hw_space;
 957  964  
 958  965          parent = ddi_get_parent(i40e->i40e_dip);
 959  966  
 960  967          if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, i40e->i40e_dip, 0, "reg",
 961  968              ®s, &nregs) != DDI_PROP_SUCCESS) {
 962  969                  return (B_FALSE);
 963  970          }
 964  971  
 965  972          if (nregs < 1) {
 966  973                  ddi_prop_free(regs);
 967  974                  return (B_FALSE);
 968  975          }
 969  976  
 970  977          bus = PCI_REG_BUS_G(regs[0]);
 971  978          device = PCI_REG_DEV_G(regs[0]);
 972  979          func = PCI_REG_FUNC_G(regs[0]);
 973  980          ddi_prop_free(regs);
 974  981  
 975  982          i40e->i40e_hw_space.bus.func = func;
 976  983          i40e->i40e_hw_space.bus.device = device;
 977  984  
 978  985          if (i40e_get_switch_resources(i40e) == B_FALSE) {
 979  986                  return (B_FALSE);
 980  987          }
 981  988  
 982  989          /*
 983  990           * To calculate the total amount of a resource we have available, we
 984  991           * need to add how many our i40e_t thinks it has guaranteed, if any, and
 985  992           * then we need to go through and divide the number of available on the
 986  993           * device, which was snapshotted before anyone should have allocated
 987  994           * anything, and use that to derive how many are available from the
 988  995           * pool. Longer term, we may want to turn this into something that's
 989  996           * more of a pool-like resource that everything can share (though that
 990  997           * may require some more assistance from MAC).
 991  998           *
 992  999           * Though for transmit and receive queue pairs, we just have to ask
 993 1000           * firmware instead.
 994 1001           */
 995 1002          idp = i40e_device_find(i40e, parent, bus, device);
 996 1003          i40e->i40e_device = idp;
 997 1004          i40e->i40e_resources.ifr_nvsis = 0;
 998 1005          i40e->i40e_resources.ifr_nvsis_used = 0;
 999 1006          i40e->i40e_resources.ifr_nmacfilt = 0;
1000 1007          i40e->i40e_resources.ifr_nmacfilt_used = 0;
1001 1008          i40e->i40e_resources.ifr_nmcastfilt = 0;
1002 1009          i40e->i40e_resources.ifr_nmcastfilt_used = 0;
1003 1010  
1004 1011          for (i = 0; i < i40e->i40e_switch_rsrc_actual; i++) {
1005 1012                  i40e_switch_rsrc_t *srp = &i40e->i40e_switch_rsrcs[i];
1006 1013  
1007 1014                  switch (srp->resource_type) {
1008 1015                  case I40E_AQ_RESOURCE_TYPE_VSI:
1009 1016                          i40e->i40e_resources.ifr_nvsis +=
1010 1017                              LE_16(srp->guaranteed);
1011 1018                          i40e->i40e_resources.ifr_nvsis_used = LE_16(srp->used);
1012 1019                          break;
1013 1020                  case I40E_AQ_RESOURCE_TYPE_MACADDR:
1014 1021                          i40e->i40e_resources.ifr_nmacfilt +=
1015 1022                              LE_16(srp->guaranteed);
1016 1023                          i40e->i40e_resources.ifr_nmacfilt_used =
1017 1024                              LE_16(srp->used);
1018 1025                          break;
1019 1026                  case I40E_AQ_RESOURCE_TYPE_MULTICAST_HASH:
1020 1027                          i40e->i40e_resources.ifr_nmcastfilt +=
1021 1028                              LE_16(srp->guaranteed);
1022 1029                          i40e->i40e_resources.ifr_nmcastfilt_used =
1023 1030                              LE_16(srp->used);
1024 1031                          break;
1025 1032                  default:
1026 1033                          break;
1027 1034                  }
1028 1035          }
1029 1036  
1030 1037          for (i = 0; i < idp->id_rsrcs_act; i++) {
1031 1038                  i40e_switch_rsrc_t *srp = &i40e->i40e_switch_rsrcs[i];
1032 1039                  switch (srp->resource_type) {
1033 1040                  case I40E_AQ_RESOURCE_TYPE_VSI:
1034 1041                          i40e->i40e_resources.ifr_nvsis +=
1035 1042                              LE_16(srp->total_unalloced) / idp->id_nfuncs;
1036 1043                          break;
1037 1044                  case I40E_AQ_RESOURCE_TYPE_MACADDR:
1038 1045                          i40e->i40e_resources.ifr_nmacfilt +=
1039 1046                              LE_16(srp->total_unalloced) / idp->id_nfuncs;
1040 1047                          break;
1041 1048                  case I40E_AQ_RESOURCE_TYPE_MULTICAST_HASH:
1042 1049                          i40e->i40e_resources.ifr_nmcastfilt +=
1043 1050                              LE_16(srp->total_unalloced) / idp->id_nfuncs;
1044 1051                  default:
1045 1052                          break;
1046 1053                  }
1047 1054          }
1048 1055  
1049 1056          i40e->i40e_resources.ifr_nrx_queue = hw->func_caps.num_rx_qp;
1050 1057          i40e->i40e_resources.ifr_ntx_queue = hw->func_caps.num_tx_qp;
1051 1058  
1052 1059          i40e->i40e_uaddrs = kmem_zalloc(sizeof (i40e_uaddr_t) *
1053 1060              i40e->i40e_resources.ifr_nmacfilt, KM_SLEEP);
1054 1061          i40e->i40e_maddrs = kmem_zalloc(sizeof (i40e_maddr_t) *
1055 1062              i40e->i40e_resources.ifr_nmcastfilt, KM_SLEEP);
1056 1063  
1057 1064          /*
1058 1065           * Initialize these as multicast addresses to indicate it's invalid for
1059 1066           * sanity purposes. Think of it like 0xdeadbeef.
1060 1067           */
1061 1068          for (i = 0; i < i40e->i40e_resources.ifr_nmacfilt; i++)
1062 1069                  i40e->i40e_uaddrs[i].iua_mac[0] = 0x01;
1063 1070  
1064 1071          return (B_TRUE);
1065 1072  }
1066 1073  
1067 1074  static boolean_t
1068 1075  i40e_enable_interrupts(i40e_t *i40e)
1069 1076  {
1070 1077          int i, rc;
1071 1078  
1072 1079          if (i40e->i40e_intr_cap & DDI_INTR_FLAG_BLOCK) {
1073 1080                  rc = ddi_intr_block_enable(i40e->i40e_intr_handles,
1074 1081                      i40e->i40e_intr_count);
1075 1082                  if (rc != DDI_SUCCESS) {
1076 1083                          i40e_error(i40e, "Interrupt block-enable failed: %d",
1077 1084                              rc);
1078 1085                          return (B_FALSE);
1079 1086                  }
1080 1087          } else {
1081 1088                  for (i = 0; i < i40e->i40e_intr_count; i++) {
1082 1089                          rc = ddi_intr_enable(i40e->i40e_intr_handles[i]);
1083 1090                          if (rc != DDI_SUCCESS) {
1084 1091                                  i40e_error(i40e,
1085 1092                                      "Failed to enable interrupt %d: %d", i, rc);
1086 1093                                  while (--i >= 0) {
1087 1094                                          (void) ddi_intr_disable(
1088 1095                                              i40e->i40e_intr_handles[i]);
1089 1096                                  }
1090 1097                                  return (B_FALSE);
1091 1098                          }
1092 1099                  }
1093 1100          }
1094 1101  
1095 1102          return (B_TRUE);
1096 1103  }
1097 1104  
1098 1105  static boolean_t
1099 1106  i40e_disable_interrupts(i40e_t *i40e)
1100 1107  {
1101 1108          int i, rc;
1102 1109  
1103 1110          if (i40e->i40e_intr_cap & DDI_INTR_FLAG_BLOCK) {
1104 1111                  rc = ddi_intr_block_disable(i40e->i40e_intr_handles,
1105 1112                      i40e->i40e_intr_count);
1106 1113                  if (rc != DDI_SUCCESS) {
1107 1114                          i40e_error(i40e,
1108 1115                              "Interrupt block-disabled failed: %d", rc);
1109 1116                          return (B_FALSE);
1110 1117                  }
1111 1118          } else {
1112 1119                  for (i = 0; i < i40e->i40e_intr_count; i++) {
1113 1120                          rc = ddi_intr_disable(i40e->i40e_intr_handles[i]);
1114 1121                          if (rc != DDI_SUCCESS) {
1115 1122                                  i40e_error(i40e,
1116 1123                                      "Failed to disable interrupt %d: %d",
1117 1124                                      i, rc);
1118 1125                                  return (B_FALSE);
1119 1126                          }
1120 1127                  }
1121 1128          }
1122 1129  
1123 1130          return (B_TRUE);
1124 1131  }
1125 1132  
1126 1133  /*
1127 1134   * Free receive & transmit rings.
1128 1135   */
1129 1136  static void
1130 1137  i40e_free_trqpairs(i40e_t *i40e)
1131 1138  {
1132 1139          i40e_trqpair_t *itrq;
1133 1140  
1134 1141          if (i40e->i40e_rx_groups != NULL) {
1135 1142                  kmem_free(i40e->i40e_rx_groups,
1136 1143                      sizeof (i40e_rx_group_t) * i40e->i40e_num_rx_groups);
1137 1144                  i40e->i40e_rx_groups = NULL;
1138 1145          }
1139 1146  
1140 1147          if (i40e->i40e_trqpairs != NULL) {
1141 1148                  for (uint_t i = 0; i < i40e->i40e_num_trqpairs; i++) {
1142 1149                          itrq = &i40e->i40e_trqpairs[i];
1143 1150                          mutex_destroy(&itrq->itrq_intr_lock);
1144 1151                          mutex_destroy(&itrq->itrq_rx_lock);
1145 1152                          mutex_destroy(&itrq->itrq_tx_lock);
1146 1153                          mutex_destroy(&itrq->itrq_tcb_lock);
1147 1154                          cv_destroy(&itrq->itrq_intr_cv);
1148 1155                          cv_destroy(&itrq->itrq_tx_cv);
1149 1156  
1150 1157                          i40e_stats_trqpair_fini(itrq);
1151 1158                  }
1152 1159  
1153 1160                  kmem_free(i40e->i40e_trqpairs,
1154 1161                      sizeof (i40e_trqpair_t) * i40e->i40e_num_trqpairs);
1155 1162                  i40e->i40e_trqpairs = NULL;
1156 1163          }
1157 1164  
1158 1165          cv_destroy(&i40e->i40e_rx_pending_cv);
1159 1166          mutex_destroy(&i40e->i40e_rx_pending_lock);
1160 1167          mutex_destroy(&i40e->i40e_general_lock);
1161 1168  }
1162 1169  
1163 1170  /*
1164 1171   * Allocate transmit and receive rings, as well as other data structures that we
1165 1172   * need.
1166 1173   */
1167 1174  static boolean_t
1168 1175  i40e_alloc_trqpairs(i40e_t *i40e)
1169 1176  {
1170 1177          void *mutexpri = DDI_INTR_PRI(i40e->i40e_intr_pri);
1171 1178  
1172 1179          /*
1173 1180           * Now that we have the priority for the interrupts, initialize
1174 1181           * all relevant locks.
1175 1182           */
1176 1183          mutex_init(&i40e->i40e_general_lock, NULL, MUTEX_DRIVER, mutexpri);
1177 1184          mutex_init(&i40e->i40e_rx_pending_lock, NULL, MUTEX_DRIVER, mutexpri);
1178 1185          cv_init(&i40e->i40e_rx_pending_cv, NULL, CV_DRIVER, NULL);
1179 1186  
1180 1187          i40e->i40e_trqpairs = kmem_zalloc(sizeof (i40e_trqpair_t) *
1181 1188              i40e->i40e_num_trqpairs, KM_SLEEP);
1182 1189          for (uint_t i = 0; i < i40e->i40e_num_trqpairs; i++) {
1183 1190                  i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
1184 1191  
1185 1192                  itrq->itrq_i40e = i40e;
1186 1193                  mutex_init(&itrq->itrq_intr_lock, NULL, MUTEX_DRIVER, mutexpri);
1187 1194                  mutex_init(&itrq->itrq_rx_lock, NULL, MUTEX_DRIVER, mutexpri);
1188 1195                  mutex_init(&itrq->itrq_tx_lock, NULL, MUTEX_DRIVER, mutexpri);
1189 1196                  mutex_init(&itrq->itrq_tcb_lock, NULL, MUTEX_DRIVER, mutexpri);
1190 1197                  cv_init(&itrq->itrq_intr_cv, NULL, CV_DRIVER, NULL);
1191 1198                  cv_init(&itrq->itrq_tx_cv, NULL, CV_DRIVER, NULL);
1192 1199                  itrq->itrq_index = i;
1193 1200                  itrq->itrq_intr_quiesce = B_TRUE;
1194 1201                  itrq->itrq_tx_quiesce = B_TRUE;
1195 1202          }
1196 1203  
1197 1204          for (uint_t i = 0; i < i40e->i40e_num_trqpairs; i++) {
1198 1205                  /*
1199 1206                   * Keeping this in a separate iteration makes the
1200 1207                   * clean up path safe.
1201 1208                   */
1202 1209                  if (!i40e_stats_trqpair_init(&i40e->i40e_trqpairs[i])) {
1203 1210                          i40e_free_trqpairs(i40e);
1204 1211                          return (B_FALSE);
1205 1212                  }
1206 1213          }
1207 1214  
1208 1215          i40e->i40e_rx_groups = kmem_zalloc(sizeof (i40e_rx_group_t) *
1209 1216              i40e->i40e_num_rx_groups, KM_SLEEP);
1210 1217  
1211 1218          for (uint_t i = 0; i < i40e->i40e_num_rx_groups; i++) {
1212 1219                  i40e_rx_group_t *rxg = &i40e->i40e_rx_groups[i];
1213 1220  
1214 1221                  rxg->irg_index = i;
1215 1222                  rxg->irg_i40e = i40e;
1216 1223          }
1217 1224  
1218 1225          return (B_TRUE);
1219 1226  }
1220 1227  
1221 1228  
1222 1229  
1223 1230  /*
1224 1231   * Unless a .conf file already overrode i40e_t structure values, they will
1225 1232   * be 0, and need to be set in conjunction with the now-available HW report.
1226 1233   */
1227 1234  /* ARGSUSED */
1228 1235  static void
1229 1236  i40e_hw_to_instance(i40e_t *i40e, i40e_hw_t *hw)
1230 1237  {
1231 1238          if (i40e->i40e_num_trqpairs_per_vsi == 0) {
1232 1239                  if (i40e_is_x722(i40e)) {
1233 1240                          i40e->i40e_num_trqpairs_per_vsi =
1234 1241                              I40E_722_MAX_TC_QUEUES;
1235 1242                  } else {
1236 1243                          i40e->i40e_num_trqpairs_per_vsi =
1237 1244                              I40E_710_MAX_TC_QUEUES;
1238 1245                  }
1239 1246          }
1240 1247  
1241 1248          if (i40e->i40e_num_rx_groups == 0) {
1242 1249                  i40e->i40e_num_rx_groups = I40E_DEF_NUM_RX_GROUPS;
1243 1250          }
1244 1251  }
1245 1252  
1246 1253  /*
1247 1254   * Free any resources required by, or setup by, the Intel common code.
1248 1255   */
1249 1256  static void
1250 1257  i40e_common_code_fini(i40e_t *i40e)
1251 1258  {
1252 1259          i40e_hw_t *hw = &i40e->i40e_hw_space;
1253 1260          int rc;
1254 1261  
1255 1262          rc = i40e_shutdown_lan_hmc(hw);
1256 1263          if (rc != I40E_SUCCESS)
1257 1264                  i40e_error(i40e, "failed to shutdown LAN hmc: %d", rc);
1258 1265  
1259 1266          rc = i40e_shutdown_adminq(hw);
1260 1267          if (rc != I40E_SUCCESS)
1261 1268                  i40e_error(i40e, "failed to shutdown admin queue: %d", rc);
1262 1269  }
1263 1270  
1264 1271  /*
1265 1272   * Initialize and call Intel common-code routines, includes some setup
1266 1273   * the common code expects from the driver.  Also prints on failure, so
1267 1274   * the caller doesn't have to.
1268 1275   */
1269 1276  static boolean_t
1270 1277  i40e_common_code_init(i40e_t *i40e, i40e_hw_t *hw)
1271 1278  {
1272 1279          int rc;
1273 1280  
1274 1281          i40e_clear_hw(hw);
1275 1282          rc = i40e_pf_reset(hw);
1276 1283          if (rc != 0) {
1277 1284                  i40e_error(i40e, "failed to reset hardware: %d", rc);
1278 1285                  i40e_fm_ereport(i40e, DDI_FM_DEVICE_NO_RESPONSE);
1279 1286                  return (B_FALSE);
1280 1287          }
1281 1288  
1282 1289          rc = i40e_init_shared_code(hw);
1283 1290          if (rc != 0) {
1284 1291                  i40e_error(i40e, "failed to initialize i40e core: %d", rc);
1285 1292                  return (B_FALSE);
1286 1293          }
1287 1294  
1288 1295          hw->aq.num_arq_entries = I40E_DEF_ADMINQ_SIZE;
1289 1296          hw->aq.num_asq_entries =  I40E_DEF_ADMINQ_SIZE;
1290 1297          hw->aq.arq_buf_size = I40E_ADMINQ_BUFSZ;
1291 1298          hw->aq.asq_buf_size = I40E_ADMINQ_BUFSZ;
1292 1299  
1293 1300          rc = i40e_init_adminq(hw);
1294 1301          if (rc != 0) {
1295 1302                  i40e_error(i40e, "failed to initialize firmware admin queue: "
1296 1303                      "%d, potential firmware version mismatch", rc);
1297 1304                  i40e_fm_ereport(i40e, DDI_FM_DEVICE_INVAL_STATE);
1298 1305                  return (B_FALSE);
1299 1306          }
1300 1307  
1301 1308          if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR &&
1302 1309              hw->aq.api_min_ver > I40E_FW_MINOR_VERSION(hw)) {
1303 1310                  i40e_log(i40e, "The driver for the device detected a newer "
1304 1311                      "version of the NVM image (%d.%d) than expected (%d.%d).\n"
1305 1312                      "Please install the most recent version of the network "
1306 1313                      "driver.\n", hw->aq.api_maj_ver, hw->aq.api_min_ver,
1307 1314                      I40E_FW_API_VERSION_MAJOR, I40E_FW_MINOR_VERSION(hw));
1308 1315          } else if (hw->aq.api_maj_ver < I40E_FW_API_VERSION_MAJOR ||
1309 1316              hw->aq.api_min_ver < (I40E_FW_MINOR_VERSION(hw) - 1)) {
1310 1317                  i40e_log(i40e, "The driver for the device detected an older"
1311 1318                      " version of the NVM image (%d.%d) than expected (%d.%d)."
1312 1319                      "\nPlease update the NVM image.\n",
1313 1320                      hw->aq.api_maj_ver, hw->aq.api_min_ver,
1314 1321                      I40E_FW_API_VERSION_MAJOR, I40E_FW_MINOR_VERSION(hw) - 1);
1315 1322          }
1316 1323  
1317 1324          i40e_clear_pxe_mode(hw);
1318 1325  
1319 1326          /*
1320 1327           * We need to call this so that the common code can discover
1321 1328           * capabilities of the hardware, which it uses throughout the rest.
1322 1329           */
1323 1330          if (!i40e_get_hw_capabilities(i40e, hw)) {
1324 1331                  i40e_error(i40e, "failed to obtain hardware capabilities");
1325 1332                  return (B_FALSE);
1326 1333          }
1327 1334  
1328 1335          if (i40e_get_available_resources(i40e) == B_FALSE) {
1329 1336                  i40e_error(i40e, "failed to obtain hardware resources");
1330 1337                  return (B_FALSE);
1331 1338          }
1332 1339  
1333 1340          i40e_hw_to_instance(i40e, hw);
1334 1341  
1335 1342          rc = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
1336 1343              hw->func_caps.num_rx_qp, 0, 0);
1337 1344          if (rc != 0) {
1338 1345                  i40e_error(i40e, "failed to initialize hardware memory cache: "
1339 1346                      "%d", rc);
  
    | 
      ↓ open down ↓ | 
    737 lines elided | 
    
      ↑ open up ↑ | 
  
1340 1347                  return (B_FALSE);
1341 1348          }
1342 1349  
1343 1350          rc = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
1344 1351          if (rc != 0) {
1345 1352                  i40e_error(i40e, "failed to configure hardware memory cache: "
1346 1353                      "%d", rc);
1347 1354                  return (B_FALSE);
1348 1355          }
1349 1356  
1350      -        (void) i40e_aq_stop_lldp(hw, TRUE, NULL);
     1357 +        (void) i40e_aq_stop_lldp(hw, TRUE, FALSE, NULL);
1351 1358  
1352 1359          rc = i40e_get_mac_addr(hw, hw->mac.addr);
1353 1360          if (rc != I40E_SUCCESS) {
1354 1361                  i40e_error(i40e, "failed to retrieve hardware mac address: %d",
1355 1362                      rc);
1356 1363                  return (B_FALSE);
1357 1364          }
1358 1365  
1359 1366          rc = i40e_validate_mac_addr(hw->mac.addr);
1360 1367          if (rc != 0) {
1361 1368                  i40e_error(i40e, "failed to validate internal mac address: "
1362 1369                      "%d", rc);
1363 1370                  return (B_FALSE);
1364 1371          }
1365 1372          bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
1366 1373          if ((rc = i40e_get_port_mac_addr(hw, hw->mac.port_addr)) !=
1367 1374              I40E_SUCCESS) {
1368 1375                  i40e_error(i40e, "failed to retrieve port mac address: %d",
1369 1376                      rc);
1370 1377                  return (B_FALSE);
1371 1378          }
1372 1379  
1373 1380          /*
1374 1381           * We need to obtain the Default Virtual Station SEID (VSI)
1375 1382           * before we can perform other operations on the device.
1376 1383           */
1377 1384          if (!i40e_set_def_vsi_seid(i40e)) {
1378 1385                  i40e_error(i40e, "failed to obtain Default VSI SEID");
1379 1386                  return (B_FALSE);
1380 1387          }
1381 1388  
1382 1389          return (B_TRUE);
1383 1390  }
1384 1391  
1385 1392  static void
1386 1393  i40e_unconfigure(dev_info_t *devinfo, i40e_t *i40e)
1387 1394  {
1388 1395          int rc;
1389 1396  
1390 1397          if (i40e->i40e_attach_progress & I40E_ATTACH_ENABLE_INTR)
1391 1398                  (void) i40e_disable_interrupts(i40e);
1392 1399  
1393 1400          if ((i40e->i40e_attach_progress & I40E_ATTACH_LINK_TIMER) &&
1394 1401              i40e->i40e_periodic_id != 0) {
1395 1402                  ddi_periodic_delete(i40e->i40e_periodic_id);
1396 1403                  i40e->i40e_periodic_id = 0;
1397 1404          }
1398 1405  
1399 1406          if (i40e->i40e_attach_progress & I40E_ATTACH_UFM_INIT)
1400 1407                  ddi_ufm_fini(i40e->i40e_ufmh);
1401 1408  
1402 1409          if (i40e->i40e_attach_progress & I40E_ATTACH_MAC) {
1403 1410                  rc = mac_unregister(i40e->i40e_mac_hdl);
1404 1411                  if (rc != 0) {
1405 1412                          i40e_error(i40e, "failed to unregister from mac: %d",
1406 1413                              rc);
1407 1414                  }
1408 1415          }
1409 1416  
1410 1417          if (i40e->i40e_attach_progress & I40E_ATTACH_STATS) {
1411 1418                  i40e_stats_fini(i40e);
1412 1419          }
1413 1420  
1414 1421          if (i40e->i40e_attach_progress & I40E_ATTACH_ADD_INTR)
1415 1422                  i40e_rem_intr_handlers(i40e);
1416 1423  
1417 1424          if (i40e->i40e_attach_progress & I40E_ATTACH_ALLOC_RINGSLOCKS)
1418 1425                  i40e_free_trqpairs(i40e);
1419 1426  
1420 1427          if (i40e->i40e_attach_progress & I40E_ATTACH_ALLOC_INTR)
1421 1428                  i40e_rem_intrs(i40e);
1422 1429  
1423 1430          if (i40e->i40e_attach_progress & I40E_ATTACH_COMMON_CODE)
1424 1431                  i40e_common_code_fini(i40e);
1425 1432  
1426 1433          i40e_cleanup_resources(i40e);
1427 1434  
1428 1435          if (i40e->i40e_attach_progress & I40E_ATTACH_PROPS)
1429 1436                  (void) ddi_prop_remove_all(devinfo);
1430 1437  
1431 1438          if (i40e->i40e_attach_progress & I40E_ATTACH_REGS_MAP &&
1432 1439              i40e->i40e_osdep_space.ios_reg_handle != NULL) {
1433 1440                  ddi_regs_map_free(&i40e->i40e_osdep_space.ios_reg_handle);
1434 1441                  i40e->i40e_osdep_space.ios_reg_handle = NULL;
1435 1442          }
1436 1443  
1437 1444          if ((i40e->i40e_attach_progress & I40E_ATTACH_PCI_CONFIG) &&
1438 1445              i40e->i40e_osdep_space.ios_cfg_handle != NULL) {
1439 1446                  pci_config_teardown(&i40e->i40e_osdep_space.ios_cfg_handle);
1440 1447                  i40e->i40e_osdep_space.ios_cfg_handle = NULL;
1441 1448          }
1442 1449  
1443 1450          if (i40e->i40e_attach_progress & I40E_ATTACH_FM_INIT)
1444 1451                  i40e_fm_fini(i40e);
1445 1452  
1446 1453          kmem_free(i40e->i40e_aqbuf, I40E_ADMINQ_BUFSZ);
1447 1454          kmem_free(i40e, sizeof (i40e_t));
1448 1455  
1449 1456          ddi_set_driver_private(devinfo, NULL);
1450 1457  }
1451 1458  
1452 1459  static boolean_t
1453 1460  i40e_final_init(i40e_t *i40e)
1454 1461  {
1455 1462          i40e_hw_t *hw = &i40e->i40e_hw_space;
1456 1463          struct i40e_osdep *osdep = OS_DEP(hw);
1457 1464          uint8_t pbanum[I40E_PBANUM_STRLEN];
1458 1465          enum i40e_status_code irc;
1459 1466          char buf[I40E_DDI_PROP_LEN];
1460 1467  
1461 1468          pbanum[0] = '\0';
1462 1469          irc = i40e_read_pba_string(hw, pbanum, sizeof (pbanum));
1463 1470          if (irc != I40E_SUCCESS) {
1464 1471                  i40e_log(i40e, "failed to read PBA string: %d", irc);
1465 1472          } else {
1466 1473                  (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1467 1474                      "printed-board-assembly", (char *)pbanum);
1468 1475          }
1469 1476  
1470 1477  #ifdef  DEBUG
1471 1478          ASSERT(snprintf(NULL, 0, "%d.%d", hw->aq.fw_maj_ver,
1472 1479              hw->aq.fw_min_ver) < sizeof (buf));
1473 1480          ASSERT(snprintf(NULL, 0, "%x", hw->aq.fw_build) < sizeof (buf));
1474 1481          ASSERT(snprintf(NULL, 0, "%d.%d", hw->aq.api_maj_ver,
1475 1482              hw->aq.api_min_ver) < sizeof (buf));
1476 1483  #endif
1477 1484  
1478 1485          (void) snprintf(buf, sizeof (buf), "%d.%d", hw->aq.fw_maj_ver,
1479 1486              hw->aq.fw_min_ver);
1480 1487          (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1481 1488              "firmware-version", buf);
1482 1489          (void) snprintf(buf, sizeof (buf), "%x", hw->aq.fw_build);
1483 1490          (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1484 1491              "firmware-build", buf);
1485 1492          (void) snprintf(buf, sizeof (buf), "%d.%d", hw->aq.api_maj_ver,
1486 1493              hw->aq.api_min_ver);
1487 1494          (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1488 1495              "api-version", buf);
1489 1496  
1490 1497          if (!i40e_set_hw_bus_info(hw))
1491 1498                  return (B_FALSE);
1492 1499  
1493 1500          if (i40e_check_acc_handle(osdep->ios_reg_handle) != DDI_FM_OK) {
1494 1501                  ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
1495 1502                  return (B_FALSE);
1496 1503          }
1497 1504  
1498 1505          return (B_TRUE);
1499 1506  }
1500 1507  
1501 1508  static void
1502 1509  i40e_identify_hardware(i40e_t *i40e)
1503 1510  {
1504 1511          i40e_hw_t *hw = &i40e->i40e_hw_space;
1505 1512          struct i40e_osdep *osdep = &i40e->i40e_osdep_space;
1506 1513  
1507 1514          hw->vendor_id = pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_VENID);
1508 1515          hw->device_id = pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_DEVID);
1509 1516          hw->revision_id = pci_config_get8(osdep->ios_cfg_handle,
1510 1517              PCI_CONF_REVID);
1511 1518          hw->subsystem_device_id =
1512 1519              pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_SUBSYSID);
1513 1520          hw->subsystem_vendor_id =
1514 1521              pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_SUBVENID);
1515 1522  
1516 1523          /*
1517 1524           * Note that we set the hardware's bus information later on, in
1518 1525           * i40e_get_available_resources(). The common code doesn't seem to
1519 1526           * require that it be set in any ways, it seems to be mostly for
1520 1527           * book-keeping.
1521 1528           */
1522 1529  }
1523 1530  
1524 1531  static boolean_t
1525 1532  i40e_regs_map(i40e_t *i40e)
1526 1533  {
1527 1534          dev_info_t *devinfo = i40e->i40e_dip;
1528 1535          i40e_hw_t *hw = &i40e->i40e_hw_space;
1529 1536          struct i40e_osdep *osdep = &i40e->i40e_osdep_space;
1530 1537          off_t memsize;
1531 1538          int ret;
1532 1539  
1533 1540          if (ddi_dev_regsize(devinfo, I40E_ADAPTER_REGSET, &memsize) !=
1534 1541              DDI_SUCCESS) {
1535 1542                  i40e_error(i40e, "Used invalid register set to map PCIe regs");
1536 1543                  return (B_FALSE);
1537 1544          }
1538 1545  
1539 1546          if ((ret = ddi_regs_map_setup(devinfo, I40E_ADAPTER_REGSET,
1540 1547              (caddr_t *)&hw->hw_addr, 0, memsize, &i40e_regs_acc_attr,
1541 1548              &osdep->ios_reg_handle)) != DDI_SUCCESS) {
1542 1549                  i40e_error(i40e, "failed to map device registers: %d", ret);
1543 1550                  return (B_FALSE);
1544 1551          }
1545 1552  
1546 1553          osdep->ios_reg_size = memsize;
1547 1554          return (B_TRUE);
1548 1555  }
1549 1556  
1550 1557  /*
1551 1558   * Update parameters required when a new MTU has been configured.  Calculate the
1552 1559   * maximum frame size, as well as, size our DMA buffers which we size in
1553 1560   * increments of 1K.
1554 1561   */
1555 1562  void
1556 1563  i40e_update_mtu(i40e_t *i40e)
1557 1564  {
1558 1565          uint32_t rx, tx;
1559 1566  
1560 1567          i40e->i40e_frame_max = i40e->i40e_sdu +
1561 1568              sizeof (struct ether_vlan_header) + ETHERFCSL;
1562 1569  
1563 1570          rx = i40e->i40e_frame_max + I40E_BUF_IPHDR_ALIGNMENT;
1564 1571          i40e->i40e_rx_buf_size = ((rx >> 10) +
1565 1572              ((rx & (((uint32_t)1 << 10) -1)) > 0 ? 1 : 0)) << 10;
1566 1573  
1567 1574          tx = i40e->i40e_frame_max;
1568 1575          i40e->i40e_tx_buf_size = ((tx >> 10) +
1569 1576              ((tx & (((uint32_t)1 << 10) -1)) > 0 ? 1 : 0)) << 10;
1570 1577  }
1571 1578  
1572 1579  static int
1573 1580  i40e_get_prop(i40e_t *i40e, char *prop, int min, int max, int def)
1574 1581  {
1575 1582          int val;
1576 1583  
1577 1584          val = ddi_prop_get_int(DDI_DEV_T_ANY, i40e->i40e_dip, DDI_PROP_DONTPASS,
1578 1585              prop, def);
1579 1586          if (val > max)
1580 1587                  val = max;
1581 1588          if (val < min)
1582 1589                  val = min;
1583 1590          return (val);
1584 1591  }
1585 1592  
1586 1593  static void
1587 1594  i40e_init_properties(i40e_t *i40e)
1588 1595  {
1589 1596          i40e->i40e_sdu = i40e_get_prop(i40e, "default_mtu",
1590 1597              I40E_MIN_MTU, I40E_MAX_MTU, I40E_DEF_MTU);
1591 1598  
1592 1599          i40e->i40e_intr_force = i40e_get_prop(i40e, "intr_force",
1593 1600              I40E_INTR_NONE, I40E_INTR_LEGACY, I40E_INTR_NONE);
1594 1601  
1595 1602          i40e->i40e_mr_enable = i40e_get_prop(i40e, "mr_enable",
1596 1603              B_FALSE, B_TRUE, B_TRUE);
1597 1604  
1598 1605          i40e->i40e_tx_ring_size = i40e_get_prop(i40e, "tx_ring_size",
1599 1606              I40E_MIN_TX_RING_SIZE, I40E_MAX_TX_RING_SIZE,
1600 1607              I40E_DEF_TX_RING_SIZE);
1601 1608          if ((i40e->i40e_tx_ring_size % I40E_DESC_ALIGN) != 0) {
1602 1609                  i40e->i40e_tx_ring_size = P2ROUNDUP(i40e->i40e_tx_ring_size,
1603 1610                      I40E_DESC_ALIGN);
1604 1611          }
1605 1612  
1606 1613          i40e->i40e_tx_block_thresh = i40e_get_prop(i40e, "tx_resched_threshold",
1607 1614              I40E_MIN_TX_BLOCK_THRESH,
1608 1615              i40e->i40e_tx_ring_size - I40E_TX_MAX_COOKIE,
1609 1616              I40E_DEF_TX_BLOCK_THRESH);
1610 1617  
1611 1618          i40e->i40e_num_rx_groups = i40e_get_prop(i40e, "rx_num_groups",
1612 1619              I40E_MIN_NUM_RX_GROUPS, I40E_MAX_NUM_RX_GROUPS,
1613 1620              I40E_DEF_NUM_RX_GROUPS);
1614 1621  
1615 1622          i40e->i40e_rx_ring_size = i40e_get_prop(i40e, "rx_ring_size",
1616 1623              I40E_MIN_RX_RING_SIZE, I40E_MAX_RX_RING_SIZE,
1617 1624              I40E_DEF_RX_RING_SIZE);
1618 1625          if ((i40e->i40e_rx_ring_size % I40E_DESC_ALIGN) != 0) {
1619 1626                  i40e->i40e_rx_ring_size = P2ROUNDUP(i40e->i40e_rx_ring_size,
1620 1627                      I40E_DESC_ALIGN);
1621 1628          }
1622 1629  
1623 1630          i40e->i40e_rx_limit_per_intr = i40e_get_prop(i40e, "rx_limit_per_intr",
1624 1631              I40E_MIN_RX_LIMIT_PER_INTR, I40E_MAX_RX_LIMIT_PER_INTR,
1625 1632              I40E_DEF_RX_LIMIT_PER_INTR);
1626 1633  
1627 1634          i40e->i40e_tx_hcksum_enable = i40e_get_prop(i40e, "tx_hcksum_enable",
1628 1635              B_FALSE, B_TRUE, B_TRUE);
1629 1636  
1630 1637          i40e->i40e_tx_lso_enable = i40e_get_prop(i40e, "tx_lso_enable",
1631 1638              B_FALSE, B_TRUE, B_TRUE);
1632 1639  
1633 1640          i40e->i40e_rx_hcksum_enable = i40e_get_prop(i40e, "rx_hcksum_enable",
1634 1641              B_FALSE, B_TRUE, B_TRUE);
1635 1642  
1636 1643          i40e->i40e_rx_dma_min = i40e_get_prop(i40e, "rx_dma_threshold",
1637 1644              I40E_MIN_RX_DMA_THRESH, I40E_MAX_RX_DMA_THRESH,
1638 1645              I40E_DEF_RX_DMA_THRESH);
1639 1646  
1640 1647          i40e->i40e_tx_dma_min = i40e_get_prop(i40e, "tx_dma_threshold",
1641 1648              I40E_MIN_TX_DMA_THRESH, I40E_MAX_TX_DMA_THRESH,
1642 1649              I40E_DEF_TX_DMA_THRESH);
1643 1650  
1644 1651          i40e->i40e_tx_itr = i40e_get_prop(i40e, "tx_intr_throttle",
1645 1652              I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_TX_ITR);
1646 1653  
1647 1654          i40e->i40e_rx_itr = i40e_get_prop(i40e, "rx_intr_throttle",
1648 1655              I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_RX_ITR);
1649 1656  
1650 1657          i40e->i40e_other_itr = i40e_get_prop(i40e, "other_intr_throttle",
1651 1658              I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_OTHER_ITR);
1652 1659  
1653 1660          if (!i40e->i40e_mr_enable) {
1654 1661                  i40e->i40e_num_trqpairs = I40E_TRQPAIR_NOMSIX;
1655 1662                  i40e->i40e_num_rx_groups = I40E_GROUP_NOMSIX;
1656 1663          }
1657 1664  
1658 1665          i40e_update_mtu(i40e);
1659 1666  }
1660 1667  
1661 1668  /*
1662 1669   * There are a few constraints on interrupts that we're currently imposing, some
1663 1670   * of which are restrictions from hardware. For a fuller treatment, see
1664 1671   * i40e_intr.c.
1665 1672   *
1666 1673   * Currently, to use MSI-X we require two interrupts be available though in
1667 1674   * theory we should participate in IRM and happily use more interrupts.
1668 1675   *
1669 1676   * Hardware only supports a single MSI being programmed and therefore if we
1670 1677   * don't have MSI-X interrupts available at this time, then we ratchet down the
1671 1678   * number of rings and groups available. Obviously, we only bother with a single
1672 1679   * fixed interrupt.
1673 1680   */
1674 1681  static boolean_t
1675 1682  i40e_alloc_intr_handles(i40e_t *i40e, dev_info_t *devinfo, int intr_type)
1676 1683  {
1677 1684          i40e_hw_t *hw = &i40e->i40e_hw_space;
1678 1685          ddi_acc_handle_t rh = i40e->i40e_osdep_space.ios_reg_handle;
1679 1686          int request, count, actual, rc, min;
1680 1687          uint32_t reg;
1681 1688  
1682 1689          switch (intr_type) {
1683 1690          case DDI_INTR_TYPE_FIXED:
1684 1691          case DDI_INTR_TYPE_MSI:
1685 1692                  request = 1;
1686 1693                  min = 1;
1687 1694                  break;
1688 1695          case DDI_INTR_TYPE_MSIX:
1689 1696                  min = 2;
1690 1697                  if (!i40e->i40e_mr_enable) {
1691 1698                          request = 2;
1692 1699                          break;
1693 1700                  }
1694 1701                  reg = I40E_READ_REG(hw, I40E_GLPCI_CNF2);
1695 1702                  /*
1696 1703                   * Should this read fail, we will drop back to using
1697 1704                   * MSI or fixed interrupts.
1698 1705                   */
1699 1706                  if (i40e_check_acc_handle(rh) != DDI_FM_OK) {
1700 1707                          ddi_fm_service_impact(i40e->i40e_dip,
1701 1708                              DDI_SERVICE_DEGRADED);
1702 1709                          return (B_FALSE);
1703 1710                  }
1704 1711                  request = (reg & I40E_GLPCI_CNF2_MSI_X_PF_N_MASK) >>
1705 1712                      I40E_GLPCI_CNF2_MSI_X_PF_N_SHIFT;
1706 1713                  request++;      /* the register value is n - 1 */
1707 1714                  break;
1708 1715          default:
1709 1716                  panic("bad interrupt type passed to i40e_alloc_intr_handles: "
1710 1717                      "%d", intr_type);
1711 1718          }
1712 1719  
1713 1720          rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
1714 1721          if (rc != DDI_SUCCESS || count < min) {
1715 1722                  i40e_log(i40e, "Get interrupt number failed, "
1716 1723                      "returned %d, count %d", rc, count);
1717 1724                  return (B_FALSE);
1718 1725          }
1719 1726  
1720 1727          rc = ddi_intr_get_navail(devinfo, intr_type, &count);
1721 1728          if (rc != DDI_SUCCESS || count < min) {
1722 1729                  i40e_log(i40e, "Get AVAILABLE interrupt number failed, "
1723 1730                      "returned %d, count %d", rc, count);
1724 1731                  return (B_FALSE);
1725 1732          }
1726 1733  
1727 1734          actual = 0;
1728 1735          i40e->i40e_intr_count = 0;
1729 1736          i40e->i40e_intr_count_max = 0;
1730 1737          i40e->i40e_intr_count_min = 0;
1731 1738  
1732 1739          i40e->i40e_intr_size = request * sizeof (ddi_intr_handle_t);
1733 1740          ASSERT(i40e->i40e_intr_size != 0);
1734 1741          i40e->i40e_intr_handles = kmem_alloc(i40e->i40e_intr_size, KM_SLEEP);
1735 1742  
1736 1743          rc = ddi_intr_alloc(devinfo, i40e->i40e_intr_handles, intr_type, 0,
1737 1744              min(request, count), &actual, DDI_INTR_ALLOC_NORMAL);
1738 1745          if (rc != DDI_SUCCESS) {
1739 1746                  i40e_log(i40e, "Interrupt allocation failed with %d.", rc);
1740 1747                  goto alloc_handle_fail;
1741 1748          }
1742 1749  
1743 1750          i40e->i40e_intr_count = actual;
1744 1751          i40e->i40e_intr_count_max = request;
1745 1752          i40e->i40e_intr_count_min = min;
1746 1753  
1747 1754          if (actual < min) {
1748 1755                  i40e_log(i40e, "actual (%d) is less than minimum (%d).",
1749 1756                      actual, min);
1750 1757                  goto alloc_handle_fail;
1751 1758          }
1752 1759  
1753 1760          /*
1754 1761           * Record the priority and capabilities for our first vector.  Once
1755 1762           * we have it, that's our priority until detach time.  Even if we
1756 1763           * eventually participate in IRM, our priority shouldn't change.
1757 1764           */
1758 1765          rc = ddi_intr_get_pri(i40e->i40e_intr_handles[0], &i40e->i40e_intr_pri);
1759 1766          if (rc != DDI_SUCCESS) {
1760 1767                  i40e_log(i40e,
1761 1768                      "Getting interrupt priority failed with %d.", rc);
1762 1769                  goto alloc_handle_fail;
1763 1770          }
1764 1771  
1765 1772          rc = ddi_intr_get_cap(i40e->i40e_intr_handles[0], &i40e->i40e_intr_cap);
1766 1773          if (rc != DDI_SUCCESS) {
1767 1774                  i40e_log(i40e,
1768 1775                      "Getting interrupt capabilities failed with %d.", rc);
1769 1776                  goto alloc_handle_fail;
1770 1777          }
1771 1778  
1772 1779          i40e->i40e_intr_type = intr_type;
1773 1780          return (B_TRUE);
1774 1781  
1775 1782  alloc_handle_fail:
1776 1783  
1777 1784          i40e_rem_intrs(i40e);
1778 1785          return (B_FALSE);
1779 1786  }
1780 1787  
1781 1788  static boolean_t
1782 1789  i40e_alloc_intrs(i40e_t *i40e, dev_info_t *devinfo)
1783 1790  {
1784 1791          i40e_hw_t *hw = &i40e->i40e_hw_space;
1785 1792          int intr_types, rc;
1786 1793          uint_t max_trqpairs;
1787 1794  
1788 1795          if (i40e_is_x722(i40e)) {
1789 1796                  max_trqpairs = I40E_722_MAX_TC_QUEUES;
1790 1797          } else {
1791 1798                  max_trqpairs = I40E_710_MAX_TC_QUEUES;
1792 1799          }
1793 1800  
1794 1801          rc = ddi_intr_get_supported_types(devinfo, &intr_types);
1795 1802          if (rc != DDI_SUCCESS) {
1796 1803                  i40e_error(i40e, "failed to get supported interrupt types: %d",
1797 1804                      rc);
1798 1805                  return (B_FALSE);
1799 1806          }
1800 1807  
1801 1808          i40e->i40e_intr_type = 0;
1802 1809  
1803 1810          /*
1804 1811           * We need to determine the number of queue pairs per traffic
1805 1812           * class. We only have one traffic class (TC0), so we'll base
1806 1813           * this off the number of interrupts provided. Furthermore,
1807 1814           * since we only use one traffic class, the number of queues
1808 1815           * per traffic class and per VSI are the same.
1809 1816           */
1810 1817          if ((intr_types & DDI_INTR_TYPE_MSIX) &&
1811 1818              (i40e->i40e_intr_force <= I40E_INTR_MSIX) &&
1812 1819              (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_MSIX))) {
1813 1820                  uint32_t n, qp_cap, num_trqpairs;
1814 1821  
1815 1822                  /*
1816 1823                   * While we want the number of queue pairs to match
1817 1824                   * the number of interrupts, we must keep stay in
1818 1825                   * bounds of the maximum number of queues per traffic
1819 1826                   * class. We subtract one from i40e_intr_count to
1820 1827                   * account for interrupt zero; which is currently
1821 1828                   * restricted to admin queue commands and other
1822 1829                   * interrupt causes.
1823 1830                   */
1824 1831                  n = MIN(i40e->i40e_intr_count - 1, max_trqpairs);
1825 1832                  ASSERT3U(n, >, 0);
1826 1833  
1827 1834                  /*
1828 1835                   * Round up to the nearest power of two to ensure that
1829 1836                   * the QBASE aligns with the TC size which must be
1830 1837                   * programmed as a power of two. See the queue mapping
1831 1838                   * description in section 7.4.9.5.5.1.
1832 1839                   *
1833 1840                   * If i40e_intr_count - 1 is not a power of two then
1834 1841                   * some queue pairs on the same VSI will have to share
1835 1842                   * an interrupt.
1836 1843                   *
1837 1844                   * We may want to revisit this logic in a future where
1838 1845                   * we have more interrupts and more VSIs. Otherwise,
1839 1846                   * each VSI will use as many interrupts as possible.
1840 1847                   * Using more QPs per VSI means better RSS for each
1841 1848                   * group, but at the same time may require more
1842 1849                   * sharing of interrupts across VSIs. This may be a
1843 1850                   * good candidate for a .conf tunable.
1844 1851                   */
1845 1852                  n = 0x1 << ddi_fls(n);
1846 1853                  i40e->i40e_num_trqpairs_per_vsi = n;
1847 1854  
1848 1855                  /*
1849 1856                   * Make sure the number of tx/rx qpairs does not exceed
1850 1857                   * the device's capabilities.
1851 1858                   */
1852 1859                  ASSERT3U(i40e->i40e_num_rx_groups, >, 0);
1853 1860                  qp_cap = MIN(hw->func_caps.num_rx_qp, hw->func_caps.num_tx_qp);
1854 1861                  num_trqpairs = i40e->i40e_num_trqpairs_per_vsi *
1855 1862                      i40e->i40e_num_rx_groups;
1856 1863                  if (num_trqpairs > qp_cap) {
1857 1864                          i40e->i40e_num_rx_groups = MAX(1, qp_cap /
1858 1865                              i40e->i40e_num_trqpairs_per_vsi);
1859 1866                          num_trqpairs = i40e->i40e_num_trqpairs_per_vsi *
1860 1867                              i40e->i40e_num_rx_groups;
1861 1868                          i40e_log(i40e, "Rx groups restricted to %u",
1862 1869                              i40e->i40e_num_rx_groups);
1863 1870                  }
1864 1871                  ASSERT3U(num_trqpairs, >, 0);
1865 1872                  i40e->i40e_num_trqpairs = num_trqpairs;
1866 1873                  return (B_TRUE);
1867 1874          }
1868 1875  
1869 1876          /*
1870 1877           * We only use multiple transmit/receive pairs when MSI-X interrupts are
1871 1878           * available due to the fact that the device basically only supports a
1872 1879           * single MSI interrupt.
1873 1880           */
1874 1881          i40e->i40e_num_trqpairs = I40E_TRQPAIR_NOMSIX;
1875 1882          i40e->i40e_num_trqpairs_per_vsi = i40e->i40e_num_trqpairs;
1876 1883          i40e->i40e_num_rx_groups = I40E_GROUP_NOMSIX;
1877 1884  
1878 1885          if ((intr_types & DDI_INTR_TYPE_MSI) &&
1879 1886              (i40e->i40e_intr_force <= I40E_INTR_MSI)) {
1880 1887                  if (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_MSI))
1881 1888                          return (B_TRUE);
1882 1889          }
1883 1890  
1884 1891          if (intr_types & DDI_INTR_TYPE_FIXED) {
1885 1892                  if (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_FIXED))
1886 1893                          return (B_TRUE);
1887 1894          }
1888 1895  
1889 1896          return (B_FALSE);
1890 1897  }
1891 1898  
1892 1899  /*
1893 1900   * Map different interrupts to MSI-X vectors.
1894 1901   */
1895 1902  static boolean_t
1896 1903  i40e_map_intrs_to_vectors(i40e_t *i40e)
1897 1904  {
1898 1905          if (i40e->i40e_intr_type != DDI_INTR_TYPE_MSIX) {
1899 1906                  return (B_TRUE);
1900 1907          }
1901 1908  
1902 1909          /*
1903 1910           * Each queue pair is mapped to a single interrupt, so
1904 1911           * transmit and receive interrupts for a given queue share the
1905 1912           * same vector. Vector zero is reserved for the admin queue.
1906 1913           */
1907 1914          for (uint_t i = 0; i < i40e->i40e_num_trqpairs; i++) {
1908 1915                  uint_t vector = i % (i40e->i40e_intr_count - 1);
1909 1916  
1910 1917                  i40e->i40e_trqpairs[i].itrq_rx_intrvec = vector + 1;
1911 1918                  i40e->i40e_trqpairs[i].itrq_tx_intrvec = vector + 1;
1912 1919          }
1913 1920  
1914 1921          return (B_TRUE);
1915 1922  }
1916 1923  
1917 1924  static boolean_t
1918 1925  i40e_add_intr_handlers(i40e_t *i40e)
1919 1926  {
1920 1927          int rc, vector;
1921 1928  
1922 1929          switch (i40e->i40e_intr_type) {
1923 1930          case DDI_INTR_TYPE_MSIX:
1924 1931                  for (vector = 0; vector < i40e->i40e_intr_count; vector++) {
1925 1932                          rc = ddi_intr_add_handler(
1926 1933                              i40e->i40e_intr_handles[vector],
1927 1934                              (ddi_intr_handler_t *)i40e_intr_msix, i40e,
1928 1935                              (void *)(uintptr_t)vector);
1929 1936                          if (rc != DDI_SUCCESS) {
1930 1937                                  i40e_log(i40e, "Add interrupt handler (MSI-X) "
1931 1938                                      "failed: return %d, vector %d", rc, vector);
1932 1939                                  for (vector--; vector >= 0; vector--) {
1933 1940                                          (void) ddi_intr_remove_handler(
1934 1941                                              i40e->i40e_intr_handles[vector]);
1935 1942                                  }
1936 1943                                  return (B_FALSE);
1937 1944                          }
1938 1945                  }
1939 1946                  break;
1940 1947          case DDI_INTR_TYPE_MSI:
1941 1948                  rc = ddi_intr_add_handler(i40e->i40e_intr_handles[0],
1942 1949                      (ddi_intr_handler_t *)i40e_intr_msi, i40e, NULL);
1943 1950                  if (rc != DDI_SUCCESS) {
1944 1951                          i40e_log(i40e, "Add interrupt handler (MSI) failed: "
1945 1952                              "return %d", rc);
1946 1953                          return (B_FALSE);
1947 1954                  }
1948 1955                  break;
1949 1956          case DDI_INTR_TYPE_FIXED:
1950 1957                  rc = ddi_intr_add_handler(i40e->i40e_intr_handles[0],
1951 1958                      (ddi_intr_handler_t *)i40e_intr_legacy, i40e, NULL);
1952 1959                  if (rc != DDI_SUCCESS) {
1953 1960                          i40e_log(i40e, "Add interrupt handler (legacy) failed:"
1954 1961                              " return %d", rc);
1955 1962                          return (B_FALSE);
1956 1963                  }
1957 1964                  break;
1958 1965          default:
1959 1966                  /* Cast to pacify lint */
1960 1967                  panic("i40e_intr_type %p contains an unknown type: %d",
1961 1968                      (void *)i40e, i40e->i40e_intr_type);
1962 1969          }
1963 1970  
1964 1971          return (B_TRUE);
1965 1972  }
1966 1973  
1967 1974  /*
1968 1975   * Perform periodic checks. Longer term, we should be thinking about additional
1969 1976   * things here:
1970 1977   *
1971 1978   * o Stall Detection
1972 1979   * o Temperature sensor detection
1973 1980   * o Device resetting
1974 1981   * o Statistics updating to avoid wraparound
1975 1982   */
1976 1983  static void
1977 1984  i40e_timer(void *arg)
1978 1985  {
1979 1986          i40e_t *i40e = arg;
1980 1987  
1981 1988          mutex_enter(&i40e->i40e_general_lock);
1982 1989          i40e_link_check(i40e);
1983 1990          mutex_exit(&i40e->i40e_general_lock);
1984 1991  }
1985 1992  
1986 1993  /*
1987 1994   * Get the hardware state, and scribble away anything that needs scribbling.
1988 1995   */
1989 1996  static void
1990 1997  i40e_get_hw_state(i40e_t *i40e, i40e_hw_t *hw)
1991 1998  {
1992 1999          int rc;
1993 2000  
1994 2001          ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
1995 2002  
1996 2003          (void) i40e_aq_get_link_info(hw, TRUE, NULL, NULL);
1997 2004          i40e_link_check(i40e);
1998 2005  
1999 2006          /*
2000 2007           * Try and determine our PHY. Note that we may have to retry to and
2001 2008           * delay to detect fiber correctly.
2002 2009           */
2003 2010          rc = i40e_aq_get_phy_capabilities(hw, B_FALSE, B_TRUE, &i40e->i40e_phy,
2004 2011              NULL);
2005 2012          if (rc == I40E_ERR_UNKNOWN_PHY) {
2006 2013                  i40e_msec_delay(200);
2007 2014                  rc = i40e_aq_get_phy_capabilities(hw, B_FALSE, B_TRUE,
2008 2015                      &i40e->i40e_phy, NULL);
2009 2016          }
2010 2017  
2011 2018          if (rc != I40E_SUCCESS) {
2012 2019                  if (rc == I40E_ERR_UNKNOWN_PHY) {
2013 2020                          i40e_error(i40e, "encountered unknown PHY type, "
2014 2021                              "not attaching.");
2015 2022                  } else {
2016 2023                          i40e_error(i40e, "error getting physical capabilities: "
2017 2024                              "%d, %d", rc, hw->aq.asq_last_status);
2018 2025                  }
2019 2026          }
2020 2027  
2021 2028          rc = i40e_update_link_info(hw);
2022 2029          if (rc != I40E_SUCCESS) {
2023 2030                  i40e_error(i40e, "failed to update link information: %d", rc);
2024 2031          }
2025 2032  
2026 2033          /*
2027 2034           * In general, we don't want to mask off (as in stop from being a cause)
2028 2035           * any of the interrupts that the phy might be able to generate.
2029 2036           */
2030 2037          rc = i40e_aq_set_phy_int_mask(hw, 0, NULL);
2031 2038          if (rc != I40E_SUCCESS) {
2032 2039                  i40e_error(i40e, "failed to update phy link mask: %d", rc);
2033 2040          }
2034 2041  }
2035 2042  
2036 2043  /*
2037 2044   * Go through and re-initialize any existing filters that we may have set up for
2038 2045   * this device. Note that we would only expect them to exist if hardware had
2039 2046   * already been initialized and we had just reset it. While we're not
2040 2047   * implementing this yet, we're keeping this around for when we add reset
2041 2048   * capabilities, so this isn't forgotten.
2042 2049   */
2043 2050  /* ARGSUSED */
2044 2051  static void
2045 2052  i40e_init_macaddrs(i40e_t *i40e, i40e_hw_t *hw)
2046 2053  {
2047 2054  }
2048 2055  
2049 2056  /*
2050 2057   * Set the properties which have common values across all the VSIs.
2051 2058   * Consult the "Add VSI" command section (7.4.9.5.5.1) for a
2052 2059   * complete description of these properties.
2053 2060   */
2054 2061  static void
2055 2062  i40e_set_shared_vsi_props(i40e_t *i40e,
2056 2063      struct i40e_aqc_vsi_properties_data *info, uint_t vsi_idx)
2057 2064  {
2058 2065          uint_t tc_queues;
2059 2066          uint16_t vsi_qp_base;
2060 2067  
2061 2068          /*
2062 2069           * It's important that we use bitwise-OR here; callers to this
2063 2070           * function might enable other sections before calling this
2064 2071           * function.
2065 2072           */
2066 2073          info->valid_sections |= LE_16(I40E_AQ_VSI_PROP_QUEUE_MAP_VALID |
2067 2074              I40E_AQ_VSI_PROP_VLAN_VALID);
2068 2075  
2069 2076          /*
2070 2077           * Calculate the starting QP index for this VSI. This base is
2071 2078           * relative to the PF queue space; so a value of 0 for PF#1
2072 2079           * represents the absolute index PFLAN_QALLOC_FIRSTQ for PF#1.
2073 2080           */
2074 2081          vsi_qp_base = vsi_idx * i40e->i40e_num_trqpairs_per_vsi;
2075 2082          info->mapping_flags = LE_16(I40E_AQ_VSI_QUE_MAP_CONTIG);
2076 2083          info->queue_mapping[0] =
2077 2084              LE_16((vsi_qp_base << I40E_AQ_VSI_QUEUE_SHIFT) &
2078 2085              I40E_AQ_VSI_QUEUE_MASK);
2079 2086  
2080 2087          /*
2081 2088           * tc_queues determines the size of the traffic class, where
2082 2089           * the size is 2^^tc_queues to a maximum of 64 for the X710
2083 2090           * and 128 for the X722.
2084 2091           *
2085 2092           * Some examples:
2086 2093           *      i40e_num_trqpairs_per_vsi == 1 =>  tc_queues = 0, 2^^0 = 1.
2087 2094           *      i40e_num_trqpairs_per_vsi == 7 =>  tc_queues = 3, 2^^3 = 8.
2088 2095           *      i40e_num_trqpairs_per_vsi == 8 =>  tc_queues = 3, 2^^3 = 8.
2089 2096           *      i40e_num_trqpairs_per_vsi == 9 =>  tc_queues = 4, 2^^4 = 16.
2090 2097           *      i40e_num_trqpairs_per_vsi == 17 => tc_queues = 5, 2^^5 = 32.
2091 2098           *      i40e_num_trqpairs_per_vsi == 64 => tc_queues = 6, 2^^6 = 64.
2092 2099           */
2093 2100          tc_queues = ddi_fls(i40e->i40e_num_trqpairs_per_vsi - 1);
2094 2101  
2095 2102          /*
2096 2103           * The TC queue mapping is in relation to the VSI queue space.
2097 2104           * Since we are only using one traffic class (TC0) we always
2098 2105           * start at queue offset 0.
2099 2106           */
2100 2107          info->tc_mapping[0] =
2101 2108              LE_16(((0 << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) &
2102 2109              I40E_AQ_VSI_TC_QUE_OFFSET_MASK) |
2103 2110              ((tc_queues << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT) &
2104 2111              I40E_AQ_VSI_TC_QUE_NUMBER_MASK));
2105 2112  
2106 2113          /*
2107 2114           * I40E_AQ_VSI_PVLAN_MODE_ALL ("VLAN driver insertion mode")
2108 2115           *
2109 2116           *      Allow tagged and untagged packets to be sent to this
2110 2117           *      VSI from the host.
2111 2118           *
2112 2119           * I40E_AQ_VSI_PVLAN_EMOD_NOTHING ("VLAN and UP expose mode")
2113 2120           *
2114 2121           *      Leave the tag on the frame and place no VLAN
2115 2122           *      information in the descriptor. We want this mode
2116 2123           *      because our MAC layer will take care of the VLAN tag,
2117 2124           *      if there is one.
2118 2125           */
2119 2126          info->port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
2120 2127              I40E_AQ_VSI_PVLAN_EMOD_NOTHING;
2121 2128  }
2122 2129  
2123 2130  /*
2124 2131   * Delete the VSI at this index, if one exists. We assume there is no
2125 2132   * action we can take if this command fails but to log the failure.
2126 2133   */
2127 2134  static void
2128 2135  i40e_delete_vsi(i40e_t *i40e, uint_t idx)
2129 2136  {
2130 2137          i40e_hw_t       *hw = &i40e->i40e_hw_space;
2131 2138          uint16_t        seid = i40e->i40e_vsis[idx].iv_seid;
2132 2139  
2133 2140          if (seid != 0) {
2134 2141                  int rc;
2135 2142  
2136 2143                  rc = i40e_aq_delete_element(hw, seid, NULL);
2137 2144  
2138 2145                  if (rc != I40E_SUCCESS) {
2139 2146                          i40e_error(i40e, "Failed to delete VSI %d: %d",
2140 2147                              rc, hw->aq.asq_last_status);
2141 2148                  }
2142 2149  
2143 2150                  i40e->i40e_vsis[idx].iv_seid = 0;
2144 2151          }
2145 2152  }
2146 2153  
2147 2154  /*
2148 2155   * Add a new VSI.
2149 2156   */
2150 2157  static boolean_t
2151 2158  i40e_add_vsi(i40e_t *i40e, i40e_hw_t *hw, uint_t idx)
2152 2159  {
2153 2160          struct i40e_vsi_context ctx;
2154 2161          i40e_rx_group_t         *rxg;
2155 2162          int                     rc;
2156 2163  
2157 2164          /*
2158 2165           * The default VSI is created by the controller. This function
2159 2166           * creates new, non-defualt VSIs only.
2160 2167           */
2161 2168          ASSERT3U(idx, !=, 0);
2162 2169  
2163 2170          bzero(&ctx, sizeof (struct i40e_vsi_context));
2164 2171          ctx.uplink_seid = i40e->i40e_veb_seid;
2165 2172          ctx.pf_num = hw->pf_id;
2166 2173          ctx.flags = I40E_AQ_VSI_TYPE_PF;
2167 2174          ctx.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
2168 2175          i40e_set_shared_vsi_props(i40e, &ctx.info, idx);
2169 2176  
2170 2177          rc = i40e_aq_add_vsi(hw, &ctx, NULL);
2171 2178          if (rc != I40E_SUCCESS) {
2172 2179                  i40e_error(i40e, "i40e_aq_add_vsi() failed %d: %d", rc,
2173 2180                      hw->aq.asq_last_status);
2174 2181                  return (B_FALSE);
2175 2182          }
2176 2183  
2177 2184          rxg = &i40e->i40e_rx_groups[idx];
2178 2185          rxg->irg_vsi_seid = ctx.seid;
2179 2186          i40e->i40e_vsis[idx].iv_number = ctx.vsi_number;
2180 2187          i40e->i40e_vsis[idx].iv_seid = ctx.seid;
2181 2188          i40e->i40e_vsis[idx].iv_stats_id = LE_16(ctx.info.stat_counter_idx);
2182 2189  
2183 2190          if (i40e_stat_vsi_init(i40e, idx) == B_FALSE)
2184 2191                  return (B_FALSE);
2185 2192  
2186 2193          return (B_TRUE);
2187 2194  }
2188 2195  
2189 2196  /*
2190 2197   * Configure the hardware for the Default Virtual Station Interface (VSI).
2191 2198   */
2192 2199  static boolean_t
2193 2200  i40e_config_def_vsi(i40e_t *i40e, i40e_hw_t *hw)
2194 2201  {
2195 2202          struct i40e_vsi_context ctx;
2196 2203          i40e_rx_group_t *def_rxg;
2197 2204          int err;
2198 2205          struct i40e_aqc_remove_macvlan_element_data filt;
2199 2206  
2200 2207          bzero(&ctx, sizeof (struct i40e_vsi_context));
2201 2208          ctx.seid = I40E_DEF_VSI_SEID(i40e);
2202 2209          ctx.pf_num = hw->pf_id;
2203 2210          err = i40e_aq_get_vsi_params(hw, &ctx, NULL);
2204 2211          if (err != I40E_SUCCESS) {
2205 2212                  i40e_error(i40e, "get VSI params failed with %d", err);
2206 2213                  return (B_FALSE);
2207 2214          }
2208 2215  
2209 2216          ctx.info.valid_sections = 0;
2210 2217          i40e->i40e_vsis[0].iv_number = ctx.vsi_number;
2211 2218          i40e->i40e_vsis[0].iv_stats_id = LE_16(ctx.info.stat_counter_idx);
2212 2219          if (i40e_stat_vsi_init(i40e, 0) == B_FALSE)
2213 2220                  return (B_FALSE);
2214 2221  
2215 2222          i40e_set_shared_vsi_props(i40e, &ctx.info, I40E_DEF_VSI_IDX);
2216 2223  
2217 2224          err = i40e_aq_update_vsi_params(hw, &ctx, NULL);
2218 2225          if (err != I40E_SUCCESS) {
2219 2226                  i40e_error(i40e, "Update VSI params failed with %d", err);
2220 2227                  return (B_FALSE);
2221 2228          }
2222 2229  
2223 2230          def_rxg = &i40e->i40e_rx_groups[0];
2224 2231          def_rxg->irg_vsi_seid = I40E_DEF_VSI_SEID(i40e);
2225 2232  
2226 2233          /*
2227 2234           * We have seen three different behaviors in regards to the
2228 2235           * Default VSI and its implicit L2 MAC+VLAN filter.
2229 2236           *
2230 2237           * 1. It has an implicit filter for the factory MAC address
2231 2238           *    and this filter counts against 'ifr_nmacfilt_used'.
2232 2239           *
2233 2240           * 2. It has an implicit filter for the factory MAC address
2234 2241           *    and this filter DOES NOT count against 'ifr_nmacfilt_used'.
2235 2242           *
2236 2243           * 3. It DOES NOT have an implicit filter.
2237 2244           *
2238 2245           * All three of these cases are accounted for below. If we
2239 2246           * fail to remove the L2 filter (ENOENT) then we assume there
2240 2247           * wasn't one. Otherwise, if we successfully remove the
2241 2248           * filter, we make sure to update the 'ifr_nmacfilt_used'
2242 2249           * count accordingly.
2243 2250           *
2244 2251           * We remove this filter to prevent duplicate delivery of
2245 2252           * packets destined for the primary MAC address as DLS will
2246 2253           * create the same filter on a non-default VSI for the primary
2247 2254           * MAC client.
2248 2255           *
2249 2256           * If you change the following code please test it across as
2250 2257           * many X700 series controllers and firmware revisions as you
2251 2258           * can.
2252 2259           */
2253 2260          bzero(&filt, sizeof (filt));
2254 2261          bcopy(hw->mac.port_addr, filt.mac_addr, ETHERADDRL);
2255 2262          filt.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
2256 2263          filt.vlan_tag = 0;
2257 2264  
2258 2265          ASSERT3U(i40e->i40e_resources.ifr_nmacfilt_used, <=, 1);
2259 2266          i40e_log(i40e, "Num L2 filters: %u",
2260 2267              i40e->i40e_resources.ifr_nmacfilt_used);
2261 2268  
2262 2269          err = i40e_aq_remove_macvlan(hw, I40E_DEF_VSI_SEID(i40e), &filt, 1,
2263 2270              NULL);
2264 2271          if (err == I40E_SUCCESS) {
2265 2272                  i40e_log(i40e,
2266 2273                      "Removed L2 filter from Default VSI with SEID %u",
2267 2274                      I40E_DEF_VSI_SEID(i40e));
2268 2275          } else if (hw->aq.asq_last_status == ENOENT) {
2269 2276                  i40e_log(i40e,
2270 2277                      "No L2 filter for Default VSI with SEID %u",
2271 2278                      I40E_DEF_VSI_SEID(i40e));
2272 2279          } else {
2273 2280                  i40e_error(i40e, "Failed to remove L2 filter from"
2274 2281                      " Default VSI with SEID %u: %d (%d)",
2275 2282                      I40E_DEF_VSI_SEID(i40e), err, hw->aq.asq_last_status);
2276 2283  
2277 2284                  return (B_FALSE);
2278 2285          }
2279 2286  
2280 2287          /*
2281 2288           *  As mentioned above, the controller created an implicit L2
2282 2289           *  filter for the primary MAC. We want to remove both the
2283 2290           *  filter and decrement the filter count. However, not all
2284 2291           *  controllers count this implicit filter against the total
2285 2292           *  MAC filter count. So here we are making sure it is either
2286 2293           *  one or zero. If it is one, then we know it is for the
2287 2294           *  implicit filter and we should decrement since we just
2288 2295           *  removed the filter above. If it is zero then we know the
2289 2296           *  controller that does not count the implicit filter, and it
2290 2297           *  was enough to just remove it; we leave the count alone.
2291 2298           *  But if it is neither, then we have never seen a controller
2292 2299           *  like this before and we should fail to attach.
2293 2300           *
2294 2301           *  It is unfortunate that this code must exist but the
2295 2302           *  behavior of this implicit L2 filter and its corresponding
2296 2303           *  count were dicovered through empirical testing. The
2297 2304           *  programming manuals hint at this filter but do not
2298 2305           *  explicitly call out the exact behavior.
2299 2306           */
2300 2307          if (i40e->i40e_resources.ifr_nmacfilt_used == 1) {
2301 2308                  i40e->i40e_resources.ifr_nmacfilt_used--;
2302 2309          } else {
2303 2310                  if (i40e->i40e_resources.ifr_nmacfilt_used != 0) {
2304 2311                          i40e_error(i40e, "Unexpected L2 filter count: %u"
2305 2312                              " (expected 0)",
2306 2313                              i40e->i40e_resources.ifr_nmacfilt_used);
2307 2314                          return (B_FALSE);
2308 2315                  }
2309 2316          }
2310 2317  
2311 2318          return (B_TRUE);
2312 2319  }
2313 2320  
2314 2321  static boolean_t
2315 2322  i40e_config_rss_key_x722(i40e_t *i40e, i40e_hw_t *hw)
2316 2323  {
2317 2324          for (uint_t i = 0; i < i40e->i40e_num_rx_groups; i++) {
2318 2325                  uint32_t seed[I40E_PFQF_HKEY_MAX_INDEX + 1];
2319 2326                  struct i40e_aqc_get_set_rss_key_data key;
2320 2327                  const char *u8seed;
2321 2328                  enum i40e_status_code status;
2322 2329                  uint16_t vsi_number = i40e->i40e_vsis[i].iv_number;
2323 2330  
2324 2331                  (void) random_get_pseudo_bytes((uint8_t *)seed, sizeof (seed));
2325 2332                  u8seed = (char *)seed;
2326 2333  
2327 2334                  CTASSERT(sizeof (key) >= (sizeof (key.standard_rss_key) +
2328 2335                      sizeof (key.extended_hash_key)));
2329 2336  
2330 2337                  bcopy(u8seed, key.standard_rss_key,
2331 2338                      sizeof (key.standard_rss_key));
2332 2339                  bcopy(&u8seed[sizeof (key.standard_rss_key)],
2333 2340                      key.extended_hash_key, sizeof (key.extended_hash_key));
2334 2341  
2335 2342                  ASSERT3U(vsi_number, !=, 0);
2336 2343                  status = i40e_aq_set_rss_key(hw, vsi_number, &key);
2337 2344  
2338 2345                  if (status != I40E_SUCCESS) {
2339 2346                          i40e_error(i40e, "failed to set RSS key for VSI %u: %d",
2340 2347                              vsi_number, status);
2341 2348                          return (B_FALSE);
2342 2349                  }
2343 2350          }
2344 2351  
2345 2352          return (B_TRUE);
2346 2353  }
2347 2354  
2348 2355  /*
2349 2356   * Configure the RSS key. For the X710 controller family, this is set on a
2350 2357   * per-PF basis via registers. For the X722, this is done on a per-VSI basis
2351 2358   * through the admin queue.
2352 2359   */
2353 2360  static boolean_t
2354 2361  i40e_config_rss_key(i40e_t *i40e, i40e_hw_t *hw)
2355 2362  {
2356 2363          if (i40e_is_x722(i40e)) {
2357 2364                  if (!i40e_config_rss_key_x722(i40e, hw))
2358 2365                          return (B_FALSE);
2359 2366          } else {
2360 2367                  uint32_t seed[I40E_PFQF_HKEY_MAX_INDEX + 1];
2361 2368  
2362 2369                  (void) random_get_pseudo_bytes((uint8_t *)seed, sizeof (seed));
2363 2370                  for (uint_t i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
2364 2371                          i40e_write_rx_ctl(hw, I40E_PFQF_HKEY(i), seed[i]);
2365 2372          }
2366 2373  
2367 2374          return (B_TRUE);
2368 2375  }
2369 2376  
2370 2377  /*
2371 2378   * Populate the LUT. The size of each entry in the LUT depends on the controller
2372 2379   * family, with the X722 using a known 7-bit width. On the X710 controller, this
2373 2380   * is programmed through its control registers where as on the X722 this is
2374 2381   * configured through the admin queue. Also of note, the X722 allows the LUT to
2375 2382   * be set on a per-PF or VSI basis. At this time we use the PF setting. If we
2376 2383   * decide to use the per-VSI LUT in the future, then we will need to modify the
2377 2384   * i40e_add_vsi() function to set the RSS LUT bits in the queueing section.
2378 2385   *
2379 2386   * We populate the LUT in a round robin fashion with the rx queue indices from 0
2380 2387   * to i40e_num_trqpairs_per_vsi - 1.
2381 2388   */
2382 2389  static boolean_t
2383 2390  i40e_config_rss_hlut(i40e_t *i40e, i40e_hw_t *hw)
2384 2391  {
2385 2392          uint32_t *hlut;
2386 2393          uint8_t lut_mask;
2387 2394          uint_t i;
2388 2395          boolean_t ret = B_FALSE;
2389 2396  
2390 2397          /*
2391 2398           * We always configure the PF with a table size of 512 bytes in
2392 2399           * i40e_chip_start().
2393 2400           */
2394 2401          hlut = kmem_alloc(I40E_HLUT_TABLE_SIZE, KM_NOSLEEP);
2395 2402          if (hlut == NULL) {
2396 2403                  i40e_error(i40e, "i40e_config_rss() buffer allocation failed");
2397 2404                  return (B_FALSE);
2398 2405          }
2399 2406  
2400 2407          /*
2401 2408           * The width of the X722 is apparently defined to be 7 bits, regardless
2402 2409           * of the capability.
2403 2410           */
2404 2411          if (i40e_is_x722(i40e)) {
2405 2412                  lut_mask = (1 << 7) - 1;
2406 2413          } else {
2407 2414                  lut_mask = (1 << hw->func_caps.rss_table_entry_width) - 1;
2408 2415          }
2409 2416  
2410 2417          for (i = 0; i < I40E_HLUT_TABLE_SIZE; i++) {
2411 2418                  ((uint8_t *)hlut)[i] =
2412 2419                      (i % i40e->i40e_num_trqpairs_per_vsi) & lut_mask;
2413 2420          }
2414 2421  
2415 2422          if (i40e_is_x722(i40e)) {
2416 2423                  enum i40e_status_code status;
2417 2424  
2418 2425                  status = i40e_aq_set_rss_lut(hw, 0, B_TRUE, (uint8_t *)hlut,
2419 2426                      I40E_HLUT_TABLE_SIZE);
2420 2427  
2421 2428                  if (status != I40E_SUCCESS) {
2422 2429                          i40e_error(i40e, "failed to set RSS LUT %d: %d",
2423 2430                              status, hw->aq.asq_last_status);
2424 2431                          goto out;
2425 2432                  }
2426 2433          } else {
2427 2434                  for (i = 0; i < I40E_HLUT_TABLE_SIZE >> 2; i++) {
2428 2435                          I40E_WRITE_REG(hw, I40E_PFQF_HLUT(i), hlut[i]);
2429 2436                  }
2430 2437          }
2431 2438          ret = B_TRUE;
2432 2439  out:
2433 2440          kmem_free(hlut, I40E_HLUT_TABLE_SIZE);
2434 2441          return (ret);
2435 2442  }
2436 2443  
2437 2444  /*
2438 2445   * Set up RSS.
2439 2446   *      1. Seed the hash key.
2440 2447   *      2. Enable PCTYPEs for the hash filter.
2441 2448   *      3. Populate the LUT.
2442 2449   */
2443 2450  static boolean_t
2444 2451  i40e_config_rss(i40e_t *i40e, i40e_hw_t *hw)
2445 2452  {
2446 2453          uint64_t hena;
2447 2454  
2448 2455          /*
2449 2456           * 1. Seed the hash key
2450 2457           */
2451 2458          if (!i40e_config_rss_key(i40e, hw))
2452 2459                  return (B_FALSE);
2453 2460  
2454 2461          /*
2455 2462           * 2. Configure PCTYPES
2456 2463           */
2457 2464          hena = (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) |
2458 2465              (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP) |
2459 2466              (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) |
2460 2467              (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP) |
2461 2468              (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4) |
2462 2469              (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) |
2463 2470              (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP) |
2464 2471              (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) |
2465 2472              (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP) |
2466 2473              (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6) |
2467 2474              (1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD);
2468 2475  
2469 2476          /*
2470 2477           * Add additional types supported by the X722 controller.
2471 2478           */
2472 2479          if (i40e_is_x722(i40e)) {
2473 2480                  hena |= (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) |
2474 2481                      (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) |
2475 2482                      (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) |
2476 2483                      (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) |
2477 2484                      (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP) |
2478 2485                      (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK);
2479 2486          }
2480 2487  
2481 2488          i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (uint32_t)hena);
2482 2489          i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (uint32_t)(hena >> 32));
2483 2490  
2484 2491          /*
2485 2492           * 3. Populate LUT
2486 2493           */
2487 2494          return (i40e_config_rss_hlut(i40e, hw));
2488 2495  }
2489 2496  
2490 2497  /*
2491 2498   * Wrapper to kick the chipset on.
2492 2499   */
2493 2500  static boolean_t
2494 2501  i40e_chip_start(i40e_t *i40e)
2495 2502  {
2496 2503          i40e_hw_t *hw = &i40e->i40e_hw_space;
2497 2504          struct i40e_filter_control_settings filter;
2498 2505          int rc;
2499 2506          uint8_t err;
2500 2507  
2501 2508          if (((hw->aq.fw_maj_ver == 4) && (hw->aq.fw_min_ver < 33)) ||
2502 2509              (hw->aq.fw_maj_ver < 4)) {
2503 2510                  i40e_msec_delay(75);
2504 2511                  if (i40e_aq_set_link_restart_an(hw, TRUE, NULL) !=
2505 2512                      I40E_SUCCESS) {
2506 2513                          i40e_error(i40e, "failed to restart link: admin queue "
2507 2514                              "error: %d", hw->aq.asq_last_status);
2508 2515                          return (B_FALSE);
2509 2516                  }
2510 2517          }
2511 2518  
2512 2519          /* Determine hardware state */
2513 2520          i40e_get_hw_state(i40e, hw);
2514 2521  
2515 2522          /* For now, we always disable Ethernet Flow Control. */
2516 2523          hw->fc.requested_mode = I40E_FC_NONE;
2517 2524          rc = i40e_set_fc(hw, &err, B_TRUE);
2518 2525          if (rc != I40E_SUCCESS) {
2519 2526                  i40e_error(i40e, "Setting flow control failed, returned %d"
2520 2527                      " with error: 0x%x", rc, err);
2521 2528                  return (B_FALSE);
2522 2529          }
2523 2530  
2524 2531          /* Initialize mac addresses. */
2525 2532          i40e_init_macaddrs(i40e, hw);
2526 2533  
2527 2534          /*
2528 2535           * Set up the filter control. If the hash lut size is changed from
2529 2536           * I40E_HASH_LUT_SIZE_512 then I40E_HLUT_TABLE_SIZE and
2530 2537           * i40e_config_rss_hlut() will need to be updated.
2531 2538           */
2532 2539          bzero(&filter, sizeof (filter));
2533 2540          filter.enable_ethtype = TRUE;
2534 2541          filter.enable_macvlan = TRUE;
2535 2542          filter.hash_lut_size = I40E_HASH_LUT_SIZE_512;
2536 2543  
2537 2544          rc = i40e_set_filter_control(hw, &filter);
2538 2545          if (rc != I40E_SUCCESS) {
2539 2546                  i40e_error(i40e, "i40e_set_filter_control() returned %d", rc);
2540 2547                  return (B_FALSE);
2541 2548          }
2542 2549  
2543 2550          i40e_intr_chip_init(i40e);
2544 2551  
2545 2552          rc = i40e_get_mac_seid(i40e);
2546 2553          if (rc == -1) {
2547 2554                  i40e_error(i40e, "failed to obtain MAC Uplink SEID");
2548 2555                  return (B_FALSE);
2549 2556          }
2550 2557          i40e->i40e_mac_seid = (uint16_t)rc;
2551 2558  
2552 2559          /*
2553 2560           * Create a VEB in order to support multiple VSIs. Each VSI
2554 2561           * functions as a MAC group. This call sets the PF's MAC as
2555 2562           * the uplink port and the PF's default VSI as the default
2556 2563           * downlink port.
2557 2564           */
2558 2565          rc = i40e_aq_add_veb(hw, i40e->i40e_mac_seid, I40E_DEF_VSI_SEID(i40e),
2559 2566              0x1, B_TRUE, &i40e->i40e_veb_seid, B_FALSE, NULL);
2560 2567          if (rc != I40E_SUCCESS) {
2561 2568                  i40e_error(i40e, "i40e_aq_add_veb() failed %d: %d", rc,
2562 2569                      hw->aq.asq_last_status);
2563 2570                  return (B_FALSE);
2564 2571          }
2565 2572  
2566 2573          if (!i40e_config_def_vsi(i40e, hw))
2567 2574                  return (B_FALSE);
2568 2575  
2569 2576          for (uint_t i = 1; i < i40e->i40e_num_rx_groups; i++) {
2570 2577                  if (!i40e_add_vsi(i40e, hw, i))
2571 2578                          return (B_FALSE);
2572 2579          }
2573 2580  
2574 2581          if (!i40e_config_rss(i40e, hw))
2575 2582                  return (B_FALSE);
2576 2583  
2577 2584          i40e_flush(hw);
2578 2585  
2579 2586          return (B_TRUE);
2580 2587  }
2581 2588  
2582 2589  /*
2583 2590   * Take care of tearing down the rx ring. See 8.3.3.1.2 for more information.
2584 2591   */
2585 2592  static void
2586 2593  i40e_shutdown_rx_ring(i40e_trqpair_t *itrq)
2587 2594  {
2588 2595          i40e_t *i40e = itrq->itrq_i40e;
2589 2596          i40e_hw_t *hw = &i40e->i40e_hw_space;
2590 2597          uint32_t reg;
2591 2598  
2592 2599          /*
2593 2600           * Step 1. 8.3.3.1.2 suggests the interrupt is removed from the
2594 2601           * hardware interrupt linked list (see i40e_intr.c) but for
2595 2602           * simplicity we keep this list immutable until the device
2596 2603           * (distinct from an individual ring) is stopped.
2597 2604           */
2598 2605  
2599 2606          /*
2600 2607           * Step 2. Request the queue by clearing QENA_REQ. It may not be
2601 2608           * set due to unwinding from failures and a partially enabled
2602 2609           * ring set.
2603 2610           */
2604 2611          reg = I40E_READ_REG(hw, I40E_QRX_ENA(itrq->itrq_index));
2605 2612          if (!(reg & I40E_QRX_ENA_QENA_REQ_MASK))
2606 2613                  return;
2607 2614          VERIFY((reg & I40E_QRX_ENA_QENA_REQ_MASK) ==
2608 2615              I40E_QRX_ENA_QENA_REQ_MASK);
2609 2616          reg &= ~I40E_QRX_ENA_QENA_REQ_MASK;
2610 2617          I40E_WRITE_REG(hw, I40E_QRX_ENA(itrq->itrq_index), reg);
2611 2618  
2612 2619          /*
2613 2620           * Step 3. Wait for the disable to take, by having QENA_STAT in the FPM
2614 2621           * be cleared. Note that we could still receive data in the queue during
2615 2622           * this time. We don't actually wait for this now and instead defer this
2616 2623           * to i40e_shutdown_ring_wait(), after we've interleaved disabling the
2617 2624           * TX queue as well.
2618 2625           */
2619 2626  }
2620 2627  
2621 2628  static void
2622 2629  i40e_shutdown_tx_ring(i40e_trqpair_t *itrq)
2623 2630  {
2624 2631          i40e_t *i40e = itrq->itrq_i40e;
2625 2632          i40e_hw_t *hw = &i40e->i40e_hw_space;
2626 2633          uint32_t reg;
2627 2634  
2628 2635          /*
2629 2636           * Step 2. Set the SET_QDIS flag for the queue.
2630 2637           */
2631 2638          i40e_pre_tx_queue_cfg(hw, itrq->itrq_index, B_FALSE);
2632 2639  
2633 2640          /*
2634 2641           * Step 3. Wait at least 400 usec.
2635 2642           */
2636 2643          drv_usecwait(500);
2637 2644  
2638 2645          /*
2639 2646           * Step 4. Clear the QENA_REQ flag which tells hardware to
2640 2647           * quiesce. If QENA_REQ is not already set then that means that
2641 2648           * we likely already tried to disable this queue.
2642 2649           */
2643 2650          reg = I40E_READ_REG(hw, I40E_QTX_ENA(itrq->itrq_index));
2644 2651          if ((reg & I40E_QTX_ENA_QENA_REQ_MASK) != 0) {
2645 2652                  reg &= ~I40E_QTX_ENA_QENA_REQ_MASK;
2646 2653                  I40E_WRITE_REG(hw, I40E_QTX_ENA(itrq->itrq_index), reg);
2647 2654          }
2648 2655  
2649 2656          /*
2650 2657           * Step 5. Wait for the drain to finish. This will be done by the
2651 2658           * hardware removing the QENA_STAT flag from the queue. Rather than
2652 2659           * waiting here, we interleave it with the receive shutdown in
2653 2660           * i40e_shutdown_ring_wait().
2654 2661           */
2655 2662  }
2656 2663  
2657 2664  /*
2658 2665   * Wait for a ring to be shut down. e.g. Steps 2 and 5 from the above
2659 2666   * functions.
2660 2667   */
2661 2668  static boolean_t
2662 2669  i40e_shutdown_ring_wait(i40e_trqpair_t *itrq)
2663 2670  {
2664 2671          i40e_t *i40e = itrq->itrq_i40e;
2665 2672          i40e_hw_t *hw = &i40e->i40e_hw_space;
2666 2673          uint32_t reg;
2667 2674          int try;
2668 2675  
2669 2676          for (try = 0; try < I40E_RING_WAIT_NTRIES; try++) {
2670 2677                  reg = I40E_READ_REG(hw, I40E_QRX_ENA(itrq->itrq_index));
2671 2678                  if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) == 0)
2672 2679                          break;
2673 2680                  i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2674 2681          }
2675 2682  
2676 2683          if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) != 0) {
2677 2684                  i40e_error(i40e, "timed out disabling rx queue %d",
2678 2685                      itrq->itrq_index);
2679 2686                  return (B_FALSE);
2680 2687          }
2681 2688  
2682 2689          for (try = 0; try < I40E_RING_WAIT_NTRIES; try++) {
2683 2690                  reg = I40E_READ_REG(hw, I40E_QTX_ENA(itrq->itrq_index));
2684 2691                  if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) == 0)
2685 2692                          break;
2686 2693                  i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2687 2694          }
2688 2695  
2689 2696          if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) != 0) {
2690 2697                  i40e_error(i40e, "timed out disabling tx queue %d",
2691 2698                      itrq->itrq_index);
2692 2699                  return (B_FALSE);
2693 2700          }
2694 2701  
2695 2702          return (B_TRUE);
2696 2703  }
2697 2704  
2698 2705  
2699 2706  /*
2700 2707   * Shutdown an individual ring and release any memory.
2701 2708   */
2702 2709  boolean_t
2703 2710  i40e_shutdown_ring(i40e_trqpair_t *itrq)
2704 2711  {
2705 2712          boolean_t rv = B_TRUE;
2706 2713  
2707 2714          /*
2708 2715           * Tell transmit path to quiesce, and wait until done.
2709 2716           */
2710 2717          if (i40e_ring_tx_quiesce(itrq)) {
2711 2718                  /* Already quiesced. */
2712 2719                  return (B_TRUE);
2713 2720          }
2714 2721  
2715 2722          i40e_shutdown_rx_ring(itrq);
2716 2723          i40e_shutdown_tx_ring(itrq);
2717 2724          if (!i40e_shutdown_ring_wait(itrq))
2718 2725                  rv = B_FALSE;
2719 2726  
2720 2727          /*
2721 2728           * After the ring has stopped, we need to wait 50ms before
2722 2729           * programming it again. Rather than wait here, we'll record
2723 2730           * the time the ring was stopped. When the ring is started, we'll
2724 2731           * check if enough time has expired and then wait if necessary.
2725 2732           */
2726 2733          itrq->irtq_time_stopped = gethrtime();
2727 2734  
2728 2735          /*
2729 2736           * The rings have been stopped in the hardware, now wait for
2730 2737           * a possibly active interrupt thread.
2731 2738           */
2732 2739          i40e_intr_quiesce(itrq);
2733 2740  
2734 2741          mutex_enter(&itrq->itrq_tx_lock);
2735 2742          i40e_tx_cleanup_ring(itrq);
2736 2743          mutex_exit(&itrq->itrq_tx_lock);
2737 2744  
2738 2745          i40e_free_ring_mem(itrq, B_FALSE);
2739 2746  
2740 2747          return (rv);
2741 2748  }
2742 2749  
2743 2750  /*
2744 2751   * Shutdown all the rings.
2745 2752   * Called from i40e_stop(), and hopefully the mac layer has already
2746 2753   * called ring stop for each ring, which would make this almost a no-op.
2747 2754   */
2748 2755  static boolean_t
2749 2756  i40e_shutdown_rings(i40e_t *i40e)
2750 2757  {
2751 2758          boolean_t rv = B_TRUE;
2752 2759          int i;
2753 2760  
2754 2761          for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2755 2762                  if (!i40e_shutdown_ring(&i40e->i40e_trqpairs[i]))
2756 2763                          rv = B_FALSE;
2757 2764          }
2758 2765  
2759 2766          return (rv);
2760 2767  }
2761 2768  
2762 2769  static void
2763 2770  i40e_setup_rx_descs(i40e_trqpair_t *itrq)
2764 2771  {
2765 2772          int i;
2766 2773          i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2767 2774  
2768 2775          for (i = 0; i < rxd->rxd_ring_size; i++) {
2769 2776                  i40e_rx_control_block_t *rcb;
2770 2777                  i40e_rx_desc_t *rdesc;
2771 2778  
2772 2779                  rcb = rxd->rxd_work_list[i];
2773 2780                  rdesc = &rxd->rxd_desc_ring[i];
2774 2781  
2775 2782                  rdesc->read.pkt_addr =
2776 2783                      CPU_TO_LE64((uintptr_t)rcb->rcb_dma.dmab_dma_address);
2777 2784                  rdesc->read.hdr_addr = 0;
2778 2785          }
2779 2786  }
2780 2787  
2781 2788  static boolean_t
2782 2789  i40e_setup_rx_hmc(i40e_trqpair_t *itrq)
2783 2790  {
2784 2791          i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2785 2792          i40e_t *i40e = itrq->itrq_i40e;
2786 2793          i40e_hw_t *hw = &i40e->i40e_hw_space;
2787 2794  
2788 2795          struct i40e_hmc_obj_rxq rctx;
2789 2796          int err;
2790 2797  
2791 2798          bzero(&rctx, sizeof (struct i40e_hmc_obj_rxq));
2792 2799          rctx.base = rxd->rxd_desc_area.dmab_dma_address /
2793 2800              I40E_HMC_RX_CTX_UNIT;
2794 2801          rctx.qlen = rxd->rxd_ring_size;
2795 2802          VERIFY(i40e->i40e_rx_buf_size >= I40E_HMC_RX_DBUFF_MIN);
2796 2803          VERIFY(i40e->i40e_rx_buf_size <= I40E_HMC_RX_DBUFF_MAX);
2797 2804          rctx.dbuff = i40e->i40e_rx_buf_size >> I40E_RXQ_CTX_DBUFF_SHIFT;
2798 2805          rctx.hbuff = 0 >> I40E_RXQ_CTX_HBUFF_SHIFT;
2799 2806          rctx.dtype = I40E_HMC_RX_DTYPE_NOSPLIT;
2800 2807          rctx.dsize = I40E_HMC_RX_DSIZE_32BYTE;
2801 2808          rctx.crcstrip = I40E_HMC_RX_CRCSTRIP_ENABLE;
2802 2809          rctx.fc_ena = I40E_HMC_RX_FC_DISABLE;
2803 2810          rctx.l2tsel = I40E_HMC_RX_L2TAGORDER;
2804 2811          rctx.hsplit_0 = I40E_HMC_RX_HDRSPLIT_DISABLE;
2805 2812          rctx.hsplit_1 = I40E_HMC_RX_HDRSPLIT_DISABLE;
2806 2813          rctx.showiv = I40E_HMC_RX_INVLAN_DONTSTRIP;
2807 2814          rctx.rxmax = i40e->i40e_frame_max;
2808 2815          rctx.tphrdesc_ena = I40E_HMC_RX_TPH_DISABLE;
2809 2816          rctx.tphwdesc_ena = I40E_HMC_RX_TPH_DISABLE;
2810 2817          rctx.tphdata_ena = I40E_HMC_RX_TPH_DISABLE;
2811 2818          rctx.tphhead_ena = I40E_HMC_RX_TPH_DISABLE;
2812 2819          rctx.lrxqthresh = I40E_HMC_RX_LOWRXQ_NOINTR;
2813 2820  
2814 2821          /*
2815 2822           * This must be set to 0x1, see Table 8-12 in section 8.3.3.2.2.
2816 2823           */
2817 2824          rctx.prefena = I40E_HMC_RX_PREFENA;
2818 2825  
2819 2826          err = i40e_clear_lan_rx_queue_context(hw, itrq->itrq_index);
2820 2827          if (err != I40E_SUCCESS) {
2821 2828                  i40e_error(i40e, "failed to clear rx queue %d context: %d",
2822 2829                      itrq->itrq_index, err);
2823 2830                  return (B_FALSE);
2824 2831          }
2825 2832  
2826 2833          err = i40e_set_lan_rx_queue_context(hw, itrq->itrq_index, &rctx);
2827 2834          if (err != I40E_SUCCESS) {
2828 2835                  i40e_error(i40e, "failed to set rx queue %d context: %d",
2829 2836                      itrq->itrq_index, err);
2830 2837                  return (B_FALSE);
2831 2838          }
2832 2839  
2833 2840          return (B_TRUE);
2834 2841  }
2835 2842  
2836 2843  /*
2837 2844   * Take care of setting up the descriptor ring and actually programming the
2838 2845   * device. See 8.3.3.1.1 for the full list of steps we need to do to enable the
2839 2846   * rx rings.
2840 2847   */
2841 2848  static boolean_t
2842 2849  i40e_setup_rx_ring(i40e_trqpair_t *itrq)
2843 2850  {
2844 2851          i40e_t *i40e = itrq->itrq_i40e;
2845 2852          i40e_hw_t *hw = &i40e->i40e_hw_space;
2846 2853          i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2847 2854          uint32_t reg;
2848 2855          int i;
2849 2856  
2850 2857          /*
2851 2858           * Step 1. Program all receive ring descriptors.
2852 2859           */
2853 2860          i40e_setup_rx_descs(itrq);
2854 2861  
2855 2862          /*
2856 2863           * Step 2. Program the queue's FPM/HMC context.
2857 2864           */
2858 2865          if (!i40e_setup_rx_hmc(itrq))
2859 2866                  return (B_FALSE);
2860 2867  
2861 2868          /*
2862 2869           * Step 3. Clear the queue's tail pointer and set it to the end
2863 2870           * of the space.
2864 2871           */
2865 2872          I40E_WRITE_REG(hw, I40E_QRX_TAIL(itrq->itrq_index), 0);
2866 2873          I40E_WRITE_REG(hw, I40E_QRX_TAIL(itrq->itrq_index),
2867 2874              rxd->rxd_ring_size - 1);
2868 2875  
2869 2876          /*
2870 2877           * Step 4. Enable the queue via the QENA_REQ.
2871 2878           */
2872 2879          reg = I40E_READ_REG(hw, I40E_QRX_ENA(itrq->itrq_index));
2873 2880          VERIFY0(reg & (I40E_QRX_ENA_QENA_REQ_MASK |
2874 2881              I40E_QRX_ENA_QENA_STAT_MASK));
2875 2882          reg |= I40E_QRX_ENA_QENA_REQ_MASK;
2876 2883          I40E_WRITE_REG(hw, I40E_QRX_ENA(itrq->itrq_index), reg);
2877 2884  
2878 2885          /*
2879 2886           * Step 5. Verify that QENA_STAT has been set. It's promised
2880 2887           * that this should occur within about 10 us, but like other
2881 2888           * systems, we give the card a bit more time.
2882 2889           */
2883 2890          for (i = 0; i < I40E_RING_WAIT_NTRIES; i++) {
2884 2891                  reg = I40E_READ_REG(hw, I40E_QRX_ENA(itrq->itrq_index));
2885 2892  
2886 2893                  if (reg & I40E_QRX_ENA_QENA_STAT_MASK)
2887 2894                          break;
2888 2895                  i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2889 2896          }
2890 2897  
2891 2898          if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) == 0) {
2892 2899                  i40e_error(i40e, "failed to enable rx queue %d, timed "
2893 2900                      "out.", itrq->itrq_index);
2894 2901                  return (B_FALSE);
2895 2902          }
2896 2903  
2897 2904          return (B_TRUE);
2898 2905  }
2899 2906  
2900 2907  static boolean_t
2901 2908  i40e_setup_tx_hmc(i40e_trqpair_t *itrq)
2902 2909  {
2903 2910          i40e_t *i40e = itrq->itrq_i40e;
2904 2911          i40e_hw_t *hw = &i40e->i40e_hw_space;
2905 2912  
2906 2913          struct i40e_hmc_obj_txq tctx;
2907 2914          struct i40e_vsi_context context;
2908 2915          int err;
2909 2916  
2910 2917          bzero(&tctx, sizeof (struct i40e_hmc_obj_txq));
2911 2918          tctx.new_context = I40E_HMC_TX_NEW_CONTEXT;
2912 2919          tctx.base = itrq->itrq_desc_area.dmab_dma_address /
2913 2920              I40E_HMC_TX_CTX_UNIT;
2914 2921          tctx.fc_ena = I40E_HMC_TX_FC_DISABLE;
2915 2922          tctx.timesync_ena = I40E_HMC_TX_TS_DISABLE;
2916 2923          tctx.fd_ena = I40E_HMC_TX_FD_DISABLE;
2917 2924          tctx.alt_vlan_ena = I40E_HMC_TX_ALT_VLAN_DISABLE;
2918 2925          tctx.head_wb_ena = I40E_HMC_TX_WB_ENABLE;
2919 2926          tctx.qlen = itrq->itrq_tx_ring_size;
2920 2927          tctx.tphrdesc_ena = I40E_HMC_TX_TPH_DISABLE;
2921 2928          tctx.tphrpacket_ena = I40E_HMC_TX_TPH_DISABLE;
2922 2929          tctx.tphwdesc_ena = I40E_HMC_TX_TPH_DISABLE;
2923 2930          tctx.head_wb_addr = itrq->itrq_desc_area.dmab_dma_address +
2924 2931              sizeof (i40e_tx_desc_t) * itrq->itrq_tx_ring_size;
2925 2932  
2926 2933          /*
2927 2934           * This field isn't actually documented, like crc, but it suggests that
2928 2935           * it should be zeroed. We leave both of these here because of that for
2929 2936           * now. We should check with Intel on why these are here even.
2930 2937           */
2931 2938          tctx.crc = 0;
2932 2939          tctx.rdylist_act = 0;
2933 2940  
2934 2941          /*
2935 2942           * We're supposed to assign the rdylist field with the value of the
2936 2943           * traffic class index for the first device. We query the VSI parameters
2937 2944           * again to get what the handle is. Note that every queue is always
2938 2945           * assigned to traffic class zero, because we don't actually use them.
2939 2946           */
2940 2947          bzero(&context, sizeof (struct i40e_vsi_context));
2941 2948          context.seid = I40E_DEF_VSI_SEID(i40e);
2942 2949          context.pf_num = hw->pf_id;
2943 2950          err = i40e_aq_get_vsi_params(hw, &context, NULL);
2944 2951          if (err != I40E_SUCCESS) {
2945 2952                  i40e_error(i40e, "get VSI params failed with %d", err);
2946 2953                  return (B_FALSE);
2947 2954          }
2948 2955          tctx.rdylist = LE_16(context.info.qs_handle[0]);
2949 2956  
2950 2957          err = i40e_clear_lan_tx_queue_context(hw, itrq->itrq_index);
2951 2958          if (err != I40E_SUCCESS) {
2952 2959                  i40e_error(i40e, "failed to clear tx queue %d context: %d",
2953 2960                      itrq->itrq_index, err);
2954 2961                  return (B_FALSE);
2955 2962          }
2956 2963  
2957 2964          err = i40e_set_lan_tx_queue_context(hw, itrq->itrq_index, &tctx);
2958 2965          if (err != I40E_SUCCESS) {
2959 2966                  i40e_error(i40e, "failed to set tx queue %d context: %d",
2960 2967                      itrq->itrq_index, err);
2961 2968                  return (B_FALSE);
2962 2969          }
2963 2970  
2964 2971          return (B_TRUE);
2965 2972  }
2966 2973  
2967 2974  /*
2968 2975   * Take care of setting up the descriptor ring and actually programming the
2969 2976   * device. See 8.4.3.1.1 for what we need to do here.
2970 2977   */
2971 2978  static boolean_t
2972 2979  i40e_setup_tx_ring(i40e_trqpair_t *itrq)
2973 2980  {
2974 2981          i40e_t *i40e = itrq->itrq_i40e;
2975 2982          i40e_hw_t *hw = &i40e->i40e_hw_space;
2976 2983          uint32_t reg;
2977 2984          int i;
2978 2985  
2979 2986          /*
2980 2987           * Step 1. Clear the queue disable flag and verify that the
2981 2988           * index is set correctly.
2982 2989           */
2983 2990          i40e_pre_tx_queue_cfg(hw, itrq->itrq_index, B_TRUE);
2984 2991  
2985 2992          /*
2986 2993           * Step 2. Prepare the queue's FPM/HMC context.
2987 2994           */
2988 2995          if (!i40e_setup_tx_hmc(itrq))
2989 2996                  return (B_FALSE);
2990 2997  
2991 2998          /*
2992 2999           * Step 3. Verify that it's clear that this PF owns this queue.
2993 3000           */
2994 3001          reg = I40E_QTX_CTL_PF_QUEUE;
2995 3002          reg |= (hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2996 3003              I40E_QTX_CTL_PF_INDX_MASK;
2997 3004          I40E_WRITE_REG(hw, I40E_QTX_CTL(itrq->itrq_index), reg);
2998 3005          i40e_flush(hw);
2999 3006  
3000 3007          /*
3001 3008           * Step 4. Set the QENA_REQ flag.
3002 3009           */
3003 3010          reg = I40E_READ_REG(hw, I40E_QTX_ENA(itrq->itrq_index));
3004 3011          VERIFY0(reg & (I40E_QTX_ENA_QENA_REQ_MASK |
3005 3012              I40E_QTX_ENA_QENA_STAT_MASK));
3006 3013          reg |= I40E_QTX_ENA_QENA_REQ_MASK;
3007 3014          I40E_WRITE_REG(hw, I40E_QTX_ENA(itrq->itrq_index), reg);
3008 3015  
3009 3016          /*
3010 3017           * Step 5. Verify that QENA_STAT has been set. It's promised
3011 3018           * that this should occur within about 10 us, but like BSD,
3012 3019           * we'll try for up to 100 ms for this queue.
3013 3020           */
3014 3021          for (i = 0; i < I40E_RING_WAIT_NTRIES; i++) {
3015 3022                  reg = I40E_READ_REG(hw, I40E_QTX_ENA(itrq->itrq_index));
3016 3023  
3017 3024                  if (reg & I40E_QTX_ENA_QENA_STAT_MASK)
3018 3025                          break;
3019 3026                  i40e_msec_delay(I40E_RING_WAIT_PAUSE);
3020 3027          }
3021 3028  
3022 3029          if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) == 0) {
3023 3030                  i40e_error(i40e, "failed to enable tx queue %d, timed "
3024 3031                      "out", itrq->itrq_index);
3025 3032                  return (B_FALSE);
3026 3033          }
3027 3034  
3028 3035          return (B_TRUE);
3029 3036  }
3030 3037  
3031 3038  int
3032 3039  i40e_setup_ring(i40e_trqpair_t *itrq)
3033 3040  {
3034 3041          i40e_t *i40e = itrq->itrq_i40e;
3035 3042          hrtime_t now, gap;
3036 3043  
3037 3044          if (!i40e_alloc_ring_mem(itrq)) {
3038 3045                  i40e_error(i40e, "Failed to allocate ring memory");
3039 3046                  return (ENOMEM);
3040 3047          }
3041 3048  
3042 3049          /*
3043 3050           * 8.3.3.1.1 Receive Queue Enable Flow states software should
3044 3051           * wait at least 50ms between ring disable and enable. See how
3045 3052           * long we need to wait, and wait only if required.
3046 3053           */
3047 3054          now = gethrtime();
3048 3055          gap = NSEC2MSEC(now - itrq->irtq_time_stopped);
3049 3056          if (gap < I40E_RING_ENABLE_GAP && gap != 0)
3050 3057                  delay(drv_usectohz(gap * 1000));
3051 3058  
3052 3059          mutex_enter(&itrq->itrq_intr_lock);
3053 3060          if (!i40e_setup_rx_ring(itrq))
3054 3061                  goto failed;
3055 3062  
3056 3063          if (!i40e_setup_tx_ring(itrq))
3057 3064                  goto failed;
3058 3065  
3059 3066          if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_reg_handle) !=
3060 3067              DDI_FM_OK)
3061 3068                  goto failed;
3062 3069  
3063 3070          itrq->itrq_intr_quiesce = B_FALSE;
3064 3071          mutex_exit(&itrq->itrq_intr_lock);
3065 3072  
3066 3073          mutex_enter(&itrq->itrq_tx_lock);
3067 3074          itrq->itrq_tx_quiesce = B_FALSE;
3068 3075          mutex_exit(&itrq->itrq_tx_lock);
3069 3076  
3070 3077          return (0);
3071 3078  
3072 3079  failed:
3073 3080          mutex_exit(&itrq->itrq_intr_lock);
3074 3081          i40e_free_ring_mem(itrq, B_TRUE);
3075 3082          ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3076 3083  
3077 3084          return (EIO);
3078 3085  }
3079 3086  
3080 3087  void
3081 3088  i40e_stop(i40e_t *i40e)
3082 3089  {
3083 3090          uint_t i;
3084 3091          i40e_hw_t *hw = &i40e->i40e_hw_space;
3085 3092  
3086 3093          ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
3087 3094  
3088 3095          /*
3089 3096           * Shutdown and drain the tx and rx pipeline. We do this using the
3090 3097           * following steps.
3091 3098           *
3092 3099           * 1) Shutdown interrupts to all the queues (trying to keep the admin
3093 3100           *    queue alive).
3094 3101           *
3095 3102           * 2) Remove all of the interrupt tx and rx causes by setting the
3096 3103           *    interrupt linked lists to zero.
3097 3104           *
3098 3105           * 2) Shutdown the tx and rx rings. Because i40e_shutdown_rings() should
3099 3106           *    wait for all the queues to be disabled, once we reach that point
3100 3107           *    it should be safe to free associated data.
3101 3108           *
3102 3109           * 4) Wait 50ms after all that is done. This ensures that the rings are
3103 3110           *    ready for programming again and we don't have to think about this
3104 3111           *    in other parts of the driver.
3105 3112           *
3106 3113           * 5) Disable remaining chip interrupts, (admin queue, etc.)
3107 3114           *
3108 3115           * 6) Verify that FM is happy with all the register accesses we
3109 3116           *    performed.
3110 3117           */
3111 3118          i40e_intr_io_disable_all(i40e);
3112 3119          i40e_intr_io_clear_cause(i40e);
3113 3120  
3114 3121          if (!i40e_shutdown_rings(i40e))
3115 3122                  ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3116 3123  
3117 3124          /*
3118 3125           * We don't delete the default VSI because it replaces the VEB
3119 3126           * after VEB deletion (see the "Delete Element" section).
3120 3127           * Furthermore, since the default VSI is provided by the
3121 3128           * firmware, we never attempt to delete it.
3122 3129           */
3123 3130          for (i = 1; i < i40e->i40e_num_rx_groups; i++) {
3124 3131                  i40e_delete_vsi(i40e, i);
3125 3132          }
3126 3133  
3127 3134          if (i40e->i40e_veb_seid != 0) {
3128 3135                  int rc = i40e_aq_delete_element(hw, i40e->i40e_veb_seid, NULL);
3129 3136  
3130 3137                  if (rc != I40E_SUCCESS) {
3131 3138                          i40e_error(i40e, "Failed to delete VEB %d: %d", rc,
3132 3139                              hw->aq.asq_last_status);
3133 3140                  }
3134 3141  
3135 3142                  i40e->i40e_veb_seid = 0;
3136 3143          }
3137 3144  
3138 3145          i40e_intr_chip_fini(i40e);
3139 3146  
3140 3147          if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_cfg_handle) !=
3141 3148              DDI_FM_OK) {
3142 3149                  ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3143 3150          }
3144 3151  
3145 3152          for (i = 0; i < i40e->i40e_num_rx_groups; i++) {
3146 3153                  i40e_stat_vsi_fini(i40e, i);
3147 3154          }
3148 3155  
3149 3156          i40e->i40e_link_speed = 0;
3150 3157          i40e->i40e_link_duplex = 0;
3151 3158          i40e_link_state_set(i40e, LINK_STATE_UNKNOWN);
3152 3159  }
3153 3160  
3154 3161  boolean_t
3155 3162  i40e_start(i40e_t *i40e)
3156 3163  {
3157 3164          i40e_hw_t *hw = &i40e->i40e_hw_space;
3158 3165          boolean_t rc = B_TRUE;
3159 3166          int err;
3160 3167  
3161 3168          ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
3162 3169  
3163 3170          if (!i40e_chip_start(i40e)) {
3164 3171                  i40e_fm_ereport(i40e, DDI_FM_DEVICE_INVAL_STATE);
3165 3172                  rc = B_FALSE;
3166 3173                  goto done;
3167 3174          }
3168 3175  
3169 3176          /*
3170 3177           * Enable broadcast traffic; however, do not enable multicast traffic.
  
    | 
      ↓ open down ↓ | 
    1810 lines elided | 
    
      ↑ open up ↑ | 
  
3171 3178           * That's handle exclusively through MAC's mc_multicst routines.
3172 3179           */
3173 3180          err = i40e_aq_set_vsi_broadcast(hw, I40E_DEF_VSI_SEID(i40e), B_TRUE,
3174 3181              NULL);
3175 3182          if (err != I40E_SUCCESS) {
3176 3183                  i40e_error(i40e, "failed to set default VSI: %d", err);
3177 3184                  rc = B_FALSE;
3178 3185                  goto done;
3179 3186          }
3180 3187  
3181      -        err = i40e_aq_set_mac_config(hw, i40e->i40e_frame_max, B_TRUE, 0, NULL);
     3188 +        err = i40e_aq_set_mac_config(hw, i40e->i40e_frame_max, B_TRUE, 0,
     3189 +            B_FALSE, NULL);
3182 3190          if (err != I40E_SUCCESS) {
3183 3191                  i40e_error(i40e, "failed to set MAC config: %d", err);
3184 3192                  rc = B_FALSE;
3185 3193                  goto done;
3186 3194          }
3187 3195  
3188 3196          /*
3189 3197           * Finally, make sure that we're happy from an FM perspective.
3190 3198           */
3191 3199          if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_reg_handle) !=
3192 3200              DDI_FM_OK) {
3193 3201                  rc = B_FALSE;
3194 3202                  goto done;
3195 3203          }
3196 3204  
3197 3205          /* Clear state bits prior to final interrupt enabling. */
3198 3206          atomic_and_32(&i40e->i40e_state,
3199 3207              ~(I40E_ERROR | I40E_STALL | I40E_OVERTEMP));
3200 3208  
3201 3209          i40e_intr_io_enable_all(i40e);
3202 3210  
3203 3211  done:
3204 3212          if (rc == B_FALSE) {
3205 3213                  i40e_stop(i40e);
3206 3214                  ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3207 3215          }
3208 3216  
3209 3217          return (rc);
3210 3218  }
3211 3219  
3212 3220  /*
3213 3221   * We may have loaned up descriptors to the stack. As such, if we still have
3214 3222   * them outstanding, then we will not continue with detach.
3215 3223   */
3216 3224  static boolean_t
3217 3225  i40e_drain_rx(i40e_t *i40e)
3218 3226  {
3219 3227          mutex_enter(&i40e->i40e_rx_pending_lock);
3220 3228          while (i40e->i40e_rx_pending > 0) {
3221 3229                  if (cv_reltimedwait(&i40e->i40e_rx_pending_cv,
3222 3230                      &i40e->i40e_rx_pending_lock,
3223 3231                      drv_usectohz(I40E_DRAIN_RX_WAIT), TR_CLOCK_TICK) == -1) {
3224 3232                          mutex_exit(&i40e->i40e_rx_pending_lock);
3225 3233                          return (B_FALSE);
3226 3234                  }
3227 3235          }
3228 3236          mutex_exit(&i40e->i40e_rx_pending_lock);
3229 3237  
3230 3238          return (B_TRUE);
3231 3239  }
3232 3240  
3233 3241  /*
3234 3242   * DDI UFM Callbacks
3235 3243   */
3236 3244  static int
3237 3245  i40e_ufm_fill_image(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
3238 3246      ddi_ufm_image_t *img)
3239 3247  {
3240 3248          if (imgno != 0)
3241 3249                  return (EINVAL);
3242 3250  
3243 3251          ddi_ufm_image_set_desc(img, "Firmware");
3244 3252          ddi_ufm_image_set_nslots(img, 1);
3245 3253  
3246 3254          return (0);
3247 3255  }
3248 3256  
3249 3257  static int
3250 3258  i40e_ufm_fill_slot(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
3251 3259      uint_t slotno, ddi_ufm_slot_t *slot)
3252 3260  {
3253 3261          i40e_t *i40e = (i40e_t *)arg;
3254 3262          char *fw_ver = NULL, *fw_bld = NULL, *api_ver = NULL;
3255 3263          nvlist_t *misc = NULL;
3256 3264          uint_t flags = DDI_PROP_DONTPASS;
3257 3265          int err;
3258 3266  
3259 3267          if (imgno != 0 || slotno != 0 ||
3260 3268              ddi_prop_lookup_string(DDI_DEV_T_ANY, i40e->i40e_dip, flags,
3261 3269              "firmware-version", &fw_ver) != DDI_PROP_SUCCESS ||
3262 3270              ddi_prop_lookup_string(DDI_DEV_T_ANY, i40e->i40e_dip, flags,
3263 3271              "firmware-build", &fw_bld) != DDI_PROP_SUCCESS ||
3264 3272              ddi_prop_lookup_string(DDI_DEV_T_ANY, i40e->i40e_dip, flags,
3265 3273              "api-version", &api_ver) != DDI_PROP_SUCCESS) {
3266 3274                  err = EINVAL;
3267 3275                  goto err;
3268 3276          }
3269 3277  
3270 3278          ddi_ufm_slot_set_attrs(slot, DDI_UFM_ATTR_ACTIVE);
3271 3279          ddi_ufm_slot_set_version(slot, fw_ver);
3272 3280  
3273 3281          (void) nvlist_alloc(&misc, NV_UNIQUE_NAME, KM_SLEEP);
3274 3282          if ((err = nvlist_add_string(misc, "firmware-build", fw_bld)) != 0 ||
3275 3283              (err = nvlist_add_string(misc, "api-version", api_ver)) != 0) {
3276 3284                  goto err;
3277 3285          }
3278 3286          ddi_ufm_slot_set_misc(slot, misc);
3279 3287  
3280 3288          ddi_prop_free(fw_ver);
3281 3289          ddi_prop_free(fw_bld);
3282 3290          ddi_prop_free(api_ver);
3283 3291  
3284 3292          return (0);
3285 3293  err:
3286 3294          nvlist_free(misc);
3287 3295          if (fw_ver != NULL)
3288 3296                  ddi_prop_free(fw_ver);
3289 3297          if (fw_bld != NULL)
3290 3298                  ddi_prop_free(fw_bld);
3291 3299          if (api_ver != NULL)
3292 3300                  ddi_prop_free(api_ver);
3293 3301  
3294 3302          return (err);
3295 3303  }
3296 3304  
3297 3305  static int
3298 3306  i40e_ufm_getcaps(ddi_ufm_handle_t *ufmh, void *arg, ddi_ufm_cap_t *caps)
3299 3307  {
3300 3308          *caps = DDI_UFM_CAP_REPORT;
3301 3309  
3302 3310          return (0);
3303 3311  }
3304 3312  
3305 3313  static ddi_ufm_ops_t i40e_ufm_ops = {
3306 3314          NULL,
3307 3315          i40e_ufm_fill_image,
3308 3316          i40e_ufm_fill_slot,
3309 3317          i40e_ufm_getcaps
3310 3318  };
3311 3319  
3312 3320  static int
3313 3321  i40e_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
3314 3322  {
3315 3323          i40e_t *i40e;
3316 3324          struct i40e_osdep *osdep;
3317 3325          i40e_hw_t *hw;
3318 3326          int instance;
3319 3327  
3320 3328          if (cmd != DDI_ATTACH)
3321 3329                  return (DDI_FAILURE);
3322 3330  
3323 3331          instance = ddi_get_instance(devinfo);
3324 3332          i40e = kmem_zalloc(sizeof (i40e_t), KM_SLEEP);
3325 3333  
3326 3334          i40e->i40e_aqbuf = kmem_zalloc(I40E_ADMINQ_BUFSZ, KM_SLEEP);
3327 3335          i40e->i40e_instance = instance;
3328 3336          i40e->i40e_dip = devinfo;
3329 3337  
3330 3338          hw = &i40e->i40e_hw_space;
3331 3339          osdep = &i40e->i40e_osdep_space;
3332 3340          hw->back = osdep;
3333 3341          osdep->ios_i40e = i40e;
3334 3342  
3335 3343          ddi_set_driver_private(devinfo, i40e);
3336 3344  
3337 3345          i40e_fm_init(i40e);
3338 3346          i40e->i40e_attach_progress |= I40E_ATTACH_FM_INIT;
3339 3347  
3340 3348          if (pci_config_setup(devinfo, &osdep->ios_cfg_handle) != DDI_SUCCESS) {
3341 3349                  i40e_error(i40e, "Failed to map PCI configurations.");
3342 3350                  goto attach_fail;
3343 3351          }
3344 3352          i40e->i40e_attach_progress |= I40E_ATTACH_PCI_CONFIG;
3345 3353  
3346 3354          i40e_identify_hardware(i40e);
3347 3355  
3348 3356          if (!i40e_regs_map(i40e)) {
3349 3357                  i40e_error(i40e, "Failed to map device registers.");
3350 3358                  goto attach_fail;
3351 3359          }
3352 3360          i40e->i40e_attach_progress |= I40E_ATTACH_REGS_MAP;
3353 3361  
3354 3362          i40e_init_properties(i40e);
3355 3363          i40e->i40e_attach_progress |= I40E_ATTACH_PROPS;
3356 3364  
3357 3365          if (!i40e_common_code_init(i40e, hw))
3358 3366                  goto attach_fail;
3359 3367          i40e->i40e_attach_progress |= I40E_ATTACH_COMMON_CODE;
3360 3368  
3361 3369          /*
3362 3370           * When we participate in IRM, we should make sure that we register
3363 3371           * ourselves with it before callbacks.
3364 3372           */
3365 3373          if (!i40e_alloc_intrs(i40e, devinfo)) {
3366 3374                  i40e_error(i40e, "Failed to allocate interrupts.");
3367 3375                  goto attach_fail;
3368 3376          }
3369 3377          i40e->i40e_attach_progress |= I40E_ATTACH_ALLOC_INTR;
3370 3378  
3371 3379          if (!i40e_alloc_trqpairs(i40e)) {
3372 3380                  i40e_error(i40e,
3373 3381                      "Failed to allocate receive & transmit rings.");
3374 3382                  goto attach_fail;
3375 3383          }
3376 3384          i40e->i40e_attach_progress |= I40E_ATTACH_ALLOC_RINGSLOCKS;
3377 3385  
3378 3386          if (!i40e_map_intrs_to_vectors(i40e)) {
3379 3387                  i40e_error(i40e, "Failed to map interrupts to vectors.");
3380 3388                  goto attach_fail;
3381 3389          }
3382 3390  
3383 3391          if (!i40e_add_intr_handlers(i40e)) {
3384 3392                  i40e_error(i40e, "Failed to add the interrupt handlers.");
3385 3393                  goto attach_fail;
3386 3394          }
3387 3395          i40e->i40e_attach_progress |= I40E_ATTACH_ADD_INTR;
3388 3396  
3389 3397          if (!i40e_final_init(i40e)) {
3390 3398                  i40e_error(i40e, "Final initialization failed.");
3391 3399                  goto attach_fail;
3392 3400          }
3393 3401          i40e->i40e_attach_progress |= I40E_ATTACH_INIT;
3394 3402  
3395 3403          if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_cfg_handle) !=
3396 3404              DDI_FM_OK) {
3397 3405                  ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3398 3406                  goto attach_fail;
3399 3407          }
3400 3408  
3401 3409          if (!i40e_stats_init(i40e)) {
3402 3410                  i40e_error(i40e, "Stats initialization failed.");
3403 3411                  goto attach_fail;
3404 3412          }
3405 3413          i40e->i40e_attach_progress |= I40E_ATTACH_STATS;
3406 3414  
3407 3415          if (!i40e_register_mac(i40e)) {
3408 3416                  i40e_error(i40e, "Failed to register to MAC/GLDv3");
3409 3417                  goto attach_fail;
3410 3418          }
3411 3419          i40e->i40e_attach_progress |= I40E_ATTACH_MAC;
3412 3420  
3413 3421          i40e->i40e_periodic_id = ddi_periodic_add(i40e_timer, i40e,
3414 3422              I40E_CYCLIC_PERIOD, DDI_IPL_0);
3415 3423          if (i40e->i40e_periodic_id == 0) {
3416 3424                  i40e_error(i40e, "Failed to add the link-check timer");
3417 3425                  goto attach_fail;
3418 3426          }
3419 3427          i40e->i40e_attach_progress |= I40E_ATTACH_LINK_TIMER;
3420 3428  
3421 3429          if (!i40e_enable_interrupts(i40e)) {
3422 3430                  i40e_error(i40e, "Failed to enable DDI interrupts");
3423 3431                  goto attach_fail;
3424 3432          }
3425 3433          i40e->i40e_attach_progress |= I40E_ATTACH_ENABLE_INTR;
3426 3434  
3427 3435          if (i40e->i40e_hw_space.bus.func == 0) {
3428 3436                  if (ddi_ufm_init(i40e->i40e_dip, DDI_UFM_CURRENT_VERSION,
3429 3437                      &i40e_ufm_ops, &i40e->i40e_ufmh, i40e) != 0) {
3430 3438                          i40e_error(i40e, "failed to initialize UFM subsystem");
3431 3439                          goto attach_fail;
3432 3440                  }
3433 3441                  ddi_ufm_update(i40e->i40e_ufmh);
3434 3442                  i40e->i40e_attach_progress |= I40E_ATTACH_UFM_INIT;
3435 3443          }
3436 3444  
3437 3445          atomic_or_32(&i40e->i40e_state, I40E_INITIALIZED);
3438 3446  
3439 3447          mutex_enter(&i40e_glock);
3440 3448          list_insert_tail(&i40e_glist, i40e);
3441 3449          mutex_exit(&i40e_glock);
3442 3450  
3443 3451          return (DDI_SUCCESS);
3444 3452  
3445 3453  attach_fail:
3446 3454          i40e_unconfigure(devinfo, i40e);
3447 3455          return (DDI_FAILURE);
3448 3456  }
3449 3457  
3450 3458  static int
3451 3459  i40e_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
3452 3460  {
3453 3461          i40e_t *i40e;
3454 3462  
3455 3463          if (cmd != DDI_DETACH)
3456 3464                  return (DDI_FAILURE);
3457 3465  
3458 3466          i40e = (i40e_t *)ddi_get_driver_private(devinfo);
3459 3467          if (i40e == NULL) {
3460 3468                  i40e_log(NULL, "i40e_detach() called with no i40e pointer!");
3461 3469                  return (DDI_FAILURE);
3462 3470          }
3463 3471  
3464 3472          if (i40e_drain_rx(i40e) == B_FALSE) {
3465 3473                  i40e_log(i40e, "timed out draining DMA resources, %d buffers "
3466 3474                      "remain", i40e->i40e_rx_pending);
3467 3475                  return (DDI_FAILURE);
3468 3476          }
3469 3477  
3470 3478          mutex_enter(&i40e_glock);
3471 3479          list_remove(&i40e_glist, i40e);
3472 3480          mutex_exit(&i40e_glock);
3473 3481  
3474 3482          i40e_unconfigure(devinfo, i40e);
3475 3483  
3476 3484          return (DDI_SUCCESS);
3477 3485  }
3478 3486  
3479 3487  static struct cb_ops i40e_cb_ops = {
3480 3488          nulldev,                /* cb_open */
3481 3489          nulldev,                /* cb_close */
3482 3490          nodev,                  /* cb_strategy */
3483 3491          nodev,                  /* cb_print */
3484 3492          nodev,                  /* cb_dump */
3485 3493          nodev,                  /* cb_read */
3486 3494          nodev,                  /* cb_write */
3487 3495          nodev,                  /* cb_ioctl */
3488 3496          nodev,                  /* cb_devmap */
3489 3497          nodev,                  /* cb_mmap */
3490 3498          nodev,                  /* cb_segmap */
3491 3499          nochpoll,               /* cb_chpoll */
3492 3500          ddi_prop_op,            /* cb_prop_op */
3493 3501          NULL,                   /* cb_stream */
3494 3502          D_MP | D_HOTPLUG,       /* cb_flag */
3495 3503          CB_REV,                 /* cb_rev */
3496 3504          nodev,                  /* cb_aread */
3497 3505          nodev                   /* cb_awrite */
3498 3506  };
3499 3507  
3500 3508  static struct dev_ops i40e_dev_ops = {
3501 3509          DEVO_REV,               /* devo_rev */
3502 3510          0,                      /* devo_refcnt */
3503 3511          NULL,                   /* devo_getinfo */
3504 3512          nulldev,                /* devo_identify */
3505 3513          nulldev,                /* devo_probe */
3506 3514          i40e_attach,            /* devo_attach */
3507 3515          i40e_detach,            /* devo_detach */
3508 3516          nodev,                  /* devo_reset */
3509 3517          &i40e_cb_ops,           /* devo_cb_ops */
3510 3518          NULL,                   /* devo_bus_ops */
3511 3519          nulldev,                /* devo_power */
3512 3520          ddi_quiesce_not_supported /* devo_quiesce */
3513 3521  };
3514 3522  
3515 3523  static struct modldrv i40e_modldrv = {
3516 3524          &mod_driverops,
3517 3525          i40e_ident,
3518 3526          &i40e_dev_ops
3519 3527  };
3520 3528  
3521 3529  static struct modlinkage i40e_modlinkage = {
3522 3530          MODREV_1,
3523 3531          &i40e_modldrv,
3524 3532          NULL
3525 3533  };
3526 3534  
3527 3535  /*
3528 3536   * Module Initialization Functions.
3529 3537   */
3530 3538  int
3531 3539  _init(void)
3532 3540  {
3533 3541          int status;
3534 3542  
3535 3543          list_create(&i40e_glist, sizeof (i40e_t), offsetof(i40e_t, i40e_glink));
3536 3544          list_create(&i40e_dlist, sizeof (i40e_device_t),
3537 3545              offsetof(i40e_device_t, id_link));
3538 3546          mutex_init(&i40e_glock, NULL, MUTEX_DRIVER, NULL);
3539 3547          mac_init_ops(&i40e_dev_ops, I40E_MODULE_NAME);
3540 3548  
3541 3549          status = mod_install(&i40e_modlinkage);
3542 3550          if (status != DDI_SUCCESS) {
3543 3551                  mac_fini_ops(&i40e_dev_ops);
3544 3552                  mutex_destroy(&i40e_glock);
3545 3553                  list_destroy(&i40e_dlist);
3546 3554                  list_destroy(&i40e_glist);
3547 3555          }
3548 3556  
3549 3557          return (status);
3550 3558  }
3551 3559  
3552 3560  int
3553 3561  _info(struct modinfo *modinfop)
3554 3562  {
3555 3563          return (mod_info(&i40e_modlinkage, modinfop));
3556 3564  }
3557 3565  
3558 3566  int
3559 3567  _fini(void)
3560 3568  {
3561 3569          int status;
3562 3570  
3563 3571          status = mod_remove(&i40e_modlinkage);
3564 3572          if (status == DDI_SUCCESS) {
3565 3573                  mac_fini_ops(&i40e_dev_ops);
3566 3574                  mutex_destroy(&i40e_glock);
3567 3575                  list_destroy(&i40e_dlist);
3568 3576                  list_destroy(&i40e_glist);
3569 3577          }
3570 3578  
3571 3579          return (status);
3572 3580  }
  
    | 
      ↓ open down ↓ | 
    381 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX