1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2016 by Delphix. All rights reserved.
25 */
26
27 #include <sys/machsystm.h>
28 #include <sys/archsystm.h>
29 #include <sys/vm.h>
30 #include <sys/cpu.h>
31 #include <sys/atomic.h>
32 #include <sys/reboot.h>
33 #include <sys/kdi.h>
34 #include <sys/bootconf.h>
35 #include <sys/memlist_plat.h>
36 #include <sys/memlist_impl.h>
37 #include <sys/prom_plat.h>
38 #include <sys/prom_isa.h>
39 #include <sys/autoconf.h>
40 #include <sys/ivintr.h>
41 #include <sys/fpu/fpusystm.h>
42 #include <sys/iommutsb.h>
43 #include <vm/vm_dep.h>
44 #include <vm/seg_dev.h>
45 #include <vm/seg_kmem.h>
46 #include <vm/seg_kpm.h>
47 #include <vm/seg_map.h>
48 #include <vm/seg_kp.h>
49 #include <sys/sysconf.h>
50 #include <vm/hat_sfmmu.h>
51 #include <sys/kobj.h>
52 #include <sys/sun4asi.h>
53 #include <sys/clconf.h>
54 #include <sys/platform_module.h>
55 #include <sys/panic.h>
56 #include <sys/cpu_sgnblk_defs.h>
57 #include <sys/clock.h>
58 #include <sys/cmn_err.h>
59 #include <sys/dumphdr.h>
60 #include <sys/promif.h>
61 #include <sys/prom_debug.h>
62 #include <sys/traptrace.h>
63 #include <sys/memnode.h>
64 #include <sys/mem_cage.h>
65 #include <sys/mmu.h>
66 #include <sys/swap.h>
67
68 extern void setup_trap_table(void);
69 extern int cpu_intrq_setup(struct cpu *);
70 extern void cpu_intrq_register(struct cpu *);
71 extern void contig_mem_init(void);
72 extern caddr_t contig_mem_prealloc(caddr_t, pgcnt_t);
73 extern void mach_dump_buffer_init(void);
74 extern void mach_descrip_init(void);
75 extern void mach_descrip_startup_fini(void);
76 extern void mach_memscrub(void);
77 extern void mach_fpras(void);
78 extern void mach_cpu_halt_idle(void);
79 extern void mach_hw_copy_limit(void);
80 extern void load_mach_drivers(void);
81 extern void load_tod_module(void);
82 #pragma weak load_tod_module
83
84 extern int ndata_alloc_mmfsa(struct memlist *ndata);
85 #pragma weak ndata_alloc_mmfsa
86
87 extern void cif_init(void);
88 #pragma weak cif_init
89
90 extern void parse_idprom(void);
91 extern void add_vx_handler(char *, int, void (*)(cell_t *));
92 extern void mem_config_init(void);
93 extern void memseg_remap_init(void);
94
95 extern void mach_kpm_init(void);
96 extern void pcf_init();
97 extern int size_pse_array(pgcnt_t, int);
98 extern void pg_init();
99
100 /*
101 * External Data:
102 */
103 extern int vac_size; /* cache size in bytes */
104 extern uint_t vac_mask; /* VAC alignment consistency mask */
105 extern uint_t vac_colors;
106
107 /*
108 * Global Data Definitions:
109 */
110
111 /*
112 * XXX - Don't port this to new architectures
113 * A 3rd party volume manager driver (vxdm) depends on the symbol romp.
114 * 'romp' has no use with a prom with an IEEE 1275 client interface.
115 * The driver doesn't use the value, but it depends on the symbol.
116 */
117 void *romp; /* veritas driver won't load without romp 4154976 */
118 /*
119 * Declare these as initialized data so we can patch them.
120 */
121 pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */
122 pgcnt_t segkpsize =
123 btop(SEGKPDEFSIZE); /* size of segkp segment in pages */
124 uint_t segmap_percent = 6; /* Size of segmap segment */
125
126 int use_cache = 1; /* cache not reliable (605 bugs) with MP */
127 int vac_copyback = 1;
128 char *cache_mode = NULL;
129 int use_mix = 1;
130 int prom_debug = 0;
131
132 caddr_t boot_tba; /* %tba at boot - used by kmdb */
133 uint_t tba_taken_over = 0;
134
135 caddr_t s_text; /* start of kernel text segment */
136 caddr_t e_text; /* end of kernel text segment */
137 caddr_t s_data; /* start of kernel data segment */
138 caddr_t e_data; /* end of kernel data segment */
139
140 caddr_t modtext; /* beginning of module text */
141 size_t modtext_sz; /* size of module text */
142 caddr_t moddata; /* beginning of module data reserve */
143 caddr_t e_moddata; /* end of module data reserve */
144
145 /*
146 * End of first block of contiguous kernel in 32-bit virtual address space
147 */
148 caddr_t econtig32; /* end of first blk of contiguous kernel */
149
150 caddr_t ncbase; /* beginning of non-cached segment */
151 caddr_t ncend; /* end of non-cached segment */
152
153 size_t ndata_remain_sz; /* bytes from end of data to 4MB boundary */
154 caddr_t nalloc_base; /* beginning of nucleus allocation */
155 caddr_t nalloc_end; /* end of nucleus allocatable memory */
156 caddr_t valloc_base; /* beginning of kvalloc segment */
157
158 caddr_t kmem64_base; /* base of kernel mem segment in 64-bit space */
159 caddr_t kmem64_end; /* end of kernel mem segment in 64-bit space */
160 size_t kmem64_sz; /* bytes in kernel mem segment, 64-bit space */
161 caddr_t kmem64_aligned_end; /* end of large page, overmaps 64-bit space */
162 int kmem64_szc; /* page size code */
163 uint64_t kmem64_pabase = (uint64_t)-1; /* physical address of kmem64_base */
164
165 uintptr_t shm_alignment; /* VAC address consistency modulus */
166 struct memlist *phys_install; /* Total installed physical memory */
167 struct memlist *phys_avail; /* Available (unreserved) physical memory */
168 struct memlist *virt_avail; /* Available (unmapped?) virtual memory */
169 struct memlist *nopp_list; /* pages with no backing page structs */
170 struct memlist ndata; /* memlist of nucleus allocatable memory */
171 int memexp_flag; /* memory expansion card flag */
172 uint64_t ecache_flushaddr; /* physical address used for flushing E$ */
173 pgcnt_t obp_pages; /* Physical pages used by OBP */
174
175 /*
176 * VM data structures
177 */
178 long page_hashsz; /* Size of page hash table (power of two) */
179 unsigned int page_hashsz_shift; /* log2(page_hashsz) */
180 struct page *pp_base; /* Base of system page struct array */
181 size_t pp_sz; /* Size in bytes of page struct array */
182 struct page **page_hash; /* Page hash table */
183 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */
184 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */
185 int pse_shift; /* log2(pse_table_size) */
186 struct seg ktextseg; /* Segment used for kernel executable image */
187 struct seg kvalloc; /* Segment used for "valloc" mapping */
188 struct seg kpseg; /* Segment used for pageable kernel virt mem */
189 struct seg ktexthole; /* Segment used for nucleus text hole */
190 struct seg kmapseg; /* Segment used for generic kernel mappings */
191 struct seg kpmseg; /* Segment used for physical mapping */
192 struct seg kdebugseg; /* Segment used for the kernel debugger */
193
194 void *kpm_pp_base; /* Base of system kpm_page array */
195 size_t kpm_pp_sz; /* Size of system kpm_page array */
196 pgcnt_t kpm_npages; /* How many kpm pages are managed */
197
198 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */
199 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */
200 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */
201
202 int segzio_fromheap = 0; /* zio allocations occur from heap */
203 caddr_t segzio_base; /* Base address of segzio */
204 pgcnt_t segziosize = 0; /* size of zio segment in pages */
205
206 /*
207 * A static DR page_t VA map is reserved that can map the page structures
208 * for a domain's entire RA space. The pages that backs this space are
209 * dynamically allocated and need not be physically contiguous. The DR
210 * map size is derived from KPM size.
211 */
212 int ppvm_enable = 0; /* Static virtual map for page structs */
213 page_t *ppvm_base; /* Base of page struct map */
214 pgcnt_t ppvm_size = 0; /* Size of page struct map */
215
216 /*
217 * debugger pages (if allocated)
218 */
219 struct vnode kdebugvp;
220
221 /*
222 * VA range available to the debugger
223 */
224 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
225 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
226
227 /*
228 * Segment for relocated kernel structures in 64-bit large RAM kernels
229 */
230 struct seg kmem64;
231
232 struct memseg *memseg_free;
233
234 struct vnode unused_pages_vp;
235
236 /*
237 * VM data structures allocated early during boot.
238 */
239 size_t pagehash_sz;
240 uint64_t memlist_sz;
241
242 char tbr_wr_addr_inited = 0;
243
244 caddr_t mpo_heap32_buf = NULL;
245 size_t mpo_heap32_bufsz = 0;
246
247 /*
248 * Static Routines:
249 */
250 static int ndata_alloc_memseg(struct memlist *, size_t);
251 static void memlist_new(uint64_t, uint64_t, struct memlist **);
252 static void memlist_add(uint64_t, uint64_t,
253 struct memlist **, struct memlist **);
254 static void kphysm_init(void);
255 static void kvm_init(void);
256 static void install_kmem64_tte(void);
257
258 static void startup_init(void);
259 static void startup_memlist(void);
260 static void startup_modules(void);
261 static void startup_bop_gone(void);
262 static void startup_vm(void);
263 static void startup_end(void);
264 static void setup_cage_params(void);
265 static void startup_create_io_node(void);
266
267 static pgcnt_t npages;
268 static struct memlist *memlist;
269 void *memlist_end;
270
271 static pgcnt_t bop_alloc_pages;
272 static caddr_t hblk_base;
273 uint_t hblk_alloc_dynamic = 0;
274 uint_t hblk1_min = H1MIN;
275
276
277 /*
278 * Hooks for unsupported platforms and down-rev firmware
279 */
280 int iam_positron(void);
281 #pragma weak iam_positron
282 static void do_prom_version_check(void);
283
284 /*
285 * After receiving a thermal interrupt, this is the number of seconds
286 * to delay before shutting off the system, assuming
287 * shutdown fails. Use /etc/system to change the delay if this isn't
288 * large enough.
289 */
290 int thermal_powerdown_delay = 1200;
291
292 /*
293 * Used to hold off page relocations into the cage until OBP has completed
294 * its boot-time handoff of its resources to the kernel.
295 */
296 int page_relocate_ready = 0;
297
298 /*
299 * Indicate if kmem64 allocation was done in small chunks
300 */
301 int kmem64_smchunks = 0;
302
303 /*
304 * Enable some debugging messages concerning memory usage...
305 */
306 #ifdef DEBUGGING_MEM
307 static int debugging_mem;
308 static void
309 printmemlist(char *title, struct memlist *list)
310 {
311 if (!debugging_mem)
312 return;
313
314 printf("%s\n", title);
315
316 while (list) {
317 prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n",
318 (uint32_t)(list->ml_address >> 32),
319 (uint32_t)list->ml_address,
320 (uint32_t)(list->ml_size >> 32),
321 (uint32_t)(list->ml_size));
322 list = list->ml_next;
323 }
324 }
325
326 void
327 printmemseg(struct memseg *memseg)
328 {
329 if (!debugging_mem)
330 return;
331
332 printf("memseg\n");
333
334 while (memseg) {
335 prom_printf("\tpage = 0x%p, epage = 0x%p, "
336 "pfn = 0x%x, epfn = 0x%x\n",
337 memseg->pages, memseg->epages,
338 memseg->pages_base, memseg->pages_end);
339 memseg = memseg->next;
340 }
341 }
342
343 #define debug_pause(str) halt((str))
344 #define MPRINTF(str) if (debugging_mem) prom_printf((str))
345 #define MPRINTF1(str, a) if (debugging_mem) prom_printf((str), (a))
346 #define MPRINTF2(str, a, b) if (debugging_mem) prom_printf((str), (a), (b))
347 #define MPRINTF3(str, a, b, c) \
348 if (debugging_mem) prom_printf((str), (a), (b), (c))
349 #else /* DEBUGGING_MEM */
350 #define MPRINTF(str)
351 #define MPRINTF1(str, a)
352 #define MPRINTF2(str, a, b)
353 #define MPRINTF3(str, a, b, c)
354 #endif /* DEBUGGING_MEM */
355
356
357 /*
358 *
359 * Kernel's Virtual Memory Layout.
