Print this page
    
re #13613 rb4516 Tunables needs volatile keyword
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/sun4v/vm/mach_vm_dep.c
          +++ new/usr/src/uts/sun4v/vm/mach_vm_dep.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  
    | 
      ↓ open down ↓ | 
    14 lines elided | 
    
      ↑ open up ↑ | 
  
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  /*
  22   22   * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23   23   * Use is subject to license terms.
  24   24   */
       25 +/*
       26 + * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
       27 + */
  25   28  
  26   29  /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
  27   30  /*      All Rights Reserved   */
  28   31  
  29   32  /*
  30   33   * Portions of this source code were derived from Berkeley 4.3 BSD
  31   34   * under license from the Regents of the University of California.
  32   35   */
  33   36  
  34   37  /*
  35   38   * UNIX machine dependent virtual memory support.
  36   39   */
  37   40  
  38   41  #include <sys/vm.h>
  39   42  #include <sys/exec.h>
  40   43  #include <sys/cmn_err.h>
  41   44  #include <sys/cpu_module.h>
  42   45  #include <sys/cpu.h>
  43   46  #include <sys/elf_SPARC.h>
  44   47  #include <sys/archsystm.h>
  45   48  #include <vm/hat_sfmmu.h>
  46   49  #include <sys/memnode.h>
  47   50  #include <sys/mem_cage.h>
  48   51  #include <vm/vm_dep.h>
  49   52  #include <sys/error.h>
  
    | 
      ↓ open down ↓ | 
    15 lines elided | 
    
      ↑ open up ↑ | 
  
  50   53  #include <sys/machsystm.h>
  51   54  #include <vm/seg_kmem.h>
  52   55  #include <sys/stack.h>
  53   56  #include <sys/atomic.h>
  54   57  #include <sys/promif.h>
  55   58  #include <sys/random.h>
  56   59  
  57   60  uint_t page_colors = 0;
  58   61  uint_t page_colors_mask = 0;
  59   62  uint_t page_coloring_shift = 0;
  60      -int consistent_coloring;
       63 +volatile int consistent_coloring;
  61   64  int update_proc_pgcolorbase_after_fork = 1;
  62   65  
  63   66  uint_t mmu_page_sizes = MMU_PAGE_SIZES;
  64   67  uint_t max_mmu_page_sizes = MMU_PAGE_SIZES;
  65   68  uint_t mmu_hashcnt = MAX_HASHCNT;
  66   69  uint_t max_mmu_hashcnt = MAX_HASHCNT;
  67   70  size_t mmu_ism_pagesize = DEFAULT_ISM_PAGESIZE;
  68   71  
  69   72  /*
  70   73   * A bitmask of the page sizes supported by hardware based upon szc.
  71   74   * The base pagesize (p_szc == 0) must always be supported by the hardware.
  72   75   */
  73   76  int mmu_exported_pagesize_mask;
  74   77  uint_t mmu_exported_page_sizes;
  75   78  
  76   79  uint_t szc_2_userszc[MMU_PAGE_SIZES];
  77   80  uint_t userszc_2_szc[MMU_PAGE_SIZES];
  78   81  
  79   82  extern uint_t vac_colors_mask;
  80   83  extern int vac_shift;
  81   84  
  82   85  hw_pagesize_t hw_page_array[] = {
  83   86          {MMU_PAGESIZE, MMU_PAGESHIFT, 0, MMU_PAGESIZE >> MMU_PAGESHIFT},
  84   87          {MMU_PAGESIZE64K, MMU_PAGESHIFT64K, 0,
  85   88              MMU_PAGESIZE64K >> MMU_PAGESHIFT},
  86   89          {MMU_PAGESIZE512K, MMU_PAGESHIFT512K, 0,
  87   90              MMU_PAGESIZE512K >> MMU_PAGESHIFT},
  88   91          {MMU_PAGESIZE4M, MMU_PAGESHIFT4M, 0, MMU_PAGESIZE4M >> MMU_PAGESHIFT},
  89   92          {MMU_PAGESIZE32M, MMU_PAGESHIFT32M, 0,
  90   93              MMU_PAGESIZE32M >> MMU_PAGESHIFT},
  91   94          {MMU_PAGESIZE256M, MMU_PAGESHIFT256M, 0,
  92   95              MMU_PAGESIZE256M >> MMU_PAGESHIFT},
  93   96          {0, 0, 0, 0}
  94   97  };
  95   98  
  96   99  /*
  97  100   * Maximum page size used to map 64-bit memory segment kmem64_base..kmem64_end
  98  101   */
  99  102  int     max_bootlp_tteszc = TTE256M;
 100  103  
 101  104  /*
 102  105   * Maximum and default segment size tunables for user heap, stack, private
 103  106   * and shared anonymous memory, and user text and initialized data.
 104  107   */
 105  108  size_t max_uheap_lpsize = MMU_PAGESIZE64K;
 106  109  size_t default_uheap_lpsize = MMU_PAGESIZE64K;
 107  110  size_t max_ustack_lpsize = MMU_PAGESIZE64K;
 108  111  size_t default_ustack_lpsize = MMU_PAGESIZE64K;
 109  112  size_t max_privmap_lpsize = MMU_PAGESIZE64K;
 110  113  size_t max_uidata_lpsize = MMU_PAGESIZE64K;
 111  114  size_t max_utext_lpsize = MMU_PAGESIZE4M;
 112  115  size_t max_shm_lpsize = MMU_PAGESIZE4M;
 113  116  
 114  117  /*
 115  118   * Contiguous memory allocator data structures and variables.
 116  119   *
 117  120   * The sun4v kernel must provide a means to allocate physically
 118  121   * contiguous, non-relocatable memory. The contig_mem_arena
 119  122   * and contig_mem_slab_arena exist for this purpose. Allocations
 120  123   * that require physically contiguous non-relocatable memory should
 121  124   * be made using contig_mem_alloc() or contig_mem_alloc_align()
 122  125   * which return memory from contig_mem_arena or contig_mem_reloc_arena.
 123  126   * These arenas import memory from the contig_mem_slab_arena one
 124  127   * contiguous chunk at a time.
 125  128   *
 126  129   * When importing slabs, an attempt is made to allocate a large page
 127  130   * to use as backing. As a result of the non-relocatable requirement,
 128  131   * slabs are allocated from the kernel cage freelists. If the cage does
 129  132   * not contain any free contiguous chunks large enough to satisfy the
 130  133   * slab allocation, the slab size will be downsized and the operation
 131  134   * retried. Large slab sizes are tried first to minimize cage
 132  135   * fragmentation. If the slab allocation is unsuccessful still, the slab
 133  136   * is allocated from outside the kernel cage. This is undesirable because,
 134  137   * until slabs are freed, it results in non-relocatable chunks scattered
 135  138   * throughout physical memory.
 136  139   *
 137  140   * Allocations from the contig_mem_arena are backed by slabs from the
 138  141   * cage. Allocations from the contig_mem_reloc_arena are backed by
 139  142   * slabs allocated outside the cage. Slabs are left share locked while
 140  143   * in use to prevent non-cage slabs from being relocated.
 141  144   *
 142  145   * Since there is no guarantee that large pages will be available in
 143  146   * the kernel cage, contiguous memory is reserved and added to the
 144  147   * contig_mem_arena at boot time, making it available for later
 145  148   * contiguous memory allocations. This reserve will be used to satisfy
 146  149   * contig_mem allocations first and it is only when the reserve is
 147  150   * completely allocated that new slabs will need to be imported.
 148  151   */
 149  152  static  vmem_t          *contig_mem_slab_arena;
 150  153  static  vmem_t          *contig_mem_arena;
 151  154  static  vmem_t          *contig_mem_reloc_arena;
 152  155  static  kmutex_t        contig_mem_lock;
 153  156  #define CONTIG_MEM_ARENA_QUANTUM        64
 154  157  #define CONTIG_MEM_SLAB_ARENA_QUANTUM   MMU_PAGESIZE64K
 155  158  
 156  159  /* contig_mem_arena import slab sizes, in decreasing size order */
 157  160  static size_t contig_mem_import_sizes[] = {
 158  161          MMU_PAGESIZE4M,
 159  162          MMU_PAGESIZE512K,
 160  163          MMU_PAGESIZE64K
 161  164  };
 162  165  #define NUM_IMPORT_SIZES        \
 163  166          (sizeof (contig_mem_import_sizes) / sizeof (size_t))
 164  167  static size_t contig_mem_import_size_max        = MMU_PAGESIZE4M;
 165  168  size_t contig_mem_slab_size                     = MMU_PAGESIZE4M;
 166  169  
 167  170  /* Boot-time allocated buffer to pre-populate the contig_mem_arena */
 168  171  static size_t contig_mem_prealloc_size;
 169  172  static void *contig_mem_prealloc_buf;
 170  173  
 171  174  /*
 172  175   * The maximum amount a randomized mapping will be slewed.  We should perhaps
 173  176   * arrange things so these tunables can be separate for mmap, mmapobj, and
 174  177   * ld.so
 175  178   */
 176  179  size_t aslr_max_map_skew = 256 * 1024 * 1024; /* 256MB */
 177  180  
 178  181  /*
 179  182   * map_addr_proc() is the routine called when the system is to
 180  183   * choose an address for the user.  We will pick an address
 181  184   * range which is just below the current stack limit.  The
 182  185   * algorithm used for cache consistency on machines with virtual
 183  186   * address caches is such that offset 0 in the vnode is always
 184  187   * on a shm_alignment'ed aligned address.  Unfortunately, this
 185  188   * means that vnodes which are demand paged will not be mapped
 186  189   * cache consistently with the executable images.  When the
 187  190   * cache alignment for a given object is inconsistent, the
 188  191   * lower level code must manage the translations so that this
 189  192   * is not seen here (at the cost of efficiency, of course).
 190  193   *
 191  194   * Every mapping will have a redzone of a single page on either side of
 192  195   * the request. This is done to leave one page unmapped between segments.
 193  196   * This is not required, but it's useful for the user because if their
 194  197   * program strays across a segment boundary, it will catch a fault
 195  198   * immediately making debugging a little easier.  Currently the redzone
 196  199   * is mandatory.
 197  200   *
 198  201   * addrp is a value/result parameter.
 199  202   *      On input it is a hint from the user to be used in a completely
 200  203   *      machine dependent fashion.  For MAP_ALIGN, addrp contains the
 201  204   *      minimal alignment, which must be some "power of two" multiple of
 202  205   *      pagesize.
 203  206   *
 204  207   *      On output it is NULL if no address can be found in the current
 205  208   *      processes address space or else an address that is currently
 206  209   *      not mapped for len bytes with a page of red zone on either side.
 207  210   *      If vacalign is true, then the selected address will obey the alignment
 208  211   *      constraints of a vac machine based on the given off value.
 209  212   */
 210  213  /*ARGSUSED3*/
 211  214  void
 212  215  map_addr_proc(caddr_t *addrp, size_t len, offset_t off, int vacalign,
 213  216      caddr_t userlimit, struct proc *p, uint_t flags)
 214  217  {
 215  218          struct as *as = p->p_as;
 216  219          caddr_t addr;
 217  220          caddr_t base;
 218  221          size_t slen;
 219  222          uintptr_t align_amount;
 220  223          int allow_largepage_alignment = 1;
 221  224  
 222  225          base = p->p_brkbase;
 223  226          if (userlimit < as->a_userlimit) {
 224  227                  /*
 225  228                   * This happens when a program wants to map something in
 226  229                   * a range that's accessible to a program in a smaller
 227  230                   * address space.  For example, a 64-bit program might
 228  231                   * be calling mmap32(2) to guarantee that the returned
 229  232                   * address is below 4Gbytes.
 230  233                   */
 231  234                  ASSERT(userlimit > base);
 232  235                  slen = userlimit - base;
 233  236          } else {
 234  237                  slen = p->p_usrstack - base -
 235  238                      ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK);
 236  239          }
 237  240          /* Make len be a multiple of PAGESIZE */
 238  241          len = (len + PAGEOFFSET) & PAGEMASK;
 239  242  
 240  243          /*
 241  244           *  If the request is larger than the size of a particular
 242  245           *  mmu level, then we use that level to map the request.
 243  246           *  But this requires that both the virtual and the physical
 244  247           *  addresses be aligned with respect to that level, so we
 245  248           *  do the virtual bit of nastiness here.
 246  249           *
 247  250           *  For 32-bit processes, only those which have specified
 248  251           *  MAP_ALIGN or an addr will be aligned on a page size > 4MB. Otherwise
 249  252           *  we can potentially waste up to 256MB of the 4G process address
 250  253           *  space just for alignment.
 251  254           *
 252  255           * XXXQ Should iterate trough hw_page_array here to catch
 253  256           * all supported pagesizes
 254  257           */
 255  258          if (p->p_model == DATAMODEL_ILP32 && ((flags & MAP_ALIGN) == 0 ||
 256  259              ((uintptr_t)*addrp) != 0)) {
 257  260                  allow_largepage_alignment = 0;
 258  261          }
 259  262          if ((mmu_page_sizes == max_mmu_page_sizes) &&
 260  263              allow_largepage_alignment &&
 261  264              (len >= MMU_PAGESIZE256M)) {        /* 256MB mappings */
 262  265                  align_amount = MMU_PAGESIZE256M;
 263  266          } else if ((mmu_page_sizes == max_mmu_page_sizes) &&
 264  267              allow_largepage_alignment &&
 265  268              (len >= MMU_PAGESIZE32M)) { /* 32MB mappings */
 266  269                  align_amount = MMU_PAGESIZE32M;
 267  270          } else if (len >= MMU_PAGESIZE4M) {  /* 4MB mappings */
 268  271                  align_amount = MMU_PAGESIZE4M;
 269  272          } else if (len >= MMU_PAGESIZE512K) { /* 512KB mappings */
 270  273                  align_amount = MMU_PAGESIZE512K;
 271  274          } else if (len >= MMU_PAGESIZE64K) { /* 64KB mappings */
 272  275                  align_amount = MMU_PAGESIZE64K;
 273  276          } else  {
 274  277                  /*
 275  278                   * Align virtual addresses on a 64K boundary to ensure
 276  279                   * that ELF shared libraries are mapped with the appropriate
 277  280                   * alignment constraints by the run-time linker.
 278  281                   */
 279  282                  align_amount = ELF_SPARC_MAXPGSZ;
 280  283                  if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp != 0) &&
 281  284                      ((uintptr_t)*addrp < align_amount))
 282  285                          align_amount = (uintptr_t)*addrp;
 283  286          }
 284  287  
 285  288          /*
 286  289           * 64-bit processes require 1024K alignment of ELF shared libraries.
 287  290           */
 288  291          if (p->p_model == DATAMODEL_LP64)
 289  292                  align_amount = MAX(align_amount, ELF_SPARCV9_MAXPGSZ);
 290  293  #ifdef VAC
 291  294          if (vac && vacalign && (align_amount < shm_alignment))
 292  295                  align_amount = shm_alignment;
 293  296  #endif
 294  297  
 295  298          if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) {
 296  299                  align_amount = (uintptr_t)*addrp;
 297  300          }
 298  301  
 299  302          ASSERT(ISP2(align_amount));
 300  303          ASSERT(align_amount == 0 || align_amount >= PAGESIZE);
 301  304  
 302  305          /*
 303  306           * Look for a large enough hole starting below the stack limit.
 304  307           * After finding it, use the upper part.
 305  308           */
 306  309          as_purge(as);
 307  310          off = off & (align_amount - 1);
 308  311          if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount,
 309  312              PAGESIZE, off) == 0) {
 310  313                  caddr_t as_addr;
 311  314  
 312  315                  /*
 313  316                   * addr is the highest possible address to use since we have
 314  317                   * a PAGESIZE redzone at the beginning and end.
 315  318                   */
 316  319                  addr = base + slen - (PAGESIZE + len);
 317  320                  as_addr = addr;
 318  321                  /*
 319  322                   * Round address DOWN to the alignment amount and
 320  323                   * add the offset in.
 321  324                   * If addr is greater than as_addr, len would not be large
 322  325                   * enough to include the redzone, so we must adjust down
 323  326                   * by the alignment amount.
 324  327                   */
 325  328                  addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1l)));
 326  329                  addr += (long)off;
 327  330                  if (addr > as_addr) {
 328  331                          addr -= align_amount;
 329  332                  }
 330  333  
 331  334                  /*
 332  335                   * If randomization is requested, slew the allocation
 333  336                   * backwards, within the same gap, by a random amount.
 334  337                   */
 335  338                  if (flags & _MAP_RANDOMIZE) {
 336  339                          uint32_t slew;
 337  340  
 338  341                          (void) random_get_pseudo_bytes((uint8_t *)&slew,
 339  342                              sizeof (slew));
 340  343  
 341  344                          slew = slew % MIN(aslr_max_map_skew, (addr - base));
 342  345                          addr -= P2ALIGN(slew, align_amount);
 343  346                  }
 344  347  
 345  348                  ASSERT(addr > base);
 346  349                  ASSERT(addr + len < base + slen);
 347  350                  ASSERT(((uintptr_t)addr & (align_amount - 1l)) ==
 348  351                      ((uintptr_t)(off)));
 349  352                  *addrp = addr;
 350  353  
 351  354          } else {
 352  355                  *addrp = NULL;  /* no more virtual space */
 353  356          }
 354  357  }
 355  358  
 356  359  /*
 357  360   * Platform-dependent page scrub call.
 358  361   * We call hypervisor to scrub the page.
 359  362   */
 360  363  void
 361  364  pagescrub(page_t *pp, uint_t off, uint_t len)
 362  365  {
 363  366          uint64_t pa, length;
 364  367  
 365  368          pa = (uint64_t)(pp->p_pagenum << MMU_PAGESHIFT + off);
 366  369          length = (uint64_t)len;
 367  370  
 368  371          (void) mem_scrub(pa, length);
 369  372  }
 370  373  
 371  374  void
 372  375  sync_data_memory(caddr_t va, size_t len)
 373  376  {
 374  377          /* Call memory sync function */
 375  378          (void) mem_sync(va, len);
 376  379  }
 377  380  
 378  381  size_t
 379  382  mmu_get_kernel_lpsize(size_t lpsize)
 380  383  {
 381  384          extern int mmu_exported_pagesize_mask;
 382  385          uint_t tte;
 383  386  
 384  387          if (lpsize == 0) {
 385  388                  /* no setting for segkmem_lpsize in /etc/system: use default */
 386  389                  if (mmu_exported_pagesize_mask & (1 << TTE256M)) {
 387  390                          lpsize = MMU_PAGESIZE256M;
 388  391                  } else if (mmu_exported_pagesize_mask & (1 << TTE4M)) {
 389  392                          lpsize = MMU_PAGESIZE4M;
 390  393                  } else if (mmu_exported_pagesize_mask & (1 << TTE64K)) {
 391  394                          lpsize = MMU_PAGESIZE64K;
 392  395                  } else {
 393  396                          lpsize = MMU_PAGESIZE;
 394  397                  }
 395  398  
 396  399                  return (lpsize);
 397  400          }
 398  401  
 399  402          for (tte = TTE8K; tte <= TTE256M; tte++) {
 400  403  
 401  404                  if ((mmu_exported_pagesize_mask & (1 << tte)) == 0)
 402  405                          continue;
 403  406  
 404  407                  if (lpsize == TTEBYTES(tte))
 405  408                          return (lpsize);
 406  409          }
 407  410  
 408  411          lpsize = TTEBYTES(TTE8K);
 409  412          return (lpsize);
 410  413  }
 411  414  
 412  415  void
 413  416  mmu_init_kcontext()
 414  417  {
 415  418  }
 416  419  
 417  420  /*ARGSUSED*/
 418  421  void
 419  422  mmu_init_kernel_pgsz(struct hat *hat)
 420  423  {
 421  424  }
 422  425  
 423  426  static void *
 424  427  contig_mem_span_alloc(vmem_t *vmp, size_t size, int vmflag)
 425  428  {
 426  429          page_t *ppl;
 427  430          page_t *rootpp;
 428  431          caddr_t addr = NULL;
 429  432          pgcnt_t npages = btopr(size);
 430  433          page_t **ppa;
 431  434          int pgflags;
 432  435          spgcnt_t i = 0;
 433  436  
 434  437  
 435  438          ASSERT(size <= contig_mem_import_size_max);
 436  439          ASSERT((size & (size - 1)) == 0);
 437  440  
 438  441          if ((addr = vmem_xalloc(vmp, size, size, 0, 0,
 439  442              NULL, NULL, vmflag)) == NULL) {
 440  443                  return (NULL);
 441  444          }
 442  445  
 443  446          /* The address should be slab-size aligned. */
 444  447          ASSERT(((uintptr_t)addr & (size - 1)) == 0);
 445  448  
 446  449          if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
 447  450                  vmem_xfree(vmp, addr, size);
 448  451                  return (NULL);
 449  452          }
 450  453  
 451  454          pgflags = PG_EXCL;
 452  455          if (vmflag & VM_NORELOC)
 453  456                  pgflags |= PG_NORELOC;
 454  457  
 455  458          ppl = page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size,
 456  459              pgflags, &kvseg, addr, NULL);
 457  460  
 458  461          if (ppl == NULL) {
 459  462                  vmem_xfree(vmp, addr, size);
 460  463                  page_unresv(npages);
 461  464                  return (NULL);
 462  465          }
 463  466  
 464  467          rootpp = ppl;
 465  468          ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP);
 466  469          while (ppl != NULL) {
 467  470                  page_t *pp = ppl;
 468  471                  ppa[i++] = pp;
 469  472                  page_sub(&ppl, pp);
 470  473                  ASSERT(page_iolock_assert(pp));
 471  474                  ASSERT(PAGE_EXCL(pp));
 472  475                  page_io_unlock(pp);
 473  476          }
 474  477  
 475  478          /*
 476  479           * Load the locked entry.  It's OK to preload the entry into
 477  480           * the TSB since we now support large mappings in the kernel TSB.
 478  481           */
 479  482          hat_memload_array(kas.a_hat, (caddr_t)rootpp->p_offset, size,
 480  483              ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC, HAT_LOAD_LOCK);
 481  484  
 482  485          ASSERT(i == page_get_pagecnt(ppa[0]->p_szc));
 483  486          for (--i; i >= 0; --i) {
 484  487                  ASSERT(ppa[i]->p_szc == ppa[0]->p_szc);
 485  488                  ASSERT(page_pptonum(ppa[i]) == page_pptonum(ppa[0]) + i);
 486  489                  (void) page_pp_lock(ppa[i], 0, 1);
 487  490                  /*
 488  491                   * Leave the page share locked. For non-cage pages,
 489  492                   * this would prevent memory DR if it were supported
 490  493                   * on sun4v.
 491  494                   */
 492  495                  page_downgrade(ppa[i]);
 493  496          }
 494  497  
 495  498          kmem_free(ppa, npages * sizeof (page_t *));
 496  499          return (addr);
 497  500  }
 498  501  
 499  502  /*
 500  503   * Allocates a slab by first trying to use the largest slab size
 501  504   * in contig_mem_import_sizes and then falling back to smaller slab
 502  505   * sizes still large enough for the allocation. The sizep argument
 503  506   * is a pointer to the requested size. When a slab is successfully
 504  507   * allocated, the slab size, which must be >= *sizep and <=
 505  508   * contig_mem_import_size_max, is returned in the *sizep argument.
 506  509   * Returns the virtual address of the new slab.
 507  510   */
 508  511  static void *
 509  512  span_alloc_downsize(vmem_t *vmp, size_t *sizep, size_t align, int vmflag)
 510  513  {
 511  514          int i;
 512  515  
 513  516          ASSERT(*sizep <= contig_mem_import_size_max);
 514  517  
 515  518          for (i = 0; i < NUM_IMPORT_SIZES; i++) {
 516  519                  size_t page_size = contig_mem_import_sizes[i];
 517  520  
 518  521                  /*
 519  522                   * Check that the alignment is also less than the
 520  523                   * import (large page) size. In the case where the
 521  524                   * alignment is larger than the size, a large page
 522  525                   * large enough for the allocation is not necessarily
 523  526                   * physical-address aligned to satisfy the requested
 524  527                   * alignment. Since alignment is required to be a
 525  528                   * power-of-2, any large page >= size && >= align will
 526  529                   * suffice.
 527  530                   */
 528  531                  if (*sizep <= page_size && align <= page_size) {
 529  532                          void *addr;
 530  533                          addr = contig_mem_span_alloc(vmp, page_size, vmflag);
 531  534                          if (addr == NULL)
 532  535                                  continue;
 533  536                          *sizep = page_size;
 534  537                          return (addr);
 535  538                  }
 536  539                  return (NULL);
 537  540          }
 538  541  
 539  542          return (NULL);
 540  543  }
 541  544  
 542  545  static void *
 543  546  contig_mem_span_xalloc(vmem_t *vmp, size_t *sizep, size_t align, int vmflag)
 544  547  {
 545  548          return (span_alloc_downsize(vmp, sizep, align, vmflag | VM_NORELOC));
 546  549  }
 547  550  
 548  551  static void *
 549  552  contig_mem_reloc_span_xalloc(vmem_t *vmp, size_t *sizep, size_t align,
 550  553      int vmflag)
 551  554  {
 552  555          ASSERT((vmflag & VM_NORELOC) == 0);
 553  556          return (span_alloc_downsize(vmp, sizep, align, vmflag));
 554  557  }
 555  558  
 556  559  /*
 557  560   * Free a span, which is always exactly one large page.
 558  561   */
 559  562  static void
 560  563  contig_mem_span_free(vmem_t *vmp, void *inaddr, size_t size)
 561  564  {
 562  565          page_t *pp;
 563  566          caddr_t addr = inaddr;
 564  567          caddr_t eaddr;
 565  568          pgcnt_t npages = btopr(size);
 566  569          page_t *rootpp = NULL;
 567  570  
 568  571          ASSERT(size <= contig_mem_import_size_max);
 569  572          /* All slabs should be size aligned */
 570  573          ASSERT(((uintptr_t)addr & (size - 1)) == 0);
 571  574  
 572  575          hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);
 573  576  
 574  577          for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
 575  578                  pp = page_find(&kvp, (u_offset_t)(uintptr_t)addr);
 576  579                  if (pp == NULL) {
 577  580                          panic("contig_mem_span_free: page not found");
 578  581                  }
 579  582                  if (!page_tryupgrade(pp)) {
 580  583                          page_unlock(pp);
 581  584                          pp = page_lookup(&kvp,
 582  585                              (u_offset_t)(uintptr_t)addr, SE_EXCL);
 583  586                          if (pp == NULL)
 584  587                                  panic("contig_mem_span_free: page not found");
 585  588                  }
 586  589  
 587  590                  ASSERT(PAGE_EXCL(pp));
 588  591                  ASSERT(size == page_get_pagesize(pp->p_szc));
 589  592                  ASSERT(rootpp == NULL || rootpp->p_szc == pp->p_szc);
 590  593                  ASSERT(rootpp == NULL || (page_pptonum(rootpp) +
 591  594                      (pgcnt_t)btop(addr - (caddr_t)inaddr) == page_pptonum(pp)));
 592  595  
 593  596                  page_pp_unlock(pp, 0, 1);
 594  597  
 595  598                  if (rootpp == NULL)
 596  599                          rootpp = pp;
 597  600          }
 598  601          page_destroy_pages(rootpp);
 599  602          page_unresv(npages);
 600  603  
 601  604          if (vmp != NULL)
 602  605                  vmem_xfree(vmp, inaddr, size);
 603  606  }
 604  607  
 605  608  static void *
 606  609  contig_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t *sizep, size_t align,
 607  610      int vmflag)
 608  611  {
 609  612          ASSERT((align & (align - 1)) == 0);
 610  613          return (vmem_xalloc(vmp, *sizep, align, 0, 0, NULL, NULL, vmflag));
 611  614  }
 612  615  
 613  616  /*
 614  617   * contig_mem_alloc, contig_mem_alloc_align
 615  618   *
 616  619   * Caution: contig_mem_alloc and contig_mem_alloc_align should be
 617  620   * used only when physically contiguous non-relocatable memory is
 618  621   * required. Furthermore, use of these allocation routines should be
 619  622   * minimized as well as should the allocation size. As described in the
 620  623   * contig_mem_arena comment block above, slab allocations fall back to
 621  624   * being outside of the cage. Therefore, overuse of these allocation
 622  625   * routines can lead to non-relocatable large pages being allocated
 623  626   * outside the cage. Such pages prevent the allocation of a larger page
 624  627   * occupying overlapping pages. This can impact performance for
 625  628   * applications that utilize e.g. 256M large pages.
 626  629   */
 627  630  
 628  631  /*
 629  632   * Allocates size aligned contiguous memory up to contig_mem_import_size_max.
 630  633   * Size must be a power of 2.
 631  634   */
 632  635  void *
 633  636  contig_mem_alloc(size_t size)
 634  637  {
 635  638          ASSERT((size & (size - 1)) == 0);
 636  639          return (contig_mem_alloc_align(size, size));
 637  640  }
 638  641  
 639  642  /*
 640  643   * contig_mem_alloc_align allocates real contiguous memory with the
 641  644   * specified alignment up to contig_mem_import_size_max. The alignment must
 642  645   * be a power of 2 and no greater than contig_mem_import_size_max. We assert
 643  646   * the aligment is a power of 2. For non-debug, vmem_xalloc will panic
 644  647   * for non power of 2 alignments.
 645  648   */
 646  649  void *
 647  650  contig_mem_alloc_align(size_t size, size_t align)
 648  651  {
 649  652          void *buf;
 650  653  
 651  654          ASSERT(size <= contig_mem_import_size_max);
 652  655          ASSERT(align <= contig_mem_import_size_max);
 653  656          ASSERT((align & (align - 1)) == 0);
 654  657  
 655  658          if (align < CONTIG_MEM_ARENA_QUANTUM)
 656  659                  align = CONTIG_MEM_ARENA_QUANTUM;
 657  660  
 658  661          /*
 659  662           * We take the lock here to serialize span allocations.
 660  663           * We do not lose concurrency for the common case, since
 661  664           * allocations that don't require new span allocations
 662  665           * are serialized by vmem_xalloc. Serializing span
 663  666           * allocations also prevents us from trying to allocate
 664  667           * more spans than necessary.
 665  668           */
 666  669          mutex_enter(&contig_mem_lock);
 667  670  
 668  671          buf = vmem_xalloc(contig_mem_arena, size, align, 0, 0,
 669  672              NULL, NULL, VM_NOSLEEP | VM_NORELOC);
 670  673  
 671  674          if ((buf == NULL) && (size <= MMU_PAGESIZE)) {
 672  675                  mutex_exit(&contig_mem_lock);
 673  676                  return (vmem_xalloc(static_alloc_arena, size, align, 0, 0,
 674  677                      NULL, NULL, VM_NOSLEEP));
 675  678          }
 676  679  
 677  680          if (buf == NULL) {
 678  681                  buf = vmem_xalloc(contig_mem_reloc_arena, size, align, 0, 0,
 679  682                      NULL, NULL, VM_NOSLEEP);
 680  683          }
 681  684  
 682  685          mutex_exit(&contig_mem_lock);
 683  686  
 684  687          return (buf);
 685  688  }
 686  689  
 687  690  void
 688  691  contig_mem_free(void *vaddr, size_t size)
 689  692  {
 690  693          if (vmem_contains(contig_mem_arena, vaddr, size)) {
 691  694                  vmem_xfree(contig_mem_arena, vaddr, size);
 692  695          } else if (size > MMU_PAGESIZE) {
 693  696                  vmem_xfree(contig_mem_reloc_arena, vaddr, size);
 694  697          } else {
 695  698                  vmem_xfree(static_alloc_arena, vaddr, size);
 696  699          }
 697  700  }
 698  701  
 699  702  /*
 700  703   * We create a set of stacked vmem arenas to enable us to
 701  704   * allocate large >PAGESIZE chucks of contiguous Real Address space.
 702  705   * The vmem_xcreate interface is used to create the contig_mem_arena
 703  706   * allowing the import routine to downsize the requested slab size
 704  707   * and return a smaller slab.
 705  708   */
 706  709  void
 707  710  contig_mem_init(void)
 708  711  {
 709  712          mutex_init(&contig_mem_lock, NULL, MUTEX_DEFAULT, NULL);
 710  713  
 711  714          contig_mem_slab_arena = vmem_xcreate("contig_mem_slab_arena", NULL, 0,
 712  715              CONTIG_MEM_SLAB_ARENA_QUANTUM, contig_vmem_xalloc_aligned_wrapper,
 713  716              vmem_xfree, heap_arena, 0, VM_SLEEP | VMC_XALIGN);
 714  717  
 715  718          contig_mem_arena = vmem_xcreate("contig_mem_arena", NULL, 0,
 716  719              CONTIG_MEM_ARENA_QUANTUM, contig_mem_span_xalloc,
 717  720              contig_mem_span_free, contig_mem_slab_arena, 0,
 718  721              VM_SLEEP | VM_BESTFIT | VMC_XALIGN);
 719  722  
 720  723          contig_mem_reloc_arena = vmem_xcreate("contig_mem_reloc_arena", NULL, 0,
 721  724              CONTIG_MEM_ARENA_QUANTUM, contig_mem_reloc_span_xalloc,
 722  725              contig_mem_span_free, contig_mem_slab_arena, 0,
 723  726              VM_SLEEP | VM_BESTFIT | VMC_XALIGN);
 724  727  
 725  728          if (contig_mem_prealloc_buf == NULL || vmem_add(contig_mem_arena,
 726  729              contig_mem_prealloc_buf, contig_mem_prealloc_size, VM_SLEEP)
 727  730              == NULL) {
 728  731                  cmn_err(CE_WARN, "Failed to pre-populate contig_mem_arena");
 729  732          }
 730  733  }
 731  734  
 732  735  /*
 733  736   * In calculating how much memory to pre-allocate, we include a small
 734  737   * amount per-CPU to account for per-CPU buffers in line with measured
 735  738   * values for different size systems. contig_mem_prealloc_base_size is
 736  739   * a cpu specific amount to be pre-allocated before considering per-CPU
 737  740   * requirements and memory size. We always pre-allocate a minimum amount
 738  741   * of memory determined by PREALLOC_MIN. Beyond that, we take the minimum
 739  742   * of contig_mem_prealloc_base_size and a small percentage of physical
 740  743   * memory to prevent allocating too much on smaller systems.
 741  744   * contig_mem_prealloc_base_size is global, allowing for the CPU module
 742  745   * to increase its value if necessary.
 743  746   */
 744  747  #define PREALLOC_PER_CPU        (256 * 1024)            /* 256K */
 745  748  #define PREALLOC_PERCENT        (4)                     /* 4% */
 746  749  #define PREALLOC_MIN            (16 * 1024 * 1024)      /* 16M */
 747  750  size_t contig_mem_prealloc_base_size = 0;
 748  751  
 749  752  /*
 750  753   * Called at boot-time allowing pre-allocation of contiguous memory.
 751  754   * The argument 'alloc_base' is the requested base address for the
 752  755   * allocation and originates in startup_memlist.
 753  756   */
 754  757  caddr_t
 755  758  contig_mem_prealloc(caddr_t alloc_base, pgcnt_t npages)
 756  759  {
 757  760          caddr_t chunkp;
 758  761  
 759  762          contig_mem_prealloc_size = MIN((PREALLOC_PER_CPU * ncpu_guest_max) +
 760  763              contig_mem_prealloc_base_size,
 761  764              (ptob(npages) * PREALLOC_PERCENT) / 100);
 762  765          contig_mem_prealloc_size = MAX(contig_mem_prealloc_size, PREALLOC_MIN);
 763  766          contig_mem_prealloc_size = P2ROUNDUP(contig_mem_prealloc_size,
 764  767              MMU_PAGESIZE4M);
 765  768  
 766  769          alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, MMU_PAGESIZE4M);
 767  770          if (prom_alloc(alloc_base, contig_mem_prealloc_size,
 768  771              MMU_PAGESIZE4M) != alloc_base) {
 769  772  
 770  773                  /*
 771  774                   * Failed.  This may mean the physical memory has holes in it
 772  775                   * and it will be more difficult to get large contiguous
 773  776                   * pieces of memory.  Since we only guarantee contiguous
 774  777                   * pieces of memory contig_mem_import_size_max or smaller,
 775  778                   * loop, getting contig_mem_import_size_max at a time, until
 776  779                   * failure or contig_mem_prealloc_size is reached.
 777  780                   */
 778  781                  for (chunkp = alloc_base;
 779  782                      (chunkp - alloc_base) < contig_mem_prealloc_size;
 780  783                      chunkp += contig_mem_import_size_max) {
 781  784  
 782  785                          if (prom_alloc(chunkp, contig_mem_import_size_max,
 783  786                              MMU_PAGESIZE4M) != chunkp) {
 784  787                                  break;
 785  788                          }
 786  789                  }
 787  790                  contig_mem_prealloc_size = chunkp - alloc_base;
 788  791                  ASSERT(contig_mem_prealloc_size != 0);
 789  792          }
 790  793  
 791  794          if (contig_mem_prealloc_size != 0) {
 792  795                  contig_mem_prealloc_buf = alloc_base;
 793  796          } else {
 794  797                  contig_mem_prealloc_buf = NULL;
 795  798          }
 796  799          alloc_base += contig_mem_prealloc_size;
 797  800  
 798  801          return (alloc_base);
 799  802  }
  
    | 
      ↓ open down ↓ | 
    729 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX