1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 /*
  25  * Copyright 2018 Nexenta Systems, Inc.  All rights reserved.
  26  * Copyright 2016 Gary Mills
  27  */
  28 
  29 /*
  30  * VM - Hardware Address Translation management for Spitfire MMU.
  31  *
  32  * This file implements the machine specific hardware translation
  33  * needed by the VM system.  The machine independent interface is
  34  * described in <vm/hat.h> while the machine dependent interface
  35  * and data structures are described in <vm/hat_sfmmu.h>.
  36  *
  37  * The hat layer manages the address translation hardware as a cache
  38  * driven by calls from the higher levels in the VM system.
  39  */
  40 
  41 #include <sys/types.h>
  42 #include <sys/kstat.h>
  43 #include <vm/hat.h>
  44 #include <vm/hat_sfmmu.h>
  45 #include <vm/page.h>
  46 #include <sys/pte.h>
  47 #include <sys/systm.h>
  48 #include <sys/mman.h>
  49 #include <sys/sysmacros.h>
  50 #include <sys/machparam.h>
  51 #include <sys/vtrace.h>
  52 #include <sys/kmem.h>
  53 #include <sys/mmu.h>
  54 #include <sys/cmn_err.h>
  55 #include <sys/cpu.h>
  56 #include <sys/cpuvar.h>
  57 #include <sys/debug.h>
  58 #include <sys/lgrp.h>
  59 #include <sys/archsystm.h>
  60 #include <sys/machsystm.h>
  61 #include <sys/vmsystm.h>
  62 #include <vm/as.h>
  63 #include <vm/seg.h>
  64 #include <vm/seg_kp.h>
  65 #include <vm/seg_kmem.h>
  66 #include <vm/seg_kpm.h>
  67 #include <vm/rm.h>
  68 #include <sys/t_lock.h>
  69 #include <sys/obpdefs.h>
  70 #include <sys/vm_machparam.h>
  71 #include <sys/var.h>
  72 #include <sys/trap.h>
  73 #include <sys/machtrap.h>
  74 #include <sys/scb.h>
  75 #include <sys/bitmap.h>
  76 #include <sys/machlock.h>
  77 #include <sys/membar.h>
  78 #include <sys/atomic.h>
  79 #include <sys/cpu_module.h>
  80 #include <sys/prom_debug.h>
  81 #include <sys/ksynch.h>
  82 #include <sys/mem_config.h>
  83 #include <sys/mem_cage.h>
  84 #include <vm/vm_dep.h>
  85 #include <sys/fpu/fpusystm.h>
  86 #include <vm/mach_kpm.h>
  87 #include <sys/callb.h>
  88 
  89 #ifdef  DEBUG
  90 #define SFMMU_VALIDATE_HMERID(hat, rid, saddr, len)                     \
  91         if (SFMMU_IS_SHMERID_VALID(rid)) {                              \
  92                 caddr_t _eaddr = (saddr) + (len);                       \
  93                 sf_srd_t *_srdp;                                        \
  94                 sf_region_t *_rgnp;                                     \
  95                 ASSERT((rid) < SFMMU_MAX_HME_REGIONS);                       \
  96                 ASSERT(SF_RGNMAP_TEST(hat->sfmmu_hmeregion_map, rid));       \
  97                 ASSERT((hat) != ksfmmup);                               \
  98                 _srdp = (hat)->sfmmu_srdp;                           \
  99                 ASSERT(_srdp != NULL);                                  \
 100                 ASSERT(_srdp->srd_refcnt != 0);                              \
 101                 _rgnp = _srdp->srd_hmergnp[(rid)];                   \
 102                 ASSERT(_rgnp != NULL && _rgnp->rgn_id == rid);               \
 103                 ASSERT(_rgnp->rgn_refcnt != 0);                              \
 104                 ASSERT(!(_rgnp->rgn_flags & SFMMU_REGION_FREE)); \
 105                 ASSERT((_rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) ==    \
 106                     SFMMU_REGION_HME);                                  \
 107                 ASSERT((saddr) >= _rgnp->rgn_saddr);                      \
 108                 ASSERT((saddr) < _rgnp->rgn_saddr + _rgnp->rgn_size);  \
 109                 ASSERT(_eaddr > _rgnp->rgn_saddr);                        \
 110                 ASSERT(_eaddr <= _rgnp->rgn_saddr + _rgnp->rgn_size);  \
 111         }
 112 
 113 #define SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid)              \
 114 {                                                                        \
 115                 caddr_t _hsva;                                           \
 116                 caddr_t _heva;                                           \
 117                 caddr_t _rsva;                                           \
 118                 caddr_t _reva;                                           \
 119                 int     _ttesz = get_hblk_ttesz(hmeblkp);                \
 120                 int     _flagtte;                                        \
 121                 ASSERT((srdp)->srd_refcnt != 0);                      \
 122                 ASSERT((rid) < SFMMU_MAX_HME_REGIONS);                        \
 123                 ASSERT((rgnp)->rgn_id == rid);                                \
 124                 ASSERT(!((rgnp)->rgn_flags & SFMMU_REGION_FREE));         \
 125                 ASSERT(((rgnp)->rgn_flags & SFMMU_REGION_TYPE_MASK) ==    \
 126                     SFMMU_REGION_HME);                                   \
 127                 ASSERT(_ttesz <= (rgnp)->rgn_pgszc);                       \
 128                 _hsva = (caddr_t)get_hblk_base(hmeblkp);                 \
 129                 _heva = get_hblk_endaddr(hmeblkp);                       \
 130                 _rsva = (caddr_t)P2ALIGN(                                \
 131                     (uintptr_t)(rgnp)->rgn_saddr, HBLK_MIN_BYTES);    \
 132                 _reva = (caddr_t)P2ROUNDUP(                              \
 133                     (uintptr_t)((rgnp)->rgn_saddr + (rgnp)->rgn_size),     \
 134                     HBLK_MIN_BYTES);                                     \
 135                 ASSERT(_hsva >= _rsva);                                       \
 136                 ASSERT(_hsva < _reva);                                        \
 137                 ASSERT(_heva > _rsva);                                        \
 138                 ASSERT(_heva <= _reva);                                       \
 139                 _flagtte = (_ttesz < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ :  \
 140                         _ttesz;                                          \
 141                 ASSERT(rgnp->rgn_hmeflags & (0x1 << _flagtte));             \
 142 }
 143 
 144 #else /* DEBUG */
 145 #define SFMMU_VALIDATE_HMERID(hat, rid, addr, len)
 146 #define SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid)
 147 #endif /* DEBUG */
 148 
 149 #if defined(SF_ERRATA_57)
 150 extern caddr_t errata57_limit;
 151 #endif
 152 
 153 #define HME8BLK_SZ_RND          ((roundup(HME8BLK_SZ, sizeof (int64_t))) /  \
 154                                 (sizeof (int64_t)))
 155 #define HBLK_RESERVE            ((struct hme_blk *)hblk_reserve)
 156 
 157 #define HBLK_RESERVE_CNT        128
 158 #define HBLK_RESERVE_MIN        20
 159 
 160 static struct hme_blk           *freehblkp;
 161 static kmutex_t                 freehblkp_lock;
 162 static int                      freehblkcnt;
 163 
 164 static int64_t                  hblk_reserve[HME8BLK_SZ_RND];
 165 static kmutex_t                 hblk_reserve_lock;
 166 static kthread_t                *hblk_reserve_thread;
 167 
 168 static nucleus_hblk8_info_t     nucleus_hblk8;
 169 static nucleus_hblk1_info_t     nucleus_hblk1;
 170 
 171 /*
 172  * Data to manage per-cpu hmeblk pending queues, hmeblks are queued here
 173  * after the initial phase of removing an hmeblk from the hash chain, see
 174  * the detailed comment in sfmmu_hblk_hash_rm() for further details.
 175  */
 176 static cpu_hme_pend_t           *cpu_hme_pend;
 177 static uint_t                   cpu_hme_pend_thresh;
 178 /*
 179  * SFMMU specific hat functions
 180  */
 181 void    hat_pagecachectl(struct page *, int);
 182 
 183 /* flags for hat_pagecachectl */
 184 #define HAT_CACHE       0x1
 185 #define HAT_UNCACHE     0x2
 186 #define HAT_TMPNC       0x4
 187 
 188 /*
 189  * Flag to allow the creation of non-cacheable translations
 190  * to system memory. It is off by default. At the moment this
 191  * flag is used by the ecache error injector. The error injector
 192  * will turn it on when creating such a translation then shut it
 193  * off when it's finished.
 194  */
 195 
 196 int     sfmmu_allow_nc_trans = 0;
 197 
 198 /*
 199  * Flag to disable large page support.
 200  *      value of 1 => disable all large pages.
 201  *      bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
 202  *
 203  * For example, use the value 0x4 to disable 512K pages.
 204  *
 205  */
 206 #define LARGE_PAGES_OFF         0x1
 207 
 208 /*
 209  * The disable_large_pages and disable_ism_large_pages variables control
 210  * hat_memload_array and the page sizes to be used by ISM and the kernel.
 211  *
 212  * The disable_auto_data_large_pages and disable_auto_text_large_pages variables
 213  * are only used to control which OOB pages to use at upper VM segment creation
 214  * time, and are set in hat_init_pagesizes and used in the map_pgsz* routines.
 215  * Their values may come from platform or CPU specific code to disable page
 216  * sizes that should not be used.
 217  *
 218  * WARNING: 512K pages are currently not supported for ISM/DISM.
 219  */
 220 uint_t  disable_large_pages = 0;
 221 uint_t  disable_ism_large_pages = (1 << TTE512K);
 222 uint_t  disable_auto_data_large_pages = 0;
 223 uint_t  disable_auto_text_large_pages = 0;
 224 
 225 /*
 226  * Private sfmmu data structures for hat management
 227  */
 228 static struct kmem_cache *sfmmuid_cache;
 229 static struct kmem_cache *mmuctxdom_cache;
 230 
 231 /*
 232  * Private sfmmu data structures for tsb management
 233  */
 234 static struct kmem_cache *sfmmu_tsbinfo_cache;
 235 static struct kmem_cache *sfmmu_tsb8k_cache;
 236 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
 237 static vmem_t *kmem_bigtsb_arena;
 238 static vmem_t *kmem_tsb_arena;
 239 
 240 /*
 241  * sfmmu static variables for hmeblk resource management.
 242  */
 243 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
 244 static struct kmem_cache *sfmmu8_cache;
 245 static struct kmem_cache *sfmmu1_cache;
 246 static struct kmem_cache *pa_hment_cache;
 247 
 248 static kmutex_t         ism_mlist_lock; /* mutex for ism mapping list */
 249 /*
 250  * private data for ism
 251  */
 252 static struct kmem_cache *ism_blk_cache;
 253 static struct kmem_cache *ism_ment_cache;
 254 #define ISMID_STARTADDR NULL
 255 
 256 /*
 257  * Region management data structures and function declarations.
 258  */
 259 
 260 static void     sfmmu_leave_srd(sfmmu_t *);
 261 static int      sfmmu_srdcache_constructor(void *, void *, int);
 262 static void     sfmmu_srdcache_destructor(void *, void *);
 263 static int      sfmmu_rgncache_constructor(void *, void *, int);
 264 static void     sfmmu_rgncache_destructor(void *, void *);
 265 static int      sfrgnmap_isnull(sf_region_map_t *);
 266 static int      sfhmergnmap_isnull(sf_hmeregion_map_t *);
 267 static int      sfmmu_scdcache_constructor(void *, void *, int);
 268 static void     sfmmu_scdcache_destructor(void *, void *);
 269 static void     sfmmu_rgn_cb_noop(caddr_t, caddr_t, caddr_t,
 270     size_t, void *, u_offset_t);
 271 
 272 static uint_t srd_hashmask = SFMMU_MAX_SRD_BUCKETS - 1;
 273 static sf_srd_bucket_t *srd_buckets;
 274 static struct kmem_cache *srd_cache;
 275 static uint_t srd_rgn_hashmask = SFMMU_MAX_REGION_BUCKETS - 1;
 276 static struct kmem_cache *region_cache;
 277 static struct kmem_cache *scd_cache;
 278 
 279 #ifdef sun4v
 280 int use_bigtsb_arena = 1;
 281 #else
 282 int use_bigtsb_arena = 0;
 283 #endif
 284 
 285 /* External /etc/system tunable, for turning on&off the shctx support */
 286 int disable_shctx = 0;
 287 /* Internal variable, set by MD if the HW supports shctx feature */
 288 int shctx_on = 0;
 289 
 290 #ifdef DEBUG
 291 static void check_scd_sfmmu_list(sfmmu_t **, sfmmu_t *, int);
 292 #endif
 293 static void sfmmu_to_scd_list(sfmmu_t **, sfmmu_t *);
 294 static void sfmmu_from_scd_list(sfmmu_t **, sfmmu_t *);
 295 
 296 static sf_scd_t *sfmmu_alloc_scd(sf_srd_t *, sf_region_map_t *);
 297 static void sfmmu_find_scd(sfmmu_t *);
 298 static void sfmmu_join_scd(sf_scd_t *, sfmmu_t *);
 299 static void sfmmu_finish_join_scd(sfmmu_t *);
 300 static void sfmmu_leave_scd(sfmmu_t *, uchar_t);
 301 static void sfmmu_destroy_scd(sf_srd_t *, sf_scd_t *, sf_region_map_t *);
 302 static int sfmmu_alloc_scd_tsbs(sf_srd_t *, sf_scd_t *);
 303 static void sfmmu_free_scd_tsbs(sfmmu_t *);
 304 static void sfmmu_tsb_inv_ctx(sfmmu_t *);
 305 static int find_ism_rid(sfmmu_t *, sfmmu_t *, caddr_t, uint_t *);
 306 static void sfmmu_ism_hatflags(sfmmu_t *, int);
 307 static int sfmmu_srd_lock_held(sf_srd_t *);
 308 static void sfmmu_remove_scd(sf_scd_t **, sf_scd_t *);
 309 static void sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *);
 310 static void sfmmu_link_scd_to_regions(sf_srd_t *, sf_scd_t *);
 311 static void sfmmu_unlink_scd_from_regions(sf_srd_t *, sf_scd_t *);
 312 static void sfmmu_link_to_hmeregion(sfmmu_t *, sf_region_t *);
 313 static void sfmmu_unlink_from_hmeregion(sfmmu_t *, sf_region_t *);
 314 
 315 /*
 316  * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
 317  * HAT flags, synchronizing TLB/TSB coherency, and context management.
 318  * The lock is hashed on the sfmmup since the case where we need to lock
 319  * all processes is rare but does occur (e.g. we need to unload a shared
 320  * mapping from all processes using the mapping).  We have a lot of buckets,
 321  * and each slab of sfmmu_t's can use about a quarter of them, giving us
 322  * a fairly good distribution without wasting too much space and overhead
 323  * when we have to grab them all.
 324  */
 325 #define SFMMU_NUM_LOCK  128             /* must be power of two */
 326 hatlock_t       hat_lock[SFMMU_NUM_LOCK];
 327 
 328 /*
 329  * Hash algorithm optimized for a small number of slabs.
 330  *  7 is (highbit((sizeof sfmmu_t)) - 1)
 331  * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
 332  * kmem_cache, and thus they will be sequential within that cache.  In
 333  * addition, each new slab will have a different "color" up to cache_maxcolor
 334  * which will skew the hashing for each successive slab which is allocated.
 335  * If the size of sfmmu_t changed to a larger size, this algorithm may need
 336  * to be revisited.
 337  */
 338 #define TSB_HASH_SHIFT_BITS (7)
 339 #define PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
 340 
 341 #ifdef DEBUG
 342 int tsb_hash_debug = 0;
 343 #define TSB_HASH(sfmmup)        \
 344         (tsb_hash_debug ? &hat_lock[0] : \
 345         &hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
 346 #else   /* DEBUG */
 347 #define TSB_HASH(sfmmup)        &hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
 348 #endif  /* DEBUG */
 349 
 350 
 351 /* sfmmu_replace_tsb() return codes. */
 352 typedef enum tsb_replace_rc {
 353         TSB_SUCCESS,
 354         TSB_ALLOCFAIL,
 355         TSB_LOSTRACE,
 356         TSB_ALREADY_SWAPPED,
 357         TSB_CANTGROW
 358 } tsb_replace_rc_t;
 359 
 360 /*
 361  * Flags for TSB allocation routines.
 362  */
 363 #define TSB_ALLOC       0x01
 364 #define TSB_FORCEALLOC  0x02
 365 #define TSB_GROW        0x04
 366 #define TSB_SHRINK      0x08
 367 #define TSB_SWAPIN      0x10
 368 
 369 /*
 370  * Support for HAT callbacks.
 371  */
 372 #define SFMMU_MAX_RELOC_CALLBACKS       10
 373 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
 374 static id_t sfmmu_cb_nextid = 0;
 375 static id_t sfmmu_tsb_cb_id;
 376 struct sfmmu_callback *sfmmu_cb_table;
 377 
 378 kmutex_t        kpr_mutex;
 379 kmutex_t        kpr_suspendlock;
 380 kthread_t       *kreloc_thread;
 381 
 382 /*
 383  * Enable VA->PA translation sanity checking on DEBUG kernels.
 384  * Disabled by default.  This is incompatible with some
 385  * drivers (error injector, RSM) so if it breaks you get
 386  * to keep both pieces.
 387  */
 388 int hat_check_vtop = 0;
 389 
 390 /*
 391  * Private sfmmu routines (prototypes)
 392  */
 393 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
 394 static struct   hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
 395                         struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t,
 396                         uint_t);
 397 static caddr_t  sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
 398                         caddr_t, demap_range_t *, uint_t);
 399 static caddr_t  sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
 400                         caddr_t, int);
 401 static void     sfmmu_hblk_free(struct hme_blk **);
 402 static void     sfmmu_hblks_list_purge(struct hme_blk **, int);
 403 static uint_t   sfmmu_get_free_hblk(struct hme_blk **, uint_t);
 404 static uint_t   sfmmu_put_free_hblk(struct hme_blk *, uint_t);
 405 static struct hme_blk *sfmmu_hblk_steal(int);
 406 static int      sfmmu_steal_this_hblk(struct hmehash_bucket *,
 407                         struct hme_blk *, uint64_t, struct hme_blk *);
 408 static caddr_t  sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
 409 
 410 static void     hat_do_memload_array(struct hat *, caddr_t, size_t,
 411                     struct page **, uint_t, uint_t, uint_t);
 412 static void     hat_do_memload(struct hat *, caddr_t, struct page *,
 413                     uint_t, uint_t, uint_t);
 414 static void     sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
 415                     uint_t, uint_t, pgcnt_t, uint_t);
 416 void            sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
 417                         uint_t);
 418 static int      sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
 419                         uint_t, uint_t);
 420 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
 421                                         caddr_t, int, uint_t);
 422 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
 423                         struct hmehash_bucket *, caddr_t, uint_t, uint_t,
 424                         uint_t);
 425 static int      sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
 426                         caddr_t, page_t **, uint_t, uint_t);
 427 static void     sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
 428 
 429 static int      sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
 430 static pfn_t    sfmmu_uvatopfn(caddr_t, sfmmu_t *, tte_t *);
 431 void            sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
 432 #ifdef VAC
 433 static void     sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
 434 static int      sfmmu_vacconflict_array(caddr_t, page_t *, int *);
 435 int     tst_tnc(page_t *pp, pgcnt_t);
 436 void    conv_tnc(page_t *pp, int);
 437 #endif
 438 
 439 static void     sfmmu_get_ctx(sfmmu_t *);
 440 static void     sfmmu_free_sfmmu(sfmmu_t *);
 441 
 442 static void     sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
 443 static void     sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
 444 
 445 cpuset_t        sfmmu_pageunload(page_t *, struct sf_hment *, int);
 446 static void     hat_pagereload(struct page *, struct page *);
 447 static cpuset_t sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
 448 #ifdef VAC
 449 void    sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
 450 static void     sfmmu_page_cache(page_t *, int, int, int);
 451 #endif
 452 
 453 cpuset_t        sfmmu_rgntlb_demap(caddr_t, sf_region_t *,
 454     struct hme_blk *, int);
 455 static void     sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
 456                         pfn_t, int, int, int, int);
 457 static void     sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
 458                         pfn_t, int);
 459 static void     sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
 460 static void     sfmmu_tlb_range_demap(demap_range_t *);
 461 static void     sfmmu_invalidate_ctx(sfmmu_t *);
 462 static void     sfmmu_sync_mmustate(sfmmu_t *);
 463 
 464 static void     sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
 465 static int      sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
 466                         sfmmu_t *);
 467 static void     sfmmu_tsb_free(struct tsb_info *);
 468 static void     sfmmu_tsbinfo_free(struct tsb_info *);
 469 static int      sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
 470                         sfmmu_t *);
 471 static void     sfmmu_tsb_chk_reloc(sfmmu_t *, hatlock_t *);
 472 static void     sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
 473 static int      sfmmu_select_tsb_szc(pgcnt_t);
 474 static void     sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
 475 #define         sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
 476         sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
 477 #define         sfmmu_unload_tsb(sfmmup, vaddr, szc)    \
 478         sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
 479 static void     sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
 480 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
 481     hatlock_t *, uint_t);
 482 static void     sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
 483 
 484 #ifdef VAC
 485 void    sfmmu_cache_flush(pfn_t, int);
 486 void    sfmmu_cache_flushcolor(int, pfn_t);
 487 #endif
 488 static caddr_t  sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
 489                         caddr_t, demap_range_t *, uint_t, int);
 490 
 491 static uint64_t sfmmu_vtop_attr(uint_t, int mode, tte_t *);
 492 static uint_t   sfmmu_ptov_attr(tte_t *);
 493 static caddr_t  sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
 494                         caddr_t, demap_range_t *, uint_t);
 495 static uint_t   sfmmu_vtop_prot(uint_t, uint_t *);
 496 static int      sfmmu_idcache_constructor(void *, void *, int);
 497 static void     sfmmu_idcache_destructor(void *, void *);
 498 static int      sfmmu_hblkcache_constructor(void *, void *, int);
 499 static void     sfmmu_hblkcache_destructor(void *, void *);
 500 static void     sfmmu_hblkcache_reclaim(void *);
 501 static void     sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
 502                         struct hmehash_bucket *);
 503 static void     sfmmu_hblk_hash_rm(struct hmehash_bucket *, struct hme_blk *,
 504                         struct hme_blk *, struct hme_blk **, int);
 505 static void     sfmmu_hblk_hash_add(struct hmehash_bucket *, struct hme_blk *,
 506                         uint64_t);
 507 static struct hme_blk *sfmmu_check_pending_hblks(int);
 508 static void     sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
 509 static void     sfmmu_cleanup_rhblk(sf_srd_t *, caddr_t, uint_t, int);
 510 static void     sfmmu_unload_hmeregion_va(sf_srd_t *, uint_t, caddr_t, caddr_t,
 511                         int, caddr_t *);
 512 static void     sfmmu_unload_hmeregion(sf_srd_t *, sf_region_t *);
 513 
 514 static void     sfmmu_rm_large_mappings(page_t *, int);
 515 
 516 static void     hat_lock_init(void);
 517 static void     hat_kstat_init(void);
 518 static int      sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
 519 static void     sfmmu_set_scd_rttecnt(sf_srd_t *, sf_scd_t *);
 520 static  int     sfmmu_is_rgnva(sf_srd_t *, caddr_t, ulong_t, ulong_t);
 521 static void     sfmmu_check_page_sizes(sfmmu_t *, int);
 522 int     fnd_mapping_sz(page_t *);
 523 static void     iment_add(struct ism_ment *,  struct hat *);
 524 static void     iment_sub(struct ism_ment *, struct hat *);
 525 static pgcnt_t  ism_tsb_entries(sfmmu_t *, int szc);
 526 extern void     sfmmu_setup_tsbinfo(sfmmu_t *);
 527 extern void     sfmmu_clear_utsbinfo(void);
 528 
 529 static void             sfmmu_ctx_wrap_around(mmu_ctx_t *, boolean_t);
 530 
 531 extern int vpm_enable;
 532 
 533 /* kpm globals */
 534 #ifdef  DEBUG
 535 /*
 536  * Enable trap level tsbmiss handling
 537  */
 538 int     kpm_tsbmtl = 1;
 539 
 540 /*
 541  * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
 542  * required TLB shootdowns in this case, so handle w/ care. Off by default.
 543  */
 544 int     kpm_tlb_flush;
 545 #endif  /* DEBUG */
 546 
 547 static void     *sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
 548 
 549 #ifdef DEBUG
 550 static void     sfmmu_check_hblk_flist();
 551 #endif
 552 
 553 /*
 554  * Semi-private sfmmu data structures.  Some of them are initialize in
 555  * startup or in hat_init. Some of them are private but accessed by
 556  * assembly code or mach_sfmmu.c
 557  */
 558 struct hmehash_bucket *uhme_hash;       /* user hmeblk hash table */
 559 struct hmehash_bucket *khme_hash;       /* kernel hmeblk hash table */
 560 uint64_t        uhme_hash_pa;           /* PA of uhme_hash */
 561 uint64_t        khme_hash_pa;           /* PA of khme_hash */
 562 int             uhmehash_num;           /* # of buckets in user hash table */
 563 int             khmehash_num;           /* # of buckets in kernel hash table */
 564 
 565 uint_t          max_mmu_ctxdoms = 0;    /* max context domains in the system */
 566 mmu_ctx_t       **mmu_ctxs_tbl;         /* global array of context domains */
 567 uint64_t        mmu_saved_gnum = 0;     /* to init incoming MMUs' gnums */
 568 
 569 #define DEFAULT_NUM_CTXS_PER_MMU 8192
 570 static uint_t   nctxs = DEFAULT_NUM_CTXS_PER_MMU;
 571 
 572 int             cache;                  /* describes system cache */
 573 
 574 caddr_t         ktsb_base;              /* kernel 8k-indexed tsb base address */
 575 uint64_t        ktsb_pbase;             /* kernel 8k-indexed tsb phys address */
 576 int             ktsb_szcode;            /* kernel 8k-indexed tsb size code */
 577 int             ktsb_sz;                /* kernel 8k-indexed tsb size */
 578 
 579 caddr_t         ktsb4m_base;            /* kernel 4m-indexed tsb base address */
 580 uint64_t        ktsb4m_pbase;           /* kernel 4m-indexed tsb phys address */
 581 int             ktsb4m_szcode;          /* kernel 4m-indexed tsb size code */
 582 int             ktsb4m_sz;              /* kernel 4m-indexed tsb size */
 583 
 584 uint64_t        kpm_tsbbase;            /* kernel seg_kpm 4M TSB base address */
 585 int             kpm_tsbsz;              /* kernel seg_kpm 4M TSB size code */
 586 uint64_t        kpmsm_tsbbase;          /* kernel seg_kpm 8K TSB base address */
 587 int             kpmsm_tsbsz;            /* kernel seg_kpm 8K TSB size code */
 588 
 589 #ifndef sun4v
 590 int             utsb_dtlb_ttenum = -1;  /* index in TLB for utsb locked TTE */
 591 int             utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
 592 int             dtlb_resv_ttenum;       /* index in TLB of first reserved TTE */
 593 caddr_t         utsb_vabase;            /* reserved kernel virtual memory */
 594 caddr_t         utsb4m_vabase;          /* for trap handler TSB accesses */
 595 #endif /* sun4v */
 596 uint64_t        tsb_alloc_bytes = 0;    /* bytes allocated to TSBs */
 597 vmem_t          *kmem_tsb_default_arena[NLGRPS_MAX];    /* For dynamic TSBs */
 598 vmem_t          *kmem_bigtsb_default_arena[NLGRPS_MAX]; /* dynamic 256M TSBs */
 599 
 600 /*
 601  * Size to use for TSB slabs.  Future platforms that support page sizes
 602  * larger than 4M may wish to change these values, and provide their own
 603  * assembly macros for building and decoding the TSB base register contents.
 604  * Note disable_large_pages will override the value set here.
 605  */
 606 static  uint_t tsb_slab_ttesz = TTE4M;
 607 size_t  tsb_slab_size = MMU_PAGESIZE4M;
 608 uint_t  tsb_slab_shift = MMU_PAGESHIFT4M;
 609 /* PFN mask for TTE */
 610 size_t  tsb_slab_mask = MMU_PAGEOFFSET4M >> MMU_PAGESHIFT;
 611 
 612 /*
 613  * Size to use for TSB slabs.  These are used only when 256M tsb arenas
 614  * exist.
 615  */
 616 static uint_t   bigtsb_slab_ttesz = TTE256M;
 617 static size_t   bigtsb_slab_size = MMU_PAGESIZE256M;
 618 static uint_t   bigtsb_slab_shift = MMU_PAGESHIFT256M;
 619 /* 256M page alignment for 8K pfn */
 620 static size_t   bigtsb_slab_mask = MMU_PAGEOFFSET256M >> MMU_PAGESHIFT;
 621 
 622 /* largest TSB size to grow to, will be smaller on smaller memory systems */
 623 static int      tsb_max_growsize = 0;
 624 
 625 /*
 626  * Tunable parameters dealing with TSB policies.
 627  */
 628 
 629 /*
 630  * This undocumented tunable forces all 8K TSBs to be allocated from
 631  * the kernel heap rather than from the kmem_tsb_default_arena arenas.
 632  */
 633 #ifdef  DEBUG
 634 int     tsb_forceheap = 0;
 635 #endif  /* DEBUG */
 636 
 637 /*
 638  * Decide whether to use per-lgroup arenas, or one global set of
 639  * TSB arenas.  The default is not to break up per-lgroup, since
 640  * most platforms don't recognize any tangible benefit from it.
 641  */
 642 int     tsb_lgrp_affinity = 0;
 643 
 644 /*
 645  * Used for growing the TSB based on the process RSS.
 646  * tsb_rss_factor is based on the smallest TSB, and is
 647  * shifted by the TSB size to determine if we need to grow.
 648  * The default will grow the TSB if the number of TTEs for
 649  * this page size exceeds 75% of the number of TSB entries,
 650  * which should _almost_ eliminate all conflict misses
 651  * (at the expense of using up lots and lots of memory).
 652  */
 653 #define TSB_RSS_FACTOR          (TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
 654 #define SFMMU_RSS_TSBSIZE(tsbszc)       (tsb_rss_factor << tsbszc)
 655 #define SELECT_TSB_SIZECODE(pgcnt) ( \
 656         (enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
 657         default_tsb_size)
 658 #define TSB_OK_SHRINK() \
 659         (tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
 660 #define TSB_OK_GROW()   \
 661         (tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
 662 
 663 volatile int    enable_tsb_rss_sizing = 1;
 664 volatile int    tsb_rss_factor = (int)TSB_RSS_FACTOR;
 665 
 666 /* which TSB size code to use for new address spaces or if rss sizing off */
 667 volatile int default_tsb_size = TSB_8K_SZCODE;
 668 
 669 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
 670 volatile uint64_t tsb_alloc_hiwater_factor;     /* tsb_alloc_hiwater =  */
 671                                                 /*      physmem / this  */
 672 #define TSB_ALLOC_HIWATER_FACTOR_DEFAULT        32
 673 
 674 #ifdef DEBUG
 675 static int tsb_random_size = 0; /* set to 1 to test random tsb sizes on alloc */
 676 static int tsb_grow_stress = 0; /* if set to 1, keep replacing TSB w/ random */
 677 static int tsb_alloc_mtbf = 0;  /* fail allocation every n attempts */
 678 static int tsb_alloc_fail_mtbf = 0;
 679 static int tsb_alloc_count = 0;
 680 #endif /* DEBUG */
 681 
 682 /* if set to 1, will remap valid TTEs when growing TSB. */
 683 int tsb_remap_ttes = 1;
 684 
 685 /*
 686  * If we have more than this many mappings, allocate a second TSB.
 687  * This default is chosen because the I/D fully associative TLBs are
 688  * assumed to have at least 8 available entries. Platforms with a
 689  * larger fully-associative TLB could probably override the default.
 690  */
 691 
 692 #ifdef sun4v
 693 int tsb_sectsb_threshold = 0;
 694 #else
 695 int tsb_sectsb_threshold = 8;
 696 #endif
 697 
 698 /*
 699  * kstat data
 700  */
 701 struct sfmmu_global_stat sfmmu_global_stat;
 702 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
 703 
 704 /*
 705  * Global data
 706  */
 707 sfmmu_t         *ksfmmup;               /* kernel's hat id */
 708 
 709 #ifdef DEBUG
 710 static void     chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
 711 #endif
 712 
 713 /* sfmmu locking operations */
 714 static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
 715 static int      sfmmu_mlspl_held(struct page *, int);
 716 
 717 kmutex_t *sfmmu_page_enter(page_t *);
 718 void    sfmmu_page_exit(kmutex_t *);
 719 int     sfmmu_page_spl_held(struct page *);
 720 
 721 /* sfmmu internal locking operations - accessed directly */
 722 static void     sfmmu_mlist_reloc_enter(page_t *, page_t *,
 723                                 kmutex_t **, kmutex_t **);
 724 static void     sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
 725 static hatlock_t *
 726                 sfmmu_hat_enter(sfmmu_t *);
 727 static hatlock_t *
 728                 sfmmu_hat_tryenter(sfmmu_t *);
 729 static void     sfmmu_hat_exit(hatlock_t *);
 730 static void     sfmmu_hat_lock_all(void);
 731 static void     sfmmu_hat_unlock_all(void);
 732 static void     sfmmu_ismhat_enter(sfmmu_t *, int);
 733 static void     sfmmu_ismhat_exit(sfmmu_t *, int);
 734 
 735 kpm_hlk_t       *kpmp_table;
 736 uint_t          kpmp_table_sz;  /* must be a power of 2 */
 737 uchar_t         kpmp_shift;
 738 
 739 kpm_shlk_t      *kpmp_stable;
 740 uint_t          kpmp_stable_sz; /* must be a power of 2 */
 741 
 742 /*
 743  * SPL_TABLE_SIZE is 2 * NCPU, but no smaller than 128.
 744  * SPL_SHIFT is log2(SPL_TABLE_SIZE).
 745  */
 746 #if ((2*NCPU_P2) > 128)
 747 #define SPL_SHIFT       ((unsigned)(NCPU_LOG2 + 1))
 748 #else
 749 #define SPL_SHIFT       7U
 750 #endif
 751 #define SPL_TABLE_SIZE  (1U << SPL_SHIFT)
 752 #define SPL_MASK        (SPL_TABLE_SIZE - 1)
 753 
 754 /*
 755  * We shift by PP_SHIFT to take care of the low-order 0 bits of a page_t
 756  * and by multiples of SPL_SHIFT to get as many varied bits as we can.
 757  */
 758 #define SPL_INDEX(pp) \
 759         ((((uintptr_t)(pp) >> PP_SHIFT) ^ \
 760         ((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT)) ^ \
 761         ((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT * 2)) ^ \
 762         ((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT * 3))) & \
 763         SPL_MASK)
 764 
 765 #define SPL_HASH(pp)    \
 766         (&sfmmu_page_lock[SPL_INDEX(pp)].pad_mutex)
 767 
 768 static  pad_mutex_t     sfmmu_page_lock[SPL_TABLE_SIZE];
 769 
 770 /* Array of mutexes protecting a page's mapping list and p_nrm field. */
 771 
 772 #define MML_TABLE_SIZE  SPL_TABLE_SIZE
 773 #define MLIST_HASH(pp)  (&mml_table[SPL_INDEX(pp)].pad_mutex)
 774 
 775 static pad_mutex_t      mml_table[MML_TABLE_SIZE];
 776 
 777 /*
 778  * hat_unload_callback() will group together callbacks in order
 779  * to avoid xt_sync() calls.  This is the maximum size of the group.
 780  */
 781 #define MAX_CB_ADDR     32
 782 
 783 tte_t   hw_tte;
 784 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
 785 
 786 static char     *mmu_ctx_kstat_names[] = {
 787         "mmu_ctx_tsb_exceptions",
 788         "mmu_ctx_tsb_raise_exception",
 789         "mmu_ctx_wrap_around",
 790 };
 791 
 792 /*
 793  * Wrapper for vmem_xalloc since vmem_create only allows limited
 794  * parameters for vm_source_alloc functions.  This function allows us
 795  * to specify alignment consistent with the size of the object being
 796  * allocated.
 797  */
 798 static void *
 799 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
 800 {
 801         return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
 802 }
 803 
 804 /* Common code for setting tsb_alloc_hiwater. */
 805 #define SFMMU_SET_TSB_ALLOC_HIWATER(pages)      tsb_alloc_hiwater = \
 806                 ptob(pages) / tsb_alloc_hiwater_factor
 807 
 808 /*
 809  * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
 810  * a single TSB.  physmem is the number of physical pages so we need physmem 8K
 811  * TTEs to represent all those physical pages.  We round this up by using
 812  * 1<<highbit().  To figure out which size code to use, remember that the size
 813  * code is just an amount to shift the smallest TSB size to get the size of
 814  * this TSB.  So we subtract that size, TSB_START_SIZE, from highbit() (or
 815  * highbit() - 1) to get the size code for the smallest TSB that can represent
 816  * all of physical memory, while erring on the side of too much.
 817  *
 818  * Restrict tsb_max_growsize to make sure that:
 819  *      1) TSBs can't grow larger than the TSB slab size
 820  *      2) TSBs can't grow larger than UTSB_MAX_SZCODE.
 821  */
 822 #define SFMMU_SET_TSB_MAX_GROWSIZE(pages) {                             \
 823         int     _i, _szc, _slabszc, _tsbszc;                            \
 824                                                                         \
 825         _i = highbit(pages);                                            \
 826         if ((1 << (_i - 1)) == (pages))                                   \
 827                 _i--;           /* 2^n case, round down */              \
 828         _szc = _i - TSB_START_SIZE;                                     \
 829         _slabszc = bigtsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT); \
 830         _tsbszc = MIN(_szc, _slabszc);                                  \
 831         tsb_max_growsize = MIN(_tsbszc, UTSB_MAX_SZCODE);               \
 832 }
 833 
 834 /*
 835  * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
 836  * tsb_info which handles that TTE size.
 837  */
 838 #define SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc) {                  \
 839         (tsbinfop) = (sfmmup)->sfmmu_tsb;                            \
 840         ASSERT(((tsbinfop)->tsb_flags & TSB_SHAREDCTX) ||                \
 841             sfmmu_hat_lock_held(sfmmup));                               \
 842         if ((tte_szc) >= TTE4M)      {                                       \
 843                 ASSERT((tsbinfop) != NULL);                             \
 844                 (tsbinfop) = (tsbinfop)->tsb_next;                   \
 845         }                                                               \
 846 }
 847 
 848 /*
 849  * Macro to use to unload entries from the TSB.
 850  * It has knowledge of which page sizes get replicated in the TSB
 851  * and will call the appropriate unload routine for the appropriate size.
 852  */
 853 #define SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, ismhat)         \
 854 {                                                                       \
 855         int ttesz = get_hblk_ttesz(hmeblkp);                            \
 856         if (ttesz == TTE8K || ttesz == TTE4M) {                         \
 857                 sfmmu_unload_tsb(sfmmup, addr, ttesz);                  \
 858         } else {                                                        \
 859                 caddr_t sva = ismhat ? addr :                           \
 860                     (caddr_t)get_hblk_base(hmeblkp);                    \
 861                 caddr_t eva = sva + get_hblk_span(hmeblkp);             \
 862                 ASSERT(addr >= sva && addr < eva);                        \
 863                 sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);        \
 864         }                                                               \
 865 }
 866 
 867 
 868 /* Update tsb_alloc_hiwater after memory is configured. */
 869 /*ARGSUSED*/
 870 static void
 871 sfmmu_update_post_add(void *arg, pgcnt_t delta_pages)
 872 {
 873         /* Assumes physmem has already been updated. */
 874         SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
 875         SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
 876 }
 877 
 878 /*
 879  * Update tsb_alloc_hiwater before memory is deleted.  We'll do nothing here
 880  * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
 881  * deleted.
 882  */
 883 /*ARGSUSED*/
 884 static int
 885 sfmmu_update_pre_del(void *arg, pgcnt_t delta_pages)
 886 {
 887         return (0);
 888 }
 889 
 890 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
 891 /*ARGSUSED*/
 892 static void
 893 sfmmu_update_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
 894 {
 895         /*
 896          * Whether the delete was cancelled or not, just go ahead and update
 897          * tsb_alloc_hiwater and tsb_max_growsize.
 898          */
 899         SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
 900         SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
 901 }
 902 
 903 static kphysm_setup_vector_t sfmmu_update_vec = {
 904         KPHYSM_SETUP_VECTOR_VERSION,    /* version */
 905         sfmmu_update_post_add,          /* post_add */
 906         sfmmu_update_pre_del,           /* pre_del */
 907         sfmmu_update_post_del           /* post_del */
 908 };
 909 
 910 
 911 /*
 912  * HME_BLK HASH PRIMITIVES
 913  */
 914 
 915 /*
 916  * Enter a hme on the mapping list for page pp.
 917  * When large pages are more prevalent in the system we might want to
 918  * keep the mapping list in ascending order by the hment size. For now,
 919  * small pages are more frequent, so don't slow it down.
 920  */
 921 #define HME_ADD(hme, pp)                                        \
 922 {                                                               \
 923         ASSERT(sfmmu_mlist_held(pp));                           \
 924                                                                 \
 925         hme->hme_prev = NULL;                                        \
 926         hme->hme_next = pp->p_mapping;                            \
 927         hme->hme_page = pp;                                  \
 928         if (pp->p_mapping) {                                 \
 929                 ((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
 930                 ASSERT(pp->p_share > 0);                  \
 931         } else  {                                               \
 932                 /* EMPTY */                                     \
 933                 ASSERT(pp->p_share == 0);                    \
 934         }                                                       \
 935         pp->p_mapping = hme;                                 \
 936         pp->p_share++;                                               \
 937 }
 938 
 939 /*
 940  * Enter a hme on the mapping list for page pp.
 941  * If we are unmapping a large translation, we need to make sure that the
 942  * change is reflect in the corresponding bit of the p_index field.
 943  */
 944 #define HME_SUB(hme, pp)                                        \
 945 {                                                               \
 946         ASSERT(sfmmu_mlist_held(pp));                           \
 947         ASSERT(hme->hme_page == pp || IS_PAHME(hme));                \
 948                                                                 \
 949         if (pp->p_mapping == NULL) {                         \
 950                 panic("hme_remove - no mappings");              \
 951         }                                                       \
 952                                                                 \
 953         membar_stst();  /* ensure previous stores finish */     \
 954                                                                 \
 955         ASSERT(pp->p_share > 0);                          \
 956         pp->p_share--;                                               \
 957                                                                 \
 958         if (hme->hme_prev) {                                 \
 959                 ASSERT(pp->p_mapping != hme);                        \
 960                 ASSERT(hme->hme_prev->hme_page == pp ||           \
 961                         IS_PAHME(hme->hme_prev));            \
 962                 hme->hme_prev->hme_next = hme->hme_next;       \
 963         } else {                                                \
 964                 ASSERT(pp->p_mapping == hme);                        \
 965                 pp->p_mapping = hme->hme_next;                    \
 966                 ASSERT((pp->p_mapping == NULL) ?             \
 967                         (pp->p_share == 0) : 1);             \
 968         }                                                       \
 969                                                                 \
 970         if (hme->hme_next) {                                 \
 971                 ASSERT(hme->hme_next->hme_page == pp ||           \
 972                         IS_PAHME(hme->hme_next));            \
 973                 hme->hme_next->hme_prev = hme->hme_prev;       \
 974         }                                                       \
 975                                                                 \
 976         /* zero out the entry */                                \
 977         hme->hme_next = NULL;                                        \
 978         hme->hme_prev = NULL;                                        \
 979         hme->hme_page = NULL;                                        \
 980                                                                 \
 981         if (hme_size(hme) > TTE8K) {                         \
 982                 /* remove mappings for remainder of large pg */ \
 983                 sfmmu_rm_large_mappings(pp, hme_size(hme));     \
 984         }                                                       \
 985 }
 986 
 987 /*
 988  * This function returns the hment given the hme_blk and a vaddr.
 989  * It assumes addr has already been checked to belong to hme_blk's
 990  * range.
 991  */
 992 #define HBLKTOHME(hment, hmeblkp, addr)                                 \
 993 {                                                                       \
 994         int index;                                                      \
 995         HBLKTOHME_IDX(hment, hmeblkp, addr, index)                      \
 996 }
 997 
 998 /*
 999  * Version of HBLKTOHME that also returns the index in hmeblkp
1000  * of the hment.
1001  */
1002 #define HBLKTOHME_IDX(hment, hmeblkp, addr, idx)                        \
1003 {                                                                       \
1004         ASSERT(in_hblk_range((hmeblkp), (addr)));                       \
1005                                                                         \
1006         if (get_hblk_ttesz(hmeblkp) == TTE8K) {                         \
1007                 idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
1008         } else                                                          \
1009                 idx = 0;                                                \
1010                                                                         \
1011         (hment) = &(hmeblkp)->hblk_hme[idx];                             \
1012 }
1013 
1014 /*
1015  * Disable any page sizes not supported by the CPU
1016  */
1017 void
1018 hat_init_pagesizes()
1019 {
1020         int             i;
1021 
1022         mmu_exported_page_sizes = 0;
1023         for (i = TTE8K; i < max_mmu_page_sizes; i++) {
1024 
1025                 szc_2_userszc[i] = (uint_t)-1;
1026                 userszc_2_szc[i] = (uint_t)-1;
1027 
1028                 if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
1029                         disable_large_pages |= (1 << i);
1030                 } else {
1031                         szc_2_userszc[i] = mmu_exported_page_sizes;
1032                         userszc_2_szc[mmu_exported_page_sizes] = i;
1033                         mmu_exported_page_sizes++;
1034                 }
1035         }
1036 
1037         disable_ism_large_pages |= disable_large_pages;
1038         disable_auto_data_large_pages = disable_large_pages;
1039         disable_auto_text_large_pages = disable_large_pages;
1040 
1041         /*
1042          * Initialize mmu-specific large page sizes.
1043          */
1044         if (&mmu_large_pages_disabled) {
1045                 disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
1046                 disable_ism_large_pages |=
1047                     mmu_large_pages_disabled(HAT_LOAD_SHARE);
1048                 disable_auto_data_large_pages |=
1049                     mmu_large_pages_disabled(HAT_AUTO_DATA);
1050                 disable_auto_text_large_pages |=
1051                     mmu_large_pages_disabled(HAT_AUTO_TEXT);
1052         }
1053 }
1054 
1055 /*
1056  * Initialize the hardware address translation structures.
1057  */
1058 void
1059 hat_init(void)
1060 {
1061         int             i;
1062         uint_t          sz;
1063         size_t          size;
1064 
1065         hat_lock_init();
1066         hat_kstat_init();
1067 
1068         /*
1069          * Hardware-only bits in a TTE
1070          */
1071         MAKE_TTE_MASK(&hw_tte);
1072 
1073         hat_init_pagesizes();
1074 
1075         /* Initialize the hash locks */
1076         for (i = 0; i < khmehash_num; i++) {
1077                 mutex_init(&khme_hash[i].hmehash_mutex, NULL,
1078                     MUTEX_DEFAULT, NULL);
1079                 khme_hash[i].hmeh_nextpa = HMEBLK_ENDPA;
1080         }
1081         for (i = 0; i < uhmehash_num; i++) {
1082                 mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
1083                     MUTEX_DEFAULT, NULL);
1084                 uhme_hash[i].hmeh_nextpa = HMEBLK_ENDPA;
1085         }
1086         khmehash_num--;         /* make sure counter starts from 0 */
1087         uhmehash_num--;         /* make sure counter starts from 0 */
1088 
1089         /*
1090          * Allocate context domain structures.
1091          *
1092          * A platform may choose to modify max_mmu_ctxdoms in
1093          * set_platform_defaults(). If a platform does not define
1094          * a set_platform_defaults() or does not choose to modify
1095          * max_mmu_ctxdoms, it gets one MMU context domain for every CPU.
1096          *
1097          * For all platforms that have CPUs sharing MMUs, this
1098          * value must be defined.
1099          */
1100         if (max_mmu_ctxdoms == 0)
1101                 max_mmu_ctxdoms = max_ncpus;
1102 
1103         size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *);
1104         mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP);
1105 
1106         /* mmu_ctx_t is 64 bytes aligned */
1107         mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache",
1108             sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
1109         /*
1110          * MMU context domain initialization for the Boot CPU.
1111          * This needs the context domains array allocated above.
1112          */
1113         mutex_enter(&cpu_lock);
1114         sfmmu_cpu_init(CPU);
1115         mutex_exit(&cpu_lock);
1116 
1117         /*
1118          * Intialize ism mapping list lock.
1119          */
1120 
1121         mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
1122 
1123         /*
1124          * Each sfmmu structure carries an array of MMU context info
1125          * structures, one per context domain. The size of this array depends
1126          * on the maximum number of context domains. So, the size of the
1127          * sfmmu structure varies per platform.
1128          *
1129          * sfmmu is allocated from static arena, because trap
1130          * handler at TL > 0 is not allowed to touch kernel relocatable
1131          * memory. sfmmu's alignment is changed to 64 bytes from
1132          * default 8 bytes, as the lower 6 bits will be used to pass
1133          * pgcnt to vtag_flush_pgcnt_tl1.
1134          */
1135         size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1);
1136 
1137         sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size,
1138             64, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1139             NULL, NULL, static_arena, 0);
1140 
1141         sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1142             sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1143 
1144         /*
1145          * Since we only use the tsb8k cache to "borrow" pages for TSBs
1146          * from the heap when low on memory or when TSB_FORCEALLOC is
1147          * specified, don't use magazines to cache them--we want to return
1148          * them to the system as quickly as possible.
1149          */
1150         sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1151             MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1152             static_arena, KMC_NOMAGAZINE);
1153 
1154         /*
1155          * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1156          * memory, which corresponds to the old static reserve for TSBs.
1157          * tsb_alloc_hiwater_factor defaults to 32.  This caps the amount of
1158          * memory we'll allocate for TSB slabs; beyond this point TSB
1159          * allocations will be taken from the kernel heap (via
1160          * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1161          * consumer.
1162          */
1163         if (tsb_alloc_hiwater_factor == 0) {
1164                 tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1165         }
1166         SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1167 
1168         for (sz = tsb_slab_ttesz; sz > 0; sz--) {
1169                 if (!(disable_large_pages & (1 << sz)))
1170                         break;
1171         }
1172 
1173         if (sz < tsb_slab_ttesz) {
1174                 tsb_slab_ttesz = sz;
1175                 tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz;
1176                 tsb_slab_size = 1 << tsb_slab_shift;
1177                 tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1;
1178                 use_bigtsb_arena = 0;
1179         } else if (use_bigtsb_arena &&
1180             (disable_large_pages & (1 << bigtsb_slab_ttesz))) {
1181                 use_bigtsb_arena = 0;
1182         }
1183 
1184         if (!use_bigtsb_arena) {
1185                 bigtsb_slab_shift = tsb_slab_shift;
1186         }
1187         SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1188 
1189         /*
1190          * On smaller memory systems, allocate TSB memory in smaller chunks
1191          * than the default 4M slab size. We also honor disable_large_pages
1192          * here.
1193          *
1194          * The trap handlers need to be patched with the final slab shift,
1195          * since they need to be able to construct the TSB pointer at runtime.
1196          */
1197         if ((tsb_max_growsize <= TSB_512K_SZCODE) &&
1198             !(disable_large_pages & (1 << TTE512K))) {
1199                 tsb_slab_ttesz = TTE512K;
1200                 tsb_slab_shift = MMU_PAGESHIFT512K;
1201                 tsb_slab_size = MMU_PAGESIZE512K;
1202                 tsb_slab_mask = MMU_PAGEOFFSET512K >> MMU_PAGESHIFT;
1203                 use_bigtsb_arena = 0;
1204         }
1205 
1206         if (!use_bigtsb_arena) {
1207                 bigtsb_slab_ttesz = tsb_slab_ttesz;
1208                 bigtsb_slab_shift = tsb_slab_shift;
1209                 bigtsb_slab_size = tsb_slab_size;
1210                 bigtsb_slab_mask = tsb_slab_mask;
1211         }
1212 
1213 
1214         /*
1215          * Set up memory callback to update tsb_alloc_hiwater and
1216          * tsb_max_growsize.
1217          */
1218         i = kphysm_setup_func_register(&sfmmu_update_vec, (void *) 0);
1219         ASSERT(i == 0);
1220 
1221         /*
1222          * kmem_tsb_arena is the source from which large TSB slabs are
1223          * drawn.  The quantum of this arena corresponds to the largest
1224          * TSB size we can dynamically allocate for user processes.
1225          * Currently it must also be a supported page size since we
1226          * use exactly one translation entry to map each slab page.
1227          *
1228          * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1229          * which most TSBs are allocated.  Since most TSB allocations are
1230          * typically 8K we have a kmem cache we stack on top of each
1231          * kmem_tsb_default_arena to speed up those allocations.
1232          *
1233          * Note the two-level scheme of arenas is required only
1234          * because vmem_create doesn't allow us to specify alignment
1235          * requirements.  If this ever changes the code could be
1236          * simplified to use only one level of arenas.
1237          *
1238          * If 256M page support exists on sun4v, 256MB kmem_bigtsb_arena
1239          * will be provided in addition to the 4M kmem_tsb_arena.
1240          */
1241         if (use_bigtsb_arena) {
1242                 kmem_bigtsb_arena = vmem_create("kmem_bigtsb", NULL, 0,
1243                     bigtsb_slab_size, sfmmu_vmem_xalloc_aligned_wrapper,
1244                     vmem_xfree, heap_arena, 0, VM_SLEEP);
1245         }
1246 
1247         kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1248             sfmmu_vmem_xalloc_aligned_wrapper,
1249             vmem_xfree, heap_arena, 0, VM_SLEEP);
1250 
1251         if (tsb_lgrp_affinity) {
1252                 char s[50];
1253                 for (i = 0; i < NLGRPS_MAX; i++) {
1254                         if (use_bigtsb_arena) {
1255                                 (void) sprintf(s, "kmem_bigtsb_lgrp%d", i);
1256                                 kmem_bigtsb_default_arena[i] = vmem_create(s,
1257                                     NULL, 0, 2 * tsb_slab_size,
1258                                     sfmmu_tsb_segkmem_alloc,
1259                                     sfmmu_tsb_segkmem_free, kmem_bigtsb_arena,
1260                                     0, VM_SLEEP | VM_BESTFIT);
1261                         }
1262 
1263                         (void) sprintf(s, "kmem_tsb_lgrp%d", i);
1264                         kmem_tsb_default_arena[i] = vmem_create(s,
1265                             NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1266                             sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1267                             VM_SLEEP | VM_BESTFIT);
1268 
1269                         (void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1270                         sfmmu_tsb_cache[i] = kmem_cache_create(s,
1271                             PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1272                             kmem_tsb_default_arena[i], 0);
1273                 }
1274         } else {
1275                 if (use_bigtsb_arena) {
1276                         kmem_bigtsb_default_arena[0] =
1277                             vmem_create("kmem_bigtsb_default", NULL, 0,
1278                             2 * tsb_slab_size, sfmmu_tsb_segkmem_alloc,
1279                             sfmmu_tsb_segkmem_free, kmem_bigtsb_arena, 0,
1280                             VM_SLEEP | VM_BESTFIT);
1281                 }
1282 
1283                 kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1284                     NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1285                     sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1286                     VM_SLEEP | VM_BESTFIT);
1287                 sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1288                     PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1289                     kmem_tsb_default_arena[0], 0);
1290         }
1291 
1292         sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1293             HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1294             sfmmu_hblkcache_destructor,
1295             sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1296             hat_memload_arena, KMC_NOHASH);
1297 
1298         hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1299             segkmem_alloc_permanent, segkmem_free, heap_arena, 0,
1300             VMC_DUMPSAFE | VM_SLEEP);
1301 
1302         sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1303             HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1304             sfmmu_hblkcache_destructor,
1305             NULL, (void *)HME1BLK_SZ,
1306             hat_memload1_arena, KMC_NOHASH);
1307 
1308         pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1309             0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1310 
1311         ism_blk_cache = kmem_cache_create("ism_blk_cache",
1312             sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1313             NULL, NULL, static_arena, KMC_NOHASH);
1314 
1315         ism_ment_cache = kmem_cache_create("ism_ment_cache",
1316             sizeof (ism_ment_t), 0, NULL, NULL,
1317             NULL, NULL, NULL, 0);
1318 
1319         /*
1320          * We grab the first hat for the kernel,
1321          */
1322         AS_LOCK_ENTER(&kas, RW_WRITER);
1323         kas.a_hat = hat_alloc(&kas);
1324         AS_LOCK_EXIT(&kas);
1325 
1326         /*
1327          * Initialize hblk_reserve.
1328          */
1329         ((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1330             va_to_pa((caddr_t)hblk_reserve);
1331 
1332 #ifndef UTSB_PHYS
1333         /*
1334          * Reserve some kernel virtual address space for the locked TTEs
1335          * that allow us to probe the TSB from TL>0.
1336          */
1337         utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1338             0, 0, NULL, NULL, VM_SLEEP);
1339         utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1340             0, 0, NULL, NULL, VM_SLEEP);
1341 #endif
1342 
1343 #ifdef VAC
1344         /*
1345          * The big page VAC handling code assumes VAC
1346          * will not be bigger than the smallest big
1347          * page- which is 64K.
1348          */
1349         if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1350                 cmn_err(CE_PANIC, "VAC too big!");
1351         }
1352 #endif
1353 
1354         uhme_hash_pa = va_to_pa(uhme_hash);
1355         khme_hash_pa = va_to_pa(khme_hash);
1356 
1357         /*
1358          * Initialize relocation locks. kpr_suspendlock is held
1359          * at PIL_MAX to prevent interrupts from pinning the holder
1360          * of a suspended TTE which may access it leading to a
1361          * deadlock condition.
1362          */
1363         mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1364         mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1365 
1366         /*
1367          * If Shared context support is disabled via /etc/system
1368          * set shctx_on to 0 here if it was set to 1 earlier in boot
1369          * sequence by cpu module initialization code.
1370          */
1371         if (shctx_on && disable_shctx) {
1372                 shctx_on = 0;
1373         }
1374 
1375         if (shctx_on) {
1376                 srd_buckets = kmem_zalloc(SFMMU_MAX_SRD_BUCKETS *
1377                     sizeof (srd_buckets[0]), KM_SLEEP);
1378                 for (i = 0; i < SFMMU_MAX_SRD_BUCKETS; i++) {
1379                         mutex_init(&srd_buckets[i].srdb_lock, NULL,
1380                             MUTEX_DEFAULT, NULL);
1381                 }
1382 
1383                 srd_cache = kmem_cache_create("srd_cache", sizeof (sf_srd_t),
1384                     0, sfmmu_srdcache_constructor, sfmmu_srdcache_destructor,
1385                     NULL, NULL, NULL, 0);
1386                 region_cache = kmem_cache_create("region_cache",
1387                     sizeof (sf_region_t), 0, sfmmu_rgncache_constructor,
1388                     sfmmu_rgncache_destructor, NULL, NULL, NULL, 0);
1389                 scd_cache = kmem_cache_create("scd_cache", sizeof (sf_scd_t),
1390                     0, sfmmu_scdcache_constructor,  sfmmu_scdcache_destructor,
1391                     NULL, NULL, NULL, 0);
1392         }
1393 
1394         /*
1395          * Pre-allocate hrm_hashtab before enabling the collection of
1396          * refmod statistics.  Allocating on the fly would mean us
1397          * running the risk of suffering recursive mutex enters or
1398          * deadlocks.
1399          */
1400         hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
1401             KM_SLEEP);
1402 
1403         /* Allocate per-cpu pending freelist of hmeblks */
1404         cpu_hme_pend = kmem_zalloc((NCPU * sizeof (cpu_hme_pend_t)) + 64,
1405             KM_SLEEP);
1406         cpu_hme_pend = (cpu_hme_pend_t *)P2ROUNDUP(
1407             (uintptr_t)cpu_hme_pend, 64);
1408 
1409         for (i = 0; i < NCPU; i++) {
1410                 mutex_init(&cpu_hme_pend[i].chp_mutex, NULL, MUTEX_DEFAULT,
1411                     NULL);
1412         }
1413 
1414         if (cpu_hme_pend_thresh == 0) {
1415                 cpu_hme_pend_thresh = CPU_HME_PEND_THRESH;
1416         }
1417 }
1418 
1419 /*
1420  * Initialize locking for the hat layer, called early during boot.
1421  */
1422 static void
1423 hat_lock_init()
1424 {
1425         int i;
1426 
1427         /*
1428          * initialize the array of mutexes protecting a page's mapping
1429          * list and p_nrm field.
1430          */
1431         for (i = 0; i < MML_TABLE_SIZE; i++)
1432                 mutex_init(&mml_table[i].pad_mutex, NULL, MUTEX_DEFAULT, NULL);
1433 
1434         if (kpm_enable) {
1435                 for (i = 0; i < kpmp_table_sz; i++) {
1436                         mutex_init(&kpmp_table[i].khl_mutex, NULL,
1437                             MUTEX_DEFAULT, NULL);
1438                 }
1439         }
1440 
1441         /*
1442          * Initialize array of mutex locks that protects sfmmu fields and
1443          * TSB lists.
1444          */
1445         for (i = 0; i < SFMMU_NUM_LOCK; i++)
1446                 mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1447                     NULL);
1448 }
1449 
1450 #define SFMMU_KERNEL_MAXVA \
1451         (kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1452 
1453 /*
1454  * Allocate a hat structure.
1455  * Called when an address space first uses a hat.
1456  */
1457 struct hat *
1458 hat_alloc(struct as *as)
1459 {
1460         sfmmu_t *sfmmup;
1461         int i;
1462         uint64_t cnum;
1463         extern uint_t get_color_start(struct as *);
1464 
1465         ASSERT(AS_WRITE_HELD(as));
1466         sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1467         sfmmup->sfmmu_as = as;
1468         sfmmup->sfmmu_flags = 0;
1469         sfmmup->sfmmu_tteflags = 0;
1470         sfmmup->sfmmu_rtteflags = 0;
1471         LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock);
1472 
1473         if (as == &kas) {
1474                 ksfmmup = sfmmup;
1475                 sfmmup->sfmmu_cext = 0;
1476                 cnum = KCONTEXT;
1477 
1478                 sfmmup->sfmmu_clrstart = 0;
1479                 sfmmup->sfmmu_tsb = NULL;
1480                 /*
1481                  * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1482                  * to setup tsb_info for ksfmmup.
1483                  */
1484         } else {
1485 
1486                 /*
1487                  * Just set to invalid ctx. When it faults, it will
1488                  * get a valid ctx. This would avoid the situation
1489                  * where we get a ctx, but it gets stolen and then
1490                  * we fault when we try to run and so have to get
1491                  * another ctx.
1492                  */
1493                 sfmmup->sfmmu_cext = 0;
1494                 cnum = INVALID_CONTEXT;
1495 
1496                 /* initialize original physical page coloring bin */
1497                 sfmmup->sfmmu_clrstart = get_color_start(as);
1498 #ifdef DEBUG
1499                 if (tsb_random_size) {
1500                         uint32_t randval = (uint32_t)gettick() >> 4;
1501                         int size = randval % (tsb_max_growsize + 1);
1502 
1503                         /* chose a random tsb size for stress testing */
1504                         (void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1505                             TSB8K|TSB64K|TSB512K, 0, sfmmup);
1506                 } else
1507 #endif /* DEBUG */
1508                         (void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1509                             default_tsb_size,
1510                             TSB8K|TSB64K|TSB512K, 0, sfmmup);
1511                 sfmmup->sfmmu_flags = HAT_SWAPPED | HAT_ALLCTX_INVALID;
1512                 ASSERT(sfmmup->sfmmu_tsb != NULL);
1513         }
1514 
1515         ASSERT(max_mmu_ctxdoms > 0);
1516         for (i = 0; i < max_mmu_ctxdoms; i++) {
1517                 sfmmup->sfmmu_ctxs[i].cnum = cnum;
1518                 sfmmup->sfmmu_ctxs[i].gnum = 0;
1519         }
1520 
1521         for (i = 0; i < max_mmu_page_sizes; i++) {
1522                 sfmmup->sfmmu_ttecnt[i] = 0;
1523                 sfmmup->sfmmu_scdrttecnt[i] = 0;
1524                 sfmmup->sfmmu_ismttecnt[i] = 0;
1525                 sfmmup->sfmmu_scdismttecnt[i] = 0;
1526                 sfmmup->sfmmu_pgsz[i] = TTE8K;
1527         }
1528         sfmmup->sfmmu_tsb0_4minflcnt = 0;
1529         sfmmup->sfmmu_iblk = NULL;
1530         sfmmup->sfmmu_ismhat = 0;
1531         sfmmup->sfmmu_scdhat = 0;
1532         sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1533         if (sfmmup == ksfmmup) {
1534                 CPUSET_ALL(sfmmup->sfmmu_cpusran);
1535         } else {
1536                 CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1537         }
1538         sfmmup->sfmmu_free = 0;
1539         sfmmup->sfmmu_rmstat = 0;
1540         sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1541         cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1542         sfmmup->sfmmu_srdp = NULL;
1543         SF_RGNMAP_ZERO(sfmmup->sfmmu_region_map);
1544         bzero(sfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
1545         sfmmup->sfmmu_scdp = NULL;
1546         sfmmup->sfmmu_scd_link.next = NULL;
1547         sfmmup->sfmmu_scd_link.prev = NULL;
1548         return (sfmmup);
1549 }
1550 
1551 /*
1552  * Create per-MMU context domain kstats for a given MMU ctx.
1553  */
1554 static void
1555 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp)
1556 {
1557         mmu_ctx_stat_t  stat;
1558         kstat_t         *mmu_kstat;
1559 
1560         ASSERT(MUTEX_HELD(&cpu_lock));
1561         ASSERT(mmu_ctxp->mmu_kstat == NULL);
1562 
1563         mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx",
1564             "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL);
1565 
1566         if (mmu_kstat == NULL) {
1567                 cmn_err(CE_WARN, "kstat_create for MMU %d failed",
1568                     mmu_ctxp->mmu_idx);
1569         } else {
1570                 mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data;
1571                 for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++)
1572                         kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat],
1573                             mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64);
1574                 mmu_ctxp->mmu_kstat = mmu_kstat;
1575                 kstat_install(mmu_kstat);
1576         }
1577 }
1578 
1579 /*
1580  * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU
1581  * context domain information for a given CPU. If a platform does not
1582  * specify that interface, then the function below is used instead to return
1583  * default information. The defaults are as follows:
1584  *
1585  *      - The number of MMU context IDs supported on any CPU in the
1586  *        system is 8K.
1587  *      - There is one MMU context domain per CPU.
1588  */
1589 /*ARGSUSED*/
1590 static void
1591 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop)
1592 {
1593         infop->mmu_nctxs = nctxs;
1594         infop->mmu_idx = cpu[cpuid]->cpu_seqid;
1595 }
1596 
1597 /*
1598  * Called during CPU initialization to set the MMU context-related information
1599  * for a CPU.
1600  *
1601  * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum.
1602  */
1603 void
1604 sfmmu_cpu_init(cpu_t *cp)
1605 {
1606         mmu_ctx_info_t  info;
1607         mmu_ctx_t       *mmu_ctxp;
1608 
1609         ASSERT(MUTEX_HELD(&cpu_lock));
1610 
1611         if (&plat_cpuid_to_mmu_ctx_info == NULL)
1612                 sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1613         else
1614                 plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1615 
1616         ASSERT(info.mmu_idx < max_mmu_ctxdoms);
1617 
1618         if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) {
1619                 /* Each mmu_ctx is cacheline aligned. */
1620                 mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP);
1621                 bzero(mmu_ctxp, sizeof (mmu_ctx_t));
1622 
1623                 mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN,
1624                     (void *)ipltospl(DISP_LEVEL));
1625                 mmu_ctxp->mmu_idx = info.mmu_idx;
1626                 mmu_ctxp->mmu_nctxs = info.mmu_nctxs;
1627                 /*
1628                  * Globally for lifetime of a system,
1629                  * gnum must always increase.
1630                  * mmu_saved_gnum is protected by the cpu_lock.
1631                  */
1632                 mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1;
1633                 mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
1634 
1635                 sfmmu_mmu_kstat_create(mmu_ctxp);
1636 
1637                 mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp;
1638         } else {
1639                 ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx);
1640                 ASSERT(mmu_ctxp->mmu_nctxs <= info.mmu_nctxs);
1641         }
1642 
1643         /*
1644          * The mmu_lock is acquired here to prevent races with
1645          * the wrap-around code.
1646          */
1647         mutex_enter(&mmu_ctxp->mmu_lock);
1648 
1649 
1650         mmu_ctxp->mmu_ncpus++;
1651         CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1652         CPU_MMU_IDX(cp) = info.mmu_idx;
1653         CPU_MMU_CTXP(cp) = mmu_ctxp;
1654 
1655         mutex_exit(&mmu_ctxp->mmu_lock);
1656 }
1657 
1658 static void
1659 sfmmu_ctxdom_free(mmu_ctx_t *mmu_ctxp)
1660 {
1661         ASSERT(MUTEX_HELD(&cpu_lock));
1662         ASSERT(!MUTEX_HELD(&mmu_ctxp->mmu_lock));
1663 
1664         mutex_destroy(&mmu_ctxp->mmu_lock);
1665 
1666         if (mmu_ctxp->mmu_kstat)
1667                 kstat_delete(mmu_ctxp->mmu_kstat);
1668 
1669         /* mmu_saved_gnum is protected by the cpu_lock. */
1670         if (mmu_saved_gnum < mmu_ctxp->mmu_gnum)
1671                 mmu_saved_gnum = mmu_ctxp->mmu_gnum;
1672 
1673         kmem_cache_free(mmuctxdom_cache, mmu_ctxp);
1674 }
1675 
1676 /*
1677  * Called to perform MMU context-related cleanup for a CPU.
1678  */
1679 void
1680 sfmmu_cpu_cleanup(cpu_t *cp)
1681 {
1682         mmu_ctx_t       *mmu_ctxp;
1683 
1684         ASSERT(MUTEX_HELD(&cpu_lock));
1685 
1686         mmu_ctxp = CPU_MMU_CTXP(cp);
1687         ASSERT(mmu_ctxp != NULL);
1688 
1689         /*
1690          * The mmu_lock is acquired here to prevent races with
1691          * the wrap-around code.
1692          */
1693         mutex_enter(&mmu_ctxp->mmu_lock);
1694 
1695         CPU_MMU_CTXP(cp) = NULL;
1696 
1697         CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1698         if (--mmu_ctxp->mmu_ncpus == 0) {
1699                 mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL;
1700                 mutex_exit(&mmu_ctxp->mmu_lock);
1701                 sfmmu_ctxdom_free(mmu_ctxp);
1702                 return;
1703         }
1704 
1705         mutex_exit(&mmu_ctxp->mmu_lock);
1706 }
1707 
1708 uint_t
1709 sfmmu_ctxdom_nctxs(int idx)
1710 {
1711         return (mmu_ctxs_tbl[idx]->mmu_nctxs);
1712 }
1713 
1714 #ifdef sun4v
1715 /*
1716  * sfmmu_ctxdoms_* is an interface provided to help keep context domains
1717  * consistant after suspend/resume on system that can resume on a different
1718  * hardware than it was suspended.
1719  *
1720  * sfmmu_ctxdom_lock(void) locks all context domains and prevents new contexts
1721  * from being allocated.  It acquires all hat_locks, which blocks most access to
1722  * context data, except for a few cases that are handled separately or are
1723  * harmless.  It wraps each domain to increment gnum and invalidate on-CPU
1724  * contexts, and forces cnum to its max.  As a result of this call all user
1725  * threads that are running on CPUs trap and try to perform wrap around but
1726  * can't because hat_locks are taken.  Threads that were not on CPUs but started
1727  * by scheduler go to sfmmu_alloc_ctx() to aquire context without checking
1728  * hat_lock, but fail, because cnum == nctxs, and therefore also trap and block
1729  * on hat_lock trying to wrap.  sfmmu_ctxdom_lock() must be called before CPUs
1730  * are paused, else it could deadlock acquiring locks held by paused CPUs.
1731  *
1732  * sfmmu_ctxdoms_remove() removes context domains from every CPUs and records
1733  * the CPUs that had them.  It must be called after CPUs have been paused. This
1734  * ensures that no threads are in sfmmu_alloc_ctx() accessing domain data,
1735  * because pause_cpus sends a mondo interrupt to every CPU, and sfmmu_alloc_ctx
1736  * runs with interrupts disabled.  When CPUs are later resumed, they may enter
1737  * sfmmu_alloc_ctx, but it will check for CPU_MMU_CTXP = NULL and immediately
1738  * return failure.  Or, they will be blocked trying to acquire hat_lock. Thus
1739  * after sfmmu_ctxdoms_remove returns, we are guaranteed that no one is
1740  * accessing the old context domains.
1741  *
1742  * sfmmu_ctxdoms_update(void) frees space used by old context domains and
1743  * allocates new context domains based on hardware layout.  It initializes
1744  * every CPU that had context domain before migration to have one again.
1745  * sfmmu_ctxdoms_update must be called after CPUs are resumed, else it
1746  * could deadlock acquiring locks held by paused CPUs.
1747  *
1748  * sfmmu_ctxdoms_unlock(void) releases all hat_locks after which user threads
1749  * acquire new context ids and continue execution.
1750  *
1751  * Therefore functions should be called in the following order:
1752  *       suspend_routine()
1753  *              sfmmu_ctxdom_lock()
1754  *              pause_cpus()
1755  *              suspend()
1756  *                      if (suspend failed)
1757  *                              sfmmu_ctxdom_unlock()
1758  *              ...
1759  *              sfmmu_ctxdom_remove()
1760  *              resume_cpus()
1761  *              sfmmu_ctxdom_update()
1762  *              sfmmu_ctxdom_unlock()
1763  */
1764 static cpuset_t sfmmu_ctxdoms_pset;
1765 
1766 void
1767 sfmmu_ctxdoms_remove()
1768 {
1769         processorid_t   id;
1770         cpu_t           *cp;
1771 
1772         /*
1773          * Record the CPUs that have domains in sfmmu_ctxdoms_pset, so they can
1774          * be restored post-migration. A CPU may be powered off and not have a
1775          * domain, for example.
1776          */
1777         CPUSET_ZERO(sfmmu_ctxdoms_pset);
1778 
1779         for (id = 0; id < NCPU; id++) {
1780                 if ((cp = cpu[id]) != NULL && CPU_MMU_CTXP(cp) != NULL) {
1781                         CPUSET_ADD(sfmmu_ctxdoms_pset, id);
1782                         CPU_MMU_CTXP(cp) = NULL;
1783                 }
1784         }
1785 }
1786 
1787 void
1788 sfmmu_ctxdoms_lock(void)
1789 {
1790         int             idx;
1791         mmu_ctx_t       *mmu_ctxp;
1792 
1793         sfmmu_hat_lock_all();
1794 
1795         /*
1796          * At this point, no thread can be in sfmmu_ctx_wrap_around, because
1797          * hat_lock is always taken before calling it.
1798          *
1799          * For each domain, set mmu_cnum to max so no more contexts can be
1800          * allocated, and wrap to flush on-CPU contexts and force threads to
1801          * acquire a new context when we later drop hat_lock after migration.
1802          * Setting mmu_cnum may race with sfmmu_alloc_ctx which also sets cnum,
1803          * but the latter uses CAS and will miscompare and not overwrite it.
1804          */
1805         kpreempt_disable(); /* required by sfmmu_ctx_wrap_around */
1806         for (idx = 0; idx < max_mmu_ctxdoms; idx++) {
1807                 if ((mmu_ctxp = mmu_ctxs_tbl[idx]) != NULL) {
1808                         mutex_enter(&mmu_ctxp->mmu_lock);
1809                         mmu_ctxp->mmu_cnum = mmu_ctxp->mmu_nctxs;
1810                         /* make sure updated cnum visible */
1811                         membar_enter();
1812                         mutex_exit(&mmu_ctxp->mmu_lock);
1813                         sfmmu_ctx_wrap_around(mmu_ctxp, B_FALSE);
1814                 }
1815         }
1816         kpreempt_enable();
1817 }
1818 
1819 void
1820 sfmmu_ctxdoms_unlock(void)
1821 {
1822         sfmmu_hat_unlock_all();
1823 }
1824 
1825 void
1826 sfmmu_ctxdoms_update(void)
1827 {
1828         processorid_t   id;
1829         cpu_t           *cp;
1830         uint_t          idx;
1831         mmu_ctx_t       *mmu_ctxp;
1832 
1833         /*
1834          * Free all context domains.  As side effect, this increases
1835          * mmu_saved_gnum to the maximum gnum over all domains, which is used to
1836          * init gnum in the new domains, which therefore will be larger than the
1837          * sfmmu gnum for any process, guaranteeing that every process will see
1838          * a new generation and allocate a new context regardless of what new
1839          * domain it runs in.
1840          */
1841         mutex_enter(&cpu_lock);
1842 
1843         for (idx = 0; idx < max_mmu_ctxdoms; idx++) {
1844                 if (mmu_ctxs_tbl[idx] != NULL) {
1845                         mmu_ctxp = mmu_ctxs_tbl[idx];
1846                         mmu_ctxs_tbl[idx] = NULL;
1847                         sfmmu_ctxdom_free(mmu_ctxp);
1848                 }
1849         }
1850 
1851         for (id = 0; id < NCPU; id++) {
1852                 if (CPU_IN_SET(sfmmu_ctxdoms_pset, id) &&
1853                     (cp = cpu[id]) != NULL)
1854                         sfmmu_cpu_init(cp);
1855         }
1856         mutex_exit(&cpu_lock);
1857 }
1858 #endif
1859 
1860 /*
1861  * Hat_setup, makes an address space context the current active one.
1862  * In sfmmu this translates to setting the secondary context with the
1863  * corresponding context.
1864  */
1865 void
1866 hat_setup(struct hat *sfmmup, int allocflag)
1867 {
1868         hatlock_t *hatlockp;
1869 
1870         /* Init needs some special treatment. */
1871         if (allocflag == HAT_INIT) {
1872                 /*
1873                  * Make sure that we have
1874                  * 1. a TSB
1875                  * 2. a valid ctx that doesn't get stolen after this point.
1876                  */
1877                 hatlockp = sfmmu_hat_enter(sfmmup);
1878 
1879                 /*
1880                  * Swap in the TSB.  hat_init() allocates tsbinfos without
1881                  * TSBs, but we need one for init, since the kernel does some
1882                  * special things to set up its stack and needs the TSB to
1883                  * resolve page faults.
1884                  */
1885                 sfmmu_tsb_swapin(sfmmup, hatlockp);
1886 
1887                 sfmmu_get_ctx(sfmmup);
1888 
1889                 sfmmu_hat_exit(hatlockp);
1890         } else {
1891                 ASSERT(allocflag == HAT_ALLOC);
1892 
1893                 hatlockp = sfmmu_hat_enter(sfmmup);
1894                 kpreempt_disable();
1895 
1896                 CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1897                 /*
1898                  * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter,
1899                  * pagesize bits don't matter in this case since we are passing
1900                  * INVALID_CONTEXT to it.
1901                  * Compatibility Note: hw takes care of MMU_SCONTEXT1
1902                  */
1903                 sfmmu_setctx_sec(INVALID_CONTEXT);
1904                 sfmmu_clear_utsbinfo();
1905 
1906                 kpreempt_enable();
1907                 sfmmu_hat_exit(hatlockp);
1908         }
1909 }
1910 
1911 /*
1912  * Free all the translation resources for the specified address space.
1913  * Called from as_free when an address space is being destroyed.
1914  */
1915 void
1916 hat_free_start(struct hat *sfmmup)
1917 {
1918         ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as));
1919         ASSERT(sfmmup != ksfmmup);
1920 
1921         sfmmup->sfmmu_free = 1;
1922         if (sfmmup->sfmmu_scdp != NULL) {
1923                 sfmmu_leave_scd(sfmmup, 0);
1924         }
1925 
1926         ASSERT(sfmmup->sfmmu_scdp == NULL);
1927 }
1928 
1929 void
1930 hat_free_end(struct hat *sfmmup)
1931 {
1932         int i;
1933 
1934         ASSERT(sfmmup->sfmmu_free == 1);
1935         ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1936         ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1937         ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1938         ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1939         ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1940         ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1941 
1942         if (sfmmup->sfmmu_rmstat) {
1943                 hat_freestat(sfmmup->sfmmu_as, NULL);
1944         }
1945 
1946         while (sfmmup->sfmmu_tsb != NULL) {
1947                 struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1948                 sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1949                 sfmmup->sfmmu_tsb = next;
1950         }
1951 
1952         if (sfmmup->sfmmu_srdp != NULL) {
1953                 sfmmu_leave_srd(sfmmup);
1954                 ASSERT(sfmmup->sfmmu_srdp == NULL);
1955                 for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1956                         if (sfmmup->sfmmu_hmeregion_links[i] != NULL) {
1957                                 kmem_free(sfmmup->sfmmu_hmeregion_links[i],
1958                                     SFMMU_L2_HMERLINKS_SIZE);
1959                                 sfmmup->sfmmu_hmeregion_links[i] = NULL;
1960                         }
1961                 }
1962         }
1963         sfmmu_free_sfmmu(sfmmup);
1964 
1965 #ifdef DEBUG
1966         for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1967                 ASSERT(sfmmup->sfmmu_hmeregion_links[i] == NULL);
1968         }
1969 #endif
1970 
1971         kmem_cache_free(sfmmuid_cache, sfmmup);
1972 }
1973 
1974 /*
1975  * Set up any translation structures, for the specified address space,
1976  * that are needed or preferred when the process is being swapped in.
1977  */
1978 /* ARGSUSED */
1979 void
1980 hat_swapin(struct hat *hat)
1981 {
1982 }
1983 
1984 /*
1985  * Free all of the translation resources, for the specified address space,
1986  * that can be freed while the process is swapped out. Called from as_swapout.
1987  * Also, free up the ctx that this process was using.
1988  */
1989 void
1990 hat_swapout(struct hat *sfmmup)
1991 {
1992         struct hmehash_bucket *hmebp;
1993         struct hme_blk *hmeblkp;
1994         struct hme_blk *pr_hblk = NULL;
1995         struct hme_blk *nx_hblk;
1996         int i;
1997         struct hme_blk *list = NULL;
1998         hatlock_t *hatlockp;
1999         struct tsb_info *tsbinfop;
2000         struct free_tsb {
2001                 struct free_tsb *next;
2002                 struct tsb_info *tsbinfop;
2003         };                      /* free list of TSBs */
2004         struct free_tsb *freelist, *last, *next;
2005 
2006         SFMMU_STAT(sf_swapout);
2007 
2008         /*
2009          * There is no way to go from an as to all its translations in sfmmu.
2010          * Here is one of the times when we take the big hit and traverse
2011          * the hash looking for hme_blks to free up.  Not only do we free up
2012          * this as hme_blks but all those that are free.  We are obviously
2013          * swapping because we need memory so let's free up as much
2014          * as we can.
2015          *
2016          * Note that we don't flush TLB/TSB here -- it's not necessary
2017          * because:
2018          *  1) we free the ctx we're using and throw away the TSB(s);
2019          *  2) processes aren't runnable while being swapped out.
2020          */
2021         ASSERT(sfmmup != KHATID);
2022         for (i = 0; i <= UHMEHASH_SZ; i++) {
2023                 hmebp = &uhme_hash[i];
2024                 SFMMU_HASH_LOCK(hmebp);
2025                 hmeblkp = hmebp->hmeblkp;
2026                 pr_hblk = NULL;
2027                 while (hmeblkp) {
2028 
2029                         if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
2030                             !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
2031                                 ASSERT(!hmeblkp->hblk_shared);
2032                                 (void) sfmmu_hblk_unload(sfmmup, hmeblkp,
2033                                     (caddr_t)get_hblk_base(hmeblkp),
2034                                     get_hblk_endaddr(hmeblkp),
2035                                     NULL, HAT_UNLOAD);
2036                         }
2037                         nx_hblk = hmeblkp->hblk_next;
2038                         if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
2039                                 ASSERT(!hmeblkp->hblk_lckcnt);
2040                                 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
2041                                     &list, 0);
2042                         } else {
2043                                 pr_hblk = hmeblkp;
2044                         }
2045                         hmeblkp = nx_hblk;
2046                 }
2047                 SFMMU_HASH_UNLOCK(hmebp);
2048         }
2049 
2050         sfmmu_hblks_list_purge(&list, 0);
2051 
2052         /*
2053          * Now free up the ctx so that others can reuse it.
2054          */
2055         hatlockp = sfmmu_hat_enter(sfmmup);
2056 
2057         sfmmu_invalidate_ctx(sfmmup);
2058 
2059         /*
2060          * Free TSBs, but not tsbinfos, and set SWAPPED flag.
2061          * If TSBs were never swapped in, just return.
2062          * This implies that we don't support partial swapping
2063          * of TSBs -- either all are swapped out, or none are.
2064          *
2065          * We must hold the HAT lock here to prevent racing with another
2066          * thread trying to unmap TTEs from the TSB or running the post-
2067          * relocator after relocating the TSB's memory.  Unfortunately, we
2068          * can't free memory while holding the HAT lock or we could
2069          * deadlock, so we build a list of TSBs to be freed after marking
2070          * the tsbinfos as swapped out and free them after dropping the
2071          * lock.
2072          */
2073         if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
2074                 sfmmu_hat_exit(hatlockp);
2075                 return;
2076         }
2077 
2078         SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
2079         last = freelist = NULL;
2080         for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
2081             tsbinfop = tsbinfop->tsb_next) {
2082                 ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
2083 
2084                 /*
2085                  * Cast the TSB into a struct free_tsb and put it on the free
2086                  * list.
2087                  */
2088                 if (freelist == NULL) {
2089                         last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
2090                 } else {
2091                         last->next = (struct free_tsb *)tsbinfop->tsb_va;
2092                         last = last->next;
2093                 }
2094                 last->next = NULL;
2095                 last->tsbinfop = tsbinfop;
2096                 tsbinfop->tsb_flags |= TSB_SWAPPED;
2097                 /*
2098                  * Zero out the TTE to clear the valid bit.
2099                  * Note we can't use a value like 0xbad because we want to
2100                  * ensure diagnostic bits are NEVER set on TTEs that might
2101                  * be loaded.  The intent is to catch any invalid access
2102                  * to the swapped TSB, such as a thread running with a valid
2103                  * context without first calling sfmmu_tsb_swapin() to
2104                  * allocate TSB memory.
2105                  */
2106                 tsbinfop->tsb_tte.ll = 0;
2107         }
2108 
2109         /* Now we can drop the lock and free the TSB memory. */
2110         sfmmu_hat_exit(hatlockp);
2111         for (; freelist != NULL; freelist = next) {
2112                 next = freelist->next;
2113                 sfmmu_tsb_free(freelist->tsbinfop);
2114         }
2115 }
2116 
2117 /*
2118  * Duplicate the translations of an as into another newas
2119  */
2120 /* ARGSUSED */
2121 int
2122 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
2123         uint_t flag)
2124 {
2125         sf_srd_t *srdp;
2126         sf_scd_t *scdp;
2127         int i;
2128         extern uint_t get_color_start(struct as *);
2129 
2130         ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW) ||
2131             (flag == HAT_DUP_SRD));
2132         ASSERT(hat != ksfmmup);
2133         ASSERT(newhat != ksfmmup);
2134         ASSERT(flag != HAT_DUP_ALL || hat->sfmmu_srdp == newhat->sfmmu_srdp);
2135 
2136         if (flag == HAT_DUP_COW) {
2137                 panic("hat_dup: HAT_DUP_COW not supported");
2138         }
2139 
2140         if (flag == HAT_DUP_SRD && ((srdp = hat->sfmmu_srdp) != NULL)) {
2141                 ASSERT(srdp->srd_evp != NULL);
2142                 VN_HOLD(srdp->srd_evp);
2143                 ASSERT(srdp->srd_refcnt > 0);
2144                 newhat->sfmmu_srdp = srdp;
2145                 atomic_inc_32((volatile uint_t *)&srdp->srd_refcnt);
2146         }
2147 
2148         /*
2149          * HAT_DUP_ALL flag is used after as duplication is done.
2150          */
2151         if (flag == HAT_DUP_ALL && ((srdp = newhat->sfmmu_srdp) != NULL)) {
2152                 ASSERT(newhat->sfmmu_srdp->srd_refcnt >= 2);
2153                 newhat->sfmmu_rtteflags = hat->sfmmu_rtteflags;
2154                 if (hat->sfmmu_flags & HAT_4MTEXT_FLAG) {
2155                         newhat->sfmmu_flags |= HAT_4MTEXT_FLAG;
2156                 }
2157 
2158                 /* check if need to join scd */
2159                 if ((scdp = hat->sfmmu_scdp) != NULL &&
2160                     newhat->sfmmu_scdp != scdp) {
2161                         int ret;
2162                         SF_RGNMAP_IS_SUBSET(&newhat->sfmmu_region_map,
2163                             &scdp->scd_region_map, ret);
2164                         ASSERT(ret);
2165                         sfmmu_join_scd(scdp, newhat);
2166                         ASSERT(newhat->sfmmu_scdp == scdp &&
2167                             scdp->scd_refcnt >= 2);
2168                         for (i = 0; i < max_mmu_page_sizes; i++) {
2169                                 newhat->sfmmu_ismttecnt[i] =
2170                                     hat->sfmmu_ismttecnt[i];
2171                                 newhat->sfmmu_scdismttecnt[i] =
2172                                     hat->sfmmu_scdismttecnt[i];
2173                         }
2174                 }
2175 
2176                 sfmmu_check_page_sizes(newhat, 1);
2177         }
2178 
2179         if (flag == HAT_DUP_ALL && consistent_coloring == 0 &&
2180             update_proc_pgcolorbase_after_fork != 0) {
2181                 hat->sfmmu_clrbin = get_color_start(hat->sfmmu_as);
2182         }
2183         return (0);
2184 }
2185 
2186 void
2187 hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
2188         uint_t attr, uint_t flags)
2189 {
2190         hat_do_memload(hat, addr, pp, attr, flags,
2191             SFMMU_INVALID_SHMERID);
2192 }
2193 
2194 void
2195 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp,
2196         uint_t attr, uint_t flags, hat_region_cookie_t rcookie)
2197 {
2198         uint_t rid;
2199         if (rcookie == HAT_INVALID_REGION_COOKIE) {
2200                 hat_do_memload(hat, addr, pp, attr, flags,
2201                     SFMMU_INVALID_SHMERID);
2202                 return;
2203         }
2204         rid = (uint_t)((uint64_t)rcookie);
2205         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2206         hat_do_memload(hat, addr, pp, attr, flags, rid);
2207 }
2208 
2209 /*
2210  * Set up addr to map to page pp with protection prot.
2211  * As an optimization we also load the TSB with the
2212  * corresponding tte but it is no big deal if  the tte gets kicked out.
2213  */
2214 static void
2215 hat_do_memload(struct hat *hat, caddr_t addr, struct page *pp,
2216         uint_t attr, uint_t flags, uint_t rid)
2217 {
2218         tte_t tte;
2219 
2220 
2221         ASSERT(hat != NULL);
2222         ASSERT(PAGE_LOCKED(pp));
2223         ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2224         ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2225         ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2226         SFMMU_VALIDATE_HMERID(hat, rid, addr, MMU_PAGESIZE);
2227 
2228         if (PP_ISFREE(pp)) {
2229                 panic("hat_memload: loading a mapping to free page %p",
2230                     (void *)pp);
2231         }
2232 
2233         ASSERT((hat == ksfmmup) || AS_LOCK_HELD(hat->sfmmu_as));
2234 
2235         if (flags & ~SFMMU_LOAD_ALLFLAG)
2236                 cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
2237                     flags & ~SFMMU_LOAD_ALLFLAG);
2238 
2239         if (hat->sfmmu_rmstat)
2240                 hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
2241 
2242 #if defined(SF_ERRATA_57)
2243         if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2244             (addr < errata57_limit) && (attr & PROT_EXEC) &&
2245             !(flags & HAT_LOAD_SHARE)) {
2246                 cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
2247                     " page executable");
2248                 attr &= ~PROT_EXEC;
2249         }
2250 #endif
2251 
2252         sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2253         (void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags, rid);
2254 
2255         /*
2256          * Check TSB and TLB page sizes.
2257          */
2258         if ((flags & HAT_LOAD_SHARE) == 0) {
2259                 sfmmu_check_page_sizes(hat, 1);
2260         }
2261 }
2262 
2263 /*
2264  * hat_devload can be called to map real memory (e.g.
2265  * /dev/kmem) and even though hat_devload will determine pf is
2266  * for memory, it will be unable to get a shared lock on the
2267  * page (because someone else has it exclusively) and will
2268  * pass dp = NULL.  If tteload doesn't get a non-NULL
2269  * page pointer it can't cache memory.
2270  */
2271 void
2272 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
2273         uint_t attr, int flags)
2274 {
2275         tte_t tte;
2276         struct page *pp = NULL;
2277         int use_lgpg = 0;
2278 
2279         ASSERT(hat != NULL);
2280 
2281         ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2282         ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2283         ASSERT((hat == ksfmmup) || AS_LOCK_HELD(hat->sfmmu_as));
2284         if (len == 0)
2285                 panic("hat_devload: zero len");
2286         if (flags & ~SFMMU_LOAD_ALLFLAG)
2287                 cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
2288                     flags & ~SFMMU_LOAD_ALLFLAG);
2289 
2290 #if defined(SF_ERRATA_57)
2291         if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2292             (addr < errata57_limit) && (attr & PROT_EXEC) &&
2293             !(flags & HAT_LOAD_SHARE)) {
2294                 cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
2295                     " page executable");
2296                 attr &= ~PROT_EXEC;
2297         }
2298 #endif
2299 
2300         /*
2301          * If it's a memory page find its pp
2302          */
2303         if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
2304                 pp = page_numtopp_nolock(pfn);
2305                 if (pp == NULL) {
2306                         flags |= HAT_LOAD_NOCONSIST;
2307                 } else {
2308                         if (PP_ISFREE(pp)) {
2309                                 panic("hat_memload: loading "
2310                                     "a mapping to free page %p",
2311                                     (void *)pp);
2312                         }
2313                         if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
2314                                 panic("hat_memload: loading a mapping "
2315                                     "to unlocked relocatable page %p",
2316                                     (void *)pp);
2317                         }
2318                         ASSERT(len == MMU_PAGESIZE);
2319                 }
2320         }
2321 
2322         if (hat->sfmmu_rmstat)
2323                 hat_resvstat(len, hat->sfmmu_as, addr);
2324 
2325         if (flags & HAT_LOAD_NOCONSIST) {
2326                 attr |= SFMMU_UNCACHEVTTE;
2327                 use_lgpg = 1;
2328         }
2329         if (!pf_is_memory(pfn)) {
2330                 attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
2331                 use_lgpg = 1;
2332                 switch (attr & HAT_ORDER_MASK) {
2333                         case HAT_STRICTORDER:
2334                         case HAT_UNORDERED_OK:
2335                                 /*
2336                                  * we set the side effect bit for all non
2337                                  * memory mappings unless merging is ok
2338                                  */
2339                                 attr |= SFMMU_SIDEFFECT;
2340                                 break;
2341                         case HAT_MERGING_OK:
2342                         case HAT_LOADCACHING_OK:
2343                         case HAT_STORECACHING_OK:
2344                                 break;
2345                         default:
2346                                 panic("hat_devload: bad attr");
2347                                 break;
2348                 }
2349         }
2350         while (len) {
2351                 if (!use_lgpg) {
2352                         sfmmu_memtte(&tte, pfn, attr, TTE8K);
2353                         (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2354                             flags, SFMMU_INVALID_SHMERID);
2355                         len -= MMU_PAGESIZE;
2356                         addr += MMU_PAGESIZE;
2357                         pfn++;
2358                         continue;
2359                 }
2360                 /*
2361                  *  try to use large pages, check va/pa alignments
2362                  *  Note that 32M/256M page sizes are not (yet) supported.
2363                  */
2364                 if ((len >= MMU_PAGESIZE4M) &&
2365                     !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
2366                     !(disable_large_pages & (1 << TTE4M)) &&
2367                     !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
2368                         sfmmu_memtte(&tte, pfn, attr, TTE4M);
2369                         (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2370                             flags, SFMMU_INVALID_SHMERID);
2371                         len -= MMU_PAGESIZE4M;
2372                         addr += MMU_PAGESIZE4M;
2373                         pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
2374                 } else if ((len >= MMU_PAGESIZE512K) &&
2375                     !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
2376                     !(disable_large_pages & (1 << TTE512K)) &&
2377                     !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
2378                         sfmmu_memtte(&tte, pfn, attr, TTE512K);
2379                         (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2380                             flags, SFMMU_INVALID_SHMERID);
2381                         len -= MMU_PAGESIZE512K;
2382                         addr += MMU_PAGESIZE512K;
2383                         pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
2384                 } else if ((len >= MMU_PAGESIZE64K) &&
2385                     !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
2386                     !(disable_large_pages & (1 << TTE64K)) &&
2387                     !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
2388                         sfmmu_memtte(&tte, pfn, attr, TTE64K);
2389                         (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2390                             flags, SFMMU_INVALID_SHMERID);
2391                         len -= MMU_PAGESIZE64K;
2392                         addr += MMU_PAGESIZE64K;
2393                         pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
2394                 } else {
2395                         sfmmu_memtte(&tte, pfn, attr, TTE8K);
2396                         (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2397                             flags, SFMMU_INVALID_SHMERID);
2398                         len -= MMU_PAGESIZE;
2399                         addr += MMU_PAGESIZE;
2400                         pfn++;
2401                 }
2402         }
2403 
2404         /*
2405          * Check TSB and TLB page sizes.
2406          */
2407         if ((flags & HAT_LOAD_SHARE) == 0) {
2408                 sfmmu_check_page_sizes(hat, 1);
2409         }
2410 }
2411 
2412 void
2413 hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
2414         struct page **pps, uint_t attr, uint_t flags)
2415 {
2416         hat_do_memload_array(hat, addr, len, pps, attr, flags,
2417             SFMMU_INVALID_SHMERID);
2418 }
2419 
2420 void
2421 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len,
2422         struct page **pps, uint_t attr, uint_t flags,
2423         hat_region_cookie_t rcookie)
2424 {
2425         uint_t rid;
2426         if (rcookie == HAT_INVALID_REGION_COOKIE) {
2427                 hat_do_memload_array(hat, addr, len, pps, attr, flags,
2428                     SFMMU_INVALID_SHMERID);
2429                 return;
2430         }
2431         rid = (uint_t)((uint64_t)rcookie);
2432         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2433         hat_do_memload_array(hat, addr, len, pps, attr, flags, rid);
2434 }
2435 
2436 /*
2437  * Map the largest extend possible out of the page array. The array may NOT
2438  * be in order.  The largest possible mapping a page can have
2439  * is specified in the p_szc field.  The p_szc field
2440  * cannot change as long as there any mappings (large or small)
2441  * to any of the pages that make up the large page. (ie. any
2442  * promotion/demotion of page size is not up to the hat but up to
2443  * the page free list manager).  The array
2444  * should consist of properly aligned contigous pages that are
2445  * part of a big page for a large mapping to be created.
2446  */
2447 static void
2448 hat_do_memload_array(struct hat *hat, caddr_t addr, size_t len,
2449         struct page **pps, uint_t attr, uint_t flags, uint_t rid)
2450 {
2451         int  ttesz;
2452         size_t mapsz;
2453         pgcnt_t numpg, npgs;
2454         tte_t tte;
2455         page_t *pp;
2456         uint_t large_pages_disable;
2457 
2458         ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2459         SFMMU_VALIDATE_HMERID(hat, rid, addr, len);
2460 
2461         if (hat->sfmmu_rmstat)
2462                 hat_resvstat(len, hat->sfmmu_as, addr);
2463 
2464 #if defined(SF_ERRATA_57)
2465         if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2466             (addr < errata57_limit) && (attr & PROT_EXEC) &&
2467             !(flags & HAT_LOAD_SHARE)) {
2468                 cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
2469                     "user page executable");
2470                 attr &= ~PROT_EXEC;
2471         }
2472 #endif
2473 
2474         /* Get number of pages */
2475         npgs = len >> MMU_PAGESHIFT;
2476 
2477         if (flags & HAT_LOAD_SHARE) {
2478                 large_pages_disable = disable_ism_large_pages;
2479         } else {
2480                 large_pages_disable = disable_large_pages;
2481         }
2482 
2483         if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
2484                 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2485                     rid);
2486                 return;
2487         }
2488 
2489         while (npgs >= NHMENTS) {
2490                 pp = *pps;
2491                 for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
2492                         /*
2493                          * Check if this page size is disabled.
2494                          */
2495                         if (large_pages_disable & (1 << ttesz))
2496                                 continue;
2497 
2498                         numpg = TTEPAGES(ttesz);
2499                         mapsz = numpg << MMU_PAGESHIFT;
2500                         if ((npgs >= numpg) &&
2501                             IS_P2ALIGNED(addr, mapsz) &&
2502                             IS_P2ALIGNED(pp->p_pagenum, numpg)) {
2503                                 /*
2504                                  * At this point we have enough pages and
2505                                  * we know the virtual address and the pfn
2506                                  * are properly aligned.  We still need
2507                                  * to check for physical contiguity but since
2508                                  * it is very likely that this is the case
2509                                  * we will assume they are so and undo
2510                                  * the request if necessary.  It would
2511                                  * be great if we could get a hint flag
2512                                  * like HAT_CONTIG which would tell us
2513                                  * the pages are contigous for sure.
2514                                  */
2515                                 sfmmu_memtte(&tte, (*pps)->p_pagenum,
2516                                     attr, ttesz);
2517                                 if (!sfmmu_tteload_array(hat, &tte, addr,
2518                                     pps, flags, rid)) {
2519                                         break;
2520                                 }
2521                         }
2522                 }
2523                 if (ttesz == TTE8K) {
2524                         /*
2525                          * We were not able to map array using a large page
2526                          * batch a hmeblk or fraction at a time.
2527                          */
2528                         numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
2529                             & (NHMENTS-1);
2530                         numpg = NHMENTS - numpg;
2531                         ASSERT(numpg <= npgs);
2532                         mapsz = numpg * MMU_PAGESIZE;
2533                         sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
2534                             numpg, rid);
2535                 }
2536                 addr += mapsz;
2537                 npgs -= numpg;
2538                 pps += numpg;
2539         }
2540 
2541         if (npgs) {
2542                 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2543                     rid);
2544         }
2545 
2546         /*
2547          * Check TSB and TLB page sizes.
2548          */
2549         if ((flags & HAT_LOAD_SHARE) == 0) {
2550                 sfmmu_check_page_sizes(hat, 1);
2551         }
2552 }
2553 
2554 /*
2555  * Function tries to batch 8K pages into the same hme blk.
2556  */
2557 static void
2558 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2559                     uint_t attr, uint_t flags, pgcnt_t npgs, uint_t rid)
2560 {
2561         tte_t   tte;
2562         page_t *pp;
2563         struct hmehash_bucket *hmebp;
2564         struct hme_blk *hmeblkp;
2565         int     index;
2566 
2567         while (npgs) {
2568                 /*
2569                  * Acquire the hash bucket.
2570                  */
2571                 hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K,
2572                     rid);
2573                 ASSERT(hmebp);
2574 
2575                 /*
2576                  * Find the hment block.
2577                  */
2578                 hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2579                     TTE8K, flags, rid);
2580                 ASSERT(hmeblkp);
2581 
2582                 do {
2583                         /*
2584                          * Make the tte.
2585                          */
2586                         pp = *pps;
2587                         sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2588 
2589                         /*
2590                          * Add the translation.
2591                          */
2592                         (void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2593                             vaddr, pps, flags, rid);
2594 
2595                         /*
2596                          * Goto next page.
2597                          */
2598                         pps++;
2599                         npgs--;
2600 
2601                         /*
2602                          * Goto next address.
2603                          */
2604                         vaddr += MMU_PAGESIZE;
2605 
2606                         /*
2607                          * Don't crossover into a different hmentblk.
2608                          */
2609                         index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2610                             (NHMENTS-1));
2611 
2612                 } while (index != 0 && npgs != 0);
2613 
2614                 /*
2615                  * Release the hash bucket.
2616                  */
2617 
2618                 sfmmu_tteload_release_hashbucket(hmebp);
2619         }
2620 }
2621 
2622 /*
2623  * Construct a tte for a page:
2624  *
2625  * tte_valid = 1
2626  * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only)
2627  * tte_size = size
2628  * tte_nfo = attr & HAT_NOFAULT
2629  * tte_ie = attr & HAT_STRUCTURE_LE
2630  * tte_hmenum = hmenum
2631  * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2632  * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2633  * tte_ref = 1 (optimization)
2634  * tte_wr_perm = attr & PROT_WRITE;
2635  * tte_no_sync = attr & HAT_NOSYNC
2636  * tte_lock = attr & SFMMU_LOCKTTE
2637  * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2638  * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2639  * tte_e = attr & SFMMU_SIDEFFECT
2640  * tte_priv = !(attr & PROT_USER)
2641  * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2642  * tte_glb = 0
2643  */
2644 void
2645 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2646 {
2647         ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2648 
2649         ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2650         ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2651 
2652         if (TTE_IS_NOSYNC(ttep)) {
2653                 TTE_SET_REF(ttep);
2654                 if (TTE_IS_WRITABLE(ttep)) {
2655                         TTE_SET_MOD(ttep);
2656                 }
2657         }
2658         if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2659                 panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2660         }
2661 }
2662 
2663 /*
2664  * This function will add a translation to the hme_blk and allocate the
2665  * hme_blk if one does not exist.
2666  * If a page structure is specified then it will add the
2667  * corresponding hment to the mapping list.
2668  * It will also update the hmenum field for the tte.
2669  *
2670  * Currently this function is only used for kernel mappings.
2671  * So pass invalid region to sfmmu_tteload_array().
2672  */
2673 void
2674 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2675         uint_t flags)
2676 {
2677         ASSERT(sfmmup == ksfmmup);
2678         (void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags,
2679             SFMMU_INVALID_SHMERID);
2680 }
2681 
2682 /*
2683  * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2684  * Assumes that a particular page size may only be resident in one TSB.
2685  */
2686 static void
2687 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2688 {
2689         struct tsb_info *tsbinfop = NULL;
2690         uint64_t tag;
2691         struct tsbe *tsbe_addr;
2692         uint64_t tsb_base;
2693         uint_t tsb_size;
2694         int vpshift = MMU_PAGESHIFT;
2695         int phys = 0;
2696 
2697         if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2698                 phys = ktsb_phys;
2699                 if (ttesz >= TTE4M) {
2700 #ifndef sun4v
2701                         ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2702 #endif
2703                         tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2704                         tsb_size = ktsb4m_szcode;
2705                 } else {
2706                         tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2707                         tsb_size = ktsb_szcode;
2708                 }
2709         } else {
2710                 SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2711 
2712                 /*
2713                  * If there isn't a TSB for this page size, or the TSB is
2714                  * swapped out, there is nothing to do.  Note that the latter
2715                  * case seems impossible but can occur if hat_pageunload()
2716                  * is called on an ISM mapping while the process is swapped
2717                  * out.
2718                  */
2719                 if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2720                         return;
2721 
2722                 /*
2723                  * If another thread is in the middle of relocating a TSB
2724                  * we can't unload the entry so set a flag so that the
2725                  * TSB will be flushed before it can be accessed by the
2726                  * process.
2727                  */
2728                 if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2729                         if (ttep == NULL)
2730                                 tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2731                         return;
2732                 }
2733 #if defined(UTSB_PHYS)
2734                 phys = 1;
2735                 tsb_base = (uint64_t)tsbinfop->tsb_pa;
2736 #else
2737                 tsb_base = (uint64_t)tsbinfop->tsb_va;
2738 #endif
2739                 tsb_size = tsbinfop->tsb_szc;
2740         }
2741         if (ttesz >= TTE4M)
2742                 vpshift = MMU_PAGESHIFT4M;
2743 
2744         tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2745         tag = sfmmu_make_tsbtag(vaddr);
2746 
2747         if (ttep == NULL) {
2748                 sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2749         } else {
2750                 if (ttesz >= TTE4M) {
2751                         SFMMU_STAT(sf_tsb_load4m);
2752                 } else {
2753                         SFMMU_STAT(sf_tsb_load8k);
2754                 }
2755 
2756                 sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2757         }
2758 }
2759 
2760 /*
2761  * Unmap all entries from [start, end) matching the given page size.
2762  *
2763  * This function is used primarily to unmap replicated 64K or 512K entries
2764  * from the TSB that are inserted using the base page size TSB pointer, but
2765  * it may also be called to unmap a range of addresses from the TSB.
2766  */
2767 void
2768 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2769 {
2770         struct tsb_info *tsbinfop;
2771         uint64_t tag;
2772         struct tsbe *tsbe_addr;
2773         caddr_t vaddr;
2774         uint64_t tsb_base;
2775         int vpshift, vpgsz;
2776         uint_t tsb_size;
2777         int phys = 0;
2778 
2779         /*
2780          * Assumptions:
2781          *  If ttesz == 8K, 64K or 512K, we walk through the range 8K
2782          *  at a time shooting down any valid entries we encounter.
2783          *
2784          *  If ttesz >= 4M we walk the range 4M at a time shooting
2785          *  down any valid mappings we find.
2786          */
2787         if (sfmmup == ksfmmup) {
2788                 phys = ktsb_phys;
2789                 if (ttesz >= TTE4M) {
2790 #ifndef sun4v
2791                         ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2792 #endif
2793                         tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2794                         tsb_size = ktsb4m_szcode;
2795                 } else {
2796                         tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2797                         tsb_size = ktsb_szcode;
2798                 }
2799         } else {
2800                 SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2801 
2802                 /*
2803                  * If there isn't a TSB for this page size, or the TSB is
2804                  * swapped out, there is nothing to do.  Note that the latter
2805                  * case seems impossible but can occur if hat_pageunload()
2806                  * is called on an ISM mapping while the process is swapped
2807                  * out.
2808                  */
2809                 if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2810                         return;
2811 
2812                 /*
2813                  * If another thread is in the middle of relocating a TSB
2814                  * we can't unload the entry so set a flag so that the
2815                  * TSB will be flushed before it can be accessed by the
2816                  * process.
2817                  */
2818                 if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2819                         tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2820                         return;
2821                 }
2822 #if defined(UTSB_PHYS)
2823                 phys = 1;
2824                 tsb_base = (uint64_t)tsbinfop->tsb_pa;
2825 #else
2826                 tsb_base = (uint64_t)tsbinfop->tsb_va;
2827 #endif
2828                 tsb_size = tsbinfop->tsb_szc;
2829         }
2830         if (ttesz >= TTE4M) {
2831                 vpshift = MMU_PAGESHIFT4M;
2832                 vpgsz = MMU_PAGESIZE4M;
2833         } else {
2834                 vpshift = MMU_PAGESHIFT;
2835                 vpgsz = MMU_PAGESIZE;
2836         }
2837 
2838         for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2839                 tag = sfmmu_make_tsbtag(vaddr);
2840                 tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2841                 sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2842         }
2843 }
2844 
2845 /*
2846  * Select the optimum TSB size given the number of mappings
2847  * that need to be cached.
2848  */
2849 static int
2850 sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2851 {
2852         int szc = 0;
2853 
2854 #ifdef DEBUG
2855         if (tsb_grow_stress) {
2856                 uint32_t randval = (uint32_t)gettick() >> 4;
2857                 return (randval % (tsb_max_growsize + 1));
2858         }
2859 #endif  /* DEBUG */
2860 
2861         while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2862                 szc++;
2863         return (szc);
2864 }
2865 
2866 /*
2867  * This function will add a translation to the hme_blk and allocate the
2868  * hme_blk if one does not exist.
2869  * If a page structure is specified then it will add the
2870  * corresponding hment to the mapping list.
2871  * It will also update the hmenum field for the tte.
2872  * Furthermore, it attempts to create a large page translation
2873  * for <addr,hat> at page array pps.  It assumes addr and first
2874  * pp is correctly aligned.  It returns 0 if successful and 1 otherwise.
2875  */
2876 static int
2877 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2878         page_t **pps, uint_t flags, uint_t rid)
2879 {
2880         struct hmehash_bucket *hmebp;
2881         struct hme_blk *hmeblkp;
2882         int     ret;
2883         uint_t  size;
2884 
2885         /*
2886          * Get mapping size.
2887          */
2888         size = TTE_CSZ(ttep);
2889         ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2890 
2891         /*
2892          * Acquire the hash bucket.
2893          */
2894         hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size, rid);
2895         ASSERT(hmebp);
2896 
2897         /*
2898          * Find the hment block.
2899          */
2900         hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags,
2901             rid);
2902         ASSERT(hmeblkp);
2903 
2904         /*
2905          * Add the translation.
2906          */
2907         ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags,
2908             rid);
2909 
2910         /*
2911          * Release the hash bucket.
2912          */
2913         sfmmu_tteload_release_hashbucket(hmebp);
2914 
2915         return (ret);
2916 }
2917 
2918 /*
2919  * Function locks and returns a pointer to the hash bucket for vaddr and size.
2920  */
2921 static struct hmehash_bucket *
2922 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size,
2923     uint_t rid)
2924 {
2925         struct hmehash_bucket *hmebp;
2926         int hmeshift;
2927         void *htagid = sfmmutohtagid(sfmmup, rid);
2928 
2929         ASSERT(htagid != NULL);
2930 
2931         hmeshift = HME_HASH_SHIFT(size);
2932 
2933         hmebp = HME_HASH_FUNCTION(htagid, vaddr, hmeshift);
2934 
2935         SFMMU_HASH_LOCK(hmebp);
2936 
2937         return (hmebp);
2938 }
2939 
2940 /*
2941  * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2942  * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2943  * allocated.
2944  */
2945 static struct hme_blk *
2946 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2947         caddr_t vaddr, uint_t size, uint_t flags, uint_t rid)
2948 {
2949         hmeblk_tag hblktag;
2950         int hmeshift;
2951         struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2952 
2953         SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
2954 
2955         hblktag.htag_id = sfmmutohtagid(sfmmup, rid);
2956         ASSERT(hblktag.htag_id != NULL);
2957         hmeshift = HME_HASH_SHIFT(size);
2958         hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2959         hblktag.htag_rehash = HME_HASH_REHASH(size);
2960         hblktag.htag_rid = rid;
2961 
2962 ttearray_realloc:
2963 
2964         HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
2965 
2966         /*
2967          * We block until hblk_reserve_lock is released; it's held by
2968          * the thread, temporarily using hblk_reserve, until hblk_reserve is
2969          * replaced by a hblk from sfmmu8_cache.
2970          */
2971         if (hmeblkp == (struct hme_blk *)hblk_reserve &&
2972             hblk_reserve_thread != curthread) {
2973                 SFMMU_HASH_UNLOCK(hmebp);
2974                 mutex_enter(&hblk_reserve_lock);
2975                 mutex_exit(&hblk_reserve_lock);
2976                 SFMMU_STAT(sf_hblk_reserve_hit);
2977                 SFMMU_HASH_LOCK(hmebp);
2978                 goto ttearray_realloc;
2979         }
2980 
2981         if (hmeblkp == NULL) {
2982                 hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
2983                     hblktag, flags, rid);
2984                 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
2985                 ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
2986         } else {
2987                 /*
2988                  * It is possible for 8k and 64k hblks to collide since they
2989                  * have the same rehash value. This is because we
2990                  * lazily free hblks and 8K/64K blks could be lingering.
2991                  * If we find size mismatch we free the block and & try again.
2992                  */
2993                 if (get_hblk_ttesz(hmeblkp) != size) {
2994                         ASSERT(!hmeblkp->hblk_vcnt);
2995                         ASSERT(!hmeblkp->hblk_hmecnt);
2996                         sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
2997                             &list, 0);
2998                         goto ttearray_realloc;
2999                 }
3000                 if (hmeblkp->hblk_shw_bit) {
3001                         /*
3002                          * if the hblk was previously used as a shadow hblk then
3003                          * we will change it to a normal hblk
3004                          */
3005                         ASSERT(!hmeblkp->hblk_shared);
3006                         if (hmeblkp->hblk_shw_mask) {
3007                                 sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
3008                                 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3009                                 goto ttearray_realloc;
3010                         } else {
3011                                 hmeblkp->hblk_shw_bit = 0;
3012                         }
3013                 }
3014                 SFMMU_STAT(sf_hblk_hit);
3015         }
3016 
3017         /*
3018          * hat_memload() should never call kmem_cache_free() for kernel hmeblks;
3019          * see block comment showing the stacktrace in sfmmu_hblk_alloc();
3020          * set the flag parameter to 1 so that sfmmu_hblks_list_purge() will
3021          * just add these hmeblks to the per-cpu pending queue.
3022          */
3023         sfmmu_hblks_list_purge(&list, 1);
3024 
3025         ASSERT(get_hblk_ttesz(hmeblkp) == size);
3026         ASSERT(!hmeblkp->hblk_shw_bit);
3027         ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
3028         ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
3029         ASSERT(hmeblkp->hblk_tag.htag_rid == rid);
3030 
3031         return (hmeblkp);
3032 }
3033 
3034 /*
3035  * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
3036  * otherwise.
3037  */
3038 static int
3039 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
3040         caddr_t vaddr, page_t **pps, uint_t flags, uint_t rid)
3041 {
3042         page_t *pp = *pps;
3043         int hmenum, size, remap;
3044         tte_t tteold, flush_tte;
3045 #ifdef DEBUG
3046         tte_t orig_old;
3047 #endif /* DEBUG */
3048         struct sf_hment *sfhme;
3049         kmutex_t *pml, *pmtx;
3050         hatlock_t *hatlockp;
3051         int myflt;
3052 
3053         /*
3054          * remove this panic when we decide to let user virtual address
3055          * space be >= USERLIMIT.
3056          */
3057         if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
3058                 panic("user addr %p in kernel space", (void *)vaddr);
3059 #if defined(TTE_IS_GLOBAL)
3060         if (TTE_IS_GLOBAL(ttep))
3061                 panic("sfmmu_tteload: creating global tte");
3062 #endif
3063 
3064 #ifdef DEBUG
3065         if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
3066             !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
3067                 panic("sfmmu_tteload: non cacheable memory tte");
3068 #endif /* DEBUG */
3069 
3070         /* don't simulate dirty bit for writeable ISM/DISM mappings */
3071         if ((flags & HAT_LOAD_SHARE) && TTE_IS_WRITABLE(ttep)) {
3072                 TTE_SET_REF(ttep);
3073                 TTE_SET_MOD(ttep);
3074         }
3075 
3076         if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
3077             !TTE_IS_MOD(ttep)) {
3078                 /*
3079                  * Don't load TSB for dummy as in ISM.  Also don't preload
3080                  * the TSB if the TTE isn't writable since we're likely to
3081                  * fault on it again -- preloading can be fairly expensive.
3082                  */
3083                 flags |= SFMMU_NO_TSBLOAD;
3084         }
3085 
3086         size = TTE_CSZ(ttep);
3087         switch (size) {
3088         case TTE8K:
3089                 SFMMU_STAT(sf_tteload8k);
3090                 break;
3091         case TTE64K:
3092                 SFMMU_STAT(sf_tteload64k);
3093                 break;
3094         case TTE512K:
3095                 SFMMU_STAT(sf_tteload512k);
3096                 break;
3097         case TTE4M:
3098                 SFMMU_STAT(sf_tteload4m);
3099                 break;
3100         case (TTE32M):
3101                 SFMMU_STAT(sf_tteload32m);
3102                 ASSERT(mmu_page_sizes == max_mmu_page_sizes);
3103                 break;
3104         case (TTE256M):
3105                 SFMMU_STAT(sf_tteload256m);
3106                 ASSERT(mmu_page_sizes == max_mmu_page_sizes);
3107                 break;
3108         }
3109 
3110         ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
3111         SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
3112         ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
3113         ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
3114 
3115         HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
3116 
3117         /*
3118          * Need to grab mlist lock here so that pageunload
3119          * will not change tte behind us.
3120          */
3121         if (pp) {
3122                 pml = sfmmu_mlist_enter(pp);
3123         }
3124 
3125         sfmmu_copytte(&sfhme->hme_tte, &tteold);
3126         /*
3127          * Look for corresponding hment and if valid verify
3128          * pfns are equal.
3129          */
3130         remap = TTE_IS_VALID(&tteold);
3131         if (remap) {
3132                 pfn_t   new_pfn, old_pfn;
3133 
3134                 old_pfn = TTE_TO_PFN(vaddr, &tteold);
3135                 new_pfn = TTE_TO_PFN(vaddr, ttep);
3136 
3137                 if (flags & HAT_LOAD_REMAP) {
3138                         /* make sure we are remapping same type of pages */
3139                         if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
3140                                 panic("sfmmu_tteload - tte remap io<->memory");
3141                         }
3142                         if (old_pfn != new_pfn &&
3143                             (pp != NULL || sfhme->hme_page != NULL)) {
3144                                 panic("sfmmu_tteload - tte remap pp != NULL");
3145                         }
3146                 } else if (old_pfn != new_pfn) {
3147                         panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
3148                             (void *)hmeblkp);
3149                 }
3150                 ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
3151         }
3152 
3153         if (pp) {
3154                 if (size == TTE8K) {
3155 #ifdef VAC
3156                         /*
3157                          * Handle VAC consistency
3158                          */
3159                         if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
3160                                 sfmmu_vac_conflict(sfmmup, vaddr, pp);
3161                         }
3162 #endif
3163 
3164                         if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3165                                 pmtx = sfmmu_page_enter(pp);
3166                                 PP_CLRRO(pp);
3167                                 sfmmu_page_exit(pmtx);
3168                         } else if (!PP_ISMAPPED(pp) &&
3169                             (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
3170                                 pmtx = sfmmu_page_enter(pp);
3171                                 if (!(PP_ISMOD(pp))) {
3172                                         PP_SETRO(pp);
3173                                 }
3174                                 sfmmu_page_exit(pmtx);
3175                         }
3176 
3177                 } else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
3178                         /*
3179                          * sfmmu_pagearray_setup failed so return
3180                          */
3181                         sfmmu_mlist_exit(pml);
3182                         return (1);
3183                 }
3184         }
3185 
3186         /*
3187          * Make sure hment is not on a mapping list.
3188          */
3189         ASSERT(remap || (sfhme->hme_page == NULL));
3190 
3191         /* if it is not a remap then hme->next better be NULL */
3192         ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
3193 
3194         if (flags & HAT_LOAD_LOCK) {
3195                 if ((hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
3196                         panic("too high lckcnt-hmeblk %p",
3197                             (void *)hmeblkp);
3198                 }
3199                 atomic_inc_32(&hmeblkp->hblk_lckcnt);
3200 
3201                 HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
3202         }
3203 
3204 #ifdef VAC
3205         if (pp && PP_ISNC(pp)) {
3206                 /*
3207                  * If the physical page is marked to be uncacheable, like
3208                  * by a vac conflict, make sure the new mapping is also
3209                  * uncacheable.
3210                  */
3211                 TTE_CLR_VCACHEABLE(ttep);
3212                 ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
3213         }
3214 #endif
3215         ttep->tte_hmenum = hmenum;
3216 
3217 #ifdef DEBUG
3218         orig_old = tteold;
3219 #endif /* DEBUG */
3220 
3221         while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
3222                 if ((sfmmup == KHATID) &&
3223                     (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
3224                         sfmmu_copytte(&sfhme->hme_tte, &tteold);
3225                 }
3226 #ifdef DEBUG
3227                 chk_tte(&orig_old, &tteold, ttep, hmeblkp);
3228 #endif /* DEBUG */
3229         }
3230         ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
3231 
3232         if (!TTE_IS_VALID(&tteold)) {
3233 
3234                 atomic_inc_16(&hmeblkp->hblk_vcnt);
3235                 if (rid == SFMMU_INVALID_SHMERID) {
3236                         atomic_inc_ulong(&sfmmup->sfmmu_ttecnt[size]);
3237                 } else {
3238                         sf_srd_t *srdp = sfmmup->sfmmu_srdp;
3239                         sf_region_t *rgnp = srdp->srd_hmergnp[rid];
3240                         /*
3241                          * We already accounted for region ttecnt's in sfmmu
3242                          * during hat_join_region() processing. Here we
3243                          * only update ttecnt's in region struture.
3244                          */
3245                         atomic_inc_ulong(&rgnp->rgn_ttecnt[size]);
3246                 }
3247         }
3248 
3249         myflt = (astosfmmu(curthread->t_procp->p_as) == sfmmup);
3250         if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
3251             sfmmup != ksfmmup) {
3252                 uchar_t tteflag = 1 << size;
3253                 if (rid == SFMMU_INVALID_SHMERID) {
3254                         if (!(sfmmup->sfmmu_tteflags & tteflag)) {
3255                                 hatlockp = sfmmu_hat_enter(sfmmup);
3256                                 sfmmup->sfmmu_tteflags |= tteflag;
3257                                 sfmmu_hat_exit(hatlockp);
3258                         }
3259                 } else if (!(sfmmup->sfmmu_rtteflags & tteflag)) {
3260                         hatlockp = sfmmu_hat_enter(sfmmup);
3261                         sfmmup->sfmmu_rtteflags |= tteflag;
3262                         sfmmu_hat_exit(hatlockp);
3263                 }
3264                 /*
3265                  * Update the current CPU tsbmiss area, so the current thread
3266                  * won't need to take the tsbmiss for the new pagesize.
3267                  * The other threads in the process will update their tsb
3268                  * miss area lazily in sfmmu_tsbmiss_exception() when they
3269                  * fail to find the translation for a newly added pagesize.
3270                  */
3271                 if (size > TTE64K && myflt) {
3272                         struct tsbmiss *tsbmp;
3273                         kpreempt_disable();
3274                         tsbmp = &tsbmiss_area[CPU->cpu_id];
3275                         if (rid == SFMMU_INVALID_SHMERID) {
3276                                 if (!(tsbmp->uhat_tteflags & tteflag)) {
3277                                         tsbmp->uhat_tteflags |= tteflag;
3278                                 }
3279                         } else {
3280                                 if (!(tsbmp->uhat_rtteflags & tteflag)) {
3281                                         tsbmp->uhat_rtteflags |= tteflag;
3282                                 }
3283                         }
3284                         kpreempt_enable();
3285                 }
3286         }
3287 
3288         if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
3289             !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
3290                 hatlockp = sfmmu_hat_enter(sfmmup);
3291                 SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
3292                 sfmmu_hat_exit(hatlockp);
3293         }
3294 
3295         flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
3296             hw_tte.tte_intlo;
3297         flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
3298             hw_tte.tte_inthi;
3299 
3300         if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
3301                 /*
3302                  * If remap and new tte differs from old tte we need
3303                  * to sync the mod bit and flush TLB/TSB.  We don't
3304                  * need to sync ref bit because we currently always set
3305                  * ref bit in tteload.
3306                  */
3307                 ASSERT(TTE_IS_REF(ttep));
3308                 if (TTE_IS_MOD(&tteold)) {
3309                         sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
3310                 }
3311                 /*
3312                  * hwtte bits shouldn't change for SRD hmeblks as long as SRD
3313                  * hmes are only used for read only text. Adding this code for
3314                  * completeness and future use of shared hmeblks with writable
3315                  * mappings of VMODSORT vnodes.
3316                  */
3317                 if (hmeblkp->hblk_shared) {
3318                         cpuset_t cpuset = sfmmu_rgntlb_demap(vaddr,
3319                             sfmmup->sfmmu_srdp->srd_hmergnp[rid], hmeblkp, 1);
3320                         xt_sync(cpuset);
3321                         SFMMU_STAT_ADD(sf_region_remap_demap, 1);
3322                 } else {
3323                         sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
3324                         xt_sync(sfmmup->sfmmu_cpusran);
3325                 }
3326         }
3327 
3328         if ((flags & SFMMU_NO_TSBLOAD) == 0) {
3329                 /*
3330                  * We only preload 8K and 4M mappings into the TSB, since
3331                  * 64K and 512K mappings are replicated and hence don't
3332                  * have a single, unique TSB entry. Ditto for 32M/256M.
3333                  */
3334                 if (size == TTE8K || size == TTE4M) {
3335                         sf_scd_t *scdp;
3336                         hatlockp = sfmmu_hat_enter(sfmmup);
3337                         /*
3338                          * Don't preload private TSB if the mapping is used
3339                          * by the shctx in the SCD.
3340                          */
3341                         scdp = sfmmup->sfmmu_scdp;
3342                         if (rid == SFMMU_INVALID_SHMERID || scdp == NULL ||
3343                             !SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
3344                                 sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte,
3345                                     size);
3346                         }
3347                         sfmmu_hat_exit(hatlockp);
3348                 }
3349         }
3350         if (pp) {
3351                 if (!remap) {
3352                         HME_ADD(sfhme, pp);
3353                         atomic_inc_16(&hmeblkp->hblk_hmecnt);
3354                         ASSERT(hmeblkp->hblk_hmecnt > 0);
3355 
3356                         /*
3357                          * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
3358                          * see pageunload() for comment.
3359                          */
3360                 }
3361                 sfmmu_mlist_exit(pml);
3362         }
3363 
3364         return (0);
3365 }
3366 /*
3367  * Function unlocks hash bucket.
3368  */
3369 static void
3370 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
3371 {
3372         ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3373         SFMMU_HASH_UNLOCK(hmebp);
3374 }
3375 
3376 /*
3377  * function which checks and sets up page array for a large
3378  * translation.  Will set p_vcolor, p_index, p_ro fields.
3379  * Assumes addr and pfnum of first page are properly aligned.
3380  * Will check for physical contiguity. If check fails it return
3381  * non null.
3382  */
3383 static int
3384 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
3385 {
3386         int     i, index, ttesz;
3387         pfn_t   pfnum;
3388         pgcnt_t npgs;
3389         page_t *pp, *pp1;
3390         kmutex_t *pmtx;
3391 #ifdef VAC
3392         int osz;
3393         int cflags = 0;
3394         int vac_err = 0;
3395 #endif
3396         int newidx = 0;
3397 
3398         ttesz = TTE_CSZ(ttep);
3399 
3400         ASSERT(ttesz > TTE8K);
3401 
3402         npgs = TTEPAGES(ttesz);
3403         index = PAGESZ_TO_INDEX(ttesz);
3404 
3405         pfnum = (*pps)->p_pagenum;
3406         ASSERT(IS_P2ALIGNED(pfnum, npgs));
3407 
3408         /*
3409          * Save the first pp so we can do HAT_TMPNC at the end.
3410          */
3411         pp1 = *pps;
3412 #ifdef VAC
3413         osz = fnd_mapping_sz(pp1);
3414 #endif
3415 
3416         for (i = 0; i < npgs; i++, pps++) {
3417                 pp = *pps;
3418                 ASSERT(PAGE_LOCKED(pp));
3419                 ASSERT(pp->p_szc >= ttesz);
3420                 ASSERT(pp->p_szc == pp1->p_szc);
3421                 ASSERT(sfmmu_mlist_held(pp));
3422 
3423                 /*
3424                  * XXX is it possible to maintain P_RO on the root only?
3425                  */
3426                 if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3427                         pmtx = sfmmu_page_enter(pp);
3428                         PP_CLRRO(pp);
3429                         sfmmu_page_exit(pmtx);
3430                 } else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
3431                     !PP_ISMOD(pp)) {
3432                         pmtx = sfmmu_page_enter(pp);
3433                         if (!(PP_ISMOD(pp))) {
3434                                 PP_SETRO(pp);
3435                         }
3436                         sfmmu_page_exit(pmtx);
3437                 }
3438 
3439                 /*
3440                  * If this is a remap we skip vac & contiguity checks.
3441                  */
3442                 if (remap)
3443                         continue;
3444 
3445                 /*
3446                  * set p_vcolor and detect any vac conflicts.
3447                  */
3448 #ifdef VAC
3449                 if (vac_err == 0) {
3450                         vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
3451 
3452                 }
3453 #endif
3454 
3455                 /*
3456                  * Save current index in case we need to undo it.
3457                  * Note: "PAGESZ_TO_INDEX(sz)   (1 << (sz))"
3458                  *      "SFMMU_INDEX_SHIFT      6"
3459                  *       "SFMMU_INDEX_MASK      ((1 << SFMMU_INDEX_SHIFT) - 1)"
3460                  *       "PP_MAPINDEX(p_index)  (p_index & SFMMU_INDEX_MASK)"
3461                  *
3462                  * So:  index = PAGESZ_TO_INDEX(ttesz);
3463                  *      if ttesz == 1 then index = 0x2
3464                  *                  2 then index = 0x4
3465                  *                  3 then index = 0x8
3466                  *                  4 then index = 0x10
3467                  *                  5 then index = 0x20
3468                  * The code below checks if it's a new pagesize (ie, newidx)
3469                  * in case we need to take it back out of p_index,
3470                  * and then or's the new index into the existing index.
3471                  */
3472                 if ((PP_MAPINDEX(pp) & index) == 0)
3473                         newidx = 1;
3474                 pp->p_index = (PP_MAPINDEX(pp) | index);
3475 
3476                 /*
3477                  * contiguity check
3478                  */
3479                 if (pp->p_pagenum != pfnum) {
3480                         /*
3481                          * If we fail the contiguity test then
3482                          * the only thing we need to fix is the p_index field.
3483                          * We might get a few extra flushes but since this
3484                          * path is rare that is ok.  The p_ro field will
3485                          * get automatically fixed on the next tteload to
3486                          * the page.  NO TNC bit is set yet.
3487                          */
3488                         while (i >= 0) {
3489                                 pp = *pps;
3490                                 if (newidx)
3491                                         pp->p_index = (PP_MAPINDEX(pp) &
3492                                             ~index);
3493                                 pps--;
3494                                 i--;
3495                         }
3496                         return (1);
3497                 }
3498                 pfnum++;
3499                 addr += MMU_PAGESIZE;
3500         }
3501 
3502 #ifdef VAC
3503         if (vac_err) {
3504                 if (ttesz > osz) {
3505                         /*
3506                          * There are some smaller mappings that causes vac
3507                          * conflicts. Convert all existing small mappings to
3508                          * TNC.
3509                          */
3510                         SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
3511                         sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
3512                             npgs);
3513                 } else {
3514                         /* EMPTY */
3515                         /*
3516                          * If there exists an big page mapping,
3517                          * that means the whole existing big page
3518                          * has TNC setting already. No need to covert to
3519                          * TNC again.
3520                          */
3521                         ASSERT(PP_ISTNC(pp1));
3522                 }
3523         }
3524 #endif  /* VAC */
3525 
3526         return (0);
3527 }
3528 
3529 #ifdef VAC
3530 /*
3531  * Routine that detects vac consistency for a large page. It also
3532  * sets virtual color for all pp's for this big mapping.
3533  */
3534 static int
3535 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
3536 {
3537         int vcolor, ocolor;
3538 
3539         ASSERT(sfmmu_mlist_held(pp));
3540 
3541         if (PP_ISNC(pp)) {
3542                 return (HAT_TMPNC);
3543         }
3544 
3545         vcolor = addr_to_vcolor(addr);
3546         if (PP_NEWPAGE(pp)) {
3547                 PP_SET_VCOLOR(pp, vcolor);
3548                 return (0);
3549         }
3550 
3551         ocolor = PP_GET_VCOLOR(pp);
3552         if (ocolor == vcolor) {
3553                 return (0);
3554         }
3555 
3556         if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
3557                 /*
3558                  * Previous user of page had a differnet color
3559                  * but since there are no current users
3560                  * we just flush the cache and change the color.
3561                  * As an optimization for large pages we flush the
3562                  * entire cache of that color and set a flag.
3563                  */
3564                 SFMMU_STAT(sf_pgcolor_conflict);
3565                 if (!CacheColor_IsFlushed(*cflags, ocolor)) {
3566                         CacheColor_SetFlushed(*cflags, ocolor);
3567                         sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
3568                 }
3569                 PP_SET_VCOLOR(pp, vcolor);
3570                 return (0);
3571         }
3572 
3573         /*
3574          * We got a real conflict with a current mapping.
3575          * set flags to start unencaching all mappings
3576          * and return failure so we restart looping
3577          * the pp array from the beginning.
3578          */
3579         return (HAT_TMPNC);
3580 }
3581 #endif  /* VAC */
3582 
3583 /*
3584  * creates a large page shadow hmeblk for a tte.
3585  * The purpose of this routine is to allow us to do quick unloads because
3586  * the vm layer can easily pass a very large but sparsely populated range.
3587  */
3588 static struct hme_blk *
3589 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
3590 {
3591         struct hmehash_bucket *hmebp;
3592         hmeblk_tag hblktag;
3593         int hmeshift, size, vshift;
3594         uint_t shw_mask, newshw_mask;
3595         struct hme_blk *hmeblkp;
3596 
3597         ASSERT(sfmmup != KHATID);
3598         if (mmu_page_sizes == max_mmu_page_sizes) {
3599                 ASSERT(ttesz < TTE256M);
3600         } else {
3601                 ASSERT(ttesz < TTE4M);
3602                 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
3603                 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
3604         }
3605 
3606         if (ttesz == TTE8K) {
3607                 size = TTE512K;
3608         } else {
3609                 size = ++ttesz;
3610         }
3611 
3612         hblktag.htag_id = sfmmup;
3613         hmeshift = HME_HASH_SHIFT(size);
3614         hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
3615         hblktag.htag_rehash = HME_HASH_REHASH(size);
3616         hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3617         hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
3618 
3619         SFMMU_HASH_LOCK(hmebp);
3620 
3621         HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3622         ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
3623         if (hmeblkp == NULL) {
3624                 hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3625                     hblktag, flags, SFMMU_INVALID_SHMERID);
3626         }
3627         ASSERT(hmeblkp);
3628         if (!hmeblkp->hblk_shw_mask) {
3629                 /*
3630                  * if this is a unused hblk it was just allocated or could
3631                  * potentially be a previous large page hblk so we need to
3632                  * set the shadow bit.
3633                  */
3634                 ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3635                 hmeblkp->hblk_shw_bit = 1;
3636         } else if (hmeblkp->hblk_shw_bit == 0) {
3637                 panic("sfmmu_shadow_hcreate: shw bit not set in hmeblkp 0x%p",
3638                     (void *)hmeblkp);
3639         }
3640         ASSERT(hmeblkp->hblk_shw_bit == 1);
3641         ASSERT(!hmeblkp->hblk_shared);
3642         vshift = vaddr_to_vshift(hblktag, vaddr, size);
3643         ASSERT(vshift < 8);
3644         /*
3645          * Atomically set shw mask bit
3646          */
3647         do {
3648                 shw_mask = hmeblkp->hblk_shw_mask;
3649                 newshw_mask = shw_mask | (1 << vshift);
3650                 newshw_mask = atomic_cas_32(&hmeblkp->hblk_shw_mask, shw_mask,
3651                     newshw_mask);
3652         } while (newshw_mask != shw_mask);
3653 
3654         SFMMU_HASH_UNLOCK(hmebp);
3655 
3656         return (hmeblkp);
3657 }
3658 
3659 /*
3660  * This routine cleanup a previous shadow hmeblk and changes it to
3661  * a regular hblk.  This happens rarely but it is possible
3662  * when a process wants to use large pages and there are hblks still
3663  * lying around from the previous as that used these hmeblks.
3664  * The alternative was to cleanup the shadow hblks at unload time
3665  * but since so few user processes actually use large pages, it is
3666  * better to be lazy and cleanup at this time.
3667  */
3668 static void
3669 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3670         struct hmehash_bucket *hmebp)
3671 {
3672         caddr_t addr, endaddr;
3673         int hashno, size;
3674 
3675         ASSERT(hmeblkp->hblk_shw_bit);
3676         ASSERT(!hmeblkp->hblk_shared);
3677 
3678         ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3679 
3680         if (!hmeblkp->hblk_shw_mask) {
3681                 hmeblkp->hblk_shw_bit = 0;
3682                 return;
3683         }
3684         addr = (caddr_t)get_hblk_base(hmeblkp);
3685         endaddr = get_hblk_endaddr(hmeblkp);
3686         size = get_hblk_ttesz(hmeblkp);
3687         hashno = size - 1;
3688         ASSERT(hashno > 0);
3689         SFMMU_HASH_UNLOCK(hmebp);
3690 
3691         sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3692 
3693         SFMMU_HASH_LOCK(hmebp);
3694 }
3695 
3696 static void
3697 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3698         int hashno)
3699 {
3700         int hmeshift, shadow = 0;
3701         hmeblk_tag hblktag;
3702         struct hmehash_bucket *hmebp;
3703         struct hme_blk *hmeblkp;
3704         struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3705 
3706         ASSERT(hashno > 0);
3707         hblktag.htag_id = sfmmup;
3708         hblktag.htag_rehash = hashno;
3709         hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3710 
3711         hmeshift = HME_HASH_SHIFT(hashno);
3712 
3713         while (addr < endaddr) {
3714                 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3715                 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3716                 SFMMU_HASH_LOCK(hmebp);
3717                 /* inline HME_HASH_SEARCH */
3718                 hmeblkp = hmebp->hmeblkp;
3719                 pr_hblk = NULL;
3720                 while (hmeblkp) {
3721                         if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3722                                 /* found hme_blk */
3723                                 ASSERT(!hmeblkp->hblk_shared);
3724                                 if (hmeblkp->hblk_shw_bit) {
3725                                         if (hmeblkp->hblk_shw_mask) {
3726                                                 shadow = 1;
3727                                                 sfmmu_shadow_hcleanup(sfmmup,
3728                                                     hmeblkp, hmebp);
3729                                                 break;
3730                                         } else {
3731                                                 hmeblkp->hblk_shw_bit = 0;
3732                                         }
3733                                 }
3734 
3735                                 /*
3736                                  * Hblk_hmecnt and hblk_vcnt could be non zero
3737                                  * since hblk_unload() does not gurantee that.
3738                                  *
3739                                  * XXX - this could cause tteload() to spin
3740                                  * where sfmmu_shadow_hcleanup() is called.
3741                                  */
3742                         }
3743 
3744                         nx_hblk = hmeblkp->hblk_next;
3745                         if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3746                                 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3747                                     &list, 0);
3748                         } else {
3749                                 pr_hblk = hmeblkp;
3750                         }
3751                         hmeblkp = nx_hblk;
3752                 }
3753 
3754                 SFMMU_HASH_UNLOCK(hmebp);
3755 
3756                 if (shadow) {
3757                         /*
3758                          * We found another shadow hblk so cleaned its
3759                          * children.  We need to go back and cleanup
3760                          * the original hblk so we don't change the
3761                          * addr.
3762                          */
3763                         shadow = 0;
3764                 } else {
3765                         addr = (caddr_t)roundup((uintptr_t)addr + 1,
3766                             (1 << hmeshift));
3767                 }
3768         }
3769         sfmmu_hblks_list_purge(&list, 0);
3770 }
3771 
3772 /*
3773  * This routine's job is to delete stale invalid shared hmeregions hmeblks that
3774  * may still linger on after pageunload.
3775  */
3776 static void
3777 sfmmu_cleanup_rhblk(sf_srd_t *srdp, caddr_t addr, uint_t rid, int ttesz)
3778 {
3779         int hmeshift;
3780         hmeblk_tag hblktag;
3781         struct hmehash_bucket *hmebp;
3782         struct hme_blk *hmeblkp;
3783         struct hme_blk *pr_hblk;
3784         struct hme_blk *list = NULL;
3785 
3786         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3787         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3788 
3789         hmeshift = HME_HASH_SHIFT(ttesz);
3790         hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3791         hblktag.htag_rehash = ttesz;
3792         hblktag.htag_rid = rid;
3793         hblktag.htag_id = srdp;
3794         hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3795 
3796         SFMMU_HASH_LOCK(hmebp);
3797         HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
3798         if (hmeblkp != NULL) {
3799                 ASSERT(hmeblkp->hblk_shared);
3800                 ASSERT(!hmeblkp->hblk_shw_bit);
3801                 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3802                         panic("sfmmu_cleanup_rhblk: valid hmeblk");
3803                 }
3804                 ASSERT(!hmeblkp->hblk_lckcnt);
3805                 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3806                     &list, 0);
3807         }
3808         SFMMU_HASH_UNLOCK(hmebp);
3809         sfmmu_hblks_list_purge(&list, 0);
3810 }
3811 
3812 /* ARGSUSED */
3813 static void
3814 sfmmu_rgn_cb_noop(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr,
3815     size_t r_size, void *r_obj, u_offset_t r_objoff)
3816 {
3817 }
3818 
3819 /*
3820  * Searches for an hmeblk which maps addr, then unloads this mapping
3821  * and updates *eaddrp, if the hmeblk is found.
3822  */
3823 static void
3824 sfmmu_unload_hmeregion_va(sf_srd_t *srdp, uint_t rid, caddr_t addr,
3825     caddr_t eaddr, int ttesz, caddr_t *eaddrp)
3826 {
3827         int hmeshift;
3828         hmeblk_tag hblktag;
3829         struct hmehash_bucket *hmebp;
3830         struct hme_blk *hmeblkp;
3831         struct hme_blk *pr_hblk;
3832         struct hme_blk *list = NULL;
3833 
3834         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3835         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3836         ASSERT(ttesz >= HBLK_MIN_TTESZ);
3837 
3838         hmeshift = HME_HASH_SHIFT(ttesz);
3839         hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3840         hblktag.htag_rehash = ttesz;
3841         hblktag.htag_rid = rid;
3842         hblktag.htag_id = srdp;
3843         hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3844 
3845         SFMMU_HASH_LOCK(hmebp);
3846         HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
3847         if (hmeblkp != NULL) {
3848                 ASSERT(hmeblkp->hblk_shared);
3849                 ASSERT(!hmeblkp->hblk_lckcnt);
3850                 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3851                         *eaddrp = sfmmu_hblk_unload(NULL, hmeblkp, addr,
3852                             eaddr, NULL, HAT_UNLOAD);
3853                         ASSERT(*eaddrp > addr);
3854                 }
3855                 ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3856                 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3857                     &list, 0);
3858         }
3859         SFMMU_HASH_UNLOCK(hmebp);
3860         sfmmu_hblks_list_purge(&list, 0);
3861 }
3862 
3863 static void
3864 sfmmu_unload_hmeregion(sf_srd_t *srdp, sf_region_t *rgnp)
3865 {
3866         int ttesz = rgnp->rgn_pgszc;
3867         size_t rsz = rgnp->rgn_size;
3868         caddr_t rsaddr = rgnp->rgn_saddr;
3869         caddr_t readdr = rsaddr + rsz;
3870         caddr_t rhsaddr;
3871         caddr_t va;
3872         uint_t rid = rgnp->rgn_id;
3873         caddr_t cbsaddr;
3874         caddr_t cbeaddr;
3875         hat_rgn_cb_func_t rcbfunc;
3876         ulong_t cnt;
3877 
3878         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3879         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3880 
3881         ASSERT(IS_P2ALIGNED(rsaddr, TTEBYTES(ttesz)));
3882         ASSERT(IS_P2ALIGNED(rsz, TTEBYTES(ttesz)));
3883         if (ttesz < HBLK_MIN_TTESZ) {
3884                 ttesz = HBLK_MIN_TTESZ;
3885                 rhsaddr = (caddr_t)P2ALIGN((uintptr_t)rsaddr, HBLK_MIN_BYTES);
3886         } else {
3887                 rhsaddr = rsaddr;
3888         }
3889 
3890         if ((rcbfunc = rgnp->rgn_cb_function) == NULL) {
3891                 rcbfunc = sfmmu_rgn_cb_noop;
3892         }
3893 
3894         while (ttesz >= HBLK_MIN_TTESZ) {
3895                 cbsaddr = rsaddr;
3896                 cbeaddr = rsaddr;
3897                 if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
3898                         ttesz--;
3899                         continue;
3900                 }
3901                 cnt = 0;
3902                 va = rsaddr;
3903                 while (va < readdr) {
3904                         ASSERT(va >= rhsaddr);
3905                         if (va != cbeaddr) {
3906                                 if (cbeaddr != cbsaddr) {
3907                                         ASSERT(cbeaddr > cbsaddr);
3908                                         (*rcbfunc)(cbsaddr, cbeaddr,
3909                                             rsaddr, rsz, rgnp->rgn_obj,
3910                                             rgnp->rgn_objoff);
3911                                 }
3912                                 cbsaddr = va;
3913                                 cbeaddr = va;
3914                         }
3915                         sfmmu_unload_hmeregion_va(srdp, rid, va, readdr,
3916                             ttesz, &cbeaddr);
3917                         cnt++;
3918                         va = rhsaddr + (cnt << TTE_PAGE_SHIFT(ttesz));
3919                 }
3920                 if (cbeaddr != cbsaddr) {
3921                         ASSERT(cbeaddr > cbsaddr);
3922                         (*rcbfunc)(cbsaddr, cbeaddr, rsaddr,
3923                             rsz, rgnp->rgn_obj,
3924                             rgnp->rgn_objoff);
3925                 }
3926                 ttesz--;
3927         }
3928 }
3929 
3930 /*
3931  * Release one hardware address translation lock on the given address range.
3932  */
3933 void
3934 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3935 {
3936         struct hmehash_bucket *hmebp;
3937         hmeblk_tag hblktag;
3938         int hmeshift, hashno = 1;
3939         struct hme_blk *hmeblkp, *list = NULL;
3940         caddr_t endaddr;
3941 
3942         ASSERT(sfmmup != NULL);
3943 
3944         ASSERT((sfmmup == ksfmmup) || AS_LOCK_HELD(sfmmup->sfmmu_as));
3945         ASSERT((len & MMU_PAGEOFFSET) == 0);
3946         endaddr = addr + len;
3947         hblktag.htag_id = sfmmup;
3948         hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3949 
3950         /*
3951          * Spitfire supports 4 page sizes.
3952          * Most pages are expected to be of the smallest page size (8K) and
3953          * these will not need to be rehashed. 64K pages also don't need to be
3954          * rehashed because an hmeblk spans 64K of address space. 512K pages
3955          * might need 1 rehash and and 4M pages might need 2 rehashes.
3956          */
3957         while (addr < endaddr) {
3958                 hmeshift = HME_HASH_SHIFT(hashno);
3959                 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3960                 hblktag.htag_rehash = hashno;
3961                 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3962 
3963                 SFMMU_HASH_LOCK(hmebp);
3964 
3965                 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3966                 if (hmeblkp != NULL) {
3967                         ASSERT(!hmeblkp->hblk_shared);
3968                         /*
3969                          * If we encounter a shadow hmeblk then
3970                          * we know there are no valid hmeblks mapping
3971                          * this address at this size or larger.
3972                          * Just increment address by the smallest
3973                          * page size.
3974                          */
3975                         if (hmeblkp->hblk_shw_bit) {
3976                                 addr += MMU_PAGESIZE;
3977                         } else {
3978                                 addr = sfmmu_hblk_unlock(hmeblkp, addr,
3979                                     endaddr);
3980                         }
3981                         SFMMU_HASH_UNLOCK(hmebp);
3982                         hashno = 1;
3983                         continue;
3984                 }
3985                 SFMMU_HASH_UNLOCK(hmebp);
3986 
3987                 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
3988                         /*
3989                          * We have traversed the whole list and rehashed
3990                          * if necessary without finding the address to unlock
3991                          * which should never happen.
3992                          */
3993                         panic("sfmmu_unlock: addr not found. "
3994                             "addr %p hat %p", (void *)addr, (void *)sfmmup);
3995                 } else {
3996                         hashno++;
3997                 }
3998         }
3999 
4000         sfmmu_hblks_list_purge(&list, 0);
4001 }
4002 
4003 void
4004 hat_unlock_region(struct hat *sfmmup, caddr_t addr, size_t len,
4005     hat_region_cookie_t rcookie)
4006 {
4007         sf_srd_t *srdp;
4008         sf_region_t *rgnp;
4009         int ttesz;
4010         uint_t rid;
4011         caddr_t eaddr;
4012         caddr_t va;
4013         int hmeshift;
4014         hmeblk_tag hblktag;
4015         struct hmehash_bucket *hmebp;
4016         struct hme_blk *hmeblkp;
4017         struct hme_blk *pr_hblk;
4018         struct hme_blk *list;
4019 
4020         if (rcookie == HAT_INVALID_REGION_COOKIE) {
4021                 hat_unlock(sfmmup, addr, len);
4022                 return;
4023         }
4024 
4025         ASSERT(sfmmup != NULL);
4026         ASSERT(sfmmup != ksfmmup);
4027 
4028         srdp = sfmmup->sfmmu_srdp;
4029         rid = (uint_t)((uint64_t)rcookie);
4030         VERIFY3U(rid, <, SFMMU_MAX_HME_REGIONS);
4031         eaddr = addr + len;
4032         va = addr;
4033         list = NULL;
4034         rgnp = srdp->srd_hmergnp[rid];
4035         SFMMU_VALIDATE_HMERID(sfmmup, rid, addr, len);
4036 
4037         ASSERT(IS_P2ALIGNED(addr, TTEBYTES(rgnp->rgn_pgszc)));
4038         ASSERT(IS_P2ALIGNED(len, TTEBYTES(rgnp->rgn_pgszc)));
4039         if (rgnp->rgn_pgszc < HBLK_MIN_TTESZ) {
4040                 ttesz = HBLK_MIN_TTESZ;
4041         } else {
4042                 ttesz = rgnp->rgn_pgszc;
4043         }
4044         while (va < eaddr) {
4045                 while (ttesz < rgnp->rgn_pgszc &&
4046                     IS_P2ALIGNED(va, TTEBYTES(ttesz + 1))) {
4047                         ttesz++;
4048                 }
4049                 while (ttesz >= HBLK_MIN_TTESZ) {
4050                         if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
4051                                 ttesz--;
4052                                 continue;
4053                         }
4054                         hmeshift = HME_HASH_SHIFT(ttesz);
4055                         hblktag.htag_bspage = HME_HASH_BSPAGE(va, hmeshift);
4056                         hblktag.htag_rehash = ttesz;
4057                         hblktag.htag_rid = rid;
4058                         hblktag.htag_id = srdp;
4059                         hmebp = HME_HASH_FUNCTION(srdp, va, hmeshift);
4060                         SFMMU_HASH_LOCK(hmebp);
4061                         HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk,
4062                             &list);
4063                         if (hmeblkp == NULL) {
4064                                 SFMMU_HASH_UNLOCK(hmebp);
4065                                 ttesz--;
4066                                 continue;
4067                         }
4068                         ASSERT(hmeblkp->hblk_shared);
4069                         va = sfmmu_hblk_unlock(hmeblkp, va, eaddr);
4070                         ASSERT(va >= eaddr ||
4071                             IS_P2ALIGNED((uintptr_t)va, TTEBYTES(ttesz)));
4072                         SFMMU_HASH_UNLOCK(hmebp);
4073                         break;
4074                 }
4075                 if (ttesz < HBLK_MIN_TTESZ) {
4076                         panic("hat_unlock_region: addr not found "
4077                             "addr %p hat %p", (void *)va, (void *)sfmmup);
4078                 }
4079         }
4080         sfmmu_hblks_list_purge(&list, 0);
4081 }
4082 
4083 /*
4084  * Function to unlock a range of addresses in an hmeblk.  It returns the
4085  * next address that needs to be unlocked.
4086  * Should be called with the hash lock held.
4087  */
4088 static caddr_t
4089 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
4090 {
4091         struct sf_hment *sfhme;
4092         tte_t tteold, ttemod;
4093         int ttesz, ret;
4094 
4095         ASSERT(in_hblk_range(hmeblkp, addr));
4096         ASSERT(hmeblkp->hblk_shw_bit == 0);
4097 
4098         endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4099         ttesz = get_hblk_ttesz(hmeblkp);
4100 
4101         HBLKTOHME(sfhme, hmeblkp, addr);
4102         while (addr < endaddr) {
4103 readtte:
4104                 sfmmu_copytte(&sfhme->hme_tte, &tteold);
4105                 if (TTE_IS_VALID(&tteold)) {
4106 
4107                         ttemod = tteold;
4108 
4109                         ret = sfmmu_modifytte_try(&tteold, &ttemod,
4110                             &sfhme->hme_tte);
4111 
4112                         if (ret < 0)
4113                                 goto readtte;
4114 
4115                         if (hmeblkp->hblk_lckcnt == 0)
4116                                 panic("zero hblk lckcnt");
4117 
4118                         if (((uintptr_t)addr + TTEBYTES(ttesz)) >
4119                             (uintptr_t)endaddr)
4120                                 panic("can't unlock large tte");
4121 
4122                         ASSERT(hmeblkp->hblk_lckcnt > 0);
4123                         atomic_dec_32(&hmeblkp->hblk_lckcnt);
4124                         HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
4125                 } else {
4126                         panic("sfmmu_hblk_unlock: invalid tte");
4127                 }
4128                 addr += TTEBYTES(ttesz);
4129                 sfhme++;
4130         }
4131         return (addr);
4132 }
4133 
4134 /*
4135  * Physical Address Mapping Framework
4136  *
4137  * General rules:
4138  *
4139  * (1) Applies only to seg_kmem memory pages. To make things easier,
4140  *     seg_kpm addresses are also accepted by the routines, but nothing
4141  *     is done with them since by definition their PA mappings are static.
4142  * (2) hat_add_callback() may only be called while holding the page lock
4143  *     SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()),
4144  *     or passing HAC_PAGELOCK flag.
4145  * (3) prehandler() and posthandler() may not call hat_add_callback() or
4146  *     hat_delete_callback(), nor should they allocate memory. Post quiesce
4147  *     callbacks may not sleep or acquire adaptive mutex locks.
4148  * (4) Either prehandler() or posthandler() (but not both) may be specified
4149  *     as being NULL.  Specifying an errhandler() is optional.
4150  *
4151  * Details of using the framework:
4152  *
4153  * registering a callback (hat_register_callback())
4154  *
4155  *      Pass prehandler, posthandler, errhandler addresses
4156  *      as described below. If capture_cpus argument is nonzero,
4157  *      suspend callback to the prehandler will occur with CPUs
4158  *      captured and executing xc_loop() and CPUs will remain
4159  *      captured until after the posthandler suspend callback
4160  *      occurs.
4161  *
4162  * adding a callback (hat_add_callback())
4163  *
4164  *      as_pagelock();
4165  *      hat_add_callback();
4166  *      save returned pfn in private data structures or program registers;
4167  *      as_pageunlock();
4168  *
4169  * prehandler()
4170  *
4171  *      Stop all accesses by physical address to this memory page.
4172  *      Called twice: the first, PRESUSPEND, is a context safe to acquire
4173  *      adaptive locks. The second, SUSPEND, is called at high PIL with
4174  *      CPUs captured so adaptive locks may NOT be acquired (and all spin
4175  *      locks must be XCALL_PIL or higher locks).
4176  *
4177  *      May return the following errors:
4178  *              EIO:    A fatal error has occurred. This will result in panic.
4179  *              EAGAIN: The page cannot be suspended. This will fail the
4180  *                      relocation.
4181  *              0:      Success.
4182  *
4183  * posthandler()
4184  *
4185  *      Save new pfn in private data structures or program registers;
4186  *      not allowed to fail (non-zero return values will result in panic).
4187  *
4188  * errhandler()
4189  *
4190  *      called when an error occurs related to the callback.  Currently
4191  *      the only such error is HAT_CB_ERR_LEAKED which indicates that
4192  *      a page is being freed, but there are still outstanding callback(s)
4193  *      registered on the page.
4194  *
4195  * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
4196  *
4197  *      stop using physical address
4198  *      hat_delete_callback();
4199  *
4200  */
4201 
4202 /*
4203  * Register a callback class.  Each subsystem should do this once and
4204  * cache the id_t returned for use in setting up and tearing down callbacks.
4205  *
4206  * There is no facility for removing callback IDs once they are created;
4207  * the "key" should be unique for each module, so in case a module is unloaded
4208  * and subsequently re-loaded, we can recycle the module's previous entry.
4209  */
4210 id_t
4211 hat_register_callback(int key,
4212         int (*prehandler)(caddr_t, uint_t, uint_t, void *),
4213         int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
4214         int (*errhandler)(caddr_t, uint_t, uint_t, void *),
4215         int capture_cpus)
4216 {
4217         id_t id;
4218 
4219         /*
4220          * Search the table for a pre-existing callback associated with
4221          * the identifier "key".  If one exists, we re-use that entry in
4222          * the table for this instance, otherwise we assign the next
4223          * available table slot.
4224          */
4225         for (id = 0; id < sfmmu_max_cb_id; id++) {
4226                 if (sfmmu_cb_table[id].key == key)
4227                         break;
4228         }
4229 
4230         if (id == sfmmu_max_cb_id) {
4231                 id = sfmmu_cb_nextid++;
4232                 if (id >= sfmmu_max_cb_id)
4233                         panic("hat_register_callback: out of callback IDs");
4234         }
4235 
4236         ASSERT(prehandler != NULL || posthandler != NULL);
4237 
4238         sfmmu_cb_table[id].key = key;
4239         sfmmu_cb_table[id].prehandler = prehandler;
4240         sfmmu_cb_table[id].posthandler = posthandler;
4241         sfmmu_cb_table[id].errhandler = errhandler;
4242         sfmmu_cb_table[id].capture_cpus = capture_cpus;
4243 
4244         return (id);
4245 }
4246 
4247 #define HAC_COOKIE_NONE (void *)-1
4248 
4249 /*
4250  * Add relocation callbacks to the specified addr/len which will be called
4251  * when relocating the associated page. See the description of pre and
4252  * posthandler above for more details.
4253  *
4254  * If HAC_PAGELOCK is included in flags, the underlying memory page is
4255  * locked internally so the caller must be able to deal with the callback
4256  * running even before this function has returned.  If HAC_PAGELOCK is not
4257  * set, it is assumed that the underlying memory pages are locked.
4258  *
4259  * Since the caller must track the individual page boundaries anyway,
4260  * we only allow a callback to be added to a single page (large
4261  * or small).  Thus [addr, addr + len) MUST be contained within a single
4262  * page.
4263  *
4264  * Registering multiple callbacks on the same [addr, addr+len) is supported,
4265  * _provided_that_ a unique parameter is specified for each callback.
4266  * If multiple callbacks are registered on the same range the callback will
4267  * be invoked with each unique parameter. Registering the same callback with
4268  * the same argument more than once will result in corrupted kernel state.
4269  *
4270  * Returns the pfn of the underlying kernel page in *rpfn
4271  * on success, or PFN_INVALID on failure.
4272  *
4273  * cookiep (if passed) provides storage space for an opaque cookie
4274  * to return later to hat_delete_callback(). This cookie makes the callback
4275  * deletion significantly quicker by avoiding a potentially lengthy hash
4276  * search.
4277  *
4278  * Returns values:
4279  *    0:      success
4280  *    ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
4281  *    EINVAL: callback ID is not valid
4282  *    ENXIO:  ["vaddr", "vaddr" + len) is not mapped in the kernel's address
4283  *            space
4284  *    ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary
4285  */
4286 int
4287 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
4288         void *pvt, pfn_t *rpfn, void **cookiep)
4289 {
4290         struct          hmehash_bucket *hmebp;
4291         hmeblk_tag      hblktag;
4292         struct hme_blk  *hmeblkp;
4293         int             hmeshift, hashno;
4294         caddr_t         saddr, eaddr, baseaddr;
4295         struct pa_hment *pahmep;
4296         struct sf_hment *sfhmep, *osfhmep;
4297         kmutex_t        *pml;
4298         tte_t           tte;
4299         page_t          *pp;
4300         vnode_t         *vp;
4301         u_offset_t      off;
4302         pfn_t           pfn;
4303         int             kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
4304         int             locked = 0;
4305 
4306         /*
4307          * For KPM mappings, just return the physical address since we
4308          * don't need to register any callbacks.
4309          */
4310         if (IS_KPM_ADDR(vaddr)) {
4311                 uint64_t paddr;
4312                 SFMMU_KPM_VTOP(vaddr, paddr);
4313                 *rpfn = btop(paddr);
4314                 if (cookiep != NULL)
4315                         *cookiep = HAC_COOKIE_NONE;
4316                 return (0);
4317         }
4318 
4319         if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
4320                 *rpfn = PFN_INVALID;
4321                 return (EINVAL);
4322         }
4323 
4324         if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
4325                 *rpfn = PFN_INVALID;
4326                 return (ENOMEM);
4327         }
4328 
4329         sfhmep = &pahmep->sfment;
4330 
4331         saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4332         eaddr = saddr + len;
4333 
4334 rehash:
4335         /* Find the mapping(s) for this page */
4336         for (hashno = TTE64K, hmeblkp = NULL;
4337             hmeblkp == NULL && hashno <= mmu_hashcnt;
4338             hashno++) {
4339                 hmeshift = HME_HASH_SHIFT(hashno);
4340                 hblktag.htag_id = ksfmmup;
4341                 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4342                 hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4343                 hblktag.htag_rehash = hashno;
4344                 hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4345 
4346                 SFMMU_HASH_LOCK(hmebp);
4347 
4348                 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4349 
4350                 if (hmeblkp == NULL)
4351                         SFMMU_HASH_UNLOCK(hmebp);
4352         }
4353 
4354         if (hmeblkp == NULL) {
4355                 kmem_cache_free(pa_hment_cache, pahmep);
4356                 *rpfn = PFN_INVALID;
4357                 return (ENXIO);
4358         }
4359 
4360         ASSERT(!hmeblkp->hblk_shared);
4361 
4362         HBLKTOHME(osfhmep, hmeblkp, saddr);
4363         sfmmu_copytte(&osfhmep->hme_tte, &tte);
4364 
4365         if (!TTE_IS_VALID(&tte)) {
4366                 SFMMU_HASH_UNLOCK(hmebp);
4367                 kmem_cache_free(pa_hment_cache, pahmep);
4368                 *rpfn = PFN_INVALID;
4369                 return (ENXIO);
4370         }
4371 
4372         /*
4373          * Make sure the boundaries for the callback fall within this
4374          * single mapping.
4375          */
4376         baseaddr = (caddr_t)get_hblk_base(hmeblkp);
4377         ASSERT(saddr >= baseaddr);
4378         if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) {
4379                 SFMMU_HASH_UNLOCK(hmebp);
4380                 kmem_cache_free(pa_hment_cache, pahmep);
4381                 *rpfn = PFN_INVALID;
4382                 return (ERANGE);
4383         }
4384 
4385         pfn = sfmmu_ttetopfn(&tte, vaddr);
4386 
4387         /*
4388          * The pfn may not have a page_t underneath in which case we
4389          * just return it. This can happen if we are doing I/O to a
4390          * static portion of the kernel's address space, for instance.
4391          */
4392         pp = osfhmep->hme_page;
4393         if (pp == NULL) {
4394                 SFMMU_HASH_UNLOCK(hmebp);
4395                 kmem_cache_free(pa_hment_cache, pahmep);
4396                 *rpfn = pfn;
4397                 if (cookiep)
4398                         *cookiep = HAC_COOKIE_NONE;
4399                 return (0);
4400         }
4401         ASSERT(pp == PP_PAGEROOT(pp));
4402 
4403         vp = pp->p_vnode;
4404         off = pp->p_offset;
4405 
4406         pml = sfmmu_mlist_enter(pp);
4407 
4408         if (flags & HAC_PAGELOCK) {
4409                 if (!page_trylock(pp, SE_SHARED)) {
4410                         /*
4411                          * Somebody is holding SE_EXCL lock. Might
4412                          * even be hat_page_relocate(). Drop all
4413                          * our locks, lookup the page in &kvp, and
4414                          * retry. If it doesn't exist in &kvp and &zvp,
4415                          * then we must be dealing with a kernel mapped
4416                          * page which doesn't actually belong to
4417                          * segkmem so we punt.
4418                          */
4419                         sfmmu_mlist_exit(pml);
4420                         SFMMU_HASH_UNLOCK(hmebp);
4421                         pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4422 
4423                         /* check zvp before giving up */
4424                         if (pp == NULL)
4425                                 pp = page_lookup(&zvp, (u_offset_t)saddr,
4426                                     SE_SHARED);
4427 
4428                         /* Okay, we didn't find it, give up */
4429                         if (pp == NULL) {
4430                                 kmem_cache_free(pa_hment_cache, pahmep);
4431                                 *rpfn = pfn;
4432                                 if (cookiep)
4433                                         *cookiep = HAC_COOKIE_NONE;
4434                                 return (0);
4435                         }
4436                         page_unlock(pp);
4437                         goto rehash;
4438                 }
4439                 locked = 1;
4440         }
4441 
4442         if (!PAGE_LOCKED(pp) && !panicstr)
4443                 panic("hat_add_callback: page 0x%p not locked", (void *)pp);
4444 
4445         if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4446             pp->p_offset != off) {
4447                 /*
4448                  * The page moved before we got our hands on it.  Drop
4449                  * all the locks and try again.
4450                  */
4451                 ASSERT((flags & HAC_PAGELOCK) != 0);
4452                 sfmmu_mlist_exit(pml);
4453                 SFMMU_HASH_UNLOCK(hmebp);
4454                 page_unlock(pp);
4455                 locked = 0;
4456                 goto rehash;
4457         }
4458 
4459         if (!VN_ISKAS(vp)) {
4460                 /*
4461                  * This is not a segkmem page but another page which
4462                  * has been kernel mapped. It had better have at least
4463                  * a share lock on it. Return the pfn.
4464                  */
4465                 sfmmu_mlist_exit(pml);
4466                 SFMMU_HASH_UNLOCK(hmebp);
4467                 if (locked)
4468                         page_unlock(pp);
4469                 kmem_cache_free(pa_hment_cache, pahmep);
4470                 ASSERT(PAGE_LOCKED(pp));
4471                 *rpfn = pfn;
4472                 if (cookiep)
4473                         *cookiep = HAC_COOKIE_NONE;
4474                 return (0);
4475         }
4476 
4477         /*
4478          * Setup this pa_hment and link its embedded dummy sf_hment into
4479          * the mapping list.
4480          */
4481         pp->p_share++;
4482         pahmep->cb_id = callback_id;
4483         pahmep->addr = vaddr;
4484         pahmep->len = len;
4485         pahmep->refcnt = 1;
4486         pahmep->flags = 0;
4487         pahmep->pvt = pvt;
4488 
4489         sfhmep->hme_tte.ll = 0;
4490         sfhmep->hme_data = pahmep;
4491         sfhmep->hme_prev = osfhmep;
4492         sfhmep->hme_next = osfhmep->hme_next;
4493 
4494         if (osfhmep->hme_next)
4495                 osfhmep->hme_next->hme_prev = sfhmep;
4496 
4497         osfhmep->hme_next = sfhmep;
4498 
4499         sfmmu_mlist_exit(pml);
4500         SFMMU_HASH_UNLOCK(hmebp);
4501 
4502         if (locked)
4503                 page_unlock(pp);
4504 
4505         *rpfn = pfn;
4506         if (cookiep)
4507                 *cookiep = (void *)pahmep;
4508 
4509         return (0);
4510 }
4511 
4512 /*
4513  * Remove the relocation callbacks from the specified addr/len.
4514  */
4515 void
4516 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags,
4517         void *cookie)
4518 {
4519         struct          hmehash_bucket *hmebp;
4520         hmeblk_tag      hblktag;
4521         struct hme_blk  *hmeblkp;
4522         int             hmeshift, hashno;
4523         caddr_t         saddr;
4524         struct pa_hment *pahmep;
4525         struct sf_hment *sfhmep, *osfhmep;
4526         kmutex_t        *pml;
4527         tte_t           tte;
4528         page_t          *pp;
4529         vnode_t         *vp;
4530         u_offset_t      off;
4531         int             locked = 0;
4532 
4533         /*
4534          * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to
4535          * remove so just return.
4536          */
4537         if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr))
4538                 return;
4539 
4540         saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4541 
4542 rehash:
4543         /* Find the mapping(s) for this page */
4544         for (hashno = TTE64K, hmeblkp = NULL;
4545             hmeblkp == NULL && hashno <= mmu_hashcnt;
4546             hashno++) {
4547                 hmeshift = HME_HASH_SHIFT(hashno);
4548                 hblktag.htag_id = ksfmmup;
4549                 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4550                 hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4551                 hblktag.htag_rehash = hashno;
4552                 hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4553 
4554                 SFMMU_HASH_LOCK(hmebp);
4555 
4556                 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4557 
4558                 if (hmeblkp == NULL)
4559                         SFMMU_HASH_UNLOCK(hmebp);
4560         }
4561 
4562         if (hmeblkp == NULL)
4563                 return;
4564 
4565         ASSERT(!hmeblkp->hblk_shared);
4566 
4567         HBLKTOHME(osfhmep, hmeblkp, saddr);
4568 
4569         sfmmu_copytte(&osfhmep->hme_tte, &tte);
4570         if (!TTE_IS_VALID(&tte)) {
4571                 SFMMU_HASH_UNLOCK(hmebp);
4572                 return;
4573         }
4574 
4575         pp = osfhmep->hme_page;
4576         if (pp == NULL) {
4577                 SFMMU_HASH_UNLOCK(hmebp);
4578                 ASSERT(cookie == NULL);
4579                 return;
4580         }
4581 
4582         vp = pp->p_vnode;
4583         off = pp->p_offset;
4584 
4585         pml = sfmmu_mlist_enter(pp);
4586 
4587         if (flags & HAC_PAGELOCK) {
4588                 if (!page_trylock(pp, SE_SHARED)) {
4589                         /*
4590                          * Somebody is holding SE_EXCL lock. Might
4591                          * even be hat_page_relocate(). Drop all
4592                          * our locks, lookup the page in &kvp, and
4593                          * retry. If it doesn't exist in &kvp and &zvp,
4594                          * then we must be dealing with a kernel mapped
4595                          * page which doesn't actually belong to
4596                          * segkmem so we punt.
4597                          */
4598                         sfmmu_mlist_exit(pml);
4599                         SFMMU_HASH_UNLOCK(hmebp);
4600                         pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4601                         /* check zvp before giving up */
4602                         if (pp == NULL)
4603                                 pp = page_lookup(&zvp, (u_offset_t)saddr,
4604                                     SE_SHARED);
4605 
4606                         if (pp == NULL) {
4607                                 ASSERT(cookie == NULL);
4608                                 return;
4609                         }
4610                         page_unlock(pp);
4611                         goto rehash;
4612                 }
4613                 locked = 1;
4614         }
4615 
4616         ASSERT(PAGE_LOCKED(pp));
4617 
4618         if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4619             pp->p_offset != off) {
4620                 /*
4621                  * The page moved before we got our hands on it.  Drop
4622                  * all the locks and try again.
4623                  */
4624                 ASSERT((flags & HAC_PAGELOCK) != 0);
4625                 sfmmu_mlist_exit(pml);
4626                 SFMMU_HASH_UNLOCK(hmebp);
4627                 page_unlock(pp);
4628                 locked = 0;
4629                 goto rehash;
4630         }
4631 
4632         if (!VN_ISKAS(vp)) {
4633                 /*
4634                  * This is not a segkmem page but another page which
4635                  * has been kernel mapped.
4636                  */
4637                 sfmmu_mlist_exit(pml);
4638                 SFMMU_HASH_UNLOCK(hmebp);
4639                 if (locked)
4640                         page_unlock(pp);
4641                 ASSERT(cookie == NULL);
4642                 return;
4643         }
4644 
4645         if (cookie != NULL) {
4646                 pahmep = (struct pa_hment *)cookie;
4647                 sfhmep = &pahmep->sfment;
4648         } else {
4649                 for (sfhmep = pp->p_mapping; sfhmep != NULL;
4650                     sfhmep = sfhmep->hme_next) {
4651 
4652                         /*
4653                          * skip va<->pa mappings
4654                          */
4655                         if (!IS_PAHME(sfhmep))
4656                                 continue;
4657 
4658                         pahmep = sfhmep->hme_data;
4659                         ASSERT(pahmep != NULL);
4660 
4661                         /*
4662                          * if pa_hment matches, remove it
4663                          */
4664                         if ((pahmep->pvt == pvt) &&
4665                             (pahmep->addr == vaddr) &&
4666                             (pahmep->len == len)) {
4667                                 break;
4668                         }
4669                 }
4670         }
4671 
4672         if (sfhmep == NULL) {
4673                 if (!panicstr) {
4674                         panic("hat_delete_callback: pa_hment not found, pp %p",
4675                             (void *)pp);
4676                 }
4677                 return;
4678         }
4679 
4680         /*
4681          * Note: at this point a valid kernel mapping must still be
4682          * present on this page.
4683          */
4684         pp->p_share--;
4685         if (pp->p_share <= 0)
4686                 panic("hat_delete_callback: zero p_share");
4687 
4688         if (--pahmep->refcnt == 0) {
4689                 if (pahmep->flags != 0)
4690                         panic("hat_delete_callback: pa_hment is busy");
4691 
4692                 /*
4693                  * Remove sfhmep from the mapping list for the page.
4694                  */
4695                 if (sfhmep->hme_prev) {
4696                         sfhmep->hme_prev->hme_next = sfhmep->hme_next;
4697                 } else {
4698                         pp->p_mapping = sfhmep->hme_next;
4699                 }
4700 
4701                 if (sfhmep->hme_next)
4702                         sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
4703 
4704                 sfmmu_mlist_exit(pml);
4705                 SFMMU_HASH_UNLOCK(hmebp);
4706 
4707                 if (locked)
4708                         page_unlock(pp);
4709 
4710                 kmem_cache_free(pa_hment_cache, pahmep);
4711                 return;
4712         }
4713 
4714         sfmmu_mlist_exit(pml);
4715         SFMMU_HASH_UNLOCK(hmebp);
4716         if (locked)
4717                 page_unlock(pp);
4718 }
4719 
4720 /*
4721  * hat_probe returns 1 if the translation for the address 'addr' is
4722  * loaded, zero otherwise.
4723  *
4724  * hat_probe should be used only for advisorary purposes because it may
4725  * occasionally return the wrong value. The implementation must guarantee that
4726  * returning the wrong value is a very rare event. hat_probe is used
4727  * to implement optimizations in the segment drivers.
4728  *
4729  */
4730 int
4731 hat_probe(struct hat *sfmmup, caddr_t addr)
4732 {
4733         pfn_t pfn;
4734         tte_t tte;
4735 
4736         ASSERT(sfmmup != NULL);
4737 
4738         ASSERT((sfmmup == ksfmmup) || AS_LOCK_HELD(sfmmup->sfmmu_as));
4739 
4740         if (sfmmup == ksfmmup) {
4741                 while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
4742                     == PFN_SUSPENDED) {
4743                         sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
4744                 }
4745         } else {
4746                 pfn = sfmmu_uvatopfn(addr, sfmmup, NULL);
4747         }
4748 
4749         if (pfn != PFN_INVALID)
4750                 return (1);
4751         else
4752                 return (0);
4753 }
4754 
4755 ssize_t
4756 hat_getpagesize(struct hat *sfmmup, caddr_t addr)
4757 {
4758         tte_t tte;
4759 
4760         if (sfmmup == ksfmmup) {
4761                 if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4762                         return (-1);
4763                 }
4764         } else {
4765                 if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4766                         return (-1);
4767                 }
4768         }
4769 
4770         ASSERT(TTE_IS_VALID(&tte));
4771         return (TTEBYTES(TTE_CSZ(&tte)));
4772 }
4773 
4774 uint_t
4775 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
4776 {
4777         tte_t tte;
4778 
4779         if (sfmmup == ksfmmup) {
4780                 if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4781                         tte.ll = 0;
4782                 }
4783         } else {
4784                 if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4785                         tte.ll = 0;
4786                 }
4787         }
4788         if (TTE_IS_VALID(&tte)) {
4789                 *attr = sfmmu_ptov_attr(&tte);
4790                 return (0);
4791         }
4792         *attr = 0;
4793         return ((uint_t)0xffffffff);
4794 }
4795 
4796 /*
4797  * Enables more attributes on specified address range (ie. logical OR)
4798  */
4799 void
4800 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4801 {
4802         ASSERT(hat->sfmmu_as != NULL);
4803 
4804         sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
4805 }
4806 
4807 /*
4808  * Assigns attributes to the specified address range.  All the attributes
4809  * are specified.
4810  */
4811 void
4812 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4813 {
4814         ASSERT(hat->sfmmu_as != NULL);
4815 
4816         sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
4817 }
4818 
4819 /*
4820  * Remove attributes on the specified address range (ie. loginal NAND)
4821  */
4822 void
4823 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4824 {
4825         ASSERT(hat->sfmmu_as != NULL);
4826 
4827         sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
4828 }
4829 
4830 /*
4831  * Change attributes on an address range to that specified by attr and mode.
4832  */
4833 static void
4834 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
4835         int mode)
4836 {
4837         struct hmehash_bucket *hmebp;
4838         hmeblk_tag hblktag;
4839         int hmeshift, hashno = 1;
4840         struct hme_blk *hmeblkp, *list = NULL;
4841         caddr_t endaddr;
4842         cpuset_t cpuset;
4843         demap_range_t dmr;
4844 
4845         CPUSET_ZERO(cpuset);
4846 
4847         ASSERT((sfmmup == ksfmmup) || AS_LOCK_HELD(sfmmup->sfmmu_as));
4848         ASSERT((len & MMU_PAGEOFFSET) == 0);
4849         ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4850 
4851         if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4852             ((addr + len) > (caddr_t)USERLIMIT)) {
4853                 panic("user addr %p in kernel space",
4854                     (void *)addr);
4855         }
4856 
4857         endaddr = addr + len;
4858         hblktag.htag_id = sfmmup;
4859         hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4860         DEMAP_RANGE_INIT(sfmmup, &dmr);
4861 
4862         while (addr < endaddr) {
4863                 hmeshift = HME_HASH_SHIFT(hashno);
4864                 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4865                 hblktag.htag_rehash = hashno;
4866                 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4867 
4868                 SFMMU_HASH_LOCK(hmebp);
4869 
4870                 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4871                 if (hmeblkp != NULL) {
4872                         ASSERT(!hmeblkp->hblk_shared);
4873                         /*
4874                          * We've encountered a shadow hmeblk so skip the range
4875                          * of the next smaller mapping size.
4876                          */
4877                         if (hmeblkp->hblk_shw_bit) {
4878                                 ASSERT(sfmmup != ksfmmup);
4879                                 ASSERT(hashno > 1);
4880                                 addr = (caddr_t)P2END((uintptr_t)addr,
4881                                     TTEBYTES(hashno - 1));
4882                         } else {
4883                                 addr = sfmmu_hblk_chgattr(sfmmup,
4884                                     hmeblkp, addr, endaddr, &dmr, attr, mode);
4885                         }
4886                         SFMMU_HASH_UNLOCK(hmebp);
4887                         hashno = 1;
4888                         continue;
4889                 }
4890                 SFMMU_HASH_UNLOCK(hmebp);
4891 
4892                 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4893                         /*
4894                          * We have traversed the whole list and rehashed
4895                          * if necessary without finding the address to chgattr.
4896                          * This is ok, so we increment the address by the
4897                          * smallest hmeblk range for kernel mappings or for
4898                          * user mappings with no large pages, and the largest
4899                          * hmeblk range, to account for shadow hmeblks, for
4900                          * user mappings with large pages and continue.
4901                          */
4902                         if (sfmmup == ksfmmup)
4903                                 addr = (caddr_t)P2END((uintptr_t)addr,
4904                                     TTEBYTES(1));
4905                         else
4906                                 addr = (caddr_t)P2END((uintptr_t)addr,
4907                                     TTEBYTES(hashno));
4908                         hashno = 1;
4909                 } else {
4910                         hashno++;
4911                 }
4912         }
4913 
4914         sfmmu_hblks_list_purge(&list, 0);
4915         DEMAP_RANGE_FLUSH(&dmr);
4916         cpuset = sfmmup->sfmmu_cpusran;
4917         xt_sync(cpuset);
4918 }
4919 
4920 /*
4921  * This function chgattr on a range of addresses in an hmeblk.  It returns the
4922  * next addres that needs to be chgattr.
4923  * It should be called with the hash lock held.
4924  * XXX It should be possible to optimize chgattr by not flushing every time but
4925  * on the other hand:
4926  * 1. do one flush crosscall.
4927  * 2. only flush if we are increasing permissions (make sure this will work)
4928  */
4929 static caddr_t
4930 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4931         caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
4932 {
4933         tte_t tte, tteattr, tteflags, ttemod;
4934         struct sf_hment *sfhmep;
4935         int ttesz;
4936         struct page *pp = NULL;
4937         kmutex_t *pml, *pmtx;
4938         int ret;
4939         int use_demap_range;
4940 #if defined(SF_ERRATA_57)
4941         int check_exec;
4942 #endif
4943 
4944         ASSERT(in_hblk_range(hmeblkp, addr));
4945         ASSERT(hmeblkp->hblk_shw_bit == 0);
4946         ASSERT(!hmeblkp->hblk_shared);
4947 
4948         endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4949         ttesz = get_hblk_ttesz(hmeblkp);
4950 
4951         /*
4952          * Flush the current demap region if addresses have been
4953          * skipped or the page size doesn't match.
4954          */
4955         use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
4956         if (use_demap_range) {
4957                 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4958         } else if (dmrp != NULL) {
4959                 DEMAP_RANGE_FLUSH(dmrp);
4960         }
4961 
4962         tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
4963 #if defined(SF_ERRATA_57)
4964         check_exec = (sfmmup != ksfmmup) &&
4965             AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4966             TTE_IS_EXECUTABLE(&tteattr);
4967 #endif
4968         HBLKTOHME(sfhmep, hmeblkp, addr);
4969         while (addr < endaddr) {
4970                 sfmmu_copytte(&sfhmep->hme_tte, &tte);
4971                 if (TTE_IS_VALID(&tte)) {
4972                         if ((tte.ll & tteflags.ll) == tteattr.ll) {
4973                                 /*
4974                                  * if the new attr is the same as old
4975                                  * continue
4976                                  */
4977                                 goto next_addr;
4978                         }
4979                         if (!TTE_IS_WRITABLE(&tteattr)) {
4980                                 /*
4981                                  * make sure we clear hw modify bit if we
4982                                  * removing write protections
4983                                  */
4984                                 tteflags.tte_intlo |= TTE_HWWR_INT;
4985                         }
4986 
4987                         pml = NULL;
4988                         pp = sfhmep->hme_page;
4989                         if (pp) {
4990                                 pml = sfmmu_mlist_enter(pp);
4991                         }
4992 
4993                         if (pp != sfhmep->hme_page) {
4994                                 /*
4995                                  * tte must have been unloaded.
4996                                  */
4997                                 ASSERT(pml);
4998                                 sfmmu_mlist_exit(pml);
4999                                 continue;
5000                         }
5001 
5002                         ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5003 
5004                         ttemod = tte;
5005                         ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
5006                         ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
5007 
5008 #if defined(SF_ERRATA_57)
5009                         if (check_exec && addr < errata57_limit)
5010                                 ttemod.tte_exec_perm = 0;
5011 #endif
5012                         ret = sfmmu_modifytte_try(&tte, &ttemod,
5013                             &sfhmep->hme_tte);
5014 
5015                         if (ret < 0) {
5016                                 /* tte changed underneath us */
5017                                 if (pml) {
5018                                         sfmmu_mlist_exit(pml);
5019                                 }
5020                                 continue;
5021                         }
5022 
5023                         if (tteflags.tte_intlo & TTE_HWWR_INT) {
5024                                 /*
5025                                  * need to sync if we are clearing modify bit.
5026                                  */
5027                                 sfmmu_ttesync(sfmmup, addr, &tte, pp);
5028                         }
5029 
5030                         if (pp && PP_ISRO(pp)) {
5031                                 if (tteattr.tte_intlo & TTE_WRPRM_INT) {
5032                                         pmtx = sfmmu_page_enter(pp);
5033                                         PP_CLRRO(pp);
5034                                         sfmmu_page_exit(pmtx);
5035                                 }
5036                         }
5037 
5038                         if (ret > 0 && use_demap_range) {
5039                                 DEMAP_RANGE_MARKPG(dmrp, addr);
5040                         } else if (ret > 0) {
5041                                 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
5042                         }
5043 
5044                         if (pml) {
5045                                 sfmmu_mlist_exit(pml);
5046                         }
5047                 }
5048 next_addr:
5049                 addr += TTEBYTES(ttesz);
5050                 sfhmep++;
5051                 DEMAP_RANGE_NEXTPG(dmrp);
5052         }
5053         return (addr);
5054 }
5055 
5056 /*
5057  * This routine converts virtual attributes to physical ones.  It will
5058  * update the tteflags field with the tte mask corresponding to the attributes
5059  * affected and it returns the new attributes.  It will also clear the modify
5060  * bit if we are taking away write permission.  This is necessary since the
5061  * modify bit is the hardware permission bit and we need to clear it in order
5062  * to detect write faults.
5063  */
5064 static uint64_t
5065 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
5066 {
5067         tte_t ttevalue;
5068 
5069         ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
5070 
5071         switch (mode) {
5072         case SFMMU_CHGATTR:
5073                 /* all attributes specified */
5074                 ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
5075                 ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
5076                 ttemaskp->tte_inthi = TTEINTHI_ATTR;
5077                 ttemaskp->tte_intlo = TTEINTLO_ATTR;
5078                 break;
5079         case SFMMU_SETATTR:
5080                 ASSERT(!(attr & ~HAT_PROT_MASK));
5081                 ttemaskp->ll = 0;
5082                 ttevalue.ll = 0;
5083                 /*
5084                  * a valid tte implies exec and read for sfmmu
5085                  * so no need to do anything about them.
5086                  * since priviledged access implies user access
5087                  * PROT_USER doesn't make sense either.
5088                  */
5089                 if (attr & PROT_WRITE) {
5090                         ttemaskp->tte_intlo |= TTE_WRPRM_INT;
5091                         ttevalue.tte_intlo |= TTE_WRPRM_INT;
5092                 }
5093                 break;
5094         case SFMMU_CLRATTR:
5095                 /* attributes will be nand with current ones */
5096                 if (attr & ~(PROT_WRITE | PROT_USER)) {
5097                         panic("sfmmu: attr %x not supported", attr);
5098                 }
5099                 ttemaskp->ll = 0;
5100                 ttevalue.ll = 0;
5101                 if (attr & PROT_WRITE) {
5102                         /* clear both writable and modify bit */
5103                         ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
5104                 }
5105                 if (attr & PROT_USER) {
5106                         ttemaskp->tte_intlo |= TTE_PRIV_INT;
5107                         ttevalue.tte_intlo |= TTE_PRIV_INT;
5108                 }
5109                 break;
5110         default:
5111                 panic("sfmmu_vtop_attr: bad mode %x", mode);
5112         }
5113         ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
5114         return (ttevalue.ll);
5115 }
5116 
5117 static uint_t
5118 sfmmu_ptov_attr(tte_t *ttep)
5119 {
5120         uint_t attr;
5121 
5122         ASSERT(TTE_IS_VALID(ttep));
5123 
5124         attr = PROT_READ;
5125 
5126         if (TTE_IS_WRITABLE(ttep)) {
5127                 attr |= PROT_WRITE;
5128         }
5129         if (TTE_IS_EXECUTABLE(ttep)) {
5130                 attr |= PROT_EXEC;
5131         }
5132         if (!TTE_IS_PRIVILEGED(ttep)) {
5133                 attr |= PROT_USER;
5134         }
5135         if (TTE_IS_NFO(ttep)) {
5136                 attr |= HAT_NOFAULT;
5137         }
5138         if (TTE_IS_NOSYNC(ttep)) {
5139                 attr |= HAT_NOSYNC;
5140         }
5141         if (TTE_IS_SIDEFFECT(ttep)) {
5142                 attr |= SFMMU_SIDEFFECT;
5143         }
5144         if (!TTE_IS_VCACHEABLE(ttep)) {
5145                 attr |= SFMMU_UNCACHEVTTE;
5146         }
5147         if (!TTE_IS_PCACHEABLE(ttep)) {
5148                 attr |= SFMMU_UNCACHEPTTE;
5149         }
5150         return (attr);
5151 }
5152 
5153 /*
5154  * hat_chgprot is a deprecated hat call.  New segment drivers
5155  * should store all attributes and use hat_*attr calls.
5156  *
5157  * Change the protections in the virtual address range
5158  * given to the specified virtual protection.  If vprot is ~PROT_WRITE,
5159  * then remove write permission, leaving the other
5160  * permissions unchanged.  If vprot is ~PROT_USER, remove user permissions.
5161  *
5162  */
5163 void
5164 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
5165 {
5166         struct hmehash_bucket *hmebp;
5167         hmeblk_tag hblktag;
5168         int hmeshift, hashno = 1;
5169         struct hme_blk *hmeblkp, *list = NULL;
5170         caddr_t endaddr;
5171         cpuset_t cpuset;
5172         demap_range_t dmr;
5173 
5174         ASSERT((len & MMU_PAGEOFFSET) == 0);
5175         ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
5176 
5177         ASSERT(sfmmup->sfmmu_as != NULL);
5178 
5179         CPUSET_ZERO(cpuset);
5180 
5181         if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
5182             ((addr + len) > (caddr_t)USERLIMIT)) {
5183                 panic("user addr %p vprot %x in kernel space",
5184                     (void *)addr, vprot);
5185         }
5186         endaddr = addr + len;
5187         hblktag.htag_id = sfmmup;
5188         hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5189         DEMAP_RANGE_INIT(sfmmup, &dmr);
5190 
5191         while (addr < endaddr) {
5192                 hmeshift = HME_HASH_SHIFT(hashno);
5193                 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5194                 hblktag.htag_rehash = hashno;
5195                 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5196 
5197                 SFMMU_HASH_LOCK(hmebp);
5198 
5199                 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5200                 if (hmeblkp != NULL) {
5201                         ASSERT(!hmeblkp->hblk_shared);
5202                         /*
5203                          * We've encountered a shadow hmeblk so skip the range
5204                          * of the next smaller mapping size.
5205                          */
5206                         if (hmeblkp->hblk_shw_bit) {
5207                                 ASSERT(sfmmup != ksfmmup);
5208                                 ASSERT(hashno > 1);
5209                                 addr = (caddr_t)P2END((uintptr_t)addr,
5210                                     TTEBYTES(hashno - 1));
5211                         } else {
5212                                 addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
5213                                     addr, endaddr, &dmr, vprot);
5214                         }
5215                         SFMMU_HASH_UNLOCK(hmebp);
5216                         hashno = 1;
5217                         continue;
5218                 }
5219                 SFMMU_HASH_UNLOCK(hmebp);
5220 
5221                 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5222                         /*
5223                          * We have traversed the whole list and rehashed
5224                          * if necessary without finding the address to chgprot.
5225                          * This is ok so we increment the address by the
5226                          * smallest hmeblk range for kernel mappings and the
5227                          * largest hmeblk range, to account for shadow hmeblks,
5228                          * for user mappings and continue.
5229                          */
5230                         if (sfmmup == ksfmmup)
5231                                 addr = (caddr_t)P2END((uintptr_t)addr,
5232                                     TTEBYTES(1));
5233                         else
5234                                 addr = (caddr_t)P2END((uintptr_t)addr,
5235                                     TTEBYTES(hashno));
5236                         hashno = 1;
5237                 } else {
5238                         hashno++;
5239                 }
5240         }
5241 
5242         sfmmu_hblks_list_purge(&list, 0);
5243         DEMAP_RANGE_FLUSH(&dmr);
5244         cpuset = sfmmup->sfmmu_cpusran;
5245         xt_sync(cpuset);
5246 }
5247 
5248 /*
5249  * This function chgprots a range of addresses in an hmeblk.  It returns the
5250  * next addres that needs to be chgprot.
5251  * It should be called with the hash lock held.
5252  * XXX It shold be possible to optimize chgprot by not flushing every time but
5253  * on the other hand:
5254  * 1. do one flush crosscall.
5255  * 2. only flush if we are increasing permissions (make sure this will work)
5256  */
5257 static caddr_t
5258 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5259         caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
5260 {
5261         uint_t pprot;
5262         tte_t tte, ttemod;
5263         struct sf_hment *sfhmep;
5264         uint_t tteflags;
5265         int ttesz;
5266         struct page *pp = NULL;
5267         kmutex_t *pml, *pmtx;
5268         int ret;
5269         int use_demap_range;
5270 #if defined(SF_ERRATA_57)
5271         int check_exec;
5272 #endif
5273 
5274         ASSERT(in_hblk_range(hmeblkp, addr));
5275         ASSERT(hmeblkp->hblk_shw_bit == 0);
5276         ASSERT(!hmeblkp->hblk_shared);
5277 
5278 #ifdef DEBUG
5279         if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5280             (endaddr < get_hblk_endaddr(hmeblkp))) {
5281                 panic("sfmmu_hblk_chgprot: partial chgprot of large page");
5282         }
5283 #endif /* DEBUG */
5284 
5285         endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5286         ttesz = get_hblk_ttesz(hmeblkp);
5287 
5288         pprot = sfmmu_vtop_prot(vprot, &tteflags);
5289 #if defined(SF_ERRATA_57)
5290         check_exec = (sfmmup != ksfmmup) &&
5291             AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
5292             ((vprot & PROT_EXEC) == PROT_EXEC);
5293 #endif
5294         HBLKTOHME(sfhmep, hmeblkp, addr);
5295 
5296         /*
5297          * Flush the current demap region if addresses have been
5298          * skipped or the page size doesn't match.
5299          */
5300         use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
5301         if (use_demap_range) {
5302                 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5303         } else if (dmrp != NULL) {
5304                 DEMAP_RANGE_FLUSH(dmrp);
5305         }
5306 
5307         while (addr < endaddr) {
5308                 sfmmu_copytte(&sfhmep->hme_tte, &tte);
5309                 if (TTE_IS_VALID(&tte)) {
5310                         if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
5311                                 /*
5312                                  * if the new protection is the same as old
5313                                  * continue
5314                                  */
5315                                 goto next_addr;
5316                         }
5317                         pml = NULL;
5318                         pp = sfhmep->hme_page;
5319                         if (pp) {
5320                                 pml = sfmmu_mlist_enter(pp);
5321                         }
5322                         if (pp != sfhmep->hme_page) {
5323                                 /*
5324                                  * tte most have been unloaded
5325                                  * underneath us.  Recheck
5326                                  */
5327                                 ASSERT(pml);
5328                                 sfmmu_mlist_exit(pml);
5329                                 continue;
5330                         }
5331 
5332                         ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5333 
5334                         ttemod = tte;
5335                         TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
5336 #if defined(SF_ERRATA_57)
5337                         if (check_exec && addr < errata57_limit)
5338                                 ttemod.tte_exec_perm = 0;
5339 #endif
5340                         ret = sfmmu_modifytte_try(&tte, &ttemod,
5341                             &sfhmep->hme_tte);
5342 
5343                         if (ret < 0) {
5344                                 /* tte changed underneath us */
5345                                 if (pml) {
5346                                         sfmmu_mlist_exit(pml);
5347                                 }
5348                                 continue;
5349                         }
5350 
5351                         if (tteflags & TTE_HWWR_INT) {
5352                                 /*
5353                                  * need to sync if we are clearing modify bit.
5354                                  */
5355                                 sfmmu_ttesync(sfmmup, addr, &tte, pp);
5356                         }
5357 
5358                         if (pp && PP_ISRO(pp)) {
5359                                 if (pprot & TTE_WRPRM_INT) {
5360                                         pmtx = sfmmu_page_enter(pp);
5361                                         PP_CLRRO(pp);
5362                                         sfmmu_page_exit(pmtx);
5363                                 }
5364                         }
5365 
5366                         if (ret > 0 && use_demap_range) {
5367                                 DEMAP_RANGE_MARKPG(dmrp, addr);
5368                         } else if (ret > 0) {
5369                                 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
5370                         }
5371 
5372                         if (pml) {
5373                                 sfmmu_mlist_exit(pml);
5374                         }
5375                 }
5376 next_addr:
5377                 addr += TTEBYTES(ttesz);
5378                 sfhmep++;
5379                 DEMAP_RANGE_NEXTPG(dmrp);
5380         }
5381         return (addr);
5382 }
5383 
5384 /*
5385  * This routine is deprecated and should only be used by hat_chgprot.
5386  * The correct routine is sfmmu_vtop_attr.
5387  * This routine converts virtual page protections to physical ones.  It will
5388  * update the tteflags field with the tte mask corresponding to the protections
5389  * affected and it returns the new protections.  It will also clear the modify
5390  * bit if we are taking away write permission.  This is necessary since the
5391  * modify bit is the hardware permission bit and we need to clear it in order
5392  * to detect write faults.
5393  * It accepts the following special protections:
5394  * ~PROT_WRITE = remove write permissions.
5395  * ~PROT_USER = remove user permissions.
5396  */
5397 static uint_t
5398 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
5399 {
5400         if (vprot == (uint_t)~PROT_WRITE) {
5401                 *tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
5402                 return (0);             /* will cause wrprm to be cleared */
5403         }
5404         if (vprot == (uint_t)~PROT_USER) {
5405                 *tteflagsp = TTE_PRIV_INT;
5406                 return (0);             /* will cause privprm to be cleared */
5407         }
5408         if ((vprot == 0) || (vprot == PROT_USER) ||
5409             ((vprot & PROT_ALL) != vprot)) {
5410                 panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5411         }
5412 
5413         switch (vprot) {
5414         case (PROT_READ):
5415         case (PROT_EXEC):
5416         case (PROT_EXEC | PROT_READ):
5417                 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5418                 return (TTE_PRIV_INT);          /* set prv and clr wrt */
5419         case (PROT_WRITE):
5420         case (PROT_WRITE | PROT_READ):
5421         case (PROT_EXEC | PROT_WRITE):
5422         case (PROT_EXEC | PROT_WRITE | PROT_READ):
5423                 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5424                 return (TTE_PRIV_INT | TTE_WRPRM_INT);  /* set prv and wrt */
5425         case (PROT_USER | PROT_READ):
5426         case (PROT_USER | PROT_EXEC):
5427         case (PROT_USER | PROT_EXEC | PROT_READ):
5428                 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5429                 return (0);                     /* clr prv and wrt */
5430         case (PROT_USER | PROT_WRITE):
5431         case (PROT_USER | PROT_WRITE | PROT_READ):
5432         case (PROT_USER | PROT_EXEC | PROT_WRITE):
5433         case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
5434                 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5435                 return (TTE_WRPRM_INT);         /* clr prv and set wrt */
5436         default:
5437                 panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5438         }
5439         return (0);
5440 }
5441 
5442 /*
5443  * Alternate unload for very large virtual ranges. With a true 64 bit VA,
5444  * the normal algorithm would take too long for a very large VA range with
5445  * few real mappings. This routine just walks thru all HMEs in the global
5446  * hash table to find and remove mappings.
5447  */
5448 static void
5449 hat_unload_large_virtual(
5450         struct hat              *sfmmup,
5451         caddr_t                 startaddr,
5452         size_t                  len,
5453         uint_t                  flags,
5454         hat_callback_t          *callback)
5455 {
5456         struct hmehash_bucket *hmebp;
5457         struct hme_blk *hmeblkp;
5458         struct hme_blk *pr_hblk = NULL;
5459         struct hme_blk *nx_hblk;
5460         struct hme_blk *list = NULL;
5461         int i;
5462         demap_range_t dmr, *dmrp;
5463         cpuset_t cpuset;
5464         caddr_t endaddr = startaddr + len;
5465         caddr_t sa;
5466         caddr_t ea;
5467         caddr_t cb_sa[MAX_CB_ADDR];
5468         caddr_t cb_ea[MAX_CB_ADDR];
5469         int     addr_cnt = 0;
5470         int     a = 0;
5471 
5472         if (sfmmup->sfmmu_free) {
5473                 dmrp = NULL;
5474         } else {
5475                 dmrp = &dmr;
5476                 DEMAP_RANGE_INIT(sfmmup, dmrp);
5477         }
5478 
5479         /*
5480          * Loop through all the hash buckets of HME blocks looking for matches.
5481          */
5482         for (i = 0; i <= UHMEHASH_SZ; i++) {
5483                 hmebp = &uhme_hash[i];
5484                 SFMMU_HASH_LOCK(hmebp);
5485                 hmeblkp = hmebp->hmeblkp;
5486                 pr_hblk = NULL;
5487                 while (hmeblkp) {
5488                         nx_hblk = hmeblkp->hblk_next;
5489 
5490                         /*
5491                          * skip if not this context, if a shadow block or
5492                          * if the mapping is not in the requested range
5493                          */
5494                         if (hmeblkp->hblk_tag.htag_id != sfmmup ||
5495                             hmeblkp->hblk_shw_bit ||
5496                             (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
5497                             (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
5498                                 pr_hblk = hmeblkp;
5499                                 goto next_block;
5500                         }
5501 
5502                         ASSERT(!hmeblkp->hblk_shared);
5503                         /*
5504                          * unload if there are any current valid mappings
5505                          */
5506                         if (hmeblkp->hblk_vcnt != 0 ||
5507                             hmeblkp->hblk_hmecnt != 0)
5508                                 (void) sfmmu_hblk_unload(sfmmup, hmeblkp,
5509                                     sa, ea, dmrp, flags);
5510 
5511                         /*
5512                          * on unmap we also release the HME block itself, once
5513                          * all mappings are gone.
5514                          */
5515                         if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
5516                             !hmeblkp->hblk_vcnt &&
5517                             !hmeblkp->hblk_hmecnt) {
5518                                 ASSERT(!hmeblkp->hblk_lckcnt);
5519                                 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
5520                                     &list, 0);
5521                         } else {
5522                                 pr_hblk = hmeblkp;
5523                         }
5524 
5525                         if (callback == NULL)
5526                                 goto next_block;
5527 
5528                         /*
5529                          * HME blocks may span more than one page, but we may be
5530                          * unmapping only one page, so check for a smaller range
5531                          * for the callback
5532                          */
5533                         if (sa < startaddr)
5534                                 sa = startaddr;
5535                         if (--ea > endaddr)
5536                                 ea = endaddr - 1;
5537 
5538                         cb_sa[addr_cnt] = sa;
5539                         cb_ea[addr_cnt] = ea;
5540                         if (++addr_cnt == MAX_CB_ADDR) {
5541                                 if (dmrp != NULL) {
5542                                         DEMAP_RANGE_FLUSH(dmrp);
5543                                         cpuset = sfmmup->sfmmu_cpusran;
5544                                         xt_sync(cpuset);
5545                                 }
5546 
5547                                 for (a = 0; a < MAX_CB_ADDR; ++a) {
5548                                         callback->hcb_start_addr = cb_sa[a];
5549                                         callback->hcb_end_addr = cb_ea[a];
5550                                         callback->hcb_function(callback);
5551                                 }
5552                                 addr_cnt = 0;
5553                         }
5554 
5555 next_block:
5556                         hmeblkp = nx_hblk;
5557                 }
5558                 SFMMU_HASH_UNLOCK(hmebp);
5559         }
5560 
5561         sfmmu_hblks_list_purge(&list, 0);
5562         if (dmrp != NULL) {
5563                 DEMAP_RANGE_FLUSH(dmrp);
5564                 cpuset = sfmmup->sfmmu_cpusran;
5565                 xt_sync(cpuset);
5566         }
5567 
5568         for (a = 0; a < addr_cnt; ++a) {
5569                 callback->hcb_start_addr = cb_sa[a];
5570                 callback->hcb_end_addr = cb_ea[a];
5571                 callback->hcb_function(callback);
5572         }
5573 
5574         /*
5575          * Check TSB and TLB page sizes if the process isn't exiting.
5576          */
5577         if (!sfmmup->sfmmu_free)
5578                 sfmmu_check_page_sizes(sfmmup, 0);
5579 }
5580 
5581 /*
5582  * Unload all the mappings in the range [addr..addr+len). addr and len must
5583  * be MMU_PAGESIZE aligned.
5584  */
5585 
5586 extern struct seg *segkmap;
5587 #define ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
5588 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
5589 
5590 
5591 void
5592 hat_unload_callback(
5593         struct hat *sfmmup,
5594         caddr_t addr,
5595         size_t len,
5596         uint_t flags,
5597         hat_callback_t *callback)
5598 {
5599         struct hmehash_bucket *hmebp;
5600         hmeblk_tag hblktag;
5601         int hmeshift, hashno, iskernel;
5602         struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
5603         caddr_t endaddr;
5604         cpuset_t cpuset;
5605         int addr_count = 0;
5606         int a;
5607         caddr_t cb_start_addr[MAX_CB_ADDR];
5608         caddr_t cb_end_addr[MAX_CB_ADDR];
5609         int issegkmap = ISSEGKMAP(sfmmup, addr);
5610         demap_range_t dmr, *dmrp;
5611 
5612         ASSERT(sfmmup->sfmmu_as != NULL);
5613 
5614         ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
5615             AS_LOCK_HELD(sfmmup->sfmmu_as));
5616 
5617         ASSERT(sfmmup != NULL);
5618         ASSERT((len & MMU_PAGEOFFSET) == 0);
5619         ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
5620 
5621         /*
5622          * Probing through a large VA range (say 63 bits) will be slow, even
5623          * at 4 Meg steps between the probes. So, when the virtual address range
5624          * is very large, search the HME entries for what to unload.
5625          *
5626          *      len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
5627          *
5628          *      UHMEHASH_SZ is number of hash buckets to examine
5629          *
5630          */
5631         if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
5632                 hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
5633                 return;
5634         }
5635 
5636         CPUSET_ZERO(cpuset);
5637 
5638         /*
5639          * If the process is exiting, we can save a lot of fuss since
5640          * we'll flush the TLB when we free the ctx anyway.
5641          */
5642         if (sfmmup->sfmmu_free) {
5643                 dmrp = NULL;
5644         } else {
5645                 dmrp = &dmr;
5646                 DEMAP_RANGE_INIT(sfmmup, dmrp);
5647         }
5648 
5649         endaddr = addr + len;
5650         hblktag.htag_id = sfmmup;
5651         hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5652 
5653         /*
5654          * It is likely for the vm to call unload over a wide range of
5655          * addresses that are actually very sparsely populated by
5656          * translations.  In order to speed this up the sfmmu hat supports
5657          * the concept of shadow hmeblks. Dummy large page hmeblks that
5658          * correspond to actual small translations are allocated at tteload
5659          * time and are referred to as shadow hmeblks.  Now, during unload
5660          * time, we first check if we have a shadow hmeblk for that
5661          * translation.  The absence of one means the corresponding address
5662          * range is empty and can be skipped.
5663          *
5664          * The kernel is an exception to above statement and that is why
5665          * we don't use shadow hmeblks and hash starting from the smallest
5666          * page size.
5667          */
5668         if (sfmmup == KHATID) {
5669                 iskernel = 1;
5670                 hashno = TTE64K;
5671         } else {
5672                 iskernel = 0;
5673                 if (mmu_page_sizes == max_mmu_page_sizes) {
5674                         hashno = TTE256M;
5675                 } else {
5676                         hashno = TTE4M;
5677                 }
5678         }
5679         while (addr < endaddr) {
5680                 hmeshift = HME_HASH_SHIFT(hashno);
5681                 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5682                 hblktag.htag_rehash = hashno;
5683                 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5684 
5685                 SFMMU_HASH_LOCK(hmebp);
5686 
5687                 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
5688                 if (hmeblkp == NULL) {
5689                         /*
5690                          * didn't find an hmeblk. skip the appropiate
5691                          * address range.
5692                          */
5693                         SFMMU_HASH_UNLOCK(hmebp);
5694                         if (iskernel) {
5695                                 if (hashno < mmu_hashcnt) {
5696                                         hashno++;
5697                                         continue;
5698                                 } else {
5699                                         hashno = TTE64K;
5700                                         addr = (caddr_t)roundup((uintptr_t)addr
5701                                             + 1, MMU_PAGESIZE64K);
5702                                         continue;
5703                                 }
5704                         }
5705                         addr = (caddr_t)roundup((uintptr_t)addr + 1,
5706                             (1 << hmeshift));
5707                         if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5708                                 ASSERT(hashno == TTE64K);
5709                                 continue;
5710                         }
5711                         if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5712                                 hashno = TTE512K;
5713                                 continue;
5714                         }
5715                         if (mmu_page_sizes == max_mmu_page_sizes) {
5716                                 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5717                                         hashno = TTE4M;
5718                                         continue;
5719                                 }
5720                                 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5721                                         hashno = TTE32M;
5722                                         continue;
5723                                 }
5724                                 hashno = TTE256M;
5725                                 continue;
5726                         } else {
5727                                 hashno = TTE4M;
5728                                 continue;
5729                         }
5730                 }
5731                 ASSERT(hmeblkp);
5732                 ASSERT(!hmeblkp->hblk_shared);
5733                 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5734                         /*
5735                          * If the valid count is zero we can skip the range
5736                          * mapped by this hmeblk.
5737                          * We free hblks in the case of HAT_UNMAP.  HAT_UNMAP
5738                          * is used by segment drivers as a hint
5739                          * that the mapping resource won't be used any longer.
5740                          * The best example of this is during exit().
5741                          */
5742                         addr = (caddr_t)roundup((uintptr_t)addr + 1,
5743                             get_hblk_span(hmeblkp));
5744                         if ((flags & HAT_UNLOAD_UNMAP) ||
5745                             (iskernel && !issegkmap)) {
5746                                 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
5747                                     &list, 0);
5748                         }
5749                         SFMMU_HASH_UNLOCK(hmebp);
5750 
5751                         if (iskernel) {
5752                                 hashno = TTE64K;
5753                                 continue;
5754                         }
5755                         if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5756                                 ASSERT(hashno == TTE64K);
5757                                 continue;
5758                         }
5759                         if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5760                                 hashno = TTE512K;
5761                                 continue;
5762                         }
5763                         if (mmu_page_sizes == max_mmu_page_sizes) {
5764                                 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5765                                         hashno = TTE4M;
5766                                         continue;
5767                                 }
5768                                 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5769                                         hashno = TTE32M;
5770                                         continue;
5771                                 }
5772                                 hashno = TTE256M;
5773                                 continue;
5774                         } else {
5775                                 hashno = TTE4M;
5776                                 continue;
5777                         }
5778                 }
5779                 if (hmeblkp->hblk_shw_bit) {
5780                         /*
5781                          * If we encounter a shadow hmeblk we know there is
5782                          * smaller sized hmeblks mapping the same address space.
5783                          * Decrement the hash size and rehash.
5784                          */
5785                         ASSERT(sfmmup != KHATID);
5786                         hashno--;
5787                         SFMMU_HASH_UNLOCK(hmebp);
5788                         continue;
5789                 }
5790 
5791                 /*
5792                  * track callback address ranges.
5793                  * only start a new range when it's not contiguous
5794                  */
5795                 if (callback != NULL) {
5796                         if (addr_count > 0 &&
5797                             addr == cb_end_addr[addr_count - 1])
5798                                 --addr_count;
5799                         else
5800                                 cb_start_addr[addr_count] = addr;
5801                 }
5802 
5803                 addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5804                     dmrp, flags);
5805 
5806                 if (callback != NULL)
5807                         cb_end_addr[addr_count++] = addr;
5808 
5809                 if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5810                     !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5811                         sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, &list, 0);
5812                 }
5813                 SFMMU_HASH_UNLOCK(hmebp);
5814 
5815                 /*
5816                  * Notify our caller as to exactly which pages
5817                  * have been unloaded. We do these in clumps,
5818                  * to minimize the number of xt_sync()s that need to occur.
5819                  */
5820                 if (callback != NULL && addr_count == MAX_CB_ADDR) {
5821                         if (dmrp != NULL) {
5822                                 DEMAP_RANGE_FLUSH(dmrp);
5823                                 cpuset = sfmmup->sfmmu_cpusran;
5824                                 xt_sync(cpuset);
5825                         }
5826 
5827                         for (a = 0; a < MAX_CB_ADDR; ++a) {
5828                                 callback->hcb_start_addr = cb_start_addr[a];
5829                                 callback->hcb_end_addr = cb_end_addr[a];
5830                                 callback->hcb_function(callback);
5831                         }
5832                         addr_count = 0;
5833                 }
5834                 if (iskernel) {
5835                         hashno = TTE64K;
5836                         continue;
5837                 }
5838                 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5839                         ASSERT(hashno == TTE64K);
5840                         continue;
5841                 }
5842                 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5843                         hashno = TTE512K;
5844                         continue;
5845                 }
5846                 if (mmu_page_sizes == max_mmu_page_sizes) {
5847                         if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5848                                 hashno = TTE4M;
5849                                 continue;
5850                         }
5851                         if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5852                                 hashno = TTE32M;
5853                                 continue;
5854                         }
5855                         hashno = TTE256M;
5856                 } else {
5857                         hashno = TTE4M;
5858                 }
5859         }
5860 
5861         sfmmu_hblks_list_purge(&list, 0);
5862         if (dmrp != NULL) {
5863                 DEMAP_RANGE_FLUSH(dmrp);
5864                 cpuset = sfmmup->sfmmu_cpusran;
5865                 xt_sync(cpuset);
5866         }
5867         if (callback && addr_count != 0) {
5868                 for (a = 0; a < addr_count; ++a) {
5869                         callback->hcb_start_addr = cb_start_addr[a];
5870                         callback->hcb_end_addr = cb_end_addr[a];
5871                         callback->hcb_function(callback);
5872                 }
5873         }
5874 
5875         /*
5876          * Check TSB and TLB page sizes if the process isn't exiting.
5877          */
5878         if (!sfmmup->sfmmu_free)
5879                 sfmmu_check_page_sizes(sfmmup, 0);
5880 }
5881 
5882 /*
5883  * Unload all the mappings in the range [addr..addr+len). addr and len must
5884  * be MMU_PAGESIZE aligned.
5885  */
5886 void
5887 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5888 {
5889         hat_unload_callback(sfmmup, addr, len, flags, NULL);
5890 }
5891 
5892 
5893 /*
5894  * Find the largest mapping size for this page.
5895  */
5896 int
5897 fnd_mapping_sz(page_t *pp)
5898 {
5899         int sz;
5900         int p_index;
5901 
5902         p_index = PP_MAPINDEX(pp);
5903 
5904         sz = 0;
5905         p_index >>= 1;    /* don't care about 8K bit */
5906         for (; p_index; p_index >>= 1) {
5907                 sz++;
5908         }
5909 
5910         return (sz);
5911 }
5912 
5913 /*
5914  * This function unloads a range of addresses for an hmeblk.
5915  * It returns the next address to be unloaded.
5916  * It should be called with the hash lock held.
5917  */
5918 static caddr_t
5919 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5920         caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
5921 {
5922         tte_t   tte, ttemod;
5923         struct  sf_hment *sfhmep;
5924         int     ttesz;
5925         long    ttecnt;
5926         page_t *pp;
5927         kmutex_t *pml;
5928         int ret;
5929         int use_demap_range;
5930 
5931         ASSERT(in_hblk_range(hmeblkp, addr));
5932         ASSERT(!hmeblkp->hblk_shw_bit);
5933         ASSERT(sfmmup != NULL || hmeblkp->hblk_shared);
5934         ASSERT(sfmmup == NULL || !hmeblkp->hblk_shared);
5935         ASSERT(dmrp == NULL || !hmeblkp->hblk_shared);
5936 
5937 #ifdef DEBUG
5938         if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5939             (endaddr < get_hblk_endaddr(hmeblkp))) {
5940                 panic("sfmmu_hblk_unload: partial unload of large page");
5941         }
5942 #endif /* DEBUG */
5943 
5944         endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5945         ttesz = get_hblk_ttesz(hmeblkp);
5946 
5947         use_demap_range = ((dmrp == NULL) ||
5948             (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)));
5949 
5950         if (use_demap_range) {
5951                 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5952         } else if (dmrp != NULL) {
5953                 DEMAP_RANGE_FLUSH(dmrp);
5954         }
5955         ttecnt = 0;
5956         HBLKTOHME(sfhmep, hmeblkp, addr);
5957 
5958         while (addr < endaddr) {
5959                 pml = NULL;
5960                 sfmmu_copytte(&sfhmep->hme_tte, &tte);
5961                 if (TTE_IS_VALID(&tte)) {
5962                         pp = sfhmep->hme_page;
5963                         if (pp != NULL) {
5964                                 pml = sfmmu_mlist_enter(pp);
5965                         }
5966 
5967                         /*
5968                          * Verify if hme still points to 'pp' now that
5969                          * we have p_mapping lock.
5970                          */
5971                         if (sfhmep->hme_page != pp) {
5972                                 if (pp != NULL && sfhmep->hme_page != NULL) {
5973                                         ASSERT(pml != NULL);
5974                                         sfmmu_mlist_exit(pml);
5975                                         /* Re-start this iteration. */
5976                                         continue;
5977                                 }
5978                                 ASSERT((pp != NULL) &&
5979                                     (sfhmep->hme_page == NULL));
5980                                 goto tte_unloaded;
5981                         }
5982 
5983                         /*
5984                          * This point on we have both HASH and p_mapping
5985                          * lock.
5986                          */
5987                         ASSERT(pp == sfhmep->hme_page);
5988                         ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5989 
5990                         /*
5991                          * We need to loop on modify tte because it is
5992                          * possible for pagesync to come along and
5993                          * change the software bits beneath us.
5994                          *
5995                          * Page_unload can also invalidate the tte after
5996                          * we read tte outside of p_mapping lock.
5997                          */
5998 again:
5999                         ttemod = tte;
6000 
6001                         TTE_SET_INVALID(&ttemod);
6002                         ret = sfmmu_modifytte_try(&tte, &ttemod,
6003                             &sfhmep->hme_tte);
6004 
6005                         if (ret <= 0) {
6006                                 if (TTE_IS_VALID(&tte)) {
6007                                         ASSERT(ret < 0);
6008                                         goto again;
6009                                 }
6010                                 if (pp != NULL) {
6011                                         panic("sfmmu_hblk_unload: pp = 0x%p "
6012                                             "tte became invalid under mlist"
6013                                             " lock = 0x%p", (void *)pp,
6014                                             (void *)pml);
6015                                 }
6016                                 continue;
6017                         }
6018 
6019                         if (!(flags & HAT_UNLOAD_NOSYNC)) {
6020                                 sfmmu_ttesync(sfmmup, addr, &tte, pp);
6021                         }
6022 
6023                         /*
6024                          * Ok- we invalidated the tte. Do the rest of the job.
6025                          */
6026                         ttecnt++;
6027 
6028                         if (flags & HAT_UNLOAD_UNLOCK) {
6029                                 ASSERT(hmeblkp->hblk_lckcnt > 0);
6030                                 atomic_dec_32(&hmeblkp->hblk_lckcnt);
6031                                 HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
6032                         }
6033 
6034                         /*
6035                          * Normally we would need to flush the page
6036                          * from the virtual cache at this point in
6037                          * order to prevent a potential cache alias
6038                          * inconsistency.
6039                          * The particular scenario we need to worry
6040                          * about is:
6041                          * Given:  va1 and va2 are two virtual address
6042                          * that alias and map the same physical
6043                          * address.
6044                          * 1.   mapping exists from va1 to pa and data
6045                          * has been read into the cache.
6046                          * 2.   unload va1.
6047                          * 3.   load va2 and modify data using va2.
6048                          * 4    unload va2.
6049                          * 5.   load va1 and reference data.  Unless we
6050                          * flush the data cache when we unload we will
6051                          * get stale data.
6052                          * Fortunately, page coloring eliminates the
6053                          * above scenario by remembering the color a
6054                          * physical page was last or is currently
6055                          * mapped to.  Now, we delay the flush until
6056                          * the loading of translations.  Only when the
6057                          * new translation is of a different color
6058                          * are we forced to flush.
6059                          */
6060                         if (use_demap_range) {
6061                                 /*
6062                                  * Mark this page as needing a demap.
6063                                  */
6064                                 DEMAP_RANGE_MARKPG(dmrp, addr);
6065                         } else {
6066                                 ASSERT(sfmmup != NULL);
6067                                 ASSERT(!hmeblkp->hblk_shared);
6068                                 sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
6069                                     sfmmup->sfmmu_free, 0);
6070                         }
6071 
6072                         if (pp) {
6073                                 /*
6074                                  * Remove the hment from the mapping list
6075                                  */
6076                                 ASSERT(hmeblkp->hblk_hmecnt > 0);
6077 
6078                                 /*
6079                                  * Again, we cannot
6080                                  * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
6081                                  */
6082                                 HME_SUB(sfhmep, pp);
6083                                 membar_stst();
6084                                 atomic_dec_16(&hmeblkp->hblk_hmecnt);
6085                         }
6086 
6087                         ASSERT(hmeblkp->hblk_vcnt > 0);
6088                         atomic_dec_16(&hmeblkp->hblk_vcnt);
6089 
6090                         ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6091                             !hmeblkp->hblk_lckcnt);
6092 
6093 #ifdef VAC
6094                         if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
6095                                 if (PP_ISTNC(pp)) {
6096                                         /*
6097                                          * If page was temporary
6098                                          * uncached, try to recache
6099                                          * it. Note that HME_SUB() was
6100                                          * called above so p_index and
6101                                          * mlist had been updated.
6102                                          */
6103                                         conv_tnc(pp, ttesz);
6104                                 } else if (pp->p_mapping == NULL) {
6105                                         ASSERT(kpm_enable);
6106                                         /*
6107                                          * Page is marked to be in VAC conflict
6108                                          * to an existing kpm mapping and/or is
6109                                          * kpm mapped using only the regular
6110                                          * pagesize.
6111                                          */
6112                                         sfmmu_kpm_hme_unload(pp);
6113                                 }
6114                         }
6115 #endif  /* VAC */
6116                 } else if ((pp = sfhmep->hme_page) != NULL) {
6117                                 /*
6118                                  * TTE is invalid but the hme
6119                                  * still exists. let pageunload
6120                                  * complete its job.
6121                                  */
6122                                 ASSERT(pml == NULL);
6123                                 pml = sfmmu_mlist_enter(pp);
6124                                 if (sfhmep->hme_page != NULL) {
6125                                         sfmmu_mlist_exit(pml);
6126                                         continue;
6127                                 }
6128                                 ASSERT(sfhmep->hme_page == NULL);
6129                 } else if (hmeblkp->hblk_hmecnt != 0) {
6130                         /*
6131                          * pageunload may have not finished decrementing
6132                          * hblk_vcnt and hblk_hmecnt. Find page_t if any and
6133                          * wait for pageunload to finish. Rely on pageunload
6134                          * to decrement hblk_hmecnt after hblk_vcnt.
6135                          */
6136                         pfn_t pfn = TTE_TO_TTEPFN(&tte);
6137                         ASSERT(pml == NULL);
6138                         if (pf_is_memory(pfn)) {
6139                                 pp = page_numtopp_nolock(pfn);
6140                                 if (pp != NULL) {
6141                                         pml = sfmmu_mlist_enter(pp);
6142                                         sfmmu_mlist_exit(pml);
6143                                         pml = NULL;
6144                                 }
6145                         }
6146                 }
6147 
6148 tte_unloaded:
6149                 /*
6150                  * At this point, the tte we are looking at
6151                  * should be unloaded, and hme has been unlinked
6152                  * from page too. This is important because in
6153                  * pageunload, it does ttesync() then HME_SUB.
6154                  * We need to make sure HME_SUB has been completed
6155                  * so we know ttesync() has been completed. Otherwise,
6156                  * at exit time, after return from hat layer, VM will
6157                  * release as structure which hat_setstat() (called
6158                  * by ttesync()) needs.
6159                  */
6160 #ifdef DEBUG
6161                 {
6162                         tte_t   dtte;
6163 
6164                         ASSERT(sfhmep->hme_page == NULL);
6165 
6166                         sfmmu_copytte(&sfhmep->hme_tte, &dtte);
6167                         ASSERT(!TTE_IS_VALID(&dtte));
6168                 }
6169 #endif
6170 
6171                 if (pml) {
6172                         sfmmu_mlist_exit(pml);
6173                 }
6174 
6175                 addr += TTEBYTES(ttesz);
6176                 sfhmep++;
6177                 DEMAP_RANGE_NEXTPG(dmrp);
6178         }
6179         /*
6180          * For shared hmeblks this routine is only called when region is freed
6181          * and no longer referenced.  So no need to decrement ttecnt
6182          * in the region structure here.
6183          */
6184         if (ttecnt > 0 && sfmmup != NULL) {
6185                 atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
6186         }
6187         return (addr);
6188 }
6189 
6190 /*
6191  * Flush the TLB for the local CPU
6192  * Invoked from a slave CPU during panic() dumps.
6193  */
6194 void
6195 hat_flush(void)
6196 {
6197         vtag_flushall();
6198 }
6199 
6200 /*
6201  * Synchronize all the mappings in the range [addr..addr+len).
6202  * Can be called with clearflag having two states:
6203  * HAT_SYNC_DONTZERO means just return the rm stats
6204  * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
6205  */
6206 void
6207 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
6208 {
6209         struct hmehash_bucket *hmebp;
6210         hmeblk_tag hblktag;
6211         int hmeshift, hashno = 1;
6212         struct hme_blk *hmeblkp, *list = NULL;
6213         caddr_t endaddr;
6214         cpuset_t cpuset;
6215 
6216         ASSERT((sfmmup == ksfmmup) || AS_LOCK_HELD(sfmmup->sfmmu_as));
6217         ASSERT((len & MMU_PAGEOFFSET) == 0);
6218         ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6219             (clearflag == HAT_SYNC_ZERORM));
6220 
6221         CPUSET_ZERO(cpuset);
6222 
6223         endaddr = addr + len;
6224         hblktag.htag_id = sfmmup;
6225         hblktag.htag_rid = SFMMU_INVALID_SHMERID;
6226 
6227         /*
6228          * Spitfire supports 4 page sizes.
6229          * Most pages are expected to be of the smallest page
6230          * size (8K) and these will not need to be rehashed. 64K
6231          * pages also don't need to be rehashed because the an hmeblk
6232          * spans 64K of address space. 512K pages might need 1 rehash and
6233          * and 4M pages 2 rehashes.
6234          */
6235         while (addr < endaddr) {
6236                 hmeshift = HME_HASH_SHIFT(hashno);
6237                 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
6238                 hblktag.htag_rehash = hashno;
6239                 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
6240 
6241                 SFMMU_HASH_LOCK(hmebp);
6242 
6243                 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
6244                 if (hmeblkp != NULL) {
6245                         ASSERT(!hmeblkp->hblk_shared);
6246                         /*
6247                          * We've encountered a shadow hmeblk so skip the range
6248                          * of the next smaller mapping size.
6249                          */
6250                         if (hmeblkp->hblk_shw_bit) {
6251                                 ASSERT(sfmmup != ksfmmup);
6252                                 ASSERT(hashno > 1);
6253                                 addr = (caddr_t)P2END((uintptr_t)addr,
6254                                     TTEBYTES(hashno - 1));
6255                         } else {
6256                                 addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
6257                                     addr, endaddr, clearflag);
6258                         }
6259                         SFMMU_HASH_UNLOCK(hmebp);
6260                         hashno = 1;
6261                         continue;
6262                 }
6263                 SFMMU_HASH_UNLOCK(hmebp);
6264 
6265                 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
6266                         /*
6267                          * We have traversed the whole list and rehashed
6268                          * if necessary without finding the address to sync.
6269                          * This is ok so we increment the address by the
6270                          * smallest hmeblk range for kernel mappings and the
6271                          * largest hmeblk range, to account for shadow hmeblks,
6272                          * for user mappings and continue.
6273                          */
6274                         if (sfmmup == ksfmmup)
6275                                 addr = (caddr_t)P2END((uintptr_t)addr,
6276                                     TTEBYTES(1));
6277                         else
6278                                 addr = (caddr_t)P2END((uintptr_t)addr,
6279                                     TTEBYTES(hashno));
6280                         hashno = 1;
6281                 } else {
6282                         hashno++;
6283                 }
6284         }
6285         sfmmu_hblks_list_purge(&list, 0);
6286         cpuset = sfmmup->sfmmu_cpusran;
6287         xt_sync(cpuset);
6288 }
6289 
6290 static caddr_t
6291 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
6292         caddr_t endaddr, int clearflag)
6293 {
6294         tte_t   tte, ttemod;
6295         struct sf_hment *sfhmep;
6296         int ttesz;
6297         struct page *pp;
6298         kmutex_t *pml;
6299         int ret;
6300 
6301         ASSERT(hmeblkp->hblk_shw_bit == 0);
6302         ASSERT(!hmeblkp->hblk_shared);
6303 
6304         endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
6305 
6306         ttesz = get_hblk_ttesz(hmeblkp);
6307         HBLKTOHME(sfhmep, hmeblkp, addr);
6308 
6309         while (addr < endaddr) {
6310                 sfmmu_copytte(&sfhmep->hme_tte, &tte);
6311                 if (TTE_IS_VALID(&tte)) {
6312                         pml = NULL;
6313                         pp = sfhmep->hme_page;
6314                         if (pp) {
6315                                 pml = sfmmu_mlist_enter(pp);
6316                         }
6317                         if (pp != sfhmep->hme_page) {
6318                                 /*
6319                                  * tte most have been unloaded
6320                                  * underneath us.  Recheck
6321                                  */
6322                                 ASSERT(pml);
6323                                 sfmmu_mlist_exit(pml);
6324                                 continue;
6325                         }
6326 
6327                         ASSERT(pp == NULL || sfmmu_mlist_held(pp));
6328 
6329                         if (clearflag == HAT_SYNC_ZERORM) {
6330                                 ttemod = tte;
6331                                 TTE_CLR_RM(&ttemod);
6332                                 ret = sfmmu_modifytte_try(&tte, &ttemod,
6333                                     &sfhmep->hme_tte);
6334                                 if (ret < 0) {
6335                                         if (pml) {
6336                                                 sfmmu_mlist_exit(pml);
6337                                         }
6338                                         continue;
6339                                 }
6340 
6341                                 if (ret > 0) {
6342                                         sfmmu_tlb_demap(addr, sfmmup,
6343                                             hmeblkp, 0, 0);
6344                                 }
6345                         }
6346                         sfmmu_ttesync(sfmmup, addr, &tte, pp);
6347                         if (pml) {
6348                                 sfmmu_mlist_exit(pml);
6349                         }
6350                 }
6351                 addr += TTEBYTES(ttesz);
6352                 sfhmep++;
6353         }
6354         return (addr);
6355 }
6356 
6357 /*
6358  * This function will sync a tte to the page struct and it will
6359  * update the hat stats. Currently it allows us to pass a NULL pp
6360  * and we will simply update the stats.  We may want to change this
6361  * so we only keep stats for pages backed by pp's.
6362  */
6363 static void
6364 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
6365 {
6366         uint_t rm = 0;
6367         int     sz;
6368         pgcnt_t npgs;
6369 
6370         ASSERT(TTE_IS_VALID(ttep));
6371 
6372         if (TTE_IS_NOSYNC(ttep)) {
6373                 return;
6374         }
6375 
6376         if (TTE_IS_REF(ttep))  {
6377                 rm = P_REF;
6378         }
6379         if (TTE_IS_MOD(ttep))  {
6380                 rm |= P_MOD;
6381         }
6382 
6383         if (rm == 0) {
6384                 return;
6385         }
6386 
6387         sz = TTE_CSZ(ttep);
6388         if (sfmmup != NULL && sfmmup->sfmmu_rmstat) {
6389                 int i;
6390                 caddr_t vaddr = addr;
6391 
6392                 for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) {
6393                         hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm);
6394                 }
6395 
6396         }
6397 
6398         /*
6399          * XXX I want to use cas to update nrm bits but they
6400          * currently belong in common/vm and not in hat where
6401          * they should be.
6402          * The nrm bits are protected by the same mutex as
6403          * the one that protects the page's mapping list.
6404          */
6405         if (!pp)
6406                 return;
6407         ASSERT(sfmmu_mlist_held(pp));
6408         /*
6409          * If the tte is for a large page, we need to sync all the
6410          * pages covered by the tte.
6411          */
6412         if (sz != TTE8K) {
6413                 ASSERT(pp->p_szc != 0);
6414                 pp = PP_GROUPLEADER(pp, sz);
6415                 ASSERT(sfmmu_mlist_held(pp));
6416         }
6417 
6418         /* Get number of pages from tte size. */
6419         npgs = TTEPAGES(sz);
6420 
6421         do {
6422                 ASSERT(pp);
6423                 ASSERT(sfmmu_mlist_held(pp));
6424                 if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
6425                     ((rm & P_MOD) != 0 && !PP_ISMOD(pp)))
6426                         hat_page_setattr(pp, rm);
6427 
6428                 /*
6429                  * Are we done? If not, we must have a large mapping.
6430                  * For large mappings we need to sync the rest of the pages
6431                  * covered by this tte; goto the next page.
6432                  */
6433         } while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
6434 }
6435 
6436 /*
6437  * Execute pre-callback handler of each pa_hment linked to pp
6438  *
6439  * Inputs:
6440  *   flag: either HAT_PRESUSPEND or HAT_SUSPEND.
6441  *   capture_cpus: pointer to return value (below)
6442  *
6443  * Returns:
6444  *   Propagates the subsystem callback return values back to the caller;
6445  *   returns 0 on success.  If capture_cpus is non-NULL, the value returned
6446  *   is zero if all of the pa_hments are of a type that do not require
6447  *   capturing CPUs prior to suspending the mapping, else it is 1.
6448  */
6449 static int
6450 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
6451 {
6452         struct sf_hment *sfhmep;
6453         struct pa_hment *pahmep;
6454         int (*f)(caddr_t, uint_t, uint_t, void *);
6455         int             ret;
6456         id_t            id;
6457         int             locked = 0;
6458         kmutex_t        *pml;
6459 
6460         ASSERT(PAGE_EXCL(pp));
6461         if (!sfmmu_mlist_held(pp)) {
6462                 pml = sfmmu_mlist_enter(pp);
6463                 locked = 1;
6464         }
6465 
6466         if (capture_cpus)
6467                 *capture_cpus = 0;
6468 
6469 top:
6470         for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6471                 /*
6472                  * skip sf_hments corresponding to VA<->PA mappings;
6473                  * for pa_hment's, hme_tte.ll is zero
6474                  */
6475                 if (!IS_PAHME(sfhmep))
6476                         continue;
6477 
6478                 pahmep = sfhmep->hme_data;
6479                 ASSERT(pahmep != NULL);
6480 
6481                 /*
6482                  * skip if pre-handler has been called earlier in this loop
6483                  */
6484                 if (pahmep->flags & flag)
6485                         continue;
6486 
6487                 id = pahmep->cb_id;
6488                 ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6489                 if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
6490                         *capture_cpus = 1;
6491                 if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
6492                         pahmep->flags |= flag;
6493                         continue;
6494                 }
6495 
6496                 /*
6497                  * Drop the mapping list lock to avoid locking order issues.
6498                  */
6499                 if (locked)
6500                         sfmmu_mlist_exit(pml);
6501 
6502                 ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
6503                 if (ret != 0)
6504                         return (ret);   /* caller must do the cleanup */
6505 
6506                 if (locked) {
6507                         pml = sfmmu_mlist_enter(pp);
6508                         pahmep->flags |= flag;
6509                         goto top;
6510                 }
6511 
6512                 pahmep->flags |= flag;
6513         }
6514 
6515         if (locked)
6516                 sfmmu_mlist_exit(pml);
6517 
6518         return (0);
6519 }
6520 
6521 /*
6522  * Execute post-callback handler of each pa_hment linked to pp
6523  *
6524  * Same overall assumptions and restrictions apply as for
6525  * hat_pageprocess_precallbacks().
6526  */
6527 static void
6528 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
6529 {
6530         pfn_t pgpfn = pp->p_pagenum;
6531         pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
6532         pfn_t newpfn;
6533         struct sf_hment *sfhmep;
6534         struct pa_hment *pahmep;
6535         int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
6536         id_t    id;
6537         int     locked = 0;
6538         kmutex_t *pml;
6539 
6540         ASSERT(PAGE_EXCL(pp));
6541         if (!sfmmu_mlist_held(pp)) {
6542                 pml = sfmmu_mlist_enter(pp);
6543                 locked = 1;
6544         }
6545 
6546 top:
6547         for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6548                 /*
6549                  * skip sf_hments corresponding to VA<->PA mappings;
6550                  * for pa_hment's, hme_tte.ll is zero
6551                  */
6552                 if (!IS_PAHME(sfhmep))
6553                         continue;
6554 
6555                 pahmep = sfhmep->hme_data;
6556                 ASSERT(pahmep != NULL);
6557 
6558                 if ((pahmep->flags & flag) == 0)
6559                         continue;
6560 
6561                 pahmep->flags &= ~flag;
6562 
6563                 id = pahmep->cb_id;
6564                 ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6565                 if ((f = sfmmu_cb_table[id].posthandler) == NULL)
6566                         continue;
6567 
6568                 /*
6569                  * Convert the base page PFN into the constituent PFN
6570                  * which is needed by the callback handler.
6571                  */
6572                 newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
6573 
6574                 /*
6575                  * Drop the mapping list lock to avoid locking order issues.
6576                  */
6577                 if (locked)
6578                         sfmmu_mlist_exit(pml);
6579 
6580                 if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
6581                     != 0)
6582                         panic("sfmmu: posthandler failed");
6583 
6584                 if (locked) {
6585                         pml = sfmmu_mlist_enter(pp);
6586                         goto top;
6587                 }
6588         }
6589 
6590         if (locked)
6591                 sfmmu_mlist_exit(pml);
6592 }
6593 
6594 /*
6595  * Suspend locked kernel mapping
6596  */
6597 void
6598 hat_pagesuspend(struct page *pp)
6599 {
6600         struct sf_hment *sfhmep;
6601         sfmmu_t *sfmmup;
6602         tte_t tte, ttemod;
6603         struct hme_blk *hmeblkp;
6604         caddr_t addr;
6605         int index, cons;
6606         cpuset_t cpuset;
6607 
6608         ASSERT(PAGE_EXCL(pp));
6609         ASSERT(sfmmu_mlist_held(pp));
6610 
6611         mutex_enter(&kpr_suspendlock);
6612 
6613         /*
6614          * We're about to suspend a kernel mapping so mark this thread as
6615          * non-traceable by DTrace. This prevents us from running into issues
6616          * with probe context trying to touch a suspended page
6617          * in the relocation codepath itself.
6618          */
6619         curthread->t_flag |= T_DONTDTRACE;
6620 
6621         index = PP_MAPINDEX(pp);
6622         cons = TTE8K;
6623 
6624 retry:
6625         for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6626 
6627                 if (IS_PAHME(sfhmep))
6628                         continue;
6629 
6630                 if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
6631                         continue;
6632 
6633                 /*
6634                  * Loop until we successfully set the suspend bit in
6635                  * the TTE.
6636                  */
6637 again:
6638                 sfmmu_copytte(&sfhmep->hme_tte, &tte);
6639                 ASSERT(TTE_IS_VALID(&tte));
6640 
6641                 ttemod = tte;
6642                 TTE_SET_SUSPEND(&ttemod);
6643                 if (sfmmu_modifytte_try(&tte, &ttemod,
6644                     &sfhmep->hme_tte) < 0)
6645                         goto again;
6646 
6647                 /*
6648                  * Invalidate TSB entry
6649                  */
6650                 hmeblkp = sfmmu_hmetohblk(sfhmep);
6651 
6652                 sfmmup = hblktosfmmu(hmeblkp);
6653                 ASSERT(sfmmup == ksfmmup);
6654                 ASSERT(!hmeblkp->hblk_shared);
6655 
6656                 addr = tte_to_vaddr(hmeblkp, tte);
6657 
6658                 /*
6659                  * No need to make sure that the TSB for this sfmmu is
6660                  * not being relocated since it is ksfmmup and thus it
6661                  * will never be relocated.
6662                  */
6663                 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
6664 
6665                 /*
6666                  * Update xcall stats
6667                  */
6668                 cpuset = cpu_ready_set;
6669                 CPUSET_DEL(cpuset, CPU->cpu_id);
6670 
6671                 /* LINTED: constant in conditional context */
6672                 SFMMU_XCALL_STATS(ksfmmup);
6673 
6674                 /*
6675                  * Flush TLB entry on remote CPU's
6676                  */
6677                 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
6678                     (uint64_t)ksfmmup);
6679                 xt_sync(cpuset);
6680 
6681                 /*
6682                  * Flush TLB entry on local CPU
6683                  */
6684                 vtag_flushpage(addr, (uint64_t)ksfmmup);
6685         }
6686 
6687         while (index != 0) {
6688                 index = index >> 1;
6689                 if (index != 0)
6690                         cons++;
6691                 if (index & 0x1) {
6692                         pp = PP_GROUPLEADER(pp, cons);
6693                         goto retry;
6694                 }
6695         }
6696 }
6697 
6698 #ifdef  DEBUG
6699 
6700 #define N_PRLE  1024
6701 struct prle {
6702         page_t *targ;
6703         page_t *repl;
6704         int status;
6705         int pausecpus;
6706         hrtime_t whence;
6707 };
6708 
6709 static struct prle page_relocate_log[N_PRLE];
6710 static int prl_entry;
6711 static kmutex_t prl_mutex;
6712 
6713 #define PAGE_RELOCATE_LOG(t, r, s, p)                                   \
6714         mutex_enter(&prl_mutex);                                    \
6715         page_relocate_log[prl_entry].targ = *(t);                       \
6716         page_relocate_log[prl_entry].repl = *(r);                       \
6717         page_relocate_log[prl_entry].status = (s);                      \
6718         page_relocate_log[prl_entry].pausecpus = (p);                   \
6719         page_relocate_log[prl_entry].whence = gethrtime();              \
6720         prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1;     \
6721         mutex_exit(&prl_mutex);
6722 
6723 #else   /* !DEBUG */
6724 #define PAGE_RELOCATE_LOG(t, r, s, p)
6725 #endif
6726 
6727 /*
6728  * Core Kernel Page Relocation Algorithm
6729  *
6730  * Input:
6731  *
6732  * target :     constituent pages are SE_EXCL locked.
6733  * replacement: constituent pages are SE_EXCL locked.
6734  *
6735  * Output:
6736  *
6737  * nrelocp:     number of pages relocated
6738  */
6739 int
6740 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
6741 {
6742         page_t          *targ, *repl;
6743         page_t          *tpp, *rpp;
6744         kmutex_t        *low, *high;
6745         spgcnt_t        npages, i;
6746         page_t          *pl = NULL;
6747         int             old_pil;
6748         cpuset_t        cpuset;
6749         int             cap_cpus;
6750         int             ret;
6751 #ifdef VAC
6752         int             cflags = 0;
6753 #endif
6754 
6755         if (!kcage_on || PP_ISNORELOC(*target)) {
6756                 PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
6757                 return (EAGAIN);
6758         }
6759 
6760         mutex_enter(&kpr_mutex);
6761         kreloc_thread = curthread;
6762 
6763         targ = *target;
6764         repl = *replacement;
6765         ASSERT(repl != NULL);
6766         ASSERT(targ->p_szc == repl->p_szc);
6767 
6768         npages = page_get_pagecnt(targ->p_szc);
6769 
6770         /*
6771          * unload VA<->PA mappings that are not locked
6772          */
6773         tpp = targ;
6774         for (i = 0; i < npages; i++) {
6775                 (void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
6776                 tpp++;
6777         }
6778 
6779         /*
6780          * Do "presuspend" callbacks, in a context from which we can still
6781          * block as needed. Note that we don't hold the mapping list lock
6782          * of "targ" at this point due to potential locking order issues;
6783          * we assume that between the hat_pageunload() above and holding
6784          * the SE_EXCL lock that the mapping list *cannot* change at this
6785          * point.
6786          */
6787         ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
6788         if (ret != 0) {
6789                 /*
6790                  * EIO translates to fatal error, for all others cleanup
6791                  * and return EAGAIN.
6792                  */
6793                 ASSERT(ret != EIO);
6794                 hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
6795                 PAGE_RELOCATE_LOG(target, replacement, ret, -1);
6796                 kreloc_thread = NULL;
6797                 mutex_exit(&kpr_mutex);
6798                 return (EAGAIN);
6799         }
6800 
6801         /*
6802          * acquire p_mapping list lock for both the target and replacement
6803          * root pages.
6804          *
6805          * low and high refer to the need to grab the mlist locks in a
6806          * specific order in order to prevent race conditions.  Thus the
6807          * lower lock must be grabbed before the higher lock.
6808          *
6809          * This will block hat_unload's accessing p_mapping list.  Since
6810          * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6811          * blocked.  Thus, no one else will be accessing the p_mapping list
6812          * while we suspend and reload the locked mapping below.
6813          */
6814         tpp = targ;
6815         rpp = repl;
6816         sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6817 
6818         kpreempt_disable();
6819 
6820         /*
6821          * We raise our PIL to 13 so that we don't get captured by
6822          * another CPU or pinned by an interrupt thread.  We can't go to
6823          * PIL 14 since the nexus driver(s) may need to interrupt at
6824          * that level in the case of IOMMU pseudo mappings.
6825          */
6826         cpuset = cpu_ready_set;
6827         CPUSET_DEL(cpuset, CPU->cpu_id);
6828         if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6829                 old_pil = splr(XCALL_PIL);
6830         } else {
6831                 old_pil = -1;
6832                 xc_attention(cpuset);
6833         }
6834         ASSERT(getpil() == XCALL_PIL);
6835 
6836         /*
6837          * Now do suspend callbacks. In the case of an IOMMU mapping
6838          * this will suspend all DMA activity to the page while it is
6839          * being relocated. Since we are well above LOCK_LEVEL and CPUs
6840          * may be captured at this point we should have acquired any needed
6841          * locks in the presuspend callback.
6842          */
6843         ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6844         if (ret != 0) {
6845                 repl = targ;
6846                 goto suspend_fail;
6847         }
6848 
6849         /*
6850          * Raise the PIL yet again, this time to block all high-level
6851          * interrupts on this CPU. This is necessary to prevent an
6852          * interrupt routine from pinning the thread which holds the
6853          * mapping suspended and then touching the suspended page.
6854          *
6855          * Once the page is suspended we also need to be careful to
6856          * avoid calling any functions which touch any seg_kmem memory
6857          * since that memory may be backed by the very page we are
6858          * relocating in here!
6859          */
6860         hat_pagesuspend(targ);
6861 
6862         /*
6863          * Now that we are confident everybody has stopped using this page,
6864          * copy the page contents.  Note we use a physical copy to prevent
6865          * locking issues and to avoid fpRAS because we can't handle it in
6866          * this context.
6867          */
6868         for (i = 0; i < npages; i++, tpp++, rpp++) {
6869 #ifdef VAC
6870                 /*
6871                  * If the replacement has a different vcolor than
6872                  * the one being replacd, we need to handle VAC
6873                  * consistency for it just as we were setting up
6874                  * a new mapping to it.
6875                  */
6876                 if ((PP_GET_VCOLOR(rpp) != NO_VCOLOR) &&
6877                     (tpp->p_vcolor != rpp->p_vcolor) &&
6878                     !CacheColor_IsFlushed(cflags, PP_GET_VCOLOR(rpp))) {
6879                         CacheColor_SetFlushed(cflags, PP_GET_VCOLOR(rpp));
6880                         sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
6881                             rpp->p_pagenum);
6882                 }
6883 #endif
6884                 /*
6885                  * Copy the contents of the page.
6886                  */
6887                 ppcopy_kernel(tpp, rpp);
6888         }
6889 
6890         tpp = targ;
6891         rpp = repl;
6892         for (i = 0; i < npages; i++, tpp++, rpp++) {
6893                 /*
6894                  * Copy attributes.  VAC consistency was handled above,
6895                  * if required.
6896                  */
6897                 rpp->p_nrm = tpp->p_nrm;
6898                 tpp->p_nrm = 0;
6899                 rpp->p_index = tpp->p_index;
6900                 tpp->p_index = 0;
6901 #ifdef VAC
6902                 rpp->p_vcolor = tpp->p_vcolor;
6903 #endif
6904         }
6905 
6906         /*
6907          * First, unsuspend the page, if we set the suspend bit, and transfer
6908          * the mapping list from the target page to the replacement page.
6909          * Next process postcallbacks; since pa_hment's are linked only to the
6910          * p_mapping list of root page, we don't iterate over the constituent
6911          * pages.
6912          */
6913         hat_pagereload(targ, repl);
6914 
6915 suspend_fail:
6916         hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
6917 
6918         /*
6919          * Now lower our PIL and release any captured CPUs since we
6920          * are out of the "danger zone".  After this it will again be
6921          * safe to acquire adaptive mutex locks, or to drop them...
6922          */
6923         if (old_pil != -1) {
6924                 splx(old_pil);
6925         } else {
6926                 xc_dismissed(cpuset);
6927         }
6928 
6929         kpreempt_enable();
6930 
6931         sfmmu_mlist_reloc_exit(low, high);
6932 
6933         /*
6934          * Postsuspend callbacks should drop any locks held across
6935          * the suspend callbacks.  As before, we don't hold the mapping
6936          * list lock at this point.. our assumption is that the mapping
6937          * list still can't change due to our holding SE_EXCL lock and
6938          * there being no unlocked mappings left. Hence the restriction
6939          * on calling context to hat_delete_callback()
6940          */
6941         hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
6942         if (ret != 0) {
6943                 /*
6944                  * The second presuspend call failed: we got here through
6945                  * the suspend_fail label above.
6946                  */
6947                 ASSERT(ret != EIO);
6948                 PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
6949                 kreloc_thread = NULL;
6950                 mutex_exit(&kpr_mutex);
6951                 return (EAGAIN);
6952         }
6953 
6954         /*
6955          * Now that we're out of the performance critical section we can
6956          * take care of updating the hash table, since we still
6957          * hold all the pages locked SE_EXCL at this point we
6958          * needn't worry about things changing out from under us.
6959          */
6960         tpp = targ;
6961         rpp = repl;
6962         for (i = 0; i < npages; i++, tpp++, rpp++) {
6963 
6964                 /*
6965                  * replace targ with replacement in page_hash table
6966                  */
6967                 targ = tpp;
6968                 page_relocate_hash(rpp, targ);
6969 
6970                 /*
6971                  * concatenate target; caller of platform_page_relocate()
6972                  * expects target to be concatenated after returning.
6973                  */
6974                 ASSERT(targ->p_next == targ);
6975                 ASSERT(targ->p_prev == targ);
6976                 page_list_concat(&pl, &targ);
6977         }
6978 
6979         ASSERT(*target == pl);
6980         *nrelocp = npages;
6981         PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
6982         kreloc_thread = NULL;
6983         mutex_exit(&kpr_mutex);
6984         return (0);
6985 }
6986 
6987 /*
6988  * Called when stray pa_hments are found attached to a page which is
6989  * being freed.  Notify the subsystem which attached the pa_hment of
6990  * the error if it registered a suitable handler, else panic.
6991  */
6992 static void
6993 sfmmu_pahment_leaked(struct pa_hment *pahmep)
6994 {
6995         id_t cb_id = pahmep->cb_id;
6996 
6997         ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
6998         if (sfmmu_cb_table[cb_id].errhandler != NULL) {
6999                 if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
7000                     HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
7001                         return;         /* non-fatal */
7002         }
7003         panic("pa_hment leaked: 0x%p", (void *)pahmep);
7004 }
7005 
7006 /*
7007  * Remove all mappings to page 'pp'.
7008  */
7009 int
7010 hat_pageunload(struct page *pp, uint_t forceflag)
7011 {
7012         struct page *origpp = pp;
7013         struct sf_hment *sfhme, *tmphme;
7014         struct hme_blk *hmeblkp;
7015         kmutex_t *pml;
7016 #ifdef VAC
7017         kmutex_t *pmtx;
7018 #endif
7019         cpuset_t cpuset, tset;
7020         int index, cons;
7021         int pa_hments;
7022 
7023         ASSERT(PAGE_EXCL(pp));
7024 
7025         tmphme = NULL;
7026         pa_hments = 0;
7027         CPUSET_ZERO(cpuset);
7028 
7029         pml = sfmmu_mlist_enter(pp);
7030 
7031 #ifdef VAC
7032         if (pp->p_kpmref)
7033                 sfmmu_kpm_pageunload(pp);
7034         ASSERT(!PP_ISMAPPED_KPM(pp));
7035 #endif
7036         /*
7037          * Clear vpm reference. Since the page is exclusively locked
7038          * vpm cannot be referencing it.
7039          */
7040         if (vpm_enable) {
7041                 pp->p_vpmref = 0;
7042         }
7043 
7044         index = PP_MAPINDEX(pp);
7045         cons = TTE8K;
7046 retry:
7047         for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7048                 tmphme = sfhme->hme_next;
7049 
7050                 if (IS_PAHME(sfhme)) {
7051                         ASSERT(sfhme->hme_data != NULL);
7052                         pa_hments++;
7053                         continue;
7054                 }
7055 
7056                 hmeblkp = sfmmu_hmetohblk(sfhme);
7057 
7058                 /*
7059                  * If there are kernel mappings don't unload them, they will
7060                  * be suspended.
7061                  */
7062                 if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
7063                     hmeblkp->hblk_tag.htag_id == ksfmmup)
7064                         continue;
7065 
7066                 tset = sfmmu_pageunload(pp, sfhme, cons);
7067                 CPUSET_OR(cpuset, tset);
7068         }
7069 
7070         while (index != 0) {
7071                 index = index >> 1;
7072                 if (index != 0)
7073                         cons++;
7074                 if (index & 0x1) {
7075                         /* Go to leading page */
7076                         pp = PP_GROUPLEADER(pp, cons);
7077                         ASSERT(sfmmu_mlist_held(pp));
7078                         goto retry;
7079                 }
7080         }
7081 
7082         /*
7083          * cpuset may be empty if the page was only mapped by segkpm,
7084          * in which case we won't actually cross-trap.
7085          */
7086         xt_sync(cpuset);
7087 
7088         /*
7089          * The page should have no mappings at this point, unless
7090          * we were called from hat_page_relocate() in which case we
7091          * leave the locked mappings which will be suspended later.
7092          */
7093         ASSERT(!PP_ISMAPPED(origpp) || pa_hments ||
7094             (forceflag == SFMMU_KERNEL_RELOC));
7095 
7096 #ifdef VAC
7097         if (PP_ISTNC(pp)) {
7098                 if (cons == TTE8K) {
7099                         pmtx = sfmmu_page_enter(pp);
7100                         PP_CLRTNC(pp);
7101                         sfmmu_page_exit(pmtx);
7102                 } else {
7103                         conv_tnc(pp, cons);
7104                 }
7105         }
7106 #endif  /* VAC */
7107 
7108         if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
7109                 /*
7110                  * Unlink any pa_hments and free them, calling back
7111                  * the responsible subsystem to notify it of the error.
7112                  * This can occur in situations such as drivers leaking
7113                  * DMA handles: naughty, but common enough that we'd like
7114                  * to keep the system running rather than bringing it
7115                  * down with an obscure error like "pa_hment leaked"
7116                  * which doesn't aid the user in debugging their driver.
7117                  */
7118                 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7119                         tmphme = sfhme->hme_next;
7120                         if (IS_PAHME(sfhme)) {
7121                                 struct pa_hment *pahmep = sfhme->hme_data;
7122                                 sfmmu_pahment_leaked(pahmep);
7123                                 HME_SUB(sfhme, pp);
7124                                 kmem_cache_free(pa_hment_cache, pahmep);
7125                         }
7126                 }
7127 
7128                 ASSERT(!PP_ISMAPPED(origpp));
7129         }
7130 
7131         sfmmu_mlist_exit(pml);
7132 
7133         return (0);
7134 }
7135 
7136 cpuset_t
7137 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
7138 {
7139         struct hme_blk *hmeblkp;
7140         sfmmu_t *sfmmup;
7141         tte_t tte, ttemod;
7142 #ifdef DEBUG
7143         tte_t orig_old;
7144 #endif /* DEBUG */
7145         caddr_t addr;
7146         int ttesz;
7147         int ret;
7148         cpuset_t cpuset;
7149 
7150         ASSERT(pp != NULL);
7151         ASSERT(sfmmu_mlist_held(pp));
7152         ASSERT(!PP_ISKAS(pp));
7153 
7154         CPUSET_ZERO(cpuset);
7155 
7156         hmeblkp = sfmmu_hmetohblk(sfhme);
7157 
7158 readtte:
7159         sfmmu_copytte(&sfhme->hme_tte, &tte);
7160         if (TTE_IS_VALID(&tte)) {
7161                 sfmmup = hblktosfmmu(hmeblkp);
7162                 ttesz = get_hblk_ttesz(hmeblkp);
7163                 /*
7164                  * Only unload mappings of 'cons' size.
7165                  */
7166                 if (ttesz != cons)
7167                         return (cpuset);
7168 
7169                 /*
7170                  * Note that we have p_mapping lock, but no hash lock here.
7171                  * hblk_unload() has to have both hash lock AND p_mapping
7172                  * lock before it tries to modify tte. So, the tte could
7173                  * not become invalid in the sfmmu_modifytte_try() below.
7174                  */
7175                 ttemod = tte;
7176 #ifdef DEBUG
7177                 orig_old = tte;
7178 #endif /* DEBUG */
7179 
7180                 TTE_SET_INVALID(&ttemod);
7181                 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7182                 if (ret < 0) {
7183 #ifdef DEBUG
7184                         /* only R/M bits can change. */
7185                         chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
7186 #endif /* DEBUG */
7187                         goto readtte;
7188                 }
7189 
7190                 if (ret == 0) {
7191                         panic("pageunload: cas failed?");
7192                 }
7193 
7194                 addr = tte_to_vaddr(hmeblkp, tte);
7195 
7196                 if (hmeblkp->hblk_shared) {
7197                         sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7198                         uint_t rid = hmeblkp->hblk_tag.htag_rid;
7199                         sf_region_t *rgnp;
7200                         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7201                         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7202                         ASSERT(srdp != NULL);
7203                         rgnp = srdp->srd_hmergnp[rid];
7204                         SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
7205                         cpuset = sfmmu_rgntlb_demap(addr, rgnp, hmeblkp, 1);
7206                         sfmmu_ttesync(NULL, addr, &tte, pp);
7207                         ASSERT(rgnp->rgn_ttecnt[ttesz] > 0);
7208                         atomic_dec_ulong(&rgnp->rgn_ttecnt[ttesz]);
7209                 } else {
7210                         sfmmu_ttesync(sfmmup, addr, &tte, pp);
7211                         atomic_dec_ulong(&sfmmup->sfmmu_ttecnt[ttesz]);
7212 
7213                         /*
7214                          * We need to flush the page from the virtual cache
7215                          * in order to prevent a virtual cache alias
7216                          * inconsistency. The particular scenario we need
7217                          * to worry about is:
7218                          * Given:  va1 and va2 are two virtual address that
7219                          * alias and will map the same physical address.
7220                          * 1.   mapping exists from va1 to pa and data has
7221                          *      been read into the cache.
7222                          * 2.   unload va1.
7223                          * 3.   load va2 and modify data using va2.
7224                          * 4    unload va2.
7225                          * 5.   load va1 and reference data.  Unless we flush
7226                          *      the data cache when we unload we will get
7227                          *      stale data.
7228                          * This scenario is taken care of by using virtual
7229                          * page coloring.
7230                          */
7231                         if (sfmmup->sfmmu_ismhat) {
7232                                 /*
7233                                  * Flush TSBs, TLBs and caches
7234                                  * of every process
7235                                  * sharing this ism segment.
7236                                  */
7237                                 sfmmu_hat_lock_all();
7238                                 mutex_enter(&ism_mlist_lock);
7239                                 kpreempt_disable();
7240                                 sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
7241                                     pp->p_pagenum, CACHE_NO_FLUSH);
7242                                 kpreempt_enable();
7243                                 mutex_exit(&ism_mlist_lock);
7244                                 sfmmu_hat_unlock_all();
7245                                 cpuset = cpu_ready_set;
7246                         } else {
7247                                 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7248                                 cpuset = sfmmup->sfmmu_cpusran;
7249                         }
7250                 }
7251 
7252                 /*
7253                  * Hme_sub has to run after ttesync() and a_rss update.
7254                  * See hblk_unload().
7255                  */
7256                 HME_SUB(sfhme, pp);
7257                 membar_stst();
7258 
7259                 /*
7260                  * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
7261                  * since pteload may have done a HME_ADD() right after
7262                  * we did the HME_SUB() above. Hmecnt is now maintained
7263                  * by cas only. no lock guranteed its value. The only
7264                  * gurantee we have is the hmecnt should not be less than
7265                  * what it should be so the hblk will not be taken away.
7266                  * It's also important that we decremented the hmecnt after
7267                  * we are done with hmeblkp so that this hmeblk won't be
7268                  * stolen.
7269                  */
7270                 ASSERT(hmeblkp->hblk_hmecnt > 0);
7271                 ASSERT(hmeblkp->hblk_vcnt > 0);
7272                 atomic_dec_16(&hmeblkp->hblk_vcnt);
7273                 atomic_dec_16(&hmeblkp->hblk_hmecnt);
7274                 /*
7275                  * This is bug 4063182.
7276                  * XXX: fixme
7277                  * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
7278                  *      !hmeblkp->hblk_lckcnt);
7279                  */
7280         } else {
7281                 panic("invalid tte? pp %p &tte %p",
7282                     (void *)pp, (void *)&tte);
7283         }
7284 
7285         return (cpuset);
7286 }
7287 
7288 /*
7289  * While relocating a kernel page, this function will move the mappings
7290  * from tpp to dpp and modify any associated data with these mappings.
7291  * It also unsuspends the suspended kernel mapping.
7292  */
7293 static void
7294 hat_pagereload(struct page *tpp, struct page *dpp)
7295 {
7296         struct sf_hment *sfhme;
7297         tte_t tte, ttemod;
7298         int index, cons;
7299 
7300         ASSERT(getpil() == PIL_MAX);
7301         ASSERT(sfmmu_mlist_held(tpp));
7302         ASSERT(sfmmu_mlist_held(dpp));
7303 
7304         index = PP_MAPINDEX(tpp);
7305         cons = TTE8K;
7306 
7307         /* Update real mappings to the page */
7308 retry:
7309         for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
7310                 if (IS_PAHME(sfhme))
7311                         continue;
7312                 sfmmu_copytte(&sfhme->hme_tte, &tte);
7313                 ttemod = tte;
7314 
7315                 /*
7316                  * replace old pfn with new pfn in TTE
7317                  */
7318                 PFN_TO_TTE(ttemod, dpp->p_pagenum);
7319 
7320                 /*
7321                  * clear suspend bit
7322                  */
7323                 ASSERT(TTE_IS_SUSPEND(&ttemod));
7324                 TTE_CLR_SUSPEND(&ttemod);
7325 
7326                 if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
7327                         panic("hat_pagereload(): sfmmu_modifytte_try() failed");
7328 
7329                 /*
7330                  * set hme_page point to new page
7331                  */
7332                 sfhme->hme_page = dpp;
7333         }
7334 
7335         /*
7336          * move p_mapping list from old page to new page
7337          */
7338         dpp->p_mapping = tpp->p_mapping;
7339         tpp->p_mapping = NULL;
7340         dpp->p_share = tpp->p_share;
7341         tpp->p_share = 0;
7342 
7343         while (index != 0) {
7344                 index = index >> 1;
7345                 if (index != 0)
7346                         cons++;
7347                 if (index & 0x1) {
7348                         tpp = PP_GROUPLEADER(tpp, cons);
7349                         dpp = PP_GROUPLEADER(dpp, cons);
7350                         goto retry;
7351                 }
7352         }
7353 
7354         curthread->t_flag &= ~T_DONTDTRACE;
7355         mutex_exit(&kpr_suspendlock);
7356 }
7357 
7358 uint_t
7359 hat_pagesync(struct page *pp, uint_t clearflag)
7360 {
7361         struct sf_hment *sfhme, *tmphme = NULL;
7362         struct hme_blk *hmeblkp;
7363         kmutex_t *pml;
7364         cpuset_t cpuset, tset;
7365         int     index, cons;
7366         extern  ulong_t po_share;
7367         page_t  *save_pp = pp;
7368         int     stop_on_sh = 0;
7369         uint_t  shcnt;
7370 
7371         CPUSET_ZERO(cpuset);
7372 
7373         if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
7374                 return (PP_GENERIC_ATTR(pp));
7375         }
7376 
7377         if ((clearflag & HAT_SYNC_ZERORM) == 0) {
7378                 if ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(pp)) {
7379                         return (PP_GENERIC_ATTR(pp));
7380                 }
7381                 if ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(pp)) {
7382                         return (PP_GENERIC_ATTR(pp));
7383                 }
7384                 if (clearflag & HAT_SYNC_STOPON_SHARED) {
7385                         if (pp->p_share > po_share) {
7386                                 hat_page_setattr(pp, P_REF);
7387                                 return (PP_GENERIC_ATTR(pp));
7388                         }
7389                         stop_on_sh = 1;
7390                         shcnt = 0;
7391                 }
7392         }
7393 
7394         clearflag &= ~HAT_SYNC_STOPON_SHARED;
7395         pml = sfmmu_mlist_enter(pp);
7396         index = PP_MAPINDEX(pp);
7397         cons = TTE8K;
7398 retry:
7399         for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7400                 /*
7401                  * We need to save the next hment on the list since
7402                  * it is possible for pagesync to remove an invalid hment
7403                  * from the list.
7404                  */
7405                 tmphme = sfhme->hme_next;
7406                 if (IS_PAHME(sfhme))
7407                         continue;
7408                 /*
7409                  * If we are looking for large mappings and this hme doesn't
7410                  * reach the range we are seeking, just ignore it.
7411                  */
7412                 hmeblkp = sfmmu_hmetohblk(sfhme);
7413 
7414                 if (hme_size(sfhme) < cons)
7415                         continue;
7416 
7417                 if (stop_on_sh) {
7418                         if (hmeblkp->hblk_shared) {
7419                                 sf_srd_t *srdp = hblktosrd(hmeblkp);
7420                                 uint_t rid = hmeblkp->hblk_tag.htag_rid;
7421                                 sf_region_t *rgnp;
7422                                 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7423                                 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7424                                 ASSERT(srdp != NULL);
7425                                 rgnp = srdp->srd_hmergnp[rid];
7426                                 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
7427                                     rgnp, rid);
7428                                 shcnt += rgnp->rgn_refcnt;
7429                         } else {
7430                                 shcnt++;
7431                         }
7432                         if (shcnt > po_share) {
7433                                 /*
7434                                  * tell the pager to spare the page this time
7435                                  * around.
7436                                  */
7437                                 hat_page_setattr(save_pp, P_REF);
7438                                 index = 0;
7439                                 break;
7440                         }
7441                 }
7442                 tset = sfmmu_pagesync(pp, sfhme,
7443                     clearflag & ~HAT_SYNC_STOPON_RM);
7444                 CPUSET_OR(cpuset, tset);
7445 
7446                 /*
7447                  * If clearflag is HAT_SYNC_DONTZERO, break out as soon
7448                  * as the "ref" or "mod" is set or share cnt exceeds po_share.
7449                  */
7450                 if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
7451                     (((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
7452                     ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)))) {
7453                         index = 0;
7454                         break;
7455                 }
7456         }
7457 
7458         while (index) {
7459                 index = index >> 1;
7460                 cons++;
7461                 if (index & 0x1) {
7462                         /* Go to leading page */
7463                         pp = PP_GROUPLEADER(pp, cons);
7464                         goto retry;
7465                 }
7466         }
7467 
7468         xt_sync(cpuset);
7469         sfmmu_mlist_exit(pml);
7470         return (PP_GENERIC_ATTR(save_pp));
7471 }
7472 
7473 /*
7474  * Get all the hardware dependent attributes for a page struct
7475  */
7476 static cpuset_t
7477 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
7478         uint_t clearflag)
7479 {
7480         caddr_t addr;
7481         tte_t tte, ttemod;
7482         struct hme_blk *hmeblkp;
7483         int ret;
7484         sfmmu_t *sfmmup;
7485         cpuset_t cpuset;
7486 
7487         ASSERT(pp != NULL);
7488         ASSERT(sfmmu_mlist_held(pp));
7489         ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
7490             (clearflag == HAT_SYNC_ZERORM));
7491 
7492         SFMMU_STAT(sf_pagesync);
7493 
7494         CPUSET_ZERO(cpuset);
7495 
7496 sfmmu_pagesync_retry:
7497 
7498         sfmmu_copytte(&sfhme->hme_tte, &tte);
7499         if (TTE_IS_VALID(&tte)) {
7500                 hmeblkp = sfmmu_hmetohblk(sfhme);
7501                 sfmmup = hblktosfmmu(hmeblkp);
7502                 addr = tte_to_vaddr(hmeblkp, tte);
7503                 if (clearflag == HAT_SYNC_ZERORM) {
7504                         ttemod = tte;
7505                         TTE_CLR_RM(&ttemod);
7506                         ret = sfmmu_modifytte_try(&tte, &ttemod,
7507                             &sfhme->hme_tte);
7508                         if (ret < 0) {
7509                                 /*
7510                                  * cas failed and the new value is not what
7511                                  * we want.
7512                                  */
7513                                 goto sfmmu_pagesync_retry;
7514                         }
7515 
7516                         if (ret > 0) {
7517                                 /* we win the cas */
7518                                 if (hmeblkp->hblk_shared) {
7519                                         sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7520                                         uint_t rid =
7521                                             hmeblkp->hblk_tag.htag_rid;
7522                                         sf_region_t *rgnp;
7523                                         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7524                                         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7525                                         ASSERT(srdp != NULL);
7526                                         rgnp = srdp->srd_hmergnp[rid];
7527                                         SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7528                                             srdp, rgnp, rid);
7529                                         cpuset = sfmmu_rgntlb_demap(addr,
7530                                             rgnp, hmeblkp, 1);
7531                                 } else {
7532                                         sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
7533                                             0, 0);
7534                                         cpuset = sfmmup->sfmmu_cpusran;
7535                                 }
7536                         }
7537                 }
7538                 sfmmu_ttesync(hmeblkp->hblk_shared ? NULL : sfmmup, addr,
7539                     &tte, pp);
7540         }
7541         return (cpuset);
7542 }
7543 
7544 /*
7545  * Remove write permission from a mappings to a page, so that
7546  * we can detect the next modification of it. This requires modifying
7547  * the TTE then invalidating (demap) any TLB entry using that TTE.
7548  * This code is similar to sfmmu_pagesync().
7549  */
7550 static cpuset_t
7551 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
7552 {
7553         caddr_t addr;
7554         tte_t tte;
7555         tte_t ttemod;
7556         struct hme_blk *hmeblkp;
7557         int ret;
7558         sfmmu_t *sfmmup;
7559         cpuset_t cpuset;
7560 
7561         ASSERT(pp != NULL);
7562         ASSERT(sfmmu_mlist_held(pp));
7563 
7564         CPUSET_ZERO(cpuset);
7565         SFMMU_STAT(sf_clrwrt);
7566 
7567 retry:
7568 
7569         sfmmu_copytte(&sfhme->hme_tte, &tte);
7570         if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
7571                 hmeblkp = sfmmu_hmetohblk(sfhme);
7572                 sfmmup = hblktosfmmu(hmeblkp);
7573                 addr = tte_to_vaddr(hmeblkp, tte);
7574 
7575                 ttemod = tte;
7576                 TTE_CLR_WRT(&ttemod);
7577                 TTE_CLR_MOD(&ttemod);
7578                 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7579 
7580                 /*
7581                  * if cas failed and the new value is not what
7582                  * we want retry
7583                  */
7584                 if (ret < 0)
7585                         goto retry;
7586 
7587                 /* we win the cas */
7588                 if (ret > 0) {
7589                         if (hmeblkp->hblk_shared) {
7590                                 sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7591                                 uint_t rid = hmeblkp->hblk_tag.htag_rid;
7592                                 sf_region_t *rgnp;
7593                                 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7594                                 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7595                                 ASSERT(srdp != NULL);
7596                                 rgnp = srdp->srd_hmergnp[rid];
7597                                 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7598                                     srdp, rgnp, rid);
7599                                 cpuset = sfmmu_rgntlb_demap(addr,
7600                                     rgnp, hmeblkp, 1);
7601                         } else {
7602                                 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7603                                 cpuset = sfmmup->sfmmu_cpusran;
7604                         }
7605                 }
7606         }
7607 
7608         return (cpuset);
7609 }
7610 
7611 /*
7612  * Walk all mappings of a page, removing write permission and clearing the
7613  * ref/mod bits. This code is similar to hat_pagesync()
7614  */
7615 static void
7616 hat_page_clrwrt(page_t *pp)
7617 {
7618         struct sf_hment *sfhme;
7619         struct sf_hment *tmphme = NULL;
7620         kmutex_t *pml;
7621         cpuset_t cpuset;
7622         cpuset_t tset;
7623         int     index;
7624         int      cons;
7625 
7626         CPUSET_ZERO(cpuset);
7627 
7628         pml = sfmmu_mlist_enter(pp);
7629         index = PP_MAPINDEX(pp);
7630         cons = TTE8K;
7631 retry:
7632         for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7633                 tmphme = sfhme->hme_next;
7634 
7635                 /*
7636                  * If we are looking for large mappings and this hme doesn't
7637                  * reach the range we are seeking, just ignore its.
7638                  */
7639 
7640                 if (hme_size(sfhme) < cons)
7641                         continue;
7642 
7643                 tset = sfmmu_pageclrwrt(pp, sfhme);
7644                 CPUSET_OR(cpuset, tset);
7645         }
7646 
7647         while (index) {
7648                 index = index >> 1;
7649                 cons++;
7650                 if (index & 0x1) {
7651                         /* Go to leading page */
7652                         pp = PP_GROUPLEADER(pp, cons);
7653                         goto retry;
7654                 }
7655         }
7656 
7657         xt_sync(cpuset);
7658         sfmmu_mlist_exit(pml);
7659 }
7660 
7661 /*
7662  * Set the given REF/MOD/RO bits for the given page.
7663  * For a vnode with a sorted v_pages list, we need to change
7664  * the attributes and the v_pages list together under page_vnode_mutex.
7665  */
7666 void
7667 hat_page_setattr(page_t *pp, uint_t flag)
7668 {
7669         vnode_t         *vp = pp->p_vnode;
7670         page_t          **listp;
7671         kmutex_t        *pmtx;
7672         kmutex_t        *vphm = NULL;
7673         int             noshuffle;
7674 
7675         noshuffle = flag & P_NSH;
7676         flag &= ~P_NSH;
7677 
7678         ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7679 
7680         /*
7681          * nothing to do if attribute already set
7682          */
7683         if ((pp->p_nrm & flag) == flag)
7684                 return;
7685 
7686         if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
7687             !noshuffle) {
7688                 vphm = page_vnode_mutex(vp);
7689                 mutex_enter(vphm);
7690         }
7691 
7692         pmtx = sfmmu_page_enter(pp);
7693         pp->p_nrm |= flag;
7694         sfmmu_page_exit(pmtx);
7695 
7696         if (vphm != NULL) {
7697                 /*
7698                  * Some File Systems examine v_pages for NULL w/o
7699                  * grabbing the vphm mutex. Must not let it become NULL when
7700                  * pp is the only page on the list.
7701                  */
7702                 if (pp->p_vpnext != pp) {
7703                         page_vpsub(&vp->v_pages, pp);
7704                         if (vp->v_pages != NULL)
7705                                 listp = &vp->v_pages->p_vpprev->p_vpnext;
7706                         else
7707                                 listp = &vp->v_pages;
7708                         page_vpadd(listp, pp);
7709                 }
7710                 mutex_exit(vphm);
7711         }
7712 }
7713 
7714 void
7715 hat_page_clrattr(page_t *pp, uint_t flag)
7716 {
7717         vnode_t         *vp = pp->p_vnode;
7718         kmutex_t        *pmtx;
7719 
7720         ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7721 
7722         pmtx = sfmmu_page_enter(pp);
7723 
7724         /*
7725          * Caller is expected to hold page's io lock for VMODSORT to work
7726          * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
7727          * bit is cleared.
7728          * We don't have assert to avoid tripping some existing third party
7729          * code. The dirty page is moved back to top of the v_page list
7730          * after IO is done in pvn_write_done().
7731          */
7732         pp->p_nrm &= ~flag;
7733         sfmmu_page_exit(pmtx);
7734 
7735         if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
7736 
7737                 /*
7738                  * VMODSORT works by removing write permissions and getting
7739                  * a fault when a page is made dirty. At this point
7740                  * we need to remove write permission from all mappings
7741                  * to this page.
7742                  */
7743                 hat_page_clrwrt(pp);
7744         }
7745 }
7746 
7747 uint_t
7748 hat_page_getattr(page_t *pp, uint_t flag)
7749 {
7750         ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7751         return ((uint_t)(pp->p_nrm & flag));
7752 }
7753 
7754 /*
7755  * DEBUG kernels: verify that a kernel va<->pa translation
7756  * is safe by checking the underlying page_t is in a page
7757  * relocation-safe state.
7758  */
7759 #ifdef  DEBUG
7760 void
7761 sfmmu_check_kpfn(pfn_t pfn)
7762 {
7763         page_t *pp;
7764         int index, cons;
7765 
7766         if (hat_check_vtop == 0)
7767                 return;
7768 
7769         if (kvseg.s_base == NULL || panicstr)
7770                 return;
7771 
7772         pp = page_numtopp_nolock(pfn);
7773         if (!pp)
7774                 return;
7775 
7776         if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7777                 return;
7778 
7779         /*
7780          * Handed a large kernel page, we dig up the root page since we
7781          * know the root page might have the lock also.
7782          */
7783         if (pp->p_szc != 0) {
7784                 index = PP_MAPINDEX(pp);
7785                 cons = TTE8K;
7786 again:
7787                 while (index != 0) {
7788                         index >>= 1;
7789                         if (index != 0)
7790                                 cons++;
7791                         if (index & 0x1) {
7792                                 pp = PP_GROUPLEADER(pp, cons);
7793                                 goto again;
7794                         }
7795                 }
7796         }
7797 
7798         if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7799                 return;
7800 
7801         /*
7802          * Pages need to be locked or allocated "permanent" (either from
7803          * static_arena arena or explicitly setting PG_NORELOC when calling
7804          * page_create_va()) for VA->PA translations to be valid.
7805          */
7806         if (!PP_ISNORELOC(pp))
7807                 panic("Illegal VA->PA translation, pp 0x%p not permanent",
7808                     (void *)pp);
7809         else
7810                 panic("Illegal VA->PA translation, pp 0x%p not locked",
7811                     (void *)pp);
7812 }
7813 #endif  /* DEBUG */
7814 
7815 /*
7816  * Returns a page frame number for a given virtual address.
7817  * Returns PFN_INVALID to indicate an invalid mapping
7818  */
7819 pfn_t
7820 hat_getpfnum(struct hat *hat, caddr_t addr)
7821 {
7822         pfn_t pfn;
7823         tte_t tte;
7824 
7825         /*
7826          * We would like to
7827          * ASSERT(AS_LOCK_HELD(as));
7828          * but we can't because the iommu driver will call this
7829          * routine at interrupt time and it can't grab the as lock
7830          * or it will deadlock: A thread could have the as lock
7831          * and be waiting for io.  The io can't complete
7832          * because the interrupt thread is blocked trying to grab
7833          * the as lock.
7834          */
7835 
7836         if (hat == ksfmmup) {
7837                 if (IS_KMEM_VA_LARGEPAGE(addr)) {
7838                         ASSERT(segkmem_lpszc > 0);
7839                         pfn = sfmmu_kvaszc2pfn(addr, segkmem_lpszc);
7840                         if (pfn != PFN_INVALID) {
7841                                 sfmmu_check_kpfn(pfn);
7842                                 return (pfn);
7843                         }
7844                 } else if (segkpm && IS_KPM_ADDR(addr)) {
7845                         return (sfmmu_kpm_vatopfn(addr));
7846                 }
7847                 while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7848                     == PFN_SUSPENDED) {
7849                         sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7850                 }
7851                 sfmmu_check_kpfn(pfn);
7852                 return (pfn);
7853         } else {
7854                 return (sfmmu_uvatopfn(addr, hat, NULL));
7855         }
7856 }
7857 
7858 /*
7859  * This routine will return both pfn and tte for the vaddr.
7860  */
7861 static pfn_t
7862 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup, tte_t *ttep)
7863 {
7864         struct hmehash_bucket *hmebp;
7865         hmeblk_tag hblktag;
7866         int hmeshift, hashno = 1;
7867         struct hme_blk *hmeblkp = NULL;
7868         tte_t tte;
7869 
7870         struct sf_hment *sfhmep;
7871         pfn_t pfn;
7872 
7873         /* support for ISM */
7874         ism_map_t       *ism_map;
7875         ism_blk_t       *ism_blkp;
7876         int             i;
7877         sfmmu_t *ism_hatid = NULL;
7878         sfmmu_t *locked_hatid = NULL;
7879         sfmmu_t *sv_sfmmup = sfmmup;
7880         caddr_t sv_vaddr = vaddr;
7881         sf_srd_t *srdp;
7882 
7883         if (ttep == NULL) {
7884                 ttep = &tte;
7885         } else {
7886                 ttep->ll = 0;
7887         }
7888 
7889         ASSERT(sfmmup != ksfmmup);
7890         SFMMU_STAT(sf_user_vtop);
7891         /*
7892          * Set ism_hatid if vaddr falls in a ISM segment.
7893          */
7894         ism_blkp = sfmmup->sfmmu_iblk;
7895         if (ism_blkp != NULL) {
7896                 sfmmu_ismhat_enter(sfmmup, 0);
7897                 locked_hatid = sfmmup;
7898         }
7899         while (ism_blkp != NULL && ism_hatid == NULL) {
7900                 ism_map = ism_blkp->iblk_maps;
7901                 for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
7902                         if (vaddr >= ism_start(ism_map[i]) &&
7903                             vaddr < ism_end(ism_map[i])) {
7904                                 sfmmup = ism_hatid = ism_map[i].imap_ismhat;
7905                                 vaddr = (caddr_t)(vaddr -
7906                                     ism_start(ism_map[i]));
7907                                 break;
7908                         }
7909                 }
7910                 ism_blkp = ism_blkp->iblk_next;
7911         }
7912         if (locked_hatid) {
7913                 sfmmu_ismhat_exit(locked_hatid, 0);
7914         }
7915 
7916         hblktag.htag_id = sfmmup;
7917         hblktag.htag_rid = SFMMU_INVALID_SHMERID;
7918         do {
7919                 hmeshift = HME_HASH_SHIFT(hashno);
7920                 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
7921                 hblktag.htag_rehash = hashno;
7922                 hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
7923 
7924                 SFMMU_HASH_LOCK(hmebp);
7925 
7926                 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
7927                 if (hmeblkp != NULL) {
7928                         ASSERT(!hmeblkp->hblk_shared);
7929                         HBLKTOHME(sfhmep, hmeblkp, vaddr);
7930                         sfmmu_copytte(&sfhmep->hme_tte, ttep);
7931                         SFMMU_HASH_UNLOCK(hmebp);
7932                         if (TTE_IS_VALID(ttep)) {
7933                                 pfn = TTE_TO_PFN(vaddr, ttep);
7934                                 return (pfn);
7935                         }
7936                         break;
7937                 }
7938                 SFMMU_HASH_UNLOCK(hmebp);
7939                 hashno++;
7940         } while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
7941 
7942         if (SF_HMERGNMAP_ISNULL(sv_sfmmup)) {
7943                 return (PFN_INVALID);
7944         }
7945         srdp = sv_sfmmup->sfmmu_srdp;
7946         ASSERT(srdp != NULL);
7947         ASSERT(srdp->srd_refcnt != 0);
7948         hblktag.htag_id = srdp;
7949         hashno = 1;
7950         do {
7951                 hmeshift = HME_HASH_SHIFT(hashno);
7952                 hblktag.htag_bspage = HME_HASH_BSPAGE(sv_vaddr, hmeshift);
7953                 hblktag.htag_rehash = hashno;
7954                 hmebp = HME_HASH_FUNCTION(srdp, sv_vaddr, hmeshift);
7955 
7956                 SFMMU_HASH_LOCK(hmebp);
7957                 for (hmeblkp = hmebp->hmeblkp; hmeblkp != NULL;
7958                     hmeblkp = hmeblkp->hblk_next) {
7959                         uint_t rid;
7960                         sf_region_t *rgnp;
7961                         caddr_t rsaddr;
7962                         caddr_t readdr;
7963 
7964                         if (!HTAGS_EQ_SHME(hmeblkp->hblk_tag, hblktag,
7965                             sv_sfmmup->sfmmu_hmeregion_map)) {
7966                                 continue;
7967                         }
7968                         ASSERT(hmeblkp->hblk_shared);
7969                         rid = hmeblkp->hblk_tag.htag_rid;
7970                         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7971                         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7972                         rgnp = srdp->srd_hmergnp[rid];
7973                         SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
7974                         HBLKTOHME(sfhmep, hmeblkp, sv_vaddr);
7975                         sfmmu_copytte(&sfhmep->hme_tte, ttep);
7976                         rsaddr = rgnp->rgn_saddr;
7977                         readdr = rsaddr + rgnp->rgn_size;
7978 #ifdef DEBUG
7979                         if (TTE_IS_VALID(ttep) ||
7980                             get_hblk_ttesz(hmeblkp) > TTE8K) {
7981                                 caddr_t eva = tte_to_evaddr(hmeblkp, ttep);
7982                                 ASSERT(eva > sv_vaddr);
7983                                 ASSERT(sv_vaddr >= rsaddr);
7984                                 ASSERT(sv_vaddr < readdr);
7985                                 ASSERT(eva <= readdr);
7986                         }
7987 #endif /* DEBUG */
7988                         /*
7989                          * Continue the search if we
7990                          * found an invalid 8K tte outside of the area
7991                          * covered by this hmeblk's region.
7992                          */
7993                         if (TTE_IS_VALID(ttep)) {
7994                                 SFMMU_HASH_UNLOCK(hmebp);
7995                                 pfn = TTE_TO_PFN(sv_vaddr, ttep);
7996                                 return (pfn);
7997                         } else if (get_hblk_ttesz(hmeblkp) > TTE8K ||
7998                             (sv_vaddr >= rsaddr && sv_vaddr < readdr)) {
7999                                 SFMMU_HASH_UNLOCK(hmebp);
8000                                 pfn = PFN_INVALID;
8001                                 return (pfn);
8002                         }
8003                 }
8004                 SFMMU_HASH_UNLOCK(hmebp);
8005                 hashno++;
8006         } while (hashno <= mmu_hashcnt);
8007         return (PFN_INVALID);
8008 }
8009 
8010 
8011 /*
8012  * For compatability with AT&T and later optimizations
8013  */
8014 /* ARGSUSED */
8015 void
8016 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
8017 {
8018         ASSERT(hat != NULL);
8019 }
8020 
8021 /*
8022  * Return the number of mappings to a particular page.  This number is an
8023  * approximation of the number of people sharing the page.
8024  *
8025  * shared hmeblks or ism hmeblks are counted as 1 mapping here.
8026  * hat_page_checkshare() can be used to compare threshold to share
8027  * count that reflects the number of region sharers albeit at higher cost.
8028  */
8029 ulong_t
8030 hat_page_getshare(page_t *pp)
8031 {
8032         page_t *spp = pp;       /* start page */
8033         kmutex_t *pml;
8034         ulong_t cnt;
8035         int index, sz = TTE64K;
8036 
8037         /*
8038          * We need to grab the mlist lock to make sure any outstanding
8039          * load/unloads complete.  Otherwise we could return zero
8040          * even though the unload(s) hasn't finished yet.
8041          */
8042         pml = sfmmu_mlist_enter(spp);
8043         cnt = spp->p_share;
8044 
8045 #ifdef VAC
8046         if (kpm_enable)
8047                 cnt += spp->p_kpmref;
8048 #endif
8049         if (vpm_enable && pp->p_vpmref) {
8050                 cnt += 1;
8051         }
8052 
8053         /*
8054          * If we have any large mappings, we count the number of
8055          * mappings that this large page is part of.
8056          */
8057         index = PP_MAPINDEX(spp);
8058         index >>= 1;
8059         while (index) {
8060                 pp = PP_GROUPLEADER(spp, sz);
8061                 if ((index & 0x1) && pp != spp) {
8062                         cnt += pp->p_share;
8063                         spp = pp;
8064                 }
8065                 index >>= 1;
8066                 sz++;
8067         }
8068         sfmmu_mlist_exit(pml);
8069         return (cnt);
8070 }
8071 
8072 /*
8073  * Return 1 if the number of mappings exceeds sh_thresh. Return 0
8074  * otherwise. Count shared hmeblks by region's refcnt.
8075  */
8076 int
8077 hat_page_checkshare(page_t *pp, ulong_t sh_thresh)
8078 {
8079         kmutex_t *pml;
8080         ulong_t cnt = 0;
8081         int index, sz = TTE8K;
8082         struct sf_hment *sfhme, *tmphme = NULL;
8083         struct hme_blk *hmeblkp;
8084 
8085         pml = sfmmu_mlist_enter(pp);
8086 
8087 #ifdef VAC
8088         if (kpm_enable)
8089                 cnt = pp->p_kpmref;
8090 #endif
8091 
8092         if (vpm_enable && pp->p_vpmref) {
8093                 cnt += 1;
8094         }
8095 
8096         if (pp->p_share + cnt > sh_thresh) {
8097                 sfmmu_mlist_exit(pml);
8098                 return (1);
8099         }
8100 
8101         index = PP_MAPINDEX(pp);
8102 
8103 again:
8104         for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
8105                 tmphme = sfhme->hme_next;
8106                 if (IS_PAHME(sfhme)) {
8107                         continue;
8108                 }
8109 
8110                 hmeblkp = sfmmu_hmetohblk(sfhme);
8111                 if (hme_size(sfhme) != sz) {
8112                         continue;
8113                 }
8114 
8115                 if (hmeblkp->hblk_shared) {
8116                         sf_srd_t *srdp = hblktosrd(hmeblkp);
8117                         uint_t rid = hmeblkp->hblk_tag.htag_rid;
8118                         sf_region_t *rgnp;
8119                         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
8120                         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
8121                         ASSERT(srdp != NULL);
8122                         rgnp = srdp->srd_hmergnp[rid];
8123                         SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
8124                             rgnp, rid);
8125                         cnt += rgnp->rgn_refcnt;
8126                 } else {
8127                         cnt++;
8128                 }
8129                 if (cnt > sh_thresh) {
8130                         sfmmu_mlist_exit(pml);
8131                         return (1);
8132                 }
8133         }
8134 
8135         index >>= 1;
8136         sz++;
8137         while (index) {
8138                 pp = PP_GROUPLEADER(pp, sz);
8139                 ASSERT(sfmmu_mlist_held(pp));
8140                 if (index & 0x1) {
8141                         goto again;
8142                 }
8143                 index >>= 1;
8144                 sz++;
8145         }
8146         sfmmu_mlist_exit(pml);
8147         return (0);
8148 }
8149 
8150 /*
8151  * Unload all large mappings to the pp and reset the p_szc field of every
8152  * constituent page according to the remaining mappings.
8153  *
8154  * pp must be locked SE_EXCL. Even though no other constituent pages are
8155  * locked it's legal to unload the large mappings to the pp because all
8156  * constituent pages of large locked mappings have to be locked SE_SHARED.
8157  * This means if we have SE_EXCL lock on one of constituent pages none of the
8158  * large mappings to pp are locked.
8159  *
8160  * Decrease p_szc field starting from the last constituent page and ending
8161  * with the root page. This method is used because other threads rely on the
8162  * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
8163  * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
8164  * ensures that p_szc changes of the constituent pages appears atomic for all
8165  * threads that use sfmmu_mlspl_enter() to examine p_szc field.
8166  *
8167  * This mechanism is only used for file system pages where it's not always
8168  * possible to get SE_EXCL locks on all constituent pages to demote the size
8169  * code (as is done for anonymous or kernel large pages).
8170  *
8171  * See more comments in front of sfmmu_mlspl_enter().
8172  */
8173 void
8174 hat_page_demote(page_t *pp)
8175 {
8176         int index;
8177         int sz;
8178         cpuset_t cpuset;
8179         int sync = 0;
8180         page_t *rootpp;
8181         struct sf_hment *sfhme;
8182         struct sf_hment *tmphme = NULL;
8183         uint_t pszc;
8184         page_t *lastpp;
8185         cpuset_t tset;
8186         pgcnt_t npgs;
8187         kmutex_t *pml;
8188         kmutex_t *pmtx = NULL;
8189 
8190         ASSERT(PAGE_EXCL(pp));
8191         ASSERT(!PP_ISFREE(pp));
8192         ASSERT(!PP_ISKAS(pp));
8193         ASSERT(page_szc_lock_assert(pp));
8194         pml = sfmmu_mlist_enter(pp);
8195 
8196         pszc = pp->p_szc;
8197         if (pszc == 0) {
8198                 goto out;
8199         }
8200 
8201         index = PP_MAPINDEX(pp) >> 1;
8202 
8203         if (index) {
8204                 CPUSET_ZERO(cpuset);
8205                 sz = TTE64K;
8206                 sync = 1;
8207         }
8208 
8209         while (index) {
8210                 if (!(index & 0x1)) {
8211                         index >>= 1;
8212                         sz++;
8213                         continue;
8214                 }
8215                 ASSERT(sz <= pszc);
8216                 rootpp = PP_GROUPLEADER(pp, sz);
8217                 for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
8218                         tmphme = sfhme->hme_next;
8219                         ASSERT(!IS_PAHME(sfhme));
8220                         if (hme_size(sfhme) != sz) {
8221                                 continue;
8222                         }
8223                         tset = sfmmu_pageunload(rootpp, sfhme, sz);
8224                         CPUSET_OR(cpuset, tset);
8225                 }
8226                 if (index >>= 1) {
8227                         sz++;
8228                 }
8229         }
8230 
8231         ASSERT(!PP_ISMAPPED_LARGE(pp));
8232 
8233         if (sync) {
8234                 xt_sync(cpuset);
8235 #ifdef VAC
8236                 if (PP_ISTNC(pp)) {
8237                         conv_tnc(rootpp, sz);
8238                 }
8239 #endif  /* VAC */
8240         }
8241 
8242         pmtx = sfmmu_page_enter(pp);
8243 
8244         ASSERT(pp->p_szc == pszc);
8245         rootpp = PP_PAGEROOT(pp);
8246         ASSERT(rootpp->p_szc == pszc);
8247         lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
8248 
8249         while (lastpp != rootpp) {
8250                 sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
8251                 ASSERT(sz < pszc);
8252                 npgs = (sz == 0) ? 1 : TTEPAGES(sz);
8253                 ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
8254                 while (--npgs > 0) {
8255                         lastpp->p_szc = (uchar_t)sz;
8256                         lastpp = PP_PAGEPREV(lastpp);
8257                 }
8258                 if (sz) {
8259                         /*
8260                          * make sure before current root's pszc
8261                          * is updated all updates to constituent pages pszc
8262                          * fields are globally visible.
8263                          */
8264                         membar_producer();
8265                 }
8266                 lastpp->p_szc = sz;
8267                 ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
8268                 if (lastpp != rootpp) {
8269                         lastpp = PP_PAGEPREV(lastpp);
8270                 }
8271         }
8272         if (sz == 0) {
8273                 /* the loop above doesn't cover this case */
8274                 rootpp->p_szc = 0;
8275         }
8276 out:
8277         ASSERT(pp->p_szc == 0);
8278         if (pmtx != NULL) {
8279                 sfmmu_page_exit(pmtx);
8280         }
8281         sfmmu_mlist_exit(pml);
8282 }
8283 
8284 /*
8285  * Refresh the HAT ismttecnt[] element for size szc.
8286  * Caller must have set ISM busy flag to prevent mapping
8287  * lists from changing while we're traversing them.
8288  */
8289 pgcnt_t
8290 ism_tsb_entries(sfmmu_t *sfmmup, int szc)
8291 {
8292         ism_blk_t       *ism_blkp = sfmmup->sfmmu_iblk;
8293         ism_map_t       *ism_map;
8294         pgcnt_t         npgs = 0;
8295         pgcnt_t         npgs_scd = 0;
8296         int             j;
8297         sf_scd_t        *scdp;
8298         uchar_t         rid;
8299 
8300         ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
8301         scdp = sfmmup->sfmmu_scdp;
8302 
8303         for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
8304                 ism_map = ism_blkp->iblk_maps;
8305                 for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++) {
8306                         rid = ism_map[j].imap_rid;
8307                         ASSERT(rid == SFMMU_INVALID_ISMRID ||
8308                             rid < sfmmup->sfmmu_srdp->srd_next_ismrid);
8309 
8310                         if (scdp != NULL && rid != SFMMU_INVALID_ISMRID &&
8311                             SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
8312                                 /* ISM is in sfmmup's SCD */
8313                                 npgs_scd +=
8314                                     ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8315                         } else {
8316                                 /* ISMs is not in SCD */
8317                                 npgs +=
8318                                     ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8319                         }
8320                 }
8321         }
8322         sfmmup->sfmmu_ismttecnt[szc] = npgs;
8323         sfmmup->sfmmu_scdismttecnt[szc] = npgs_scd;
8324         return (npgs);
8325 }
8326 
8327 /*
8328  * Yield the memory claim requirement for an address space.
8329  *
8330  * This is currently implemented as the number of bytes that have active
8331  * hardware translations that have page structures.  Therefore, it can
8332  * underestimate the traditional resident set size, eg, if the
8333  * physical page is present and the hardware translation is missing;
8334  * and it can overestimate the rss, eg, if there are active
8335  * translations to a frame buffer with page structs.
8336  * Also, it does not take sharing into account.
8337  *
8338  * Note that we don't acquire locks here since this function is most often
8339  * called from the clock thread.
8340  */
8341 size_t
8342 hat_get_mapped_size(struct hat *hat)
8343 {
8344         size_t          assize = 0;
8345         int             i;
8346 
8347         if (hat == NULL)
8348                 return (0);
8349 
8350         for (i = 0; i < mmu_page_sizes; i++)
8351                 assize += ((pgcnt_t)hat->sfmmu_ttecnt[i] +
8352                     (pgcnt_t)hat->sfmmu_scdrttecnt[i]) * TTEBYTES(i);
8353 
8354         if (hat->sfmmu_iblk == NULL)
8355                 return (assize);
8356 
8357         for (i = 0; i < mmu_page_sizes; i++)
8358                 assize += ((pgcnt_t)hat->sfmmu_ismttecnt[i] +
8359                     (pgcnt_t)hat->sfmmu_scdismttecnt[i]) * TTEBYTES(i);
8360 
8361         return (assize);
8362 }
8363 
8364 int
8365 hat_stats_enable(struct hat *hat)
8366 {
8367         hatlock_t       *hatlockp;
8368 
8369         hatlockp = sfmmu_hat_enter(hat);
8370         hat->sfmmu_rmstat++;
8371         sfmmu_hat_exit(hatlockp);
8372         return (1);
8373 }
8374 
8375 void
8376 hat_stats_disable(struct hat *hat)
8377 {
8378         hatlock_t       *hatlockp;
8379 
8380         hatlockp = sfmmu_hat_enter(hat);
8381         hat->sfmmu_rmstat--;
8382         sfmmu_hat_exit(hatlockp);
8383 }
8384 
8385 /*
8386  * Routines for entering or removing  ourselves from the
8387  * ism_hat's mapping list. This is used for both private and
8388  * SCD hats.
8389  */
8390 static void
8391 iment_add(struct ism_ment *iment,  struct hat *ism_hat)
8392 {
8393         ASSERT(MUTEX_HELD(&ism_mlist_lock));
8394 
8395         iment->iment_prev = NULL;
8396         iment->iment_next = ism_hat->sfmmu_iment;
8397         if (ism_hat->sfmmu_iment) {
8398                 ism_hat->sfmmu_iment->iment_prev = iment;
8399         }
8400         ism_hat->sfmmu_iment = iment;
8401 }
8402 
8403 static void
8404 iment_sub(struct ism_ment *iment, struct hat *ism_hat)
8405 {
8406         ASSERT(MUTEX_HELD(&ism_mlist_lock));
8407 
8408         if (ism_hat->sfmmu_iment == NULL) {
8409                 panic("ism map entry remove - no entries");
8410         }
8411 
8412         if (iment->iment_prev) {
8413                 ASSERT(ism_hat->sfmmu_iment != iment);
8414                 iment->iment_prev->iment_next = iment->iment_next;
8415         } else {
8416                 ASSERT(ism_hat->sfmmu_iment == iment);
8417                 ism_hat->sfmmu_iment = iment->iment_next;
8418         }
8419 
8420         if (iment->iment_next) {
8421                 iment->iment_next->iment_prev = iment->iment_prev;
8422         }
8423 
8424         /*
8425          * zero out the entry
8426          */
8427         iment->iment_next = NULL;
8428         iment->iment_prev = NULL;
8429         iment->iment_hat =  NULL;
8430         iment->iment_base_va = 0;
8431 }
8432 
8433 /*
8434  * Hat_share()/unshare() return an (non-zero) error
8435  * when saddr and daddr are not properly aligned.
8436  *
8437  * The top level mapping element determines the alignment
8438  * requirement for saddr and daddr, depending on different
8439  * architectures.
8440  *
8441  * When hat_share()/unshare() are not supported,
8442  * HATOP_SHARE()/UNSHARE() return 0
8443  */
8444 int
8445 hat_share(struct hat *sfmmup, caddr_t addr,
8446         struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc)
8447 {
8448         ism_blk_t       *ism_blkp;
8449         ism_blk_t       *new_iblk;
8450         ism_map_t       *ism_map;
8451         ism_ment_t      *ism_ment;
8452         int             i, added;
8453         hatlock_t       *hatlockp;
8454         int             reload_mmu = 0;
8455         uint_t          ismshift = page_get_shift(ismszc);
8456         size_t          ismpgsz = page_get_pagesize(ismszc);
8457         uint_t          ismmask = (uint_t)ismpgsz - 1;
8458         size_t          sh_size = ISM_SHIFT(ismshift, len);
8459         ushort_t        ismhatflag;
8460         hat_region_cookie_t rcookie;
8461         sf_scd_t        *old_scdp;
8462 
8463 #ifdef DEBUG
8464         caddr_t         eaddr = addr + len;
8465 #endif /* DEBUG */
8466 
8467         ASSERT(ism_hatid != NULL && sfmmup != NULL);
8468         ASSERT(sptaddr == ISMID_STARTADDR);
8469         /*
8470          * Check the alignment.
8471          */
8472         if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
8473                 return (EINVAL);
8474 
8475         /*
8476          * Check size alignment.
8477          */
8478         if (!ISM_ALIGNED(ismshift, len))
8479                 return (EINVAL);
8480 
8481         /*
8482          * Allocate ism_ment for the ism_hat's mapping list, and an
8483          * ism map blk in case we need one.  We must do our
8484          * allocations before acquiring locks to prevent a deadlock
8485          * in the kmem allocator on the mapping list lock.
8486          */
8487         new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
8488         ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
8489 
8490         /*
8491          * Serialize ISM mappings with the ISM busy flag, and also the
8492          * trap handlers.
8493          */
8494         sfmmu_ismhat_enter(sfmmup, 0);
8495 
8496         /*
8497          * Allocate an ism map blk if necessary.
8498          */
8499         if (sfmmup->sfmmu_iblk == NULL) {
8500                 sfmmup->sfmmu_iblk = new_iblk;
8501                 bzero(new_iblk, sizeof (*new_iblk));
8502                 new_iblk->iblk_nextpa = (uint64_t)-1;
8503                 membar_stst();  /* make sure next ptr visible to all CPUs */
8504                 sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
8505                 reload_mmu = 1;
8506                 new_iblk = NULL;
8507         }
8508 
8509 #ifdef DEBUG
8510         /*
8511          * Make sure mapping does not already exist.
8512          */
8513         ism_blkp = sfmmup->sfmmu_iblk;
8514         while (ism_blkp != NULL) {
8515                 ism_map = ism_blkp->iblk_maps;
8516                 for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
8517                         if ((addr >= ism_start(ism_map[i]) &&
8518                             addr < ism_end(ism_map[i])) ||
8519                             eaddr > ism_start(ism_map[i]) &&
8520                             eaddr <= ism_end(ism_map[i])) {
8521                                 panic("sfmmu_share: Already mapped!");
8522                         }
8523                 }
8524                 ism_blkp = ism_blkp->iblk_next;
8525         }
8526 #endif /* DEBUG */
8527 
8528         ASSERT(ismszc >= TTE4M);
8529         if (ismszc == TTE4M) {
8530                 ismhatflag = HAT_4M_FLAG;
8531         } else if (ismszc == TTE32M) {
8532                 ismhatflag = HAT_32M_FLAG;
8533         } else if (ismszc == TTE256M) {
8534                 ismhatflag = HAT_256M_FLAG;
8535         }
8536         /*
8537          * Add mapping to first available mapping slot.
8538          */
8539         ism_blkp = sfmmup->sfmmu_iblk;
8540         added = 0;
8541         while (!added) {
8542                 ism_map = ism_blkp->iblk_maps;
8543                 for (i = 0; i < ISM_MAP_SLOTS; i++)  {
8544                         if (ism_map[i].imap_ismhat == NULL) {
8545 
8546                                 ism_map[i].imap_ismhat = ism_hatid;
8547                                 ism_map[i].imap_vb_shift = (uchar_t)ismshift;
8548                                 ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
8549                                 ism_map[i].imap_hatflags = ismhatflag;
8550                                 ism_map[i].imap_sz_mask = ismmask;
8551                                 /*
8552                                  * imap_seg is checked in ISM_CHECK to see if
8553                                  * non-NULL, then other info assumed valid.
8554                                  */
8555                                 membar_stst();
8556                                 ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
8557                                 ism_map[i].imap_ment = ism_ment;
8558 
8559                                 /*
8560                                  * Now add ourselves to the ism_hat's
8561                                  * mapping list.
8562                                  */
8563                                 ism_ment->iment_hat = sfmmup;
8564                                 ism_ment->iment_base_va = addr;
8565                                 ism_hatid->sfmmu_ismhat = 1;
8566                                 mutex_enter(&ism_mlist_lock);
8567                                 iment_add(ism_ment, ism_hatid);
8568                                 mutex_exit(&ism_mlist_lock);
8569                                 added = 1;
8570                                 break;
8571                         }
8572                 }
8573                 if (!added && ism_blkp->iblk_next == NULL) {
8574                         ism_blkp->iblk_next = new_iblk;
8575                         new_iblk = NULL;
8576                         bzero(ism_blkp->iblk_next,
8577                             sizeof (*ism_blkp->iblk_next));
8578                         ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
8579                         membar_stst();
8580                         ism_blkp->iblk_nextpa =
8581                             va_to_pa((caddr_t)ism_blkp->iblk_next);
8582                 }
8583                 ism_blkp = ism_blkp->iblk_next;
8584         }
8585 
8586         /*
8587          * After calling hat_join_region, sfmmup may join a new SCD or
8588          * move from the old scd to a new scd, in which case, we want to
8589          * shrink the sfmmup's private tsb size, i.e., pass shrink to
8590          * sfmmu_check_page_sizes at the end of this routine.
8591          */
8592         old_scdp = sfmmup->sfmmu_scdp;
8593 
8594         rcookie = hat_join_region(sfmmup, addr, len, (void *)ism_hatid, 0,
8595             PROT_ALL, ismszc, NULL, HAT_REGION_ISM);
8596         if (rcookie != HAT_INVALID_REGION_COOKIE) {
8597                 ism_map[i].imap_rid = (uchar_t)((uint64_t)rcookie);
8598         }
8599         /*
8600          * Update our counters for this sfmmup's ism mappings.
8601          */
8602         for (i = 0; i <= ismszc; i++) {
8603                 if (!(disable_ism_large_pages & (1 << i)))
8604                         (void) ism_tsb_entries(sfmmup, i);
8605         }
8606 
8607         /*
8608          * For ISM and DISM we do not support 512K pages, so we only only
8609          * search the 4M and 8K/64K hashes for 4 pagesize cpus, and search the
8610          * 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
8611          *
8612          * Need to set 32M/256M ISM flags to make sure
8613          * sfmmu_check_page_sizes() enables them on Panther.
8614          */
8615         ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
8616 
8617         switch (ismszc) {
8618         case TTE256M:
8619                 if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_ISM)) {
8620                         hatlockp = sfmmu_hat_enter(sfmmup);
8621                         SFMMU_FLAGS_SET(sfmmup, HAT_256M_ISM);
8622                         sfmmu_hat_exit(hatlockp);
8623                 }
8624                 break;
8625         case TTE32M:
8626                 if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_ISM)) {
8627                         hatlockp = sfmmu_hat_enter(sfmmup);
8628                         SFMMU_FLAGS_SET(sfmmup, HAT_32M_ISM);
8629                         sfmmu_hat_exit(hatlockp);
8630                 }
8631                 break;
8632         default:
8633                 break;
8634         }
8635 
8636         /*
8637          * If we updated the ismblkpa for this HAT we must make
8638          * sure all CPUs running this process reload their tsbmiss area.
8639          * Otherwise they will fail to load the mappings in the tsbmiss
8640          * handler and will loop calling pagefault().
8641          */
8642         if (reload_mmu) {
8643                 hatlockp = sfmmu_hat_enter(sfmmup);
8644                 sfmmu_sync_mmustate(sfmmup);
8645                 sfmmu_hat_exit(hatlockp);
8646         }
8647 
8648         sfmmu_ismhat_exit(sfmmup, 0);
8649 
8650         /*
8651          * Free up ismblk if we didn't use it.
8652          */
8653         if (new_iblk != NULL)
8654                 kmem_cache_free(ism_blk_cache, new_iblk);
8655 
8656         /*
8657          * Check TSB and TLB page sizes.
8658          */
8659         if (sfmmup->sfmmu_scdp != NULL && old_scdp != sfmmup->sfmmu_scdp) {
8660                 sfmmu_check_page_sizes(sfmmup, 0);
8661         } else {
8662                 sfmmu_check_page_sizes(sfmmup, 1);
8663         }
8664         return (0);
8665 }
8666 
8667 /*
8668  * hat_unshare removes exactly one ism_map from
8669  * this process's as.  It expects multiple calls
8670  * to hat_unshare for multiple shm segments.
8671  */
8672 void
8673 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
8674 {
8675         ism_map_t       *ism_map;
8676         ism_ment_t      *free_ment = NULL;
8677         ism_blk_t       *ism_blkp;
8678         struct hat      *ism_hatid;
8679         int             found, i;
8680         hatlock_t       *hatlockp;
8681         struct tsb_info *tsbinfo;
8682         uint_t          ismshift = page_get_shift(ismszc);
8683         size_t          sh_size = ISM_SHIFT(ismshift, len);
8684         uchar_t         ism_rid;
8685         sf_scd_t        *old_scdp;
8686 
8687         ASSERT(ISM_ALIGNED(ismshift, addr));
8688         ASSERT(ISM_ALIGNED(ismshift, len));
8689         ASSERT(sfmmup != NULL);
8690         ASSERT(sfmmup != ksfmmup);
8691 
8692         ASSERT(sfmmup->sfmmu_as != NULL);
8693 
8694         /*
8695          * Make sure that during the entire time ISM mappings are removed,
8696          * the trap handlers serialize behind us, and that no one else
8697          * can be mucking with ISM mappings.  This also lets us get away
8698          * with not doing expensive cross calls to flush the TLB -- we
8699          * just discard the context, flush the entire TSB, and call it
8700          * a day.
8701          */
8702         sfmmu_ismhat_enter(sfmmup, 0);
8703 
8704         /*
8705          * Remove the mapping.
8706          *
8707          * We can't have any holes in the ism map.
8708          * The tsb miss code while searching the ism map will
8709          * stop on an empty map slot.  So we must move
8710          * everyone past the hole up 1 if any.
8711          *
8712          * Also empty ism map blks are not freed until the
8713          * process exits. This is to prevent a MT race condition
8714          * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
8715          */
8716         found = 0;
8717         ism_blkp = sfmmup->sfmmu_iblk;
8718         while (!found && ism_blkp != NULL) {
8719                 ism_map = ism_blkp->iblk_maps;
8720                 for (i = 0; i < ISM_MAP_SLOTS; i++) {
8721                         if (addr == ism_start(ism_map[i]) &&
8722                             sh_size == (size_t)(ism_size(ism_map[i]))) {
8723                                 found = 1;
8724                                 break;
8725                         }
8726                 }
8727                 if (!found)
8728                         ism_blkp = ism_blkp->iblk_next;
8729         }
8730 
8731         if (found) {
8732                 ism_hatid = ism_map[i].imap_ismhat;
8733                 ism_rid = ism_map[i].imap_rid;
8734                 ASSERT(ism_hatid != NULL);
8735                 ASSERT(ism_hatid->sfmmu_ismhat == 1);
8736 
8737                 /*
8738                  * After hat_leave_region, the sfmmup may leave SCD,
8739                  * in which case, we want to grow the private tsb size when
8740                  * calling sfmmu_check_page_sizes at the end of the routine.
8741                  */
8742                 old_scdp = sfmmup->sfmmu_scdp;
8743                 /*
8744                  * Then remove ourselves from the region.
8745                  */
8746                 if (ism_rid != SFMMU_INVALID_ISMRID) {
8747                         hat_leave_region(sfmmup, (void *)((uint64_t)ism_rid),
8748                             HAT_REGION_ISM);
8749                 }
8750 
8751                 /*
8752                  * And now guarantee that any other cpu
8753                  * that tries to process an ISM miss
8754                  * will go to tl=0.
8755                  */
8756                 hatlockp = sfmmu_hat_enter(sfmmup);
8757                 sfmmu_invalidate_ctx(sfmmup);
8758                 sfmmu_hat_exit(hatlockp);
8759 
8760                 /*
8761                  * Remove ourselves from the ism mapping list.
8762                  */
8763                 mutex_enter(&ism_mlist_lock);
8764                 iment_sub(ism_map[i].imap_ment, ism_hatid);
8765                 mutex_exit(&ism_mlist_lock);
8766                 free_ment = ism_map[i].imap_ment;
8767 
8768                 /*
8769                  * We delete the ism map by copying
8770                  * the next map over the current one.
8771                  * We will take the next one in the maps
8772                  * array or from the next ism_blk.
8773                  */
8774                 while (ism_blkp != NULL) {
8775                         ism_map = ism_blkp->iblk_maps;
8776                         while (i < (ISM_MAP_SLOTS - 1)) {
8777                                 ism_map[i] = ism_map[i + 1];
8778                                 i++;
8779                         }
8780                         /* i == (ISM_MAP_SLOTS - 1) */
8781                         ism_blkp = ism_blkp->iblk_next;
8782                         if (ism_blkp != NULL) {
8783                                 ism_map[i] = ism_blkp->iblk_maps[0];
8784                                 i = 0;
8785                         } else {
8786                                 ism_map[i].imap_seg = 0;
8787                                 ism_map[i].imap_vb_shift = 0;
8788                                 ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
8789                                 ism_map[i].imap_hatflags = 0;
8790                                 ism_map[i].imap_sz_mask = 0;
8791                                 ism_map[i].imap_ismhat = NULL;
8792                                 ism_map[i].imap_ment = NULL;
8793                         }
8794                 }
8795 
8796                 /*
8797                  * Now flush entire TSB for the process, since
8798                  * demapping page by page can be too expensive.
8799                  * We don't have to flush the TLB here anymore
8800                  * since we switch to a new TLB ctx instead.
8801                  * Also, there is no need to flush if the process
8802                  * is exiting since the TSB will be freed later.
8803                  */
8804                 if (!sfmmup->sfmmu_free) {
8805                         hatlockp = sfmmu_hat_enter(sfmmup);
8806                         for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
8807                             tsbinfo = tsbinfo->tsb_next) {
8808                                 if (tsbinfo->tsb_flags & TSB_SWAPPED)
8809                                         continue;
8810                                 if (tsbinfo->tsb_flags & TSB_RELOC_FLAG) {
8811                                         tsbinfo->tsb_flags |=
8812                                             TSB_FLUSH_NEEDED;
8813                                         continue;
8814                                 }
8815 
8816                                 sfmmu_inv_tsb(tsbinfo->tsb_va,
8817                                     TSB_BYTES(tsbinfo->tsb_szc));
8818                         }
8819                         sfmmu_hat_exit(hatlockp);
8820                 }
8821         }
8822 
8823         /*
8824          * Update our counters for this sfmmup's ism mappings.
8825          */
8826         for (i = 0; i <= ismszc; i++) {
8827                 if (!(disable_ism_large_pages & (1 << i)))
8828                         (void) ism_tsb_entries(sfmmup, i);
8829         }
8830 
8831         sfmmu_ismhat_exit(sfmmup, 0);
8832 
8833         /*
8834          * We must do our freeing here after dropping locks
8835          * to prevent a deadlock in the kmem allocator on the
8836          * mapping list lock.
8837          */
8838         if (free_ment != NULL)
8839                 kmem_cache_free(ism_ment_cache, free_ment);
8840 
8841         /*
8842          * Check TSB and TLB page sizes if the process isn't exiting.
8843          */
8844         if (!sfmmup->sfmmu_free) {
8845                 if (found && old_scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
8846                         sfmmu_check_page_sizes(sfmmup, 1);
8847                 } else {
8848                         sfmmu_check_page_sizes(sfmmup, 0);
8849                 }
8850         }
8851 }
8852 
8853 /* ARGSUSED */
8854 static int
8855 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
8856 {
8857         /* void *buf is sfmmu_t pointer */
8858         bzero(buf, sizeof (sfmmu_t));
8859 
8860         return (0);
8861 }
8862 
8863 /* ARGSUSED */
8864 static void
8865 sfmmu_idcache_destructor(void *buf, void *cdrarg)
8866 {
8867         /* void *buf is sfmmu_t pointer */
8868 }
8869 
8870 /*
8871  * setup kmem hmeblks by bzeroing all members and initializing the nextpa
8872  * field to be the pa of this hmeblk
8873  */
8874 /* ARGSUSED */
8875 static int
8876 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
8877 {
8878         struct hme_blk *hmeblkp;
8879 
8880         bzero(buf, (size_t)cdrarg);
8881         hmeblkp = (struct hme_blk *)buf;
8882         hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
8883 
8884 #ifdef  HBLK_TRACE
8885         mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
8886 #endif  /* HBLK_TRACE */
8887 
8888         return (0);
8889 }
8890 
8891 /* ARGSUSED */
8892 static void
8893 sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
8894 {
8895 
8896 #ifdef  HBLK_TRACE
8897 
8898         struct hme_blk *hmeblkp;
8899 
8900         hmeblkp = (struct hme_blk *)buf;
8901         mutex_destroy(&hmeblkp->hblk_audit_lock);
8902 
8903 #endif  /* HBLK_TRACE */
8904 }
8905 
8906 #define SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
8907 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
8908 /*
8909  * The kmem allocator will callback into our reclaim routine when the system
8910  * is running low in memory.  We traverse the hash and free up all unused but
8911  * still cached hme_blks.  We also traverse the free list and free them up
8912  * as well.
8913  */
8914 /*ARGSUSED*/
8915 static void
8916 sfmmu_hblkcache_reclaim(void *cdrarg)
8917 {
8918         int i;
8919         struct hmehash_bucket *hmebp;
8920         struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
8921         static struct hmehash_bucket *uhmehash_reclaim_hand;
8922         static struct hmehash_bucket *khmehash_reclaim_hand;
8923         struct hme_blk *list = NULL, *last_hmeblkp;
8924         cpuset_t cpuset = cpu_ready_set;
8925         cpu_hme_pend_t *cpuhp;
8926 
8927         /* Free up hmeblks on the cpu pending lists */
8928         for (i = 0; i < NCPU; i++) {
8929                 cpuhp = &cpu_hme_pend[i];
8930                 if (cpuhp->chp_listp != NULL)  {
8931                         mutex_enter(&cpuhp->chp_mutex);
8932                         if (cpuhp->chp_listp == NULL) {
8933                                 mutex_exit(&cpuhp->chp_mutex);
8934                                 continue;
8935                         }
8936                         for (last_hmeblkp = cpuhp->chp_listp;
8937                             last_hmeblkp->hblk_next != NULL;
8938                             last_hmeblkp = last_hmeblkp->hblk_next)
8939                                 ;
8940                         last_hmeblkp->hblk_next = list;
8941                         list = cpuhp->chp_listp;
8942                         cpuhp->chp_listp = NULL;
8943                         cpuhp->chp_count = 0;
8944                         mutex_exit(&cpuhp->chp_mutex);
8945                 }
8946 
8947         }
8948 
8949         if (list != NULL) {
8950                 kpreempt_disable();
8951                 CPUSET_DEL(cpuset, CPU->cpu_id);
8952                 xt_sync(cpuset);
8953                 xt_sync(cpuset);
8954                 kpreempt_enable();
8955                 sfmmu_hblk_free(&list);
8956                 list = NULL;
8957         }
8958 
8959         hmebp = uhmehash_reclaim_hand;
8960         if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
8961                 uhmehash_reclaim_hand = hmebp = uhme_hash;
8962         uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8963 
8964         for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8965                 if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8966                         hmeblkp = hmebp->hmeblkp;
8967                         pr_hblk = NULL;
8968                         while (hmeblkp) {
8969                                 nx_hblk = hmeblkp->hblk_next;
8970                                 if (!hmeblkp->hblk_vcnt &&
8971                                     !hmeblkp->hblk_hmecnt) {
8972                                         sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8973                                             pr_hblk, &list, 0);
8974                                 } else {
8975                                         pr_hblk = hmeblkp;
8976                                 }
8977                                 hmeblkp = nx_hblk;
8978                         }
8979                         SFMMU_HASH_UNLOCK(hmebp);
8980                 }
8981                 if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
8982                         hmebp = uhme_hash;
8983         }
8984 
8985         hmebp = khmehash_reclaim_hand;
8986         if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
8987                 khmehash_reclaim_hand = hmebp = khme_hash;
8988         khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8989 
8990         for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8991                 if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8992                         hmeblkp = hmebp->hmeblkp;
8993                         pr_hblk = NULL;
8994                         while (hmeblkp) {
8995                                 nx_hblk = hmeblkp->hblk_next;
8996                                 if (!hmeblkp->hblk_vcnt &&
8997                                     !hmeblkp->hblk_hmecnt) {
8998                                         sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8999                                             pr_hblk, &list, 0);
9000                                 } else {
9001                                         pr_hblk = hmeblkp;
9002                                 }
9003                                 hmeblkp = nx_hblk;
9004                         }
9005                         SFMMU_HASH_UNLOCK(hmebp);
9006                 }
9007                 if (hmebp++ == &khme_hash[KHMEHASH_SZ])
9008                         hmebp = khme_hash;
9009         }
9010         sfmmu_hblks_list_purge(&list, 0);
9011 }
9012 
9013 /*
9014  * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
9015  * same goes for sfmmu_get_addrvcolor().
9016  *
9017  * This function will return the virtual color for the specified page. The
9018  * virtual color corresponds to this page current mapping or its last mapping.
9019  * It is used by memory allocators to choose addresses with the correct
9020  * alignment so vac consistency is automatically maintained.  If the page
9021  * has no color it returns -1.
9022  */
9023 /*ARGSUSED*/
9024 int
9025 sfmmu_get_ppvcolor(struct page *pp)
9026 {
9027 #ifdef VAC
9028         int color;
9029 
9030         if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
9031                 return (-1);
9032         }
9033         color = PP_GET_VCOLOR(pp);
9034         ASSERT(color < mmu_btop(shm_alignment));
9035         return (color);
9036 #else
9037         return (-1);
9038 #endif  /* VAC */
9039 }
9040 
9041 /*
9042  * This function will return the desired alignment for vac consistency
9043  * (vac color) given a virtual address.  If no vac is present it returns -1.
9044  */
9045 /*ARGSUSED*/
9046 int
9047 sfmmu_get_addrvcolor(caddr_t vaddr)
9048 {
9049 #ifdef VAC
9050         if (cache & CACHE_VAC) {
9051                 return (addr_to_vcolor(vaddr));
9052         } else {
9053                 return (-1);
9054         }
9055 #else
9056         return (-1);
9057 #endif  /* VAC */
9058 }
9059 
9060 #ifdef VAC
9061 /*
9062  * Check for conflicts.
9063  * A conflict exists if the new and existent mappings do not match in
9064  * their "shm_alignment fields. If conflicts exist, the existant mappings
9065  * are flushed unless one of them is locked. If one of them is locked, then
9066  * the mappings are flushed and converted to non-cacheable mappings.
9067  */
9068 static void
9069 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
9070 {
9071         struct hat *tmphat;
9072         struct sf_hment *sfhmep, *tmphme = NULL;
9073         struct hme_blk *hmeblkp;
9074         int vcolor;
9075         tte_t tte;
9076 
9077         ASSERT(sfmmu_mlist_held(pp));
9078         ASSERT(!PP_ISNC(pp));           /* page better be cacheable */
9079 
9080         vcolor = addr_to_vcolor(addr);
9081         if (PP_NEWPAGE(pp)) {
9082                 PP_SET_VCOLOR(pp, vcolor);
9083                 return;
9084         }
9085 
9086         if (PP_GET_VCOLOR(pp) == vcolor) {
9087                 return;
9088         }
9089 
9090         if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
9091                 /*
9092                  * Previous user of page had a different color
9093                  * but since there are no current users
9094                  * we just flush the cache and change the color.
9095                  */
9096                 SFMMU_STAT(sf_pgcolor_conflict);
9097                 sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9098                 PP_SET_VCOLOR(pp, vcolor);
9099                 return;
9100         }
9101 
9102         /*
9103          * If we get here we have a vac conflict with a current
9104          * mapping.  VAC conflict policy is as follows.
9105          * - The default is to unload the other mappings unless:
9106          * - If we have a large mapping we uncache the page.
9107          * We need to uncache the rest of the large page too.
9108          * - If any of the mappings are locked we uncache the page.
9109          * - If the requested mapping is inconsistent
9110          * with another mapping and that mapping
9111          * is in the same address space we have to
9112          * make it non-cached.  The default thing
9113          * to do is unload the inconsistent mapping
9114          * but if they are in the same address space
9115          * we run the risk of unmapping the pc or the
9116          * stack which we will use as we return to the user,
9117          * in which case we can then fault on the thing
9118          * we just unloaded and get into an infinite loop.
9119          */
9120         if (PP_ISMAPPED_LARGE(pp)) {
9121                 int sz;
9122 
9123                 /*
9124                  * Existing mapping is for big pages. We don't unload
9125                  * existing big mappings to satisfy new mappings.
9126                  * Always convert all mappings to TNC.
9127                  */
9128                 sz = fnd_mapping_sz(pp);
9129                 pp = PP_GROUPLEADER(pp, sz);
9130                 SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
9131                 sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
9132                     TTEPAGES(sz));
9133 
9134                 return;
9135         }
9136 
9137         /*
9138          * check if any mapping is in same as or if it is locked
9139          * since in that case we need to uncache.
9140          */
9141         for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9142                 tmphme = sfhmep->hme_next;
9143                 if (IS_PAHME(sfhmep))
9144                         continue;
9145                 hmeblkp = sfmmu_hmetohblk(sfhmep);
9146                 tmphat = hblktosfmmu(hmeblkp);
9147                 sfmmu_copytte(&sfhmep->hme_tte, &tte);
9148                 ASSERT(TTE_IS_VALID(&tte));
9149                 if (hmeblkp->hblk_shared || tmphat == hat ||
9150                     hmeblkp->hblk_lckcnt) {
9151                         /*
9152                          * We have an uncache conflict
9153                          */
9154                         SFMMU_STAT(sf_uncache_conflict);
9155                         sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
9156                         return;
9157                 }
9158         }
9159 
9160         /*
9161          * We have an unload conflict
9162          * We have already checked for LARGE mappings, therefore
9163          * the remaining mapping(s) must be TTE8K.
9164          */
9165         SFMMU_STAT(sf_unload_conflict);
9166 
9167         for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9168                 tmphme = sfhmep->hme_next;
9169                 if (IS_PAHME(sfhmep))
9170                         continue;
9171                 hmeblkp = sfmmu_hmetohblk(sfhmep);
9172                 ASSERT(!hmeblkp->hblk_shared);
9173                 (void) sfmmu_pageunload(pp, sfhmep, TTE8K);
9174         }
9175 
9176         if (PP_ISMAPPED_KPM(pp))
9177                 sfmmu_kpm_vac_unload(pp, addr);
9178 
9179         /*
9180          * Unloads only do TLB flushes so we need to flush the
9181          * cache here.
9182          */
9183         sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9184         PP_SET_VCOLOR(pp, vcolor);
9185 }
9186 
9187 /*
9188  * Whenever a mapping is unloaded and the page is in TNC state,
9189  * we see if the page can be made cacheable again. 'pp' is
9190  * the page that we just unloaded a mapping from, the size
9191  * of mapping that was unloaded is 'ottesz'.
9192  * Remark:
9193  * The recache policy for mpss pages can leave a performance problem
9194  * under the following circumstances:
9195  * . A large page in uncached mode has just been unmapped.
9196  * . All constituent pages are TNC due to a conflicting small mapping.
9197  * . There are many other, non conflicting, small mappings around for
9198  *   a lot of the constituent pages.
9199  * . We're called w/ the "old" groupleader page and the old ottesz,
9200  *   but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
9201  *   we end up w/ TTE8K or npages == 1.
9202  * . We call tst_tnc w/ the old groupleader only, and if there is no
9203  *   conflict, we re-cache only this page.
9204  * . All other small mappings are not checked and will be left in TNC mode.
9205  * The problem is not very serious because:
9206  * . mpss is actually only defined for heap and stack, so the probability
9207  *   is not very high that a large page mapping exists in parallel to a small
9208  *   one (this is possible, but seems to be bad programming style in the
9209  *   appl).
9210  * . The problem gets a little bit more serious, when those TNC pages
9211  *   have to be mapped into kernel space, e.g. for networking.
9212  * . When VAC alias conflicts occur in applications, this is regarded
9213  *   as an application bug. So if kstat's show them, the appl should
9214  *   be changed anyway.
9215  */
9216 void
9217 conv_tnc(page_t *pp, int ottesz)
9218 {
9219         int cursz, dosz;
9220         pgcnt_t curnpgs, dopgs;
9221         pgcnt_t pg64k;
9222         page_t *pp2;
9223 
9224         /*
9225          * Determine how big a range we check for TNC and find
9226          * leader page. cursz is the size of the biggest
9227          * mapping that still exist on 'pp'.
9228          */
9229         if (PP_ISMAPPED_LARGE(pp)) {
9230                 cursz = fnd_mapping_sz(pp);
9231         } else {
9232                 cursz = TTE8K;
9233         }
9234 
9235         if (ottesz >= cursz) {
9236                 dosz = ottesz;
9237                 pp2 = pp;
9238         } else {
9239                 dosz = cursz;
9240                 pp2 = PP_GROUPLEADER(pp, dosz);
9241         }
9242 
9243         pg64k = TTEPAGES(TTE64K);
9244         dopgs = TTEPAGES(dosz);
9245 
9246         ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
9247 
9248         while (dopgs != 0) {
9249                 curnpgs = TTEPAGES(cursz);
9250                 if (tst_tnc(pp2, curnpgs)) {
9251                         SFMMU_STAT_ADD(sf_recache, curnpgs);
9252                         sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
9253                             curnpgs);
9254                 }
9255 
9256                 ASSERT(dopgs >= curnpgs);
9257                 dopgs -= curnpgs;
9258 
9259                 if (dopgs == 0) {
9260                         break;
9261                 }
9262 
9263                 pp2 = PP_PAGENEXT_N(pp2, curnpgs);
9264                 if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
9265                         cursz = fnd_mapping_sz(pp2);
9266                 } else {
9267                         cursz = TTE8K;
9268                 }
9269         }
9270 }
9271 
9272 /*
9273  * Returns 1 if page(s) can be converted from TNC to cacheable setting,
9274  * returns 0 otherwise. Note that oaddr argument is valid for only
9275  * 8k pages.
9276  */
9277 int
9278 tst_tnc(page_t *pp, pgcnt_t npages)
9279 {
9280         struct  sf_hment *sfhme;
9281         struct  hme_blk *hmeblkp;
9282         tte_t   tte;
9283         caddr_t vaddr;
9284         int     clr_valid = 0;
9285         int     color, color1, bcolor;
9286         int     i, ncolors;
9287 
9288         ASSERT(pp != NULL);
9289         ASSERT(!(cache & CACHE_WRITEBACK));
9290 
9291         if (npages > 1) {
9292                 ncolors = CACHE_NUM_COLOR;
9293         }
9294 
9295         for (i = 0; i < npages; i++) {
9296                 ASSERT(sfmmu_mlist_held(pp));
9297                 ASSERT(PP_ISTNC(pp));
9298                 ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
9299 
9300                 if (PP_ISPNC(pp)) {
9301                         return (0);
9302                 }
9303 
9304                 clr_valid = 0;
9305                 if (PP_ISMAPPED_KPM(pp)) {
9306                         caddr_t kpmvaddr;
9307 
9308                         ASSERT(kpm_enable);
9309                         kpmvaddr = hat_kpm_page2va(pp, 1);
9310                         ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
9311                         color1 = addr_to_vcolor(kpmvaddr);
9312                         clr_valid = 1;
9313                 }
9314 
9315                 for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9316                         if (IS_PAHME(sfhme))
9317                                 continue;
9318                         hmeblkp = sfmmu_hmetohblk(sfhme);
9319 
9320                         sfmmu_copytte(&sfhme->hme_tte, &tte);
9321                         ASSERT(TTE_IS_VALID(&tte));
9322 
9323                         vaddr = tte_to_vaddr(hmeblkp, tte);
9324                         color = addr_to_vcolor(vaddr);
9325 
9326                         if (npages > 1) {
9327                                 /*
9328                                  * If there is a big mapping, make sure
9329                                  * 8K mapping is consistent with the big
9330                                  * mapping.
9331                                  */
9332                                 bcolor = i % ncolors;
9333                                 if (color != bcolor) {
9334                                         return (0);
9335                                 }
9336                         }
9337                         if (!clr_valid) {
9338                                 clr_valid = 1;
9339                                 color1 = color;
9340                         }
9341 
9342                         if (color1 != color) {
9343                                 return (0);
9344                         }
9345                 }
9346 
9347                 pp = PP_PAGENEXT(pp);
9348         }
9349 
9350         return (1);
9351 }
9352 
9353 void
9354 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
9355         pgcnt_t npages)
9356 {
9357         kmutex_t *pmtx;
9358         int i, ncolors, bcolor;
9359         kpm_hlk_t *kpmp;
9360         cpuset_t cpuset;
9361 
9362         ASSERT(pp != NULL);
9363         ASSERT(!(cache & CACHE_WRITEBACK));
9364 
9365         kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
9366         pmtx = sfmmu_page_enter(pp);
9367 
9368         /*
9369          * Fast path caching single unmapped page
9370          */
9371         if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
9372             flags == HAT_CACHE) {
9373                 PP_CLRTNC(pp);
9374                 PP_CLRPNC(pp);
9375                 sfmmu_page_exit(pmtx);
9376                 sfmmu_kpm_kpmp_exit(kpmp);
9377                 return;
9378         }
9379 
9380         /*
9381          * We need to capture all cpus in order to change cacheability
9382          * because we can't allow one cpu to access the same physical
9383          * page using a cacheable and a non-cachebale mapping at the same
9384          * time. Since we may end up walking the ism mapping list
9385          * have to grab it's lock now since we can't after all the
9386          * cpus have been captured.
9387          */
9388         sfmmu_hat_lock_all();
9389         mutex_enter(&ism_mlist_lock);
9390         kpreempt_disable();
9391         cpuset = cpu_ready_set;
9392         xc_attention(cpuset);
9393 
9394         if (npages > 1) {
9395                 /*
9396                  * Make sure all colors are flushed since the
9397                  * sfmmu_page_cache() only flushes one color-
9398                  * it does not know big pages.
9399                  */
9400                 ncolors = CACHE_NUM_COLOR;
9401                 if (flags & HAT_TMPNC) {
9402                         for (i = 0; i < ncolors; i++) {
9403                                 sfmmu_cache_flushcolor(i, pp->p_pagenum);
9404                         }
9405                         cache_flush_flag = CACHE_NO_FLUSH;
9406                 }
9407         }
9408 
9409         for (i = 0; i < npages; i++) {
9410 
9411                 ASSERT(sfmmu_mlist_held(pp));
9412 
9413                 if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
9414 
9415                         if (npages > 1) {
9416                                 bcolor = i % ncolors;
9417                         } else {
9418                                 bcolor = NO_VCOLOR;
9419                         }
9420 
9421                         sfmmu_page_cache(pp, flags, cache_flush_flag,
9422                             bcolor);
9423                 }
9424 
9425                 pp = PP_PAGENEXT(pp);
9426         }
9427 
9428         xt_sync(cpuset);
9429         xc_dismissed(cpuset);
9430         mutex_exit(&ism_mlist_lock);
9431         sfmmu_hat_unlock_all();
9432         sfmmu_page_exit(pmtx);
9433         sfmmu_kpm_kpmp_exit(kpmp);
9434         kpreempt_enable();
9435 }
9436 
9437 /*
9438  * This function changes the virtual cacheability of all mappings to a
9439  * particular page.  When changing from uncache to cacheable the mappings will
9440  * only be changed if all of them have the same virtual color.
9441  * We need to flush the cache in all cpus.  It is possible that
9442  * a process referenced a page as cacheable but has sinced exited
9443  * and cleared the mapping list.  We still to flush it but have no
9444  * state so all cpus is the only alternative.
9445  */
9446 static void
9447 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
9448 {
9449         struct  sf_hment *sfhme;
9450         struct  hme_blk *hmeblkp;
9451         sfmmu_t *sfmmup;
9452         tte_t   tte, ttemod;
9453         caddr_t vaddr;
9454         int     ret, color;
9455         pfn_t   pfn;
9456 
9457         color = bcolor;
9458         pfn = pp->p_pagenum;
9459 
9460         for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9461 
9462                 if (IS_PAHME(sfhme))
9463                         continue;
9464                 hmeblkp = sfmmu_hmetohblk(sfhme);
9465 
9466                 sfmmu_copytte(&sfhme->hme_tte, &tte);
9467                 ASSERT(TTE_IS_VALID(&tte));
9468                 vaddr = tte_to_vaddr(hmeblkp, tte);
9469                 color = addr_to_vcolor(vaddr);
9470 
9471 #ifdef DEBUG
9472                 if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
9473                         ASSERT(color == bcolor);
9474                 }
9475 #endif
9476 
9477                 ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
9478 
9479                 ttemod = tte;
9480                 if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
9481                         TTE_CLR_VCACHEABLE(&ttemod);
9482                 } else {        /* flags & HAT_CACHE */
9483                         TTE_SET_VCACHEABLE(&ttemod);
9484                 }
9485                 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
9486                 if (ret < 0) {
9487                         /*
9488                          * Since all cpus are captured modifytte should not
9489                          * fail.
9490                          */
9491                         panic("sfmmu_page_cache: write to tte failed");
9492                 }
9493 
9494                 sfmmup = hblktosfmmu(hmeblkp);
9495                 if (cache_flush_flag == CACHE_FLUSH) {
9496                         /*
9497                          * Flush TSBs, TLBs and caches
9498                          */
9499                         if (hmeblkp->hblk_shared) {
9500                                 sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9501                                 uint_t rid = hmeblkp->hblk_tag.htag_rid;
9502                                 sf_region_t *rgnp;
9503                                 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9504                                 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9505                                 ASSERT(srdp != NULL);
9506                                 rgnp = srdp->srd_hmergnp[rid];
9507                                 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9508                                     srdp, rgnp, rid);
9509                                 (void) sfmmu_rgntlb_demap(vaddr, rgnp,
9510                                     hmeblkp, 0);
9511                                 sfmmu_cache_flush(pfn, addr_to_vcolor(vaddr));
9512                         } else if (sfmmup->sfmmu_ismhat) {
9513                                 if (flags & HAT_CACHE) {
9514                                         SFMMU_STAT(sf_ism_recache);
9515                                 } else {
9516                                         SFMMU_STAT(sf_ism_uncache);
9517                                 }
9518                                 sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9519                                     pfn, CACHE_FLUSH);
9520                         } else {
9521                                 sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
9522                                     pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
9523                         }
9524 
9525                         /*
9526                          * all cache entries belonging to this pfn are
9527                          * now flushed.
9528                          */
9529                         cache_flush_flag = CACHE_NO_FLUSH;
9530                 } else {
9531                         /*
9532                          * Flush only TSBs and TLBs.
9533                          */
9534                         if (hmeblkp->hblk_shared) {
9535                                 sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9536                                 uint_t rid = hmeblkp->hblk_tag.htag_rid;
9537                                 sf_region_t *rgnp;
9538                                 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9539                                 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9540                                 ASSERT(srdp != NULL);
9541                                 rgnp = srdp->srd_hmergnp[rid];
9542                                 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9543                                     srdp, rgnp, rid);
9544                                 (void) sfmmu_rgntlb_demap(vaddr, rgnp,
9545                                     hmeblkp, 0);
9546                         } else if (sfmmup->sfmmu_ismhat) {
9547                                 if (flags & HAT_CACHE) {
9548                                         SFMMU_STAT(sf_ism_recache);
9549                                 } else {
9550                                         SFMMU_STAT(sf_ism_uncache);
9551                                 }
9552                                 sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9553                                     pfn, CACHE_NO_FLUSH);
9554                         } else {
9555                                 sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
9556                         }
9557                 }
9558         }
9559 
9560         if (PP_ISMAPPED_KPM(pp))
9561                 sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
9562 
9563         switch (flags) {
9564 
9565                 default:
9566                         panic("sfmmu_pagecache: unknown flags");
9567                         break;
9568 
9569                 case HAT_CACHE:
9570                         PP_CLRTNC(pp);
9571                         PP_CLRPNC(pp);
9572                         PP_SET_VCOLOR(pp, color);
9573                         break;
9574 
9575                 case HAT_TMPNC:
9576                         PP_SETTNC(pp);
9577                         PP_SET_VCOLOR(pp, NO_VCOLOR);
9578                         break;
9579 
9580                 case HAT_UNCACHE:
9581                         PP_SETPNC(pp);
9582                         PP_CLRTNC(pp);
9583                         PP_SET_VCOLOR(pp, NO_VCOLOR);
9584                         break;
9585         }
9586 }
9587 #endif  /* VAC */
9588 
9589 
9590 /*
9591  * Wrapper routine used to return a context.
9592  *
9593  * It's the responsibility of the caller to guarantee that the
9594  * process serializes on calls here by taking the HAT lock for
9595  * the hat.
9596  *
9597  */
9598 static void
9599 sfmmu_get_ctx(sfmmu_t *sfmmup)
9600 {
9601         mmu_ctx_t *mmu_ctxp;
9602         uint_t pstate_save;
9603         int ret;
9604 
9605         ASSERT(sfmmu_hat_lock_held(sfmmup));
9606         ASSERT(sfmmup != ksfmmup);
9607 
9608         if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID)) {
9609                 sfmmu_setup_tsbinfo(sfmmup);
9610                 SFMMU_FLAGS_CLEAR(sfmmup, HAT_ALLCTX_INVALID);
9611         }
9612 
9613         kpreempt_disable();
9614 
9615         mmu_ctxp = CPU_MMU_CTXP(CPU);
9616         ASSERT(mmu_ctxp);
9617         ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
9618         ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
9619 
9620         /*
9621          * Do a wrap-around if cnum reaches the max # cnum supported by a MMU.
9622          */
9623         if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs)
9624                 sfmmu_ctx_wrap_around(mmu_ctxp, B_TRUE);
9625 
9626         /*
9627          * Let the MMU set up the page sizes to use for
9628          * this context in the TLB. Don't program 2nd dtlb for ism hat.
9629          */
9630         if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) {
9631                 mmu_set_ctx_page_sizes(sfmmup);
9632         }
9633 
9634         /*
9635          * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with
9636          * interrupts disabled to prevent race condition with wrap-around
9637          * ctx invalidatation. In sun4v, ctx invalidation also involves
9638          * a HV call to set the number of TSBs to 0. If interrupts are not
9639          * disabled until after sfmmu_load_mmustate is complete TSBs may
9640          * become assigned to INVALID_CONTEXT. This is not allowed.
9641          */
9642         pstate_save = sfmmu_disable_intrs();
9643 
9644         if (sfmmu_alloc_ctx(sfmmup, 1, CPU, SFMMU_PRIVATE) &&
9645             sfmmup->sfmmu_scdp != NULL) {
9646                 sf_scd_t *scdp = sfmmup->sfmmu_scdp;
9647                 sfmmu_t *scsfmmup = scdp->scd_sfmmup;
9648                 ret = sfmmu_alloc_ctx(scsfmmup, 1, CPU, SFMMU_SHARED);
9649                 /* debug purpose only */
9650                 ASSERT(!ret || scsfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
9651                     != INVALID_CONTEXT);
9652         }
9653         sfmmu_load_mmustate(sfmmup);
9654 
9655         sfmmu_enable_intrs(pstate_save);
9656 
9657         kpreempt_enable();
9658 }
9659 
9660 /*
9661  * When all cnums are used up in a MMU, cnum will wrap around to the
9662  * next generation and start from 2.
9663  */
9664 static void
9665 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp, boolean_t reset_cnum)
9666 {
9667 
9668         /* caller must have disabled the preemption */
9669         ASSERT(curthread->t_preempt >= 1);
9670         ASSERT(mmu_ctxp != NULL);
9671 
9672         /* acquire Per-MMU (PM) spin lock */
9673         mutex_enter(&mmu_ctxp->mmu_lock);
9674 
9675         /* re-check to see if wrap-around is needed */
9676         if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs)
9677                 goto done;
9678 
9679         SFMMU_MMU_STAT(mmu_wrap_around);
9680 
9681         /* update gnum */
9682         ASSERT(mmu_ctxp->mmu_gnum != 0);
9683         mmu_ctxp->mmu_gnum++;
9684         if (mmu_ctxp->mmu_gnum == 0 ||
9685             mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) {
9686                 cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.",
9687                     (void *)mmu_ctxp);
9688         }
9689 
9690         if (mmu_ctxp->mmu_ncpus > 1) {
9691                 cpuset_t cpuset;
9692 
9693                 membar_enter(); /* make sure updated gnum visible */
9694 
9695                 SFMMU_XCALL_STATS(NULL);
9696 
9697                 /* xcall to others on the same MMU to invalidate ctx */
9698                 cpuset = mmu_ctxp->mmu_cpuset;
9699                 ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id) || !reset_cnum);
9700                 CPUSET_DEL(cpuset, CPU->cpu_id);
9701                 CPUSET_AND(cpuset, cpu_ready_set);
9702 
9703                 /*
9704                  * Pass in INVALID_CONTEXT as the first parameter to
9705                  * sfmmu_raise_tsb_exception, which invalidates the context
9706                  * of any process running on the CPUs in the MMU.
9707                  */
9708                 xt_some(cpuset, sfmmu_raise_tsb_exception,
9709                     INVALID_CONTEXT, INVALID_CONTEXT);
9710                 xt_sync(cpuset);
9711 
9712                 SFMMU_MMU_STAT(mmu_tsb_raise_exception);
9713         }
9714 
9715         if (sfmmu_getctx_sec() != INVALID_CONTEXT) {
9716                 sfmmu_setctx_sec(INVALID_CONTEXT);
9717                 sfmmu_clear_utsbinfo();
9718         }
9719 
9720         /*
9721          * No xcall is needed here. For sun4u systems all CPUs in context
9722          * domain share a single physical MMU therefore it's enough to flush
9723          * TLB on local CPU. On sun4v systems we use 1 global context
9724          * domain and flush all remote TLBs in sfmmu_raise_tsb_exception
9725          * handler. Note that vtag_flushall_uctxs() is called
9726          * for Ultra II machine, where the equivalent flushall functionality
9727          * is implemented in SW, and only user ctx TLB entries are flushed.
9728          */
9729         if (&vtag_flushall_uctxs != NULL) {
9730                 vtag_flushall_uctxs();
9731         } else {
9732                 vtag_flushall();
9733         }
9734 
9735         /* reset mmu cnum, skips cnum 0 and 1 */
9736         if (reset_cnum == B_TRUE)
9737                 mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
9738 
9739 done:
9740         mutex_exit(&mmu_ctxp->mmu_lock);
9741 }
9742 
9743 
9744 /*
9745  * For multi-threaded process, set the process context to INVALID_CONTEXT
9746  * so that it faults and reloads the MMU state from TL=0. For single-threaded
9747  * process, we can just load the MMU state directly without having to
9748  * set context invalid. Caller must hold the hat lock since we don't
9749  * acquire it here.
9750  */
9751 static void
9752 sfmmu_sync_mmustate(sfmmu_t *sfmmup)
9753 {
9754         uint_t cnum;
9755         uint_t pstate_save;
9756 
9757         ASSERT(sfmmup != ksfmmup);
9758         ASSERT(sfmmu_hat_lock_held(sfmmup));
9759 
9760         kpreempt_disable();
9761 
9762         /*
9763          * We check whether the pass'ed-in sfmmup is the same as the
9764          * current running proc. This is to makes sure the current proc
9765          * stays single-threaded if it already is.
9766          */
9767         if ((sfmmup == curthread->t_procp->p_as->a_hat) &&
9768             (curthread->t_procp->p_lwpcnt == 1)) {
9769                 /* single-thread */
9770                 cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum;
9771                 if (cnum != INVALID_CONTEXT) {
9772                         uint_t curcnum;
9773                         /*
9774                          * Disable interrupts to prevent race condition
9775                          * with sfmmu_ctx_wrap_around ctx invalidation.
9776                          * In sun4v, ctx invalidation involves setting
9777                          * TSB to NULL, hence, interrupts should be disabled
9778                          * untill after sfmmu_load_mmustate is completed.
9779                          */
9780                         pstate_save = sfmmu_disable_intrs();
9781                         curcnum = sfmmu_getctx_sec();
9782                         if (curcnum == cnum)
9783                                 sfmmu_load_mmustate(sfmmup);
9784                         sfmmu_enable_intrs(pstate_save);
9785                         ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT);
9786                 }
9787         } else {
9788                 /*
9789                  * multi-thread
9790                  * or when sfmmup is not the same as the curproc.
9791                  */
9792                 sfmmu_invalidate_ctx(sfmmup);
9793         }
9794 
9795         kpreempt_enable();
9796 }
9797 
9798 
9799 /*
9800  * Replace the specified TSB with a new TSB.  This function gets called when
9801  * we grow, shrink or swapin a TSB.  When swapping in a TSB (TSB_SWAPIN), the
9802  * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
9803  * (8K).
9804  *
9805  * Caller must hold the HAT lock, but should assume any tsb_info
9806  * pointers it has are no longer valid after calling this function.
9807  *
9808  * Return values:
9809  *      TSB_ALLOCFAIL   Failed to allocate a TSB, due to memory constraints
9810  *      TSB_LOSTRACE    HAT is busy, i.e. another thread is already doing
9811  *                      something to this tsbinfo/TSB
9812  *      TSB_SUCCESS     Operation succeeded
9813  */
9814 static tsb_replace_rc_t
9815 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
9816     hatlock_t *hatlockp, uint_t flags)
9817 {
9818         struct tsb_info *new_tsbinfo = NULL;
9819         struct tsb_info *curtsb, *prevtsb;
9820         uint_t tte_sz_mask;
9821         int i;
9822 
9823         ASSERT(sfmmup != ksfmmup);
9824         ASSERT(sfmmup->sfmmu_ismhat == 0);
9825         ASSERT(sfmmu_hat_lock_held(sfmmup));
9826         ASSERT(szc <= tsb_max_growsize);
9827 
9828         if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
9829                 return (TSB_LOSTRACE);
9830 
9831         /*
9832          * Find the tsb_info ahead of this one in the list, and
9833          * also make sure that the tsb_info passed in really
9834          * exists!
9835          */
9836         for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
9837             curtsb != old_tsbinfo && curtsb != NULL;
9838             prevtsb = curtsb, curtsb = curtsb->tsb_next)
9839                 ;
9840         ASSERT(curtsb != NULL);
9841 
9842         if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
9843                 /*
9844                  * The process is swapped out, so just set the new size
9845                  * code.  When it swaps back in, we'll allocate a new one
9846                  * of the new chosen size.
9847                  */
9848                 curtsb->tsb_szc = szc;
9849                 return (TSB_SUCCESS);
9850         }
9851         SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
9852 
9853         tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
9854 
9855         /*
9856          * All initialization is done inside of sfmmu_tsbinfo_alloc().
9857          * If we fail to allocate a TSB, exit.
9858          *
9859          * If tsb grows with new tsb size > 4M and old tsb size < 4M,
9860          * then try 4M slab after the initial alloc fails.
9861          *
9862          * If tsb swapin with tsb size > 4M, then try 4M after the
9863          * initial alloc fails.
9864          */
9865         sfmmu_hat_exit(hatlockp);
9866         if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc,
9867             tte_sz_mask, flags, sfmmup) &&
9868             (!(flags & (TSB_GROW | TSB_SWAPIN)) || (szc <= TSB_4M_SZCODE) ||
9869             (!(flags & TSB_SWAPIN) &&
9870             (old_tsbinfo->tsb_szc >= TSB_4M_SZCODE)) ||
9871             sfmmu_tsbinfo_alloc(&new_tsbinfo, TSB_4M_SZCODE,
9872             tte_sz_mask, flags, sfmmup))) {
9873                 (void) sfmmu_hat_enter(sfmmup);
9874                 if (!(flags & TSB_SWAPIN))
9875                         SFMMU_STAT(sf_tsb_resize_failures);
9876                 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9877                 return (TSB_ALLOCFAIL);
9878         }
9879         (void) sfmmu_hat_enter(sfmmup);
9880 
9881         /*
9882          * Re-check to make sure somebody else didn't muck with us while we
9883          * didn't hold the HAT lock.  If the process swapped out, fine, just
9884          * exit; this can happen if we try to shrink the TSB from the context
9885          * of another process (such as on an ISM unmap), though it is rare.
9886          */
9887         if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
9888                 SFMMU_STAT(sf_tsb_resize_failures);
9889                 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9890                 sfmmu_hat_exit(hatlockp);
9891                 sfmmu_tsbinfo_free(new_tsbinfo);
9892                 (void) sfmmu_hat_enter(sfmmup);
9893                 return (TSB_LOSTRACE);
9894         }
9895 
9896 #ifdef  DEBUG
9897         /* Reverify that the tsb_info still exists.. for debugging only */
9898         for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
9899             curtsb != old_tsbinfo && curtsb != NULL;
9900             prevtsb = curtsb, curtsb = curtsb->tsb_next)
9901                 ;
9902         ASSERT(curtsb != NULL);
9903 #endif  /* DEBUG */
9904 
9905         /*
9906          * Quiesce any CPUs running this process on their next TLB miss
9907          * so they atomically see the new tsb_info.  We temporarily set the
9908          * context to invalid context so new threads that come on processor
9909          * after we do the xcall to cpusran will also serialize behind the
9910          * HAT lock on TLB miss and will see the new TSB.  Since this short
9911          * race with a new thread coming on processor is relatively rare,
9912          * this synchronization mechanism should be cheaper than always
9913          * pausing all CPUs for the duration of the setup, which is what
9914          * the old implementation did.  This is particuarly true if we are
9915          * copying a huge chunk of memory around during that window.
9916          *
9917          * The memory barriers are to make sure things stay consistent
9918          * with resume() since it does not hold the HAT lock while
9919          * walking the list of tsb_info structures.
9920          */
9921         if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
9922                 /* The TSB is either growing or shrinking. */
9923                 sfmmu_invalidate_ctx(sfmmup);
9924         } else {
9925                 /*
9926                  * It is illegal to swap in TSBs from a process other
9927                  * than a process being swapped in.  This in turn
9928                  * implies we do not have a valid MMU context here
9929                  * since a process needs one to resolve translation
9930                  * misses.
9931                  */
9932                 ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
9933         }
9934 
9935 #ifdef DEBUG
9936         ASSERT(max_mmu_ctxdoms > 0);
9937 
9938         /*
9939          * Process should have INVALID_CONTEXT on all MMUs
9940          */
9941         for (i = 0; i < max_mmu_ctxdoms; i++) {
9942 
9943                 ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
9944         }
9945 #endif
9946 
9947         new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
9948         membar_stst();  /* strict ordering required */
9949         if (prevtsb)
9950                 prevtsb->tsb_next = new_tsbinfo;
9951         else
9952                 sfmmup->sfmmu_tsb = new_tsbinfo;
9953         membar_enter(); /* make sure new TSB globally visible */
9954 
9955         /*
9956          * We need to migrate TSB entries from the old TSB to the new TSB
9957          * if tsb_remap_ttes is set and the TSB is growing.
9958          */
9959         if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
9960                 sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
9961 
9962         SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9963 
9964         /*
9965          * Drop the HAT lock to free our old tsb_info.
9966          */
9967         sfmmu_hat_exit(hatlockp);
9968 
9969         if ((flags & TSB_GROW) == TSB_GROW) {
9970                 SFMMU_STAT(sf_tsb_grow);
9971         } else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
9972                 SFMMU_STAT(sf_tsb_shrink);
9973         }
9974 
9975         sfmmu_tsbinfo_free(old_tsbinfo);
9976 
9977         (void) sfmmu_hat_enter(sfmmup);
9978         return (TSB_SUCCESS);
9979 }
9980 
9981 /*
9982  * This function will re-program hat pgsz array, and invalidate the
9983  * process' context, forcing the process to switch to another
9984  * context on the next TLB miss, and therefore start using the
9985  * TLB that is reprogrammed for the new page sizes.
9986  */
9987 void
9988 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
9989 {
9990         int i;
9991         hatlock_t *hatlockp = NULL;
9992 
9993         hatlockp = sfmmu_hat_enter(sfmmup);
9994         /* USIII+-IV+ optimization, requires hat lock */
9995         if (tmp_pgsz) {
9996                 for (i = 0; i < mmu_page_sizes; i++)
9997                         sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
9998         }
9999         SFMMU_STAT(sf_tlb_reprog_pgsz);
10000 
10001         sfmmu_invalidate_ctx(sfmmup);
10002 
10003         sfmmu_hat_exit(hatlockp);
10004 }
10005 
10006 /*
10007  * The scd_rttecnt field in the SCD must be updated to take account of the
10008  * regions which it contains.
10009  */
10010 static void
10011 sfmmu_set_scd_rttecnt(sf_srd_t *srdp, sf_scd_t *scdp)
10012 {
10013         uint_t rid;
10014         uint_t i, j;
10015         ulong_t w;
10016         sf_region_t *rgnp;
10017 
10018         ASSERT(srdp != NULL);
10019 
10020         for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
10021                 if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
10022                         continue;
10023                 }
10024 
10025                 j = 0;
10026                 while (w) {
10027                         if (!(w & 0x1)) {
10028                                 j++;
10029                                 w >>= 1;
10030                                 continue;
10031                         }
10032                         rid = (i << BT_ULSHIFT) | j;
10033                         j++;
10034                         w >>= 1;
10035 
10036                         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
10037                         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
10038                         rgnp = srdp->srd_hmergnp[rid];
10039                         ASSERT(rgnp->rgn_refcnt > 0);
10040                         ASSERT(rgnp->rgn_id == rid);
10041 
10042                         scdp->scd_rttecnt[rgnp->rgn_pgszc] +=
10043                             rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
10044 
10045                         /*
10046                          * Maintain the tsb0 inflation cnt for the regions
10047                          * in the SCD.
10048                          */
10049                         if (rgnp->rgn_pgszc >= TTE4M) {
10050                                 scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt +=
10051                                     rgnp->rgn_size >>
10052                                     (TTE_PAGE_SHIFT(TTE8K) + 2);
10053                         }
10054                 }
10055         }
10056 }
10057 
10058 /*
10059  * This function assumes that there are either four or six supported page
10060  * sizes and at most two programmable TLBs, so we need to decide which
10061  * page sizes are most important and then tell the MMU layer so it
10062  * can adjust the TLB page sizes accordingly (if supported).
10063  *
10064  * If these assumptions change, this function will need to be
10065  * updated to support whatever the new limits are.
10066  *
10067  * The growing flag is nonzero if we are growing the address space,
10068  * and zero if it is shrinking.  This allows us to decide whether
10069  * to grow or shrink our TSB, depending upon available memory
10070  * conditions.
10071  */
10072 static void
10073 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
10074 {
10075         uint64_t ttecnt[MMU_PAGE_SIZES];
10076         uint64_t tte8k_cnt, tte4m_cnt;
10077         uint8_t i;
10078         int sectsb_thresh;
10079 
10080         /*
10081          * Kernel threads, processes with small address spaces not using
10082          * large pages, and dummy ISM HATs need not apply.
10083          */
10084         if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL)
10085                 return;
10086 
10087         if (!SFMMU_LGPGS_INUSE(sfmmup) &&
10088             sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
10089                 return;
10090 
10091         for (i = 0; i < mmu_page_sizes; i++) {
10092                 ttecnt[i] = sfmmup->sfmmu_ttecnt[i] +
10093                     sfmmup->sfmmu_ismttecnt[i];
10094         }
10095 
10096         /* Check pagesizes in use, and possibly reprogram DTLB. */
10097         if (&mmu_check_page_sizes)
10098                 mmu_check_page_sizes(sfmmup, ttecnt);
10099 
10100         /*
10101          * Calculate the number of 8k ttes to represent the span of these
10102          * pages.
10103          */
10104         tte8k_cnt = ttecnt[TTE8K] +
10105             (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
10106             (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
10107         if (mmu_page_sizes == max_mmu_page_sizes) {
10108                 tte4m_cnt = ttecnt[TTE4M] +
10109                     (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
10110                     (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
10111         } else {
10112                 tte4m_cnt = ttecnt[TTE4M];
10113         }
10114 
10115         /*
10116          * Inflate tte8k_cnt to allow for region large page allocation failure.
10117          */
10118         tte8k_cnt += sfmmup->sfmmu_tsb0_4minflcnt;
10119 
10120         /*
10121          * Inflate TSB sizes by a factor of 2 if this process
10122          * uses 4M text pages to minimize extra conflict misses
10123          * in the first TSB since without counting text pages
10124          * 8K TSB may become too small.
10125          *
10126          * Also double the size of the second TSB to minimize
10127          * extra conflict misses due to competition between 4M text pages
10128          * and data pages.
10129          *
10130          * We need to adjust the second TSB allocation threshold by the
10131          * inflation factor, since there is no point in creating a second
10132          * TSB when we know all the mappings can fit in the I/D TLBs.
10133          */
10134         sectsb_thresh = tsb_sectsb_threshold;
10135         if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
10136                 tte8k_cnt <<= 1;
10137                 tte4m_cnt <<= 1;
10138                 sectsb_thresh <<= 1;
10139         }
10140 
10141         /*
10142          * Check to see if our TSB is the right size; we may need to
10143          * grow or shrink it.  If the process is small, our work is
10144          * finished at this point.
10145          */
10146         if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
10147                 return;
10148         }
10149         sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
10150 }
10151 
10152 static void
10153 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
10154         uint64_t tte4m_cnt, int sectsb_thresh)
10155 {
10156         int tsb_bits;
10157         uint_t tsb_szc;
10158         struct tsb_info *tsbinfop;
10159         hatlock_t *hatlockp = NULL;
10160 
10161         hatlockp = sfmmu_hat_enter(sfmmup);
10162         ASSERT(hatlockp != NULL);
10163         tsbinfop = sfmmup->sfmmu_tsb;
10164         ASSERT(tsbinfop != NULL);
10165 
10166         /*
10167          * If we're growing, select the size based on RSS.  If we're
10168          * shrinking, leave some room so we don't have to turn around and
10169          * grow again immediately.
10170          */
10171         if (growing)
10172                 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
10173         else
10174                 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
10175 
10176         if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10177             (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10178                 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10179                     hatlockp, TSB_SHRINK);
10180         } else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
10181                 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10182                     hatlockp, TSB_GROW);
10183         }
10184         tsbinfop = sfmmup->sfmmu_tsb;
10185 
10186         /*
10187          * With the TLB and first TSB out of the way, we need to see if
10188          * we need a second TSB for 4M pages.  If we managed to reprogram
10189          * the TLB page sizes above, the process will start using this new
10190          * TSB right away; otherwise, it will start using it on the next
10191          * context switch.  Either way, it's no big deal so there's no
10192          * synchronization with the trap handlers here unless we grow the
10193          * TSB (in which case it's required to prevent using the old one
10194          * after it's freed). Note: second tsb is required for 32M/256M
10195          * page sizes.
10196          */
10197         if (tte4m_cnt > sectsb_thresh) {
10198                 /*
10199                  * If we're growing, select the size based on RSS.  If we're
10200                  * shrinking, leave some room so we don't have to turn
10201                  * around and grow again immediately.
10202                  */
10203                 if (growing)
10204                         tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
10205                 else
10206                         tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
10207                 if (tsbinfop->tsb_next == NULL) {
10208                         struct tsb_info *newtsb;
10209                         int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
10210                             0 : TSB_ALLOC;
10211 
10212                         sfmmu_hat_exit(hatlockp);
10213 
10214                         /*
10215                          * Try to allocate a TSB for 4[32|256]M pages.  If we
10216                          * can't get the size we want, retry w/a minimum sized
10217                          * TSB.  If that still didn't work, give up; we can
10218                          * still run without one.
10219                          */
10220                         tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
10221                             TSB4M|TSB32M|TSB256M:TSB4M;
10222                         if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
10223                             allocflags, sfmmup)) &&
10224                             (tsb_szc <= TSB_4M_SZCODE ||
10225                             sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
10226                             tsb_bits, allocflags, sfmmup)) &&
10227                             sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
10228                             tsb_bits, allocflags, sfmmup)) {
10229                                 return;
10230                         }
10231 
10232                         hatlockp = sfmmu_hat_enter(sfmmup);
10233 
10234                         sfmmu_invalidate_ctx(sfmmup);
10235 
10236                         if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
10237                                 sfmmup->sfmmu_tsb->tsb_next = newtsb;
10238                                 SFMMU_STAT(sf_tsb_sectsb_create);
10239                                 sfmmu_hat_exit(hatlockp);
10240                                 return;
10241                         } else {
10242                                 /*
10243                                  * It's annoying, but possible for us
10244                                  * to get here.. we dropped the HAT lock
10245                                  * because of locking order in the kmem
10246                                  * allocator, and while we were off getting
10247                                  * our memory, some other thread decided to
10248                                  * do us a favor and won the race to get a
10249                                  * second TSB for this process.  Sigh.
10250                                  */
10251                                 sfmmu_hat_exit(hatlockp);
10252                                 sfmmu_tsbinfo_free(newtsb);
10253                                 return;
10254                         }
10255                 }
10256 
10257                 /*
10258                  * We have a second TSB, see if it's big enough.
10259                  */
10260                 tsbinfop = tsbinfop->tsb_next;
10261 
10262                 /*
10263                  * Check to see if our second TSB is the right size;
10264                  * we may need to grow or shrink it.
10265                  * To prevent thrashing (e.g. growing the TSB on a
10266                  * subsequent map operation), only try to shrink if
10267                  * the TSB reach exceeds twice the virtual address
10268                  * space size.
10269                  */
10270                 if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10271                     (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10272                         (void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10273                             tsb_szc, hatlockp, TSB_SHRINK);
10274                 } else if (growing && tsb_szc > tsbinfop->tsb_szc &&
10275                     TSB_OK_GROW()) {
10276                         (void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10277                             tsb_szc, hatlockp, TSB_GROW);
10278                 }
10279         }
10280 
10281         sfmmu_hat_exit(hatlockp);
10282 }
10283 
10284 /*
10285  * Free up a sfmmu
10286  * Since the sfmmu is currently embedded in the hat struct we simply zero
10287  * out our fields and free up the ism map blk list if any.
10288  */
10289 static void
10290 sfmmu_free_sfmmu(sfmmu_t *sfmmup)
10291 {
10292         ism_blk_t       *blkp, *nx_blkp;
10293 #ifdef  DEBUG
10294         ism_map_t       *map;
10295         int             i;
10296 #endif
10297 
10298         ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
10299         ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
10300         ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
10301         ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
10302         ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
10303         ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
10304         ASSERT(SF_RGNMAP_ISNULL(sfmmup));
10305 
10306         sfmmup->sfmmu_free = 0;
10307         sfmmup->sfmmu_ismhat = 0;
10308 
10309         blkp = sfmmup->sfmmu_iblk;
10310         sfmmup->sfmmu_iblk = NULL;
10311 
10312         while (blkp) {
10313 #ifdef  DEBUG
10314                 map = blkp->iblk_maps;
10315                 for (i = 0; i < ISM_MAP_SLOTS; i++) {
10316                         ASSERT(map[i].imap_seg == 0);
10317                         ASSERT(map[i].imap_ismhat == NULL);
10318                         ASSERT(map[i].imap_ment == NULL);
10319                 }
10320 #endif
10321                 nx_blkp = blkp->iblk_next;
10322                 blkp->iblk_next = NULL;
10323                 blkp->iblk_nextpa = (uint64_t)-1;
10324                 kmem_cache_free(ism_blk_cache, blkp);
10325                 blkp = nx_blkp;
10326         }
10327 }
10328 
10329 /*
10330  * Locking primitves accessed by HATLOCK macros
10331  */
10332 
10333 #define SFMMU_SPL_MTX   (0x0)
10334 #define SFMMU_ML_MTX    (0x1)
10335 
10336 #define SFMMU_MLSPL_MTX(type, pg)       (((type) == SFMMU_SPL_MTX) ? \
10337                                             SPL_HASH(pg) : MLIST_HASH(pg))
10338 
10339 kmutex_t *
10340 sfmmu_page_enter(struct page *pp)
10341 {
10342         return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
10343 }
10344 
10345 void
10346 sfmmu_page_exit(kmutex_t *spl)
10347 {
10348         mutex_exit(spl);
10349 }
10350 
10351 int
10352 sfmmu_page_spl_held(struct page *pp)
10353 {
10354         return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
10355 }
10356 
10357 kmutex_t *
10358 sfmmu_mlist_enter(struct page *pp)
10359 {
10360         return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
10361 }
10362 
10363 void
10364 sfmmu_mlist_exit(kmutex_t *mml)
10365 {
10366         mutex_exit(mml);
10367 }
10368 
10369 int
10370 sfmmu_mlist_held(struct page *pp)
10371 {
10372 
10373         return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
10374 }
10375 
10376 /*
10377  * Common code for sfmmu_mlist_enter() and sfmmu_page_enter().  For
10378  * sfmmu_mlist_enter() case mml_table lock array is used and for
10379  * sfmmu_page_enter() sfmmu_page_lock lock array is used.
10380  *
10381  * The lock is taken on a root page so that it protects an operation on all
10382  * constituent pages of a large page pp belongs to.
10383  *
10384  * The routine takes a lock from the appropriate array. The lock is determined
10385  * by hashing the root page. After taking the lock this routine checks if the
10386  * root page has the same size code that was used to determine the root (i.e
10387  * that root hasn't changed).  If root page has the expected p_szc field we
10388  * have the right lock and it's returned to the caller. If root's p_szc
10389  * decreased we release the lock and retry from the beginning.  This case can
10390  * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
10391  * value and taking the lock. The number of retries due to p_szc decrease is
10392  * limited by the maximum p_szc value. If p_szc is 0 we return the lock
10393  * determined by hashing pp itself.
10394  *
10395  * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
10396  * possible that p_szc can increase. To increase p_szc a thread has to lock
10397  * all constituent pages EXCL and do hat_pageunload() on all of them. All the
10398  * callers that don't hold a page locked recheck if hmeblk through which pp
10399  * was found still maps this pp.  If it doesn't map it anymore returned lock
10400  * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
10401  * p_szc increase after taking the lock it returns this lock without further
10402  * retries because in this case the caller doesn't care about which lock was
10403  * taken. The caller will drop it right away.
10404  *
10405  * After the routine returns it's guaranteed that hat_page_demote() can't
10406  * change p_szc field of any of constituent pages of a large page pp belongs
10407  * to as long as pp was either locked at least SHARED prior to this call or
10408  * the caller finds that hment that pointed to this pp still references this
10409  * pp (this also assumes that the caller holds hme hash bucket lock so that
10410  * the same pp can't be remapped into the same hmeblk after it was unmapped by
10411  * hat_pageunload()).
10412  */
10413 static kmutex_t *
10414 sfmmu_mlspl_enter(struct page *pp, int type)
10415 {
10416         kmutex_t        *mtx;
10417         uint_t          prev_rszc = UINT_MAX;
10418         page_t          *rootpp;
10419         uint_t          szc;
10420         uint_t          rszc;
10421         uint_t          pszc = pp->p_szc;
10422 
10423         ASSERT(pp != NULL);
10424 
10425 again:
10426         if (pszc == 0) {
10427                 mtx = SFMMU_MLSPL_MTX(type, pp);
10428                 mutex_enter(mtx);
10429                 return (mtx);
10430         }
10431 
10432         /* The lock lives in the root page */
10433         rootpp = PP_GROUPLEADER(pp, pszc);
10434         mtx = SFMMU_MLSPL_MTX(type, rootpp);
10435         mutex_enter(mtx);
10436 
10437         /*
10438          * Return mml in the following 3 cases:
10439          *
10440          * 1) If pp itself is root since if its p_szc decreased before we took
10441          * the lock pp is still the root of smaller szc page. And if its p_szc
10442          * increased it doesn't matter what lock we return (see comment in
10443          * front of this routine).
10444          *
10445          * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
10446          * large page we have the right lock since any previous potential
10447          * hat_page_demote() is done demoting from greater than current root's
10448          * p_szc because hat_page_demote() changes root's p_szc last. No
10449          * further hat_page_demote() can start or be in progress since it
10450          * would need the same lock we currently hold.
10451          *
10452          * 3) If rootpp's p_szc increased since previous iteration it doesn't
10453          * matter what lock we return (see comment in front of this routine).
10454          */
10455         if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
10456             rszc >= prev_rszc) {
10457                 return (mtx);
10458         }
10459 
10460         /*
10461          * hat_page_demote() could have decreased root's p_szc.
10462          * In this case pp's p_szc must also be smaller than pszc.
10463          * Retry.
10464          */
10465         if (rszc < pszc) {
10466                 szc = pp->p_szc;
10467                 if (szc < pszc) {
10468                         mutex_exit(mtx);
10469                         pszc = szc;
10470                         goto again;
10471                 }
10472                 /*
10473                  * pp's p_szc increased after it was decreased.
10474                  * page cannot be mapped. Return current lock. The caller
10475                  * will drop it right away.
10476                  */
10477                 return (mtx);
10478         }
10479 
10480         /*
10481          * root's p_szc is greater than pp's p_szc.
10482          * hat_page_demote() is not done with all pages
10483          * yet. Wait for it to complete.
10484          */
10485         mutex_exit(mtx);
10486         rootpp = PP_GROUPLEADER(rootpp, rszc);
10487         mtx = SFMMU_MLSPL_MTX(type, rootpp);
10488         mutex_enter(mtx);
10489         mutex_exit(mtx);
10490         prev_rszc = rszc;
10491         goto again;
10492 }
10493 
10494 static int
10495 sfmmu_mlspl_held(struct page *pp, int type)
10496 {
10497         kmutex_t        *mtx;
10498 
10499         ASSERT(pp != NULL);
10500         /* The lock lives in the root page */
10501         pp = PP_PAGEROOT(pp);
10502         ASSERT(pp != NULL);
10503 
10504         mtx = SFMMU_MLSPL_MTX(type, pp);
10505         return (MUTEX_HELD(mtx));
10506 }
10507 
10508 static uint_t
10509 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
10510 {
10511         struct  hme_blk *hblkp;
10512 
10513 
10514         if (freehblkp != NULL) {
10515                 mutex_enter(&freehblkp_lock);
10516                 if (freehblkp != NULL) {
10517                         /*
10518                          * If the current thread is owning hblk_reserve OR
10519                          * critical request from sfmmu_hblk_steal()
10520                          * let it succeed even if freehblkcnt is really low.
10521                          */
10522                         if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
10523                                 SFMMU_STAT(sf_get_free_throttle);
10524                                 mutex_exit(&freehblkp_lock);
10525                                 return (0);
10526                         }
10527                         freehblkcnt--;
10528                         *hmeblkpp = freehblkp;
10529                         hblkp = *hmeblkpp;
10530                         freehblkp = hblkp->hblk_next;
10531                         mutex_exit(&freehblkp_lock);
10532                         hblkp->hblk_next = NULL;
10533                         SFMMU_STAT(sf_get_free_success);
10534 
10535                         ASSERT(hblkp->hblk_hmecnt == 0);
10536                         ASSERT(hblkp->hblk_vcnt == 0);
10537                         ASSERT(hblkp->hblk_nextpa == va_to_pa((caddr_t)hblkp));
10538 
10539                         return (1);
10540                 }
10541                 mutex_exit(&freehblkp_lock);
10542         }
10543 
10544         /* Check cpu hblk pending queues */
10545         if ((*hmeblkpp = sfmmu_check_pending_hblks(TTE8K)) != NULL) {
10546                 hblkp = *hmeblkpp;
10547                 hblkp->hblk_next = NULL;
10548                 hblkp->hblk_nextpa = va_to_pa((caddr_t)hblkp);
10549 
10550                 ASSERT(hblkp->hblk_hmecnt == 0);
10551                 ASSERT(hblkp->hblk_vcnt == 0);
10552 
10553                 return (1);
10554         }
10555 
10556         SFMMU_STAT(sf_get_free_fail);
10557         return (0);
10558 }
10559 
10560 static uint_t
10561 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
10562 {
10563         struct  hme_blk *hblkp;
10564 
10565         ASSERT(hmeblkp->hblk_hmecnt == 0);
10566         ASSERT(hmeblkp->hblk_vcnt == 0);
10567         ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
10568 
10569         /*
10570          * If the current thread is mapping into kernel space,
10571          * let it succede even if freehblkcnt is max
10572          * so that it will avoid freeing it to kmem.
10573          * This will prevent stack overflow due to
10574          * possible recursion since kmem_cache_free()
10575          * might require creation of a slab which
10576          * in turn needs an hmeblk to map that slab;
10577          * let's break this vicious chain at the first
10578          * opportunity.
10579          */
10580         if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10581                 mutex_enter(&freehblkp_lock);
10582                 if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10583                         SFMMU_STAT(sf_put_free_success);
10584                         freehblkcnt++;
10585                         hmeblkp->hblk_next = freehblkp;
10586                         freehblkp = hmeblkp;
10587                         mutex_exit(&freehblkp_lock);
10588                         return (1);
10589                 }
10590                 mutex_exit(&freehblkp_lock);
10591         }
10592 
10593         /*
10594          * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
10595          * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
10596          * we are not in the process of mapping into kernel space.
10597          */
10598         ASSERT(!critical);
10599         while (freehblkcnt > HBLK_RESERVE_CNT) {
10600                 mutex_enter(&freehblkp_lock);
10601                 if (freehblkcnt > HBLK_RESERVE_CNT) {
10602                         freehblkcnt--;
10603                         hblkp = freehblkp;
10604                         freehblkp = hblkp->hblk_next;
10605                         mutex_exit(&freehblkp_lock);
10606                         ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
10607                         kmem_cache_free(sfmmu8_cache, hblkp);
10608                         continue;
10609                 }
10610                 mutex_exit(&freehblkp_lock);
10611         }
10612         SFMMU_STAT(sf_put_free_fail);
10613         return (0);
10614 }
10615 
10616 static void
10617 sfmmu_hblk_swap(struct hme_blk *new)
10618 {
10619         struct hme_blk *old, *hblkp, *prev;
10620         uint64_t newpa;
10621         caddr_t base, vaddr, endaddr;
10622         struct hmehash_bucket *hmebp;
10623         struct sf_hment *osfhme, *nsfhme;
10624         page_t *pp;
10625         kmutex_t *pml;
10626         tte_t tte;
10627         struct hme_blk *list = NULL;
10628 
10629 #ifdef  DEBUG
10630         hmeblk_tag              hblktag;
10631         struct hme_blk          *found;
10632 #endif
10633         old = HBLK_RESERVE;
10634         ASSERT(!old->hblk_shared);
10635 
10636         /*
10637          * save pa before bcopy clobbers it
10638          */
10639         newpa = new->hblk_nextpa;
10640 
10641         base = (caddr_t)get_hblk_base(old);
10642         endaddr = base + get_hblk_span(old);
10643 
10644         /*
10645          * acquire hash bucket lock.
10646          */
10647         hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K,
10648             SFMMU_INVALID_SHMERID);
10649 
10650         /*
10651          * copy contents from old to new
10652          */
10653         bcopy((void *)old, (void *)new, HME8BLK_SZ);
10654 
10655         /*
10656          * add new to hash chain
10657          */
10658         sfmmu_hblk_hash_add(hmebp, new, newpa);
10659 
10660         /*
10661          * search hash chain for hblk_reserve; this needs to be performed
10662          * after adding new, otherwise prev won't correspond to the hblk which
10663          * is prior to old in hash chain when we call sfmmu_hblk_hash_rm to
10664          * remove old later.
10665          */
10666         for (prev = NULL,
10667             hblkp = hmebp->hmeblkp; hblkp != NULL && hblkp != old;
10668             prev = hblkp, hblkp = hblkp->hblk_next)
10669                 ;
10670 
10671         if (hblkp != old)
10672                 panic("sfmmu_hblk_swap: hblk_reserve not found");
10673 
10674         /*
10675          * p_mapping list is still pointing to hments in hblk_reserve;
10676          * fix up p_mapping list so that they point to hments in new.
10677          *
10678          * Since all these mappings are created by hblk_reserve_thread
10679          * on the way and it's using at least one of the buffers from each of
10680          * the newly minted slabs, there is no danger of any of these
10681          * mappings getting unloaded by another thread.
10682          *
10683          * tsbmiss could only modify ref/mod bits of hments in old/new.
10684          * Since all of these hments hold mappings established by segkmem
10685          * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
10686          * have no meaning for the mappings in hblk_reserve.  hments in
10687          * old and new are identical except for ref/mod bits.
10688          */
10689         for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
10690 
10691                 HBLKTOHME(osfhme, old, vaddr);
10692                 sfmmu_copytte(&osfhme->hme_tte, &tte);
10693 
10694                 if (TTE_IS_VALID(&tte)) {
10695                         if ((pp = osfhme->hme_page) == NULL)
10696                                 panic("sfmmu_hblk_swap: page not mapped");
10697 
10698                         pml = sfmmu_mlist_enter(pp);
10699 
10700                         if (pp != osfhme->hme_page)
10701                                 panic("sfmmu_hblk_swap: mapping changed");
10702 
10703                         HBLKTOHME(nsfhme, new, vaddr);
10704 
10705                         HME_ADD(nsfhme, pp);
10706                         HME_SUB(osfhme, pp);
10707 
10708                         sfmmu_mlist_exit(pml);
10709                 }
10710         }
10711 
10712         /*
10713          * remove old from hash chain
10714          */
10715         sfmmu_hblk_hash_rm(hmebp, old, prev, &list, 1);
10716 
10717 #ifdef  DEBUG
10718 
10719         hblktag.htag_id = ksfmmup;
10720         hblktag.htag_rid = SFMMU_INVALID_SHMERID;
10721         hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
10722         hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
10723         HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
10724 
10725         if (found != new)
10726                 panic("sfmmu_hblk_swap: new hblk not found");
10727 #endif
10728 
10729         SFMMU_HASH_UNLOCK(hmebp);
10730 
10731         /*
10732          * Reset hblk_reserve
10733          */
10734         bzero((void *)old, HME8BLK_SZ);
10735         old->hblk_nextpa = va_to_pa((caddr_t)old);
10736 }
10737 
10738 /*
10739  * Grab the mlist mutex for both pages passed in.
10740  *
10741  * low and high will be returned as pointers to the mutexes for these pages.
10742  * low refers to the mutex residing in the lower bin of the mlist hash, while
10743  * high refers to the mutex residing in the higher bin of the mlist hash.  This
10744  * is due to the locking order restrictions on the same thread grabbing
10745  * multiple mlist mutexes.  The low lock must be acquired before the high lock.
10746  *
10747  * If both pages hash to the same mutex, only grab that single mutex, and
10748  * high will be returned as NULL
10749  * If the pages hash to different bins in the hash, grab the lower addressed
10750  * lock first and then the higher addressed lock in order to follow the locking
10751  * rules involved with the same thread grabbing multiple mlist mutexes.
10752  * low and high will both have non-NULL values.
10753  */
10754 static void
10755 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
10756     kmutex_t **low, kmutex_t **high)
10757 {
10758         kmutex_t        *mml_targ, *mml_repl;
10759 
10760         /*
10761          * no need to do the dance around szc as in sfmmu_mlist_enter()
10762          * because this routine is only called by hat_page_relocate() and all
10763          * targ and repl pages are already locked EXCL so szc can't change.
10764          */
10765 
10766         mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
10767         mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
10768 
10769         if (mml_targ == mml_repl) {
10770                 *low = mml_targ;
10771                 *high = NULL;
10772         } else {
10773                 if (mml_targ < mml_repl) {
10774                         *low = mml_targ;
10775                         *high = mml_repl;
10776                 } else {
10777                         *low = mml_repl;
10778                         *high = mml_targ;
10779                 }
10780         }
10781 
10782         mutex_enter(*low);
10783         if (*high)
10784                 mutex_enter(*high);
10785 }
10786 
10787 static void
10788 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
10789 {
10790         if (high)
10791                 mutex_exit(high);
10792         mutex_exit(low);
10793 }
10794 
10795 static hatlock_t *
10796 sfmmu_hat_enter(sfmmu_t *sfmmup)
10797 {
10798         hatlock_t       *hatlockp;
10799 
10800         if (sfmmup != ksfmmup) {
10801                 hatlockp = TSB_HASH(sfmmup);
10802                 mutex_enter(HATLOCK_MUTEXP(hatlockp));
10803                 return (hatlockp);
10804         }
10805         return (NULL);
10806 }
10807 
10808 static hatlock_t *
10809 sfmmu_hat_tryenter(sfmmu_t *sfmmup)
10810 {
10811         hatlock_t       *hatlockp;
10812 
10813         if (sfmmup != ksfmmup) {
10814                 hatlockp = TSB_HASH(sfmmup);
10815                 if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
10816                         return (NULL);
10817                 return (hatlockp);
10818         }
10819         return (NULL);
10820 }
10821 
10822 static void
10823 sfmmu_hat_exit(hatlock_t *hatlockp)
10824 {
10825         if (hatlockp != NULL)
10826                 mutex_exit(HATLOCK_MUTEXP(hatlockp));
10827 }
10828 
10829 static void
10830 sfmmu_hat_lock_all(void)
10831 {
10832         int i;
10833         for (i = 0; i < SFMMU_NUM_LOCK; i++)
10834                 mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
10835 }
10836 
10837 static void
10838 sfmmu_hat_unlock_all(void)
10839 {
10840         int i;
10841         for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
10842                 mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
10843 }
10844 
10845 int
10846 sfmmu_hat_lock_held(sfmmu_t *sfmmup)
10847 {
10848         ASSERT(sfmmup != ksfmmup);
10849         return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
10850 }
10851 
10852 /*
10853  * Locking primitives to provide consistency between ISM unmap
10854  * and other operations.  Since ISM unmap can take a long time, we
10855  * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
10856  * contention on the hatlock buckets while ISM segments are being
10857  * unmapped.  The tradeoff is that the flags don't prevent priority
10858  * inversion from occurring, so we must request kernel priority in
10859  * case we have to sleep to keep from getting buried while holding
10860  * the HAT_ISMBUSY flag set, which in turn could block other kernel
10861  * threads from running (for example, in sfmmu_uvatopfn()).
10862  */
10863 static void
10864 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
10865 {
10866         hatlock_t *hatlockp;
10867 
10868         THREAD_KPRI_REQUEST();
10869         if (!hatlock_held)
10870                 hatlockp = sfmmu_hat_enter(sfmmup);
10871         while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
10872                 cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
10873         SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
10874         if (!hatlock_held)
10875                 sfmmu_hat_exit(hatlockp);
10876 }
10877 
10878 static void
10879 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
10880 {
10881         hatlock_t *hatlockp;
10882 
10883         if (!hatlock_held)
10884                 hatlockp = sfmmu_hat_enter(sfmmup);
10885         ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
10886         SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
10887         cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10888         if (!hatlock_held)
10889                 sfmmu_hat_exit(hatlockp);
10890         THREAD_KPRI_RELEASE();
10891 }
10892 
10893 /*
10894  *
10895  * Algorithm:
10896  *
10897  * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
10898  *      hblks.
10899  *
10900  * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
10901  *
10902  *              (a) try to return an hblk from reserve pool of free hblks;
10903  *              (b) if the reserve pool is empty, acquire hblk_reserve_lock
10904  *                  and return hblk_reserve.
10905  *
10906  * (3) call kmem_cache_alloc() to allocate hblk;
10907  *
10908  *              (a) if hblk_reserve_lock is held by the current thread,
10909  *                  atomically replace hblk_reserve by the hblk that is
10910  *                  returned by kmem_cache_alloc; release hblk_reserve_lock
10911  *                  and call kmem_cache_alloc() again.
10912  *              (b) if reserve pool is not full, add the hblk that is
10913  *                  returned by kmem_cache_alloc to reserve pool and
10914  *                  call kmem_cache_alloc again.
10915  *
10916  */
10917 static struct hme_blk *
10918 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
10919         struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
10920         uint_t flags, uint_t rid)
10921 {
10922         struct hme_blk *hmeblkp = NULL;
10923         struct hme_blk *newhblkp;
10924         struct hme_blk *shw_hblkp = NULL;
10925         struct kmem_cache *sfmmu_cache = NULL;
10926         uint64_t hblkpa;
10927         ulong_t index;
10928         uint_t owner;           /* set to 1 if using hblk_reserve */
10929         uint_t forcefree;
10930         int sleep;
10931         sf_srd_t *srdp;
10932         sf_region_t *rgnp;
10933 
10934         ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10935         ASSERT(hblktag.htag_rid == rid);
10936         SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
10937         ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
10938             IS_P2ALIGNED(vaddr, TTEBYTES(size)));
10939 
10940         /*
10941          * If segkmem is not created yet, allocate from static hmeblks
10942          * created at the end of startup_modules().  See the block comment
10943          * in startup_modules() describing how we estimate the number of
10944          * static hmeblks that will be needed during re-map.
10945          */
10946         if (!hblk_alloc_dynamic) {
10947 
10948                 ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
10949 
10950                 if (size == TTE8K) {
10951                         index = nucleus_hblk8.index;
10952                         if (index >= nucleus_hblk8.len) {
10953                                 /*
10954                                  * If we panic here, see startup_modules() to
10955                                  * make sure that we are calculating the
10956                                  * number of hblk8's that we need correctly.
10957                                  */
10958                                 prom_panic("no nucleus hblk8 to allocate");
10959                         }
10960                         hmeblkp =
10961                             (struct hme_blk *)&nucleus_hblk8.list[index];
10962                         nucleus_hblk8.index++;
10963                         SFMMU_STAT(sf_hblk8_nalloc);
10964                 } else {
10965                         index = nucleus_hblk1.index;
10966                         if (nucleus_hblk1.index >= nucleus_hblk1.len) {
10967                                 /*
10968                                  * If we panic here, see startup_modules().
10969                                  * Most likely you need to update the
10970                                  * calculation of the number of hblk1 elements
10971                                  * that the kernel needs to boot.
10972                                  */
10973                                 prom_panic("no nucleus hblk1 to allocate");
10974                         }
10975                         hmeblkp =
10976                             (struct hme_blk *)&nucleus_hblk1.list[index];
10977                         nucleus_hblk1.index++;
10978                         SFMMU_STAT(sf_hblk1_nalloc);
10979                 }
10980 
10981                 goto hblk_init;
10982         }
10983 
10984         SFMMU_HASH_UNLOCK(hmebp);
10985 
10986         if (sfmmup != KHATID && !SFMMU_IS_SHMERID_VALID(rid)) {
10987                 if (mmu_page_sizes == max_mmu_page_sizes) {
10988                         if (size < TTE256M)
10989                                 shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
10990                                     size, flags);
10991                 } else {
10992                         if (size < TTE4M)
10993                                 shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
10994                                     size, flags);
10995                 }
10996         } else if (SFMMU_IS_SHMERID_VALID(rid)) {
10997                 /*
10998                  * Shared hmes use per region bitmaps in rgn_hmeflag
10999                  * rather than shadow hmeblks to keep track of the
11000                  * mapping sizes which have been allocated for the region.
11001                  * Here we cleanup old invalid hmeblks with this rid,
11002                  * which may be left around by pageunload().
11003                  */
11004                 int ttesz;
11005                 caddr_t va;
11006                 caddr_t eva = vaddr + TTEBYTES(size);
11007 
11008                 ASSERT(sfmmup != KHATID);
11009 
11010                 srdp = sfmmup->sfmmu_srdp;
11011                 ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11012                 rgnp = srdp->srd_hmergnp[rid];
11013                 ASSERT(rgnp != NULL && rgnp->rgn_id == rid);
11014                 ASSERT(rgnp->rgn_refcnt != 0);
11015                 ASSERT(size <= rgnp->rgn_pgszc);
11016 
11017                 ttesz = HBLK_MIN_TTESZ;
11018                 do {
11019                         if (!(rgnp->rgn_hmeflags & (0x1 << ttesz))) {
11020                                 continue;
11021                         }
11022 
11023                         if (ttesz > size && ttesz != HBLK_MIN_TTESZ) {
11024                                 sfmmu_cleanup_rhblk(srdp, vaddr, rid, ttesz);
11025                         } else if (ttesz < size) {
11026                                 for (va = vaddr; va < eva;
11027                                     va += TTEBYTES(ttesz)) {
11028                                         sfmmu_cleanup_rhblk(srdp, va, rid,
11029                                             ttesz);
11030                                 }
11031                         }
11032                 } while (++ttesz <= rgnp->rgn_pgszc);
11033         }
11034 
11035 fill_hblk:
11036         owner = (hblk_reserve_thread == curthread) ? 1 : 0;
11037 
11038         if (owner && size == TTE8K) {
11039 
11040                 ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
11041                 /*
11042                  * We are really in a tight spot. We already own
11043                  * hblk_reserve and we need another hblk.  In anticipation
11044                  * of this kind of scenario, we specifically set aside
11045                  * HBLK_RESERVE_MIN number of hblks to be used exclusively
11046                  * by owner of hblk_reserve.
11047                  */
11048                 SFMMU_STAT(sf_hblk_recurse_cnt);
11049 
11050                 if (!sfmmu_get_free_hblk(&hmeblkp, 1))
11051                         panic("sfmmu_hblk_alloc: reserve list is empty");
11052 
11053                 goto hblk_verify;
11054         }
11055 
11056         ASSERT(!owner);
11057 
11058         if ((flags & HAT_NO_KALLOC) == 0) {
11059 
11060                 sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
11061                 sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
11062 
11063                 if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
11064                         hmeblkp = sfmmu_hblk_steal(size);
11065                 } else {
11066                         /*
11067                          * if we are the owner of hblk_reserve,
11068                          * swap hblk_reserve with hmeblkp and
11069                          * start a fresh life.  Hope things go
11070                          * better this time.
11071                          */
11072                         if (hblk_reserve_thread == curthread) {
11073                                 ASSERT(sfmmu_cache == sfmmu8_cache);
11074                                 sfmmu_hblk_swap(hmeblkp);
11075                                 hblk_reserve_thread = NULL;
11076                                 mutex_exit(&hblk_reserve_lock);
11077                                 goto fill_hblk;
11078                         }
11079                         /*
11080                          * let's donate this hblk to our reserve list if
11081                          * we are not mapping kernel range
11082                          */
11083                         if (size == TTE8K && sfmmup != KHATID) {
11084                                 if (sfmmu_put_free_hblk(hmeblkp, 0))
11085                                         goto fill_hblk;
11086                         }
11087                 }
11088         } else {
11089                 /*
11090                  * We are here to map the slab in sfmmu8_cache; let's
11091                  * check if we could tap our reserve list; if successful,
11092                  * this will avoid the pain of going thru sfmmu_hblk_swap
11093                  */
11094                 SFMMU_STAT(sf_hblk_slab_cnt);
11095                 if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
11096                         /*
11097                          * let's start hblk_reserve dance
11098                          */
11099                         SFMMU_STAT(sf_hblk_reserve_cnt);
11100                         owner = 1;
11101                         mutex_enter(&hblk_reserve_lock);
11102                         hmeblkp = HBLK_RESERVE;
11103                         hblk_reserve_thread = curthread;
11104                 }
11105         }
11106 
11107 hblk_verify:
11108         ASSERT(hmeblkp != NULL);
11109         set_hblk_sz(hmeblkp, size);
11110         ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
11111         SFMMU_HASH_LOCK(hmebp);
11112         HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11113         if (newhblkp != NULL) {
11114                 SFMMU_HASH_UNLOCK(hmebp);
11115                 if (hmeblkp != HBLK_RESERVE) {
11116                         /*
11117                          * This is really tricky!
11118                          *
11119                          * vmem_alloc(vmem_seg_arena)
11120                          *  vmem_alloc(vmem_internal_arena)
11121                          *   segkmem_alloc(heap_arena)
11122                          *    vmem_alloc(heap_arena)
11123                          *    page_create()
11124                          *    hat_memload()
11125                          *      kmem_cache_free()
11126                          *       kmem_cache_alloc()
11127                          *        kmem_slab_create()
11128                          *         vmem_alloc(kmem_internal_arena)
11129                          *          segkmem_alloc(heap_arena)
11130                          *              vmem_alloc(heap_arena)
11131                          *              page_create()
11132                          *              hat_memload()
11133                          *                kmem_cache_free()
11134                          *              ...
11135                          *
11136                          * Thus, hat_memload() could call kmem_cache_free
11137                          * for enough number of times that we could easily
11138                          * hit the bottom of the stack or run out of reserve
11139                          * list of vmem_seg structs.  So, we must donate
11140                          * this hblk to reserve list if it's allocated
11141                          * from sfmmu8_cache *and* mapping kernel range.
11142                          * We don't need to worry about freeing hmeblk1's
11143                          * to kmem since they don't map any kmem slabs.
11144                          *
11145                          * Note: When segkmem supports largepages, we must
11146                          * free hmeblk1's to reserve list as well.
11147                          */
11148                         forcefree = (sfmmup == KHATID) ? 1 : 0;
11149                         if (size == TTE8K &&
11150                             sfmmu_put_free_hblk(hmeblkp, forcefree)) {
11151                                 goto re_verify;
11152                         }
11153                         ASSERT(sfmmup != KHATID);
11154                         kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
11155                 } else {
11156                         /*
11157                          * Hey! we don't need hblk_reserve any more.
11158                          */
11159                         ASSERT(owner);
11160                         hblk_reserve_thread = NULL;
11161                         mutex_exit(&hblk_reserve_lock);
11162                         owner = 0;
11163                 }
11164 re_verify:
11165                 /*
11166                  * let's check if the goodies are still present
11167                  */
11168                 SFMMU_HASH_LOCK(hmebp);
11169                 HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11170                 if (newhblkp != NULL) {
11171                         /*
11172                          * return newhblkp if it's not hblk_reserve;
11173                          * if newhblkp is hblk_reserve, return it
11174                          * _only if_ we are the owner of hblk_reserve.
11175                          */
11176                         if (newhblkp != HBLK_RESERVE || owner) {
11177                                 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
11178                                     newhblkp->hblk_shared);
11179                                 ASSERT(SFMMU_IS_SHMERID_VALID(rid) ||
11180                                     !newhblkp->hblk_shared);
11181                                 return (newhblkp);
11182                         } else {
11183                                 /*
11184                                  * we just hit hblk_reserve in the hash and
11185                                  * we are not the owner of that;
11186                                  *
11187                                  * block until hblk_reserve_thread completes
11188                                  * swapping hblk_reserve and try the dance
11189                                  * once again.
11190                                  */
11191                                 SFMMU_HASH_UNLOCK(hmebp);
11192                                 mutex_enter(&hblk_reserve_lock);
11193                                 mutex_exit(&hblk_reserve_lock);
11194                                 SFMMU_STAT(sf_hblk_reserve_hit);
11195                                 goto fill_hblk;
11196                         }
11197                 } else {
11198                         /*
11199                          * it's no more! try the dance once again.
11200                          */
11201                         SFMMU_HASH_UNLOCK(hmebp);
11202                         goto fill_hblk;
11203                 }
11204         }
11205 
11206 hblk_init:
11207         if (SFMMU_IS_SHMERID_VALID(rid)) {
11208                 uint16_t tteflag = 0x1 <<
11209                     ((size < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ : size);
11210 
11211                 if (!(rgnp->rgn_hmeflags & tteflag)) {
11212                         atomic_or_16(&rgnp->rgn_hmeflags, tteflag);
11213                 }
11214                 hmeblkp->hblk_shared = 1;
11215         } else {
11216                 hmeblkp->hblk_shared = 0;
11217         }
11218         set_hblk_sz(hmeblkp, size);
11219         ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11220         hmeblkp->hblk_next = (struct hme_blk *)NULL;
11221         hmeblkp->hblk_tag = hblktag;
11222         hmeblkp->hblk_shadow = shw_hblkp;
11223         hblkpa = hmeblkp->hblk_nextpa;
11224         hmeblkp->hblk_nextpa = HMEBLK_ENDPA;
11225 
11226         ASSERT(get_hblk_ttesz(hmeblkp) == size);
11227         ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
11228         ASSERT(hmeblkp->hblk_hmecnt == 0);
11229         ASSERT(hmeblkp->hblk_vcnt == 0);
11230         ASSERT(hmeblkp->hblk_lckcnt == 0);
11231         ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
11232         sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
11233         return (hmeblkp);
11234 }
11235 
11236 /*
11237  * This function cleans up the hme_blk and returns it to the free list.
11238  */
11239 /* ARGSUSED */
11240 static void
11241 sfmmu_hblk_free(struct hme_blk **listp)
11242 {
11243         struct hme_blk *hmeblkp, *next_hmeblkp;
11244         int             size;
11245         uint_t          critical;
11246         uint64_t        hblkpa;
11247 
11248         ASSERT(*listp != NULL);
11249 
11250         hmeblkp = *listp;
11251         while (hmeblkp != NULL) {
11252                 next_hmeblkp = hmeblkp->hblk_next;
11253                 ASSERT(!hmeblkp->hblk_hmecnt);
11254                 ASSERT(!hmeblkp->hblk_vcnt);
11255                 ASSERT(!hmeblkp->hblk_lckcnt);
11256                 ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
11257                 ASSERT(hmeblkp->hblk_shared == 0);
11258                 ASSERT(hmeblkp->hblk_shw_bit == 0);
11259                 ASSERT(hmeblkp->hblk_shadow == NULL);
11260 
11261                 hblkpa = va_to_pa((caddr_t)hmeblkp);
11262                 ASSERT(hblkpa != (uint64_t)-1);
11263                 critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
11264 
11265                 size = get_hblk_ttesz(hmeblkp);
11266                 hmeblkp->hblk_next = NULL;
11267                 hmeblkp->hblk_nextpa = hblkpa;
11268 
11269                 if (hmeblkp->hblk_nuc_bit == 0) {
11270 
11271                         if (size != TTE8K ||
11272                             !sfmmu_put_free_hblk(hmeblkp, critical))
11273                                 kmem_cache_free(get_hblk_cache(hmeblkp),
11274                                     hmeblkp);
11275                 }
11276                 hmeblkp = next_hmeblkp;
11277         }
11278 }
11279 
11280 #define BUCKETS_TO_SEARCH_BEFORE_UNLOAD 30
11281 #define SFMMU_HBLK_STEAL_THRESHOLD 5
11282 
11283 static uint_t sfmmu_hblk_steal_twice;
11284 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
11285 
11286 /*
11287  * Steal a hmeblk from user or kernel hme hash lists.
11288  * For 8K tte grab one from reserve pool (freehblkp) before proceeding to
11289  * steal and if we fail to steal after SFMMU_HBLK_STEAL_THRESHOLD attempts
11290  * tap into critical reserve of freehblkp.
11291  * Note: We remain looping in this routine until we find one.
11292  */
11293 static struct hme_blk *
11294 sfmmu_hblk_steal(int size)
11295 {
11296         static struct hmehash_bucket *uhmehash_steal_hand = NULL;
11297         struct hmehash_bucket *hmebp;
11298         struct hme_blk *hmeblkp = NULL, *pr_hblk;
11299         uint64_t hblkpa;
11300         int i;
11301         uint_t loop_cnt = 0, critical;
11302 
11303         for (;;) {
11304                 /* Check cpu hblk pending queues */
11305                 if ((hmeblkp = sfmmu_check_pending_hblks(size)) != NULL) {
11306                         hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
11307                         ASSERT(hmeblkp->hblk_hmecnt == 0);
11308                         ASSERT(hmeblkp->hblk_vcnt == 0);
11309                         return (hmeblkp);
11310                 }
11311 
11312                 if (size == TTE8K) {
11313                         critical =
11314                             (++loop_cnt > SFMMU_HBLK_STEAL_THRESHOLD) ? 1 : 0;
11315                         if (sfmmu_get_free_hblk(&hmeblkp, critical))
11316                                 return (hmeblkp);
11317                 }
11318 
11319                 hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
11320                     uhmehash_steal_hand;
11321                 ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
11322 
11323                 for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
11324                     BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
11325                         SFMMU_HASH_LOCK(hmebp);
11326                         hmeblkp = hmebp->hmeblkp;
11327                         hblkpa = hmebp->hmeh_nextpa;
11328                         pr_hblk = NULL;
11329                         while (hmeblkp) {
11330                                 /*
11331                                  * check if it is a hmeblk that is not locked
11332                                  * and not shared. skip shadow hmeblks with
11333                                  * shadow_mask set i.e valid count non zero.
11334                                  */
11335                                 if ((get_hblk_ttesz(hmeblkp) == size) &&
11336                                     (hmeblkp->hblk_shw_bit == 0 ||
11337                                     hmeblkp->hblk_vcnt == 0) &&
11338                                     (hmeblkp->hblk_lckcnt == 0)) {
11339                                         /*
11340                                          * there is a high probability that we
11341                                          * will find a free one. search some
11342                                          * buckets for a free hmeblk initially
11343                                          * before unloading a valid hmeblk.
11344                                          */
11345                                         if ((hmeblkp->hblk_vcnt == 0 &&
11346                                             hmeblkp->hblk_hmecnt == 0) || (i >=
11347                                             BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
11348                                                 if (sfmmu_steal_this_hblk(hmebp,
11349                                                     hmeblkp, hblkpa, pr_hblk)) {
11350                                                         /*
11351                                                          * Hblk is unloaded
11352                                                          * successfully
11353                                                          */
11354                                                         break;
11355                                                 }
11356                                         }
11357                                 }
11358                                 pr_hblk = hmeblkp;
11359                                 hblkpa = hmeblkp->hblk_nextpa;
11360                                 hmeblkp = hmeblkp->hblk_next;
11361                         }
11362 
11363                         SFMMU_HASH_UNLOCK(hmebp);
11364                         if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
11365                                 hmebp = uhme_hash;
11366                 }
11367                 uhmehash_steal_hand = hmebp;
11368 
11369                 if (hmeblkp != NULL)
11370                         break;
11371 
11372                 /*
11373                  * in the worst case, look for a free one in the kernel
11374                  * hash table.
11375                  */
11376                 for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
11377                         SFMMU_HASH_LOCK(hmebp);
11378                         hmeblkp = hmebp->hmeblkp;
11379                         hblkpa = hmebp->hmeh_nextpa;
11380                         pr_hblk = NULL;
11381                         while (hmeblkp) {
11382                                 /*
11383                                  * check if it is free hmeblk
11384                                  */
11385                                 if ((get_hblk_ttesz(hmeblkp) == size) &&
11386                                     (hmeblkp->hblk_lckcnt == 0) &&
11387                                     (hmeblkp->hblk_vcnt == 0) &&
11388                                     (hmeblkp->hblk_hmecnt == 0)) {
11389                                         if (sfmmu_steal_this_hblk(hmebp,
11390                                             hmeblkp, hblkpa, pr_hblk)) {
11391                                                 break;
11392                                         } else {
11393                                                 /*
11394                                                  * Cannot fail since we have
11395                                                  * hash lock.
11396                                                  */
11397                                                 panic("fail to steal?");
11398                                         }
11399                                 }
11400 
11401                                 pr_hblk = hmeblkp;
11402                                 hblkpa = hmeblkp->hblk_nextpa;
11403                                 hmeblkp = hmeblkp->hblk_next;
11404                         }
11405 
11406                         SFMMU_HASH_UNLOCK(hmebp);
11407                         if (hmebp++ == &khme_hash[KHMEHASH_SZ])
11408                                 hmebp = khme_hash;
11409                 }
11410 
11411                 if (hmeblkp != NULL)
11412                         break;
11413                 sfmmu_hblk_steal_twice++;
11414         }
11415         return (hmeblkp);
11416 }
11417 
11418 /*
11419  * This routine does real work to prepare a hblk to be "stolen" by
11420  * unloading the mappings, updating shadow counts ....
11421  * It returns 1 if the block is ready to be reused (stolen), or 0
11422  * means the block cannot be stolen yet- pageunload is still working
11423  * on this hblk.
11424  */
11425 static int
11426 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
11427         uint64_t hblkpa, struct hme_blk *pr_hblk)
11428 {
11429         int shw_size, vshift;
11430         struct hme_blk *shw_hblkp;
11431         caddr_t vaddr;
11432         uint_t shw_mask, newshw_mask;
11433         struct hme_blk *list = NULL;
11434 
11435         ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11436 
11437         /*
11438          * check if the hmeblk is free, unload if necessary
11439          */
11440         if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11441                 sfmmu_t *sfmmup;
11442                 demap_range_t dmr;
11443 
11444                 sfmmup = hblktosfmmu(hmeblkp);
11445                 if (hmeblkp->hblk_shared || sfmmup->sfmmu_ismhat) {
11446                         return (0);
11447                 }
11448                 DEMAP_RANGE_INIT(sfmmup, &dmr);
11449                 (void) sfmmu_hblk_unload(sfmmup, hmeblkp,
11450                     (caddr_t)get_hblk_base(hmeblkp),
11451                     get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
11452                 DEMAP_RANGE_FLUSH(&dmr);
11453                 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11454                         /*
11455                          * Pageunload is working on the same hblk.
11456                          */
11457                         return (0);
11458                 }
11459 
11460                 sfmmu_hblk_steal_unload_count++;
11461         }
11462 
11463         ASSERT(hmeblkp->hblk_lckcnt == 0);
11464         ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
11465 
11466         sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, &list, 1);
11467         hmeblkp->hblk_nextpa = hblkpa;
11468 
11469         shw_hblkp = hmeblkp->hblk_shadow;
11470         if (shw_hblkp) {
11471                 ASSERT(!hmeblkp->hblk_shared);
11472                 shw_size = get_hblk_ttesz(shw_hblkp);
11473                 vaddr = (caddr_t)get_hblk_base(hmeblkp);
11474                 vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
11475                 ASSERT(vshift < 8);
11476                 /*
11477                  * Atomically clear shadow mask bit
11478                  */
11479                 do {
11480                         shw_mask = shw_hblkp->hblk_shw_mask;
11481                         ASSERT(shw_mask & (1 << vshift));
11482                         newshw_mask = shw_mask & ~(1 << vshift);
11483                         newshw_mask = atomic_cas_32(&shw_hblkp->hblk_shw_mask,
11484                             shw_mask, newshw_mask);
11485                 } while (newshw_mask != shw_mask);
11486                 hmeblkp->hblk_shadow = NULL;
11487         }
11488 
11489         /*
11490          * remove shadow bit if we are stealing an unused shadow hmeblk.
11491          * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
11492          * we are indeed allocating a shadow hmeblk.
11493          */
11494         hmeblkp->hblk_shw_bit = 0;
11495 
11496         if (hmeblkp->hblk_shared) {
11497                 sf_srd_t        *srdp;
11498                 sf_region_t     *rgnp;
11499                 uint_t          rid;
11500 
11501                 srdp = hblktosrd(hmeblkp);
11502                 ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11503                 rid = hmeblkp->hblk_tag.htag_rid;
11504                 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
11505                 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
11506                 rgnp = srdp->srd_hmergnp[rid];
11507                 ASSERT(rgnp != NULL);
11508                 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
11509                 hmeblkp->hblk_shared = 0;
11510         }
11511 
11512         sfmmu_hblk_steal_count++;
11513         SFMMU_STAT(sf_steal_count);
11514 
11515         return (1);
11516 }
11517 
11518 struct hme_blk *
11519 sfmmu_hmetohblk(struct sf_hment *sfhme)
11520 {
11521         struct hme_blk *hmeblkp;
11522         struct sf_hment *sfhme0;
11523         struct hme_blk *hblk_dummy = 0;
11524 
11525         /*
11526          * No dummy sf_hments, please.
11527          */
11528         ASSERT(sfhme->hme_tte.ll != 0);
11529 
11530         sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
11531         hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
11532             (uintptr_t)&hblk_dummy->hblk_hme[0]);
11533 
11534         return (hmeblkp);
11535 }
11536 
11537 /*
11538  * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
11539  * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
11540  * KM_SLEEP allocation.
11541  *
11542  * Return 0 on success, -1 otherwise.
11543  */
11544 static void
11545 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
11546 {
11547         struct tsb_info *tsbinfop, *next;
11548         tsb_replace_rc_t rc;
11549         boolean_t gotfirst = B_FALSE;
11550 
11551         ASSERT(sfmmup != ksfmmup);
11552         ASSERT(sfmmu_hat_lock_held(sfmmup));
11553 
11554         while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
11555                 cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
11556         }
11557 
11558         if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
11559                 SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
11560         } else {
11561                 return;
11562         }
11563 
11564         ASSERT(sfmmup->sfmmu_tsb != NULL);
11565 
11566         /*
11567          * Loop over all tsbinfo's replacing them with ones that actually have
11568          * a TSB.  If any of the replacements ever fail, bail out of the loop.
11569          */
11570         for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
11571                 ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
11572                 next = tsbinfop->tsb_next;
11573                 rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
11574                     hatlockp, TSB_SWAPIN);
11575                 if (rc != TSB_SUCCESS) {
11576                         break;
11577                 }
11578                 gotfirst = B_TRUE;
11579         }
11580 
11581         switch (rc) {
11582         case TSB_SUCCESS:
11583                 SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11584                 cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11585                 return;
11586         case TSB_LOSTRACE:
11587                 break;
11588         case TSB_ALLOCFAIL:
11589                 break;
11590         default:
11591                 panic("sfmmu_replace_tsb returned unrecognized failure code "
11592                     "%d", rc);
11593         }
11594 
11595         /*
11596          * In this case, we failed to get one of our TSBs.  If we failed to
11597          * get the first TSB, get one of minimum size (8KB).  Walk the list
11598          * and throw away the tsbinfos, starting where the allocation failed;
11599          * we can get by with just one TSB as long as we don't leave the
11600          * SWAPPED tsbinfo structures lying around.
11601          */
11602         tsbinfop = sfmmup->sfmmu_tsb;
11603         next = tsbinfop->tsb_next;
11604         tsbinfop->tsb_next = NULL;
11605 
11606         sfmmu_hat_exit(hatlockp);
11607         for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
11608                 next = tsbinfop->tsb_next;
11609                 sfmmu_tsbinfo_free(tsbinfop);
11610         }
11611         hatlockp = sfmmu_hat_enter(sfmmup);
11612 
11613         /*
11614          * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
11615          * pages.
11616          */
11617         if (!gotfirst) {
11618                 tsbinfop = sfmmup->sfmmu_tsb;
11619                 rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
11620                     hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
11621                 ASSERT(rc == TSB_SUCCESS);
11622         }
11623 
11624         SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11625         cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11626 }
11627 
11628 static int
11629 sfmmu_is_rgnva(sf_srd_t *srdp, caddr_t addr, ulong_t w, ulong_t bmw)
11630 {
11631         ulong_t bix = 0;
11632         uint_t rid;
11633         sf_region_t *rgnp;
11634 
11635         ASSERT(srdp != NULL);
11636         ASSERT(srdp->srd_refcnt != 0);
11637 
11638         w <<= BT_ULSHIFT;
11639         while (bmw) {
11640                 if (!(bmw & 0x1)) {
11641                         bix++;
11642                         bmw >>= 1;
11643                         continue;
11644                 }
11645                 rid = w | bix;
11646                 rgnp = srdp->srd_hmergnp[rid];
11647                 ASSERT(rgnp->rgn_refcnt > 0);
11648                 ASSERT(rgnp->rgn_id == rid);
11649                 if (addr < rgnp->rgn_saddr ||
11650                     addr >= (rgnp->rgn_saddr + rgnp->rgn_size)) {
11651                         bix++;
11652                         bmw >>= 1;
11653                 } else {
11654                         return (1);
11655                 }
11656         }
11657         return (0);
11658 }
11659 
11660 /*
11661  * Handle exceptions for low level tsb_handler.
11662  *
11663  * There are many scenarios that could land us here:
11664  *
11665  * If the context is invalid we land here. The context can be invalid
11666  * for 3 reasons: 1) we couldn't allocate a new context and now need to
11667  * perform a wrap around operation in order to allocate a new context.
11668  * 2) Context was invalidated to change pagesize programming 3) ISMs or
11669  * TSBs configuration is changeing for this process and we are forced into
11670  * here to do a syncronization operation. If the context is valid we can
11671  * be here from window trap hanlder. In this case just call trap to handle
11672  * the fault.
11673  *
11674  * Note that the process will run in INVALID_CONTEXT before
11675  * faulting into here and subsequently loading the MMU registers
11676  * (including the TSB base register) associated with this process.
11677  * For this reason, the trap handlers must all test for
11678  * INVALID_CONTEXT before attempting to access any registers other
11679  * than the context registers.
11680  */
11681 void
11682 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
11683 {
11684         sfmmu_t *sfmmup, *shsfmmup;
11685         uint_t ctxtype;
11686         klwp_id_t lwp;
11687         char lwp_save_state;
11688         hatlock_t *hatlockp, *shatlockp;
11689         struct tsb_info *tsbinfop;
11690         struct tsbmiss *tsbmp;
11691         sf_scd_t *scdp;
11692 
11693         SFMMU_STAT(sf_tsb_exceptions);
11694         SFMMU_MMU_STAT(mmu_tsb_exceptions);
11695         sfmmup = astosfmmu(curthread->t_procp->p_as);
11696         /*
11697          * note that in sun4u, tagacces register contains ctxnum
11698          * while sun4v passes ctxtype in the tagaccess register.
11699          */
11700         ctxtype = tagaccess & TAGACC_CTX_MASK;
11701 
11702         ASSERT(sfmmup != ksfmmup && ctxtype != KCONTEXT);
11703         ASSERT(sfmmup->sfmmu_ismhat == 0);
11704         ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) ||
11705             ctxtype == INVALID_CONTEXT);
11706 
11707         if (ctxtype != INVALID_CONTEXT && traptype != T_DATA_PROT) {
11708                 /*
11709                  * We may land here because shme bitmap and pagesize
11710                  * flags are updated lazily in tsbmiss area on other cpus.
11711                  * If we detect here that tsbmiss area is out of sync with
11712                  * sfmmu update it and retry the trapped instruction.
11713                  * Otherwise call trap().
11714                  */
11715                 int ret = 0;
11716                 uchar_t tteflag_mask = (1 << TTE64K) | (1 << TTE8K);
11717                 caddr_t addr = (caddr_t)(tagaccess & TAGACC_VADDR_MASK);
11718 
11719                 /*
11720                  * Must set lwp state to LWP_SYS before
11721                  * trying to acquire any adaptive lock
11722                  */
11723                 lwp = ttolwp(curthread);
11724                 ASSERT(lwp);
11725                 lwp_save_state = lwp->lwp_state;
11726                 lwp->lwp_state = LWP_SYS;
11727 
11728                 hatlockp = sfmmu_hat_enter(sfmmup);
11729                 kpreempt_disable();
11730                 tsbmp = &tsbmiss_area[CPU->cpu_id];
11731                 ASSERT(sfmmup == tsbmp->usfmmup);
11732                 if (((tsbmp->uhat_tteflags ^ sfmmup->sfmmu_tteflags) &
11733                     ~tteflag_mask) ||
11734                     ((tsbmp->uhat_rtteflags ^  sfmmup->sfmmu_rtteflags) &
11735                     ~tteflag_mask)) {
11736                         tsbmp->uhat_tteflags = sfmmup->sfmmu_tteflags;
11737                         tsbmp->uhat_rtteflags = sfmmup->sfmmu_rtteflags;
11738                         ret = 1;
11739                 }
11740                 if (sfmmup->sfmmu_srdp != NULL) {
11741                         ulong_t *sm = sfmmup->sfmmu_hmeregion_map.bitmap;
11742                         ulong_t *tm = tsbmp->shmermap;
11743                         ulong_t i;
11744                         for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
11745                                 ulong_t d = tm[i] ^ sm[i];
11746                                 if (d) {
11747                                         if (d & sm[i]) {
11748                                                 if (!ret && sfmmu_is_rgnva(
11749                                                     sfmmup->sfmmu_srdp,
11750                                                     addr, i, d & sm[i])) {
11751                                                         ret = 1;
11752                                                 }
11753                                         }
11754                                         tm[i] = sm[i];
11755                                 }
11756                         }
11757                 }
11758                 kpreempt_enable();
11759                 sfmmu_hat_exit(hatlockp);
11760                 lwp->lwp_state = lwp_save_state;
11761                 if (ret) {
11762                         return;
11763                 }
11764         } else if (ctxtype == INVALID_CONTEXT) {
11765                 /*
11766                  * First, make sure we come out of here with a valid ctx,
11767                  * since if we don't get one we'll simply loop on the
11768                  * faulting instruction.
11769                  *
11770                  * If the ISM mappings are changing, the TSB is relocated,
11771                  * the process is swapped, the process is joining SCD or
11772                  * leaving SCD or shared regions we serialize behind the
11773                  * controlling thread with hat lock, sfmmu_flags and
11774                  * sfmmu_tsb_cv condition variable.
11775                  */
11776 
11777                 /*
11778                  * Must set lwp state to LWP_SYS before
11779                  * trying to acquire any adaptive lock
11780                  */
11781                 lwp = ttolwp(curthread);
11782                 ASSERT(lwp);
11783                 lwp_save_state = lwp->lwp_state;
11784                 lwp->lwp_state = LWP_SYS;
11785 
11786                 hatlockp = sfmmu_hat_enter(sfmmup);
11787 retry:
11788                 if ((scdp = sfmmup->sfmmu_scdp) != NULL) {
11789                         shsfmmup = scdp->scd_sfmmup;
11790                         ASSERT(shsfmmup != NULL);
11791 
11792                         for (tsbinfop = shsfmmup->sfmmu_tsb; tsbinfop != NULL;
11793                             tsbinfop = tsbinfop->tsb_next) {
11794                                 if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
11795                                         /* drop the private hat lock */
11796                                         sfmmu_hat_exit(hatlockp);
11797                                         /* acquire the shared hat lock */
11798                                         shatlockp = sfmmu_hat_enter(shsfmmup);
11799                                         /*
11800                                          * recheck to see if anything changed
11801                                          * after we drop the private hat lock.
11802                                          */
11803                                         if (sfmmup->sfmmu_scdp == scdp &&
11804                                             shsfmmup == scdp->scd_sfmmup) {
11805                                                 sfmmu_tsb_chk_reloc(shsfmmup,
11806                                                     shatlockp);
11807                                         }
11808                                         sfmmu_hat_exit(shatlockp);
11809                                         hatlockp = sfmmu_hat_enter(sfmmup);
11810                                         goto retry;
11811                                 }
11812                         }
11813                 }
11814 
11815                 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
11816                     tsbinfop = tsbinfop->tsb_next) {
11817                         if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
11818                                 cv_wait(&sfmmup->sfmmu_tsb_cv,
11819                                     HATLOCK_MUTEXP(hatlockp));
11820                                 goto retry;
11821                         }
11822                 }
11823 
11824                 /*
11825                  * Wait for ISM maps to be updated.
11826                  */
11827                 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
11828                         cv_wait(&sfmmup->sfmmu_tsb_cv,
11829                             HATLOCK_MUTEXP(hatlockp));
11830                         goto retry;
11831                 }
11832 
11833                 /* Is this process joining an SCD? */
11834                 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
11835                         /*
11836                          * Flush private TSB and setup shared TSB.
11837                          * sfmmu_finish_join_scd() does not drop the
11838                          * hat lock.
11839                          */
11840                         sfmmu_finish_join_scd(sfmmup);
11841                         SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
11842                 }
11843 
11844                 /*
11845                  * If we're swapping in, get TSB(s).  Note that we must do
11846                  * this before we get a ctx or load the MMU state.  Once
11847                  * we swap in we have to recheck to make sure the TSB(s) and
11848                  * ISM mappings didn't change while we slept.
11849                  */
11850                 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
11851                         sfmmu_tsb_swapin(sfmmup, hatlockp);
11852                         goto retry;
11853                 }
11854 
11855                 sfmmu_get_ctx(sfmmup);
11856 
11857                 sfmmu_hat_exit(hatlockp);
11858                 /*
11859                  * Must restore lwp_state if not calling
11860                  * trap() for further processing. Restore
11861                  * it anyway.
11862                  */
11863                 lwp->lwp_state = lwp_save_state;
11864                 return;
11865         }
11866         trap(rp, (caddr_t)tagaccess, traptype, 0);
11867 }
11868 
11869 static void
11870 sfmmu_tsb_chk_reloc(sfmmu_t *sfmmup, hatlock_t *hatlockp)
11871 {
11872         struct tsb_info *tp;
11873 
11874         ASSERT(sfmmu_hat_lock_held(sfmmup));
11875 
11876         for (tp = sfmmup->sfmmu_tsb; tp != NULL; tp = tp->tsb_next) {
11877                 if (tp->tsb_flags & TSB_RELOC_FLAG) {
11878                         cv_wait(&sfmmup->sfmmu_tsb_cv,
11879                             HATLOCK_MUTEXP(hatlockp));
11880                         break;
11881                 }
11882         }
11883 }
11884 
11885 /*
11886  * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
11887  * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
11888  * rather than spinning to avoid send mondo timeouts with
11889  * interrupts enabled. When the lock is acquired it is immediately
11890  * released and we return back to sfmmu_vatopfn just after
11891  * the GET_TTE call.
11892  */
11893 void
11894 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
11895 {
11896         struct page     **pp;
11897 
11898         (void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
11899         as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
11900 }
11901 
11902 /*
11903  * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
11904  * TTE_SUSPENDED bit set in tte. We do this so that we can handle
11905  * cross traps which cannot be handled while spinning in the
11906  * trap handlers. Simply enter and exit the kpr_suspendlock spin
11907  * mutex, which is held by the holder of the suspend bit, and then
11908  * retry the trapped instruction after unwinding.
11909  */
11910 /*ARGSUSED*/
11911 void
11912 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
11913 {
11914         ASSERT(curthread != kreloc_thread);
11915         mutex_enter(&kpr_suspendlock);
11916         mutex_exit(&kpr_suspendlock);
11917 }
11918 
11919 /*
11920  * This routine could be optimized to reduce the number of xcalls by flushing
11921  * the entire TLBs if region reference count is above some threshold but the
11922  * tradeoff will depend on the size of the TLB. So for now flush the specific
11923  * page a context at a time.
11924  *
11925  * If uselocks is 0 then it's called after all cpus were captured and all the
11926  * hat locks were taken. In this case don't take the region lock by relying on
11927  * the order of list region update operations in hat_join_region(),
11928  * hat_leave_region() and hat_dup_region(). The ordering in those routines
11929  * guarantees that list is always forward walkable and reaches active sfmmus
11930  * regardless of where xc_attention() captures a cpu.
11931  */
11932 cpuset_t
11933 sfmmu_rgntlb_demap(caddr_t addr, sf_region_t *rgnp,
11934     struct hme_blk *hmeblkp, int uselocks)
11935 {
11936         sfmmu_t *sfmmup;
11937         cpuset_t cpuset;
11938         cpuset_t rcpuset;
11939         hatlock_t *hatlockp;
11940         uint_t rid = rgnp->rgn_id;
11941         sf_rgn_link_t *rlink;
11942         sf_scd_t *scdp;
11943 
11944         ASSERT(hmeblkp->hblk_shared);
11945         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
11946         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
11947 
11948         CPUSET_ZERO(rcpuset);
11949         if (uselocks) {
11950                 mutex_enter(&rgnp->rgn_mutex);
11951         }
11952         sfmmup = rgnp->rgn_sfmmu_head;
11953         while (sfmmup != NULL) {
11954                 if (uselocks) {
11955                         hatlockp = sfmmu_hat_enter(sfmmup);
11956                 }
11957 
11958                 /*
11959                  * When an SCD is created the SCD hat is linked on the sfmmu
11960                  * region lists for each hme region which is part of the
11961                  * SCD. If we find an SCD hat, when walking these lists,
11962                  * then we flush the shared TSBs, if we find a private hat,
11963                  * which is part of an SCD, but where the region
11964                  * is not part of the SCD then we flush the private TSBs.
11965                  */
11966                 if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
11967                     !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
11968                         scdp = sfmmup->sfmmu_scdp;
11969                         if (SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
11970                                 if (uselocks) {
11971                                         sfmmu_hat_exit(hatlockp);
11972                                 }
11973                                 goto next;
11974                         }
11975                 }
11976 
11977                 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
11978 
11979                 kpreempt_disable();
11980                 cpuset = sfmmup->sfmmu_cpusran;
11981                 CPUSET_AND(cpuset, cpu_ready_set);
11982                 CPUSET_DEL(cpuset, CPU->cpu_id);
11983                 SFMMU_XCALL_STATS(sfmmup);
11984                 xt_some(cpuset, vtag_flushpage_tl1,
11985                     (uint64_t)addr, (uint64_t)sfmmup);
11986                 vtag_flushpage(addr, (uint64_t)sfmmup);
11987                 if (uselocks) {
11988                         sfmmu_hat_exit(hatlockp);
11989                 }
11990                 kpreempt_enable();
11991                 CPUSET_OR(rcpuset, cpuset);
11992 
11993 next:
11994                 /* LINTED: constant in conditional context */
11995                 SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
11996                 ASSERT(rlink != NULL);
11997                 sfmmup = rlink->next;
11998         }
11999         if (uselocks) {
12000                 mutex_exit(&rgnp->rgn_mutex);
12001         }
12002         return (rcpuset);
12003 }
12004 
12005 /*
12006  * This routine takes an sfmmu pointer and the va for an adddress in an
12007  * ISM region as input and returns the corresponding region id in ism_rid.
12008  * The return value of 1 indicates that a region has been found and ism_rid
12009  * is valid, otherwise 0 is returned.
12010  */
12011 static int
12012 find_ism_rid(sfmmu_t *sfmmup, sfmmu_t *ism_sfmmup, caddr_t va, uint_t *ism_rid)
12013 {
12014         ism_blk_t       *ism_blkp;
12015         int             i;
12016         ism_map_t       *ism_map;
12017 #ifdef DEBUG
12018         struct hat      *ism_hatid;
12019 #endif
12020         ASSERT(sfmmu_hat_lock_held(sfmmup));
12021 
12022         ism_blkp = sfmmup->sfmmu_iblk;
12023         while (ism_blkp != NULL) {
12024                 ism_map = ism_blkp->iblk_maps;
12025                 for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
12026                         if ((va >= ism_start(ism_map[i])) &&
12027                             (va < ism_end(ism_map[i]))) {
12028 
12029                                 *ism_rid = ism_map[i].imap_rid;
12030 #ifdef DEBUG
12031                                 ism_hatid = ism_map[i].imap_ismhat;
12032                                 ASSERT(ism_hatid == ism_sfmmup);
12033                                 ASSERT(ism_hatid->sfmmu_ismhat);
12034 #endif
12035                                 return (1);
12036                         }
12037                 }
12038                 ism_blkp = ism_blkp->iblk_next;
12039         }
12040         return (0);
12041 }
12042 
12043 /*
12044  * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
12045  * This routine may be called with all cpu's captured. Therefore, the
12046  * caller is responsible for holding all locks and disabling kernel
12047  * preemption.
12048  */
12049 /* ARGSUSED */
12050 static void
12051 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
12052         struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
12053 {
12054         cpuset_t        cpuset;
12055         caddr_t         va;
12056         ism_ment_t      *ment;
12057         sfmmu_t         *sfmmup;
12058 #ifdef VAC
12059         int             vcolor;
12060 #endif
12061 
12062         sf_scd_t        *scdp;
12063         uint_t          ism_rid;
12064 
12065         ASSERT(!hmeblkp->hblk_shared);
12066         /*
12067          * Walk the ism_hat's mapping list and flush the page
12068          * from every hat sharing this ism_hat. This routine
12069          * may be called while all cpu's have been captured.
12070          * Therefore we can't attempt to grab any locks. For now
12071          * this means we will protect the ism mapping list under
12072          * a single lock which will be grabbed by the caller.
12073          * If hat_share/unshare scalibility becomes a performance
12074          * problem then we may need to re-think ism mapping list locking.
12075          */
12076         ASSERT(ism_sfmmup->sfmmu_ismhat);
12077         ASSERT(MUTEX_HELD(&ism_mlist_lock));
12078         addr = addr - ISMID_STARTADDR;
12079 
12080         for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
12081 
12082                 sfmmup = ment->iment_hat;
12083 
12084                 va = ment->iment_base_va;
12085                 va = (caddr_t)((uintptr_t)va  + (uintptr_t)addr);
12086 
12087                 /*
12088                  * When an SCD is created the SCD hat is linked on the ism
12089                  * mapping lists for each ISM segment which is part of the
12090                  * SCD. If we find an SCD hat, when walking these lists,
12091                  * then we flush the shared TSBs, if we find a private hat,
12092                  * which is part of an SCD, but where the region
12093                  * corresponding to this va is not part of the SCD then we
12094                  * flush the private TSBs.
12095                  */
12096                 if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
12097                     !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD) &&
12098                     !SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
12099                         if (!find_ism_rid(sfmmup, ism_sfmmup, va,
12100                             &ism_rid)) {
12101                                 cmn_err(CE_PANIC,
12102                                     "can't find matching ISM rid!");
12103                         }
12104 
12105                         scdp = sfmmup->sfmmu_scdp;
12106                         if (SFMMU_IS_ISMRID_VALID(ism_rid) &&
12107                             SF_RGNMAP_TEST(scdp->scd_ismregion_map,
12108                             ism_rid)) {
12109                                 continue;
12110                         }
12111                 }
12112                 SFMMU_UNLOAD_TSB(va, sfmmup, hmeblkp, 1);
12113 
12114                 cpuset = sfmmup->sfmmu_cpusran;
12115                 CPUSET_AND(cpuset, cpu_ready_set);
12116                 CPUSET_DEL(cpuset, CPU->cpu_id);
12117                 SFMMU_XCALL_STATS(sfmmup);
12118                 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
12119                     (uint64_t)sfmmup);
12120                 vtag_flushpage(va, (uint64_t)sfmmup);
12121 
12122 #ifdef VAC
12123                 /*
12124                  * Flush D$
12125                  * When flushing D$ we must flush all
12126                  * cpu's. See sfmmu_cache_flush().
12127                  */
12128                 if (cache_flush_flag == CACHE_FLUSH) {
12129                         cpuset = cpu_ready_set;
12130                         CPUSET_DEL(cpuset, CPU->cpu_id);
12131 
12132                         SFMMU_XCALL_STATS(sfmmup);
12133                         vcolor = addr_to_vcolor(va);
12134                         xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12135                         vac_flushpage(pfnum, vcolor);
12136                 }
12137 #endif  /* VAC */
12138         }
12139 }
12140 
12141 /*
12142  * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
12143  * a particular virtual address and ctx.  If noflush is set we do not
12144  * flush the TLB/TSB.  This function may or may not be called with the
12145  * HAT lock held.
12146  */
12147 static void
12148 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12149         pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
12150         int hat_lock_held)
12151 {
12152 #ifdef VAC
12153         int vcolor;
12154 #endif
12155         cpuset_t cpuset;
12156         hatlock_t *hatlockp;
12157 
12158         ASSERT(!hmeblkp->hblk_shared);
12159 
12160 #if defined(lint) && !defined(VAC)
12161         pfnum = pfnum;
12162         cpu_flag = cpu_flag;
12163         cache_flush_flag = cache_flush_flag;
12164 #endif
12165 
12166         /*
12167          * There is no longer a need to protect against ctx being
12168          * stolen here since we don't store the ctx in the TSB anymore.
12169          */
12170 #ifdef VAC
12171         vcolor = addr_to_vcolor(addr);
12172 #endif
12173 
12174         /*
12175          * We must hold the hat lock during the flush of TLB,
12176          * to avoid a race with sfmmu_invalidate_ctx(), where
12177          * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12178          * causing TLB demap routine to skip flush on that MMU.
12179          * If the context on a MMU has already been set to
12180          * INVALID_CONTEXT, we just get an extra flush on
12181          * that MMU.
12182          */
12183         if (!hat_lock_held && !tlb_noflush)
12184                 hatlockp = sfmmu_hat_enter(sfmmup);
12185 
12186         kpreempt_disable();
12187         if (!tlb_noflush) {
12188                 /*
12189                  * Flush the TSB and TLB.
12190                  */
12191                 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12192 
12193                 cpuset = sfmmup->sfmmu_cpusran;
12194                 CPUSET_AND(cpuset, cpu_ready_set);
12195                 CPUSET_DEL(cpuset, CPU->cpu_id);
12196 
12197                 SFMMU_XCALL_STATS(sfmmup);
12198 
12199                 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
12200                     (uint64_t)sfmmup);
12201 
12202                 vtag_flushpage(addr, (uint64_t)sfmmup);
12203         }
12204 
12205         if (!hat_lock_held && !tlb_noflush)
12206                 sfmmu_hat_exit(hatlockp);
12207 
12208 #ifdef VAC
12209         /*
12210          * Flush the D$
12211          *
12212          * Even if the ctx is stolen, we need to flush the
12213          * cache. Our ctx stealer only flushes the TLBs.
12214          */
12215         if (cache_flush_flag == CACHE_FLUSH) {
12216                 if (cpu_flag & FLUSH_ALL_CPUS) {
12217                         cpuset = cpu_ready_set;
12218                 } else {
12219                         cpuset = sfmmup->sfmmu_cpusran;
12220                         CPUSET_AND(cpuset, cpu_ready_set);
12221                 }
12222                 CPUSET_DEL(cpuset, CPU->cpu_id);
12223                 SFMMU_XCALL_STATS(sfmmup);
12224                 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12225                 vac_flushpage(pfnum, vcolor);
12226         }
12227 #endif  /* VAC */
12228         kpreempt_enable();
12229 }
12230 
12231 /*
12232  * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
12233  * address and ctx.  If noflush is set we do not currently do anything.
12234  * This function may or may not be called with the HAT lock held.
12235  */
12236 static void
12237 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12238         int tlb_noflush, int hat_lock_held)
12239 {
12240         cpuset_t cpuset;
12241         hatlock_t *hatlockp;
12242 
12243         ASSERT(!hmeblkp->hblk_shared);
12244 
12245         /*
12246          * If the process is exiting we have nothing to do.
12247          */
12248         if (tlb_noflush)
12249                 return;
12250 
12251         /*
12252          * Flush TSB.
12253          */
12254         if (!hat_lock_held)
12255                 hatlockp = sfmmu_hat_enter(sfmmup);
12256         SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12257 
12258         kpreempt_disable();
12259 
12260         cpuset = sfmmup->sfmmu_cpusran;
12261         CPUSET_AND(cpuset, cpu_ready_set);
12262         CPUSET_DEL(cpuset, CPU->cpu_id);
12263 
12264         SFMMU_XCALL_STATS(sfmmup);
12265         xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup);
12266 
12267         vtag_flushpage(addr, (uint64_t)sfmmup);
12268 
12269         if (!hat_lock_held)
12270                 sfmmu_hat_exit(hatlockp);
12271 
12272         kpreempt_enable();
12273 
12274 }
12275 
12276 /*
12277  * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
12278  * call handler that can flush a range of pages to save on xcalls.
12279  */
12280 static int sfmmu_xcall_save;
12281 
12282 /*
12283  * this routine is never used for demaping addresses backed by SRD hmeblks.
12284  */
12285 static void
12286 sfmmu_tlb_range_demap(demap_range_t *dmrp)
12287 {
12288         sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
12289         hatlock_t *hatlockp;
12290         cpuset_t cpuset;
12291         uint64_t sfmmu_pgcnt;
12292         pgcnt_t pgcnt = 0;
12293         int pgunload = 0;
12294         int dirtypg = 0;
12295         caddr_t addr = dmrp->dmr_addr;
12296         caddr_t eaddr;
12297         uint64_t bitvec = dmrp->dmr_bitvec;
12298 
12299         ASSERT(bitvec & 1);
12300 
12301         /*
12302          * Flush TSB and calculate number of pages to flush.
12303          */
12304         while (bitvec != 0) {
12305                 dirtypg = 0;
12306                 /*
12307                  * Find the first page to flush and then count how many
12308                  * pages there are after it that also need to be flushed.
12309                  * This way the number of TSB flushes is minimized.
12310                  */
12311                 while ((bitvec & 1) == 0) {
12312                         pgcnt++;
12313                         addr += MMU_PAGESIZE;
12314                         bitvec >>= 1;
12315                 }
12316                 while (bitvec & 1) {
12317                         dirtypg++;
12318                         bitvec >>= 1;
12319                 }
12320                 eaddr = addr + ptob(dirtypg);
12321                 hatlockp = sfmmu_hat_enter(sfmmup);
12322                 sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
12323                 sfmmu_hat_exit(hatlockp);
12324                 pgunload += dirtypg;
12325                 addr = eaddr;
12326                 pgcnt += dirtypg;
12327         }
12328 
12329         ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
12330         if (sfmmup->sfmmu_free == 0) {
12331                 addr = dmrp->dmr_addr;
12332                 bitvec = dmrp->dmr_bitvec;
12333 
12334                 /*
12335                  * make sure it has SFMMU_PGCNT_SHIFT bits only,
12336                  * as it will be used to pack argument for xt_some
12337                  */
12338                 ASSERT((pgcnt > 0) &&
12339                     (pgcnt <= (1 << SFMMU_PGCNT_SHIFT)));
12340 
12341                 /*
12342                  * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in
12343                  * the low 6 bits of sfmmup. This is doable since pgcnt
12344                  * always >= 1.
12345                  */
12346                 ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK));
12347                 sfmmu_pgcnt = (uint64_t)sfmmup |
12348                     ((pgcnt - 1) & SFMMU_PGCNT_MASK);
12349 
12350                 /*
12351                  * We must hold the hat lock during the flush of TLB,
12352                  * to avoid a race with sfmmu_invalidate_ctx(), where
12353                  * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12354                  * causing TLB demap routine to skip flush on that MMU.
12355                  * If the context on a MMU has already been set to
12356                  * INVALID_CONTEXT, we just get an extra flush on
12357                  * that MMU.
12358                  */
12359                 hatlockp = sfmmu_hat_enter(sfmmup);
12360                 kpreempt_disable();
12361 
12362                 cpuset = sfmmup->sfmmu_cpusran;
12363                 CPUSET_AND(cpuset, cpu_ready_set);
12364                 CPUSET_DEL(cpuset, CPU->cpu_id);
12365 
12366                 SFMMU_XCALL_STATS(sfmmup);
12367                 xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
12368                     sfmmu_pgcnt);
12369 
12370                 for (; bitvec != 0; bitvec >>= 1) {
12371                         if (bitvec & 1)
12372                                 vtag_flushpage(addr, (uint64_t)sfmmup);
12373                         addr += MMU_PAGESIZE;
12374                 }
12375                 kpreempt_enable();
12376                 sfmmu_hat_exit(hatlockp);
12377 
12378                 sfmmu_xcall_save += (pgunload-1);
12379         }
12380         dmrp->dmr_bitvec = 0;
12381 }
12382 
12383 /*
12384  * In cases where we need to synchronize with TLB/TSB miss trap
12385  * handlers, _and_ need to flush the TLB, it's a lot easier to
12386  * throw away the context from the process than to do a
12387  * special song and dance to keep things consistent for the
12388  * handlers.
12389  *
12390  * Since the process suddenly ends up without a context and our caller
12391  * holds the hat lock, threads that fault after this function is called
12392  * will pile up on the lock.  We can then do whatever we need to
12393  * atomically from the context of the caller.  The first blocked thread
12394  * to resume executing will get the process a new context, and the
12395  * process will resume executing.
12396  *
12397  * One added advantage of this approach is that on MMUs that
12398  * support a "flush all" operation, we will delay the flush until
12399  * cnum wrap-around, and then flush the TLB one time.  This
12400  * is rather rare, so it's a lot less expensive than making 8000
12401  * x-calls to flush the TLB 8000 times.
12402  *
12403  * A per-process (PP) lock is used to synchronize ctx allocations in
12404  * resume() and ctx invalidations here.
12405  */
12406 static void
12407 sfmmu_invalidate_ctx(sfmmu_t *sfmmup)
12408 {
12409         cpuset_t cpuset;
12410         int cnum, currcnum;
12411         mmu_ctx_t *mmu_ctxp;
12412         int i;
12413         uint_t pstate_save;
12414 
12415         SFMMU_STAT(sf_ctx_inv);
12416 
12417         ASSERT(sfmmu_hat_lock_held(sfmmup));
12418         ASSERT(sfmmup != ksfmmup);
12419 
12420         kpreempt_disable();
12421 
12422         mmu_ctxp = CPU_MMU_CTXP(CPU);
12423         ASSERT(mmu_ctxp);
12424         ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
12425         ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
12426 
12427         currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum;
12428 
12429         pstate_save = sfmmu_disable_intrs();
12430 
12431         lock_set(&sfmmup->sfmmu_ctx_lock);       /* acquire PP lock */
12432         /* set HAT cnum invalid across all context domains. */
12433         for (i = 0; i < max_mmu_ctxdoms; i++) {
12434 
12435                 cnum =  sfmmup->sfmmu_ctxs[i].cnum;
12436                 if (cnum == INVALID_CONTEXT) {
12437                         continue;
12438                 }
12439 
12440                 sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
12441         }
12442         membar_enter(); /* make sure globally visible to all CPUs */
12443         lock_clear(&sfmmup->sfmmu_ctx_lock);     /* release PP lock */
12444 
12445         sfmmu_enable_intrs(pstate_save);
12446 
12447         cpuset = sfmmup->sfmmu_cpusran;
12448         CPUSET_DEL(cpuset, CPU->cpu_id);
12449         CPUSET_AND(cpuset, cpu_ready_set);
12450         if (!CPUSET_ISNULL(cpuset)) {
12451                 SFMMU_XCALL_STATS(sfmmup);
12452                 xt_some(cpuset, sfmmu_raise_tsb_exception,
12453                     (uint64_t)sfmmup, INVALID_CONTEXT);
12454                 xt_sync(cpuset);
12455                 SFMMU_STAT(sf_tsb_raise_exception);
12456                 SFMMU_MMU_STAT(mmu_tsb_raise_exception);
12457         }
12458 
12459         /*
12460          * If the hat to-be-invalidated is the same as the current
12461          * process on local CPU we need to invalidate
12462          * this CPU context as well.
12463          */
12464         if ((sfmmu_getctx_sec() == currcnum) &&
12465             (currcnum != INVALID_CONTEXT)) {
12466                 /* sets shared context to INVALID too */
12467                 sfmmu_setctx_sec(INVALID_CONTEXT);
12468                 sfmmu_clear_utsbinfo();
12469         }
12470 
12471         SFMMU_FLAGS_SET(sfmmup, HAT_ALLCTX_INVALID);
12472 
12473         kpreempt_enable();
12474 
12475         /*
12476          * we hold the hat lock, so nobody should allocate a context
12477          * for us yet
12478          */
12479         ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT);
12480 }
12481 
12482 #ifdef VAC
12483 /*
12484  * We need to flush the cache in all cpus.  It is possible that
12485  * a process referenced a page as cacheable but has sinced exited
12486  * and cleared the mapping list.  We still to flush it but have no
12487  * state so all cpus is the only alternative.
12488  */
12489 void
12490 sfmmu_cache_flush(pfn_t pfnum, int vcolor)
12491 {
12492         cpuset_t cpuset;
12493 
12494         kpreempt_disable();
12495         cpuset = cpu_ready_set;
12496         CPUSET_DEL(cpuset, CPU->cpu_id);
12497         SFMMU_XCALL_STATS(NULL);        /* account to any ctx */
12498         xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12499         xt_sync(cpuset);
12500         vac_flushpage(pfnum, vcolor);
12501         kpreempt_enable();
12502 }
12503 
12504 void
12505 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
12506 {
12507         cpuset_t cpuset;
12508 
12509         ASSERT(vcolor >= 0);
12510 
12511         kpreempt_disable();
12512         cpuset = cpu_ready_set;
12513         CPUSET_DEL(cpuset, CPU->cpu_id);
12514         SFMMU_XCALL_STATS(NULL);        /* account to any ctx */
12515         xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
12516         xt_sync(cpuset);
12517         vac_flushcolor(vcolor, pfnum);
12518         kpreempt_enable();
12519 }
12520 #endif  /* VAC */
12521 
12522 /*
12523  * We need to prevent processes from accessing the TSB using a cached physical
12524  * address.  It's alright if they try to access the TSB via virtual address
12525  * since they will just fault on that virtual address once the mapping has
12526  * been suspended.
12527  */
12528 #pragma weak sendmondo_in_recover
12529 
12530 /* ARGSUSED */
12531 static int
12532 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
12533 {
12534         struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12535         sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
12536         hatlock_t *hatlockp;
12537         sf_scd_t *scdp;
12538 
12539         if (flags != HAT_PRESUSPEND)
12540                 return (0);
12541 
12542         /*
12543          * If tsb is a shared TSB with TSB_SHAREDCTX set, sfmmup must
12544          * be a shared hat, then set SCD's tsbinfo's flag.
12545          * If tsb is not shared, sfmmup is a private hat, then set
12546          * its private tsbinfo's flag.
12547          */
12548         hatlockp = sfmmu_hat_enter(sfmmup);
12549         tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
12550 
12551         if (!(tsbinfop->tsb_flags & TSB_SHAREDCTX)) {
12552                 sfmmu_tsb_inv_ctx(sfmmup);
12553                 sfmmu_hat_exit(hatlockp);
12554         } else {
12555                 /* release lock on the shared hat */
12556                 sfmmu_hat_exit(hatlockp);
12557                 /* sfmmup is a shared hat */
12558                 ASSERT(sfmmup->sfmmu_scdhat);
12559                 scdp = sfmmup->sfmmu_scdp;
12560                 ASSERT(scdp != NULL);
12561                 /* get private hat from the scd list */
12562                 mutex_enter(&scdp->scd_mutex);
12563                 sfmmup = scdp->scd_sf_list;
12564                 while (sfmmup != NULL) {
12565                         hatlockp = sfmmu_hat_enter(sfmmup);
12566                         /*
12567                          * We do not call sfmmu_tsb_inv_ctx here because
12568                          * sendmondo_in_recover check is only needed for
12569                          * sun4u.
12570                          */
12571                         sfmmu_invalidate_ctx(sfmmup);
12572                         sfmmu_hat_exit(hatlockp);
12573                         sfmmup = sfmmup->sfmmu_scd_link.next;
12574 
12575                 }
12576                 mutex_exit(&scdp->scd_mutex);
12577         }
12578         return (0);
12579 }
12580 
12581 static void
12582 sfmmu_tsb_inv_ctx(sfmmu_t *sfmmup)
12583 {
12584         extern uint32_t sendmondo_in_recover;
12585 
12586         ASSERT(sfmmu_hat_lock_held(sfmmup));
12587 
12588         /*
12589          * For Cheetah+ Erratum 25:
12590          * Wait for any active recovery to finish.  We can't risk
12591          * relocating the TSB of the thread running mondo_recover_proc()
12592          * since, if we did that, we would deadlock.  The scenario we are
12593          * trying to avoid is as follows:
12594          *
12595          * THIS CPU                     RECOVER CPU
12596          * --------                     -----------
12597          *                              Begins recovery, walking through TSB
12598          * hat_pagesuspend() TSB TTE
12599          *                              TLB miss on TSB TTE, spins at TL1
12600          * xt_sync()
12601          *      send_mondo_timeout()
12602          *      mondo_recover_proc()
12603          *      ((deadlocked))
12604          *
12605          * The second half of the workaround is that mondo_recover_proc()
12606          * checks to see if the tsb_info has the RELOC flag set, and if it
12607          * does, it skips over that TSB without ever touching tsbinfop->tsb_va
12608          * and hence avoiding the TLB miss that could result in a deadlock.
12609          */
12610         if (&sendmondo_in_recover) {
12611                 membar_enter(); /* make sure RELOC flag visible */
12612                 while (sendmondo_in_recover) {
12613                         drv_usecwait(1);
12614                         membar_consumer();
12615                 }
12616         }
12617 
12618         sfmmu_invalidate_ctx(sfmmup);
12619 }
12620 
12621 /* ARGSUSED */
12622 static int
12623 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
12624         void *tsbinfo, pfn_t newpfn)
12625 {
12626         hatlock_t *hatlockp;
12627         struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12628         sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
12629 
12630         if (flags != HAT_POSTUNSUSPEND)
12631                 return (0);
12632 
12633         hatlockp = sfmmu_hat_enter(sfmmup);
12634 
12635         SFMMU_STAT(sf_tsb_reloc);
12636 
12637         /*
12638          * The process may have swapped out while we were relocating one
12639          * of its TSBs.  If so, don't bother doing the setup since the
12640          * process can't be using the memory anymore.
12641          */
12642         if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
12643                 ASSERT(va == tsbinfop->tsb_va);
12644                 sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
12645 
12646                 if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
12647                         sfmmu_inv_tsb(tsbinfop->tsb_va,
12648                             TSB_BYTES(tsbinfop->tsb_szc));
12649                         tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
12650                 }
12651         }
12652 
12653         membar_exit();
12654         tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
12655         cv_broadcast(&sfmmup->sfmmu_tsb_cv);
12656 
12657         sfmmu_hat_exit(hatlockp);
12658 
12659         return (0);
12660 }
12661 
12662 /*
12663  * Allocate and initialize a tsb_info structure.  Note that we may or may not
12664  * allocate a TSB here, depending on the flags passed in.
12665  */
12666 static int
12667 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
12668         uint_t flags, sfmmu_t *sfmmup)
12669 {
12670         int err;
12671 
12672         *tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
12673             sfmmu_tsbinfo_cache, KM_SLEEP);
12674 
12675         if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
12676             tsb_szc, flags, sfmmup)) != 0) {
12677                 kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
12678                 SFMMU_STAT(sf_tsb_allocfail);
12679                 *tsbinfopp = NULL;
12680                 return (err);
12681         }
12682         SFMMU_STAT(sf_tsb_alloc);
12683 
12684         /*
12685          * Bump the TSB size counters for this TSB size.
12686          */
12687         (*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
12688         return (0);
12689 }
12690 
12691 static void
12692 sfmmu_tsb_free(struct tsb_info *tsbinfo)
12693 {
12694         caddr_t tsbva = tsbinfo->tsb_va;
12695         uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
12696         struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
12697         vmem_t  *vmp = tsbinfo->tsb_vmp;
12698 
12699         /*
12700          * If we allocated this TSB from relocatable kernel memory, then we
12701          * need to uninstall the callback handler.
12702          */
12703         if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
12704                 uintptr_t slab_mask;
12705                 caddr_t slab_vaddr;
12706                 page_t **ppl;
12707                 int ret;
12708 
12709                 ASSERT(tsb_size <= MMU_PAGESIZE4M || use_bigtsb_arena);
12710                 if (tsb_size > MMU_PAGESIZE4M)
12711                         slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
12712                 else
12713                         slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
12714                 slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
12715 
12716                 ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
12717                 ASSERT(ret == 0);
12718                 hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
12719                     0, NULL);
12720                 as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
12721         }
12722 
12723         if (kmem_cachep != NULL) {
12724                 kmem_cache_free(kmem_cachep, tsbva);
12725         } else {
12726                 vmem_xfree(vmp, (void *)tsbva, tsb_size);
12727         }
12728         tsbinfo->tsb_va = (caddr_t)0xbad00bad;
12729         atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
12730 }
12731 
12732 static void
12733 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
12734 {
12735         if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
12736                 sfmmu_tsb_free(tsbinfo);
12737         }
12738         kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
12739 
12740 }
12741 
12742 /*
12743  * Setup all the references to physical memory for this tsbinfo.
12744  * The underlying page(s) must be locked.
12745  */
12746 static void
12747 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
12748 {
12749         ASSERT(pfn != PFN_INVALID);
12750         ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
12751 
12752 #ifndef sun4v
12753         if (tsbinfo->tsb_szc == 0) {
12754                 sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
12755                     PROT_WRITE|PROT_READ, TTE8K);
12756         } else {
12757                 /*
12758                  * Round down PA and use a large mapping; the handlers will
12759                  * compute the TSB pointer at the correct offset into the
12760                  * big virtual page.  NOTE: this assumes all TSBs larger
12761                  * than 8K must come from physically contiguous slabs of
12762                  * size tsb_slab_size.
12763                  */
12764                 sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
12765                     PROT_WRITE|PROT_READ, tsb_slab_ttesz);
12766         }
12767         tsbinfo->tsb_pa = ptob(pfn);
12768 
12769         TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
12770         TTE_SET_MOD(&tsbinfo->tsb_tte);    /* enable writes */
12771 
12772         ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
12773         ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
12774 #else /* sun4v */
12775         tsbinfo->tsb_pa = ptob(pfn);
12776 #endif /* sun4v */
12777 }
12778 
12779 
12780 /*
12781  * Returns zero on success, ENOMEM if over the high water mark,
12782  * or EAGAIN if the caller needs to retry with a smaller TSB
12783  * size (or specify TSB_FORCEALLOC if the allocation can't fail).
12784  *
12785  * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
12786  * is specified and the TSB requested is PAGESIZE, though it
12787  * may sleep waiting for memory if sufficient memory is not
12788  * available.
12789  */
12790 static int
12791 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
12792     int tsbcode, uint_t flags, sfmmu_t *sfmmup)
12793 {
12794         caddr_t vaddr = NULL;
12795         caddr_t slab_vaddr;
12796         uintptr_t slab_mask;
12797         int tsbbytes = TSB_BYTES(tsbcode);
12798         int lowmem = 0;
12799         struct kmem_cache *kmem_cachep = NULL;
12800         vmem_t *vmp = NULL;
12801         lgrp_id_t lgrpid = LGRP_NONE;
12802         pfn_t pfn;
12803         uint_t cbflags = HAC_SLEEP;
12804         page_t **pplist;
12805         int ret;
12806 
12807         ASSERT(tsbbytes <= MMU_PAGESIZE4M || use_bigtsb_arena);
12808         if (tsbbytes > MMU_PAGESIZE4M)
12809                 slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
12810         else
12811                 slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
12812 
12813         if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
12814                 flags |= TSB_ALLOC;
12815 
12816         ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
12817 
12818         tsbinfo->tsb_sfmmu = sfmmup;
12819 
12820         /*
12821          * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
12822          * return.
12823          */
12824         if ((flags & TSB_ALLOC) == 0) {
12825                 tsbinfo->tsb_szc = tsbcode;
12826                 tsbinfo->tsb_ttesz_mask = tteszmask;
12827                 tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
12828                 tsbinfo->tsb_pa = -1;
12829                 tsbinfo->tsb_tte.ll = 0;
12830                 tsbinfo->tsb_next = NULL;
12831                 tsbinfo->tsb_flags = TSB_SWAPPED;
12832                 tsbinfo->tsb_cache = NULL;
12833                 tsbinfo->tsb_vmp = NULL;
12834                 return (0);
12835         }
12836 
12837 #ifdef DEBUG
12838         /*
12839          * For debugging:
12840          * Randomly force allocation failures every tsb_alloc_mtbf
12841          * tries if TSB_FORCEALLOC is not specified.  This will
12842          * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
12843          * it is even, to allow testing of both failure paths...
12844          */
12845         if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
12846             (tsb_alloc_count++ == tsb_alloc_mtbf)) {
12847                 tsb_alloc_count = 0;
12848                 tsb_alloc_fail_mtbf++;
12849                 return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
12850         }
12851 #endif  /* DEBUG */
12852 
12853         /*
12854          * Enforce high water mark if we are not doing a forced allocation
12855          * and are not shrinking a process' TSB.
12856          */
12857         if ((flags & TSB_SHRINK) == 0 &&
12858             (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
12859                 if ((flags & TSB_FORCEALLOC) == 0)
12860                         return (ENOMEM);
12861                 lowmem = 1;
12862         }
12863 
12864         /*
12865          * Allocate from the correct location based upon the size of the TSB
12866          * compared to the base page size, and what memory conditions dictate.
12867          * Note we always do nonblocking allocations from the TSB arena since
12868          * we don't want memory fragmentation to cause processes to block
12869          * indefinitely waiting for memory; until the kernel algorithms that
12870          * coalesce large pages are improved this is our best option.
12871          *
12872          * Algorithm:
12873          *      If allocating a "large" TSB (>8K), allocate from the
12874          *              appropriate kmem_tsb_default_arena vmem arena
12875          *      else if low on memory or the TSB_FORCEALLOC flag is set or
12876          *      tsb_forceheap is set
12877          *              Allocate from kernel heap via sfmmu_tsb8k_cache with
12878          *              KM_SLEEP (never fails)
12879          *      else
12880          *              Allocate from appropriate sfmmu_tsb_cache with
12881          *              KM_NOSLEEP
12882          *      endif
12883          */
12884         if (tsb_lgrp_affinity)
12885                 lgrpid = lgrp_home_id(curthread);
12886         if (lgrpid == LGRP_NONE)
12887                 lgrpid = 0;     /* use lgrp of boot CPU */
12888 
12889         if (tsbbytes > MMU_PAGESIZE) {
12890                 if (tsbbytes > MMU_PAGESIZE4M) {
12891                         vmp = kmem_bigtsb_default_arena[lgrpid];
12892                         vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
12893                             0, 0, NULL, NULL, VM_NOSLEEP);
12894                 } else {
12895                         vmp = kmem_tsb_default_arena[lgrpid];
12896                         vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
12897                             0, 0, NULL, NULL, VM_NOSLEEP);
12898                 }
12899 #ifdef  DEBUG
12900         } else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
12901 #else   /* !DEBUG */
12902         } else if (lowmem || (flags & TSB_FORCEALLOC)) {
12903 #endif  /* DEBUG */
12904                 kmem_cachep = sfmmu_tsb8k_cache;
12905                 vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
12906                 ASSERT(vaddr != NULL);
12907         } else {
12908                 kmem_cachep = sfmmu_tsb_cache[lgrpid];
12909                 vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
12910         }
12911 
12912         tsbinfo->tsb_cache = kmem_cachep;
12913         tsbinfo->tsb_vmp = vmp;
12914 
12915         if (vaddr == NULL) {
12916                 return (EAGAIN);
12917         }
12918 
12919         atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
12920         kmem_cachep = tsbinfo->tsb_cache;
12921 
12922         /*
12923          * If we are allocating from outside the cage, then we need to
12924          * register a relocation callback handler.  Note that for now
12925          * since pseudo mappings always hang off of the slab's root page,
12926          * we need only lock the first 8K of the TSB slab.  This is a bit
12927          * hacky but it is good for performance.
12928          */
12929         if (kmem_cachep != sfmmu_tsb8k_cache) {
12930                 slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
12931                 ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
12932                 ASSERT(ret == 0);
12933                 ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
12934                     cbflags, (void *)tsbinfo, &pfn, NULL);
12935 
12936                 /*
12937                  * Need to free up resources if we could not successfully
12938                  * add the callback function and return an error condition.
12939                  */
12940                 if (ret != 0) {
12941                         if (kmem_cachep) {
12942                                 kmem_cache_free(kmem_cachep, vaddr);
12943                         } else {
12944                                 vmem_xfree(vmp, (void *)vaddr, tsbbytes);
12945                         }
12946                         as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
12947                             S_WRITE);
12948                         return (EAGAIN);
12949                 }
12950         } else {
12951                 /*
12952                  * Since allocation of 8K TSBs from heap is rare and occurs
12953                  * during memory pressure we allocate them from permanent
12954                  * memory rather than using callbacks to get the PFN.
12955                  */
12956                 pfn = hat_getpfnum(kas.a_hat, vaddr);
12957         }
12958 
12959         tsbinfo->tsb_va = vaddr;
12960         tsbinfo->tsb_szc = tsbcode;
12961         tsbinfo->tsb_ttesz_mask = tteszmask;
12962         tsbinfo->tsb_next = NULL;
12963         tsbinfo->tsb_flags = 0;
12964 
12965         sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
12966 
12967         sfmmu_inv_tsb(vaddr, tsbbytes);
12968 
12969         if (kmem_cachep != sfmmu_tsb8k_cache) {
12970                 as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
12971         }
12972 
12973         return (0);
12974 }
12975 
12976 /*
12977  * Initialize per cpu tsb and per cpu tsbmiss_area
12978  */
12979 void
12980 sfmmu_init_tsbs(void)
12981 {
12982         int i;
12983         struct tsbmiss  *tsbmissp;
12984         struct kpmtsbm  *kpmtsbmp;
12985 #ifndef sun4v
12986         extern int      dcache_line_mask;
12987 #endif /* sun4v */
12988         extern uint_t   vac_colors;
12989 
12990         /*
12991          * Init. tsb miss area.
12992          */
12993         tsbmissp = tsbmiss_area;
12994 
12995         for (i = 0; i < NCPU; tsbmissp++, i++) {
12996                 /*
12997                  * initialize the tsbmiss area.
12998                  * Do this for all possible CPUs as some may be added
12999                  * while the system is running. There is no cost to this.
13000                  */
13001                 tsbmissp->ksfmmup = ksfmmup;
13002 #ifndef sun4v
13003                 tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
13004 #endif /* sun4v */
13005                 tsbmissp->khashstart =
13006                     (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
13007                 tsbmissp->uhashstart =
13008                     (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
13009                 tsbmissp->khashsz = khmehash_num;
13010                 tsbmissp->uhashsz = uhmehash_num;
13011         }
13012 
13013         sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
13014             sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
13015 
13016         if (kpm_enable == 0)
13017                 return;
13018 
13019         /* -- Begin KPM specific init -- */
13020 
13021         if (kpm_smallpages) {
13022                 /*
13023                  * If we're using base pagesize pages for seg_kpm
13024                  * mappings, we use the kernel TSB since we can't afford
13025                  * to allocate a second huge TSB for these mappings.
13026                  */
13027                 kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13028                 kpm_tsbsz = ktsb_szcode;
13029                 kpmsm_tsbbase = kpm_tsbbase;
13030                 kpmsm_tsbsz = kpm_tsbsz;
13031         } else {
13032                 /*
13033                  * In VAC conflict case, just put the entries in the
13034                  * kernel 8K indexed TSB for now so we can find them.
13035                  * This could really be changed in the future if we feel
13036                  * the need...
13037                  */
13038                 kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13039                 kpmsm_tsbsz = ktsb_szcode;
13040                 kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
13041                 kpm_tsbsz = ktsb4m_szcode;
13042         }
13043 
13044         kpmtsbmp = kpmtsbm_area;
13045         for (i = 0; i < NCPU; kpmtsbmp++, i++) {
13046                 /*
13047                  * Initialize the kpmtsbm area.
13048                  * Do this for all possible CPUs as some may be added
13049                  * while the system is running. There is no cost to this.
13050                  */
13051                 kpmtsbmp->vbase = kpm_vbase;
13052                 kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
13053                 kpmtsbmp->sz_shift = kpm_size_shift;
13054                 kpmtsbmp->kpmp_shift = kpmp_shift;
13055                 kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
13056                 if (kpm_smallpages == 0) {
13057                         kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
13058                         kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
13059                 } else {
13060                         kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
13061                         kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
13062                 }
13063                 kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
13064                 kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
13065 #ifdef  DEBUG
13066                 kpmtsbmp->flags |= (kpm_tsbmtl) ?  KPMTSBM_TLTSBM_FLAG : 0;
13067 #endif  /* DEBUG */
13068                 if (ktsb_phys)
13069                         kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
13070         }
13071 
13072         /* -- End KPM specific init -- */
13073 }
13074 
13075 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
13076 struct tsb_info ktsb_info[2];
13077 
13078 /*
13079  * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
13080  */
13081 void
13082 sfmmu_init_ktsbinfo()
13083 {
13084         ASSERT(ksfmmup != NULL);
13085         ASSERT(ksfmmup->sfmmu_tsb == NULL);
13086         /*
13087          * Allocate tsbinfos for kernel and copy in data
13088          * to make debug easier and sun4v setup easier.
13089          */
13090         ktsb_info[0].tsb_sfmmu = ksfmmup;
13091         ktsb_info[0].tsb_szc = ktsb_szcode;
13092         ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
13093         ktsb_info[0].tsb_va = ktsb_base;
13094         ktsb_info[0].tsb_pa = ktsb_pbase;
13095         ktsb_info[0].tsb_flags = 0;
13096         ktsb_info[0].tsb_tte.ll = 0;
13097         ktsb_info[0].tsb_cache = NULL;
13098 
13099         ktsb_info[1].tsb_sfmmu = ksfmmup;
13100         ktsb_info[1].tsb_szc = ktsb4m_szcode;
13101         ktsb_info[1].tsb_ttesz_mask = TSB4M;
13102         ktsb_info[1].tsb_va = ktsb4m_base;
13103         ktsb_info[1].tsb_pa = ktsb4m_pbase;
13104         ktsb_info[1].tsb_flags = 0;
13105         ktsb_info[1].tsb_tte.ll = 0;
13106         ktsb_info[1].tsb_cache = NULL;
13107 
13108         /* Link them into ksfmmup. */
13109         ktsb_info[0].tsb_next = &ktsb_info[1];
13110         ktsb_info[1].tsb_next = NULL;
13111         ksfmmup->sfmmu_tsb = &ktsb_info[0];
13112 
13113         sfmmu_setup_tsbinfo(ksfmmup);
13114 }
13115 
13116 /*
13117  * Cache the last value returned from va_to_pa().  If the VA specified
13118  * in the current call to cached_va_to_pa() maps to the same Page (as the
13119  * previous call to cached_va_to_pa()), then compute the PA using
13120  * cached info, else call va_to_pa().
13121  *
13122  * Note: this function is neither MT-safe nor consistent in the presence
13123  * of multiple, interleaved threads.  This function was created to enable
13124  * an optimization used during boot (at a point when there's only one thread
13125  * executing on the "boot CPU", and before startup_vm() has been called).
13126  */
13127 static uint64_t
13128 cached_va_to_pa(void *vaddr)
13129 {
13130         static uint64_t prev_vaddr_base = 0;
13131         static uint64_t prev_pfn = 0;
13132 
13133         if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
13134                 return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
13135         } else {
13136                 uint64_t pa = va_to_pa(vaddr);
13137 
13138                 if (pa != ((uint64_t)-1)) {
13139                         /*
13140                          * Computed physical address is valid.  Cache its
13141                          * related info for the next cached_va_to_pa() call.
13142                          */
13143                         prev_pfn = pa & MMU_PAGEMASK;
13144                         prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
13145                 }
13146 
13147                 return (pa);
13148         }
13149 }
13150 
13151 /*
13152  * Carve up our nucleus hblk region.  We may allocate more hblks than
13153  * asked due to rounding errors but we are guaranteed to have at least
13154  * enough space to allocate the requested number of hblk8's and hblk1's.
13155  */
13156 void
13157 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
13158 {
13159         struct hme_blk *hmeblkp;
13160         size_t hme8blk_sz, hme1blk_sz;
13161         size_t i;
13162         size_t hblk8_bound;
13163         ulong_t j = 0, k = 0;
13164 
13165         ASSERT(addr != NULL && size != 0);
13166 
13167         /* Need to use proper structure alignment */
13168         hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
13169         hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
13170 
13171         nucleus_hblk8.list = (void *)addr;
13172         nucleus_hblk8.index = 0;
13173 
13174         /*
13175          * Use as much memory as possible for hblk8's since we
13176          * expect all bop_alloc'ed memory to be allocated in 8k chunks.
13177          * We need to hold back enough space for the hblk1's which
13178          * we'll allocate next.
13179          */
13180         hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
13181         for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
13182                 hmeblkp = (struct hme_blk *)addr;
13183                 addr += hme8blk_sz;
13184                 hmeblkp->hblk_nuc_bit = 1;
13185                 hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13186         }
13187         nucleus_hblk8.len = j;
13188         ASSERT(j >= nhblk8);
13189         SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
13190 
13191         nucleus_hblk1.list = (void *)addr;
13192         nucleus_hblk1.index = 0;
13193         for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
13194                 hmeblkp = (struct hme_blk *)addr;
13195                 addr += hme1blk_sz;
13196                 hmeblkp->hblk_nuc_bit = 1;
13197                 hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13198         }
13199         ASSERT(k >= nhblk1);
13200         nucleus_hblk1.len = k;
13201         SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
13202 }
13203 
13204 /*
13205  * This function is currently not supported on this platform. For what
13206  * it's supposed to do, see hat.c and hat_srmmu.c
13207  */
13208 /* ARGSUSED */
13209 faultcode_t
13210 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
13211     uint_t flags)
13212 {
13213         return (FC_NOSUPPORT);
13214 }
13215 
13216 /*
13217  * Searchs the mapping list of the page for a mapping of the same size. If not
13218  * found the corresponding bit is cleared in the p_index field. When large
13219  * pages are more prevalent in the system, we can maintain the mapping list
13220  * in order and we don't have to traverse the list each time. Just check the
13221  * next and prev entries, and if both are of different size, we clear the bit.
13222  */
13223 static void
13224 sfmmu_rm_large_mappings(page_t *pp, int ttesz)
13225 {
13226         struct sf_hment *sfhmep;
13227         int     index;
13228         pgcnt_t npgs;
13229 
13230         ASSERT(ttesz > TTE8K);
13231 
13232         ASSERT(sfmmu_mlist_held(pp));
13233 
13234         ASSERT(PP_ISMAPPED_LARGE(pp));
13235 
13236         /*
13237          * Traverse mapping list looking for another mapping of same size.
13238          * since we only want to clear index field if all mappings of
13239          * that size are gone.
13240          */
13241 
13242         for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
13243                 if (IS_PAHME(sfhmep))
13244                         continue;
13245                 if (hme_size(sfhmep) == ttesz) {
13246                         /*
13247                          * another mapping of the same size. don't clear index.
13248                          */
13249                         return;
13250                 }
13251         }
13252 
13253         /*
13254          * Clear the p_index bit for large page.
13255          */
13256         index = PAGESZ_TO_INDEX(ttesz);
13257         npgs = TTEPAGES(ttesz);
13258         while (npgs-- > 0) {
13259                 ASSERT(pp->p_index & index);
13260                 pp->p_index &= ~index;
13261                 pp = PP_PAGENEXT(pp);
13262         }
13263 }
13264 
13265 /*
13266  * return supported features
13267  */
13268 /* ARGSUSED */
13269 int
13270 hat_supported(enum hat_features feature, void *arg)
13271 {
13272         switch (feature) {
13273         case    HAT_SHARED_PT:
13274         case    HAT_DYNAMIC_ISM_UNMAP:
13275         case    HAT_VMODSORT:
13276                 return (1);
13277         case    HAT_SHARED_REGIONS:
13278                 if (shctx_on)
13279                         return (1);
13280                 else
13281                         return (0);
13282         default:
13283                 return (0);
13284         }
13285 }
13286 
13287 void
13288 hat_enter(struct hat *hat)
13289 {
13290         hatlock_t       *hatlockp;
13291 
13292         if (hat != ksfmmup) {
13293                 hatlockp = TSB_HASH(hat);
13294                 mutex_enter(HATLOCK_MUTEXP(hatlockp));
13295         }
13296 }
13297 
13298 void
13299 hat_exit(struct hat *hat)
13300 {
13301         hatlock_t       *hatlockp;
13302 
13303         if (hat != ksfmmup) {
13304                 hatlockp = TSB_HASH(hat);
13305                 mutex_exit(HATLOCK_MUTEXP(hatlockp));
13306         }
13307 }
13308 
13309 /*ARGSUSED*/
13310 void
13311 hat_reserve(struct as *as, caddr_t addr, size_t len)
13312 {
13313 }
13314 
13315 static void
13316 hat_kstat_init(void)
13317 {
13318         kstat_t *ksp;
13319 
13320         ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
13321             KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
13322             KSTAT_FLAG_VIRTUAL);
13323         if (ksp) {
13324                 ksp->ks_data = (void *) &sfmmu_global_stat;
13325                 kstat_install(ksp);
13326         }
13327         ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
13328             KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
13329             KSTAT_FLAG_VIRTUAL);
13330         if (ksp) {
13331                 ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
13332                 kstat_install(ksp);
13333         }
13334         ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
13335             KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
13336             KSTAT_FLAG_WRITABLE);
13337         if (ksp) {
13338                 ksp->ks_update = sfmmu_kstat_percpu_update;
13339                 kstat_install(ksp);
13340         }
13341 }
13342 
13343 /* ARGSUSED */
13344 static int
13345 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
13346 {
13347         struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
13348         struct tsbmiss *tsbm = tsbmiss_area;
13349         struct kpmtsbm *kpmtsbm = kpmtsbm_area;
13350         int i;
13351 
13352         ASSERT(cpu_kstat);
13353         if (rw == KSTAT_READ) {
13354                 for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
13355                         cpu_kstat->sf_itlb_misses = 0;
13356                         cpu_kstat->sf_dtlb_misses = 0;
13357                         cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
13358                             tsbm->uprot_traps;
13359                         cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
13360                             kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
13361                         cpu_kstat->sf_tsb_hits = 0;
13362                         cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
13363                         cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
13364                 }
13365         } else {
13366                 /* KSTAT_WRITE is used to clear stats */
13367                 for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
13368                         tsbm->utsb_misses = 0;
13369                         tsbm->ktsb_misses = 0;
13370                         tsbm->uprot_traps = 0;
13371                         tsbm->kprot_traps = 0;
13372                         kpmtsbm->kpm_dtlb_misses = 0;
13373                         kpmtsbm->kpm_tsb_misses = 0;
13374                 }
13375         }
13376         return (0);
13377 }
13378 
13379 #ifdef  DEBUG
13380 
13381 tte_t  *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
13382 
13383 /*
13384  * A tte checker. *orig_old is the value we read before cas.
13385  *      *cur is the value returned by cas.
13386  *      *new is the desired value when we do the cas.
13387  *
13388  *      *hmeblkp is currently unused.
13389  */
13390 
13391 /* ARGSUSED */
13392 void
13393 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
13394 {
13395         pfn_t i, j, k;
13396         int cpuid = CPU->cpu_id;
13397 
13398         gorig[cpuid] = orig_old;
13399         gcur[cpuid] = cur;
13400         gnew[cpuid] = new;
13401 
13402 #ifdef lint
13403         hmeblkp = hmeblkp;
13404 #endif
13405 
13406         if (TTE_IS_VALID(orig_old)) {
13407                 if (TTE_IS_VALID(cur)) {
13408                         i = TTE_TO_TTEPFN(orig_old);
13409                         j = TTE_TO_TTEPFN(cur);
13410                         k = TTE_TO_TTEPFN(new);
13411                         if (i != j) {
13412                                 /* remap error? */
13413                                 panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j);
13414                         }
13415 
13416                         if (i != k) {
13417                                 /* remap error? */
13418                                 panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k);
13419                         }
13420                 } else {
13421                         if (TTE_IS_VALID(new)) {
13422                                 panic("chk_tte: invalid cur? ");
13423                         }
13424 
13425                         i = TTE_TO_TTEPFN(orig_old);
13426                         k = TTE_TO_TTEPFN(new);
13427                         if (i != k) {
13428                                 panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k);
13429                         }
13430                 }
13431         } else {
13432                 if (TTE_IS_VALID(cur)) {
13433                         j = TTE_TO_TTEPFN(cur);
13434                         if (TTE_IS_VALID(new)) {
13435                                 k = TTE_TO_TTEPFN(new);
13436                                 if (j != k) {
13437                                         panic("chk_tte: bad pfn4, 0x%lx, 0x%lx",
13438                                             j, k);
13439                                 }
13440                         } else {
13441                                 panic("chk_tte: why here?");
13442                         }
13443                 } else {
13444                         if (!TTE_IS_VALID(new)) {
13445                                 panic("chk_tte: why here2 ?");
13446                         }
13447                 }
13448         }
13449 }
13450 
13451 #endif /* DEBUG */
13452 
13453 extern void prefetch_tsbe_read(struct tsbe *);
13454 extern void prefetch_tsbe_write(struct tsbe *);
13455 
13456 
13457 /*
13458  * We want to prefetch 7 cache lines ahead for our read prefetch.  This gives
13459  * us optimal performance on Cheetah+.  You can only have 8 outstanding
13460  * prefetches at any one time, so we opted for 7 read prefetches and 1 write
13461  * prefetch to make the most utilization of the prefetch capability.
13462  */
13463 #define TSBE_PREFETCH_STRIDE (7)
13464 
13465 void
13466 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
13467 {
13468         int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
13469         int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
13470         int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
13471         int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
13472         struct tsbe *old;
13473         struct tsbe *new;
13474         struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
13475         uint64_t va;
13476         int new_offset;
13477         int i;
13478         int vpshift;
13479         int last_prefetch;
13480 
13481         if (old_bytes == new_bytes) {
13482                 bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
13483         } else {
13484 
13485                 /*
13486                  * A TSBE is 16 bytes which means there are four TSBE's per
13487                  * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
13488                  */
13489                 old = (struct tsbe *)old_tsbinfo->tsb_va;
13490                 last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
13491                 for (i = 0; i < old_entries; i++, old++) {
13492                         if (((i & (4-1)) == 0) && (i < last_prefetch))
13493                                 prefetch_tsbe_read(old);
13494                         if (!old->tte_tag.tag_invalid) {
13495                                 /*
13496                                  * We have a valid TTE to remap.  Check the
13497                                  * size.  We won't remap 64K or 512K TTEs
13498                                  * because they span more than one TSB entry
13499                                  * and are indexed using an 8K virt. page.
13500                                  * Ditto for 32M and 256M TTEs.
13501                                  */
13502                                 if (TTE_CSZ(&old->tte_data) == TTE64K ||
13503                                     TTE_CSZ(&old->tte_data) == TTE512K)
13504                                         continue;
13505                                 if (mmu_page_sizes == max_mmu_page_sizes) {
13506                                         if (TTE_CSZ(&old->tte_data) == TTE32M ||
13507                                             TTE_CSZ(&old->tte_data) == TTE256M)
13508                                                 continue;
13509                                 }
13510 
13511                                 /* clear the lower 22 bits of the va */
13512                                 va = *(uint64_t *)old << 22;
13513                                 /* turn va into a virtual pfn */
13514                                 va >>= 22 - TSB_START_SIZE;
13515                                 /*
13516                                  * or in bits from the offset in the tsb
13517                                  * to get the real virtual pfn. These
13518                                  * correspond to bits [21:13] in the va
13519                                  */
13520                                 vpshift =
13521                                     TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
13522                                     0x1ff;
13523                                 va |= (i << vpshift);
13524                                 va >>= vpshift;
13525                                 new_offset = va & (new_entries - 1);
13526                                 new = new_base + new_offset;
13527                                 prefetch_tsbe_write(new);
13528                                 *new = *old;
13529                         }
13530                 }
13531         }
13532 }
13533 
13534 /*
13535  * unused in sfmmu
13536  */
13537 void
13538 hat_dump(void)
13539 {
13540 }
13541 
13542 /*
13543  * Called when a thread is exiting and we have switched to the kernel address
13544  * space.  Perform the same VM initialization resume() uses when switching
13545  * processes.
13546  *
13547  * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
13548  * we call it anyway in case the semantics change in the future.
13549  */
13550 /*ARGSUSED*/
13551 void
13552 hat_thread_exit(kthread_t *thd)
13553 {
13554         uint_t pgsz_cnum;
13555         uint_t pstate_save;
13556 
13557         ASSERT(thd->t_procp->p_as == &kas);
13558 
13559         pgsz_cnum = KCONTEXT;
13560 #ifdef sun4u
13561         pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT);
13562 #endif
13563 
13564         /*
13565          * Note that sfmmu_load_mmustate() is currently a no-op for
13566          * kernel threads. We need to disable interrupts here,
13567          * simply because otherwise sfmmu_load_mmustate() would panic
13568          * if the caller does not disable interrupts.
13569          */
13570         pstate_save = sfmmu_disable_intrs();
13571 
13572         /* Compatibility Note: hw takes care of MMU_SCONTEXT1 */
13573         sfmmu_setctx_sec(pgsz_cnum);
13574         sfmmu_load_mmustate(ksfmmup);
13575         sfmmu_enable_intrs(pstate_save);
13576 }
13577 
13578 
13579 /*
13580  * SRD support
13581  */
13582 #define SRD_HASH_FUNCTION(vp)   (((((uintptr_t)(vp)) >> 4) ^ \
13583                                     (((uintptr_t)(vp)) >> 11)) & \
13584                                     srd_hashmask)
13585 
13586 /*
13587  * Attach the process to the srd struct associated with the exec vnode
13588  * from which the process is started.
13589  */
13590 void
13591 hat_join_srd(struct hat *sfmmup, vnode_t *evp)
13592 {
13593         uint_t hash = SRD_HASH_FUNCTION(evp);
13594         sf_srd_t *srdp;
13595         sf_srd_t *newsrdp;
13596 
13597         ASSERT(sfmmup != ksfmmup);
13598         ASSERT(sfmmup->sfmmu_srdp == NULL);
13599 
13600         if (!shctx_on) {
13601                 return;
13602         }
13603 
13604         VN_HOLD(evp);
13605 
13606         if (srd_buckets[hash].srdb_srdp != NULL) {
13607                 mutex_enter(&srd_buckets[hash].srdb_lock);
13608                 for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13609                     srdp = srdp->srd_hash) {
13610                         if (srdp->srd_evp == evp) {
13611                                 ASSERT(srdp->srd_refcnt >= 0);
13612                                 sfmmup->sfmmu_srdp = srdp;
13613                                 atomic_inc_32(
13614                                     (volatile uint_t *)&srdp->srd_refcnt);
13615                                 mutex_exit(&srd_buckets[hash].srdb_lock);
13616                                 return;
13617                         }
13618                 }
13619                 mutex_exit(&srd_buckets[hash].srdb_lock);
13620         }
13621         newsrdp = kmem_cache_alloc(srd_cache, KM_SLEEP);
13622         ASSERT(newsrdp->srd_next_ismrid == 0 && newsrdp->srd_next_hmerid == 0);
13623 
13624         newsrdp->srd_evp = evp;
13625         newsrdp->srd_refcnt = 1;
13626         newsrdp->srd_hmergnfree = NULL;
13627         newsrdp->srd_ismrgnfree = NULL;
13628 
13629         mutex_enter(&srd_buckets[hash].srdb_lock);
13630         for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13631             srdp = srdp->srd_hash) {
13632                 if (srdp->srd_evp == evp) {
13633                         ASSERT(srdp->srd_refcnt >= 0);
13634                         sfmmup->sfmmu_srdp = srdp;
13635                         atomic_inc_32((volatile uint_t *)&srdp->srd_refcnt);
13636                         mutex_exit(&srd_buckets[hash].srdb_lock);
13637                         kmem_cache_free(srd_cache, newsrdp);
13638                         return;
13639                 }
13640         }
13641         newsrdp->srd_hash = srd_buckets[hash].srdb_srdp;
13642         srd_buckets[hash].srdb_srdp = newsrdp;
13643         sfmmup->sfmmu_srdp = newsrdp;
13644 
13645         mutex_exit(&srd_buckets[hash].srdb_lock);
13646 
13647 }
13648 
13649 static void
13650 sfmmu_leave_srd(sfmmu_t *sfmmup)
13651 {
13652         vnode_t *evp;
13653         sf_srd_t *srdp = sfmmup->sfmmu_srdp;
13654         uint_t hash;
13655         sf_srd_t **prev_srdpp;
13656         sf_region_t *rgnp;
13657         sf_region_t *nrgnp;
13658 #ifdef DEBUG
13659         int rgns = 0;
13660 #endif
13661         int i;
13662 
13663         ASSERT(sfmmup != ksfmmup);
13664         ASSERT(srdp != NULL);
13665         ASSERT(srdp->srd_refcnt > 0);
13666         ASSERT(sfmmup->sfmmu_scdp == NULL);
13667         ASSERT(sfmmup->sfmmu_free == 1);
13668 
13669         sfmmup->sfmmu_srdp = NULL;
13670         evp = srdp->srd_evp;
13671         ASSERT(evp != NULL);
13672         if (atomic_dec_32_nv((volatile uint_t *)&srdp->srd_refcnt)) {
13673                 VN_RELE(evp);
13674                 return;
13675         }
13676 
13677         hash = SRD_HASH_FUNCTION(evp);
13678         mutex_enter(&srd_buckets[hash].srdb_lock);
13679         for (prev_srdpp = &srd_buckets[hash].srdb_srdp;
13680             (srdp = *prev_srdpp) != NULL; prev_srdpp = &srdp->srd_hash) {
13681                 if (srdp->srd_evp == evp) {
13682                         break;
13683                 }
13684         }
13685         if (srdp == NULL || srdp->srd_refcnt) {
13686                 mutex_exit(&srd_buckets[hash].srdb_lock);
13687                 VN_RELE(evp);
13688                 return;
13689         }
13690         *prev_srdpp = srdp->srd_hash;
13691         mutex_exit(&srd_buckets[hash].srdb_lock);
13692 
13693         ASSERT(srdp->srd_refcnt == 0);
13694         VN_RELE(evp);
13695 
13696 #ifdef DEBUG
13697         for (i = 0; i < SFMMU_MAX_REGION_BUCKETS; i++) {
13698                 ASSERT(srdp->srd_rgnhash[i] == NULL);
13699         }
13700 #endif /* DEBUG */
13701 
13702         /* free each hme regions in the srd */
13703         for (rgnp = srdp->srd_hmergnfree; rgnp != NULL; rgnp = nrgnp) {
13704                 nrgnp = rgnp->rgn_next;
13705                 ASSERT(rgnp->rgn_id < srdp->srd_next_hmerid);
13706                 ASSERT(rgnp->rgn_refcnt == 0);
13707                 ASSERT(rgnp->rgn_sfmmu_head == NULL);
13708                 ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13709                 ASSERT(rgnp->rgn_hmeflags == 0);
13710                 ASSERT(srdp->srd_hmergnp[rgnp->rgn_id] == rgnp);
13711 #ifdef DEBUG
13712                 for (i = 0; i < MMU_PAGE_SIZES; i++) {
13713                         ASSERT(rgnp->rgn_ttecnt[i] == 0);
13714                 }
13715                 rgns++;
13716 #endif /* DEBUG */
13717                 kmem_cache_free(region_cache, rgnp);
13718         }
13719         ASSERT(rgns == srdp->srd_next_hmerid);
13720 
13721 #ifdef DEBUG
13722         rgns = 0;
13723 #endif
13724         /* free each ism rgns in the srd */
13725         for (rgnp = srdp->srd_ismrgnfree; rgnp != NULL; rgnp = nrgnp) {
13726                 nrgnp = rgnp->rgn_next;
13727                 ASSERT(rgnp->rgn_id < srdp->srd_next_ismrid);
13728                 ASSERT(rgnp->rgn_refcnt == 0);
13729                 ASSERT(rgnp->rgn_sfmmu_head == NULL);
13730                 ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13731                 ASSERT(srdp->srd_ismrgnp[rgnp->rgn_id] == rgnp);
13732 #ifdef DEBUG
13733                 for (i = 0; i < MMU_PAGE_SIZES; i++) {
13734                         ASSERT(rgnp->rgn_ttecnt[i] == 0);
13735                 }
13736                 rgns++;
13737 #endif /* DEBUG */
13738                 kmem_cache_free(region_cache, rgnp);
13739         }
13740         ASSERT(rgns == srdp->srd_next_ismrid);
13741         ASSERT(srdp->srd_ismbusyrgns == 0);
13742         ASSERT(srdp->srd_hmebusyrgns == 0);
13743 
13744         srdp->srd_next_ismrid = 0;
13745         srdp->srd_next_hmerid = 0;
13746 
13747         bzero((void *)srdp->srd_ismrgnp,
13748             sizeof (sf_region_t *) * SFMMU_MAX_ISM_REGIONS);
13749         bzero((void *)srdp->srd_hmergnp,
13750             sizeof (sf_region_t *) * SFMMU_MAX_HME_REGIONS);
13751 
13752         ASSERT(srdp->srd_scdp == NULL);
13753         kmem_cache_free(srd_cache, srdp);
13754 }
13755 
13756 /* ARGSUSED */
13757 static int
13758 sfmmu_srdcache_constructor(void *buf, void *cdrarg, int kmflags)
13759 {
13760         sf_srd_t *srdp = (sf_srd_t *)buf;
13761         bzero(buf, sizeof (*srdp));
13762 
13763         mutex_init(&srdp->srd_mutex, NULL, MUTEX_DEFAULT, NULL);
13764         mutex_init(&srdp->srd_scd_mutex, NULL, MUTEX_DEFAULT, NULL);
13765         return (0);
13766 }
13767 
13768 /* ARGSUSED */
13769 static void
13770 sfmmu_srdcache_destructor(void *buf, void *cdrarg)
13771 {
13772         sf_srd_t *srdp = (sf_srd_t *)buf;
13773 
13774         mutex_destroy(&srdp->srd_mutex);
13775         mutex_destroy(&srdp->srd_scd_mutex);
13776 }
13777 
13778 /*
13779  * The caller makes sure hat_join_region()/hat_leave_region() can't be called
13780  * at the same time for the same process and address range. This is ensured by
13781  * the fact that address space is locked as writer when a process joins the
13782  * regions. Therefore there's no need to hold an srd lock during the entire
13783  * execution of hat_join_region()/hat_leave_region().
13784  */
13785 
13786 #define RGN_HASH_FUNCTION(obj)  (((((uintptr_t)(obj)) >> 4) ^ \
13787                                     (((uintptr_t)(obj)) >> 11)) & \
13788                                         srd_rgn_hashmask)
13789 /*
13790  * This routine implements the shared context functionality required when
13791  * attaching a segment to an address space. It must be called from
13792  * hat_share() for D(ISM) segments and from segvn_create() for segments
13793  * with the MAP_PRIVATE and MAP_TEXT flags set. It returns a region_cookie
13794  * which is saved in the private segment data for hme segments and
13795  * the ism_map structure for ism segments.
13796  */
13797 hat_region_cookie_t
13798 hat_join_region(struct hat *sfmmup,
13799         caddr_t r_saddr,
13800         size_t r_size,
13801         void *r_obj,
13802         u_offset_t r_objoff,
13803         uchar_t r_perm,
13804         uchar_t r_pgszc,
13805         hat_rgn_cb_func_t r_cb_function,
13806         uint_t flags)
13807 {
13808         sf_srd_t *srdp = sfmmup->sfmmu_srdp;
13809         uint_t rhash;
13810         uint_t rid;
13811         hatlock_t *hatlockp;
13812         sf_region_t *rgnp;
13813         sf_region_t *new_rgnp = NULL;
13814         int i;
13815         uint16_t *nextidp;
13816         sf_region_t **freelistp;
13817         int maxids;
13818         sf_region_t **rarrp;
13819         uint16_t *busyrgnsp;
13820         ulong_t rttecnt;
13821         uchar_t tteflag;
13822         uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
13823         int text = (r_type == HAT_REGION_TEXT);
13824 
13825         if (srdp == NULL || r_size == 0) {
13826                 return (HAT_INVALID_REGION_COOKIE);
13827         }
13828 
13829         ASSERT(sfmmup != ksfmmup);
13830         ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as));
13831         ASSERT(srdp->srd_refcnt > 0);
13832         ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
13833         ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
13834         ASSERT(r_pgszc < mmu_page_sizes);
13835         if (!IS_P2ALIGNED(r_saddr, TTEBYTES(r_pgszc)) ||
13836             !IS_P2ALIGNED(r_size, TTEBYTES(r_pgszc))) {
13837                 panic("hat_join_region: region addr or size is not aligned\n");
13838         }
13839 
13840 
13841         r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
13842             SFMMU_REGION_HME;
13843         /*
13844          * Currently only support shared hmes for the read only main text
13845          * region.
13846          */
13847         if (r_type == SFMMU_REGION_HME && ((r_obj != srdp->srd_evp) ||
13848             (r_perm & PROT_WRITE))) {
13849                 return (HAT_INVALID_REGION_COOKIE);
13850         }
13851 
13852         rhash = RGN_HASH_FUNCTION(r_obj);
13853 
13854         if (r_type == SFMMU_REGION_ISM) {
13855                 nextidp = &srdp->srd_next_ismrid;
13856                 freelistp = &srdp->srd_ismrgnfree;
13857                 maxids = SFMMU_MAX_ISM_REGIONS;
13858                 rarrp = srdp->srd_ismrgnp;
13859                 busyrgnsp = &srdp->srd_ismbusyrgns;
13860         } else {
13861                 nextidp = &srdp->srd_next_hmerid;
13862                 freelistp = &srdp->srd_hmergnfree;
13863                 maxids = SFMMU_MAX_HME_REGIONS;
13864                 rarrp = srdp->srd_hmergnp;
13865                 busyrgnsp = &srdp->srd_hmebusyrgns;
13866         }
13867 
13868         mutex_enter(&srdp->srd_mutex);
13869 
13870         for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
13871             rgnp = rgnp->rgn_hash) {
13872                 if (rgnp->rgn_saddr == r_saddr && rgnp->rgn_size == r_size &&
13873                     rgnp->rgn_obj == r_obj && rgnp->rgn_objoff == r_objoff &&
13874                     rgnp->rgn_perm == r_perm && rgnp->rgn_pgszc == r_pgszc) {
13875                         break;
13876                 }
13877         }
13878 
13879 rfound:
13880         if (rgnp != NULL) {
13881                 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
13882                 ASSERT(rgnp->rgn_cb_function == r_cb_function);
13883                 ASSERT(rgnp->rgn_refcnt >= 0);
13884                 rid = rgnp->rgn_id;
13885                 ASSERT(rid < maxids);
13886                 ASSERT(rarrp[rid] == rgnp);
13887                 ASSERT(rid < *nextidp);
13888                 atomic_inc_32((volatile uint_t *)&rgnp->rgn_refcnt);
13889                 mutex_exit(&srdp->srd_mutex);
13890                 if (new_rgnp != NULL) {
13891                         kmem_cache_free(region_cache, new_rgnp);
13892                 }
13893                 if (r_type == SFMMU_REGION_HME) {
13894                         int myjoin =
13895                             (sfmmup == astosfmmu(curthread->t_procp->p_as));
13896 
13897                         sfmmu_link_to_hmeregion(sfmmup, rgnp);
13898                         /*
13899                          * bitmap should be updated after linking sfmmu on
13900                          * region list so that pageunload() doesn't skip
13901                          * TSB/TLB flush. As soon as bitmap is updated another
13902                          * thread in this process can already start accessing
13903                          * this region.
13904                          */
13905                         /*
13906                          * Normally ttecnt accounting is done as part of
13907                          * pagefault handling. But a process may not take any
13908                          * pagefaults on shared hmeblks created by some other
13909                          * process. To compensate for this assume that the
13910                          * entire region will end up faulted in using
13911                          * the region's pagesize.
13912                          *
13913                          */
13914                         if (r_pgszc > TTE8K) {
13915                                 tteflag = 1 << r_pgszc;
13916                                 if (disable_large_pages & tteflag) {
13917                                         tteflag = 0;
13918                                 }
13919                         } else {
13920                                 tteflag = 0;
13921                         }
13922                         if (tteflag && !(sfmmup->sfmmu_rtteflags & tteflag)) {
13923                                 hatlockp = sfmmu_hat_enter(sfmmup);
13924                                 sfmmup->sfmmu_rtteflags |= tteflag;
13925                                 sfmmu_hat_exit(hatlockp);
13926                         }
13927                         hatlockp = sfmmu_hat_enter(sfmmup);
13928 
13929                         /*
13930                          * Preallocate 1/4 of ttecnt's in 8K TSB for >= 4M
13931                          * region to allow for large page allocation failure.
13932                          */
13933                         if (r_pgszc >= TTE4M) {
13934                                 sfmmup->sfmmu_tsb0_4minflcnt +=
13935                                     r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
13936                         }
13937 
13938                         /* update sfmmu_ttecnt with the shme rgn ttecnt */
13939                         rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
13940                         atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
13941                             rttecnt);
13942 
13943                         if (text && r_pgszc >= TTE4M &&
13944                             (tteflag || ((disable_large_pages >> TTE4M) &
13945                             ((1 << (r_pgszc - TTE4M + 1)) - 1))) &&
13946                             !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
13947                                 SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
13948                         }
13949 
13950                         sfmmu_hat_exit(hatlockp);
13951                         /*
13952                          * On Panther we need to make sure TLB is programmed
13953                          * to accept 32M/256M pages.  Call
13954                          * sfmmu_check_page_sizes() now to make sure TLB is
13955                          * setup before making hmeregions visible to other
13956                          * threads.
13957                          */
13958                         sfmmu_check_page_sizes(sfmmup, 1);
13959                         hatlockp = sfmmu_hat_enter(sfmmup);
13960                         SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
13961 
13962                         /*
13963                          * if context is invalid tsb miss exception code will
13964                          * call sfmmu_check_page_sizes() and update tsbmiss
13965                          * area later.
13966                          */
13967                         kpreempt_disable();
13968                         if (myjoin &&
13969                             (sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
13970                             != INVALID_CONTEXT)) {
13971                                 struct tsbmiss *tsbmp;
13972 
13973                                 tsbmp = &tsbmiss_area[CPU->cpu_id];
13974                                 ASSERT(sfmmup == tsbmp->usfmmup);
13975                                 BT_SET(tsbmp->shmermap, rid);
13976                                 if (r_pgszc > TTE64K) {
13977                                         tsbmp->uhat_rtteflags |= tteflag;
13978                                 }
13979 
13980                         }
13981                         kpreempt_enable();
13982 
13983                         sfmmu_hat_exit(hatlockp);
13984                         ASSERT((hat_region_cookie_t)((uint64_t)rid) !=
13985                             HAT_INVALID_REGION_COOKIE);
13986                 } else {
13987                         hatlockp = sfmmu_hat_enter(sfmmup);
13988                         SF_RGNMAP_ADD(sfmmup->sfmmu_ismregion_map, rid);
13989                         sfmmu_hat_exit(hatlockp);
13990                 }
13991                 ASSERT(rid < maxids);
13992 
13993                 if (r_type == SFMMU_REGION_ISM) {
13994                         sfmmu_find_scd(sfmmup);
13995                 }
13996                 return ((hat_region_cookie_t)((uint64_t)rid));
13997         }
13998 
13999         ASSERT(new_rgnp == NULL);
14000 
14001         if (*busyrgnsp >= maxids) {
14002                 mutex_exit(&srdp->srd_mutex);
14003                 return (HAT_INVALID_REGION_COOKIE);
14004         }
14005 
14006         ASSERT(MUTEX_HELD(&srdp->srd_mutex));
14007         if (*freelistp != NULL) {
14008                 rgnp = *freelistp;
14009                 *freelistp = rgnp->rgn_next;
14010                 ASSERT(rgnp->rgn_id < *nextidp);
14011                 ASSERT(rgnp->rgn_id < maxids);
14012                 ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
14013                 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK)
14014                     == r_type);
14015                 ASSERT(rarrp[rgnp->rgn_id] == rgnp);
14016                 ASSERT(rgnp->rgn_hmeflags == 0);
14017         } else {
14018                 /*
14019                  * release local locks before memory allocation.
14020                  */
14021                 mutex_exit(&srdp->srd_mutex);
14022 
14023                 new_rgnp = kmem_cache_alloc(region_cache, KM_SLEEP);
14024 
14025                 mutex_enter(&srdp->srd_mutex);
14026                 for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
14027                     rgnp = rgnp->rgn_hash) {
14028                         if (rgnp->rgn_saddr == r_saddr &&
14029                             rgnp->rgn_size == r_size &&
14030                             rgnp->rgn_obj == r_obj &&
14031                             rgnp->rgn_objoff == r_objoff &&
14032                             rgnp->rgn_perm == r_perm &&
14033                             rgnp->rgn_pgszc == r_pgszc) {
14034                                 break;
14035                         }
14036                 }
14037                 if (rgnp != NULL) {
14038                         goto rfound;
14039                 }
14040 
14041                 if (*nextidp >= maxids) {
14042                         mutex_exit(&srdp->srd_mutex);
14043                         goto fail;
14044                 }
14045                 rgnp = new_rgnp;
14046                 new_rgnp = NULL;
14047                 rgnp->rgn_id = (*nextidp)++;
14048                 ASSERT(rgnp->rgn_id < maxids);
14049                 ASSERT(rarrp[rgnp->rgn_id] == NULL);
14050                 rarrp[rgnp->rgn_id] = rgnp;
14051         }
14052 
14053         ASSERT(rgnp->rgn_sfmmu_head == NULL);
14054         ASSERT(rgnp->rgn_hmeflags == 0);
14055 #ifdef DEBUG
14056         for (i = 0; i < MMU_PAGE_SIZES; i++) {
14057                 ASSERT(rgnp->rgn_ttecnt[i] == 0);
14058         }
14059 #endif
14060         rgnp->rgn_saddr = r_saddr;
14061         rgnp->rgn_size = r_size;
14062         rgnp->rgn_obj = r_obj;
14063         rgnp->rgn_objoff = r_objoff;
14064         rgnp->rgn_perm = r_perm;
14065         rgnp->rgn_pgszc = r_pgszc;
14066         rgnp->rgn_flags = r_type;
14067         rgnp->rgn_refcnt = 0;
14068         rgnp->rgn_cb_function = r_cb_function;
14069         rgnp->rgn_hash = srdp->srd_rgnhash[rhash];
14070         srdp->srd_rgnhash[rhash] = rgnp;
14071         (*busyrgnsp)++;
14072         ASSERT(*busyrgnsp <= maxids);
14073         goto rfound;
14074 
14075 fail:
14076         ASSERT(new_rgnp != NULL);
14077         kmem_cache_free(region_cache, new_rgnp);
14078         return (HAT_INVALID_REGION_COOKIE);
14079 }
14080 
14081 /*
14082  * This function implements the shared context functionality required
14083  * when detaching a segment from an address space. It must be called
14084  * from hat_unshare() for all D(ISM) segments and from segvn_unmap(),
14085  * for segments with a valid region_cookie.
14086  * It will also be called from all seg_vn routines which change a
14087  * segment's attributes such as segvn_setprot(), segvn_setpagesize(),
14088  * segvn_clrszc() & segvn_advise(), as well as in the case of COW fault
14089  * from segvn_fault().
14090  */
14091 void
14092 hat_leave_region(struct hat *sfmmup, hat_region_cookie_t rcookie, uint_t flags)
14093 {
14094         sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14095         sf_scd_t *scdp;
14096         uint_t rhash;
14097         uint_t rid = (uint_t)((uint64_t)rcookie);
14098         hatlock_t *hatlockp = NULL;
14099         sf_region_t *rgnp;
14100         sf_region_t **prev_rgnpp;
14101         sf_region_t *cur_rgnp;
14102         void *r_obj;
14103         int i;
14104         caddr_t r_saddr;
14105         caddr_t r_eaddr;
14106         size_t  r_size;
14107         uchar_t r_pgszc;
14108         uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
14109 
14110         ASSERT(sfmmup != ksfmmup);
14111         ASSERT(srdp != NULL);
14112         ASSERT(srdp->srd_refcnt > 0);
14113         ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
14114         ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
14115         ASSERT(!sfmmup->sfmmu_free || sfmmup->sfmmu_scdp == NULL);
14116 
14117         r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
14118             SFMMU_REGION_HME;
14119 
14120         if (r_type == SFMMU_REGION_ISM) {
14121                 ASSERT(SFMMU_IS_ISMRID_VALID(rid));
14122                 ASSERT(rid < SFMMU_MAX_ISM_REGIONS);
14123                 rgnp = srdp->srd_ismrgnp[rid];
14124         } else {
14125                 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14126                 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14127                 rgnp = srdp->srd_hmergnp[rid];
14128         }
14129         ASSERT(rgnp != NULL);
14130         ASSERT(rgnp->rgn_id == rid);
14131         ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14132         ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14133         ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as));
14134 
14135         if (sfmmup->sfmmu_free) {
14136                 ulong_t rttecnt;
14137                 r_pgszc = rgnp->rgn_pgszc;
14138                 r_size = rgnp->rgn_size;
14139 
14140                 ASSERT(sfmmup->sfmmu_scdp == NULL);
14141                 if (r_type == SFMMU_REGION_ISM) {
14142                         SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14143                 } else {
14144                         /* update shme rgns ttecnt in sfmmu_ttecnt */
14145                         rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14146                         ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14147 
14148                         atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
14149                             -rttecnt);
14150 
14151                         SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14152                 }
14153         } else if (r_type == SFMMU_REGION_ISM) {
14154                 hatlockp = sfmmu_hat_enter(sfmmup);
14155                 ASSERT(rid < srdp->srd_next_ismrid);
14156                 SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14157                 scdp = sfmmup->sfmmu_scdp;
14158                 if (scdp != NULL &&
14159                     SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
14160                         sfmmu_leave_scd(sfmmup, r_type);
14161                         ASSERT(sfmmu_hat_lock_held(sfmmup));
14162                 }
14163                 sfmmu_hat_exit(hatlockp);
14164         } else {
14165                 ulong_t rttecnt;
14166                 r_pgszc = rgnp->rgn_pgszc;
14167                 r_saddr = rgnp->rgn_saddr;
14168                 r_size = rgnp->rgn_size;
14169                 r_eaddr = r_saddr + r_size;
14170 
14171                 ASSERT(r_type == SFMMU_REGION_HME);
14172                 hatlockp = sfmmu_hat_enter(sfmmup);
14173                 ASSERT(rid < srdp->srd_next_hmerid);
14174                 SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14175 
14176                 /*
14177                  * If region is part of an SCD call sfmmu_leave_scd().
14178                  * Otherwise if process is not exiting and has valid context
14179                  * just drop the context on the floor to lose stale TLB
14180                  * entries and force the update of tsb miss area to reflect
14181                  * the new region map. After that clean our TSB entries.
14182                  */
14183                 scdp = sfmmup->sfmmu_scdp;
14184                 if (scdp != NULL &&
14185                     SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
14186                         sfmmu_leave_scd(sfmmup, r_type);
14187                         ASSERT(sfmmu_hat_lock_held(sfmmup));
14188                 }
14189                 sfmmu_invalidate_ctx(sfmmup);
14190 
14191                 i = TTE8K;
14192                 while (i < mmu_page_sizes) {
14193                         if (rgnp->rgn_ttecnt[i] != 0) {
14194                                 sfmmu_unload_tsb_range(sfmmup, r_saddr,
14195                                     r_eaddr, i);
14196                                 if (i < TTE4M) {
14197                                         i = TTE4M;
14198                                         continue;
14199                                 } else {
14200                                         break;
14201                                 }
14202                         }
14203                         i++;
14204                 }
14205                 /* Remove the preallocated 1/4 8k ttecnt for 4M regions. */
14206                 if (r_pgszc >= TTE4M) {
14207                         rttecnt = r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14208                         ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
14209                             rttecnt);
14210                         sfmmup->sfmmu_tsb0_4minflcnt -= rttecnt;
14211                 }
14212 
14213                 /* update shme rgns ttecnt in sfmmu_ttecnt */
14214                 rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14215                 ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14216                 atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc], -rttecnt);
14217 
14218                 sfmmu_hat_exit(hatlockp);
14219                 if (scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
14220                         /* sfmmup left the scd, grow private tsb */
14221                         sfmmu_check_page_sizes(sfmmup, 1);
14222                 } else {
14223                         sfmmu_check_page_sizes(sfmmup, 0);
14224                 }
14225         }
14226 
14227         if (r_type == SFMMU_REGION_HME) {
14228                 sfmmu_unlink_from_hmeregion(sfmmup, rgnp);
14229         }
14230 
14231         r_obj = rgnp->rgn_obj;
14232         if (atomic_dec_32_nv((volatile uint_t *)&rgnp->rgn_refcnt)) {
14233                 return;
14234         }
14235 
14236         /*
14237          * looks like nobody uses this region anymore. Free it.
14238          */
14239         rhash = RGN_HASH_FUNCTION(r_obj);
14240         mutex_enter(&srdp->srd_mutex);
14241         for (prev_rgnpp = &srdp->srd_rgnhash[rhash];
14242             (cur_rgnp = *prev_rgnpp) != NULL;
14243             prev_rgnpp = &cur_rgnp->rgn_hash) {
14244                 if (cur_rgnp == rgnp && cur_rgnp->rgn_refcnt == 0) {
14245                         break;
14246                 }
14247         }
14248 
14249         if (cur_rgnp == NULL) {
14250                 mutex_exit(&srdp->srd_mutex);
14251                 return;
14252         }
14253 
14254         ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14255         *prev_rgnpp = rgnp->rgn_hash;
14256         if (r_type == SFMMU_REGION_ISM) {
14257                 rgnp->rgn_flags |= SFMMU_REGION_FREE;
14258                 ASSERT(rid < srdp->srd_next_ismrid);
14259                 rgnp->rgn_next = srdp->srd_ismrgnfree;
14260                 srdp->srd_ismrgnfree = rgnp;
14261                 ASSERT(srdp->srd_ismbusyrgns > 0);
14262                 srdp->srd_ismbusyrgns--;
14263                 mutex_exit(&srdp->srd_mutex);
14264                 return;
14265         }
14266         mutex_exit(&srdp->srd_mutex);
14267 
14268         /*
14269          * Destroy region's hmeblks.
14270          */
14271         sfmmu_unload_hmeregion(srdp, rgnp);
14272 
14273         rgnp->rgn_hmeflags = 0;
14274 
14275         ASSERT(rgnp->rgn_sfmmu_head == NULL);
14276         ASSERT(rgnp->rgn_id == rid);
14277         for (i = 0; i < MMU_PAGE_SIZES; i++) {
14278                 rgnp->rgn_ttecnt[i] = 0;
14279         }
14280         rgnp->rgn_flags |= SFMMU_REGION_FREE;
14281         mutex_enter(&srdp->srd_mutex);
14282         ASSERT(rid < srdp->srd_next_hmerid);
14283         rgnp->rgn_next = srdp->srd_hmergnfree;
14284         srdp->srd_hmergnfree = rgnp;
14285         ASSERT(srdp->srd_hmebusyrgns > 0);
14286         srdp->srd_hmebusyrgns--;
14287         mutex_exit(&srdp->srd_mutex);
14288 }
14289 
14290 /*
14291  * For now only called for hmeblk regions and not for ISM regions.
14292  */
14293 void
14294 hat_dup_region(struct hat *sfmmup, hat_region_cookie_t rcookie)
14295 {
14296         sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14297         uint_t rid = (uint_t)((uint64_t)rcookie);
14298         sf_region_t *rgnp;
14299         sf_rgn_link_t *rlink;
14300         sf_rgn_link_t *hrlink;
14301         ulong_t rttecnt;
14302 
14303         ASSERT(sfmmup != ksfmmup);
14304         ASSERT(srdp != NULL);
14305         ASSERT(srdp->srd_refcnt > 0);
14306 
14307         ASSERT(rid < srdp->srd_next_hmerid);
14308         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14309         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14310 
14311         rgnp = srdp->srd_hmergnp[rid];
14312         ASSERT(rgnp->rgn_refcnt > 0);
14313         ASSERT(rgnp->rgn_id == rid);
14314         ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == SFMMU_REGION_HME);
14315         ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14316 
14317         atomic_inc_32((volatile uint_t *)&rgnp->rgn_refcnt);
14318 
14319         /* LINTED: constant in conditional context */
14320         SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 0);
14321         ASSERT(rlink != NULL);
14322         mutex_enter(&rgnp->rgn_mutex);
14323         ASSERT(rgnp->rgn_sfmmu_head != NULL);
14324         /* LINTED: constant in conditional context */
14325         SFMMU_HMERID2RLINKP(rgnp->rgn_sfmmu_head, rid, hrlink, 0, 0);
14326         ASSERT(hrlink != NULL);
14327         ASSERT(hrlink->prev == NULL);
14328         rlink->next = rgnp->rgn_sfmmu_head;
14329         rlink->prev = NULL;
14330         hrlink->prev = sfmmup;
14331         /*
14332          * make sure rlink's next field is correct
14333          * before making this link visible.
14334          */
14335         membar_stst();
14336         rgnp->rgn_sfmmu_head = sfmmup;
14337         mutex_exit(&rgnp->rgn_mutex);
14338 
14339         /* update sfmmu_ttecnt with the shme rgn ttecnt */
14340         rttecnt = rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
14341         atomic_add_long(&sfmmup->sfmmu_ttecnt[rgnp->rgn_pgszc], rttecnt);
14342         /* update tsb0 inflation count */
14343         if (rgnp->rgn_pgszc >= TTE4M) {
14344                 sfmmup->sfmmu_tsb0_4minflcnt +=
14345                     rgnp->rgn_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14346         }
14347         /*
14348          * Update regionid bitmask without hat lock since no other thread
14349          * can update this region bitmask right now.
14350          */
14351         SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
14352 }
14353 
14354 /* ARGSUSED */
14355 static int
14356 sfmmu_rgncache_constructor(void *buf, void *cdrarg, int kmflags)
14357 {
14358         sf_region_t *rgnp = (sf_region_t *)buf;
14359         bzero(buf, sizeof (*rgnp));
14360 
14361         mutex_init(&rgnp->rgn_mutex, NULL, MUTEX_DEFAULT, NULL);
14362 
14363         return (0);
14364 }
14365 
14366 /* ARGSUSED */
14367 static void
14368 sfmmu_rgncache_destructor(void *buf, void *cdrarg)
14369 {
14370         sf_region_t *rgnp = (sf_region_t *)buf;
14371         mutex_destroy(&rgnp->rgn_mutex);
14372 }
14373 
14374 static int
14375 sfrgnmap_isnull(sf_region_map_t *map)
14376 {
14377         int i;
14378 
14379         for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14380                 if (map->bitmap[i] != 0) {
14381                         return (0);
14382                 }
14383         }
14384         return (1);
14385 }
14386 
14387 static int
14388 sfhmergnmap_isnull(sf_hmeregion_map_t *map)
14389 {
14390         int i;
14391 
14392         for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
14393                 if (map->bitmap[i] != 0) {
14394                         return (0);
14395                 }
14396         }
14397         return (1);
14398 }
14399 
14400 #ifdef DEBUG
14401 static void
14402 check_scd_sfmmu_list(sfmmu_t **headp, sfmmu_t *sfmmup, int onlist)
14403 {
14404         sfmmu_t *sp;
14405         sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14406 
14407         for (sp = *headp; sp != NULL; sp = sp->sfmmu_scd_link.next) {
14408                 ASSERT(srdp == sp->sfmmu_srdp);
14409                 if (sp == sfmmup) {
14410                         if (onlist) {
14411                                 return;
14412                         } else {
14413                                 panic("shctx: sfmmu 0x%p found on scd"
14414                                     "list 0x%p", (void *)sfmmup,
14415                                     (void *)*headp);
14416                         }
14417                 }
14418         }
14419         if (onlist) {
14420                 panic("shctx: sfmmu 0x%p not found on scd list 0x%p",
14421                     (void *)sfmmup, (void *)*headp);
14422         } else {
14423                 return;
14424         }
14425 }
14426 #else /* DEBUG */
14427 #define check_scd_sfmmu_list(headp, sfmmup, onlist)
14428 #endif /* DEBUG */
14429 
14430 /*
14431  * Removes an sfmmu from the SCD sfmmu list.
14432  */
14433 static void
14434 sfmmu_from_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14435 {
14436         ASSERT(sfmmup->sfmmu_srdp != NULL);
14437         check_scd_sfmmu_list(headp, sfmmup, 1);
14438         if (sfmmup->sfmmu_scd_link.prev != NULL) {
14439                 ASSERT(*headp != sfmmup);
14440                 sfmmup->sfmmu_scd_link.prev->sfmmu_scd_link.next =
14441                     sfmmup->sfmmu_scd_link.next;
14442         } else {
14443                 ASSERT(*headp == sfmmup);
14444                 *headp = sfmmup->sfmmu_scd_link.next;
14445         }
14446         if (sfmmup->sfmmu_scd_link.next != NULL) {
14447                 sfmmup->sfmmu_scd_link.next->sfmmu_scd_link.prev =
14448                     sfmmup->sfmmu_scd_link.prev;
14449         }
14450 }
14451 
14452 
14453 /*
14454  * Adds an sfmmu to the start of the queue.
14455  */
14456 static void
14457 sfmmu_to_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14458 {
14459         check_scd_sfmmu_list(headp, sfmmup, 0);
14460         sfmmup->sfmmu_scd_link.prev = NULL;
14461         sfmmup->sfmmu_scd_link.next = *headp;
14462         if (*headp != NULL)
14463                 (*headp)->sfmmu_scd_link.prev = sfmmup;
14464         *headp = sfmmup;
14465 }
14466 
14467 /*
14468  * Remove an scd from the start of the queue.
14469  */
14470 static void
14471 sfmmu_remove_scd(sf_scd_t **headp, sf_scd_t *scdp)
14472 {
14473         if (scdp->scd_prev != NULL) {
14474                 ASSERT(*headp != scdp);
14475                 scdp->scd_prev->scd_next = scdp->scd_next;
14476         } else {
14477                 ASSERT(*headp == scdp);
14478                 *headp = scdp->scd_next;
14479         }
14480 
14481         if (scdp->scd_next != NULL) {
14482                 scdp->scd_next->scd_prev = scdp->scd_prev;
14483         }
14484 }
14485 
14486 /*
14487  * Add an scd to the start of the queue.
14488  */
14489 static void
14490 sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *scdp)
14491 {
14492         scdp->scd_prev = NULL;
14493         scdp->scd_next = *headp;
14494         if (*headp != NULL) {
14495                 (*headp)->scd_prev = scdp;
14496         }
14497         *headp = scdp;
14498 }
14499 
14500 static int
14501 sfmmu_alloc_scd_tsbs(sf_srd_t *srdp, sf_scd_t *scdp)
14502 {
14503         uint_t rid;
14504         uint_t i;
14505         uint_t j;
14506         ulong_t w;
14507         sf_region_t *rgnp;
14508         ulong_t tte8k_cnt = 0;
14509         ulong_t tte4m_cnt = 0;
14510         uint_t tsb_szc;
14511         sfmmu_t *scsfmmup = scdp->scd_sfmmup;
14512         sfmmu_t *ism_hatid;
14513         struct tsb_info *newtsb;
14514         int szc;
14515 
14516         ASSERT(srdp != NULL);
14517 
14518         for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14519                 if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14520                         continue;
14521                 }
14522                 j = 0;
14523                 while (w) {
14524                         if (!(w & 0x1)) {
14525                                 j++;
14526                                 w >>= 1;
14527                                 continue;
14528                         }
14529                         rid = (i << BT_ULSHIFT) | j;
14530                         j++;
14531                         w >>= 1;
14532 
14533                         if (rid < SFMMU_MAX_HME_REGIONS) {
14534                                 rgnp = srdp->srd_hmergnp[rid];
14535                                 ASSERT(rgnp->rgn_id == rid);
14536                                 ASSERT(rgnp->rgn_refcnt > 0);
14537 
14538                                 if (rgnp->rgn_pgszc < TTE4M) {
14539                                         tte8k_cnt += rgnp->rgn_size >>
14540                                             TTE_PAGE_SHIFT(TTE8K);
14541                                 } else {
14542                                         ASSERT(rgnp->rgn_pgszc >= TTE4M);
14543                                         tte4m_cnt += rgnp->rgn_size >>
14544                                             TTE_PAGE_SHIFT(TTE4M);
14545                                         /*
14546                                          * Inflate SCD tsb0 by preallocating
14547                                          * 1/4 8k ttecnt for 4M regions to
14548                                          * allow for lgpg alloc failure.
14549                                          */
14550                                         tte8k_cnt += rgnp->rgn_size >>
14551                                             (TTE_PAGE_SHIFT(TTE8K) + 2);
14552                                 }
14553                         } else {
14554                                 rid -= SFMMU_MAX_HME_REGIONS;
14555                                 rgnp = srdp->srd_ismrgnp[rid];
14556                                 ASSERT(rgnp->rgn_id == rid);
14557                                 ASSERT(rgnp->rgn_refcnt > 0);
14558 
14559                                 ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14560                                 ASSERT(ism_hatid->sfmmu_ismhat);
14561 
14562                                 for (szc = 0; szc < TTE4M; szc++) {
14563                                         tte8k_cnt +=
14564                                             ism_hatid->sfmmu_ttecnt[szc] <<
14565                                             TTE_BSZS_SHIFT(szc);
14566                                 }
14567 
14568                                 ASSERT(rgnp->rgn_pgszc >= TTE4M);
14569                                 if (rgnp->rgn_pgszc >= TTE4M) {
14570                                         tte4m_cnt += rgnp->rgn_size >>
14571                                             TTE_PAGE_SHIFT(TTE4M);
14572                                 }
14573                         }
14574                 }
14575         }
14576 
14577         tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
14578 
14579         /* Allocate both the SCD TSBs here. */
14580         if (sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14581             tsb_szc, TSB8K|TSB64K|TSB512K, TSB_ALLOC, scsfmmup) &&
14582             (tsb_szc <= TSB_4M_SZCODE ||
14583             sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14584             TSB_4M_SZCODE, TSB8K|TSB64K|TSB512K,
14585             TSB_ALLOC, scsfmmup))) {
14586 
14587                 SFMMU_STAT(sf_scd_1sttsb_allocfail);
14588                 return (TSB_ALLOCFAIL);
14589         } else {
14590                 scsfmmup->sfmmu_tsb->tsb_flags |= TSB_SHAREDCTX;
14591 
14592                 if (tte4m_cnt) {
14593                         tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
14594                         if (sfmmu_tsbinfo_alloc(&newtsb, tsb_szc,
14595                             TSB4M|TSB32M|TSB256M, TSB_ALLOC, scsfmmup) &&
14596                             (tsb_szc <= TSB_4M_SZCODE ||
14597                             sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
14598                             TSB4M|TSB32M|TSB256M,
14599                             TSB_ALLOC, scsfmmup))) {
14600                                 /*
14601                                  * If we fail to allocate the 2nd shared tsb,
14602                                  * just free the 1st tsb, return failure.
14603                                  */
14604                                 sfmmu_tsbinfo_free(scsfmmup->sfmmu_tsb);
14605                                 SFMMU_STAT(sf_scd_2ndtsb_allocfail);
14606                                 return (TSB_ALLOCFAIL);
14607                         } else {
14608                                 ASSERT(scsfmmup->sfmmu_tsb->tsb_next == NULL);
14609                                 newtsb->tsb_flags |= TSB_SHAREDCTX;
14610                                 scsfmmup->sfmmu_tsb->tsb_next = newtsb;
14611                                 SFMMU_STAT(sf_scd_2ndtsb_alloc);
14612                         }
14613                 }
14614                 SFMMU_STAT(sf_scd_1sttsb_alloc);
14615         }
14616         return (TSB_SUCCESS);
14617 }
14618 
14619 static void
14620 sfmmu_free_scd_tsbs(sfmmu_t *scd_sfmmu)
14621 {
14622         while (scd_sfmmu->sfmmu_tsb != NULL) {
14623                 struct tsb_info *next = scd_sfmmu->sfmmu_tsb->tsb_next;
14624                 sfmmu_tsbinfo_free(scd_sfmmu->sfmmu_tsb);
14625                 scd_sfmmu->sfmmu_tsb = next;
14626         }
14627 }
14628 
14629 /*
14630  * Link the sfmmu onto the hme region list.
14631  */
14632 void
14633 sfmmu_link_to_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14634 {
14635         uint_t rid;
14636         sf_rgn_link_t *rlink;
14637         sfmmu_t *head;
14638         sf_rgn_link_t *hrlink;
14639 
14640         rid = rgnp->rgn_id;
14641         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14642 
14643         /* LINTED: constant in conditional context */
14644         SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 1);
14645         ASSERT(rlink != NULL);
14646         mutex_enter(&rgnp->rgn_mutex);
14647         if ((head = rgnp->rgn_sfmmu_head) == NULL) {
14648                 rlink->next = NULL;
14649                 rlink->prev = NULL;
14650                 /*
14651                  * make sure rlink's next field is NULL
14652                  * before making this link visible.
14653                  */
14654                 membar_stst();
14655                 rgnp->rgn_sfmmu_head = sfmmup;
14656         } else {
14657                 /* LINTED: constant in conditional context */
14658                 SFMMU_HMERID2RLINKP(head, rid, hrlink, 0, 0);
14659                 ASSERT(hrlink != NULL);
14660                 ASSERT(hrlink->prev == NULL);
14661                 rlink->next = head;
14662                 rlink->prev = NULL;
14663                 hrlink->prev = sfmmup;
14664                 /*
14665                  * make sure rlink's next field is correct
14666                  * before making this link visible.
14667                  */
14668                 membar_stst();
14669                 rgnp->rgn_sfmmu_head = sfmmup;
14670         }
14671         mutex_exit(&rgnp->rgn_mutex);
14672 }
14673 
14674 /*
14675  * Unlink the sfmmu from the hme region list.
14676  */
14677 void
14678 sfmmu_unlink_from_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14679 {
14680         uint_t rid;
14681         sf_rgn_link_t *rlink;
14682 
14683         rid = rgnp->rgn_id;
14684         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14685 
14686         /* LINTED: constant in conditional context */
14687         SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
14688         ASSERT(rlink != NULL);
14689         mutex_enter(&rgnp->rgn_mutex);
14690         if (rgnp->rgn_sfmmu_head == sfmmup) {
14691                 sfmmu_t *next = rlink->next;
14692                 rgnp->rgn_sfmmu_head = next;
14693                 /*
14694                  * if we are stopped by xc_attention() after this
14695                  * point the forward link walking in
14696                  * sfmmu_rgntlb_demap() will work correctly since the
14697                  * head correctly points to the next element.
14698                  */
14699                 membar_stst();
14700                 rlink->next = NULL;
14701                 ASSERT(rlink->prev == NULL);
14702                 if (next != NULL) {
14703                         sf_rgn_link_t *nrlink;
14704                         /* LINTED: constant in conditional context */
14705                         SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14706                         ASSERT(nrlink != NULL);
14707                         ASSERT(nrlink->prev == sfmmup);
14708                         nrlink->prev = NULL;
14709                 }
14710         } else {
14711                 sfmmu_t *next = rlink->next;
14712                 sfmmu_t *prev = rlink->prev;
14713                 sf_rgn_link_t *prlink;
14714 
14715                 ASSERT(prev != NULL);
14716                 /* LINTED: constant in conditional context */
14717                 SFMMU_HMERID2RLINKP(prev, rid, prlink, 0, 0);
14718                 ASSERT(prlink != NULL);
14719                 ASSERT(prlink->next == sfmmup);
14720                 prlink->next = next;
14721                 /*
14722                  * if we are stopped by xc_attention()
14723                  * after this point the forward link walking
14724                  * will work correctly since the prev element
14725                  * correctly points to the next element.
14726                  */
14727                 membar_stst();
14728                 rlink->next = NULL;
14729                 rlink->prev = NULL;
14730                 if (next != NULL) {
14731                         sf_rgn_link_t *nrlink;
14732                         /* LINTED: constant in conditional context */
14733                         SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14734                         ASSERT(nrlink != NULL);
14735                         ASSERT(nrlink->prev == sfmmup);
14736                         nrlink->prev = prev;
14737                 }
14738         }
14739         mutex_exit(&rgnp->rgn_mutex);
14740 }
14741 
14742 /*
14743  * Link scd sfmmu onto ism or hme region list for each region in the
14744  * scd region map.
14745  */
14746 void
14747 sfmmu_link_scd_to_regions(sf_srd_t *srdp, sf_scd_t *scdp)
14748 {
14749         uint_t rid;
14750         uint_t i;
14751         uint_t j;
14752         ulong_t w;
14753         sf_region_t *rgnp;
14754         sfmmu_t *scsfmmup;
14755 
14756         scsfmmup = scdp->scd_sfmmup;
14757         ASSERT(scsfmmup->sfmmu_scdhat);
14758         for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14759                 if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14760                         continue;
14761                 }
14762                 j = 0;
14763                 while (w) {
14764                         if (!(w & 0x1)) {
14765                                 j++;
14766                                 w >>= 1;
14767                                 continue;
14768                         }
14769                         rid = (i << BT_ULSHIFT) | j;
14770                         j++;
14771                         w >>= 1;
14772 
14773                         if (rid < SFMMU_MAX_HME_REGIONS) {
14774                                 rgnp = srdp->srd_hmergnp[rid];
14775                                 ASSERT(rgnp->rgn_id == rid);
14776                                 ASSERT(rgnp->rgn_refcnt > 0);
14777                                 sfmmu_link_to_hmeregion(scsfmmup, rgnp);
14778                         } else {
14779                                 sfmmu_t *ism_hatid = NULL;
14780                                 ism_ment_t *ism_ment;
14781                                 rid -= SFMMU_MAX_HME_REGIONS;
14782                                 rgnp = srdp->srd_ismrgnp[rid];
14783                                 ASSERT(rgnp->rgn_id == rid);
14784                                 ASSERT(rgnp->rgn_refcnt > 0);
14785 
14786                                 ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14787                                 ASSERT(ism_hatid->sfmmu_ismhat);
14788                                 ism_ment = &scdp->scd_ism_links[rid];
14789                                 ism_ment->iment_hat = scsfmmup;
14790                                 ism_ment->iment_base_va = rgnp->rgn_saddr;
14791                                 mutex_enter(&ism_mlist_lock);
14792                                 iment_add(ism_ment, ism_hatid);
14793                                 mutex_exit(&ism_mlist_lock);
14794 
14795                         }
14796                 }
14797         }
14798 }
14799 /*
14800  * Unlink scd sfmmu from ism or hme region list for each region in the
14801  * scd region map.
14802  */
14803 void
14804 sfmmu_unlink_scd_from_regions(sf_srd_t *srdp, sf_scd_t *scdp)
14805 {
14806         uint_t rid;
14807         uint_t i;
14808         uint_t j;
14809         ulong_t w;
14810         sf_region_t *rgnp;
14811         sfmmu_t *scsfmmup;
14812 
14813         scsfmmup = scdp->scd_sfmmup;
14814         for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14815                 if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14816                         continue;
14817                 }
14818                 j = 0;
14819                 while (w) {
14820                         if (!(w & 0x1)) {
14821                                 j++;
14822                                 w >>= 1;
14823                                 continue;
14824                         }
14825                         rid = (i << BT_ULSHIFT) | j;
14826                         j++;
14827                         w >>= 1;
14828 
14829                         if (rid < SFMMU_MAX_HME_REGIONS) {
14830                                 rgnp = srdp->srd_hmergnp[rid];
14831                                 ASSERT(rgnp->rgn_id == rid);
14832                                 ASSERT(rgnp->rgn_refcnt > 0);
14833                                 sfmmu_unlink_from_hmeregion(scsfmmup,
14834                                     rgnp);
14835 
14836                         } else {
14837                                 sfmmu_t *ism_hatid = NULL;
14838                                 ism_ment_t *ism_ment;
14839                                 rid -= SFMMU_MAX_HME_REGIONS;
14840                                 rgnp = srdp->srd_ismrgnp[rid];
14841                                 ASSERT(rgnp->rgn_id == rid);
14842                                 ASSERT(rgnp->rgn_refcnt > 0);
14843 
14844                                 ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14845                                 ASSERT(ism_hatid->sfmmu_ismhat);
14846                                 ism_ment = &scdp->scd_ism_links[rid];
14847                                 ASSERT(ism_ment->iment_hat == scdp->scd_sfmmup);
14848                                 ASSERT(ism_ment->iment_base_va ==
14849                                     rgnp->rgn_saddr);
14850                                 mutex_enter(&ism_mlist_lock);
14851                                 iment_sub(ism_ment, ism_hatid);
14852                                 mutex_exit(&ism_mlist_lock);
14853 
14854                         }
14855                 }
14856         }
14857 }
14858 /*
14859  * Allocates and initialises a new SCD structure, this is called with
14860  * the srd_scd_mutex held and returns with the reference count
14861  * initialised to 1.
14862  */
14863 static sf_scd_t *
14864 sfmmu_alloc_scd(sf_srd_t *srdp, sf_region_map_t *new_map)
14865 {
14866         sf_scd_t *new_scdp;
14867         sfmmu_t *scsfmmup;
14868         int i;
14869 
14870         ASSERT(MUTEX_HELD(&srdp->srd_scd_mutex));
14871         new_scdp = kmem_cache_alloc(scd_cache, KM_SLEEP);
14872 
14873         scsfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
14874         new_scdp->scd_sfmmup = scsfmmup;
14875         scsfmmup->sfmmu_srdp = srdp;
14876         scsfmmup->sfmmu_scdp = new_scdp;
14877         scsfmmup->sfmmu_tsb0_4minflcnt = 0;
14878         scsfmmup->sfmmu_scdhat = 1;
14879         CPUSET_ALL(scsfmmup->sfmmu_cpusran);
14880         bzero(scsfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
14881 
14882         ASSERT(max_mmu_ctxdoms > 0);
14883         for (i = 0; i < max_mmu_ctxdoms; i++) {
14884                 scsfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
14885                 scsfmmup->sfmmu_ctxs[i].gnum = 0;
14886         }
14887 
14888         for (i = 0; i < MMU_PAGE_SIZES; i++) {
14889                 new_scdp->scd_rttecnt[i] = 0;
14890         }
14891 
14892         new_scdp->scd_region_map = *new_map;
14893         new_scdp->scd_refcnt = 1;
14894         if (sfmmu_alloc_scd_tsbs(srdp, new_scdp) != TSB_SUCCESS) {
14895                 kmem_cache_free(scd_cache, new_scdp);
14896                 kmem_cache_free(sfmmuid_cache, scsfmmup);
14897                 return (NULL);
14898         }
14899         if (&mmu_init_scd) {
14900                 mmu_init_scd(new_scdp);
14901         }
14902         return (new_scdp);
14903 }
14904 
14905 /*
14906  * The first phase of a process joining an SCD. The hat structure is
14907  * linked to the SCD queue and then the HAT_JOIN_SCD sfmmu flag is set
14908  * and a cross-call with context invalidation is used to cause the
14909  * remaining work to be carried out in the sfmmu_tsbmiss_exception()
14910  * routine.
14911  */
14912 static void
14913 sfmmu_join_scd(sf_scd_t *scdp, sfmmu_t *sfmmup)
14914 {
14915         hatlock_t *hatlockp;
14916         sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14917         int i;
14918         sf_scd_t *old_scdp;
14919 
14920         ASSERT(srdp != NULL);
14921         ASSERT(scdp != NULL);
14922         ASSERT(scdp->scd_refcnt > 0);
14923         ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as));
14924 
14925         if ((old_scdp = sfmmup->sfmmu_scdp) != NULL) {
14926                 ASSERT(old_scdp != scdp);
14927 
14928                 mutex_enter(&old_scdp->scd_mutex);
14929                 sfmmu_from_scd_list(&old_scdp->scd_sf_list, sfmmup);
14930                 mutex_exit(&old_scdp->scd_mutex);
14931                 /*
14932                  * sfmmup leaves the old scd. Update sfmmu_ttecnt to
14933                  * include the shme rgn ttecnt for rgns that
14934                  * were in the old SCD
14935                  */
14936                 for (i = 0; i < mmu_page_sizes; i++) {
14937                         ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
14938                             old_scdp->scd_rttecnt[i]);
14939                         atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
14940                             sfmmup->sfmmu_scdrttecnt[i]);
14941                 }
14942         }
14943 
14944         /*
14945          * Move sfmmu to the scd lists.
14946          */
14947         mutex_enter(&scdp->scd_mutex);
14948         sfmmu_to_scd_list(&scdp->scd_sf_list, sfmmup);
14949         mutex_exit(&scdp->scd_mutex);
14950         SF_SCD_INCR_REF(scdp);
14951 
14952         hatlockp = sfmmu_hat_enter(sfmmup);
14953         /*
14954          * For a multi-thread process, we must stop
14955          * all the other threads before joining the scd.
14956          */
14957 
14958         SFMMU_FLAGS_SET(sfmmup, HAT_JOIN_SCD);
14959 
14960         sfmmu_invalidate_ctx(sfmmup);
14961         sfmmup->sfmmu_scdp = scdp;
14962 
14963         /*
14964          * Copy scd_rttecnt into sfmmup's sfmmu_scdrttecnt, and update
14965          * sfmmu_ttecnt to not include the rgn ttecnt just joined in SCD.
14966          */
14967         for (i = 0; i < mmu_page_sizes; i++) {
14968                 sfmmup->sfmmu_scdrttecnt[i] = scdp->scd_rttecnt[i];
14969                 ASSERT(sfmmup->sfmmu_ttecnt[i] >= scdp->scd_rttecnt[i]);
14970                 atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
14971                     -sfmmup->sfmmu_scdrttecnt[i]);
14972         }
14973         /* update tsb0 inflation count */
14974         if (old_scdp != NULL) {
14975                 sfmmup->sfmmu_tsb0_4minflcnt +=
14976                     old_scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
14977         }
14978         ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
14979             scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt);
14980         sfmmup->sfmmu_tsb0_4minflcnt -= scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
14981 
14982         sfmmu_hat_exit(hatlockp);
14983 
14984         if (old_scdp != NULL) {
14985                 SF_SCD_DECR_REF(srdp, old_scdp);
14986         }
14987 
14988 }
14989 
14990 /*
14991  * This routine is called by a process to become part of an SCD. It is called
14992  * from sfmmu_tsbmiss_exception() once most of the initial work has been
14993  * done by sfmmu_join_scd(). This routine must not drop the hat lock.
14994  */
14995 static void
14996 sfmmu_finish_join_scd(sfmmu_t *sfmmup)
14997 {
14998         struct tsb_info *tsbinfop;
14999 
15000         ASSERT(sfmmu_hat_lock_held(sfmmup));
15001         ASSERT(sfmmup->sfmmu_scdp != NULL);
15002         ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD));
15003         ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15004         ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID));
15005 
15006         for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
15007             tsbinfop = tsbinfop->tsb_next) {
15008                 if (tsbinfop->tsb_flags & TSB_SWAPPED) {
15009                         continue;
15010                 }
15011                 ASSERT(!(tsbinfop->tsb_flags & TSB_RELOC_FLAG));
15012 
15013                 sfmmu_inv_tsb(tsbinfop->tsb_va,
15014                     TSB_BYTES(tsbinfop->tsb_szc));
15015         }
15016 
15017         /* Set HAT_CTX1_FLAG for all SCD ISMs */
15018         sfmmu_ism_hatflags(sfmmup, 1);
15019 
15020         SFMMU_STAT(sf_join_scd);
15021 }
15022 
15023 /*
15024  * This routine is called in order to check if there is an SCD which matches
15025  * the process's region map if not then a new SCD may be created.
15026  */
15027 static void
15028 sfmmu_find_scd(sfmmu_t *sfmmup)
15029 {
15030         sf_srd_t *srdp = sfmmup->sfmmu_srdp;
15031         sf_scd_t *scdp, *new_scdp;
15032         int ret;
15033 
15034         ASSERT(srdp != NULL);
15035         ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as));
15036 
15037         mutex_enter(&srdp->srd_scd_mutex);
15038         for (scdp = srdp->srd_scdp; scdp != NULL;
15039             scdp = scdp->scd_next) {
15040                 SF_RGNMAP_EQUAL(&scdp->scd_region_map,
15041                     &sfmmup->sfmmu_region_map, ret);
15042                 if (ret == 1) {
15043                         SF_SCD_INCR_REF(scdp);
15044                         mutex_exit(&srdp->srd_scd_mutex);
15045                         sfmmu_join_scd(scdp, sfmmup);
15046                         ASSERT(scdp->scd_refcnt >= 2);
15047                         atomic_dec_32((volatile uint32_t *)&scdp->scd_refcnt);
15048                         return;
15049                 } else {
15050                         /*
15051                          * If the sfmmu region map is a subset of the scd
15052                          * region map, then the assumption is that this process
15053                          * will continue attaching to ISM segments until the
15054                          * region maps are equal.
15055                          */
15056                         SF_RGNMAP_IS_SUBSET(&scdp->scd_region_map,
15057                             &sfmmup->sfmmu_region_map, ret);
15058                         if (ret == 1) {
15059                                 mutex_exit(&srdp->srd_scd_mutex);
15060                                 return;
15061                         }
15062                 }
15063         }
15064 
15065         ASSERT(scdp == NULL);
15066         /*
15067          * No matching SCD has been found, create a new one.
15068          */
15069         if ((new_scdp = sfmmu_alloc_scd(srdp, &sfmmup->sfmmu_region_map)) ==
15070             NULL) {
15071                 mutex_exit(&srdp->srd_scd_mutex);
15072                 return;
15073         }
15074 
15075         /*
15076          * sfmmu_alloc_scd() returns with a ref count of 1 on the scd.
15077          */
15078 
15079         /* Set scd_rttecnt for shme rgns in SCD */
15080         sfmmu_set_scd_rttecnt(srdp, new_scdp);
15081 
15082         /*
15083          * Link scd onto srd_scdp list and scd sfmmu onto region/iment lists.
15084          */
15085         sfmmu_link_scd_to_regions(srdp, new_scdp);
15086         sfmmu_add_scd(&srdp->srd_scdp, new_scdp);
15087         SFMMU_STAT_ADD(sf_create_scd, 1);
15088 
15089         mutex_exit(&srdp->srd_scd_mutex);
15090         sfmmu_join_scd(new_scdp, sfmmup);
15091         ASSERT(new_scdp->scd_refcnt >= 2);
15092         atomic_dec_32((volatile uint32_t *)&new_scdp->scd_refcnt);
15093 }
15094 
15095 /*
15096  * This routine is called by a process to remove itself from an SCD. It is
15097  * either called when the processes has detached from a segment or from
15098  * hat_free_start() as a result of calling exit.
15099  */
15100 static void
15101 sfmmu_leave_scd(sfmmu_t *sfmmup, uchar_t r_type)
15102 {
15103         sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15104         sf_srd_t *srdp =  sfmmup->sfmmu_srdp;
15105         hatlock_t *hatlockp = TSB_HASH(sfmmup);
15106         int i;
15107 
15108         ASSERT(scdp != NULL);
15109         ASSERT(srdp != NULL);
15110 
15111         if (sfmmup->sfmmu_free) {
15112                 /*
15113                  * If the process is part of an SCD the sfmmu is unlinked
15114                  * from scd_sf_list.
15115                  */
15116                 mutex_enter(&scdp->scd_mutex);
15117                 sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15118                 mutex_exit(&scdp->scd_mutex);
15119                 /*
15120                  * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15121                  * are about to leave the SCD
15122                  */
15123                 for (i = 0; i < mmu_page_sizes; i++) {
15124                         ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15125                             scdp->scd_rttecnt[i]);
15126                         atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15127                             sfmmup->sfmmu_scdrttecnt[i]);
15128                         sfmmup->sfmmu_scdrttecnt[i] = 0;
15129                 }
15130                 sfmmup->sfmmu_scdp = NULL;
15131 
15132                 SF_SCD_DECR_REF(srdp, scdp);
15133                 return;
15134         }
15135 
15136         ASSERT(r_type != SFMMU_REGION_ISM ||
15137             SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15138         ASSERT(scdp->scd_refcnt);
15139         ASSERT(!sfmmup->sfmmu_free);
15140         ASSERT(sfmmu_hat_lock_held(sfmmup));
15141         ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as));
15142 
15143         /*
15144          * Wait for ISM maps to be updated.
15145          */
15146         if (r_type != SFMMU_REGION_ISM) {
15147                 while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY) &&
15148                     sfmmup->sfmmu_scdp != NULL) {
15149                         cv_wait(&sfmmup->sfmmu_tsb_cv,
15150                             HATLOCK_MUTEXP(hatlockp));
15151                 }
15152 
15153                 if (sfmmup->sfmmu_scdp == NULL) {
15154                         sfmmu_hat_exit(hatlockp);
15155                         return;
15156                 }
15157                 SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
15158         }
15159 
15160         if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
15161                 SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
15162                 /*
15163                  * Since HAT_JOIN_SCD was set our context
15164                  * is still invalid.
15165                  */
15166         } else {
15167                 /*
15168                  * For a multi-thread process, we must stop
15169                  * all the other threads before leaving the scd.
15170                  */
15171 
15172                 sfmmu_invalidate_ctx(sfmmup);
15173         }
15174 
15175         /* Clear all the rid's for ISM, delete flags, etc */
15176         ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15177         sfmmu_ism_hatflags(sfmmup, 0);
15178 
15179         /*
15180          * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15181          * are in SCD before this sfmmup leaves the SCD.
15182          */
15183         for (i = 0; i < mmu_page_sizes; i++) {
15184                 ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15185                     scdp->scd_rttecnt[i]);
15186                 atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15187                     sfmmup->sfmmu_scdrttecnt[i]);
15188                 sfmmup->sfmmu_scdrttecnt[i] = 0;
15189                 /* update ismttecnt to include SCD ism before hat leaves SCD */
15190                 sfmmup->sfmmu_ismttecnt[i] += sfmmup->sfmmu_scdismttecnt[i];
15191                 sfmmup->sfmmu_scdismttecnt[i] = 0;
15192         }
15193         /* update tsb0 inflation count */
15194         sfmmup->sfmmu_tsb0_4minflcnt += scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15195 
15196         if (r_type != SFMMU_REGION_ISM) {
15197                 SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
15198         }
15199         sfmmup->sfmmu_scdp = NULL;
15200 
15201         sfmmu_hat_exit(hatlockp);
15202 
15203         /*
15204          * Unlink sfmmu from scd_sf_list this can be done without holding
15205          * the hat lock as we hold the sfmmu_as lock which prevents
15206          * hat_join_region from adding this thread to the scd again. Other
15207          * threads check if sfmmu_scdp is NULL under hat lock and if it's NULL
15208          * they won't get here, since sfmmu_leave_scd() clears sfmmu_scdp
15209          * while holding the hat lock.
15210          */
15211         mutex_enter(&scdp->scd_mutex);
15212         sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15213         mutex_exit(&scdp->scd_mutex);
15214         SFMMU_STAT(sf_leave_scd);
15215 
15216         SF_SCD_DECR_REF(srdp, scdp);
15217         hatlockp = sfmmu_hat_enter(sfmmup);
15218 
15219 }
15220 
15221 /*
15222  * Unlink and free up an SCD structure with a reference count of 0.
15223  */
15224 static void
15225 sfmmu_destroy_scd(sf_srd_t *srdp, sf_scd_t *scdp, sf_region_map_t *scd_rmap)
15226 {
15227         sfmmu_t *scsfmmup;
15228         sf_scd_t *sp;
15229         hatlock_t *shatlockp;
15230         int i, ret;
15231 
15232         mutex_enter(&srdp->srd_scd_mutex);
15233         for (sp = srdp->srd_scdp; sp != NULL; sp = sp->scd_next) {
15234                 if (sp == scdp)
15235                         break;
15236         }
15237         if (sp == NULL || sp->scd_refcnt) {
15238                 mutex_exit(&srdp->srd_scd_mutex);
15239                 return;
15240         }
15241 
15242         /*
15243          * It is possible that the scd has been freed and reallocated with a
15244          * different region map while we've been waiting for the srd_scd_mutex.
15245          */
15246         SF_RGNMAP_EQUAL(scd_rmap, &sp->scd_region_map, ret);
15247         if (ret != 1) {
15248                 mutex_exit(&srdp->srd_scd_mutex);
15249                 return;
15250         }
15251 
15252         ASSERT(scdp->scd_sf_list == NULL);
15253         /*
15254          * Unlink scd from srd_scdp list.
15255          */
15256         sfmmu_remove_scd(&srdp->srd_scdp, scdp);
15257         mutex_exit(&srdp->srd_scd_mutex);
15258 
15259         sfmmu_unlink_scd_from_regions(srdp, scdp);
15260 
15261         /* Clear shared context tsb and release ctx */
15262         scsfmmup = scdp->scd_sfmmup;
15263 
15264         /*
15265          * create a barrier so that scd will not be destroyed
15266          * if other thread still holds the same shared hat lock.
15267          * E.g., sfmmu_tsbmiss_exception() needs to acquire the
15268          * shared hat lock before checking the shared tsb reloc flag.
15269          */
15270         shatlockp = sfmmu_hat_enter(scsfmmup);
15271         sfmmu_hat_exit(shatlockp);
15272 
15273         sfmmu_free_scd_tsbs(scsfmmup);
15274 
15275         for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
15276                 if (scsfmmup->sfmmu_hmeregion_links[i] != NULL) {
15277                         kmem_free(scsfmmup->sfmmu_hmeregion_links[i],
15278                             SFMMU_L2_HMERLINKS_SIZE);
15279                         scsfmmup->sfmmu_hmeregion_links[i] = NULL;
15280                 }
15281         }
15282         kmem_cache_free(sfmmuid_cache, scsfmmup);
15283         kmem_cache_free(scd_cache, scdp);
15284         SFMMU_STAT(sf_destroy_scd);
15285 }
15286 
15287 /*
15288  * Modifies the HAT_CTX1_FLAG for each of the ISM segments which correspond to
15289  * bits which are set in the ism_region_map parameter. This flag indicates to
15290  * the tsbmiss handler that mapping for these segments should be loaded using
15291  * the shared context.
15292  */
15293 static void
15294 sfmmu_ism_hatflags(sfmmu_t *sfmmup, int addflag)
15295 {
15296         sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15297         ism_blk_t *ism_blkp;
15298         ism_map_t *ism_map;
15299         int i, rid;
15300 
15301         ASSERT(sfmmup->sfmmu_iblk != NULL);
15302         ASSERT(scdp != NULL);
15303         /*
15304          * Note that the caller either set HAT_ISMBUSY flag or checked
15305          * under hat lock that HAT_ISMBUSY was not set by another thread.
15306          */
15307         ASSERT(sfmmu_hat_lock_held(sfmmup));
15308 
15309         ism_blkp = sfmmup->sfmmu_iblk;
15310         while (ism_blkp != NULL) {
15311                 ism_map = ism_blkp->iblk_maps;
15312                 for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
15313                         rid = ism_map[i].imap_rid;
15314                         if (rid == SFMMU_INVALID_ISMRID) {
15315                                 continue;
15316                         }
15317                         ASSERT(rid >= 0 && rid < SFMMU_MAX_ISM_REGIONS);
15318                         if (SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid) &&
15319                             addflag) {
15320                                 ism_map[i].imap_hatflags |=
15321                                     HAT_CTX1_FLAG;
15322                         } else {
15323                                 ism_map[i].imap_hatflags &=
15324                                     ~HAT_CTX1_FLAG;
15325                         }
15326                 }
15327                 ism_blkp = ism_blkp->iblk_next;
15328         }
15329 }
15330 
15331 static int
15332 sfmmu_srd_lock_held(sf_srd_t *srdp)
15333 {
15334         return (MUTEX_HELD(&srdp->srd_mutex));
15335 }
15336 
15337 /* ARGSUSED */
15338 static int
15339 sfmmu_scdcache_constructor(void *buf, void *cdrarg, int kmflags)
15340 {
15341         sf_scd_t *scdp = (sf_scd_t *)buf;
15342 
15343         bzero(buf, sizeof (sf_scd_t));
15344         mutex_init(&scdp->scd_mutex, NULL, MUTEX_DEFAULT, NULL);
15345         return (0);
15346 }
15347 
15348 /* ARGSUSED */
15349 static void
15350 sfmmu_scdcache_destructor(void *buf, void *cdrarg)
15351 {
15352         sf_scd_t *scdp = (sf_scd_t *)buf;
15353 
15354         mutex_destroy(&scdp->scd_mutex);
15355 }
15356 
15357 /*
15358  * The listp parameter is a pointer to a list of hmeblks which are partially
15359  * freed as result of calling sfmmu_hblk_hash_rm(), the last phase of the
15360  * freeing process is to cross-call all cpus to ensure that there are no
15361  * remaining cached references.
15362  *
15363  * If the local generation number is less than the global then we can free
15364  * hmeblks which are already on the pending queue as another cpu has completed
15365  * the cross-call.
15366  *
15367  * We cross-call to make sure that there are no threads on other cpus accessing
15368  * these hmblks and then complete the process of freeing them under the
15369  * following conditions:
15370  *      The total number of pending hmeblks is greater than the threshold
15371  *      The reserve list has fewer than HBLK_RESERVE_CNT hmeblks
15372  *      It is at least 1 second since the last time we cross-called
15373  *
15374  * Otherwise, we add the hmeblks to the per-cpu pending queue.
15375  */
15376 static void
15377 sfmmu_hblks_list_purge(struct hme_blk **listp, int dontfree)
15378 {
15379         struct hme_blk *hblkp, *pr_hblkp = NULL;
15380         int             count = 0;
15381         cpuset_t        cpuset = cpu_ready_set;
15382         cpu_hme_pend_t  *cpuhp;
15383         timestruc_t     now;
15384         int             one_second_expired = 0;
15385 
15386         gethrestime_lasttick(&now);
15387 
15388         for (hblkp = *listp; hblkp != NULL; hblkp = hblkp->hblk_next) {
15389                 ASSERT(hblkp->hblk_shw_bit == 0);
15390                 ASSERT(hblkp->hblk_shared == 0);
15391                 count++;
15392                 pr_hblkp = hblkp;
15393         }
15394 
15395         cpuhp = &cpu_hme_pend[CPU->cpu_seqid];
15396         mutex_enter(&cpuhp->chp_mutex);
15397 
15398         if ((cpuhp->chp_count + count) == 0) {
15399                 mutex_exit(&cpuhp->chp_mutex);
15400                 return;
15401         }
15402 
15403         if ((now.tv_sec - cpuhp->chp_timestamp) > 1) {
15404                 one_second_expired  = 1;
15405         }
15406 
15407         if (!dontfree && (freehblkcnt < HBLK_RESERVE_CNT ||
15408             (cpuhp->chp_count + count) > cpu_hme_pend_thresh ||
15409             one_second_expired)) {
15410                 /* Append global list to local */
15411                 if (pr_hblkp == NULL) {
15412                         *listp = cpuhp->chp_listp;
15413                 } else {
15414                         pr_hblkp->hblk_next = cpuhp->chp_listp;
15415                 }
15416                 cpuhp->chp_listp = NULL;
15417                 cpuhp->chp_count = 0;
15418                 cpuhp->chp_timestamp = now.tv_sec;
15419                 mutex_exit(&cpuhp->chp_mutex);
15420 
15421                 kpreempt_disable();
15422                 CPUSET_DEL(cpuset, CPU->cpu_id);
15423                 xt_sync(cpuset);
15424                 xt_sync(cpuset);
15425                 kpreempt_enable();
15426 
15427                 /*
15428                  * At this stage we know that no trap handlers on other
15429                  * cpus can have references to hmeblks on the list.
15430                  */
15431                 sfmmu_hblk_free(listp);
15432         } else if (*listp != NULL) {
15433                 pr_hblkp->hblk_next = cpuhp->chp_listp;
15434                 cpuhp->chp_listp = *listp;
15435                 cpuhp->chp_count += count;
15436                 *listp = NULL;
15437                 mutex_exit(&cpuhp->chp_mutex);
15438         } else {
15439                 mutex_exit(&cpuhp->chp_mutex);
15440         }
15441 }
15442 
15443 /*
15444  * Add an hmeblk to the the hash list.
15445  */
15446 void
15447 sfmmu_hblk_hash_add(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
15448         uint64_t hblkpa)
15449 {
15450         ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
15451 #ifdef  DEBUG
15452         if (hmebp->hmeblkp == NULL) {
15453                 ASSERT(hmebp->hmeh_nextpa == HMEBLK_ENDPA);
15454         }
15455 #endif /* DEBUG */
15456 
15457         hmeblkp->hblk_nextpa = hmebp->hmeh_nextpa;
15458         /*
15459          * Since the TSB miss handler now does not lock the hash chain before
15460          * walking it, make sure that the hmeblks nextpa is globally visible
15461          * before we make the hmeblk globally visible by updating the chain root
15462          * pointer in the hash bucket.
15463          */
15464         membar_producer();
15465         hmebp->hmeh_nextpa = hblkpa;
15466         hmeblkp->hblk_next = hmebp->hmeblkp;
15467         hmebp->hmeblkp = hmeblkp;
15468 
15469 }
15470 
15471 /*
15472  * This function is the first part of a 2 part process to remove an hmeblk
15473  * from the hash chain. In this phase we unlink the hmeblk from the hash chain
15474  * but leave the next physical pointer unchanged. The hmeblk is then linked onto
15475  * a per-cpu pending list using the virtual address pointer.
15476  *
15477  * TSB miss trap handlers that start after this phase will no longer see
15478  * this hmeblk. TSB miss handlers that still cache this hmeblk in a register
15479  * can still use it for further chain traversal because we haven't yet modifed
15480  * the next physical pointer or freed it.
15481  *
15482  * In the second phase of hmeblk removal we'll issue a barrier xcall before
15483  * we reuse or free this hmeblk. This will make sure all lingering references to
15484  * the hmeblk after first phase disappear before we finally reclaim it.
15485  * This scheme eliminates the need for TSB miss handlers to lock hmeblk chains
15486  * during their traversal.
15487  *
15488  * The hmehash_mutex must be held when calling this function.
15489  *
15490  * Input:
15491  *       hmebp - hme hash bucket pointer
15492  *       hmeblkp - address of hmeblk to be removed
15493  *       pr_hblk - virtual address of previous hmeblkp
15494  *       listp - pointer to list of hmeblks linked by virtual address
15495  *       free_now flag - indicates that a complete removal from the hash chains
15496  *                       is necessary.
15497  *
15498  * It is inefficient to use the free_now flag as a cross-call is required to
15499  * remove a single hmeblk from the hash chain but is necessary when hmeblks are
15500  * in short supply.
15501  */
15502 void
15503 sfmmu_hblk_hash_rm(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
15504     struct hme_blk *pr_hblk, struct hme_blk **listp,
15505     int free_now)
15506 {
15507         int shw_size, vshift;
15508         struct hme_blk *shw_hblkp;
15509         uint_t          shw_mask, newshw_mask;
15510         caddr_t         vaddr;
15511         int             size;
15512         cpuset_t cpuset = cpu_ready_set;
15513 
15514         ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
15515 
15516         if (hmebp->hmeblkp == hmeblkp) {
15517                 hmebp->hmeh_nextpa = hmeblkp->hblk_nextpa;
15518                 hmebp->hmeblkp = hmeblkp->hblk_next;
15519         } else {
15520                 pr_hblk->hblk_nextpa = hmeblkp->hblk_nextpa;
15521                 pr_hblk->hblk_next = hmeblkp->hblk_next;
15522         }
15523 
15524         size = get_hblk_ttesz(hmeblkp);
15525         shw_hblkp = hmeblkp->hblk_shadow;
15526         if (shw_hblkp) {
15527                 ASSERT(hblktosfmmu(hmeblkp) != KHATID);
15528                 ASSERT(!hmeblkp->hblk_shared);
15529 #ifdef  DEBUG
15530                 if (mmu_page_sizes == max_mmu_page_sizes) {
15531                         ASSERT(size < TTE256M);
15532                 } else {
15533                         ASSERT(size < TTE4M);
15534                 }
15535 #endif /* DEBUG */
15536 
15537                 shw_size = get_hblk_ttesz(shw_hblkp);
15538                 vaddr = (caddr_t)get_hblk_base(hmeblkp);
15539                 vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
15540                 ASSERT(vshift < 8);
15541                 /*
15542                  * Atomically clear shadow mask bit
15543                  */
15544                 do {
15545                         shw_mask = shw_hblkp->hblk_shw_mask;
15546                         ASSERT(shw_mask & (1 << vshift));
15547                         newshw_mask = shw_mask & ~(1 << vshift);
15548                         newshw_mask = atomic_cas_32(&shw_hblkp->hblk_shw_mask,
15549                             shw_mask, newshw_mask);
15550                 } while (newshw_mask != shw_mask);
15551                 hmeblkp->hblk_shadow = NULL;
15552         }
15553         hmeblkp->hblk_shw_bit = 0;
15554 
15555         if (hmeblkp->hblk_shared) {
15556 #ifdef  DEBUG
15557                 sf_srd_t        *srdp;
15558                 sf_region_t     *rgnp;
15559                 uint_t          rid;
15560 
15561                 srdp = hblktosrd(hmeblkp);
15562                 ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
15563                 rid = hmeblkp->hblk_tag.htag_rid;
15564                 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
15565                 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
15566                 rgnp = srdp->srd_hmergnp[rid];
15567                 ASSERT(rgnp != NULL);
15568                 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
15569 #endif /* DEBUG */
15570                 hmeblkp->hblk_shared = 0;
15571         }
15572         if (free_now) {
15573                 kpreempt_disable();
15574                 CPUSET_DEL(cpuset, CPU->cpu_id);
15575                 xt_sync(cpuset);
15576                 xt_sync(cpuset);
15577                 kpreempt_enable();
15578 
15579                 hmeblkp->hblk_nextpa = HMEBLK_ENDPA;
15580                 hmeblkp->hblk_next = NULL;
15581         } else {
15582                 /* Append hmeblkp to listp for processing later. */
15583                 hmeblkp->hblk_next = *listp;
15584                 *listp = hmeblkp;
15585         }
15586 }
15587 
15588 /*
15589  * This routine is called when memory is in short supply and returns a free
15590  * hmeblk of the requested size from the cpu pending lists.
15591  */
15592 static struct hme_blk *
15593 sfmmu_check_pending_hblks(int size)
15594 {
15595         int i;
15596         struct hme_blk *hmeblkp = NULL, *last_hmeblkp;
15597         int found_hmeblk;
15598         cpuset_t cpuset = cpu_ready_set;
15599         cpu_hme_pend_t *cpuhp;
15600 
15601         /* Flush cpu hblk pending queues */
15602         for (i = 0; i < NCPU; i++) {
15603                 cpuhp = &cpu_hme_pend[i];
15604                 if (cpuhp->chp_listp != NULL)  {
15605                         mutex_enter(&cpuhp->chp_mutex);
15606                         if (cpuhp->chp_listp == NULL)  {
15607                                 mutex_exit(&cpuhp->chp_mutex);
15608                                 continue;
15609                         }
15610                         found_hmeblk = 0;
15611                         last_hmeblkp = NULL;
15612                         for (hmeblkp = cpuhp->chp_listp; hmeblkp != NULL;
15613                             hmeblkp = hmeblkp->hblk_next) {
15614                                 if (get_hblk_ttesz(hmeblkp) == size) {
15615                                         if (last_hmeblkp == NULL) {
15616                                                 cpuhp->chp_listp =
15617                                                     hmeblkp->hblk_next;
15618                                         } else {
15619                                                 last_hmeblkp->hblk_next =
15620                                                     hmeblkp->hblk_next;
15621                                         }
15622                                         ASSERT(cpuhp->chp_count > 0);
15623                                         cpuhp->chp_count--;
15624                                         found_hmeblk = 1;
15625                                         break;
15626                                 } else {
15627                                         last_hmeblkp = hmeblkp;
15628                                 }
15629                         }
15630                         mutex_exit(&cpuhp->chp_mutex);
15631 
15632                         if (found_hmeblk) {
15633                                 kpreempt_disable();
15634                                 CPUSET_DEL(cpuset, CPU->cpu_id);
15635                                 xt_sync(cpuset);
15636                                 xt_sync(cpuset);
15637                                 kpreempt_enable();
15638                                 return (hmeblkp);
15639                         }
15640                 }
15641         }
15642         return (NULL);
15643 }