360 * /-----------------------\
361 * 0xFFFFFFFF.FFFFFFFF -| |-
362 * | OBP's virtual page |
363 * | tables |
364 * 0xFFFFFFFC.00000000 -|-----------------------|-
365 * : :
366 * : :
367 * -|-----------------------|-
368 * | segzio | (base and size vary)
369 * 0xFFFFFE00.00000000 -|-----------------------|-
370 * | | Ultrasparc I/II support
371 * | segkpm segment | up to 2TB of physical
372 * | (64-bit kernel ONLY) | memory, VAC has 2 colors
373 * | |
374 * 0xFFFFFA00.00000000 -|-----------------------|- 2TB segkpm alignment
375 * : :
376 * : :
377 * 0xFFFFF810.00000000 -|-----------------------|- hole_end
378 * | | ^
379 * | UltraSPARC I/II call | |
380 * | bug requires an extra | |
381 * | 4 GB of space between | |
382 * | hole and used RAM | |
383 * | | |
384 * 0xFFFFF800.00000000 -|-----------------------|- |
385 * | | |
386 * | Virtual Address Hole | UltraSPARC
387 * | on UltraSPARC I/II | I/II * ONLY *
388 * | | |
389 * 0x00000800.00000000 -|-----------------------|- |
390 * | | |
391 * | UltraSPARC I/II call | |
392 * | bug requires an extra | |
393 * | 4 GB of space between | |
394 * | hole and used RAM | |
395 * | | v
396 * 0x000007FF.00000000 -|-----------------------|- hole_start -----
397 * : : ^
398 * : : |
399 * |-----------------------| |
400 * | | |
401 * | ecache flush area | |
402 * | (twice largest e$) | |
403 * | | |
404 * 0x00000XXX.XXX00000 -|-----------------------|- kmem64_ |
405 * | overmapped area | alignend_end |
406 * | (kmem64_alignsize | |
407 * | boundary) | |
408 * 0x00000XXX.XXXXXXXX -|-----------------------|- kmem64_end |
409 * | | |
410 * | 64-bit kernel ONLY | |
411 * | | |
412 * | kmem64 segment | |
413 * | | |
414 * | (Relocated extra HME | Approximately
415 * | block allocations, | 1 TB of virtual
416 * | memnode freelists, | address space
417 * | HME hash buckets, | |
418 * | mml_table, kpmp_table,| |
419 * | page_t array and | |
420 * | hashblock pool to | |
421 * | avoid hard-coded | |
422 * | 32-bit vaddr | |
423 * | limitations) | |
424 * | | v
425 * 0x00000700.00000000 -|-----------------------|- SYSLIMIT (kmem64_base)
426 * | |
427 * | segkmem segment | (SYSLIMIT - SYSBASE = 4TB)
428 * | |
429 * 0x00000300.00000000 -|-----------------------|- SYSBASE
430 * : :
431 * : :
432 * -|-----------------------|-
433 * | |
434 * | segmap segment | SEGMAPSIZE (1/8th physmem,
435 * | | 256G MAX)
436 * 0x000002a7.50000000 -|-----------------------|- SEGMAPBASE
437 * : :
438 * : :
439 * -|-----------------------|-
440 * | |
441 * | segkp | SEGKPSIZE (2GB)
442 * | |
443 * | |
444 * 0x000002a1.00000000 -|-----------------------|- SEGKPBASE
445 * | |
446 * 0x000002a0.00000000 -|-----------------------|- MEMSCRUBBASE
447 * | | (SEGKPBASE - 0x400000)
448 * 0x0000029F.FFE00000 -|-----------------------|- ARGSBASE
449 * | | (MEMSCRUBBASE - NCARGS)
450 * 0x0000029F.FFD80000 -|-----------------------|- PPMAPBASE
451 * | | (ARGSBASE - PPMAPSIZE)
452 * 0x0000029F.FFD00000 -|-----------------------|- PPMAP_FAST_BASE
453 * | |
454 * 0x0000029F.FF980000 -|-----------------------|- PIOMAPBASE
455 * | |
456 * 0x0000029F.FF580000 -|-----------------------|- NARG_BASE
457 * : :
458 * : :
459 * 0x00000000.FFFFFFFF -|-----------------------|- OFW_END_ADDR
460 * | |
461 * | OBP |
462 * | |
463 * 0x00000000.F0000000 -|-----------------------|- OFW_START_ADDR
464 * | kmdb |
465 * 0x00000000.EDD00000 -|-----------------------|- SEGDEBUGBASE
466 * : :
467 * : :
468 * 0x00000000.7c000000 -|-----------------------|- SYSLIMIT32
469 * | |
470 * | segkmem32 segment | (SYSLIMIT32 - SYSBASE32 =
471 * | | ~64MB)
472 * -|-----------------------|
473 * | IVSIZE |
474 * 0x00000000.70004000 -|-----------------------|
475 * | panicbuf |
476 * 0x00000000.70002000 -|-----------------------|
477 * | PAGESIZE |
478 * 0x00000000.70000000 -|-----------------------|- SYSBASE32
479 * | boot-time |
480 * | temporary space |
481 * 0x00000000.4C000000 -|-----------------------|- BOOTTMPBASE
482 * : :
483 * : :
484 * | |
485 * |-----------------------|- econtig32
486 * | vm structures |
487 * 0x00000000.01C00000 |-----------------------|- nalloc_end
488 * | TSBs |
489 * |-----------------------|- end/nalloc_base
490 * | kernel data & bss |
491 * 0x00000000.01800000 -|-----------------------|
492 * : nucleus text hole :
493 * 0x00000000.01400000 -|-----------------------|
494 * : :
495 * |-----------------------|
496 * | module text |
497 * |-----------------------|- e_text/modtext
498 * | kernel text |
499 * |-----------------------|
500 * | trap table (48k) |
501 * 0x00000000.01000000 -|-----------------------|- KERNELBASE
502 * | reserved for trapstat |} TSTAT_TOTAL_SIZE
503 * |-----------------------|
504 * | |
505 * | invalid |
506 * | |
507 * 0x00000000.00000000 _|_______________________|
508 *
509 *
510 *
511 * 32-bit User Virtual Memory Layout.
512 * /-----------------------\
513 * | |
514 * | invalid |
515 * | |
516 * 0xFFC00000 -|-----------------------|- USERLIMIT
517 * | user stack |
518 * : :
519 * : :
520 * : :
521 * | user data |
522 * -|-----------------------|-
523 * | user text |
524 * 0x00002000 -|-----------------------|-
525 * | invalid |
526 * 0x00000000 _|_______________________|
527 *
528 *
529 *
530 * 64-bit User Virtual Memory Layout.
531 * /-----------------------\
532 * | |
533 * | invalid |
534 * | |
535 * 0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT
536 * | user stack |
537 * : :
538 * : :
539 * : :
540 * | user data |
541 * -|-----------------------|-
542 * | user text |
543 * 0x00000000.01000000 -|-----------------------|-
544 * | invalid |
545 * 0x00000000.00000000 _|_______________________|
546 */
547
548 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base);
549 extern uint64_t ecache_flush_address(void);
550
551 #pragma weak load_platform_modules
552 #pragma weak plat_startup_memlist
553 #pragma weak ecache_init_scrub_flush_area
554 #pragma weak ecache_flush_address
555
556
557 /*
558 * By default the DR Cage is enabled for maximum OS
559 * MPSS performance. Users needing to disable the cage mechanism
560 * can set this variable to zero via /etc/system.
561 * Disabling the cage on systems supporting Dynamic Reconfiguration (DR)
562 * will result in loss of DR functionality.
563 * Platforms wishing to disable kernel Cage by default
564 * should do so in their set_platform_defaults() routine.
565 */
566 int kernel_cage_enable = 1;
567
568 static void
569 setup_cage_params(void)
570 {
571 void (*func)(void);
572
573 func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0);
574 if (func != NULL) {
575 (*func)();
576 return;
577 }
578
579 if (kernel_cage_enable == 0) {
580 return;
581 }
582 kcage_range_init(phys_avail, KCAGE_DOWN, total_pages / 256);
583
584 if (kcage_on) {
585 cmn_err(CE_NOTE, "!Kernel Cage is ENABLED");
586 } else {
587 cmn_err(CE_NOTE, "!Kernel Cage is DISABLED");
588 }
589
590 }
591
592 /*
593 * Machine-dependent startup code
594 */
595 void
596 startup(void)
597 {
598 startup_init();
599 if (&startup_platform)
600 startup_platform();
601 startup_memlist();
602 startup_modules();
603 setup_cage_params();
604 startup_bop_gone();
605 startup_vm();
606 startup_end();
607 }
608
609 struct regs sync_reg_buf;
610 uint64_t sync_tt;
611
612 void
613 sync_handler(void)
614 {
615 struct panic_trap_info ti;
616 int i;
617
618 /*
619 * Prevent trying to talk to the other CPUs since they are
620 * sitting in the prom and won't reply.
621 */
622 for (i = 0; i < NCPU; i++) {
623 if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) {
624 cpu[i]->cpu_flags &= ~CPU_READY;
625 cpu[i]->cpu_flags |= CPU_QUIESCED;
626 CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
627 }
628 }
629
630 /*
631 * Force a serial dump, since there are no CPUs to help.
632 */
633 dump_plat_mincpu = 0;
634
635 /*
636 * We've managed to get here without going through the
637 * normal panic code path. Try and save some useful
638 * information.
639 */
640 if (!panicstr && (curthread->t_panic_trap == NULL)) {
641 ti.trap_type = sync_tt;
642 ti.trap_regs = &sync_reg_buf;
643 ti.trap_addr = NULL;
644 ti.trap_mmu_fsr = 0x0;
645
646 curthread->t_panic_trap = &ti;
647 }
648
649 /*
650 * If we're re-entering the panic path, update the signature
651 * block so that the SC knows we're in the second part of panic.
652 */
653 if (panicstr)
654 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
655
656 nopanicdebug = 1; /* do not perform debug_enter() prior to dump */
657 panic("sync initiated");
658 }
659
660
661 static void
662 startup_init(void)
663 {
664 /*
665 * We want to save the registers while we're still in OBP
666 * so that we know they haven't been fiddled with since.
667 * (In principle, OBP can't change them just because it
668 * makes a callback, but we'd rather not depend on that
669 * behavior.)
670 */
671 char sync_str[] =
672 "warning @ warning off : sync "
673 "%%tl-c %%tstate h# %p x! "
674 "%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! "
675 "%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! "
676 "%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! "
677 "%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! "
678 "%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! "
679 "%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! "
680 "%%y h# %p l! %%tl-c %%tt h# %p x! "
681 "sync ; warning !";
682
683 /*
684 * 20 == num of %p substrings
685 * 16 == max num of chars %p will expand to.
686 */
687 char bp[sizeof (sync_str) + 16 * 20];
688
689 /*
690 * Initialize ptl1 stack for the 1st CPU.
691 */
692 ptl1_init_cpu(&cpu0);
693
694 /*
695 * Initialize the address map for cache consistent mappings
696 * to random pages; must be done after vac_size is set.
697 */
698 ppmapinit();
699
700 /*
701 * Initialize the PROM callback handler.
702 */
703 init_vx_handler();
704
705 /*
706 * have prom call sync_callback() to handle the sync and
707 * save some useful information which will be stored in the
708 * core file later.
709 */
710 (void) sprintf((char *)bp, sync_str,
711 (void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1,
712 (void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3,
713 (void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5,
714 (void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7,
715 (void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1,
716 (void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3,
717 (void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5,
718 (void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7,
719 (void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc,
720 (void *)&sync_reg_buf.r_y, (void *)&sync_tt);
721 prom_interpret(bp, 0, 0, 0, 0, 0);
722 add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler);
723 }
724
725
726 size_t
727 calc_pp_sz(pgcnt_t npages)
728 {
729
730 return (npages * sizeof (struct page));
731 }
732
733 size_t
734 calc_kpmpp_sz(pgcnt_t npages)
735 {
736
737 kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT;
738 kpm_pgsz = 1ull << kpm_pgshft;
739 kpm_pgoff = kpm_pgsz - 1;
740 kpmp2pshft = kpm_pgshft - PAGESHIFT;
741 kpmpnpgs = 1 << kpmp2pshft;
742
743 if (kpm_smallpages == 0) {
744 /*
745 * Avoid fragmentation problems in kphysm_init()
746 * by allocating for all of physical memory
747 */
748 kpm_npages = ptokpmpr(physinstalled);
749 return (kpm_npages * sizeof (kpm_page_t));
750 } else {
751 kpm_npages = npages;
752 return (kpm_npages * sizeof (kpm_spage_t));
753 }
754 }
755
756 size_t
757 calc_pagehash_sz(pgcnt_t npages)
758 {
759 /* LINTED */
760 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), (sizeof (struct page))));
761 /*
762 * The page structure hash table size is a power of 2
763 * such that the average hash chain length is PAGE_HASHAVELEN.
764 */
765 page_hashsz = npages / PAGE_HASHAVELEN;
766 page_hashsz_shift = MAX((AN_VPSHIFT + VNODE_ALIGN_LOG2 + 1),
767 highbit(page_hashsz));
768 page_hashsz = 1 << page_hashsz_shift;
769 return (page_hashsz * sizeof (struct page *));
770 }
771
772 int testkmem64_smchunks = 0;
773
774 int
775 alloc_kmem64(caddr_t base, caddr_t end)
776 {
777 int i;
778 caddr_t aligned_end = NULL;
779
780 if (testkmem64_smchunks)
781 return (1);
782
783 /*
784 * Make one large memory alloc after figuring out the 64-bit size. This
785 * will enable use of the largest page size appropriate for the system
786 * architecture.
787 */
788 ASSERT(mmu_exported_pagesize_mask & (1 << TTE8K));
789 ASSERT(IS_P2ALIGNED(base, TTEBYTES(max_bootlp_tteszc)));
790 for (i = max_bootlp_tteszc; i >= TTE8K; i--) {
791 size_t alloc_size, alignsize;
792 #if !defined(C_OBP)
793 unsigned long long pa;
794 #endif /* !C_OBP */
795
796 if ((mmu_exported_pagesize_mask & (1 << i)) == 0)
797 continue;
798 alignsize = TTEBYTES(i);
799 kmem64_szc = i;
800
801 /* limit page size for small memory */
802 if (mmu_btop(alignsize) > (npages >> 2))
803 continue;
804
805 aligned_end = (caddr_t)roundup((uintptr_t)end, alignsize);
806 alloc_size = aligned_end - base;
807 #if !defined(C_OBP)
808 if (prom_allocate_phys(alloc_size, alignsize, &pa) == 0) {
809 if (prom_claim_virt(alloc_size, base) != (caddr_t)-1) {
810 kmem64_pabase = pa;
811 kmem64_aligned_end = aligned_end;
812 install_kmem64_tte();
813 break;
814 } else {
815 prom_free_phys(alloc_size, pa);
816 }
817 }
818 #else /* !C_OBP */
819 if (prom_alloc(base, alloc_size, alignsize) == base) {
820 kmem64_pabase = va_to_pa(kmem64_base);
821 kmem64_aligned_end = aligned_end;
822 break;
823 }
824 #endif /* !C_OBP */
825 if (i == TTE8K) {
826 #ifdef sun4v
827 /* return failure to try small allocations */
828 return (1);
829 #else
830 prom_panic("kmem64 allocation failure");
831 #endif
832 }
833 }
834 ASSERT(aligned_end != NULL);
835 return (0);
836 }
837
838 static prom_memlist_t *boot_physinstalled, *boot_physavail, *boot_virtavail;
839 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len;
840
841 #if !defined(C_OBP)
842 /*
843 * Install a temporary tte handler in OBP for kmem64 area.
844 *
845 * We map kmem64 area with large pages before the trap table is taken
846 * over. Since OBP makes 8K mappings, it can create 8K tlb entries in
847 * the same area. Duplicate tlb entries with different page sizes
848 * cause unpredicatble behavior. To avoid this, we don't create
849 * kmem64 mappings via BOP_ALLOC (ends up as prom_alloc() call to
850 * OBP). Instead, we manage translations with a temporary va>tte-data
851 * handler (kmem64-tte). This handler is replaced by unix-tte when
852 * the trap table is taken over.
853 *
854 * The temporary handler knows the physical address of the kmem64
855 * area. It uses the prom's pgmap@ Forth word for other addresses.
856 *
857 * We have to use BOP_ALLOC() method for C-OBP platforms because
858 * pgmap@ is not defined in C-OBP. C-OBP is only used on serengeti
859 * sun4u platforms. On sun4u we flush tlb after trap table is taken
860 * over if we use large pages for kernel heap and kmem64. Since sun4u
861 * prom (unlike sun4v) calls va>tte-data first for client address
862 * translation prom's ttes for kmem64 can't get into TLB even if we
863 * later switch to prom's trap table again. C-OBP uses 4M pages for
864 * client mappings when possible so on all platforms we get the
865 * benefit from large mappings for kmem64 area immediately during
866 * boot.
867 *
868 * pseudo code:
869 * if (context != 0) {
870 * return false
871 * } else if (miss_va in range[kmem64_base, kmem64_end)) {
872 * tte = tte_template +
873 * (((miss_va & pagemask) - kmem64_base));
874 * return tte, true
875 * } else {
876 * return pgmap@ result
877 * }
878 */
879 char kmem64_obp_str[] =
880 "h# %lx constant kmem64-base "
881 "h# %lx constant kmem64-end "
882 "h# %lx constant kmem64-pagemask "
883 "h# %lx constant kmem64-template "
884
885 ": kmem64-tte ( addr cnum -- false | tte-data true ) "
886 " if ( addr ) "
887 " drop false exit then ( false ) "
888 " dup kmem64-base kmem64-end within if ( addr ) "
889 " kmem64-pagemask and ( addr' ) "
890 " kmem64-base - ( addr' ) "
891 " kmem64-template + ( tte ) "
892 " true ( tte true ) "
893 " else ( addr ) "
894 " pgmap@ ( tte ) "
895 " dup 0< if true else drop false then ( tte true | false ) "
896 " then ( tte true | false ) "
897 "; "
898
899 "' kmem64-tte is va>tte-data "
900 ;
901
902 static void
903 install_kmem64_tte()
904 {
905 char b[sizeof (kmem64_obp_str) + (4 * 16)];
906 tte_t tte;
907
908 PRM_DEBUG(kmem64_pabase);
909 PRM_DEBUG(kmem64_szc);
910 sfmmu_memtte(&tte, kmem64_pabase >> MMU_PAGESHIFT,
911 PROC_DATA | HAT_NOSYNC, kmem64_szc);
912 PRM_DEBUG(tte.ll);
913 (void) sprintf(b, kmem64_obp_str,
914 kmem64_base, kmem64_end, TTE_PAGEMASK(kmem64_szc), tte.ll);
915 ASSERT(strlen(b) < sizeof (b));
916 prom_interpret(b, 0, 0, 0, 0, 0);
917 }
918 #endif /* !C_OBP */
919
920 /*
921 * As OBP takes up some RAM when the system boots, pages will already be "lost"
922 * to the system and reflected in npages by the time we see it.
923 *
924 * We only want to allocate kernel structures in the 64-bit virtual address
925 * space on systems with enough RAM to make the overhead of keeping track of
926 * an extra kernel memory segment worthwhile.
927 *
928 * Since OBP has already performed its memory allocations by this point, if we
929 * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map
930 * memory in the 64-bit virtual address space; otherwise keep allocations
931 * contiguous with we've mapped so far in the 32-bit virtual address space.
932 */
933 #define MINMOVE_RAM_MB ((size_t)1900)
934 #define MB_TO_BYTES(mb) ((mb) * 1048576ul)
935 #define BYTES_TO_MB(b) ((b) / 1048576ul)
936
937 pgcnt_t tune_npages = (pgcnt_t)
938 (MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE);
939
940 #pragma weak page_set_colorequiv_arr_cpu
941 extern void page_set_colorequiv_arr_cpu(void);
942 extern void page_set_colorequiv_arr(void);
943
944 static pgcnt_t ramdisk_npages;
945 static struct memlist *old_phys_avail;
946
947 kcage_dir_t kcage_startup_dir = KCAGE_DOWN;
948
949 static void
950 startup_memlist(void)
951 {
952 size_t hmehash_sz, pagelist_sz, tt_sz;
953 size_t psetable_sz;
954 caddr_t alloc_base;
955 caddr_t memspace;
956 struct memlist *cur;
957 size_t syslimit = (size_t)SYSLIMIT;
958 size_t sysbase = (size_t)SYSBASE;
959
960 /*
961 * Initialize enough of the system to allow kmem_alloc to work by
962 * calling boot to allocate its memory until the time that
963 * kvm_init is completed. The page structs are allocated after
964 * rounding up end to the nearest page boundary; the memsegs are
965 * initialized and the space they use comes from the kernel heap.
966 * With appropriate initialization, they can be reallocated later
967 * to a size appropriate for the machine's configuration.
968 *
969 * At this point, memory is allocated for things that will never
970 * need to be freed, this used to be "valloced". This allows a
971 * savings as the pages don't need page structures to describe
972 * them because them will not be managed by the vm system.
973 */
974
975 /*
976 * We're loaded by boot with the following configuration (as
977 * specified in the sun4u/conf/Mapfile):
978 *
979 * text: 4 MB chunk aligned on a 4MB boundary
980 * data & bss: 4 MB chunk aligned on a 4MB boundary
981 *
982 * These two chunks will eventually be mapped by 2 locked 4MB
983 * ttes and will represent the nucleus of the kernel. This gives
984 * us some free space that is already allocated, some or all of
985 * which is made available to kernel module text.
986 *
987 * The free space in the data-bss chunk is used for nucleus
988 * allocatable data structures and we reserve it using the
989 * nalloc_base and nalloc_end variables. This space is currently
990 * being used for hat data structures required for tlb miss
991 * handling operations. We align nalloc_base to a l2 cache
992 * linesize because this is the line size the hardware uses to
993 * maintain cache coherency.
994 * 512K is carved out for module data.
995 */
996
997 moddata = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE);
998 e_moddata = moddata + MODDATA;
999 nalloc_base = e_moddata;
1000
1001 nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M);
1002 valloc_base = nalloc_base;
1003
1004 /*
1005 * Calculate the start of the data segment.
1006 */
1007 if (((uintptr_t)e_moddata & MMU_PAGEMASK4M) != (uintptr_t)s_data)
1008 prom_panic("nucleus data overflow");
1009
1010 PRM_DEBUG(moddata);
1011 PRM_DEBUG(nalloc_base);
1012 PRM_DEBUG(nalloc_end);
1013
1014 /*
1015 * Remember any slop after e_text so we can give it to the modules.
1016 */
1017 PRM_DEBUG(e_text);
1018 modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE);
1019 if (((uintptr_t)e_text & MMU_PAGEMASK4M) != (uintptr_t)s_text)
1020 prom_panic("nucleus text overflow");
1021 modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) -
1022 modtext;
1023 PRM_DEBUG(modtext);
1024 PRM_DEBUG(modtext_sz);
1025
1026 init_boot_memlists();
1027 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1028 &boot_physavail, &boot_physavail_len,
1029 &boot_virtavail, &boot_virtavail_len);
1030
1031 /*
1032 * Remember what the physically available highest page is
1033 * so that dumpsys works properly, and find out how much
1034 * memory is installed.
1035 */
1036 installed_top_size_memlist_array(boot_physinstalled,
1037 boot_physinstalled_len, &physmax, &physinstalled);
1038 PRM_DEBUG(physinstalled);
1039 PRM_DEBUG(physmax);
1040
1041 /* Fill out memory nodes config structure */
1042 startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len);
1043
1044 /*
1045 * npages is the maximum of available physical memory possible.
1046 * (ie. it will never be more than this)
1047 *
1048 * When we boot from a ramdisk, the ramdisk memory isn't free, so
1049 * using phys_avail will underestimate what will end up being freed.
1050 * A better initial guess is just total memory minus the kernel text
1051 */
1052 npages = physinstalled - btop(MMU_PAGESIZE4M);
1053
1054 /*
1055 * First allocate things that can go in the nucleus data page
1056 * (fault status, TSBs, dmv, CPUs)
1057 */
1058 ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end);
1059
1060 if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0))
1061 cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc");
1062
1063 if (ndata_alloc_tsbs(&ndata, npages) != 0)
1064 cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc");
1065
1066 if (ndata_alloc_dmv(&ndata) != 0)
1067 cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc");
1068
1069 if (ndata_alloc_page_mutexs(&ndata) != 0)
1070 cmn_err(CE_PANIC,
1071 "no more nucleus memory after page free lists alloc");
1072
1073 if (ndata_alloc_hat(&ndata) != 0)
1074 cmn_err(CE_PANIC, "no more nucleus memory after hat alloc");
1075
1076 if (ndata_alloc_memseg(&ndata, boot_physavail_len) != 0)
1077 cmn_err(CE_PANIC, "no more nucleus memory after memseg alloc");
1078
1079 /*
1080 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
1081 *
1082 * There are comments all over the SFMMU code warning of dire
1083 * consequences if the TSBs are moved out of 32-bit space. This
1084 * is largely because the asm code uses "sethi %hi(addr)"-type
1085 * instructions which will not provide the expected result if the
1086 * address is a 64-bit one.
1087 *
1088 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
1089 */
1090 alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE);
1091 PRM_DEBUG(alloc_base);
1092
1093 alloc_base = sfmmu_ktsb_alloc(alloc_base);
1094 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1095 PRM_DEBUG(alloc_base);
1096
1097 /*
1098 * Allocate IOMMU TSB array. We do this here so that the physical
1099 * memory gets deducted from the PROM's physical memory list.
1100 */
1101 alloc_base = iommu_tsb_init(alloc_base);
1102 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1103 PRM_DEBUG(alloc_base);
1104
1105 /*
1106 * Allow for an early allocation of physically contiguous memory.
1107 */
1108 alloc_base = contig_mem_prealloc(alloc_base, npages);
1109
1110 /*
1111 * Platforms like Starcat and OPL need special structures assigned in
1112 * 32-bit virtual address space because their probing routines execute
1113 * FCode, and FCode can't handle 64-bit virtual addresses...
1114 */
1115 if (&plat_startup_memlist) {
1116 alloc_base = plat_startup_memlist(alloc_base);
1117 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1118 ecache_alignsize);
1119 PRM_DEBUG(alloc_base);
1120 }
1121
1122 /*
1123 * Save off where the contiguous allocations to date have ended
1124 * in econtig32.
1125 */
1126 econtig32 = alloc_base;
1127 PRM_DEBUG(econtig32);
1128 if (econtig32 > (caddr_t)KERNEL_LIMIT32)
1129 cmn_err(CE_PANIC, "econtig32 too big");
1130
1131 pp_sz = calc_pp_sz(npages);
1132 PRM_DEBUG(pp_sz);
1133 if (kpm_enable) {
1134 kpm_pp_sz = calc_kpmpp_sz(npages);
1135 PRM_DEBUG(kpm_pp_sz);
1136 }
1137
1138 hmehash_sz = calc_hmehash_sz(npages);
1139 PRM_DEBUG(hmehash_sz);
1140
1141 pagehash_sz = calc_pagehash_sz(npages);
1142 PRM_DEBUG(pagehash_sz);
1143
1144 pagelist_sz = calc_free_pagelist_sz();
1145 PRM_DEBUG(pagelist_sz);
1146
1147 #ifdef TRAPTRACE
1148 tt_sz = calc_traptrace_sz();
1149 PRM_DEBUG(tt_sz);
1150 #else
1151 tt_sz = 0;
1152 #endif /* TRAPTRACE */
1153
1154 /*
1155 * Place the array that protects pp->p_selock in the kmem64 wad.
1156 */
1157 pse_shift = size_pse_array(npages, max_ncpus);
1158 PRM_DEBUG(pse_shift);
1159 pse_table_size = 1 << pse_shift;
1160 PRM_DEBUG(pse_table_size);
1161 psetable_sz = roundup(
1162 pse_table_size * sizeof (pad_mutex_t), ecache_alignsize);
1163 PRM_DEBUG(psetable_sz);
1164
1165 /*
1166 * Now allocate the whole wad
1167 */
1168 kmem64_sz = pp_sz + kpm_pp_sz + hmehash_sz + pagehash_sz +
1169 pagelist_sz + tt_sz + psetable_sz;
1170 kmem64_sz = roundup(kmem64_sz, PAGESIZE);
1171 kmem64_base = (caddr_t)syslimit;
1172 kmem64_end = kmem64_base + kmem64_sz;
1173 if (alloc_kmem64(kmem64_base, kmem64_end)) {
1174 /*
1175 * Attempt for kmem64 to allocate one big
1176 * contiguous chunk of memory failed.
1177 * We get here because we are sun4v.
1178 * We will proceed by breaking up
1179 * the allocation into two attempts.
1180 * First, we allocate kpm_pp_sz, hmehash_sz,
1181 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz as
1182 * one contiguous chunk. This is a much smaller
1183 * chunk and we should get it, if not we panic.
1184 * Note that hmehash and tt need to be physically
1185 * (in the real address sense) contiguous.
1186 * Next, we use bop_alloc_chunk() to
1187 * to allocate the page_t structures.
1188 * This will allow the page_t to be allocated
1189 * in multiple smaller chunks.
1190 * In doing so, the assumption that page_t is
1191 * physically contiguous no longer hold, this is ok
1192 * for sun4v but not for sun4u.
1193 */
1194 size_t tmp_size;
1195 caddr_t tmp_base;
1196
1197 pp_sz = roundup(pp_sz, PAGESIZE);
1198
1199 /*
1200 * Allocate kpm_pp_sz, hmehash_sz,
1201 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz
1202 */
1203 tmp_base = kmem64_base + pp_sz;
1204 tmp_size = roundup(kpm_pp_sz + hmehash_sz + pagehash_sz +
1205 pagelist_sz + tt_sz + psetable_sz, PAGESIZE);
1206 if (prom_alloc(tmp_base, tmp_size, PAGESIZE) == 0)
1207 prom_panic("kmem64 prom_alloc contig failed");
1208 PRM_DEBUG(tmp_base);
1209 PRM_DEBUG(tmp_size);
1210
1211 /*
1212 * Allocate the page_ts
1213 */
1214 if (bop_alloc_chunk(kmem64_base, pp_sz, PAGESIZE) == 0)
1215 prom_panic("kmem64 bop_alloc_chunk page_t failed");
1216 PRM_DEBUG(kmem64_base);
1217 PRM_DEBUG(pp_sz);
1218
1219 kmem64_aligned_end = kmem64_base + pp_sz + tmp_size;
1220 ASSERT(kmem64_aligned_end >= kmem64_end);
1221
1222 kmem64_smchunks = 1;
1223 } else {
1224
1225 /*
1226 * We need to adjust pp_sz for the normal
1227 * case where kmem64 can allocate one large chunk
1228 */
1229 if (kpm_smallpages == 0) {
1230 npages -= kmem64_sz / (PAGESIZE + sizeof (struct page));
1231 } else {
1232 npages -= kmem64_sz / (PAGESIZE + sizeof (struct page) +
1233 sizeof (kpm_spage_t));
1234 }
1235 pp_sz = npages * sizeof (struct page);
1236 }
1237
1238 if (kmem64_aligned_end > (hole_start ? hole_start : kpm_vbase))
1239 cmn_err(CE_PANIC, "not enough kmem64 space");
1240 PRM_DEBUG(kmem64_base);
1241 PRM_DEBUG(kmem64_end);
1242 PRM_DEBUG(kmem64_aligned_end);
1243
1244 /*
1245 * ... and divy it up
1246 */
1247 alloc_base = kmem64_base;
1248
1249 pp_base = (page_t *)alloc_base;
1250 alloc_base += pp_sz;
1251 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1252 PRM_DEBUG(pp_base);
1253 PRM_DEBUG(npages);
1254
1255 if (kpm_enable) {
1256 kpm_pp_base = alloc_base;
1257 if (kpm_smallpages == 0) {
1258 /* kpm_npages based on physinstalled, don't reset */
1259 kpm_pp_sz = kpm_npages * sizeof (kpm_page_t);
1260 } else {
1261 kpm_npages = ptokpmpr(npages);
1262 kpm_pp_sz = kpm_npages * sizeof (kpm_spage_t);
1263 }
1264 alloc_base += kpm_pp_sz;
1265 alloc_base =
1266 (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1267 PRM_DEBUG(kpm_pp_base);
1268 }
1269
1270 alloc_base = alloc_hmehash(alloc_base);
1271 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1272 PRM_DEBUG(alloc_base);
1273
1274 page_hash = (page_t **)alloc_base;
1275 alloc_base += pagehash_sz;
1276 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1277 PRM_DEBUG(page_hash);
1278
1279 alloc_base = alloc_page_freelists(alloc_base);
1280 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1281 PRM_DEBUG(alloc_base);
1282
1283 #ifdef TRAPTRACE
1284 ttrace_buf = alloc_base;
1285 alloc_base += tt_sz;
1286 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1287 PRM_DEBUG(alloc_base);
1288 #endif /* TRAPTRACE */
1289
1290 pse_mutex = (pad_mutex_t *)alloc_base;
1291 alloc_base += psetable_sz;
1292 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1293 PRM_DEBUG(alloc_base);
1294
1295 /*
1296 * Note that if we use small chunk allocations for
1297 * kmem64, we need to ensure kmem64_end is the same as
1298 * kmem64_aligned_end to prevent subsequent logic from
1299 * trying to reuse the overmapping.
1300 * Otherwise we adjust kmem64_end to what we really allocated.
1301 */
1302 if (kmem64_smchunks) {
1303 kmem64_end = kmem64_aligned_end;
1304 } else {
1305 kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base, PAGESIZE);
1306 }
1307 kmem64_sz = kmem64_end - kmem64_base;
1308
1309 if (&ecache_init_scrub_flush_area) {
1310 alloc_base = ecache_init_scrub_flush_area(kmem64_aligned_end);
1311 ASSERT(alloc_base <= (hole_start ? hole_start : kpm_vbase));
1312 }
1313
1314 /*
1315 * If physmem is patched to be non-zero, use it instead of
1316 * the monitor value unless physmem is larger than the total
1317 * amount of memory on hand.
1318 */
1319 if (physmem == 0 || physmem > npages)
1320 physmem = npages;
1321
1322 /*
1323 * root_is_ramdisk is set via /etc/system when the ramdisk miniroot
1324 * is mounted as root. This memory is held down by OBP and unlike
1325 * the stub boot_archive is never released.
1326 *
1327 * In order to get things sized correctly on lower memory
1328 * machines (where the memory used by the ramdisk represents
1329 * a significant portion of memory), physmem is adjusted.
1330 *
1331 * This is done by subtracting the ramdisk_size which is set
1332 * to the size of the ramdisk (in Kb) in /etc/system at the
1333 * time the miniroot archive is constructed.
1334 */
1335 if (root_is_ramdisk == B_TRUE) {
1336 ramdisk_npages = (ramdisk_size * 1024) / PAGESIZE;
1337 physmem -= ramdisk_npages;
1338 }
1339
1340 if (kpm_enable && (ndata_alloc_kpm(&ndata, kpm_npages) != 0))
1341 cmn_err(CE_PANIC, "no more nucleus memory after kpm alloc");
1342
1343 /*
1344 * Allocate space for the interrupt vector table.
1345 */
1346 memspace = prom_alloc((caddr_t)intr_vec_table, IVSIZE, MMU_PAGESIZE);
1347 if (memspace != (caddr_t)intr_vec_table)
1348 prom_panic("interrupt vector table allocation failure");
1349
1350 /*
1351 * Between now and when we finish copying in the memory lists,
1352 * allocations happen so the space gets fragmented and the
1353 * lists longer. Leave enough space for lists twice as
1354 * long as we have now; then roundup to a pagesize.
1355 */
1356 memlist_sz = sizeof (struct memlist) * (prom_phys_installed_len() +
1357 prom_phys_avail_len() + prom_virt_avail_len());
1358 memlist_sz *= 2;
1359 memlist_sz = roundup(memlist_sz, PAGESIZE);
1360 memspace = ndata_alloc(&ndata, memlist_sz, ecache_alignsize);
1361 if (memspace == NULL)
1362 cmn_err(CE_PANIC, "no more nucleus memory after memlist alloc");
1363
1364 memlist = (struct memlist *)memspace;
1365 memlist_end = (char *)memspace + memlist_sz;
1366 PRM_DEBUG(memlist);
1367 PRM_DEBUG(memlist_end);
1368
1369 PRM_DEBUG(sysbase);
1370 PRM_DEBUG(syslimit);
1371 kernelheap_init((void *)sysbase, (void *)syslimit,
1372 (caddr_t)sysbase + PAGESIZE, NULL, NULL);
1373
1374 /*
1375 * Take the most current snapshot we can by calling mem-update.
1376 */
1377 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1378 &boot_physavail, &boot_physavail_len,
1379 &boot_virtavail, &boot_virtavail_len);
1380
1381 /*
1382 * Remove the space used by prom_alloc from the kernel heap
1383 * plus the area actually used by the OBP (if any)
1384 * ignoring virtual addresses in virt_avail, above syslimit.
1385 */
1386 virt_avail = memlist;
1387 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1388
1389 for (cur = virt_avail; cur->ml_next; cur = cur->ml_next) {
1390 uint64_t range_base, range_size;
1391
1392 if ((range_base = cur->ml_address + cur->ml_size) <
1393 (uint64_t)sysbase)
1394 continue;
1395 if (range_base >= (uint64_t)syslimit)
1396 break;
1397 /*
1398 * Limit the range to end at syslimit.
1399 */
1400 range_size = MIN(cur->ml_next->ml_address,
1401 (uint64_t)syslimit) - range_base;
1402 (void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE,
1403 0, 0, (void *)range_base, (void *)(range_base + range_size),
1404 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1405 }
1406
1407 phys_avail = memlist;
1408 copy_memlist(boot_physavail, boot_physavail_len, &memlist);
1409
1410 /*
1411 * Add any extra memory at the end of the ndata region if there's at
1412 * least a page to add. There might be a few more pages available in
1413 * the middle of the ndata region, but for now they are ignored.
1414 */
1415 nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE, nalloc_end);
1416 if (nalloc_base == NULL)
1417 nalloc_base = nalloc_end;
1418 ndata_remain_sz = nalloc_end - nalloc_base;
1419
1420 /*
1421 * Copy physinstalled list into kernel space.
1422 */
1423 phys_install = memlist;
1424 copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist);
1425
1426 /*
1427 * Create list of physical addrs we don't need pp's for:
1428 * kernel text 4M page
1429 * kernel data 4M page - ndata_remain_sz
1430 * kmem64 pages
1431 *
1432 * NB if adding any pages here, make sure no kpm page
1433 * overlaps can occur (see ASSERTs in kphysm_memsegs)
1434 */
1435 nopp_list = memlist;
1436 memlist_new(va_to_pa(s_text), MMU_PAGESIZE4M, &memlist);
1437 memlist_add(va_to_pa(s_data), MMU_PAGESIZE4M - ndata_remain_sz,
1438 &memlist, &nopp_list);
1439
1440 /* Don't add to nopp_list if kmem64 was allocated in smchunks */
1441 if (!kmem64_smchunks)
1442 memlist_add(kmem64_pabase, kmem64_sz, &memlist, &nopp_list);
1443
1444 if ((caddr_t)memlist > (memspace + memlist_sz))
1445 prom_panic("memlist overflow");
1446
1447 /*
1448 * Size the pcf array based on the number of cpus in the box at
1449 * boot time.
1450 */
1451 pcf_init();
1452
1453 /*
1454 * Initialize the page structures from the memory lists.
1455 */
1456 kphysm_init();
1457
1458 availrmem_initial = availrmem = freemem;
1459 PRM_DEBUG(availrmem);
1460
1461 /*
1462 * Some of the locks depend on page_hashsz being set!
1463 * kmem_init() depends on this; so, keep it here.
1464 */
1465 page_lock_init();
1466
1467 /*
1468 * Initialize kernel memory allocator.
1469 */
1470 kmem_init();
1471
1472 /*
1473 * Factor in colorequiv to check additional 'equivalent' bins
1474 */
1475 if (&page_set_colorequiv_arr_cpu != NULL)
1476 page_set_colorequiv_arr_cpu();
1477 else
1478 page_set_colorequiv_arr();
1479
1480 /*
1481 * Initialize bp_mapin().
1482 */
1483 bp_init(shm_alignment, HAT_STRICTORDER);
1484
1485 /*
1486 * Reserve space for MPO mblock structs from the 32-bit heap.
1487 */
1488
1489 if (mpo_heap32_bufsz > (size_t)0) {
1490 (void) vmem_xalloc(heap32_arena, mpo_heap32_bufsz,
1491 PAGESIZE, 0, 0, mpo_heap32_buf,
1492 mpo_heap32_buf + mpo_heap32_bufsz,
1493 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1494 }
1495 mem_config_init();
1496 }
1497
1498 static void
1499 startup_modules(void)
1500 {
1501 int nhblk1, nhblk8;
1502 size_t nhblksz;
1503 pgcnt_t pages_per_hblk;
1504 size_t hme8blk_sz, hme1blk_sz;
1505
1506 /*
1507 * The system file /etc/system was read already under startup_memlist.
1508 */
1509 if (&set_platform_defaults)
1510 set_platform_defaults();
1511
1512 /*
1513 * Calculate default settings of system parameters based upon
1514 * maxusers, yet allow to be overridden via the /etc/system file.
1515 */
1516 param_calc(0);
1517
1518 mod_setup();
1519
1520 /*
1521 * If this is a positron, complain and halt.
1522 */
1523 if (&iam_positron && iam_positron()) {
1524 cmn_err(CE_WARN, "This hardware platform is not supported"
1525 " by this release of Solaris.\n");
1526 #ifdef DEBUG
1527 prom_enter_mon(); /* Type 'go' to resume */
1528 cmn_err(CE_WARN, "Booting an unsupported platform.\n");
1529 cmn_err(CE_WARN, "Booting with down-rev firmware.\n");
1530
1531 #else /* DEBUG */
1532 halt(0);
1533 #endif /* DEBUG */
1534 }
1535
1536 /*
1537 * If we are running firmware that isn't 64-bit ready
1538 * then complain and halt.
1539 */
1540 do_prom_version_check();
1541
1542 /*
1543 * Initialize system parameters
1544 */
1545 param_init();
1546
1547 /*
1548 * maxmem is the amount of physical memory we're playing with.
1549 */
1550 maxmem = physmem;
1551
1552 /* Set segkp limits. */
1553 ncbase = kdi_segdebugbase;
1554 ncend = kdi_segdebugbase;
1555
1556 /*
1557 * Initialize the hat layer.
1558 */
1559 hat_init();
1560
1561 /*
1562 * Initialize segment management stuff.
1563 */
1564 seg_init();
1565
1566 /*
1567 * Create the va>tte handler, so the prom can understand
1568 * kernel translations. The handler is installed later, just
1569 * as we are about to take over the trap table from the prom.
1570 */
1571 create_va_to_tte();
1572
1573 /*
1574 * Load the forthdebugger (optional)
1575 */
1576 forthdebug_init();
1577
1578 /*
1579 * Create OBP node for console input callbacks
1580 * if it is needed.
1581 */
1582 startup_create_io_node();
1583
1584 if (modloadonly("fs", "specfs") == -1)
1585 halt("Can't load specfs");
1586
1587 if (modloadonly("fs", "devfs") == -1)
1588 halt("Can't load devfs");
1589
1590 if (modloadonly("fs", "procfs") == -1)
1591 halt("Can't load procfs");
1592
1593 if (modloadonly("misc", "swapgeneric") == -1)
1594 halt("Can't load swapgeneric");
1595
1596 (void) modloadonly("sys", "lbl_edition");
1597
1598 dispinit();
1599
1600 /*
1601 * Infer meanings to the members of the idprom buffer.
1602 */
1603 parse_idprom();
1604
1605 /* Read cluster configuration data. */
1606 clconf_init();
1607
1608 setup_ddi();
1609
1610 /*
1611 * Lets take this opportunity to load the root device.
1612 */
1613 if (loadrootmodules() != 0)
1614 debug_enter("Can't load the root filesystem");
1615
1616 /*
1617 * Load tod driver module for the tod part found on this system.
1618 * Recompute the cpu frequency/delays based on tod as tod part
1619 * tends to keep time more accurately.
1620 */
1621 if (&load_tod_module)
1622 load_tod_module();
1623
1624 /*
1625 * Allow platforms to load modules which might
1626 * be needed after bootops are gone.
1627 */
1628 if (&load_platform_modules)
1629 load_platform_modules();
1630
1631 setcpudelay();
1632
1633 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1634 &boot_physavail, &boot_physavail_len,
1635 &boot_virtavail, &boot_virtavail_len);
1636
1637 /*
1638 * Calculation and allocation of hmeblks needed to remap
1639 * the memory allocated by PROM till now.
1640 * Overestimate the number of hblk1 elements by assuming
1641 * worst case of TTE64K mappings.
1642 * sfmmu_hblk_alloc will panic if this calculation is wrong.
1643 */
1644 bop_alloc_pages = btopr(kmem64_end - kmem64_base);
1645 pages_per_hblk = btop(HMEBLK_SPAN(TTE64K));
1646 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1647 nhblk1 = bop_alloc_pages / pages_per_hblk + hblk1_min;
1648
1649 bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len);
1650
1651 /* sfmmu_init_nucleus_hblks expects properly aligned data structures */
1652 hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
1653 hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
1654
1655 bop_alloc_pages += btopr(nhblk1 * hme1blk_sz);
1656
1657 pages_per_hblk = btop(HMEBLK_SPAN(TTE8K));
1658 nhblk8 = 0;
1659 while (bop_alloc_pages > 1) {
1660 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1661 nhblk8 += bop_alloc_pages /= pages_per_hblk;
1662 bop_alloc_pages *= hme8blk_sz;
1663 bop_alloc_pages = btopr(bop_alloc_pages);
1664 }
1665 nhblk8 += 2;
1666
1667 /*
1668 * Since hblk8's can hold up to 64k of mappings aligned on a 64k
1669 * boundary, the number of hblk8's needed to map the entries in the
1670 * boot_virtavail list needs to be adjusted to take this into
1671 * consideration. Thus, we need to add additional hblk8's since it
1672 * is possible that an hblk8 will not have all 8 slots used due to
1673 * alignment constraints. Since there were boot_virtavail_len entries
1674 * in that list, we need to add that many hblk8's to the number
1675 * already calculated to make sure we don't underestimate.
1676 */
1677 nhblk8 += boot_virtavail_len;
1678 nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz;
1679
1680 /* Allocate in pagesize chunks */
1681 nhblksz = roundup(nhblksz, MMU_PAGESIZE);
1682 hblk_base = kmem_zalloc(nhblksz, KM_SLEEP);
1683 sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1);
1684 }
1685
1686 static void
1687 startup_bop_gone(void)
1688 {
1689
1690 /*
1691 * Destroy the MD initialized at startup
1692 * The startup initializes the MD framework
1693 * using prom and BOP alloc free it now.
1694 */
1695 mach_descrip_startup_fini();
1696
1697 /*
1698 * We're done with prom allocations.
1699 */
1700 bop_fini();
1701
1702 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1703 &boot_physavail, &boot_physavail_len,
1704 &boot_virtavail, &boot_virtavail_len);
1705
1706 /*
1707 * setup physically contiguous area twice as large as the ecache.
1708 * this is used while doing displacement flush of ecaches
1709 */
1710 if (&ecache_flush_address) {
1711 ecache_flushaddr = ecache_flush_address();
1712 if (ecache_flushaddr == (uint64_t)-1) {
1713 cmn_err(CE_PANIC,
1714 "startup: no memory to set ecache_flushaddr");
1715 }
1716 }
1717
1718 /*
1719 * Virtual available next.
1720 */
1721 ASSERT(virt_avail != NULL);
1722 memlist_free_list(virt_avail);
1723 virt_avail = memlist;
1724 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1725
1726 }
1727
1728
1729 /*
1730 * startup_fixup_physavail - called from mach_sfmmu.c after the final
1731 * allocations have been performed. We can't call it in startup_bop_gone
1732 * since later operations can cause obp to allocate more memory.
1733 */
1734 void
1735 startup_fixup_physavail(void)
1736 {
1737 struct memlist *cur;
1738 size_t kmem64_overmap_size = kmem64_aligned_end - kmem64_end;
1739
1740 PRM_DEBUG(kmem64_overmap_size);
1741
1742 /*
1743 * take the most current snapshot we can by calling mem-update
1744 */
1745 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1746 &boot_physavail, &boot_physavail_len,
1747 &boot_virtavail, &boot_virtavail_len);
1748
1749 /*
1750 * Copy phys_avail list, again.
1751 * Both the kernel/boot and the prom have been allocating
1752 * from the original list we copied earlier.
1753 */
1754 cur = memlist;
1755 copy_memlist(boot_physavail, boot_physavail_len, &memlist);
1756
1757 /*
1758 * Add any unused kmem64 memory from overmapped page
1759 * (Note: va_to_pa does not work for kmem64_end)
1760 */
1761 if (kmem64_overmap_size) {
1762 memlist_add(kmem64_pabase + (kmem64_end - kmem64_base),
1763 kmem64_overmap_size, &memlist, &cur);
1764 }
1765
1766 /*
1767 * Add any extra memory after e_data we added to the phys_avail list
1768 * back to the old list.
1769 */
1770 if (ndata_remain_sz >= MMU_PAGESIZE)
1771 memlist_add(va_to_pa(nalloc_base),
1772 (uint64_t)ndata_remain_sz, &memlist, &cur);
1773
1774 /*
1775 * There isn't any bounds checking on the memlist area
1776 * so ensure it hasn't overgrown.
1777 */
1778 if ((caddr_t)memlist > (caddr_t)memlist_end)
1779 cmn_err(CE_PANIC, "startup: memlist size exceeded");
1780
1781 /*
1782 * The kernel removes the pages that were allocated for it from
1783 * the freelist, but we now have to find any -extra- pages that
1784 * the prom has allocated for it's own book-keeping, and remove
1785 * them from the freelist too. sigh.
1786 */
1787 sync_memlists(phys_avail, cur);
1788
1789 ASSERT(phys_avail != NULL);
1790
1791 old_phys_avail = phys_avail;
1792 phys_avail = cur;
1793 }
1794
1795 void
1796 update_kcage_ranges(uint64_t addr, uint64_t len)
1797 {
1798 pfn_t base = btop(addr);
1799 pgcnt_t num = btop(len);
1800 int rv;
1801
1802 rv = kcage_range_add(base, num, kcage_startup_dir);
1803
1804 if (rv == ENOMEM) {
1805 cmn_err(CE_WARN, "%ld megabytes not available to kernel cage",
1806 (len == 0 ? 0 : BYTES_TO_MB(len)));
1807 } else if (rv != 0) {
1808 /* catch this in debug kernels */
1809 ASSERT(0);
1810
1811 cmn_err(CE_WARN, "unexpected kcage_range_add"
1812 " return value %d", rv);
1813 }
1814 }
1815
1816 static void
1817 startup_vm(void)
1818 {
1819 size_t i;
1820 struct segmap_crargs a;
1821 struct segkpm_crargs b;
1822
1823 uint64_t avmem;
1824 caddr_t va;
1825 pgcnt_t max_phys_segkp;
1826 int mnode;
1827
1828 extern int use_brk_lpg, use_stk_lpg;
1829
1830 /*
1831 * get prom's mappings, create hments for them and switch
1832 * to the kernel context.
1833 */
1834 hat_kern_setup();
1835
1836 /*
1837 * Take over trap table
1838 */
1839 setup_trap_table();
1840
1841 /*
1842 * Install the va>tte handler, so that the prom can handle
1843 * misses and understand the kernel table layout in case
1844 * we need call into the prom.
1845 */
1846 install_va_to_tte();
1847
1848 /*
1849 * Set a flag to indicate that the tba has been taken over.
1850 */
1851 tba_taken_over = 1;
1852
1853 /* initialize MMU primary context register */
1854 mmu_init_kcontext();
1855
1856 /*
1857 * The boot cpu can now take interrupts, x-calls, x-traps
1858 */
1859 CPUSET_ADD(cpu_ready_set, CPU->cpu_id);
1860 CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS);
1861
1862 /*
1863 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR.
1864 */
1865 tbr_wr_addr_inited = 1;
1866
1867 /*
1868 * Initialize VM system, and map kernel address space.
1869 */
1870 kvm_init();
1871
1872 ASSERT(old_phys_avail != NULL && phys_avail != NULL);
1873 if (kernel_cage_enable) {
1874 diff_memlists(phys_avail, old_phys_avail, update_kcage_ranges);
1875 }
1876 memlist_free_list(old_phys_avail);
1877
1878 /*
1879 * If the following is true, someone has patched
1880 * phsymem to be less than the number of pages that
1881 * the system actually has. Remove pages until system
1882 * memory is limited to the requested amount. Since we
1883 * have allocated page structures for all pages, we
1884 * correct the amount of memory we want to remove
1885 * by the size of the memory used to hold page structures
1886 * for the non-used pages.
1887 */
1888 if (physmem + ramdisk_npages < npages) {
1889 pgcnt_t diff, off;
1890 struct page *pp;
1891 struct seg kseg;
1892
1893 cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem);
1894
1895 off = 0;
1896 diff = npages - (physmem + ramdisk_npages);
1897 diff -= mmu_btopr(diff * sizeof (struct page));
1898 kseg.s_as = &kas;
1899 while (diff--) {
1900 pp = page_create_va(&unused_pages_vp, (offset_t)off,
1901 MMU_PAGESIZE, PG_WAIT | PG_EXCL,
1902 &kseg, (caddr_t)off);
1903 if (pp == NULL)
1904 cmn_err(CE_PANIC, "limited physmem too much!");
1905 page_io_unlock(pp);
1906 page_downgrade(pp);
1907 availrmem--;
1908 off += MMU_PAGESIZE;
1909 }
1910 }
1911
1912 /*
1913 * When printing memory, show the total as physmem less
1914 * that stolen by a debugger.
1915 */
1916 cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n",
1917 (ulong_t)(physinstalled) << (PAGESHIFT - 10),
1918 (ulong_t)(physinstalled) << (PAGESHIFT - 12));
1919
1920 avmem = (uint64_t)freemem << PAGESHIFT;
1921 cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem);
1922
1923 /*
1924 * For small memory systems disable automatic large pages.
1925 */
1926 if (physmem < privm_lpg_min_physmem) {
1927 use_brk_lpg = 0;
1928 use_stk_lpg = 0;
1929 }
1930
1931 /*
1932 * Perform platform specific freelist processing
1933 */
1934 if (&plat_freelist_process) {
1935 for (mnode = 0; mnode < max_mem_nodes; mnode++)
1936 if (mem_node_config[mnode].exists)
1937 plat_freelist_process(mnode);
1938 }
1939
1940 /*
1941 * Initialize the segkp segment type. We position it
1942 * after the configured tables and buffers (whose end
1943 * is given by econtig) and before V_WKBASE_ADDR.
1944 * Also in this area is segkmap (size SEGMAPSIZE).
1945 */
1946
1947 /* XXX - cache alignment? */
1948 va = (caddr_t)SEGKPBASE;
1949 ASSERT(((uintptr_t)va & PAGEOFFSET) == 0);
1950
1951 max_phys_segkp = (physmem * 2);
1952
1953 if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) {
1954 segkpsize = btop(SEGKPDEFSIZE);
1955 cmn_err(CE_WARN, "Illegal value for segkpsize. "
1956 "segkpsize has been reset to %ld pages", segkpsize);
1957 }
1958
1959 i = ptob(MIN(segkpsize, max_phys_segkp));
1960
1961 rw_enter(&kas.a_lock, RW_WRITER);
1962 if (seg_attach(&kas, va, i, segkp) < 0)
1963 cmn_err(CE_PANIC, "startup: cannot attach segkp");
1964 if (segkp_create(segkp) != 0)
1965 cmn_err(CE_PANIC, "startup: segkp_create failed");
1966 rw_exit(&kas.a_lock);
1967
1968 /*
1969 * kpm segment
1970 */
1971 segmap_kpm = kpm_enable &&
1972 segmap_kpm && PAGESIZE == MAXBSIZE;
1973
1974 if (kpm_enable) {
1975 rw_enter(&kas.a_lock, RW_WRITER);
1976
1977 /*
1978 * The segkpm virtual range range is larger than the
1979 * actual physical memory size and also covers gaps in
1980 * the physical address range for the following reasons:
1981 * . keep conversion between segkpm and physical addresses
1982 * simple, cheap and unambiguous.
1983 * . avoid extension/shrink of the the segkpm in case of DR.
1984 * . avoid complexity for handling of virtual addressed
1985 * caches, segkpm and the regular mapping scheme must be
1986 * kept in sync wrt. the virtual color of mapped pages.
1987 * Any accesses to virtual segkpm ranges not backed by
1988 * physical memory will fall through the memseg pfn hash
1989 * and will be handled in segkpm_fault.
1990 * Additional kpm_size spaces needed for vac alias prevention.
1991 */
1992 if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors,
1993 segkpm) < 0)
1994 cmn_err(CE_PANIC, "cannot attach segkpm");
1995
1996 b.prot = PROT_READ | PROT_WRITE;
1997 b.nvcolors = shm_alignment >> MMU_PAGESHIFT;
1998
1999 if (segkpm_create(segkpm, (caddr_t)&b) != 0)
2000 panic("segkpm_create segkpm");
2001
2002 rw_exit(&kas.a_lock);
2003
2004 mach_kpm_init();
2005 }
2006
2007 va = kpm_vbase + (kpm_size * vac_colors);
2008
2009 if (!segzio_fromheap) {
2010 size_t size;
2011 size_t physmem_b = mmu_ptob(physmem);
2012
2013 /* size is in bytes, segziosize is in pages */
2014 if (segziosize == 0) {
2015 size = physmem_b;
2016 } else {
2017 size = mmu_ptob(segziosize);
2018 }
2019
2020 if (size < SEGZIOMINSIZE) {
2021 size = SEGZIOMINSIZE;
2022 } else if (size > SEGZIOMAXSIZE) {
2023 size = SEGZIOMAXSIZE;
2024 /*
2025 * On 64-bit x86, we only have 2TB of KVA. This exists
2026 * for parity with x86.
2027 *
2028 * SEGZIOMAXSIZE is capped at 512gb so that segzio
2029 * doesn't consume all of KVA. However, if we have a
2030 * system that has more thant 512gb of physical memory,
2031 * we can actually consume about half of the difference
2032 * between 512gb and the rest of the available physical
2033 * memory.
2034 */
2035 if (physmem_b > SEGZIOMAXSIZE) {
2036 size += (physmem_b - SEGZIOMAXSIZE) / 2;
2037 }
2038 }
2039 segziosize = mmu_btop(roundup(size, MMU_PAGESIZE));
2040 /* put the base of the ZIO segment after the kpm segment */
2041 segzio_base = va;
2042 va += mmu_ptob(segziosize);
2043 PRM_DEBUG(segziosize);
2044 PRM_DEBUG(segzio_base);
2045
2046 /*
2047 * On some platforms, kvm_init is called after the kpm
2048 * sizes have been determined. On SPARC, kvm_init is called
2049 * before, so we have to attach the kzioseg after kvm is
2050 * initialized, otherwise we'll try to allocate from the boot
2051 * area since the kernel heap hasn't yet been configured.
2052 */
2053 rw_enter(&kas.a_lock, RW_WRITER);
2054
2055 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2056 &kzioseg);
2057 (void) segkmem_zio_create(&kzioseg);
2058
2059 /* create zio area covering new segment */
2060 segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2061
2062 rw_exit(&kas.a_lock);
2063 }
2064
2065 if (ppvm_enable) {
2066 caddr_t ppvm_max;
2067
2068 /*
2069 * ppvm refers to the static VA space used to map
2070 * the page_t's for dynamically added memory.
2071 *
2072 * ppvm_base should not cross a potential VA hole.
2073 *
2074 * ppvm_size should be large enough to map the
2075 * page_t's needed to manage all of KPM range.
2076 */
2077 ppvm_size =
2078 roundup(mmu_btop(kpm_size * vac_colors) * sizeof (page_t),
2079 MMU_PAGESIZE);
2080 ppvm_max = (caddr_t)(0ull - ppvm_size);
2081 ppvm_base = (page_t *)va;
2082
2083 if ((caddr_t)ppvm_base <= hole_end) {
2084 cmn_err(CE_WARN,
2085 "Memory DR disabled: invalid DR map base: 0x%p\n",
2086 (void *)ppvm_base);
2087 ppvm_enable = 0;
2088 } else if ((caddr_t)ppvm_base > ppvm_max) {
2089 uint64_t diff = (caddr_t)ppvm_base - ppvm_max;
2090
2091 cmn_err(CE_WARN,
2092 "Memory DR disabled: insufficient DR map size:"
2093 " 0x%lx (needed 0x%lx)\n",
2094 ppvm_size - diff, ppvm_size);
2095 ppvm_enable = 0;
2096 }
2097 PRM_DEBUG(ppvm_size);
2098 PRM_DEBUG(ppvm_base);
2099 }
2100
2101 /*
2102 * Now create generic mapping segment. This mapping
2103 * goes SEGMAPSIZE beyond SEGMAPBASE. But if the total
2104 * virtual address is greater than the amount of free
2105 * memory that is available, then we trim back the
2106 * segment size to that amount
2107 */
2108 va = (caddr_t)SEGMAPBASE;
2109
2110 /*
2111 * 1201049: segkmap base address must be MAXBSIZE aligned
2112 */
2113 ASSERT(((uintptr_t)va & MAXBOFFSET) == 0);
2114
2115 /*
2116 * Set size of segmap to percentage of freemem at boot,
2117 * but stay within the allowable range
2118 * Note we take percentage before converting from pages
2119 * to bytes to avoid an overflow on 32-bit kernels.
2120 */
2121 i = mmu_ptob((freemem * segmap_percent) / 100);
2122
2123 if (i < MINMAPSIZE)
2124 i = MINMAPSIZE;
2125
2126 if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem)))
2127 i = MIN(SEGMAPSIZE, mmu_ptob(freemem));
2128
2129 i &= MAXBMASK; /* 1201049: segkmap size must be MAXBSIZE aligned */
2130
2131 rw_enter(&kas.a_lock, RW_WRITER);
2132 if (seg_attach(&kas, va, i, segkmap) < 0)
2133 cmn_err(CE_PANIC, "cannot attach segkmap");
2134
2135 a.prot = PROT_READ | PROT_WRITE;
2136 a.shmsize = shm_alignment;
2137 a.nfreelist = 0; /* use segmap driver defaults */
2138
2139 if (segmap_create(segkmap, (caddr_t)&a) != 0)
2140 panic("segmap_create segkmap");
2141 rw_exit(&kas.a_lock);
2142
2143 segdev_init();
2144 }
2145
2146 static void
2147 startup_end(void)
2148 {
2149 if ((caddr_t)memlist > (caddr_t)memlist_end)
2150 panic("memlist overflow 2");
2151 memlist_free_block((caddr_t)memlist,
2152 ((caddr_t)memlist_end - (caddr_t)memlist));
2153 memlist = NULL;
2154
2155 /* enable page_relocation since OBP is now done */
2156 page_relocate_ready = 1;
2157
2158 /*
2159 * Perform tasks that get done after most of the VM
2160 * initialization has been done but before the clock
2161 * and other devices get started.
2162 */
2163 kern_setup1();
2164
2165 /*
2166 * Perform CPC initialization for this CPU.
2167 */
2168 kcpc_hw_init();
2169
2170 /*
2171 * Intialize the VM arenas for allocating physically
2172 * contiguus memory chunk for interrupt queues snd
2173 * allocate/register boot cpu's queues, if any and
2174 * allocate dump buffer for sun4v systems to store
2175 * extra crash information during crash dump
2176 */
2177 contig_mem_init();
2178 mach_descrip_init();
2179
2180 if (cpu_intrq_setup(CPU)) {
2181 cmn_err(CE_PANIC, "cpu%d: setup failed", CPU->cpu_id);
2182 }
2183 cpu_intrq_register(CPU);
2184 mach_htraptrace_setup(CPU->cpu_id);
2185 mach_htraptrace_configure(CPU->cpu_id);
2186 mach_dump_buffer_init();
2187
2188 /*
2189 * Initialize interrupt related stuff
2190 */
2191 cpu_intr_alloc(CPU, NINTR_THREADS);
2192
2193 (void) splzs(); /* allow hi clock ints but not zs */
2194
2195 /*
2196 * Initialize errors.
2197 */
2198 error_init();
2199
2200 /*
2201 * Note that we may have already used kernel bcopy before this
2202 * point - but if you really care about this, adb the use_hw_*
2203 * variables to 0 before rebooting.
2204 */
2205 mach_hw_copy_limit();
2206
2207 /*
2208 * Install the "real" preemption guards before DDI services
2209 * are available.
2210 */
2211 (void) prom_set_preprom(kern_preprom);
2212 (void) prom_set_postprom(kern_postprom);
2213 CPU->cpu_m.mutex_ready = 1;
2214
2215 /*
2216 * Initialize segnf (kernel support for non-faulting loads).
2217 */
2218 segnf_init();
2219
2220 /*
2221 * Configure the root devinfo node.
2222 */
2223 configure(); /* set up devices */
2224 mach_cpu_halt_idle();
2225 }
2226
2227
2228 void
2229 post_startup(void)
2230 {
2231 #ifdef PTL1_PANIC_DEBUG
2232 extern void init_ptl1_thread(void);
2233 #endif /* PTL1_PANIC_DEBUG */
2234 extern void abort_sequence_init(void);
2235
2236 /*
2237 * Set the system wide, processor-specific flags to be passed
2238 * to userland via the aux vector for performance hints and
2239 * instruction set extensions.
2240 */
2241 bind_hwcap();
2242
2243 /*
2244 * Startup memory scrubber (if any)
2245 */
2246 mach_memscrub();
2247
2248 /*
2249 * Allocate soft interrupt to handle abort sequence.
2250 */
2251 abort_sequence_init();
2252
2253 /*
2254 * Configure the rest of the system.
2255 * Perform forceloading tasks for /etc/system.
2256 */
2257 (void) mod_sysctl(SYS_FORCELOAD, NULL);
2258 /*
2259 * ON4.0: Force /proc module in until clock interrupt handle fixed
2260 * ON4.0: This must be fixed or restated in /etc/systems.
2261 */
2262 (void) modload("fs", "procfs");
2263
2264 /* load machine class specific drivers */
2265 load_mach_drivers();
2266
2267 /* load platform specific drivers */
2268 if (&load_platform_drivers)
2269 load_platform_drivers();
2270
2271 /* load vis simulation module, if we are running w/fpu off */
2272 if (!fpu_exists) {
2273 if (modload("misc", "vis") == -1)
2274 halt("Can't load vis");
2275 }
2276
2277 mach_fpras();
2278
2279 maxmem = freemem;
2280
2281 pg_init();
2282
2283 #ifdef PTL1_PANIC_DEBUG
2284 init_ptl1_thread();
2285 #endif /* PTL1_PANIC_DEBUG */
2286 }
2287
2288 #ifdef PTL1_PANIC_DEBUG
2289 int ptl1_panic_test = 0;
2290 int ptl1_panic_xc_one_test = 0;
2291 int ptl1_panic_xc_all_test = 0;
2292 int ptl1_panic_xt_one_test = 0;
2293 int ptl1_panic_xt_all_test = 0;
2294 kthread_id_t ptl1_thread_p = NULL;
2295 kcondvar_t ptl1_cv;
2296 kmutex_t ptl1_mutex;
2297 int ptl1_recurse_count_threshold = 0x40;
2298 int ptl1_recurse_trap_threshold = 0x3d;
2299 extern void ptl1_recurse(int, int);
2300 extern void ptl1_panic_xt(int, int);
2301
2302 /*
2303 * Called once per second by timeout() to wake up
2304 * the ptl1_panic thread to see if it should cause
2305 * a trap to the ptl1_panic() code.
2306 */
2307 /* ARGSUSED */
2308 static void
2309 ptl1_wakeup(void *arg)
2310 {
2311 mutex_enter(&ptl1_mutex);
2312 cv_signal(&ptl1_cv);
2313 mutex_exit(&ptl1_mutex);
2314 }
2315
2316 /*
2317 * ptl1_panic cross call function:
2318 * Needed because xc_one() and xc_some() can pass
2319 * 64 bit args but ptl1_recurse() expects ints.
2320 */
2321 static void
2322 ptl1_panic_xc(void)
2323 {
2324 ptl1_recurse(ptl1_recurse_count_threshold,
2325 ptl1_recurse_trap_threshold);
2326 }
2327
2328 /*
2329 * The ptl1 thread waits for a global flag to be set
2330 * and uses the recurse thresholds to set the stack depth
2331 * to cause a ptl1_panic() directly via a call to ptl1_recurse
2332 * or indirectly via the cross call and cross trap functions.
2333 *
2334 * This is useful testing stack overflows and normal
2335 * ptl1_panic() states with a know stack frame.
2336 *
2337 * ptl1_recurse() is an asm function in ptl1_panic.s that
2338 * sets the {In, Local, Out, and Global} registers to a
2339 * know state on the stack and just prior to causing a
2340 * test ptl1_panic trap.
2341 */
2342 static void
2343 ptl1_thread(void)
2344 {
2345 mutex_enter(&ptl1_mutex);
2346 while (ptl1_thread_p) {
2347 cpuset_t other_cpus;
2348 int cpu_id;
2349 int my_cpu_id;
2350 int target_cpu_id;
2351 int target_found;
2352
2353 if (ptl1_panic_test) {
2354 ptl1_recurse(ptl1_recurse_count_threshold,
2355 ptl1_recurse_trap_threshold);
2356 }
2357
2358 /*
2359 * Find potential targets for x-call and x-trap,
2360 * if any exist while preempt is disabled we
2361 * start a ptl1_panic if requested via a
2362 * globals.
2363 */
2364 kpreempt_disable();
2365 my_cpu_id = CPU->cpu_id;
2366 other_cpus = cpu_ready_set;
2367 CPUSET_DEL(other_cpus, CPU->cpu_id);
2368 target_found = 0;
2369 if (!CPUSET_ISNULL(other_cpus)) {
2370 /*
2371 * Pick the first one
2372 */
2373 for (cpu_id = 0; cpu_id < NCPU; cpu_id++) {
2374 if (cpu_id == my_cpu_id)
2375 continue;
2376
2377 if (CPU_XCALL_READY(cpu_id)) {
2378 target_cpu_id = cpu_id;
2379 target_found = 1;
2380 break;
2381 }
2382 }
2383 ASSERT(target_found);
2384
2385 if (ptl1_panic_xc_one_test) {
2386 xc_one(target_cpu_id,
2387 (xcfunc_t *)ptl1_panic_xc, 0, 0);
2388 }
2389 if (ptl1_panic_xc_all_test) {
2390 xc_some(other_cpus,
2391 (xcfunc_t *)ptl1_panic_xc, 0, 0);
2392 }
2393 if (ptl1_panic_xt_one_test) {
2394 xt_one(target_cpu_id,
2395 (xcfunc_t *)ptl1_panic_xt, 0, 0);
2396 }
2397 if (ptl1_panic_xt_all_test) {
2398 xt_some(other_cpus,
2399 (xcfunc_t *)ptl1_panic_xt, 0, 0);
2400 }
2401 }
2402 kpreempt_enable();
2403 (void) timeout(ptl1_wakeup, NULL, hz);
2404 (void) cv_wait(&ptl1_cv, &ptl1_mutex);
2405 }
2406 mutex_exit(&ptl1_mutex);
2407 }
2408
2409 /*
2410 * Called during early startup to create the ptl1_thread
2411 */
2412 void
2413 init_ptl1_thread(void)
2414 {
2415 ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0,
2416 &p0, TS_RUN, 0);
2417 }
2418 #endif /* PTL1_PANIC_DEBUG */
2419
2420
2421 static void
2422 memlist_new(uint64_t start, uint64_t len, struct memlist **memlistp)
2423 {
2424 struct memlist *new;
2425
2426 new = *memlistp;
2427 new->ml_address = start;
2428 new->ml_size = len;
2429 *memlistp = new + 1;
2430 }
2431
2432 /*
2433 * Add to a memory list.
2434 * start = start of new memory segment
2435 * len = length of new memory segment in bytes
2436 * memlistp = pointer to array of available memory segment structures
2437 * curmemlistp = memory list to which to add segment.
2438 */
2439 static void
2440 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp,
2441 struct memlist **curmemlistp)
2442 {
2443 struct memlist *new = *memlistp;
2444
2445 memlist_new(start, len, memlistp);
2446 memlist_insert(new, curmemlistp);
2447 }
2448
2449 static int
2450 ndata_alloc_memseg(struct memlist *ndata, size_t avail)
2451 {
2452 int nseg;
2453 size_t memseg_sz;
2454 struct memseg *msp;
2455
2456 /*
2457 * The memseg list is for the chunks of physical memory that
2458 * will be managed by the vm system. The number calculated is
2459 * a guess as boot may fragment it more when memory allocations
2460 * are made before kphysm_init().
2461 */
2462 memseg_sz = (avail + 10) * sizeof (struct memseg);
2463 memseg_sz = roundup(memseg_sz, PAGESIZE);
2464 nseg = memseg_sz / sizeof (struct memseg);
2465 msp = ndata_alloc(ndata, memseg_sz, ecache_alignsize);
2466 if (msp == NULL)
2467 return (1);
2468 PRM_DEBUG(memseg_free);
2469
2470 while (nseg--) {
2471 msp->next = memseg_free;
2472 memseg_free = msp;
2473 msp++;
2474 }
2475 return (0);
2476 }
2477
2478 /*
2479 * In the case of architectures that support dynamic addition of
2480 * memory at run-time there are two cases where memsegs need to
2481 * be initialized and added to the memseg list.
2482 * 1) memsegs that are constructed at startup.
2483 * 2) memsegs that are constructed at run-time on
2484 * hot-plug capable architectures.
2485 * This code was originally part of the function kphysm_init().
2486 */
2487
2488 static void
2489 memseg_list_add(struct memseg *memsegp)
2490 {
2491 struct memseg **prev_memsegp;
2492 pgcnt_t num;
2493
2494 /* insert in memseg list, decreasing number of pages order */
2495
2496 num = MSEG_NPAGES(memsegp);
2497
2498 for (prev_memsegp = &memsegs; *prev_memsegp;
2499 prev_memsegp = &((*prev_memsegp)->next)) {
2500 if (num > MSEG_NPAGES(*prev_memsegp))
2501 break;
2502 }
2503
2504 memsegp->next = *prev_memsegp;
2505 *prev_memsegp = memsegp;
2506
2507 if (kpm_enable) {
2508 memsegp->nextpa = (memsegp->next) ?
2509 va_to_pa(memsegp->next) : MSEG_NULLPTR_PA;
2510
2511 if (prev_memsegp != &memsegs) {
2512 struct memseg *msp;
2513 msp = (struct memseg *)((caddr_t)prev_memsegp -
2514 offsetof(struct memseg, next));
2515 msp->nextpa = va_to_pa(memsegp);
2516 } else {
2517 memsegspa = va_to_pa(memsegs);
2518 }
2519 }
2520 }
2521
2522 /*
2523 * PSM add_physmem_cb(). US-II and newer processors have some
2524 * flavor of the prefetch capability implemented. We exploit
2525 * this capability for optimum performance.
2526 */
2527 #define PREFETCH_BYTES 64
2528
2529 void
2530 add_physmem_cb(page_t *pp, pfn_t pnum)
2531 {
2532 extern void prefetch_page_w(void *);
2533
2534 pp->p_pagenum = pnum;
2535
2536 /*
2537 * Prefetch one more page_t into E$. To prevent future
2538 * mishaps with the sizeof(page_t) changing on us, we
2539 * catch this on debug kernels if we can't bring in the
2540 * entire hpage with 2 PREFETCH_BYTES reads. See
2541 * also, sun4u/cpu/cpu_module.c
2542 */
2543 /*LINTED*/
2544 ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES);
2545 prefetch_page_w((char *)pp);
2546 }
2547
2548 /*
2549 * Find memseg with given pfn
2550 */
2551 static struct memseg *
2552 memseg_find(pfn_t base, pfn_t *next)
2553 {
2554 struct memseg *seg;
2555
2556 if (next != NULL)
2557 *next = LONG_MAX;
2558 for (seg = memsegs; seg != NULL; seg = seg->next) {
2559 if (base >= seg->pages_base && base < seg->pages_end)
2560 return (seg);
2561 if (next != NULL && seg->pages_base > base &&
2562 seg->pages_base < *next)
2563 *next = seg->pages_base;
2564 }
2565 return (NULL);
2566 }
2567
2568 /*
2569 * Put page allocated by OBP on prom_ppages
2570 */
2571 static void
2572 kphysm_erase(uint64_t addr, uint64_t len)
2573 {
2574 struct page *pp;
2575 struct memseg *seg;
2576 pfn_t base = btop(addr), next;
2577 pgcnt_t num = btop(len);
2578
2579 while (num != 0) {
2580 pgcnt_t off, left;
2581
2582 seg = memseg_find(base, &next);
2583 if (seg == NULL) {
2584 if (next == LONG_MAX)
2585 break;
2586 left = MIN(next - base, num);
2587 base += left, num -= left;
2588 continue;
2589 }
2590 off = base - seg->pages_base;
2591 pp = seg->pages + off;
2592 left = num - MIN(num, (seg->pages_end - seg->pages_base) - off);
2593 while (num != left) {
2594 /*
2595 * init it, lock it, and hashin on prom_pages vp.
2596 *
2597 * Mark it as NONRELOC to let DR know the page
2598 * is locked long term, otherwise DR hangs when
2599 * trying to remove those pages.
2600 *
2601 * XXX vnode offsets on the prom_ppages vnode
2602 * are page numbers (gack) for >32 bit
2603 * physical memory machines.
2604 */
2605 PP_SETNORELOC(pp);
2606 add_physmem_cb(pp, base);
2607 if (page_trylock(pp, SE_EXCL) == 0)
2608 cmn_err(CE_PANIC, "prom page locked");
2609 (void) page_hashin(pp, &promvp,
2610 (offset_t)base, NULL);
2611 (void) page_pp_lock(pp, 0, 1);
2612 pp++, base++, num--;
2613 }
2614 }
2615 }
2616
2617 static page_t *ppnext;
2618 static pgcnt_t ppleft;
2619
2620 static void *kpm_ppnext;
2621 static pgcnt_t kpm_ppleft;
2622
2623 /*
2624 * Create a memseg
2625 */
2626 static void
2627 kphysm_memseg(uint64_t addr, uint64_t len)
2628 {
2629 pfn_t base = btop(addr);
2630 pgcnt_t num = btop(len);
2631 struct memseg *seg;
2632
2633 seg = memseg_free;
2634 memseg_free = seg->next;
2635 ASSERT(seg != NULL);
2636
2637 seg->pages = ppnext;
2638 seg->epages = ppnext + num;
2639 seg->pages_base = base;
2640 seg->pages_end = base + num;
2641 ppnext += num;
2642 ppleft -= num;
2643
2644 if (kpm_enable) {
2645 pgcnt_t kpnum = ptokpmpr(num);
2646
2647 if (kpnum > kpm_ppleft)
2648 panic("kphysm_memseg: kpm_pp overflow");
2649 seg->pagespa = va_to_pa(seg->pages);
2650 seg->epagespa = va_to_pa(seg->epages);
2651 seg->kpm_pbase = kpmptop(ptokpmp(base));
2652 seg->kpm_nkpmpgs = kpnum;
2653 /*
2654 * In the kpm_smallpage case, the kpm array
2655 * is 1-1 wrt the page array
2656 */
2657 if (kpm_smallpages) {
2658 kpm_spage_t *kpm_pp = kpm_ppnext;
2659
2660 kpm_ppnext = kpm_pp + kpnum;
2661 seg->kpm_spages = kpm_pp;
2662 seg->kpm_pagespa = va_to_pa(seg->kpm_spages);
2663 } else {
2664 kpm_page_t *kpm_pp = kpm_ppnext;
2665
2666 kpm_ppnext = kpm_pp + kpnum;
2667 seg->kpm_pages = kpm_pp;
2668 seg->kpm_pagespa = va_to_pa(seg->kpm_pages);
2669 /* ASSERT no kpm overlaps */
2670 ASSERT(
2671 memseg_find(base - pmodkpmp(base), NULL) == NULL);
2672 ASSERT(memseg_find(
2673 roundup(base + num, kpmpnpgs) - 1, NULL) == NULL);
2674 }
2675 kpm_ppleft -= kpnum;
2676 }
2677
2678 memseg_list_add(seg);
2679 }
2680
2681 /*
2682 * Add range to free list
2683 */
2684 void
2685 kphysm_add(uint64_t addr, uint64_t len, int reclaim)
2686 {
2687 struct page *pp;
2688 struct memseg *seg;
2689 pfn_t base = btop(addr);
2690 pgcnt_t num = btop(len);
2691
2692 seg = memseg_find(base, NULL);
2693 ASSERT(seg != NULL);
2694 pp = seg->pages + (base - seg->pages_base);
2695
2696 if (reclaim) {
2697 struct page *rpp = pp;
2698 struct page *lpp = pp + num;
2699
2700 /*
2701 * page should be locked on prom_ppages
2702 * unhash and unlock it
2703 */
2704 while (rpp < lpp) {
2705 ASSERT(PAGE_EXCL(rpp) && rpp->p_vnode == &promvp);
2706 ASSERT(PP_ISNORELOC(rpp));
2707 PP_CLRNORELOC(rpp);
2708 page_pp_unlock(rpp, 0, 1);
2709 page_hashout(rpp, NULL);
2710 page_unlock(rpp);
2711 rpp++;
2712 }
2713 }
2714
2715 /*
2716 * add_physmem() initializes the PSM part of the page
2717 * struct by calling the PSM back with add_physmem_cb().
2718 * In addition it coalesces pages into larger pages as
2719 * it initializes them.
2720 */
2721 add_physmem(pp, num, base);
2722 }
2723
2724 /*
2725 * kphysm_init() tackles the problem of initializing physical memory.
2726 */
2727 static void
2728 kphysm_init(void)
2729 {
2730 struct memlist *pmem;
2731
2732 ASSERT(page_hash != NULL && page_hashsz != 0);
2733
2734 ppnext = pp_base;
2735 ppleft = npages;
2736 kpm_ppnext = kpm_pp_base;
2737 kpm_ppleft = kpm_npages;
2738
2739 /*
2740 * installed pages not on nopp_memlist go in memseg list
2741 */
2742 diff_memlists(phys_install, nopp_list, kphysm_memseg);
2743
2744 /*
2745 * Free the avail list
2746 */
2747 for (pmem = phys_avail; pmem != NULL; pmem = pmem->ml_next)
2748 kphysm_add(pmem->ml_address, pmem->ml_size, 0);
2749
2750 /*
2751 * Erase pages that aren't available
2752 */
2753 diff_memlists(phys_install, phys_avail, kphysm_erase);
2754
2755 build_pfn_hash();
2756 }
2757
2758 /*
2759 * Kernel VM initialization.
2760 * Assumptions about kernel address space ordering:
2761 * (1) gap (user space)
2762 * (2) kernel text
2763 * (3) kernel data/bss
2764 * (4) gap
2765 * (5) kernel data structures
2766 * (6) gap
2767 * (7) debugger (optional)
2768 * (8) monitor
2769 * (9) gap (possibly null)
2770 * (10) dvma
2771 * (11) devices
2772 */
2773 static void
2774 kvm_init(void)
2775 {
2776 /*
2777 * Put the kernel segments in kernel address space.
2778 */
2779 rw_enter(&kas.a_lock, RW_WRITER);
2780 as_avlinit(&kas);
2781
2782 (void) seg_attach(&kas, (caddr_t)KERNELBASE,
2783 (size_t)(e_moddata - KERNELBASE), &ktextseg);
2784 (void) segkmem_create(&ktextseg);
2785
2786 (void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M),
2787 (size_t)(MMU_PAGESIZE4M), &ktexthole);
2788 (void) segkmem_create(&ktexthole);
2789
2790 (void) seg_attach(&kas, (caddr_t)valloc_base,
2791 (size_t)(econtig32 - valloc_base), &kvalloc);
2792 (void) segkmem_create(&kvalloc);
2793
2794 if (kmem64_base) {
2795 (void) seg_attach(&kas, (caddr_t)kmem64_base,
2796 (size_t)(kmem64_end - kmem64_base), &kmem64);
2797 (void) segkmem_create(&kmem64);
2798 }
2799
2800 /*
2801 * We're about to map out /boot. This is the beginning of the
2802 * system resource management transition. We can no longer
2803 * call into /boot for I/O or memory allocations.
2804 */
2805 (void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg);
2806 (void) segkmem_create(&kvseg);
2807 hblk_alloc_dynamic = 1;
2808
2809 /*
2810 * we need to preallocate pages for DR operations before enabling large
2811 * page kernel heap because of memseg_remap_init() hat_unload() hack.
2812 */
2813 memseg_remap_init();
2814
2815 /* at this point we are ready to use large page heap */
2816 segkmem_heap_lp_init();
2817
2818 (void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32,
2819 &kvseg32);
2820 (void) segkmem_create(&kvseg32);
2821
2822 /*
2823 * Create a segment for the debugger.
2824 */
2825 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2826 (void) segkmem_create(&kdebugseg);
2827
2828 rw_exit(&kas.a_lock);
2829 }
2830
2831 char obp_tte_str[] =
2832 "h# %x constant MMU_PAGESHIFT "
2833 "h# %x constant TTE8K "
2834 "h# %x constant SFHME_SIZE "
2835 "h# %x constant SFHME_TTE "
2836 "h# %x constant HMEBLK_TAG "
2837 "h# %x constant HMEBLK_NEXT "
2838 "h# %x constant HMEBLK_MISC "
2839 "h# %x constant HMEBLK_HME1 "
2840 "h# %x constant NHMENTS "
2841 "h# %x constant HBLK_SZMASK "
2842 "h# %x constant HBLK_RANGE_SHIFT "
2843 "h# %x constant HMEBP_HBLK "
2844 "h# %x constant HMEBLK_ENDPA "
2845 "h# %x constant HMEBUCKET_SIZE "
2846 "h# %x constant HTAG_SFMMUPSZ "
2847 "h# %x constant HTAG_BSPAGE_SHIFT "
2848 "h# %x constant HTAG_REHASH_SHIFT "
2849 "h# %x constant SFMMU_INVALID_SHMERID "
2850 "h# %x constant mmu_hashcnt "
2851 "h# %p constant uhme_hash "
2852 "h# %p constant khme_hash "
2853 "h# %x constant UHMEHASH_SZ "
2854 "h# %x constant KHMEHASH_SZ "
2855 "h# %p constant KCONTEXT "
2856 "h# %p constant KHATID "
2857 "h# %x constant ASI_MEM "
2858
2859 ": PHYS-X@ ( phys -- data ) "
2860 " ASI_MEM spacex@ "
2861 "; "
2862
2863 ": PHYS-W@ ( phys -- data ) "
2864 " ASI_MEM spacew@ "
2865 "; "
2866
2867 ": PHYS-L@ ( phys -- data ) "
2868 " ASI_MEM spaceL@ "
2869 "; "
2870
2871 ": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) "
2872 " 3 * MMU_PAGESHIFT + "
2873 "; "
2874
2875 ": TTE_IS_VALID ( ttep -- flag ) "
2876 " PHYS-X@ 0< "
2877 "; "
2878
2879 ": HME_HASH_SHIFT ( ttesz -- hmeshift ) "
2880 " dup TTE8K = if "
2881 " drop HBLK_RANGE_SHIFT "
2882 " else "
2883 " TTE_PAGE_SHIFT "
2884 " then "
2885 "; "
2886
2887 ": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) "
2888 " tuck >> swap MMU_PAGESHIFT - << "
2889 "; "
2890
2891 ": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) "
2892 " >> over xor swap ( hash sfmmup ) "
2893 " KHATID <> if ( hash ) "
2894 " UHMEHASH_SZ and ( bucket ) "
2895 " HMEBUCKET_SIZE * uhme_hash + ( hmebp ) "
2896 " else ( hash ) "
2897 " KHMEHASH_SZ and ( bucket ) "
2898 " HMEBUCKET_SIZE * khme_hash + ( hmebp ) "
2899 " then ( hmebp ) "
2900 "; "
2901
2902 ": HME_HASH_TABLE_SEARCH "
2903 " ( sfmmup hmebp hblktag -- sfmmup null | sfmmup hmeblkp ) "
2904 " >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) "
2905 " dup HMEBLK_ENDPA <> if ( sfmmup hmeblkp ) ( r: hblktag ) "
2906 " dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp ) "
2907 " dup hmeblk_tag + 8 + phys-x@ 2 pick = if "
2908 " true ( sfmmup hmeblkp true ) ( r: hblktag ) "
2909 " else "
2910 " hmeblk_next + phys-x@ false "
2911 " ( sfmmup hmeblkp false ) ( r: hblktag ) "
2912 " then "
2913 " else "
2914 " hmeblk_next + phys-x@ false "
2915 " ( sfmmup hmeblkp false ) ( r: hblktag ) "
2916 " then "
2917 " else "
2918 " drop 0 true "
2919 " then "
2920 " until r> drop "
2921 "; "
2922
2923 ": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) "
2924 " over HME_HASH_SHIFT HME_HASH_BSPAGE ( sfmmup rehash bspage ) "
2925 " HTAG_BSPAGE_SHIFT << ( sfmmup rehash htag-bspage )"
2926 " swap HTAG_REHASH_SHIFT << or ( sfmmup htag-bspage-rehash )"
2927 " SFMMU_INVALID_SHMERID or nip ( hblktag ) "
2928 "; "
2929
2930 ": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) "
2931 " over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and ( hmeblkp addr ttesz ) "
2932 " TTE8K = if ( hmeblkp addr ) "
2933 " MMU_PAGESHIFT >> NHMENTS 1- and ( hmeblkp hme-index ) "
2934 " else ( hmeblkp addr ) "
2935 " drop 0 ( hmeblkp 0 ) "
2936 " then ( hmeblkp hme-index ) "
2937 " SFHME_SIZE * + HMEBLK_HME1 + ( hmep ) "
2938 " SFHME_TTE + ( ttep ) "
2939 "; "
2940
2941 ": unix-tte ( addr cnum -- false | tte-data true ) "
2942 " KCONTEXT = if ( addr ) "
2943 " KHATID ( addr khatid ) "
2944 " else ( addr ) "
2945 " drop false exit ( false ) "
2946 " then "
2947 " ( addr khatid ) "
2948 " mmu_hashcnt 1+ 1 do ( addr sfmmup ) "
2949 " 2dup swap i HME_HASH_SHIFT "
2950 "( addr sfmmup sfmmup addr hmeshift ) "
2951 " HME_HASH_FUNCTION ( addr sfmmup hmebp ) "
2952 " over i 4 pick "
2953 "( addr sfmmup hmebp sfmmup rehash addr ) "
2954 " HME_HASH_TAG ( addr sfmmup hmebp hblktag ) "
2955 " HME_HASH_TABLE_SEARCH "
2956 "( addr sfmmup { null | hmeblkp } ) "
2957 " ?dup if ( addr sfmmup hmeblkp ) "
2958 " nip swap HBLK_TO_TTEP ( ttep ) "
2959 " dup TTE_IS_VALID if ( valid-ttep ) "
2960 " PHYS-X@ true ( tte-data true ) "
2961 " else ( invalid-tte ) "
2962 " drop false ( false ) "
2963 " then ( false | tte-data true ) "
2964 " unloop exit ( false | tte-data true ) "
2965 " then ( addr sfmmup ) "
2966 " loop ( addr sfmmup ) "
2967 " 2drop false ( false ) "
2968 "; "
2969 ;
2970
2971 void
2972 create_va_to_tte(void)
2973 {
2974 char *bp;
2975 extern int khmehash_num, uhmehash_num;
2976 extern struct hmehash_bucket *khme_hash, *uhme_hash;
2977
2978 #define OFFSET(type, field) ((uintptr_t)(&((type *)0)->field))
2979
2980 bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP);
2981
2982 /*
2983 * Teach obp how to parse our sw ttes.
2984 */
2985 (void) sprintf(bp, obp_tte_str,
2986 MMU_PAGESHIFT,
2987 TTE8K,
2988 sizeof (struct sf_hment),
2989 OFFSET(struct sf_hment, hme_tte),
2990 OFFSET(struct hme_blk, hblk_tag),
2991 OFFSET(struct hme_blk, hblk_nextpa),
2992 OFFSET(struct hme_blk, hblk_misc),
2993 OFFSET(struct hme_blk, hblk_hme),
2994 NHMENTS,
2995 HBLK_SZMASK,
2996 HBLK_RANGE_SHIFT,
2997 OFFSET(struct hmehash_bucket, hmeh_nextpa),
2998 HMEBLK_ENDPA,
2999 sizeof (struct hmehash_bucket),
3000 HTAG_SFMMUPSZ,
3001 HTAG_BSPAGE_SHIFT,
3002 HTAG_REHASH_SHIFT,
3003 SFMMU_INVALID_SHMERID,
3004 mmu_hashcnt,
3005 (caddr_t)va_to_pa((caddr_t)uhme_hash),
3006 (caddr_t)va_to_pa((caddr_t)khme_hash),
3007 UHMEHASH_SZ,
3008 KHMEHASH_SZ,
3009 KCONTEXT,
3010 KHATID,
3011 ASI_MEM);
3012 prom_interpret(bp, 0, 0, 0, 0, 0);
3013
3014 kobj_free(bp, MMU_PAGESIZE);
3015 }
3016
3017 void
3018 install_va_to_tte(void)
3019 {
3020 /*
3021 * advise prom that it can use unix-tte
3022 */
3023 prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0);
3024 }
3025
3026 /*
3027 * Here we add "device-type=console" for /os-io node, for currently
3028 * our kernel console output only supports displaying text and
3029 * performing cursor-positioning operations (through kernel framebuffer
3030 * driver) and it doesn't support other functionalities required for a
3031 * standard "display" device as specified in 1275 spec. The main missing
3032 * interface defined by the 1275 spec is "draw-logo".
3033 * also see the comments above prom_stdout_is_framebuffer().
3034 */
3035 static char *create_node =
3036 "\" /\" find-device "
3037 "new-device "
3038 "\" os-io\" device-name "
3039 "\" "OBP_DISPLAY_CONSOLE"\" device-type "
3040 ": cb-r/w ( adr,len method$ -- #read/#written ) "
3041 " 2>r swap 2 2r> ['] $callback catch if "
3042 " 2drop 3drop 0 "
3043 " then "
3044 "; "
3045 ": read ( adr,len -- #read ) "
3046 " \" read\" ['] cb-r/w catch if 2drop 2drop -2 exit then "
3047 " ( retN ... ret1 N ) "
3048 " ?dup if "
3049 " swap >r 1- 0 ?do drop loop r> "
3050 " else "
3051 " -2 "
3052 " then "
3053 "; "
3054 ": write ( adr,len -- #written ) "
3055 " \" write\" ['] cb-r/w catch if 2drop 2drop 0 exit then "
3056 " ( retN ... ret1 N ) "
3057 " ?dup if "
3058 " swap >r 1- 0 ?do drop loop r> "
3059 " else "
3060 " 0 "
3061 " then "
3062 "; "
3063 ": poll-tty ( -- ) ; "
3064 ": install-abort ( -- ) ['] poll-tty d# 10 alarm ; "
3065 ": remove-abort ( -- ) ['] poll-tty 0 alarm ; "
3066 ": cb-give/take ( $method -- ) "
3067 " 0 -rot ['] $callback catch ?dup if "
3068 " >r 2drop 2drop r> throw "
3069 " else "
3070 " 0 ?do drop loop "
3071 " then "
3072 "; "
3073 ": give ( -- ) \" exit-input\" cb-give/take ; "
3074 ": take ( -- ) \" enter-input\" cb-give/take ; "
3075 ": open ( -- ok? ) true ; "
3076 ": close ( -- ) ; "
3077 "finish-device "
3078 "device-end ";
3079
3080 /*
3081 * Create the OBP input/output node (FCode serial driver).
3082 * It is needed for both USB console keyboard and for
3083 * the kernel terminal emulator. It is too early to check for a
3084 * kernel console compatible framebuffer now, so we create this
3085 * so that we're ready if we need to enable kernel terminal emulation.
3086 *
3087 * When the USB software takes over the input device at the time
3088 * consconfig runs, OBP's stdin is redirected to this node.
3089 * Whenever the FORTH user interface is used after this switch,
3090 * the node will call back into the kernel for console input.
3091 * If a serial device such as ttya or a UART with a Type 5 keyboard
3092 * attached is used, OBP takes over the serial device when the system
3093 * goes to the debugger after the system is booted. This sharing
3094 * of the relatively simple serial device is difficult but possible.
3095 * Sharing the USB host controller is impossible due its complexity.
3096 *
3097 * Similarly to USB keyboard input redirection, after consconfig_dacf
3098 * configures a kernel console framebuffer as the standard output
3099 * device, OBP's stdout is switched to to vector through the
3100 * /os-io node into the kernel terminal emulator.
3101 */
3102 static void
3103 startup_create_io_node(void)
3104 {
3105 prom_interpret(create_node, 0, 0, 0, 0, 0);
3106 }
3107
3108
3109 static void
3110 do_prom_version_check(void)
3111 {
3112 int i;
3113 pnode_t node;
3114 char buf[64];
3115 static char drev[] = "Down-rev firmware detected%s\n"
3116 "\tPlease upgrade to the following minimum version:\n"
3117 "\t\t%s\n";
3118
3119 i = prom_version_check(buf, sizeof (buf), &node);
3120
3121 if (i == PROM_VER64_OK)
3122 return;
3123
3124 if (i == PROM_VER64_UPGRADE) {
3125 cmn_err(CE_WARN, drev, "", buf);
3126
3127 #ifdef DEBUG
3128 prom_enter_mon(); /* Type 'go' to continue */
3129 cmn_err(CE_WARN, "Booting with down-rev firmware\n");
3130 return;
3131 #else
3132 halt(0);
3133 #endif
3134 }
3135
3136 /*
3137 * The other possibility is that this is a server running
3138 * good firmware, but down-rev firmware was detected on at
3139 * least one other cpu board. We just complain if we see
3140 * that.
3141 */
3142 cmn_err(CE_WARN, drev, " on one or more CPU boards", buf);
3143 }
3144
3145
3146 /*
3147 * Must be defined in platform dependent code.
3148 */
3149 extern caddr_t modtext;
3150 extern size_t modtext_sz;
3151 extern caddr_t moddata;
3152
3153 #define HEAPTEXT_ARENA(addr) \
3154 ((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \
3155 (((uintptr_t)(addr) - HEAPTEXT_BASE) / \
3156 (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1))
3157
3158 #define HEAPTEXT_OVERSIZED(addr) \
3159 ((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE)
3160
3161 #define HEAPTEXT_IN_NUCLEUSDATA(addr) \
3162 (((uintptr_t)(addr) >= KERNELBASE + 2 * MMU_PAGESIZE4M) && \
3163 ((uintptr_t)(addr) < KERNELBASE + 3 * MMU_PAGESIZE4M))
3164
3165 vmem_t *texthole_source[HEAPTEXT_NARENAS];
3166 vmem_t *texthole_arena[HEAPTEXT_NARENAS];
3167 kmutex_t texthole_lock;
3168
3169 char kern_bootargs[OBP_MAXPATHLEN];
3170 char kern_bootfile[OBP_MAXPATHLEN];
3171
3172 void
3173 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3174 {
3175 uintptr_t addr, limit;
3176
3177 addr = HEAPTEXT_BASE;
3178 limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE;
3179
3180 /*
3181 * Before we initialize the text_arena, we want to punch holes in the
3182 * underlying heaptext_arena. This guarantees that for any text
3183 * address we can find a text hole less than HEAPTEXT_MAPPED away.
3184 */
3185 for (; addr + HEAPTEXT_UNMAPPED <= limit;
3186 addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) {
3187 (void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE,
3188 0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED),
3189 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3190 }
3191
3192 /*
3193 * Allocate one page at the oversize to break up the text region
3194 * from the oversized region.
3195 */
3196 (void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0,
3197 (void *)limit, (void *)(limit + PAGESIZE),
3198 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3199
3200 *text_arena = vmem_create("module_text", modtext_sz ? modtext : NULL,
3201 modtext_sz, sizeof (uintptr_t), segkmem_alloc, segkmem_free,
3202 heaptext_arena, 0, VM_SLEEP);
3203 *data_arena = vmem_create("module_data", moddata, MODDATA, 1,
3204 segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3205 }
3206
3207 caddr_t
3208 kobj_text_alloc(vmem_t *arena, size_t size)
3209 {
3210 caddr_t rval, better;
3211
3212 /*
3213 * First, try a sleeping allocation.
3214 */
3215 rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT);
3216
3217 if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval))
3218 return (rval);
3219
3220 /*
3221 * We didn't get the area that we wanted. We're going to try to do an
3222 * allocation with explicit constraints.
3223 */
3224 better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL,
3225 (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE),
3226 VM_NOSLEEP | VM_BESTFIT);
3227
3228 if (better != NULL) {
3229 /*
3230 * That worked. Free our first attempt and return.
3231 */
3232 vmem_free(arena, rval, size);
3233 return (better);
3234 }
3235
3236 /*
3237 * That didn't work; we'll have to return our first attempt.
3238 */
3239 return (rval);
3240 }
3241
3242 caddr_t
3243 kobj_texthole_alloc(caddr_t addr, size_t size)
3244 {
3245 int arena = HEAPTEXT_ARENA(addr);
3246 char c[30];
3247 uintptr_t base;
3248
3249 if (HEAPTEXT_OVERSIZED(addr) || HEAPTEXT_IN_NUCLEUSDATA(addr)) {
3250 /*
3251 * If this is an oversized allocation or it is allocated in
3252 * the nucleus data page, there is no text hole available for
3253 * it; return NULL.
3254 */
3255 return (NULL);
3256 }
3257
3258 mutex_enter(&texthole_lock);
3259
3260 if (texthole_arena[arena] == NULL) {
3261 ASSERT(texthole_source[arena] == NULL);
3262
3263 if (arena == 0) {
3264 texthole_source[0] = vmem_create("module_text_holesrc",
3265 (void *)(KERNELBASE + MMU_PAGESIZE4M),
3266 MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL,
3267 0, VM_SLEEP);
3268 } else {
3269 base = HEAPTEXT_BASE +
3270 (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED);
3271
3272 (void) snprintf(c, sizeof (c),
3273 "heaptext_holesrc_%d", arena);
3274
3275 texthole_source[arena] = vmem_create(c, (void *)base,
3276 HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL,
3277 0, VM_SLEEP);
3278 }
3279
3280 (void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena);
3281
3282 texthole_arena[arena] = vmem_create(c, NULL, 0,
3283 sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free,
3284 texthole_source[arena], 0, VM_SLEEP);
3285 }
3286
3287 mutex_exit(&texthole_lock);
3288
3289 ASSERT(texthole_arena[arena] != NULL);
3290 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3291 return (vmem_alloc(texthole_arena[arena], size,
3292 VM_BESTFIT | VM_NOSLEEP));
3293 }
3294
3295 void
3296 kobj_texthole_free(caddr_t addr, size_t size)
3297 {
3298 int arena = HEAPTEXT_ARENA(addr);
3299
3300 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3301 ASSERT(texthole_arena[arena] != NULL);
3302 vmem_free(texthole_arena[arena], addr, size);
3303 }
3304
3305 void
3306 release_bootstrap(void)
3307 {
3308 if (&cif_init)
3309 cif_init();
3310 }