1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright 2015 Joyent, Inc.
27 * Copyright (c) 2015 by Delphix. All rights reserved.
28 */
29 /*
30 * Copyright (c) 2010, Intel Corporation.
31 * All rights reserved.
32 */
33
34 #include <sys/types.h>
35 #include <sys/t_lock.h>
36 #include <sys/param.h>
37 #include <sys/sysmacros.h>
38 #include <sys/signal.h>
39 #include <sys/systm.h>
40 #include <sys/user.h>
41 #include <sys/mman.h>
42 #include <sys/vm.h>
43 #include <sys/conf.h>
44 #include <sys/avintr.h>
45 #include <sys/autoconf.h>
46 #include <sys/disp.h>
47 #include <sys/class.h>
48 #include <sys/bitmap.h>
49
50 #include <sys/privregs.h>
51
52 #include <sys/proc.h>
53 #include <sys/buf.h>
54 #include <sys/kmem.h>
55 #include <sys/mem.h>
56 #include <sys/kstat.h>
57
58 #include <sys/reboot.h>
59
60 #include <sys/cred.h>
61 #include <sys/vnode.h>
62 #include <sys/file.h>
63
64 #include <sys/procfs.h>
65
66 #include <sys/vfs.h>
67 #include <sys/cmn_err.h>
68 #include <sys/utsname.h>
69 #include <sys/debug.h>
70 #include <sys/kdi.h>
71
72 #include <sys/dumphdr.h>
73 #include <sys/bootconf.h>
74 #include <sys/memlist_plat.h>
75 #include <sys/varargs.h>
76 #include <sys/promif.h>
77 #include <sys/modctl.h>
78
79 #include <sys/sunddi.h>
80 #include <sys/sunndi.h>
81 #include <sys/ndi_impldefs.h>
82 #include <sys/ddidmareq.h>
83 #include <sys/psw.h>
84 #include <sys/regset.h>
85 #include <sys/clock.h>
86 #include <sys/pte.h>
87 #include <sys/tss.h>
88 #include <sys/stack.h>
89 #include <sys/trap.h>
90 #include <sys/fp.h>
91 #include <vm/kboot_mmu.h>
92 #include <vm/anon.h>
93 #include <vm/as.h>
94 #include <vm/page.h>
95 #include <vm/seg.h>
96 #include <vm/seg_dev.h>
97 #include <vm/seg_kmem.h>
98 #include <vm/seg_kpm.h>
99 #include <vm/seg_map.h>
100 #include <vm/seg_vn.h>
101 #include <vm/seg_kp.h>
102 #include <sys/memnode.h>
103 #include <vm/vm_dep.h>
104 #include <sys/thread.h>
105 #include <sys/sysconf.h>
106 #include <sys/vm_machparam.h>
107 #include <sys/archsystm.h>
108 #include <sys/machsystm.h>
109 #include <vm/hat.h>
110 #include <vm/hat_i86.h>
111 #include <sys/pmem.h>
112 #include <sys/smp_impldefs.h>
113 #include <sys/x86_archext.h>
114 #include <sys/cpuvar.h>
115 #include <sys/segments.h>
116 #include <sys/clconf.h>
117 #include <sys/kobj.h>
118 #include <sys/kobj_lex.h>
119 #include <sys/cpc_impl.h>
120 #include <sys/cpu_module.h>
121 #include <sys/smbios.h>
122 #include <sys/debug_info.h>
123 #include <sys/bootinfo.h>
124 #include <sys/ddi_periodic.h>
125 #include <sys/systeminfo.h>
126 #include <sys/multiboot.h>
127 #include <sys/ramdisk.h>
128
129 #ifdef __xpv
130
131 #include <sys/hypervisor.h>
132 #include <sys/xen_mmu.h>
133 #include <sys/evtchn_impl.h>
134 #include <sys/gnttab.h>
135 #include <sys/xpv_panic.h>
136 #include <xen/sys/xenbus_comms.h>
137 #include <xen/public/physdev.h>
138
139 extern void xen_late_startup(void);
140
141 struct xen_evt_data cpu0_evt_data;
142
143 #else /* __xpv */
144 #include <sys/memlist_impl.h>
145
146 extern void mem_config_init(void);
147 #endif /* __xpv */
148
149 extern void progressbar_init(void);
150 extern void brand_init(void);
151 extern void pcf_init(void);
152 extern void pg_init(void);
153 extern void ssp_init(void);
154
155 extern int size_pse_array(pgcnt_t, int);
156
157 #if defined(_SOFT_HOSTID)
158
159 #include <sys/rtc.h>
160
161 static int32_t set_soft_hostid(void);
162 static char hostid_file[] = "/etc/hostid";
163
164 #endif
165
166 void *gfx_devinfo_list;
167
168 #if defined(__amd64) && !defined(__xpv)
169 extern void immu_startup(void);
170 #endif
171
172 /*
173 * XXX make declaration below "static" when drivers no longer use this
174 * interface.
175 */
176 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */
177
178 /*
179 * segkp
180 */
181 extern int segkp_fromheap;
182
183 static void kvm_init(void);
184 static void startup_init(void);
185 static void startup_memlist(void);
186 static void startup_kmem(void);
187 static void startup_modules(void);
188 static void startup_vm(void);
189 static void startup_end(void);
190 static void layout_kernel_va(void);
191
192 /*
193 * Declare these as initialized data so we can patch them.
194 */
195 #ifdef __i386
196
197 /*
198 * Due to virtual address space limitations running in 32 bit mode, restrict
199 * the amount of physical memory configured to a max of PHYSMEM pages (16g).
200 *
201 * If the physical max memory size of 64g were allowed to be configured, the
202 * size of user virtual address space will be less than 1g. A limited user
203 * address space greatly reduces the range of applications that can run.
204 *
205 * If more physical memory than PHYSMEM is required, users should preferably
206 * run in 64 bit mode which has far looser virtual address space limitations.
207 *
208 * If 64 bit mode is not available (as in IA32) and/or more physical memory
209 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired
210 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase
211 * should also be carefully tuned to balance out the need of the user
212 * application while minimizing the risk of kernel heap exhaustion due to
213 * kernelbase being set too high.
214 */
215 #define PHYSMEM 0x400000
216
217 #else /* __amd64 */
218
219 /*
220 * For now we can handle memory with physical addresses up to about
221 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly
222 * half the VA space for seg_kpm. When systems get bigger than 64TB this
223 * code will need revisiting. There is an implicit assumption that there
224 * are no *huge* holes in the physical address space too.
225 */
226 #define TERABYTE (1ul << 40)
227 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE)
228 #define PHYSMEM PHYSMEM_MAX64
229 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul
230
231 #endif /* __amd64 */
232
233 pgcnt_t physmem = PHYSMEM;
234 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */
235
236 char *kobj_file_buf;
237 int kobj_file_bufsize; /* set in /etc/system */
238
239 /* Global variables for MP support. Used in mp_startup */
240 caddr_t rm_platter_va = 0;
241 uint32_t rm_platter_pa;
242
243 int auto_lpg_disable = 1;
244
245 /*
246 * Some CPUs have holes in the middle of the 64-bit virtual address range.
247 */
248 uintptr_t hole_start, hole_end;
249
250 /*
251 * kpm mapping window
252 */
253 caddr_t kpm_vbase;
254 size_t kpm_size;
255 static int kpm_desired;
256 #ifdef __amd64
257 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE;
258 #endif
259
260 /*
261 * Configuration parameters set at boot time.
262 */
263
264 caddr_t econtig; /* end of first block of contiguous kernel */
265
266 struct bootops *bootops = 0; /* passed in from boot */
267 struct bootops **bootopsp;
268 struct boot_syscalls *sysp; /* passed in from boot */
269
270 char bootblock_fstype[16];
271
272 char kern_bootargs[OBP_MAXPATHLEN];
273 char kern_bootfile[OBP_MAXPATHLEN];
274
275 /*
276 * ZFS zio segment. This allows us to exclude large portions of ZFS data that
277 * gets cached in kmem caches on the heap. If this is set to zero, we allocate
278 * zio buffers from their own segment, otherwise they are allocated from the
279 * heap. The optimization of allocating zio buffers from their own segment is
280 * only valid on 64-bit kernels.
281 */
282 #if defined(__amd64)
283 int segzio_fromheap = 0;
284 #else
285 int segzio_fromheap = 1;
286 #endif
287
288 /*
289 * Give folks an escape hatch for disabling SMAP via kmdb. Doesn't work
290 * post-boot.
291 */
292 int disable_smap = 0;
293
294 /*
295 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
296 * depends on number of BOP_ALLOC calls made and requested size, memory size
297 * combination and whether boot.bin memory needs to be freed.
298 */
299 #define POSS_NEW_FRAGMENTS 12
300
301 /*
302 * VM data structures
303 */
304 long page_hashsz; /* Size of page hash table (power of two) */
305 unsigned int page_hashsz_shift; /* log2(page_hashsz) */
306 struct page *pp_base; /* Base of initial system page struct array */
307 struct page **page_hash; /* Page hash table */
308 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */
309 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */
310 int pse_shift; /* log2(pse_table_size) */
311 struct seg ktextseg; /* Segment used for kernel executable image */
312 struct seg kvalloc; /* Segment used for "valloc" mapping */
313 struct seg kpseg; /* Segment used for pageable kernel virt mem */
314 struct seg kmapseg; /* Segment used for generic kernel mappings */
315 struct seg kdebugseg; /* Segment used for the kernel debugger */
316
317 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */
318 static struct seg *segmap = &kmapseg; /* easier to use name for in here */
319
320 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */
321
322 #if defined(__amd64)
323 struct seg kvseg_core; /* Segment used for the core heap */
324 struct seg kpmseg; /* Segment used for physical mapping */
325 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */
326 #else
327 struct seg *segkpm = NULL; /* Unused on IA32 */
328 #endif
329
330 caddr_t segkp_base; /* Base address of segkp */
331 caddr_t segzio_base; /* Base address of segzio */
332 #if defined(__amd64)
333 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */
334 #else
335 pgcnt_t segkpsize = 0;
336 #endif
337 pgcnt_t segziosize = 0; /* size of zio segment in pages */
338
339 /*
340 * A static DR page_t VA map is reserved that can map the page structures
341 * for a domain's entire RA space. The pages that back this space are
342 * dynamically allocated and need not be physically contiguous. The DR
343 * map size is derived from KPM size.
344 * This mechanism isn't used by x86 yet, so just stubs here.
345 */
346 int ppvm_enable = 0; /* Static virtual map for page structs */
347 page_t *ppvm_base = NULL; /* Base of page struct map */
348 pgcnt_t ppvm_size = 0; /* Size of page struct map */
349
350 /*
351 * VA range available to the debugger
352 */
353 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
354 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
355
356 struct memseg *memseg_base;
357 struct vnode unused_pages_vp;
358
359 #define FOURGB 0x100000000LL
360
361 struct memlist *memlist;
362
363 caddr_t s_text; /* start of kernel text segment */
364 caddr_t e_text; /* end of kernel text segment */
365 caddr_t s_data; /* start of kernel data segment */
366 caddr_t e_data; /* end of kernel data segment */
367 caddr_t modtext; /* start of loadable module text reserved */
368 caddr_t e_modtext; /* end of loadable module text reserved */
369 caddr_t moddata; /* start of loadable module data reserved */
370 caddr_t e_moddata; /* end of loadable module data reserved */
371
372 struct memlist *phys_install; /* Total installed physical memory */
373 struct memlist *phys_avail; /* Total available physical memory */
374 struct memlist *bios_rsvd; /* Bios reserved memory */
375
376 /*
377 * kphysm_init returns the number of pages that were processed
378 */
379 static pgcnt_t kphysm_init(page_t *, pgcnt_t);
380
381 #define IO_PROP_SIZE 64 /* device property size */
382
383 /*
384 * a couple useful roundup macros
385 */
386 #define ROUND_UP_PAGE(x) \
387 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
388 #define ROUND_UP_LPAGE(x) \
389 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
390 #define ROUND_UP_4MEG(x) \
391 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG))
392 #define ROUND_UP_TOPLEVEL(x) \
393 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
394
395 /*
396 * 32-bit Kernel's Virtual memory layout.
397 * +-----------------------+
398 * | |
399 * 0xFFC00000 -|-----------------------|- ARGSBASE
400 * | debugger |
401 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE
402 * | Kernel Data |
403 * 0xFEC00000 -|-----------------------|
404 * | Kernel Text |
405 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen)
406 * |--- GDT ---|- GDT page (GDT_VA)
407 * |--- debug info ---|- debug info (DEBUG_INFO_VA)
408 * | |
409 * | page_t structures |
410 * | memsegs, memlists, |
411 * | page hash, etc. |
412 * --- -|-----------------------|- ekernelheap, valloc_base (floating)
413 * | | (segkp is just an arena in the heap)
414 * | |
415 * | kvseg |
416 * | |
417 * | |
418 * --- -|-----------------------|- kernelheap (floating)
419 * | Segkmap |
420 * 0xC3002000 -|-----------------------|- segmap_start (floating)
421 * | Red Zone |
422 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating)
423 * | | ||
424 * | Shared objects | \/
425 * | |
426 * : :
427 * | user data |
428 * |-----------------------|
429 * | user text |
430 * 0x08048000 -|-----------------------|
431 * | user stack |
432 * : :
433 * | invalid |
434 * 0x00000000 +-----------------------+
435 *
436 *
437 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
438 * +-----------------------+
439 * | |
440 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE
441 * | debugger (?) |
442 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE
443 * | unused |
444 * +-----------------------+
445 * | Kernel Data |
446 * 0xFFFFFFFF.FBC00000 |-----------------------|
447 * | Kernel Text |
448 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT
449 * |--- GDT ---|- GDT page (GDT_VA)
450 * |--- debug info ---|- debug info (DEBUG_INFO_VA)
451 * | |
452 * | Core heap | (used for loadable modules)
453 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap
454 * | Kernel |
455 * | heap |
456 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating)
457 * | segmap |
458 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating)
459 * | device mappings |
460 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating)
461 * | segzio |
462 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating)
463 * | segkp |
464 * --- |-----------------------|- segkp_base (floating)
465 * | page_t structures | valloc_base + valloc_sz
466 * | memsegs, memlists, |
467 * | page hash, etc. |
468 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if >256GB)
469 * | segkpm |
470 * 0xFFFFFE00.00000000 |-----------------------|
471 * | Red Zone |
472 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if >256GB)
473 * | User stack |- User space memory
474 * | |
475 * | shared objects, etc | (grows downwards)
476 * : :
477 * | |
478 * 0xFFFF8000.00000000 |-----------------------|
479 * | |
480 * | VA Hole / unused |
481 * | |
482 * 0x00008000.00000000 |-----------------------|
483 * | |
484 * | |
485 * : :
486 * | user heap | (grows upwards)
487 * | |
488 * | user data |
489 * |-----------------------|
490 * | user text |
491 * 0x00000000.04000000 |-----------------------|
492 * | invalid |
493 * 0x00000000.00000000 +-----------------------+
494 *
495 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
496 * kernel, except that userlimit is raised to 0xfe000000
497 *
498 * Floating values:
499 *
500 * valloc_base: start of the kernel's memory management/tracking data
501 * structures. This region contains page_t structures for
502 * physical memory, memsegs, memlists, and the page hash.
503 *
504 * core_base: start of the kernel's "core" heap area on 64-bit systems.
505 * This area is intended to be used for global data as well as for module
506 * text/data that does not fit into the nucleus pages. The core heap is
507 * restricted to a 2GB range, allowing every address within it to be
508 * accessed using rip-relative addressing
509 *
510 * ekernelheap: end of kernelheap and start of segmap.
511 *
512 * kernelheap: start of kernel heap. On 32-bit systems, this starts right
513 * above a red zone that separates the user's address space from the
514 * kernel's. On 64-bit systems, it sits above segkp and segkpm.
515 *
516 * segmap_start: start of segmap. The length of segmap can be modified
517 * through eeprom. The default length is 16MB on 32-bit systems and 64MB
518 * on 64-bit systems.
519 *
520 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
521 * decreased by 2X the size required for page_t. This allows the kernel
522 * heap to grow in size with physical memory. With sizeof(page_t) == 80
523 * bytes, the following shows the values of kernelbase and kernel heap
524 * sizes for different memory configurations (assuming default segmap and
525 * segkp sizes).
526 *
527 * mem size for kernelbase kernel heap
528 * size page_t's size
529 * ---- --------- ---------- -----------
530 * 1gb 0x01400000 0xd1800000 684MB
531 * 2gb 0x02800000 0xcf000000 704MB
532 * 4gb 0x05000000 0xca000000 744MB
533 * 6gb 0x07800000 0xc5000000 784MB
534 * 8gb 0x0a000000 0xc0000000 824MB
535 * 16gb 0x14000000 0xac000000 984MB
536 * 32gb 0x28000000 0x84000000 1304MB
537 * 64gb 0x50000000 0x34000000 1944MB (*)
538 *
539 * kernelbase is less than the abi minimum of 0xc0000000 for memory
540 * configurations above 8gb.
541 *
542 * (*) support for memory configurations above 32gb will require manual tuning
543 * of kernelbase to balance out the need of user applications.
544 */
545
546 /* real-time-clock initialization parameters */
547 extern time_t process_rtc_config_file(void);
548
549 uintptr_t kernelbase;
550 uintptr_t postbootkernelbase; /* not set till boot loader is gone */
551 uintptr_t eprom_kernelbase;
552 size_t segmapsize;
553 uintptr_t segmap_start;
554 int segmapfreelists;
555 pgcnt_t npages;
556 pgcnt_t orig_npages;
557 size_t core_size; /* size of "core" heap */
558 uintptr_t core_base; /* base address of "core" heap */
559
560 /*
561 * List of bootstrap pages. We mark these as allocated in startup.
562 * release_bootstrap() will free them when we're completely done with
563 * the bootstrap.
564 */
565 static page_t *bootpages;
566
567 /*
568 * boot time pages that have a vnode from the ramdisk will keep that forever.
569 */
570 static page_t *rd_pages;
571
572 /*
573 * Lower 64K
574 */
575 static page_t *lower_pages = NULL;
576 static int lower_pages_count = 0;
577
578 struct system_hardware system_hardware;
579
580 /*
581 * Enable some debugging messages concerning memory usage...
582 */
583 static void
584 print_memlist(char *title, struct memlist *mp)
585 {
586 prom_printf("MEMLIST: %s:\n", title);
587 while (mp != NULL) {
588 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
589 mp->ml_address, mp->ml_size);
590 mp = mp->ml_next;
591 }
592 }
593
594 /*
595 * XX64 need a comment here.. are these just default values, surely
596 * we read the "cpuid" type information to figure this out.
597 */
598 int l2cache_sz = 0x80000;
599 int l2cache_linesz = 0x40;
600 int l2cache_assoc = 1;
601
602 static size_t textrepl_min_gb = 10;
603
604 /*
605 * on 64 bit we use a predifined VA range for mapping devices in the kernel
606 * on 32 bit the mappings are intermixed in the heap, so we use a bit map
607 */
608 #ifdef __amd64
609
610 vmem_t *device_arena;
611 uintptr_t toxic_addr = (uintptr_t)NULL;
612 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
613
614 #else /* __i386 */
615
616 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */
617 size_t toxic_bit_map_len = 0; /* in bits */
618
619 #endif /* __i386 */
620
621 /*
622 * Simple boot time debug facilities
623 */
624 static char *prm_dbg_str[] = {
625 "%s:%d: '%s' is 0x%x\n",
626 "%s:%d: '%s' is 0x%llx\n"
627 };
628
629 int prom_debug;
630
631 #define PRM_DEBUG(q) if (prom_debug) \
632 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q);
633 #define PRM_POINT(q) if (prom_debug) \
634 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q);
635
636 /*
637 * This structure is used to keep track of the intial allocations
638 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
639 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
640 */
641 #define NUM_ALLOCATIONS 8
642 int num_allocations = 0;
643 struct {
644 void **al_ptr;
645 size_t al_size;
646 } allocations[NUM_ALLOCATIONS];
647 size_t valloc_sz = 0;
648 uintptr_t valloc_base;
649
650 #define ADD_TO_ALLOCATIONS(ptr, size) { \
651 size = ROUND_UP_PAGE(size); \
652 if (num_allocations == NUM_ALLOCATIONS) \
653 panic("too many ADD_TO_ALLOCATIONS()"); \
654 allocations[num_allocations].al_ptr = (void**)&ptr; \
655 allocations[num_allocations].al_size = size; \
656 valloc_sz += size; \
657 ++num_allocations; \
658 }
659
660 /*
661 * Allocate all the initial memory needed by the page allocator.
662 */
663 static void
664 perform_allocations(void)
665 {
666 caddr_t mem;
667 int i;
668 int valloc_align;
669
670 PRM_DEBUG(valloc_base);
671 PRM_DEBUG(valloc_sz);
672 valloc_align = mmu.level_size[mmu.max_page_level > 0];
673 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align);
674 if (mem != (caddr_t)valloc_base)
675 panic("BOP_ALLOC() failed");
676 bzero(mem, valloc_sz);
677 for (i = 0; i < num_allocations; ++i) {
678 *allocations[i].al_ptr = (void *)mem;
679 mem += allocations[i].al_size;
680 }
681 }
682
683 /*
684 * Set up and enable SMAP now before we start other CPUs, but after the kernel's
685 * VM has been set up so we can use hot_patch_kernel_text().
686 *
687 * We can only patch 1, 2, or 4 bytes, but not three bytes. So instead, we
688 * replace the four byte word at the patch point. See uts/intel/ia32/ml/copy.s
689 * for more information on what's going on here.
690 */
691 static void
692 startup_smap(void)
693 {
694 int i;
695 uint32_t inst;
696 uint8_t *instp;
697 char sym[128];
698
699 extern int _smap_enable_patch_count;
700 extern int _smap_disable_patch_count;
701
702 if (disable_smap != 0)
703 remove_x86_feature(x86_featureset, X86FSET_SMAP);
704
705 if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_FALSE)
706 return;
707
708 for (i = 0; i < _smap_enable_patch_count; i++) {
709 int sizep;
710
711 VERIFY3U(i, <, _smap_enable_patch_count);
712 VERIFY(snprintf(sym, sizeof (sym), "_smap_enable_patch_%d", i) <
713 sizeof (sym));
714 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep);
715 VERIFY(instp != 0);
716 inst = (instp[3] << 24) | (SMAP_CLAC_INSTR & 0x00ffffff);
717 hot_patch_kernel_text((caddr_t)instp, inst, 4);
718 }
719
720 for (i = 0; i < _smap_disable_patch_count; i++) {
721 int sizep;
722
723 VERIFY(snprintf(sym, sizeof (sym), "_smap_disable_patch_%d",
724 i) < sizeof (sym));
725 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep);
726 VERIFY(instp != 0);
727 inst = (instp[3] << 24) | (SMAP_STAC_INSTR & 0x00ffffff);
728 hot_patch_kernel_text((caddr_t)instp, inst, 4);
729 }
730
731 hot_patch_kernel_text((caddr_t)smap_enable, SMAP_CLAC_INSTR, 4);
732 hot_patch_kernel_text((caddr_t)smap_disable, SMAP_STAC_INSTR, 4);
733 setcr4(getcr4() | CR4_SMAP);
734 smap_enable();
735 }
736
737 /*
738 * Our world looks like this at startup time.
739 *
740 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
741 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at
742 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those
743 * addresses are fixed in the binary at link time.
744 *
745 * On the text page:
746 * unix/genunix/krtld/module text loads.
747 *
748 * On the data page:
749 * unix/genunix/krtld/module data loads.
750 *
751 * Machine-dependent startup code
752 */
753 void
754 startup(void)
755 {
756 #if !defined(__xpv)
757 extern void startup_pci_bios(void);
758 #endif
759 extern cpuset_t cpu_ready_set;
760
761 /*
762 * Make sure that nobody tries to use sekpm until we have
763 * initialized it properly.
764 */
765 #if defined(__amd64)
766 kpm_desired = 1;
767 #endif
768 kpm_enable = 0;
769 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */
770
771 #if defined(__xpv) /* XXPV fix me! */
772 {
773 extern int segvn_use_regions;
774 segvn_use_regions = 0;
775 }
776 #endif
777 ssp_init();
778 progressbar_init();
779 startup_init();
780 #if defined(__xpv)
781 startup_xen_version();
782 #endif
783 startup_memlist();
784 startup_kmem();
785 startup_vm();
786 #if !defined(__xpv)
787 /*
788 * Note we need to do this even on fast reboot in order to access
789 * the irq routing table (used for pci labels).
790 */
791 startup_pci_bios();
792 startup_smap();
793 #endif
794 #if defined(__xpv)
795 startup_xen_mca();
796 #endif
797 startup_modules();
798
799 startup_end();
800 }
801
802 static void
803 startup_init()
804 {
805 PRM_POINT("startup_init() starting...");
806
807 /*
808 * Complete the extraction of cpuid data
809 */
810 cpuid_pass2(CPU);
811
812 (void) check_boot_version(BOP_GETVERSION(bootops));
813
814 /*
815 * Check for prom_debug in boot environment
816 */
817 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
818 ++prom_debug;
819 PRM_POINT("prom_debug found in boot enviroment");
820 }
821
822 /*
823 * Collect node, cpu and memory configuration information.
824 */
825 get_system_configuration();
826
827 /*
828 * Halt if this is an unsupported processor.
829 */
830 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
831 printf("\n486 processor (\"%s\") detected.\n",
832 CPU->cpu_brandstr);
833 halt("This processor is not supported by this release "
834 "of Solaris.");
835 }
836
837 PRM_POINT("startup_init() done");
838 }
839
840 /*
841 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
842 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
843 * also filters out physical page zero. There is some reliance on the
844 * boot loader allocating only a few contiguous physical memory chunks.
845 */
846 static void
847 avail_filter(uint64_t *addr, uint64_t *size)
848 {
849 uintptr_t va;
850 uintptr_t next_va;
851 pfn_t pfn;
852 uint64_t pfn_addr;
853 uint64_t pfn_eaddr;
854 uint_t prot;
855 size_t len;
856 uint_t change;
857
858 if (prom_debug)
859 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
860 *addr, *size);
861
862 /*
863 * page zero is required for BIOS.. never make it available
864 */
865 if (*addr == 0) {
866 *addr += MMU_PAGESIZE;
867 *size -= MMU_PAGESIZE;
868 }
869
870 /*
871 * First we trim from the front of the range. Since kbm_probe()
872 * walks ranges in virtual order, but addr/size are physical, we need
873 * to the list until no changes are seen. This deals with the case
874 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
875 * but w < v.
876 */
877 do {
878 change = 0;
879 for (va = KERNEL_TEXT;
880 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
881 va = next_va) {
882
883 next_va = va + len;
884 pfn_addr = pfn_to_pa(pfn);
885 pfn_eaddr = pfn_addr + len;
886
887 if (pfn_addr <= *addr && pfn_eaddr > *addr) {
888 change = 1;
889 while (*size > 0 && len > 0) {
890 *addr += MMU_PAGESIZE;
891 *size -= MMU_PAGESIZE;
892 len -= MMU_PAGESIZE;
893 }
894 }
895 }
896 if (change && prom_debug)
897 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
898 *addr, *size);
899 } while (change);
900
901 /*
902 * Trim pages from the end of the range.
903 */
904 for (va = KERNEL_TEXT;
905 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
906 va = next_va) {
907
908 next_va = va + len;
909 pfn_addr = pfn_to_pa(pfn);
910
911 if (pfn_addr >= *addr && pfn_addr < *addr + *size)
912 *size = pfn_addr - *addr;
913 }
914
915 if (prom_debug)
916 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
917 *addr, *size);
918 }
919
920 static void
921 kpm_init()
922 {
923 struct segkpm_crargs b;
924
925 /*
926 * These variables were all designed for sfmmu in which segkpm is
927 * mapped using a single pagesize - either 8KB or 4MB. On x86, we
928 * might use 2+ page sizes on a single machine, so none of these
929 * variables have a single correct value. They are set up as if we
930 * always use a 4KB pagesize, which should do no harm. In the long
931 * run, we should get rid of KPM's assumption that only a single
932 * pagesize is used.
933 */
934 kpm_pgshft = MMU_PAGESHIFT;
935 kpm_pgsz = MMU_PAGESIZE;
936 kpm_pgoff = MMU_PAGEOFFSET;
937 kpmp2pshft = 0;
938 kpmpnpgs = 1;
939 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
940
941 PRM_POINT("about to create segkpm");
942 rw_enter(&kas.a_lock, RW_WRITER);
943
944 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
945 panic("cannot attach segkpm");
946
947 b.prot = PROT_READ | PROT_WRITE;
948 b.nvcolors = 1;
949
950 if (segkpm_create(segkpm, (caddr_t)&b) != 0)
951 panic("segkpm_create segkpm");
952
953 rw_exit(&kas.a_lock);
954 }
955
956 /*
957 * The debug info page provides enough information to allow external
958 * inspectors (e.g. when running under a hypervisor) to bootstrap
959 * themselves into allowing full-blown kernel debugging.
960 */
961 static void
962 init_debug_info(void)
963 {
964 caddr_t mem;
965 debug_info_t *di;
966
967 #ifndef __lint
968 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE);
969 #endif
970
971 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE,
972 MMU_PAGESIZE);
973
974 if (mem != (caddr_t)DEBUG_INFO_VA)
975 panic("BOP_ALLOC() failed");
976 bzero(mem, MMU_PAGESIZE);
977
978 di = (debug_info_t *)mem;
979
980 di->di_magic = DEBUG_INFO_MAGIC;
981 di->di_version = DEBUG_INFO_VERSION;
982 di->di_modules = (uintptr_t)&modules;
983 di->di_s_text = (uintptr_t)s_text;
984 di->di_e_text = (uintptr_t)e_text;
985 di->di_s_data = (uintptr_t)s_data;
986 di->di_e_data = (uintptr_t)e_data;
987 di->di_hat_htable_off = offsetof(hat_t, hat_htable);
988 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn);
989 }
990
991 /*
992 * Build the memlists and other kernel essential memory system data structures.
993 * This is everything at valloc_base.
994 */
995 static void
996 startup_memlist(void)
997 {
998 size_t memlist_sz;
999 size_t memseg_sz;
1000 size_t pagehash_sz;
1001 size_t pp_sz;
1002 uintptr_t va;
1003 size_t len;
1004 uint_t prot;
1005 pfn_t pfn;
1006 int memblocks;
1007 pfn_t rsvd_high_pfn;
1008 pgcnt_t rsvd_pgcnt;
1009 size_t rsvdmemlist_sz;
1010 int rsvdmemblocks;
1011 caddr_t pagecolor_mem;
1012 size_t pagecolor_memsz;
1013 caddr_t page_ctrs_mem;
1014 size_t page_ctrs_size;
1015 size_t pse_table_alloc_size;
1016 struct memlist *current;
1017 extern void startup_build_mem_nodes(struct memlist *);
1018
1019 /* XX64 fix these - they should be in include files */
1020 extern size_t page_coloring_init(uint_t, int, int);
1021 extern void page_coloring_setup(caddr_t);
1022
1023 PRM_POINT("startup_memlist() starting...");
1024
1025 /*
1026 * Use leftover large page nucleus text/data space for loadable modules.
1027 * Use at most MODTEXT/MODDATA.
1028 */
1029 len = kbm_nucleus_size;
1030 ASSERT(len > MMU_PAGESIZE);
1031
1032 moddata = (caddr_t)ROUND_UP_PAGE(e_data);
1033 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len);
1034 if (e_moddata - moddata > MODDATA)
1035 e_moddata = moddata + MODDATA;
1036
1037 modtext = (caddr_t)ROUND_UP_PAGE(e_text);
1038 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len);
1039 if (e_modtext - modtext > MODTEXT)
1040 e_modtext = modtext + MODTEXT;
1041
1042 econtig = e_moddata;
1043
1044 PRM_DEBUG(modtext);
1045 PRM_DEBUG(e_modtext);
1046 PRM_DEBUG(moddata);
1047 PRM_DEBUG(e_moddata);
1048 PRM_DEBUG(econtig);
1049
1050 /*
1051 * Examine the boot loader physical memory map to find out:
1052 * - total memory in system - physinstalled
1053 * - the max physical address - physmax
1054 * - the number of discontiguous segments of memory.
1055 */
1056 if (prom_debug)
1057 print_memlist("boot physinstalled",
1058 bootops->boot_mem->physinstalled);
1059 installed_top_size_ex(bootops->boot_mem->physinstalled, &physmax,
1060 &physinstalled, &memblocks);
1061 PRM_DEBUG(physmax);
1062 PRM_DEBUG(physinstalled);
1063 PRM_DEBUG(memblocks);
1064
1065 /*
1066 * Compute maximum physical address for memory DR operations.
1067 * Memory DR operations are unsupported on xpv or 32bit OSes.
1068 */
1069 #ifdef __amd64
1070 if (plat_dr_support_memory()) {
1071 if (plat_dr_physmax == 0) {
1072 uint_t pabits = UINT_MAX;
1073
1074 cpuid_get_addrsize(CPU, &pabits, NULL);
1075 plat_dr_physmax = btop(1ULL << pabits);
1076 }
1077 if (plat_dr_physmax > PHYSMEM_MAX64)
1078 plat_dr_physmax = PHYSMEM_MAX64;
1079 } else
1080 #endif
1081 plat_dr_physmax = 0;
1082
1083 /*
1084 * Examine the bios reserved memory to find out:
1085 * - the number of discontiguous segments of memory.
1086 */
1087 if (prom_debug)
1088 print_memlist("boot reserved mem",
1089 bootops->boot_mem->rsvdmem);
1090 installed_top_size_ex(bootops->boot_mem->rsvdmem, &rsvd_high_pfn,
1091 &rsvd_pgcnt, &rsvdmemblocks);
1092 PRM_DEBUG(rsvd_high_pfn);
1093 PRM_DEBUG(rsvd_pgcnt);
1094 PRM_DEBUG(rsvdmemblocks);
1095
1096 /*
1097 * Initialize hat's mmu parameters.
1098 * Check for enforce-prot-exec in boot environment. It's used to
1099 * enable/disable support for the page table entry NX bit.
1100 * The default is to enforce PROT_EXEC on processors that support NX.
1101 * Boot seems to round up the "len", but 8 seems to be big enough.
1102 */
1103 mmu_init();
1104
1105 #ifdef __i386
1106 /*
1107 * physmax is lowered if there is more memory than can be
1108 * physically addressed in 32 bit (PAE/non-PAE) modes.
1109 */
1110 if (mmu.pae_hat) {
1111 if (PFN_ABOVE64G(physmax)) {
1112 physinstalled -= (physmax - (PFN_64G - 1));
1113 physmax = PFN_64G - 1;
1114 }
1115 } else {
1116 if (PFN_ABOVE4G(physmax)) {
1117 physinstalled -= (physmax - (PFN_4G - 1));
1118 physmax = PFN_4G - 1;
1119 }
1120 }
1121 #endif
1122
1123 startup_build_mem_nodes(bootops->boot_mem->physinstalled);
1124
1125 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
1126 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
1127 char value[8];
1128
1129 if (len < 8)
1130 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
1131 else
1132 (void) strcpy(value, "");
1133 if (strcmp(value, "off") == 0)
1134 mmu.pt_nx = 0;
1135 }
1136 PRM_DEBUG(mmu.pt_nx);
1137
1138 /*
1139 * We will need page_t's for every page in the system, except for
1140 * memory mapped at or above above the start of the kernel text segment.
1141 *
1142 * pages above e_modtext are attributed to kernel debugger (obp_pages)
1143 */
1144 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
1145 obp_pages = 0;
1146 va = KERNEL_TEXT;
1147 while (kbm_probe(&va, &len, &pfn, &prot) != 0) {
1148 npages -= len >> MMU_PAGESHIFT;
1149 if (va >= (uintptr_t)e_moddata)
1150 obp_pages += len >> MMU_PAGESHIFT;
1151 va += len;
1152 }
1153 PRM_DEBUG(npages);
1154 PRM_DEBUG(obp_pages);
1155
1156 /*
1157 * If physmem is patched to be non-zero, use it instead of the computed
1158 * value unless it is larger than the actual amount of memory on hand.
1159 */
1160 if (physmem == 0 || physmem > npages) {
1161 physmem = npages;
1162 } else if (physmem < npages) {
1163 orig_npages = npages;
1164 npages = physmem;
1165 }
1166 PRM_DEBUG(physmem);
1167
1168 /*
1169 * We now compute the sizes of all the initial allocations for
1170 * structures the kernel needs in order do kmem_alloc(). These
1171 * include:
1172 * memsegs
1173 * memlists
1174 * page hash table
1175 * page_t's
1176 * page coloring data structs
1177 */
1178 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
1179 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
1180 PRM_DEBUG(memseg_sz);
1181
1182 /*
1183 * Reserve space for memlists. There's no real good way to know exactly
1184 * how much room we'll need, but this should be a good upper bound.
1185 */
1186 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1187 (memblocks + POSS_NEW_FRAGMENTS));
1188 ADD_TO_ALLOCATIONS(memlist, memlist_sz);
1189 PRM_DEBUG(memlist_sz);
1190
1191 /*
1192 * Reserve space for bios reserved memlists.
1193 */
1194 rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1195 (rsvdmemblocks + POSS_NEW_FRAGMENTS));
1196 ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz);
1197 PRM_DEBUG(rsvdmemlist_sz);
1198
1199 /* LINTED */
1200 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), sizeof (struct page)));
1201 /*
1202 * The page structure hash table size is a power of 2
1203 * such that the average hash chain length is PAGE_HASHAVELEN.
1204 */
1205 page_hashsz = npages / PAGE_HASHAVELEN;
1206 page_hashsz_shift = highbit(page_hashsz);
1207 page_hashsz = 1 << page_hashsz_shift;
1208 pagehash_sz = sizeof (struct page *) * page_hashsz;
1209 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
1210 PRM_DEBUG(pagehash_sz);
1211
1212 /*
1213 * Set aside room for the page structures themselves.
1214 */
1215 PRM_DEBUG(npages);
1216 pp_sz = sizeof (struct page) * npages;
1217 ADD_TO_ALLOCATIONS(pp_base, pp_sz);
1218 PRM_DEBUG(pp_sz);
1219
1220 /*
1221 * determine l2 cache info and memory size for page coloring
1222 */
1223 (void) getl2cacheinfo(CPU,
1224 &l2cache_sz, &l2cache_linesz, &l2cache_assoc);
1225 pagecolor_memsz =
1226 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
1227 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
1228 PRM_DEBUG(pagecolor_memsz);
1229
1230 page_ctrs_size = page_ctrs_sz();
1231 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
1232 PRM_DEBUG(page_ctrs_size);
1233
1234 /*
1235 * Allocate the array that protects pp->p_selock.
1236 */
1237 pse_shift = size_pse_array(physmem, max_ncpus);
1238 pse_table_size = 1 << pse_shift;
1239 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t);
1240 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size);
1241
1242 #if defined(__amd64)
1243 valloc_sz = ROUND_UP_LPAGE(valloc_sz);
1244 valloc_base = VALLOC_BASE;
1245
1246 /*
1247 * The default values of VALLOC_BASE and SEGKPM_BASE should work
1248 * for values of physmax up to 256GB (1/4 TB). They need adjusting when
1249 * memory is at addresses above 256GB. When adjusted, segkpm_base must
1250 * be aligned on KERNEL_REDZONE_SIZE boundary (span of top level pte).
1251 *
1252 * In the general case (>256GB), we use (4 * physmem) for the
1253 * kernel's virtual addresses, which is divided approximately
1254 * as follows:
1255 * - 1 * physmem for segkpm
1256 * - 1.5 * physmem for segzio
1257 * - 1.5 * physmem for heap
1258 * Total: 4.0 * physmem
1259 *
1260 * Note that the segzio and heap sizes are more than physmem so that
1261 * VA fragmentation does not prevent either of them from being
1262 * able to use nearly all of physmem. The value of 1.5x is determined
1263 * experimentally and may need to change if the workload changes.
1264 */
1265 if (physmax + 1 > mmu_btop(TERABYTE / 4) ||
1266 plat_dr_physmax > mmu_btop(TERABYTE / 4)) {
1267 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1);
1268
1269 if (kpm_resv_amount < mmu_ptob(plat_dr_physmax)) {
1270 kpm_resv_amount = mmu_ptob(plat_dr_physmax);
1271 }
1272
1273 /*
1274 * This is what actually controls the KVA : UVA split.
1275 * The kernel uses high VA, and this is lowering the
1276 * boundary, thus increasing the amount of VA for the kernel.
1277 * This gives the kernel 4 * (amount of physical memory) VA.
1278 *
1279 * The maximum VA is UINT64_MAX and we are using
1280 * 64-bit 2's complement math, so e.g. if you have 512GB
1281 * of memory, segkpm_base = -(4 * 512GB) == -2TB ==
1282 * UINT64_MAX - 2TB (approximately). So the kernel's
1283 * VA is [UINT64_MAX-2TB to UINT64_MAX].
1284 */
1285 segkpm_base = -(P2ROUNDUP((4 * kpm_resv_amount),
1286 KERNEL_REDZONE_SIZE));
1287
1288 /* make sure we leave some space for user apps above hole */
1289 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE);
1290 if (segkpm_base > SEGKPM_BASE)
1291 segkpm_base = SEGKPM_BASE;
1292 PRM_DEBUG(segkpm_base);
1293
1294 valloc_base = segkpm_base + P2ROUNDUP(kpm_resv_amount, ONE_GIG);
1295 if (valloc_base < segkpm_base)
1296 panic("not enough kernel VA to support memory size");
1297 PRM_DEBUG(valloc_base);
1298 }
1299 #else /* __i386 */
1300 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz);
1301 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]);
1302 PRM_DEBUG(valloc_base);
1303 #endif /* __i386 */
1304
1305 /*
1306 * do all the initial allocations
1307 */
1308 perform_allocations();
1309
1310 /*
1311 * Build phys_install and phys_avail in kernel memspace.
1312 * - phys_install should be all memory in the system.
1313 * - phys_avail is phys_install minus any memory mapped before this
1314 * point above KERNEL_TEXT.
1315 */
1316 current = phys_install = memlist;
1317 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL);
1318 if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1319 panic("physinstalled was too big!");
1320 if (prom_debug)
1321 print_memlist("phys_install", phys_install);
1322
1323 phys_avail = current;
1324 PRM_POINT("Building phys_avail:\n");
1325 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t,
1326 avail_filter);
1327 if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1328 panic("physavail was too big!");
1329 if (prom_debug)
1330 print_memlist("phys_avail", phys_avail);
1331 #ifndef __xpv
1332 /*
1333 * Free unused memlist items, which may be used by memory DR driver
1334 * at runtime.
1335 */
1336 if ((caddr_t)current < (caddr_t)memlist + memlist_sz) {
1337 memlist_free_block((caddr_t)current,
1338 (caddr_t)memlist + memlist_sz - (caddr_t)current);
1339 }
1340 #endif
1341
1342 /*
1343 * Build bios reserved memspace
1344 */
1345 current = bios_rsvd;
1346 copy_memlist_filter(bootops->boot_mem->rsvdmem, ¤t, NULL);
1347 if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz)
1348 panic("bios_rsvd was too big!");
1349 if (prom_debug)
1350 print_memlist("bios_rsvd", bios_rsvd);
1351 #ifndef __xpv
1352 /*
1353 * Free unused memlist items, which may be used by memory DR driver
1354 * at runtime.
1355 */
1356 if ((caddr_t)current < (caddr_t)bios_rsvd + rsvdmemlist_sz) {
1357 memlist_free_block((caddr_t)current,
1358 (caddr_t)bios_rsvd + rsvdmemlist_sz - (caddr_t)current);
1359 }
1360 #endif
1361
1362 /*
1363 * setup page coloring
1364 */
1365 page_coloring_setup(pagecolor_mem);
1366 page_lock_init(); /* currently a no-op */
1367
1368 /*
1369 * free page list counters
1370 */
1371 (void) page_ctrs_alloc(page_ctrs_mem);
1372
1373 /*
1374 * Size the pcf array based on the number of cpus in the box at
1375 * boot time.
1376 */
1377
1378 pcf_init();
1379
1380 /*
1381 * Initialize the page structures from the memory lists.
1382 */
1383 availrmem_initial = availrmem = freemem = 0;
1384 PRM_POINT("Calling kphysm_init()...");
1385 npages = kphysm_init(pp_base, npages);
1386 PRM_POINT("kphysm_init() done");
1387 PRM_DEBUG(npages);
1388
1389 init_debug_info();
1390
1391 /*
1392 * Now that page_t's have been initialized, remove all the
1393 * initial allocation pages from the kernel free page lists.
1394 */
1395 boot_mapin((caddr_t)valloc_base, valloc_sz);
1396 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE);
1397 PRM_POINT("startup_memlist() done");
1398
1399 PRM_DEBUG(valloc_sz);
1400
1401 #if defined(__amd64)
1402 if ((availrmem >> (30 - MMU_PAGESHIFT)) >=
1403 textrepl_min_gb && l2cache_sz <= 2 << 20) {
1404 extern size_t textrepl_size_thresh;
1405 textrepl_size_thresh = (16 << 20) - 1;
1406 }
1407 #endif
1408 }
1409
1410 /*
1411 * Layout the kernel's part of address space and initialize kmem allocator.
1412 */
1413 static void
1414 startup_kmem(void)
1415 {
1416 extern void page_set_colorequiv_arr(void);
1417
1418 PRM_POINT("startup_kmem() starting...");
1419
1420 #if defined(__amd64)
1421 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
1422 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
1423 "systems.");
1424 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE;
1425 core_base = (uintptr_t)COREHEAP_BASE;
1426 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE;
1427 #else /* __i386 */
1428 /*
1429 * We configure kernelbase based on:
1430 *
1431 * 1. user specified kernelbase via eeprom command. