1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
  24  * Use is subject to license terms.
  25  */
  26 
  27 /*
  28  * Copyright 2020 Joyent, Inc.
  29  */
  30 
  31 #include <sys/types.h>
  32 #include <sys/systm.h>
  33 #include <sys/cred.h>
  34 #include <sys/modctl.h>
  35 #include <sys/vfs.h>
  36 #include <sys/vfs_opreg.h>
  37 #include <sys/sysmacros.h>
  38 #include <sys/cmn_err.h>
  39 #include <sys/stat.h>
  40 #include <sys/errno.h>
  41 #include <sys/kmem.h>
  42 #include <sys/file.h>
  43 #include <sys/kstat.h>
  44 #include <sys/port_impl.h>
  45 #include <sys/task.h>
  46 #include <sys/project.h>
  47 
  48 /*
  49  * Event Ports can be shared across threads or across processes.
  50  * Every thread/process can use an own event port or a group of them
  51  * can use a single port. A major request was also to get the ability
  52  * to submit user-defined events to a port. The idea of the
  53  * user-defined events is to use the event ports for communication between
  54  * threads/processes (like message queues). User defined-events are queued
  55  * in a port with the same priority as other event types.
  56  *
  57  * Events are delivered only once. The thread/process which is waiting
  58  * for events with the "highest priority" (priority here is related to the
  59  * internal strategy to wakeup waiting threads) will retrieve the event,
  60  * all other threads/processes will not be notified. There is also
  61  * the requirement to have events which should be submitted immediately
  62  * to all "waiting" threads. That is the main task of the alert event.
  63  * The alert event is submitted by the application to a port. The port
  64  * changes from a standard mode to the alert mode. Now all waiting threads
  65  * will be awaken immediately and they will return with the alert event.
  66  * Threads trying to retrieve events from a port in alert mode will
  67  * return immediately with the alert event.
  68  *
  69  *
  70  * An event port is like a kernel queue, which accept events submitted from
  71  * user level as well as events submitted from kernel sub-systems. Sub-systems
  72  * able to submit events to a port are the so-called "event sources".
  73  * Current event sources:
  74  * PORT_SOURCE_AIO       : events submitted per transaction completion from
  75  *                         POSIX-I/O framework.
  76  * PORT_SOURCE_TIMER     : events submitted when a timer fires
  77  *                         (see timer_create(3RT)).
  78  * PORT_SOURCE_FD        : events submitted per file descriptor (see poll(2)).
  79  * PORT_SOURCE_ALERT     : events submitted from user. This is not really a
  80  *                         single event, this is actually a port mode
  81  *                         (see port_alert(3c)).
  82  * PORT_SOURCE_USER      : events submitted by applications with
  83  *                         port_send(3c) or port_sendn(3c).
  84  * PORT_SOURCE_FILE      : events submitted per file being watched for file
  85  *                         change events  (see port_create(3c).
  86  *
  87  * There is a user API implemented in the libc library as well as a
  88  * kernel API implemented in port_subr.c in genunix.
  89  * The available user API functions are:
  90  * port_create() : create a port as a file descriptor of portfs file system
  91  *                 The standard close(2) function closes a port.
  92  * port_associate() : associate a file descriptor with a port to be able to
  93  *                    retrieve events from that file descriptor.
  94  * port_dissociate(): remove the association of a file descriptor with a port.
  95  * port_alert()  : set/unset a port in alert mode
  96  * port_send()   : send an event of type PORT_SOURCE_USER to a port
  97  * port_sendn()  : send an event of type PORT_SOURCE_USER to a list of ports
  98  * port_get()    : retrieve a single event from a port
  99  * port_getn()   : retrieve a list of events from a port
 100  *
 101  * The available kernel API functions are:
 102  * port_allocate_event(): allocate an event slot/structure of/from a port
 103  * port_init_event()    : set event data in the event structure
 104  * port_send_event()    : send event to a port
 105  * port_free_event()    : deliver allocated slot/structure back to a port
 106  * port_associate_ksource(): associate a kernel event source with a port
 107  * port_dissociate_ksource(): dissociate a kernel event source from a port
 108  *
 109  * The libc implementation consists of small functions which pass the
 110  * arguments to the kernel using the "portfs" system call. It means, all the
 111  * synchronisation work is being done in the kernel. The "portfs" system
 112  * call loads the portfs file system into the kernel.
 113  *
 114  * PORT CREATION
 115  * The first function to be used is port_create() which internally creates
 116  * a vnode and a portfs node. The portfs node is represented by the port_t
 117  * structure, which again includes all the data necessary to control a port.
 118  * port_create() returns a file descriptor, which needs to be used in almost
 119  * all other event port functions.
 120  * The maximum number of ports per system is controlled by the resource
 121  * control: project:port-max-ids.
 122  *
 123  * EVENT GENERATION
 124  * The second step is the triggering of events, which could be sent to a port.
 125  * Every event source implements an own method to generate events for a port:
 126  * PORT_SOURCE_AIO:
 127  *      The sigevent structure of the standard POSIX-IO functions
 128  *      was extended by an additional notification type.
 129  *      Standard notification types:
 130  *      SIGEV_NONE, SIGEV_SIGNAL and SIGEV_THREAD
 131  *      Event ports introduced now SIGEV_PORT.
 132  *      The notification type SIGEV_PORT specifies that a structure
 133  *      of type port_notify_t has to be attached to the sigev_value.
 134  *      The port_notify_t structure contains the event port file
 135  *      descriptor and a user-defined pointer.
 136  *      Internally the AIO implementation will use the kernel API
 137  *      functions to allocate an event port slot per transaction (aiocb)
 138  *      and sent the event to the port as soon as the transaction completes.
 139  *      All the events submitted per transaction are of type
 140  *      PORT_SOURCE_AIO.
 141  * PORT_SOURCE_TIMER:
 142  *      The timer_create() function uses the same method as the
 143  *      PORT_SOURCE_AIO event source. It also uses the sigevent structure
 144  *      to deliver the port information.
 145  *      Internally the timer code will allocate a single event slot/struct
 146  *      per timer and it will send the timer event as soon as the timer
 147  *      fires. If the timer-fired event is not delivered to the application
 148  *      before the next period elapsed, then an overrun counter will be
 149  *      incremented. The timer event source uses a callback function to
 150  *      detect the delivery of the event to the application. At that time
 151  *      the timer callback function will update the event overrun counter.
 152  * PORT_SOURCE_FD:
 153  *      This event source uses the port_associate() function to allocate
 154  *      an event slot/struct from a port. The application defines in the
 155  *      events argument of port_associate() the type of events which it is
 156  *      interested on.
 157  *      The internal pollwakeup() function is used by all the file
 158  *      systems --which are supporting the VOP_POLL() interface- to notify
 159  *      the upper layer (poll(2), devpoll(7d) and now event ports) about
 160  *      the event triggered (see valid events in poll(2)).
 161  *      The pollwakeup() function forwards the event to the layer registered
 162  *      to receive the current event.
 163  *      The port_dissociate() function can be used to free the allocated
 164  *      event slot from the port. Anyway, file descriptors deliver events
 165  *      only one time and remain deactivated until the application
 166  *      reactivates the association of a file descriptor with port_associate().
 167  *      If an associated file descriptor is closed then the file descriptor
 168  *      will be dissociated automatically from the port.
 169  *
 170  * PORT_SOURCE_ALERT:
 171  *      This event type is generated when the port was previously set in
 172  *      alert mode using the port_alert() function.
 173  *      A single alert event is delivered to every thread which tries to
 174  *      retrieve events from a port.
 175  * PORT_SOURCE_USER:
 176  *      This type of event is generated from user level using the port_send()
 177  *      function to send a user event to a port or the port_sendn() function
 178  *      to send an event to a list of ports.
 179  * PORT_SOURCE_FILE:
 180  *      This event source uses the port_associate() interface to register
 181  *      a file to be monitored for changes. The file name that needs to be
 182  *      monitored is specified in the file_obj_t structure, a pointer to which
 183  *      is passed as an argument. The event types to be monitored are specified
 184  *      in the events argument.
 185  *      A file events monitor is represented internal per port per object
 186  *      address(the file_obj_t pointer). Which means there can be multiple
 187  *      watches registered on the same file using different file_obj_t
 188  *      structure pointer. With the help of the FEM(File Event Monitoring)
 189  *      hooks, the file's vnode ops are intercepted and relevant events
 190  *      delivered. The port_dissociate() function is used to de-register a
 191  *      file events monitor on a file. When the specified file is
 192  *      removed/renamed, the file events watch/monitor is automatically
 193  *      removed.
 194  *
 195  * EVENT DELIVERY / RETRIEVING EVENTS
 196  * Events remain in the port queue until:
 197  * - the application uses port_get() or port_getn() to retrieve events,
 198  * - the event source cancel the event,
 199  * - the event port is closed or
 200  * - the process exits.
 201  * The maximal number of events in a port queue is the maximal number
 202  * of event slots/structures which can be allocated by event sources.
 203  * The allocation of event slots/structures is controlled by the resource
 204  * control: process.port-max-events.
 205  * The port_get() function retrieves a single event and the port_getn()
 206  * function retrieves a list of events.
 207  * Events are classified as shareable and non-shareable events across processes.
 208  * Non-shareable events are invisible for the port_get(n)() functions of
 209  * processes other than the owner of the event.
 210  *    Shareable event types are:
 211  *    PORT_SOURCE_USER events
 212  *      This type of event is unconditionally shareable and without
 213  *      limitations. If the parent process sends a user event and closes
 214  *      the port afterwards, the event remains in the port and the child
 215  *      process will still be able to retrieve the user event.
 216  *    PORT_SOURCE_ALERT events
 217  *      This type of event is shareable between processes.
 218  *      Limitation:     The alert mode of the port is removed if the owner
 219  *                      (process which set the port in alert mode) of the
 220  *                      alert event closes the port.
 221  *    PORT_SOURCE_FD events
 222  *      This type of event is conditional shareable between processes.
 223  *      After fork(2) all forked file descriptors are shareable between
 224  *      the processes. The child process is allowed to retrieve events
 225  *      from the associated file descriptors and it can also re-associate
 226  *      the fd with the port.
 227  *      Limitations:    The child process is not allowed to dissociate
 228  *                      the file descriptor from the port. Only the
 229  *                      owner (process) of the association is allowed to
 230  *                      dissociate the file descriptor from the port.
 231  *                      If the owner of the association closes the port
 232  *                      the association will be removed.
 233  *    PORT_SOURCE_AIO events
 234  *      This type of event is not shareable between processes.
 235  *    PORT_SOURCE_TIMER events
 236  *      This type of event is not shareable between processes.
 237  *    PORT_SOURCE_FILE events
 238  *      This type of event is not shareable between processes.
 239  *
 240  * FORK BEHAVIOUR
 241  * On fork(2) the child process inherits all opened file descriptors from
 242  * the parent process. This is also valid for port file descriptors.
 243  * Associated file descriptors with a port maintain the association across the
 244  * fork(2). It means, the child process gets full access to the port and
 245  * it can retrieve events from all common associated file descriptors.
 246  * Events of file descriptors created and associated with a port after the
 247  * fork(2) are non-shareable and can only be retrieved by the same process.
 248  *
 249  * If the parent or the child process closes an exported port (using fork(2)
 250  * or I_SENDFD) all the file descriptors associated with the port by the
 251  * process will be dissociated from the port. Events of dissociated file
 252  * descriptors as well as all non-shareable events will be discarded.
 253  * The other process can continue working with the port as usual.
 254  *
 255  * CLOSING A PORT
 256  * close(2) has to be used to close a port. See FORK BEHAVIOUR for details.
 257  *
 258  * PORT EVENT STRUCTURES
 259  * The global control structure of the event ports framework is port_control_t.
 260  * port_control_t keeps track of the number of created ports in the system.
 261  * The cache of the port event structures is also located in port_control_t.
 262  *
 263  * On port_create() the vnode and the portfs node is also created.
 264  * The portfs node is represented by the port_t structure.
 265  * The port_t structure manages all port specific tasks:
 266  * - management of resource control values
 267  * - port VOP_POLL interface
 268  * - creation time
 269  * - uid and gid of the port
 270  *
 271  * The port_t structure contains the port_queue_t structure.
 272  * The port_queue_t structure contains all the data necessary for the
 273  * queue management:
 274  * - locking
 275  * - condition variables
 276  * - event counters
 277  * - submitted events   (represented by port_kevent_t structures)
 278  * - threads waiting for event delivery (check portget_t structure)
 279  * - PORT_SOURCE_FD cache       (managed by the port_fdcache_t structure)
 280  * - event source management (managed by the port_source_t structure)
 281  * - alert mode management      (check port_alert_t structure)
 282  *
 283  * EVENT MANAGEMENT
 284  * The event port file system creates a kmem_cache for internal allocation of
 285  * event port structures.
 286  *
 287  * 1. Event source association with a port:
 288  * The first step to do for event sources is to get associated with a port
 289  * using the port_associate_ksource() function or adding an entry to the
 290  * port_ksource_tab[]. An event source can get dissociated from a port
 291  * using the port_dissociate_ksource() function. An entry in the
 292  * port_ksource_tab[] implies that the source will be associated
 293  * automatically with every new created port.
 294  * The event source can deliver a callback function, which is used by the
 295  * port to notify the event source about close(2). The idea is that
 296  * in such a case the event source should free all allocated resources
 297  * and it must return to the port all allocated slots/structures.
 298  * The port_close() function will wait until all allocated event
 299  * structures/slots are returned to the port.
 300  * The callback function is not necessary when the event source does not
 301  * maintain local resources, a second condition is that the event source
 302  * can guarantee that allocated event slots will be returned without
 303  * delay to the port (it will not block and sleep somewhere).
 304  *
 305  * 2. Reservation of an event slot / event structure
 306  * The event port reliability is based on the reservation of an event "slot"
 307  * (allocation of an event structure) by the event source as part of the
 308  * application call. If the maximal number of event slots is exhausted then
 309  * the event source can return a corresponding error code to the application.
 310  *
 311  * The port_alloc_event() function has to be used by event sources to
 312  * allocate an event slot (reserve an event structure). The port_alloc_event()
 313  * doesn not block and it will return a 0 value on success or an error code
 314  * if it fails.
 315  * An argument of port_alloc_event() is a flag which determines the behavior
 316  * of the event after it was delivered to the application:
 317  * PORT_ALLOC_DEFAULT   : event slot becomes free after delivery to the
 318  *                        application.
 319  * PORT_ALLOC_PRIVATE   : event slot remains under the control of the event
 320  *                        source. This kind of slots can not be used for
 321  *                        event delivery and should only be used internally
 322  *                        by the event source.
 323  * PORT_KEV_CACHED      : event slot remains under the control of an event
 324  *                        port cache. It does not become free after delivery
 325  *                        to the application.
 326  * PORT_ALLOC_SCACHED   : event slot remains under the control of the event
 327  *                        source. The event source takes the control over
 328  *                        the slot after the event is delivered to the
 329  *                        application.
 330  *
 331  * 3. Delivery of events to the event port
 332  * Earlier allocated event structure/slot has to be used to deliver
 333  * event data to the port. Event source has to use the function
 334  * port_send_event(). The single argument is a pointer to the previously
 335  * reserved event structure/slot.
 336  * The portkev_events field of the port_kevent_t structure can be updated/set
 337  * in two ways:
 338  * 1. using the port_set_event() function, or
 339  * 2. updating the portkev_events field out of the callback function:
 340  *    The event source can deliver a callback function to the port as an
 341  *    argument of port_init_event().
 342  *    One of the arguments of the callback function is a pointer to the
 343  *    events field, which will be delivered to the application.
 344  *    (see Delivery of events to the application).
 345  * Event structures/slots can be delivered to the event port only one time,
 346  * they remain blocked until the data is delivered to the application and the
 347  * slot becomes free or it is delivered back to the event source
 348  * (PORT_ALLOC_SCACHED). The activation of the callback function mentioned above
 349  * is at the same time the indicator for the event source that the event
 350  * structure/slot is free for reuse.
 351  *
 352  * 4. Delivery of events to the application
 353  * The events structures/slots delivered by event sources remain in the
 354  * port queue until they are retrieved by the application or the port
 355  * is closed (exit(2) also closes all opened file descriptors)..
 356  * The application uses port_get() or port_getn() to retrieve events from
 357  * a port. port_get() retrieves a single event structure/slot and port_getn()
 358  * retrieves a list of event structures/slots.
 359  * Both functions are able to poll for events and return immediately or they
 360  * can specify a timeout value.
 361  * Before the events are delivered to the application they are moved to a
 362  * second temporary internal queue. The idea is to avoid lock collisions or
 363  * contentions of the global queue lock.
 364  * The global queue lock is used every time when an event source delivers
 365  * new events to the port.
 366  * The port_get() and port_getn() functions
 367  * a) retrieve single events from the temporary queue,
 368  * b) prepare the data to be passed to the application memory,
 369  * c) activate the callback function of the event sources:
 370  *    - to get the latest event data,
 371  *    - the event source can free all allocated resources associated with the
 372  *      current event,
 373  *    - the event source can re-use the current event slot/structure
 374  *    - the event source can deny the delivery of the event to the application
 375  *      (e.g. because of the wrong process).
 376  * d) put the event back to the temporary queue if the event delivery was denied
 377  * e) repeat a) until d) as long as there are events in the queue and
 378  *    there is enough user space available.
 379  *
 380  * The loop described above could block for a very long time the global mutex,
 381  * to avoid that a second mutex was introduced to synchronized concurrent
 382  * threads accessing the temporary queue.
 383  */
 384 
 385 static int64_t portfs(int, uintptr_t, uintptr_t, uintptr_t, uintptr_t,
 386     uintptr_t);
 387 
 388 static struct sysent port_sysent = {
 389         6,
 390         SE_ARGC | SE_64RVAL | SE_NOUNLOAD,
 391         (int (*)())(uintptr_t)portfs,
 392 };
 393 
 394 static struct modlsys modlsys = {
 395         &mod_syscallops, "event ports", &port_sysent
 396 };
 397 
 398 #ifdef _SYSCALL32_IMPL
 399 
 400 static int64_t
 401 portfs32(uint32_t arg1, int32_t arg2, uint32_t arg3, uint32_t arg4,
 402     uint32_t arg5, uint32_t arg6);
 403 
 404 static struct sysent port_sysent32 = {
 405         6,
 406         SE_ARGC | SE_64RVAL | SE_NOUNLOAD,
 407         (int (*)())(uintptr_t)portfs32,
 408 };
 409 
 410 static struct modlsys modlsys32 = {
 411         &mod_syscallops32,
 412         "32-bit event ports syscalls",
 413         &port_sysent32
 414 };
 415 #endif  /* _SYSCALL32_IMPL */
 416 
 417 static struct modlinkage modlinkage = {
 418         MODREV_1,
 419         &modlsys,
 420 #ifdef _SYSCALL32_IMPL
 421         &modlsys32,
 422 #endif
 423         NULL
 424 };
 425 
 426 port_kstat_t port_kstat = {
 427         { "ports",      KSTAT_DATA_UINT32 }
 428 };
 429 
 430 dev_t   portdev;
 431 struct  vnodeops *port_vnodeops;
 432 struct  vfs port_vfs;
 433 
 434 extern  rctl_hndl_t rc_process_portev;
 435 extern  rctl_hndl_t rc_project_portids;
 436 extern  void aio_close_port(void *, int, pid_t, int);
 437 
 438 /*
 439  * This table contains a list of event sources which need a static
 440  * association with a port (every port).
 441  * The last NULL entry in the table is required to detect "end of table".
 442  */
 443 struct port_ksource port_ksource_tab[] = {
 444         {PORT_SOURCE_AIO, aio_close_port, NULL, NULL},
 445         {0, NULL, NULL, NULL}
 446 };
 447 
 448 /* local functions */
 449 static int port_getn(port_t *, port_event_t *, uint_t, uint_t *,
 450     port_gettimer_t *);
 451 static int port_sendn(int [], int [], uint_t, int, void *, uint_t *);
 452 static int port_alert(port_t *, int, int, void *);
 453 static int port_dispatch_event(port_t *, int, int, int, uintptr_t, void *);
 454 static int port_send(port_t *, int, int, void *);
 455 static int port_create(int *);
 456 static int port_get_alert(port_alert_t *, port_event_t *);
 457 static int port_copy_event(port_event_t *, port_kevent_t *, list_t *);
 458 static int *port_errorn(int *, int, int, int);
 459 static int port_noshare(void *, int *, pid_t, int, void *);
 460 static int port_get_timeout(timespec_t *, timespec_t *, timespec_t **, int *,
 461     int);
 462 static void port_init(port_t *);
 463 static void port_remove_alert(port_queue_t *);
 464 static void port_add_ksource_local(port_t *, port_ksource_t *);
 465 static void port_check_return_cond(port_queue_t *);
 466 static void port_dequeue_thread(port_queue_t *, portget_t *);
 467 static portget_t *port_queue_thread(port_queue_t *, uint_t);
 468 static void port_kstat_init(void);
 469 
 470 #ifdef  _SYSCALL32_IMPL
 471 static int port_copy_event32(port_event32_t *, port_kevent_t *, list_t *);
 472 #endif
 473 
 474 int
 475 _init(void)
 476 {
 477         static const fs_operation_def_t port_vfsops_template[] = {
 478                 NULL, NULL
 479         };
 480         extern const    fs_operation_def_t port_vnodeops_template[];
 481         vfsops_t        *port_vfsops;
 482         int             error;
 483         major_t         major;
 484 
 485         if ((major = getudev()) == (major_t)-1)
 486                 return (ENXIO);
 487         portdev = makedevice(major, 0);
 488 
 489         /* Create a dummy vfs */
 490         error = vfs_makefsops(port_vfsops_template, &port_vfsops);
 491         if (error) {
 492                 cmn_err(CE_WARN, "port init: bad vfs ops");
 493                 return (error);
 494         }
 495         vfs_setops(&port_vfs, port_vfsops);
 496         port_vfs.vfs_flag = VFS_RDONLY;
 497         port_vfs.vfs_dev = portdev;
 498         vfs_make_fsid(&(port_vfs.vfs_fsid), portdev, 0);
 499 
 500         error = vn_make_ops("portfs", port_vnodeops_template, &port_vnodeops);
 501         if (error) {
 502                 vfs_freevfsops(port_vfsops);
 503                 cmn_err(CE_WARN, "port init: bad vnode ops");
 504                 return (error);
 505         }
 506 
 507         mutex_init(&port_control.pc_mutex, NULL, MUTEX_DEFAULT, NULL);
 508         port_control.pc_nents = 0;      /* number of active ports */
 509 
 510         /* create kmem_cache for port event structures */
 511         port_control.pc_cache = kmem_cache_create("port_cache",
 512             sizeof (port_kevent_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 513 
 514         port_kstat_init();              /* init port kstats */
 515         return (mod_install(&modlinkage));
 516 }
 517 
 518 int
 519 _info(struct modinfo *modinfop)
 520 {
 521         return (mod_info(&modlinkage, modinfop));
 522 }
 523 
 524 /*
 525  * System call wrapper for all port related system calls from 32-bit programs.
 526  */
 527 #ifdef _SYSCALL32_IMPL
 528 static int64_t
 529 portfs32(uint32_t opcode, int32_t a0, uint32_t a1, uint32_t a2, uint32_t a3,
 530     uint32_t a4)
 531 {
 532         int64_t error;
 533 
 534         switch (opcode & PORT_CODE_MASK) {
 535         case PORT_GET:
 536                 error = portfs(PORT_GET, a0, a1, (int)a2, (int)a3, a4);
 537                 break;
 538         case PORT_SENDN:
 539                 error = portfs(opcode, (uint32_t)a0, a1, a2, a3, a4);
 540                 break;
 541         default:
 542                 error = portfs(opcode, a0, a1, a2, a3, a4);
 543                 break;
 544         }
 545         return (error);
 546 }
 547 #endif  /* _SYSCALL32_IMPL */
 548 
 549 /*
 550  * System entry point for port functions.
 551  * a0 is a port file descriptor (except for PORT_SENDN and PORT_CREATE).
 552  * The libc uses PORT_SYS_NOPORT in functions which do not deliver a
 553  * port file descriptor as first argument.
 554  */
 555 static int64_t
 556 portfs(int opcode, uintptr_t a0, uintptr_t a1, uintptr_t a2, uintptr_t a3,
 557     uintptr_t a4)
 558 {
 559         rval_t          r;
 560         port_t          *pp;
 561         int             error = 0;
 562         uint_t          nget;
 563         file_t          *fp;
 564         port_gettimer_t port_timer;
 565 
 566         r.r_vals = 0;
 567         if (opcode & PORT_SYS_NOPORT) {
 568                 opcode &= PORT_CODE_MASK;
 569                 if (opcode == PORT_SENDN) {
 570                         error = port_sendn((int *)a0, (int *)a1, (uint_t)a2,
 571                             (int)a3, (void *)a4, (uint_t *)&r.r_val1);
 572                         if (error && (error != EIO))
 573                                 return ((int64_t)set_errno(error));
 574                         return (r.r_vals);
 575                 }
 576 
 577                 if (opcode == PORT_CREATE) {
 578                         error = port_create(&r.r_val1);
 579                         if (error)
 580                                 return ((int64_t)set_errno(error));
 581                         return (r.r_vals);
 582                 }
 583         }
 584 
 585         /* opcodes using port as first argument (a0) */
 586 
 587         if ((fp = getf((int)a0)) == NULL)
 588                 return ((uintptr_t)set_errno(EBADF));
 589 
 590         if (fp->f_vnode->v_type != VPORT) {
 591                 releasef((int)a0);
 592                 return ((uintptr_t)set_errno(EBADFD));
 593         }
 594 
 595         pp = VTOEP(fp->f_vnode);
 596 
 597         switch (opcode & PORT_CODE_MASK) {
 598         case    PORT_GET:
 599         {
 600                 /* see PORT_GETN description */
 601                 struct  timespec timeout;
 602 
 603                 port_timer.pgt_flags = PORTGET_ONE;
 604                 port_timer.pgt_loop = 0;
 605                 port_timer.pgt_rqtp = NULL;
 606                 if (a4 != 0) {
 607                         port_timer.pgt_timeout = &timeout;
 608                         timeout.tv_sec = (time_t)a2;
 609                         timeout.tv_nsec = (long)a3;
 610                 } else {
 611                         port_timer.pgt_timeout = NULL;
 612                 }
 613                 do {
 614                         nget = 1;
 615                         error = port_getn(pp, (port_event_t *)a1, 1,
 616                             (uint_t *)&nget, &port_timer);
 617                 } while (nget == 0 && error == 0 && port_timer.pgt_loop);
 618                 break;
 619         }
 620         case    PORT_GETN:
 621         {
 622                 /*
 623                  * port_getn() can only retrieve own or shareable events from
 624                  * other processes. The port_getn() function remains in the
 625                  * kernel until own or shareable events are available or the
 626                  * timeout elapses.
 627                  */
 628                 port_timer.pgt_flags = 0;
 629                 port_timer.pgt_loop = 0;
 630                 port_timer.pgt_rqtp = NULL;
 631                 port_timer.pgt_timeout = (struct timespec *)a4;
 632                 do {
 633                         nget = a3;
 634                         error = port_getn(pp, (port_event_t *)a1, (uint_t)a2,
 635                             (uint_t *)&nget, &port_timer);
 636                 } while (nget == 0 && error == 0 && port_timer.pgt_loop);
 637                 r.r_val1 = nget;
 638                 r.r_val2 = error;
 639                 releasef((int)a0);
 640                 if (error && error != ETIME)
 641                         return ((int64_t)set_errno(error));
 642                 return (r.r_vals);
 643         }
 644         case    PORT_ASSOCIATE:
 645         {
 646                 switch ((int)a1) {
 647                 case PORT_SOURCE_FD:
 648                         error = port_associate_fd(pp, (int)a1, (uintptr_t)a2,
 649                             (int)a3, (void *)a4);
 650                         break;
 651                 case PORT_SOURCE_FILE:
 652                         error = port_associate_fop(pp, (int)a1, (uintptr_t)a2,
 653                             (int)a3, (void *)a4);
 654                         break;
 655                 default:
 656                         error = EINVAL;
 657                         break;
 658                 }
 659                 break;
 660         }
 661         case    PORT_SEND:
 662         {
 663                 /* user-defined events */
 664                 error = port_send(pp, PORT_SOURCE_USER, (int)a1, (void *)a2);
 665                 break;
 666         }
 667         case    PORT_DISPATCH:
 668         {
 669                 /*
 670                  * library events, blocking
 671                  * Only events of type PORT_SOURCE_AIO or PORT_SOURCE_MQ
 672                  * are currently allowed.
 673                  */
 674                 if ((int)a1 != PORT_SOURCE_AIO && (int)a1 != PORT_SOURCE_MQ) {
 675                         error = EINVAL;
 676                         break;
 677                 }
 678                 error = port_dispatch_event(pp, (int)opcode, (int)a1, (int)a2,
 679                     (uintptr_t)a3, (void *)a4);
 680                 break;
 681         }
 682         case    PORT_DISSOCIATE:
 683         {
 684                 switch ((int)a1) {
 685                 case PORT_SOURCE_FD:
 686                         error = port_dissociate_fd(pp, (uintptr_t)a2);
 687                         break;
 688                 case PORT_SOURCE_FILE:
 689                         error = port_dissociate_fop(pp, (uintptr_t)a2);
 690                         break;
 691                 default:
 692                         error = EINVAL;
 693                         break;
 694                 }
 695                 break;
 696         }
 697         case    PORT_ALERT:
 698         {
 699                 if ((int)a2)    /* a2 = events */
 700                         error = port_alert(pp, (int)a1, (int)a2, (void *)a3);
 701                 else
 702                         port_remove_alert(&pp->port_queue);
 703                 break;
 704         }
 705         default:
 706                 error = EINVAL;
 707                 break;
 708         }
 709 
 710         releasef((int)a0);
 711         if (error)
 712                 return ((int64_t)set_errno(error));
 713         return (r.r_vals);
 714 }
 715 
 716 /*
 717  * System call to create a port.
 718  *
 719  * The port_create() function creates a vnode of type VPORT per port.
 720  * The port control data is associated with the vnode as vnode private data.
 721  * The port_create() function returns an event port file descriptor.
 722  */
 723 static int
 724 port_create(int *fdp)
 725 {
 726         port_t          *pp;
 727         vnode_t         *vp;
 728         struct file     *fp;
 729         proc_t          *p = curproc;
 730 
 731         /* initialize vnode and port private data */
 732         pp = kmem_zalloc(sizeof (port_t), KM_SLEEP);
 733 
 734         pp->port_vnode = vn_alloc(KM_SLEEP);
 735         vp = EPTOV(pp);
 736         vn_setops(vp, port_vnodeops);
 737         vp->v_type = VPORT;
 738         vp->v_vfsp = &port_vfs;
 739         vp->v_data = (caddr_t)pp;
 740 
 741         mutex_enter(&port_control.pc_mutex);
 742         /*
 743          * Retrieve the maximal number of event ports allowed per system from
 744          * the resource control: project.port-max-ids.
 745          */
 746         mutex_enter(&p->p_lock);
 747         if (rctl_test(rc_project_portids, p->p_task->tk_proj->kpj_rctls, p,
 748             port_control.pc_nents + 1, RCA_SAFE) & RCT_DENY) {
 749                 mutex_exit(&p->p_lock);
 750                 vn_free(vp);
 751                 kmem_free(pp, sizeof (port_t));
 752                 mutex_exit(&port_control.pc_mutex);
 753                 return (EAGAIN);
 754         }
 755 
 756         /*
 757          * Retrieve the maximal number of events allowed per port from
 758          * the resource control: process.port-max-events.
 759          */
 760         pp->port_max_events = rctl_enforced_value(rc_process_portev,
 761             p->p_rctls, p);
 762         mutex_exit(&p->p_lock);
 763 
 764         /* allocate a new user file descriptor and a file structure */
 765         if (falloc(vp, 0, &fp, fdp)) {
 766                 /*
 767                  * If the file table is full, free allocated resources.
 768                  */
 769                 vn_free(vp);
 770                 kmem_free(pp, sizeof (port_t));
 771                 mutex_exit(&port_control.pc_mutex);
 772                 return (EMFILE);
 773         }
 774 
 775         mutex_exit(&fp->f_tlock);
 776 
 777         pp->port_fd = *fdp;
 778         port_control.pc_nents++;
 779         p->p_portcnt++;
 780         port_kstat.pks_ports.value.ui32++;
 781         mutex_exit(&port_control.pc_mutex);
 782 
 783         /* initializes port private data */
 784         port_init(pp);
 785         /* set user file pointer */
 786         setf(*fdp, fp);
 787         return (0);
 788 }
 789 
 790 /*
 791  * port_init() initializes event port specific data
 792  */
 793 static void
 794 port_init(port_t *pp)
 795 {
 796         port_queue_t    *portq;
 797         port_ksource_t  *pks;
 798 
 799         mutex_init(&pp->port_mutex, NULL, MUTEX_DEFAULT, NULL);
 800         portq = &pp->port_queue;
 801         mutex_init(&portq->portq_mutex, NULL, MUTEX_DEFAULT, NULL);
 802         pp->port_flags |= PORT_INIT;
 803 
 804         /*
 805          * If it is not enough memory available to satisfy a user
 806          * request using a single port_getn() call then port_getn()
 807          * will reduce the size of the list to PORT_MAX_LIST.
 808          */
 809         pp->port_max_list = port_max_list;
 810 
 811         /* Set timestamp entries required for fstat(2) requests */
 812         gethrestime(&pp->port_ctime);
 813         pp->port_uid = crgetuid(curproc->p_cred);
 814         pp->port_gid = crgetgid(curproc->p_cred);
 815 
 816         /* initialize port queue structs */
 817         list_create(&portq->portq_list, sizeof (port_kevent_t),
 818             offsetof(port_kevent_t, portkev_node));
 819         list_create(&portq->portq_get_list, sizeof (port_kevent_t),
 820             offsetof(port_kevent_t, portkev_node));
 821         portq->portq_flags = 0;
 822         pp->port_pid = curproc->p_pid;
 823 
 824         /* Allocate cache skeleton for PORT_SOURCE_FD events */
 825         portq->portq_pcp = kmem_zalloc(sizeof (port_fdcache_t), KM_SLEEP);
 826         mutex_init(&portq->portq_pcp->pc_lock, NULL, MUTEX_DEFAULT, NULL);
 827 
 828         /*
 829          * Allocate cache skeleton for association of event sources.
 830          */
 831         mutex_init(&portq->portq_source_mutex, NULL, MUTEX_DEFAULT, NULL);
 832         portq->portq_scache = kmem_zalloc(
 833             PORT_SCACHE_SIZE * sizeof (port_source_t *), KM_SLEEP);
 834 
 835         /*
 836          * pre-associate some kernel sources with this port.
 837          * The pre-association is required to create port_source_t
 838          * structures for object association.
 839          * Some sources can not get associated with a port before the first
 840          * object association is requested. Another reason to pre_associate
 841          * a particular source with a port is because of performance.
 842          */
 843 
 844         for (pks = port_ksource_tab; pks->pks_source != 0; pks++)
 845                 port_add_ksource_local(pp, pks);
 846 }
 847 
 848 /*
 849  * The port_add_ksource_local() function is being used to associate
 850  * event sources with every new port.
 851  * The event sources need to be added to port_ksource_tab[].
 852  */
 853 static void
 854 port_add_ksource_local(port_t *pp, port_ksource_t *pks)
 855 {
 856         port_source_t   *pse;
 857         port_source_t   **ps;
 858 
 859         mutex_enter(&pp->port_queue.portq_source_mutex);
 860         ps = &pp->port_queue.portq_scache[PORT_SHASH(pks->pks_source)];
 861         for (pse = *ps; pse != NULL; pse = pse->portsrc_next) {
 862                 if (pse->portsrc_source == pks->pks_source)
 863                         break;
 864         }
 865 
 866         if (pse == NULL) {
 867                 /* associate new source with the port */
 868                 pse = kmem_zalloc(sizeof (port_source_t), KM_SLEEP);
 869                 pse->portsrc_source = pks->pks_source;
 870                 pse->portsrc_close = pks->pks_close;
 871                 pse->portsrc_closearg = pks->pks_closearg;
 872                 pse->portsrc_cnt = 1;
 873 
 874                 pks->pks_portsrc = pse;
 875                 if (*ps != NULL)
 876                         pse->portsrc_next = (*ps)->portsrc_next;
 877                 *ps = pse;
 878         }
 879         mutex_exit(&pp->port_queue.portq_source_mutex);
 880 }
 881 
 882 /*
 883  * The port_send() function sends an event of type "source" to a
 884  * port. This function is non-blocking. An event can be sent to
 885  * a port as long as the number of events per port does not achieve the
 886  * maximal allowed number of events. The max. number of events per port is
 887  * defined by the resource control process.max-port-events.
 888  * This function is used by the port library function port_send()
 889  * and port_dispatch(). The port_send(3c) function is part of the
 890  * event ports API and submits events of type PORT_SOURCE_USER. The
 891  * port_dispatch() function is project private and it is used by library
 892  * functions to submit events of other types than PORT_SOURCE_USER
 893  * (e.g. PORT_SOURCE_AIO).
 894  */
 895 static int
 896 port_send(port_t *pp, int source, int events, void *user)
 897 {
 898         port_kevent_t   *pev;
 899         int             error;
 900 
 901         error = port_alloc_event_local(pp, source, PORT_ALLOC_DEFAULT, &pev);
 902         if (error)
 903                 return (error);
 904 
 905         pev->portkev_object = 0;
 906         pev->portkev_events = events;
 907         pev->portkev_user = user;
 908         pev->portkev_callback = NULL;
 909         pev->portkev_arg = NULL;
 910         pev->portkev_flags = 0;
 911 
 912         port_send_event(pev);
 913         return (0);
 914 }
 915 
 916 /*
 917  * The port_noshare() function returns 0 if the current event was generated
 918  * by the same process. Otherwise is returns a value other than 0 and the
 919  * event should not be delivered to the current processe.
 920  * The port_noshare() function is normally used by the port_dispatch()
 921  * function. The port_dispatch() function is project private and can only be
 922  * used within the event port project.
 923  * Currently the libaio uses the port_dispatch() function to deliver events
 924  * of types PORT_SOURCE_AIO.
 925  */
 926 /* ARGSUSED */
 927 static int
 928 port_noshare(void *arg, int *events, pid_t pid, int flag, void *evp)
 929 {
 930         if (flag == PORT_CALLBACK_DEFAULT && curproc->p_pid != pid)
 931                 return (1);
 932         return (0);
 933 }
 934 
 935 /*
 936  * The port_dispatch_event() function is project private and it is used by
 937  * libraries involved in the project to deliver events to the port.
 938  * port_dispatch will sleep and wait for enough resources to satisfy the
 939  * request, if necessary.
 940  * The library can specify if the delivered event is shareable with other
 941  * processes (see PORT_SYS_NOSHARE flag).
 942  */
 943 static int
 944 port_dispatch_event(port_t *pp, int opcode, int source, int events,
 945     uintptr_t object, void *user)
 946 {
 947         port_kevent_t   *pev;
 948         int             error;
 949 
 950         error = port_alloc_event_block(pp, source, PORT_ALLOC_DEFAULT, &pev);
 951         if (error)
 952                 return (error);
 953 
 954         pev->portkev_object = object;
 955         pev->portkev_events = events;
 956         pev->portkev_user = user;
 957         pev->portkev_arg = NULL;
 958         if (opcode & PORT_SYS_NOSHARE) {
 959                 pev->portkev_flags = PORT_KEV_NOSHARE;
 960                 pev->portkev_callback = port_noshare;
 961         } else {
 962                 pev->portkev_flags = 0;
 963                 pev->portkev_callback = NULL;
 964         }
 965 
 966         port_send_event(pev);
 967         return (0);
 968 }
 969 
 970 
 971 /*
 972  * The port_sendn() function is the kernel implementation of the event
 973  * port API function port_sendn(3c).
 974  * This function is able to send an event to a list of event ports.
 975  */
 976 static int
 977 port_sendn(int ports[], int errors[], uint_t nent, int events, void *user,
 978     uint_t *nget)
 979 {
 980         port_kevent_t   *pev;
 981         int             errorcnt = 0;
 982         int             error = 0;
 983         int             count;
 984         int             port;
 985         int             *plist;
 986         int             *elist = NULL;
 987         file_t          *fp;
 988         port_t          *pp;
 989 
 990         if (nent == 0 || nent > port_max_list)
 991                 return (EINVAL);
 992 
 993         plist = kmem_alloc(nent * sizeof (int), KM_SLEEP);
 994         if (copyin((void *)ports, plist, nent * sizeof (int))) {
 995                 kmem_free(plist, nent * sizeof (int));
 996                 return (EFAULT);
 997         }
 998 
 999         /*
1000          * Scan the list for event port file descriptors and send the
1001          * attached user event data embedded in a event of type
1002          * PORT_SOURCE_USER to every event port in the list.
1003          * If a list entry is not a valid event port then the corresponding
1004          * error code will be stored in the errors[] list with the same
1005          * list offset as in the ports[] list.
1006          */
1007 
1008         for (count = 0; count < nent; count++) {
1009                 port = plist[count];
1010                 if ((fp = getf(port)) == NULL) {
1011                         elist = port_errorn(elist, nent, EBADF, count);
1012                         errorcnt++;
1013                         continue;
1014                 }
1015 
1016                 pp = VTOEP(fp->f_vnode);
1017                 if (fp->f_vnode->v_type != VPORT) {
1018                         releasef(port);
1019                         elist = port_errorn(elist, nent, EBADFD, count);
1020                         errorcnt++;
1021                         continue;
1022                 }
1023 
1024                 error = port_alloc_event_local(pp, PORT_SOURCE_USER,
1025                     PORT_ALLOC_DEFAULT, &pev);
1026                 if (error) {
1027                         releasef(port);
1028                         elist = port_errorn(elist, nent, error, count);
1029                         errorcnt++;
1030                         continue;
1031                 }
1032 
1033                 pev->portkev_object = 0;
1034                 pev->portkev_events = events;
1035                 pev->portkev_user = user;
1036                 pev->portkev_callback = NULL;
1037                 pev->portkev_arg = NULL;
1038                 pev->portkev_flags = 0;
1039 
1040                 port_send_event(pev);
1041                 releasef(port);
1042         }
1043         if (errorcnt) {
1044                 error = EIO;
1045                 if (copyout(elist, (void *)errors, nent * sizeof (int)))
1046                         error = EFAULT;
1047                 kmem_free(elist, nent * sizeof (int));
1048         }
1049         *nget = nent - errorcnt;
1050         kmem_free(plist, nent * sizeof (int));
1051         return (error);
1052 }
1053 
1054 static int *
1055 port_errorn(int *elist, int nent, int error, int index)
1056 {
1057         if (elist == NULL)
1058                 elist = kmem_zalloc(nent * sizeof (int), KM_SLEEP);
1059         elist[index] = error;
1060         return (elist);
1061 }
1062 
1063 /*
1064  * port_alert()
1065  * The port_alert() funcion is a high priority event and it is always set
1066  * on top of the queue. It is also delivered as single event.
1067  * flags:
1068  *      - SET   :overwrite current alert data
1069  *      - UPDATE:set alert data or return EBUSY if alert mode is already set
1070  *
1071  * - set the ALERT flag
1072  * - wakeup all sleeping threads
1073  */
1074 static int
1075 port_alert(port_t *pp, int flags, int events, void *user)
1076 {
1077         port_queue_t    *portq;
1078         portget_t       *pgetp;
1079         port_alert_t    *pa;
1080 
1081         if ((flags & PORT_ALERT_INVALID) == PORT_ALERT_INVALID)
1082                 return (EINVAL);
1083 
1084         portq = &pp->port_queue;
1085         pa = &portq->portq_alert;
1086         mutex_enter(&portq->portq_mutex);
1087 
1088         /* check alert conditions */
1089         if (flags == PORT_ALERT_UPDATE) {
1090                 if (portq->portq_flags & PORTQ_ALERT) {
1091                         mutex_exit(&portq->portq_mutex);
1092                         return (EBUSY);
1093                 }
1094         }
1095 
1096         /*
1097          * Store alert data in the port to be delivered to threads
1098          * which are using port_get(n) to retrieve events.
1099          */
1100 
1101         portq->portq_flags |= PORTQ_ALERT;
1102         pa->portal_events = events;          /* alert info */
1103         pa->portal_pid = curproc->p_pid;  /* process owner */
1104         pa->portal_object = 0;                       /* no object */
1105         pa->portal_user = user;                      /* user alert data */
1106 
1107         /* alert and deliver alert data to waiting threads */
1108         pgetp = portq->portq_thread;
1109         if (pgetp == NULL) {
1110                 /* no threads waiting for events */
1111                 mutex_exit(&portq->portq_mutex);
1112                 return (0);
1113         }
1114 
1115         /*
1116          * Set waiting threads in alert mode (PORTGET_ALERT)..
1117          * Every thread waiting for events already allocated a portget_t
1118          * structure to sleep on.
1119          * The port alert arguments are stored in the portget_t structure.
1120          * The PORTGET_ALERT flag is set to indicate the thread to return
1121          * immediately with the alert event.
1122          */
1123         do {
1124                 if ((pgetp->portget_state & PORTGET_ALERT) == 0) {
1125                         pa = &pgetp->portget_alert;
1126                         pa->portal_events = events;
1127                         pa->portal_object = 0;
1128                         pa->portal_user = user;
1129                         pgetp->portget_state |= PORTGET_ALERT;
1130                         cv_signal(&pgetp->portget_cv);
1131                 }
1132         } while ((pgetp = pgetp->portget_next) != portq->portq_thread);
1133         mutex_exit(&portq->portq_mutex);
1134         return (0);
1135 }
1136 
1137 /*
1138  * Clear alert state of the port
1139  */
1140 static void
1141 port_remove_alert(port_queue_t *portq)
1142 {
1143         mutex_enter(&portq->portq_mutex);
1144         portq->portq_flags &= ~PORTQ_ALERT;
1145         mutex_exit(&portq->portq_mutex);
1146 }
1147 
1148 /*
1149  * The port_getn() function is used to retrieve events from a port.
1150  *
1151  * The port_getn() function returns immediately if there are enough events
1152  * available in the port to satisfy the request or if the port is in alert
1153  * mode (see port_alert(3c)).
1154  * The timeout argument of port_getn(3c) -which is embedded in the
1155  * port_gettimer_t structure- specifies if the system call should block or if it
1156  * should return immediately depending on the number of events available.
1157  * This function is internally used by port_getn(3c) as well as by
1158  * port_get(3c).
1159  */
1160 static int
1161 port_getn(port_t *pp, port_event_t *uevp, uint_t max, uint_t *nget,
1162     port_gettimer_t *pgt)
1163 {
1164         port_queue_t    *portq;
1165         port_kevent_t   *pev;
1166         port_kevent_t   *lev;
1167         int             error = 0;
1168         uint_t          nmax;
1169         uint_t          nevents;
1170         uint_t          eventsz;
1171         port_event_t    *kevp;
1172         list_t          *glist;
1173         uint_t          tnent;
1174         int             rval;
1175         int             blocking = -1;
1176         int             timecheck;
1177         int             flag;
1178         timespec_t      rqtime;
1179         timespec_t      *rqtp = NULL;
1180         portget_t       *pgetp;
1181         void            *results;
1182         model_t         model = get_udatamodel();
1183 
1184         flag = pgt->pgt_flags;
1185 
1186         if (*nget > max && max > 0)
1187                 return (EINVAL);
1188 
1189         portq = &pp->port_queue;
1190         mutex_enter(&portq->portq_mutex);
1191         if (max == 0) {
1192                 /*
1193                  * Return number of objects with events.
1194                  * The port_block() call is required to synchronize this
1195                  * thread with another possible thread, which could be
1196                  * retrieving events from the port queue.
1197                  */
1198                 port_block(portq);
1199                 /*
1200                  * Check if a second thread is currently retrieving events
1201                  * and it is using the temporary event queue.
1202                  */
1203                 if (portq->portq_tnent) {
1204                         /* put remaining events back to the port queue */
1205                         port_push_eventq(portq);
1206                 }
1207                 *nget = portq->portq_nent;
1208                 port_unblock(portq);
1209                 mutex_exit(&portq->portq_mutex);
1210                 return (0);
1211         }
1212 
1213         if (uevp == NULL) {
1214                 mutex_exit(&portq->portq_mutex);
1215                 return (EFAULT);
1216         }
1217         if (*nget == 0) {               /* no events required */
1218                 mutex_exit(&portq->portq_mutex);
1219                 return (0);
1220         }
1221 
1222         /* port is being closed ... */
1223         if (portq->portq_flags & PORTQ_CLOSE) {
1224                 mutex_exit(&portq->portq_mutex);
1225                 return (EBADFD);
1226         }
1227 
1228         /* return immediately if port in alert mode */
1229         if (portq->portq_flags & PORTQ_ALERT) {
1230                 error = port_get_alert(&portq->portq_alert, uevp);
1231                 if (error == 0)
1232                         *nget = 1;
1233                 mutex_exit(&portq->portq_mutex);
1234                 return (error);
1235         }
1236 
1237         portq->portq_thrcnt++;
1238 
1239         /*
1240          * Now check if the completed events satisfy the
1241          * "wait" requirements of the current thread:
1242          */
1243 
1244         if (pgt->pgt_loop) {
1245                 /*
1246                  * loop entry of same thread
1247                  * pgt_loop is set when the current thread returns
1248                  * prematurely from this function. That could happen
1249                  * when a port is being shared between processes and
1250                  * this thread could not find events to return.
1251                  * It is not allowed to a thread to retrieve non-shareable
1252                  * events generated in other processes.
1253                  * PORTQ_WAIT_EVENTS is set when a thread already
1254                  * checked the current event queue and no new events
1255                  * are added to the queue.
1256                  */
1257                 if (((portq->portq_flags & PORTQ_WAIT_EVENTS) == 0) &&
1258                     (portq->portq_nent >= *nget)) {
1259                         /* some new events arrived ...check them */
1260                         goto portnowait;
1261                 }
1262                 rqtp = pgt->pgt_rqtp;
1263                 timecheck = pgt->pgt_timecheck;
1264                 pgt->pgt_flags |= PORTGET_WAIT_EVENTS;
1265         } else {
1266                 /* check if enough events are available ... */
1267                 if (portq->portq_nent >= *nget)
1268                         goto portnowait;
1269                 /*
1270                  * There are not enough events available to satisfy
1271                  * the request, check timeout value and wait for
1272                  * incoming events.
1273                  */
1274                 error = port_get_timeout(pgt->pgt_timeout, &rqtime, &rqtp,
1275                     &blocking, flag);
1276                 if (error) {
1277                         port_check_return_cond(portq);
1278                         mutex_exit(&portq->portq_mutex);
1279                         return (error);
1280                 }
1281 
1282                 if (blocking == 0) /* don't block, check fired events */
1283                         goto portnowait;
1284 
1285                 if (rqtp != NULL) {
1286                         timespec_t      now;
1287                         timecheck = timechanged;
1288                         gethrestime(&now);
1289                         timespecadd(rqtp, &now);
1290                 }
1291         }
1292 
1293         /* enqueue thread in the list of waiting threads */
1294         pgetp = port_queue_thread(portq, *nget);
1295 
1296 
1297         /* Wait here until return conditions met */
1298         for (;;) {
1299                 if (pgetp->portget_state & PORTGET_ALERT) {
1300                         /* reap alert event and return */
1301                         error = port_get_alert(&pgetp->portget_alert, uevp);
1302                         if (error)
1303                                 *nget = 0;
1304                         else
1305                                 *nget = 1;
1306                         port_dequeue_thread(&pp->port_queue, pgetp);
1307                         portq->portq_thrcnt--;
1308                         mutex_exit(&portq->portq_mutex);
1309                         return (error);
1310                 }
1311 
1312                 /*
1313                  * Check if some other thread is already retrieving
1314                  * events (portq_getn > 0).
1315                  */
1316 
1317                 if ((portq->portq_getn  == 0) &&
1318                     ((portq)->portq_nent >= *nget) &&
1319                     (!((pgt)->pgt_flags & PORTGET_WAIT_EVENTS) ||
1320                     !((portq)->portq_flags & PORTQ_WAIT_EVENTS)))
1321                         break;
1322 
1323                 if (portq->portq_flags & PORTQ_CLOSE) {
1324                         error = EBADFD;
1325                         break;
1326                 }
1327 
1328                 rval = cv_waituntil_sig(&pgetp->portget_cv, &portq->portq_mutex,
1329                     rqtp, timecheck);
1330 
1331                 if (rval <= 0) {
1332                         error = (rval == 0) ? EINTR : ETIME;
1333                         break;
1334                 }
1335         }
1336 
1337         /* take thread out of the wait queue */
1338         port_dequeue_thread(portq, pgetp);
1339 
1340         if (error != 0 && (error == EINTR || error == EBADFD ||
1341             (error == ETIME && flag))) {
1342                 /* return without events */
1343                 port_check_return_cond(portq);
1344                 mutex_exit(&portq->portq_mutex);
1345                 return (error);
1346         }
1347 
1348 portnowait:
1349         /*
1350          * Move port event queue to a temporary event queue .
1351          * New incoming events will be continue be posted to the event queue
1352          * and they will not be considered by the current thread.
1353          * The idea is to avoid lock contentions or an often locking/unlocking
1354          * of the port queue mutex. The contention and performance degradation
1355          * could happen because:
1356          * a) incoming events use the port queue mutex to enqueue new events and
1357          * b) before the event can be delivered to the application it is
1358          *    necessary to notify the event sources about the event delivery.
1359          *    Sometimes the event sources can require a long time to return and
1360          *    the queue mutex would block incoming events.
1361          * During this time incoming events (port_send_event()) do not need
1362          * to awake threads waiting for events. Before the current thread
1363          * returns it will check the conditions to awake other waiting threads.
1364          */
1365         portq->portq_getn++; /* number of threads retrieving events */
1366         port_block(portq);      /* block other threads here */
1367         nmax = max < portq->portq_nent ? max : portq->portq_nent;
1368 
1369         if (portq->portq_tnent) {
1370                 /*
1371                  * Move remaining events from previous thread back to the
1372                  * port event queue.
1373                  */
1374                 port_push_eventq(portq);
1375         }
1376         /* move port event queue to a temporary queue */
1377         list_move_tail(&portq->portq_get_list, &portq->portq_list);
1378         glist = &portq->portq_get_list;  /* use temporary event queue */
1379         tnent = portq->portq_nent;   /* get current number of events */
1380         portq->portq_nent = 0;               /* no events in the port event queue */
1381         portq->portq_flags |= PORTQ_WAIT_EVENTS; /* detect incoming events */
1382         mutex_exit(&portq->portq_mutex);    /* event queue can be reused now */
1383 
1384         if (model == DATAMODEL_NATIVE) {
1385                 eventsz = sizeof (port_event_t);
1386 
1387                 if (nmax == 0) {
1388                         kevp = NULL;
1389                 } else {
1390                         kevp = kmem_alloc(eventsz * nmax, KM_NOSLEEP);
1391                         if (kevp == NULL) {
1392                                 if (nmax > pp->port_max_list)
1393                                         nmax = pp->port_max_list;
1394                                 kevp = kmem_alloc(eventsz * nmax, KM_SLEEP);
1395                         }
1396                 }
1397 
1398                 results = kevp;
1399                 lev = NULL;     /* start with first event in the queue */
1400                 for (nevents = 0; nevents < nmax; ) {
1401                         pev = port_get_kevent(glist, lev);
1402                         if (pev == NULL)        /* no more events available */
1403                                 break;
1404                         if (pev->portkev_flags & PORT_KEV_FREE) {
1405                                 /* Just discard event */
1406                                 list_remove(glist, pev);
1407                                 pev->portkev_flags &= ~(PORT_CLEANUP_DONE);
1408                                 if (PORT_FREE_EVENT(pev))
1409                                         port_free_event_local(pev, B_TRUE);
1410                                 tnent--;
1411                                 continue;
1412                         }
1413 
1414                         /* move event data to copyout list */
1415                         if (port_copy_event(&kevp[nevents], pev, glist)) {
1416                                 /*
1417                                  * Event can not be delivered to the
1418                                  * current process.
1419                                  */
1420                                 if (lev != NULL)
1421                                         list_insert_after(glist, lev, pev);
1422                                 else
1423                                         list_insert_head(glist, pev);
1424                                 lev = pev;  /* last checked event */
1425                         } else {
1426                                 nevents++;      /* # of events ready */
1427                         }
1428                 }
1429 #ifdef  _SYSCALL32_IMPL
1430         } else {
1431                 port_event32_t  *kevp32;
1432 
1433                 eventsz = sizeof (port_event32_t);
1434 
1435                 if (nmax == 0) {
1436                         kevp32 = NULL;
1437                 } else {
1438                         kevp32 = kmem_alloc(eventsz * nmax, KM_NOSLEEP);
1439                         if (kevp32 == NULL) {
1440                                 if (nmax > pp->port_max_list)
1441                                         nmax = pp->port_max_list;
1442                                 kevp32 = kmem_alloc(eventsz * nmax, KM_SLEEP);
1443                         }
1444                 }
1445 
1446                 results = kevp32;
1447                 lev = NULL;     /* start with first event in the queue */
1448                 for (nevents = 0; nevents < nmax; ) {
1449                         pev = port_get_kevent(glist, lev);
1450                         if (pev == NULL)        /* no more events available */
1451                                 break;
1452                         if (pev->portkev_flags & PORT_KEV_FREE) {
1453                                 /* Just discard event */
1454                                 list_remove(glist, pev);
1455                                 pev->portkev_flags &= ~(PORT_CLEANUP_DONE);
1456                                 if (PORT_FREE_EVENT(pev))
1457                                         port_free_event_local(pev, B_TRUE);
1458                                 tnent--;
1459                                 continue;
1460                         }
1461 
1462                         /* move event data to copyout list */
1463                         if (port_copy_event32(&kevp32[nevents], pev, glist)) {
1464                                 /*
1465                                  * Event can not be delivered to the
1466                                  * current process.
1467                                  */
1468                                 if (lev != NULL)
1469                                         list_insert_after(glist, lev, pev);
1470                                 else
1471                                         list_insert_head(glist, pev);
1472                                 lev = pev;  /* last checked event */
1473                         } else {
1474                                 nevents++;      /* # of events ready */
1475                         }
1476                 }
1477 #endif  /* _SYSCALL32_IMPL */
1478         }
1479 
1480         /*
1481          *  Remember number of remaining events in the temporary event queue.
1482          */
1483         portq->portq_tnent = tnent - nevents;
1484 
1485         /*
1486          * Work to do before return :
1487          * - push list of remaining events back to the top of the standard
1488          *   port queue.
1489          * - if this is the last thread calling port_get(n) then wakeup the
1490          *   thread waiting on close(2).
1491          * - check for a deferred cv_signal from port_send_event() and wakeup
1492          *   the sleeping thread.
1493          */
1494 
1495         mutex_enter(&portq->portq_mutex);
1496         port_unblock(portq);
1497         if (portq->portq_tnent) {
1498                 /*
1499                  * move remaining events in the temporary event queue back
1500                  * to the port event queue
1501                  */
1502                 port_push_eventq(portq);
1503         }
1504         portq->portq_getn--; /* update # of threads retrieving events */
1505         if (--portq->portq_thrcnt == 0) { /* # of threads waiting ... */
1506                 /* Last thread => check close(2) conditions ... */
1507                 if (portq->portq_flags & PORTQ_CLOSE) {
1508                         cv_signal(&portq->portq_closecv);
1509                         mutex_exit(&portq->portq_mutex);
1510                         kmem_free(results, eventsz * nmax);
1511                         /* do not copyout events */
1512                         *nget = 0;
1513                         return (EBADFD);
1514                 }
1515         } else if (portq->portq_getn == 0) {
1516                 /*
1517                  * no other threads retrieving events ...
1518                  * check wakeup conditions of sleeping threads
1519                  */
1520                 if ((portq->portq_thread != NULL) &&
1521                     (portq->portq_nent >= portq->portq_nget))
1522                         cv_signal(&portq->portq_thread->portget_cv);
1523         }
1524 
1525         /*
1526          * Check PORTQ_POLLIN here because the current thread set temporarily
1527          * the number of events in the queue to zero.
1528          */
1529         if (portq->portq_flags & PORTQ_POLLIN) {
1530                 portq->portq_flags &= ~PORTQ_POLLIN;
1531                 mutex_exit(&portq->portq_mutex);
1532                 pollwakeup(&pp->port_pollhd, POLLIN);
1533         } else {
1534                 mutex_exit(&portq->portq_mutex);
1535         }
1536 
1537         /* now copyout list of user event structures to user space */
1538         if (nevents) {
1539                 if (copyout(results, uevp, nevents * eventsz))
1540                         error = EFAULT;
1541         }
1542         kmem_free(results, eventsz * nmax);
1543 
1544         if (nevents == 0 && error == 0 && pgt->pgt_loop == 0 && blocking != 0) {
1545                 /* no events retrieved: check loop conditions */
1546                 if (blocking == -1) {
1547                         /* no timeout checked */
1548                         error = port_get_timeout(pgt->pgt_timeout,
1549                             &pgt->pgt_rqtime, &rqtp, &blocking, flag);
1550                         if (error) {
1551                                 *nget = nevents;
1552                                 return (error);
1553                         }
1554                         if (rqtp != NULL) {
1555                                 timespec_t      now;
1556                                 pgt->pgt_timecheck = timechanged;
1557                                 gethrestime(&now);
1558                                 timespecadd(&pgt->pgt_rqtime, &now);
1559                         }
1560                         pgt->pgt_rqtp = rqtp;
1561                 } else {
1562                         /* timeout already checked -> remember values */
1563                         pgt->pgt_rqtp = rqtp;
1564                         if (rqtp != NULL) {
1565                                 pgt->pgt_timecheck = timecheck;
1566                                 pgt->pgt_rqtime = *rqtp;
1567                         }
1568                 }
1569                 if (blocking)
1570                         /* timeout remaining */
1571                         pgt->pgt_loop = 1;
1572         }
1573 
1574         /* set number of user event structures completed */
1575         *nget = nevents;
1576         return (error);
1577 }
1578 
1579 /*
1580  * 1. copy kernel event structure to user event structure.
1581  * 2. PORT_KEV_WIRED event structures will be reused by the "source"
1582  * 3. Remove PORT_KEV_DONEQ flag (event removed from the event queue)
1583  * 4. Other types of event structures can be delivered back to the port cache
1584  *    (port_free_event_local()).
1585  * 5. The event source callback function is the last opportunity for the
1586  *    event source to update events, to free local resources associated with
1587  *    the event or to deny the delivery of the event.
1588  */
1589 static int
1590 port_copy_event(port_event_t *puevp, port_kevent_t *pkevp, list_t *list)
1591 {
1592         int     free_event = 0;
1593         int     flags;
1594         int     error;
1595 
1596         puevp->portev_source = pkevp->portkev_source;
1597         puevp->portev_object = pkevp->portkev_object;
1598         puevp->portev_user = pkevp->portkev_user;
1599         puevp->portev_events = pkevp->portkev_events;
1600 
1601         /* remove event from the queue */
1602         list_remove(list, pkevp);
1603 
1604         /*
1605          * Events of type PORT_KEV_WIRED remain allocated by the
1606          * event source.
1607          */
1608         flags = pkevp->portkev_flags;
1609         if (pkevp->portkev_flags & PORT_KEV_WIRED)
1610                 pkevp->portkev_flags &= ~PORT_KEV_DONEQ;
1611         else
1612                 free_event = 1;
1613 
1614         if (pkevp->portkev_callback) {
1615                 error = (*pkevp->portkev_callback)(pkevp->portkev_arg,
1616                     &puevp->portev_events, pkevp->portkev_pid,
1617                     PORT_CALLBACK_DEFAULT, pkevp);
1618 
1619                 if (error) {
1620                         /*
1621                          * Event can not be delivered.
1622                          * Caller must reinsert the event into the queue.
1623                          */
1624                         pkevp->portkev_flags = flags;
1625                         return (error);
1626                 }
1627         }
1628         if (free_event)
1629                 port_free_event_local(pkevp, B_TRUE);
1630         return (0);
1631 }
1632 
1633 #ifdef  _SYSCALL32_IMPL
1634 /*
1635  * 1. copy kernel event structure to user event structure.
1636  * 2. PORT_KEV_WIRED event structures will be reused by the "source"
1637  * 3. Remove PORT_KEV_DONEQ flag (event removed from the event queue)
1638  * 4. Other types of event structures can be delivered back to the port cache
1639  *    (port_free_event_local()).
1640  * 5. The event source callback function is the last opportunity for the
1641  *    event source to update events, to free local resources associated with
1642  *    the event or to deny the delivery of the event.
1643  */
1644 static int
1645 port_copy_event32(port_event32_t *puevp, port_kevent_t *pkevp, list_t *list)
1646 {
1647         int     free_event = 0;
1648         int     error;
1649         int     flags;
1650 
1651         puevp->portev_source = pkevp->portkev_source;
1652         puevp->portev_object = (daddr32_t)pkevp->portkev_object;
1653         puevp->portev_user = (caddr32_t)(uintptr_t)pkevp->portkev_user;
1654         puevp->portev_events = pkevp->portkev_events;
1655 
1656         /* remove event from the queue */
1657         list_remove(list, pkevp);
1658 
1659         /*
1660          * Events if type PORT_KEV_WIRED remain allocated by the
1661          * sub-system (source).
1662          */
1663 
1664         flags = pkevp->portkev_flags;
1665         if (pkevp->portkev_flags & PORT_KEV_WIRED)
1666                 pkevp->portkev_flags &= ~PORT_KEV_DONEQ;
1667         else
1668                 free_event = 1;
1669 
1670         if (pkevp->portkev_callback != NULL) {
1671                 error = (*pkevp->portkev_callback)(pkevp->portkev_arg,
1672                     &puevp->portev_events, pkevp->portkev_pid,
1673                     PORT_CALLBACK_DEFAULT, pkevp);
1674                 if (error) {
1675                         /*
1676                          * Event can not be delivered.
1677                          * Caller must reinsert the event into the queue.
1678                          */
1679                         pkevp->portkev_flags = flags;
1680                         return (error);
1681                 }
1682         }
1683         if (free_event)
1684                 port_free_event_local(pkevp, B_TRUE);
1685         return (0);
1686 }
1687 #endif  /* _SYSCALL32_IMPL */
1688 
1689 /*
1690  * copyout alert event.
1691  */
1692 static int
1693 port_get_alert(port_alert_t *pa, port_event_t *uevp)
1694 {
1695         model_t model = get_udatamodel();
1696 
1697         /* copyout alert event structures to user space */
1698         if (model == DATAMODEL_NATIVE) {
1699                 port_event_t    uev;
1700                 uev.portev_source = PORT_SOURCE_ALERT;
1701                 uev.portev_object = pa->portal_object;
1702                 uev.portev_events = pa->portal_events;
1703                 uev.portev_user = pa->portal_user;
1704                 if (copyout(&uev, uevp, sizeof (port_event_t)))
1705                         return (EFAULT);
1706 #ifdef  _SYSCALL32_IMPL
1707         } else {
1708                 port_event32_t  uev32;
1709                 uev32.portev_source = PORT_SOURCE_ALERT;
1710                 uev32.portev_object = (daddr32_t)pa->portal_object;
1711                 uev32.portev_events = pa->portal_events;
1712                 uev32.portev_user = (daddr32_t)(uintptr_t)pa->portal_user;
1713                 if (copyout(&uev32, uevp, sizeof (port_event32_t)))
1714                         return (EFAULT);
1715 #endif  /* _SYSCALL32_IMPL */
1716         }
1717         return (0);
1718 }
1719 
1720 /*
1721  * Check return conditions :
1722  * - pending port close(2)
1723  * - threads waiting for events
1724  */
1725 static void
1726 port_check_return_cond(port_queue_t *portq)
1727 {
1728         ASSERT(MUTEX_HELD(&portq->portq_mutex));
1729         portq->portq_thrcnt--;
1730         if (portq->portq_flags & PORTQ_CLOSE) {
1731                 if (portq->portq_thrcnt == 0)
1732                         cv_signal(&portq->portq_closecv);
1733                 else
1734                         cv_signal(&portq->portq_thread->portget_cv);
1735         }
1736 }
1737 
1738 /*
1739  * The port_get_kevent() function returns
1740  * - the event located at the head of the queue if 'last' pointer is NULL
1741  * - the next event after the event pointed by 'last'
1742  * The caller of this function is responsible for the integrity of the queue
1743  * in use:
1744  * - port_getn() is using a temporary queue protected with port_block().
1745  * - port_close_events() is working on the global event queue and protects
1746  *   the queue with portq->portq_mutex.
1747  */
1748 port_kevent_t *
1749 port_get_kevent(list_t *list, port_kevent_t *last)
1750 {
1751         if (last == NULL)
1752                 return (list_head(list));
1753         else
1754                 return (list_next(list, last));
1755 }
1756 
1757 /*
1758  * The port_get_timeout() function gets the timeout data from user space
1759  * and converts that info into a corresponding internal representation.
1760  * The kerneldata flag means that the timeout data is already loaded.
1761  */
1762 static int
1763 port_get_timeout(timespec_t *timeout, timespec_t *rqtime, timespec_t **rqtp,
1764     int *blocking, int kerneldata)
1765 {
1766         model_t model = get_udatamodel();
1767 
1768         *rqtp = NULL;
1769         if (timeout == NULL) {
1770                 *blocking = 1;
1771                 return (0);
1772         }
1773 
1774         if (kerneldata) {
1775                 *rqtime = *timeout;
1776         } else {
1777                 if (model == DATAMODEL_NATIVE) {
1778                         if (copyin(timeout, rqtime, sizeof (*rqtime)))
1779                                 return (EFAULT);
1780 #ifdef  _SYSCALL32_IMPL
1781                 } else {
1782                         timespec32_t    wait_time_32;
1783                         if (copyin(timeout, &wait_time_32,
1784                             sizeof (wait_time_32)))
1785                                 return (EFAULT);
1786                         TIMESPEC32_TO_TIMESPEC(rqtime, &wait_time_32);
1787 #endif  /* _SYSCALL32_IMPL */
1788                 }
1789         }
1790 
1791         if (rqtime->tv_sec == 0 && rqtime->tv_nsec == 0) {
1792                 *blocking = 0;
1793                 return (0);
1794         }
1795 
1796         if (rqtime->tv_sec < 0 ||
1797             rqtime->tv_nsec < 0 || rqtime->tv_nsec >= NANOSEC)
1798                 return (EINVAL);
1799 
1800         *rqtp = rqtime;
1801         *blocking = 1;
1802         return (0);
1803 }
1804 
1805 /*
1806  * port_queue_thread()
1807  * Threads requiring more events than available will be put in a wait queue.
1808  * There is a "thread wait queue" per port.
1809  * Threads requiring less events get a higher priority than others and they
1810  * will be awoken first.
1811  */
1812 static portget_t *
1813 port_queue_thread(port_queue_t *portq, uint_t nget)
1814 {
1815         portget_t       *pgetp;
1816         portget_t       *ttp;
1817         portget_t       *htp;
1818 
1819         pgetp = kmem_zalloc(sizeof (portget_t), KM_SLEEP);
1820         pgetp->portget_nget = nget;
1821         pgetp->portget_pid = curproc->p_pid;
1822         if (portq->portq_thread == NULL) {
1823                 /* first waiting thread */
1824                 portq->portq_thread = pgetp;
1825                 portq->portq_nget = nget;
1826                 pgetp->portget_prev = pgetp;
1827                 pgetp->portget_next = pgetp;
1828                 return (pgetp);
1829         }
1830 
1831         /*
1832          * thread waiting for less events will be set on top of the queue.
1833          */
1834         ttp = portq->portq_thread;
1835         htp = ttp;
1836         for (;;) {
1837                 if (nget <= ttp->portget_nget)
1838                         break;
1839                 if (htp == ttp->portget_next)
1840                         break;  /* last event */
1841                 ttp = ttp->portget_next;
1842         }
1843 
1844         /* add thread to the queue */
1845         pgetp->portget_next = ttp;
1846         pgetp->portget_prev = ttp->portget_prev;
1847         ttp->portget_prev->portget_next = pgetp;
1848         ttp->portget_prev = pgetp;
1849         if (portq->portq_thread == ttp)
1850                 portq->portq_thread = pgetp;
1851         portq->portq_nget = portq->portq_thread->portget_nget;
1852         return (pgetp);
1853 }
1854 
1855 /*
1856  * Take thread out of the queue.
1857  */
1858 static void
1859 port_dequeue_thread(port_queue_t *portq, portget_t *pgetp)
1860 {
1861         if (pgetp->portget_next == pgetp) {
1862                 /* last (single) waiting thread */
1863                 portq->portq_thread = NULL;
1864                 portq->portq_nget = 0;
1865         } else {
1866                 pgetp->portget_prev->portget_next = pgetp->portget_next;
1867                 pgetp->portget_next->portget_prev = pgetp->portget_prev;
1868                 if (portq->portq_thread == pgetp)
1869                         portq->portq_thread = pgetp->portget_next;
1870                 portq->portq_nget = portq->portq_thread->portget_nget;
1871         }
1872         kmem_free(pgetp, sizeof (portget_t));
1873 }
1874 
1875 /*
1876  * Set up event port kstats.
1877  */
1878 static void
1879 port_kstat_init()
1880 {
1881         kstat_t *ksp;
1882         uint_t  ndata;
1883 
1884         ndata = sizeof (port_kstat) / sizeof (kstat_named_t);
1885         ksp = kstat_create("portfs", 0, "Event Ports", "misc",
1886             KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_VIRTUAL);
1887         if (ksp) {
1888                 ksp->ks_data = &port_kstat;
1889                 kstat_install(ksp);
1890         }
1891 }