Print this page
    
re #13613 rb4516 Tunables needs volatile keyword
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/sun4u/vm/mach_vm_dep.c
          +++ new/usr/src/uts/sun4u/vm/mach_vm_dep.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  
    | 
      ↓ open down ↓ | 
    14 lines elided | 
    
      ↑ open up ↑ | 
  
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  /*
  22   22   * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23   23   * Use is subject to license terms.
  24   24   */
       25 +/*
       26 + * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
       27 + */
  25   28  
  26   29  /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
  27   30  /*      All Rights Reserved   */
  28   31  
  29   32  /*
  30   33   * Portions of this source code were derived from Berkeley 4.3 BSD
  31   34   * under license from the Regents of the University of California.
  32   35   */
  33   36  
  34   37  /*
  35   38   * UNIX machine dependent virtual memory support.
  36   39   */
  37   40  
  38   41  #include <sys/vm.h>
  39   42  #include <sys/exec.h>
  40   43  #include <sys/cmn_err.h>
  41   44  #include <sys/cpu_module.h>
  42   45  #include <sys/cpu.h>
  43   46  #include <sys/elf_SPARC.h>
  44   47  #include <sys/archsystm.h>
  45   48  #include <vm/hat_sfmmu.h>
  46   49  #include <sys/memnode.h>
  47   50  #include <sys/mem_cage.h>
  
    | 
      ↓ open down ↓ | 
    13 lines elided | 
    
      ↑ open up ↑ | 
  
  48   51  #include <vm/vm_dep.h>
  49   52  #include <sys/random.h>
  50   53  
  51   54  #if defined(__sparcv9) && defined(SF_ERRATA_57)
  52   55  caddr_t errata57_limit;
  53   56  #endif
  54   57  
  55   58  uint_t page_colors = 0;
  56   59  uint_t page_colors_mask = 0;
  57   60  uint_t page_coloring_shift = 0;
  58      -int consistent_coloring;
       61 +volatile int consistent_coloring;
  59   62  int update_proc_pgcolorbase_after_fork = 0;
  60   63  
  61   64  uint_t mmu_page_sizes = DEFAULT_MMU_PAGE_SIZES;
  62   65  uint_t max_mmu_page_sizes = MMU_PAGE_SIZES;
  63   66  uint_t mmu_hashcnt = DEFAULT_MAX_HASHCNT;
  64   67  uint_t max_mmu_hashcnt = MAX_HASHCNT;
  65   68  size_t mmu_ism_pagesize = DEFAULT_ISM_PAGESIZE;
  66   69  
  67   70  /*
  68   71   * The sun4u hardware mapping sizes which will always be supported are
  69   72   * 8K, 64K, 512K and 4M.  If sun4u based machines need to support other
  70   73   * page sizes, platform or cpu specific routines need to modify the value.
  71   74   * The base pagesize (p_szc == 0) must always be supported by the hardware.
  72   75   */
  73   76  int mmu_exported_pagesize_mask = (1 << TTE8K) | (1 << TTE64K) |
  74   77          (1 << TTE512K) | (1 << TTE4M);
  75   78  uint_t mmu_exported_page_sizes;
  76   79  
  77   80  uint_t szc_2_userszc[MMU_PAGE_SIZES];
  78   81  uint_t userszc_2_szc[MMU_PAGE_SIZES];
  79   82  
  80   83  extern uint_t vac_colors_mask;
  81   84  extern int vac_shift;
  82   85  
  83   86  hw_pagesize_t hw_page_array[] = {
  84   87          {MMU_PAGESIZE, MMU_PAGESHIFT, 0, MMU_PAGESIZE >> MMU_PAGESHIFT},
  85   88          {MMU_PAGESIZE64K, MMU_PAGESHIFT64K, 0,
  86   89              MMU_PAGESIZE64K >> MMU_PAGESHIFT},
  87   90          {MMU_PAGESIZE512K, MMU_PAGESHIFT512K, 0,
  88   91              MMU_PAGESIZE512K >> MMU_PAGESHIFT},
  89   92          {MMU_PAGESIZE4M, MMU_PAGESHIFT4M, 0, MMU_PAGESIZE4M >> MMU_PAGESHIFT},
  90   93          {MMU_PAGESIZE32M, MMU_PAGESHIFT32M, 0,
  91   94              MMU_PAGESIZE32M >> MMU_PAGESHIFT},
  92   95          {MMU_PAGESIZE256M, MMU_PAGESHIFT256M, 0,
  93   96              MMU_PAGESIZE256M >> MMU_PAGESHIFT},
  94   97          {0, 0, 0, 0}
  95   98  };
  96   99  
  97  100  /*
  98  101   * Maximum page size used to map 64-bit memory segment kmem64_base..kmem64_end
  99  102   */
 100  103  int     max_bootlp_tteszc = TTE4M;
 101  104  
 102  105  /*
 103  106   * use_text_pgsz64k and use_text_pgsz512k allow the user to turn on these
 104  107   * additional text page sizes for USIII-IV+ and OPL by changing the default
 105  108   * values via /etc/system.
 106  109   */
 107  110  int     use_text_pgsz64K = 0;
 108  111  int     use_text_pgsz512K = 0;
 109  112  
 110  113  /*
 111  114   * Maximum and default segment size tunables for user heap, stack, private
 112  115   * and shared anonymous memory, and user text and initialized data.
 113  116   */
 114  117  size_t max_uheap_lpsize = MMU_PAGESIZE4M;
 115  118  size_t default_uheap_lpsize = MMU_PAGESIZE;
 116  119  size_t max_ustack_lpsize = MMU_PAGESIZE4M;
 117  120  size_t default_ustack_lpsize = MMU_PAGESIZE;
 118  121  size_t max_privmap_lpsize = MMU_PAGESIZE4M;
 119  122  size_t max_uidata_lpsize = MMU_PAGESIZE;
 120  123  size_t max_utext_lpsize = MMU_PAGESIZE4M;
 121  124  size_t max_shm_lpsize = MMU_PAGESIZE4M;
 122  125  
 123  126  void
 124  127  adjust_data_maxlpsize(size_t ismpagesize)
 125  128  {
 126  129          if (max_uheap_lpsize == MMU_PAGESIZE4M) {
 127  130                  max_uheap_lpsize = ismpagesize;
 128  131          }
 129  132          if (max_ustack_lpsize == MMU_PAGESIZE4M) {
 130  133                  max_ustack_lpsize = ismpagesize;
 131  134          }
 132  135          if (max_privmap_lpsize == MMU_PAGESIZE4M) {
 133  136                  max_privmap_lpsize = ismpagesize;
 134  137          }
 135  138          if (max_shm_lpsize == MMU_PAGESIZE4M) {
 136  139                  max_shm_lpsize = ismpagesize;
 137  140          }
 138  141  }
 139  142  
 140  143  /*
 141  144   * The maximum amount a randomized mapping will be slewed.  We should perhaps
 142  145   * arrange things so these tunables can be separate for mmap, mmapobj, and
 143  146   * ld.so
 144  147   */
 145  148  size_t aslr_max_map_skew = 256 * 1024 * 1024; /* 256MB */
 146  149  
 147  150  /*
 148  151   * map_addr_proc() is the routine called when the system is to
 149  152   * choose an address for the user.  We will pick an address
 150  153   * range which is just below the current stack limit.  The
 151  154   * algorithm used for cache consistency on machines with virtual
 152  155   * address caches is such that offset 0 in the vnode is always
 153  156   * on a shm_alignment'ed aligned address.  Unfortunately, this
 154  157   * means that vnodes which are demand paged will not be mapped
 155  158   * cache consistently with the executable images.  When the
 156  159   * cache alignment for a given object is inconsistent, the
 157  160   * lower level code must manage the translations so that this
 158  161   * is not seen here (at the cost of efficiency, of course).
 159  162   *
 160  163   * Every mapping will have a redzone of a single page on either side of
 161  164   * the request. This is done to leave one page unmapped between segments.
 162  165   * This is not required, but it's useful for the user because if their
 163  166   * program strays across a segment boundary, it will catch a fault
 164  167   * immediately making debugging a little easier.  Currently the redzone
 165  168   * is mandatory.
 166  169   *
 167  170   *
 168  171   * addrp is a value/result parameter.
 169  172   *      On input it is a hint from the user to be used in a completely
 170  173   *      machine dependent fashion.  For MAP_ALIGN, addrp contains the
 171  174   *      minimal alignment, which must be some "power of two" multiple of
 172  175   *      pagesize.
 173  176   *
 174  177   *      On output it is NULL if no address can be found in the current
 175  178   *      processes address space or else an address that is currently
 176  179   *      not mapped for len bytes with a page of red zone on either side.
 177  180   *      If vacalign is true, then the selected address will obey the alignment
 178  181   *      constraints of a vac machine based on the given off value.
 179  182   */
 180  183  /*ARGSUSED4*/
 181  184  void
 182  185  map_addr_proc(caddr_t *addrp, size_t len, offset_t off, int vacalign,
 183  186      caddr_t userlimit, struct proc *p, uint_t flags)
 184  187  {
 185  188          struct as *as = p->p_as;
 186  189          caddr_t addr;
 187  190          caddr_t base;
 188  191          size_t slen;
 189  192          uintptr_t align_amount;
 190  193          int allow_largepage_alignment = 1;
 191  194  
 192  195          base = p->p_brkbase;
 193  196          if (userlimit < as->a_userlimit) {
 194  197                  /*
 195  198                   * This happens when a program wants to map something in
 196  199                   * a range that's accessible to a program in a smaller
 197  200                   * address space.  For example, a 64-bit program might
 198  201                   * be calling mmap32(2) to guarantee that the returned
 199  202                   * address is below 4Gbytes.
 200  203                   */
 201  204                  ASSERT(userlimit > base);
 202  205                  slen = userlimit - base;
 203  206          } else {
 204  207                  slen = p->p_usrstack - base -
 205  208                      ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK);
 206  209          }
 207  210  
 208  211          /* Make len be a multiple of PAGESIZE */
 209  212          len = (len + PAGEOFFSET) & PAGEMASK;
 210  213  
 211  214          /*
 212  215           *  If the request is larger than the size of a particular
 213  216           *  mmu level, then we use that level to map the request.
 214  217           *  But this requires that both the virtual and the physical
 215  218           *  addresses be aligned with respect to that level, so we
 216  219           *  do the virtual bit of nastiness here.
 217  220           *
 218  221           *  For 32-bit processes, only those which have specified
 219  222           *  MAP_ALIGN or an addr will be aligned on a page size > 4MB. Otherwise
 220  223           *  we can potentially waste up to 256MB of the 4G process address
 221  224           *  space just for alignment.
 222  225           */
 223  226          if (p->p_model == DATAMODEL_ILP32 && ((flags & MAP_ALIGN) == 0 ||
 224  227              ((uintptr_t)*addrp) != 0)) {
 225  228                  allow_largepage_alignment = 0;
 226  229          }
 227  230          if ((mmu_page_sizes == max_mmu_page_sizes) &&
 228  231              allow_largepage_alignment &&
 229  232              (len >= MMU_PAGESIZE256M)) {        /* 256MB mappings */
 230  233                  align_amount = MMU_PAGESIZE256M;
 231  234          } else if ((mmu_page_sizes == max_mmu_page_sizes) &&
 232  235              allow_largepage_alignment &&
 233  236              (len >= MMU_PAGESIZE32M)) { /* 32MB mappings */
 234  237                  align_amount = MMU_PAGESIZE32M;
 235  238          } else if (len >= MMU_PAGESIZE4M) {  /* 4MB mappings */
 236  239                  align_amount = MMU_PAGESIZE4M;
 237  240          } else if (len >= MMU_PAGESIZE512K) { /* 512KB mappings */
 238  241                  align_amount = MMU_PAGESIZE512K;
 239  242          } else if (len >= MMU_PAGESIZE64K) { /* 64KB mappings */
 240  243                  align_amount = MMU_PAGESIZE64K;
 241  244          } else  {
 242  245                  /*
 243  246                   * Align virtual addresses on a 64K boundary to ensure
 244  247                   * that ELF shared libraries are mapped with the appropriate
 245  248                   * alignment constraints by the run-time linker.
 246  249                   */
 247  250                  align_amount = ELF_SPARC_MAXPGSZ;
 248  251                  if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp != 0) &&
 249  252                      ((uintptr_t)*addrp < align_amount))
 250  253                          align_amount = (uintptr_t)*addrp;
 251  254          }
 252  255  
 253  256          /*
 254  257           * 64-bit processes require 1024K alignment of ELF shared libraries.
 255  258           */
 256  259          if (p->p_model == DATAMODEL_LP64)
 257  260                  align_amount = MAX(align_amount, ELF_SPARCV9_MAXPGSZ);
 258  261  #ifdef VAC
 259  262          if (vac && vacalign && (align_amount < shm_alignment))
 260  263                  align_amount = shm_alignment;
 261  264  #endif
 262  265  
 263  266          if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) {
 264  267                  align_amount = (uintptr_t)*addrp;
 265  268          }
 266  269  
 267  270          ASSERT(ISP2(align_amount));
 268  271          ASSERT(align_amount == 0 || align_amount >= PAGESIZE);
 269  272  
 270  273          /*
 271  274           * Look for a large enough hole starting below the stack limit.
 272  275           * After finding it, use the upper part.
 273  276           */
 274  277          as_purge(as);
 275  278          off = off & (align_amount - 1);
 276  279  
 277  280          if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount,
 278  281              PAGESIZE, off) == 0) {
 279  282                  caddr_t as_addr;
 280  283  
 281  284                  /*
 282  285                   * addr is the highest possible address to use since we have
 283  286                   * a PAGESIZE redzone at the beginning and end.
 284  287                   */
 285  288                  addr = base + slen - (PAGESIZE + len);
 286  289                  as_addr = addr;
 287  290                  /*
 288  291                   * Round address DOWN to the alignment amount and
 289  292                   * add the offset in.
 290  293                   * If addr is greater than as_addr, len would not be large
 291  294                   * enough to include the redzone, so we must adjust down
 292  295                   * by the alignment amount.
 293  296                   */
 294  297                  addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1l)));
 295  298                  addr += (long)off;
 296  299                  if (addr > as_addr) {
 297  300                          addr -= align_amount;
 298  301                  }
 299  302  
 300  303                  /*
 301  304                   * If randomization is requested, slew the allocation
 302  305                   * backwards, within the same gap, by a random amount.
 303  306                   */
 304  307                  if (flags & _MAP_RANDOMIZE) {
 305  308                          uint32_t slew;
 306  309                          uint32_t maxslew;
 307  310  
 308  311                          (void) random_get_pseudo_bytes((uint8_t *)&slew,
 309  312                              sizeof (slew));
 310  313  
 311  314                          maxslew = MIN(aslr_max_map_skew, (addr - base));
 312  315                          /*
 313  316                           * Don't allow ASLR to cause mappings to fail below
 314  317                           * because of SF erratum #57
 315  318                           */
 316  319                          maxslew = MIN(maxslew, (addr - errata57_limit));
 317  320  
 318  321                          slew = slew % maxslew;
 319  322                          addr -= P2ALIGN(slew, align_amount);
 320  323                  }
 321  324  
 322  325                  ASSERT(addr > base);
 323  326                  ASSERT(addr + len < base + slen);
 324  327                  ASSERT(((uintptr_t)addr & (align_amount - 1l)) ==
 325  328                      ((uintptr_t)(off)));
 326  329                  *addrp = addr;
 327  330  
 328  331  #if defined(SF_ERRATA_57)
 329  332                  if (AS_TYPE_64BIT(as) && addr < errata57_limit) {
 330  333                          *addrp = NULL;
 331  334                  }
 332  335  #endif
 333  336          } else {
 334  337                  *addrp = NULL;  /* no more virtual space */
 335  338          }
 336  339  }
 337  340  
 338  341  /*
 339  342   * Platform-dependent page scrub call.
 340  343   */
 341  344  void
 342  345  pagescrub(page_t *pp, uint_t off, uint_t len)
 343  346  {
 344  347          /*
 345  348           * For now, we rely on the fact that pagezero() will
 346  349           * always clear UEs.
 347  350           */
 348  351          pagezero(pp, off, len);
 349  352  }
 350  353  
 351  354  /*ARGSUSED*/
 352  355  void
 353  356  sync_data_memory(caddr_t va, size_t len)
 354  357  {
 355  358          cpu_flush_ecache();
 356  359  }
 357  360  
 358  361  /*
 359  362   * platform specific large pages for kernel heap support
 360  363   */
 361  364  void
 362  365  mmu_init_kcontext()
 363  366  {
 364  367          extern void set_kcontextreg();
 365  368  
 366  369          if (kcontextreg)
 367  370                  set_kcontextreg();
 368  371  }
 369  372  
 370  373  void
 371  374  contig_mem_init(void)
 372  375  {
 373  376          /* not applicable to sun4u */
 374  377  }
 375  378  
 376  379  /*ARGSUSED*/
 377  380  caddr_t
 378  381  contig_mem_prealloc(caddr_t alloc_base, pgcnt_t npages)
 379  382  {
 380  383          /* not applicable to sun4u */
 381  384          return (alloc_base);
 382  385  }
  
    | 
      ↓ open down ↓ | 
    314 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX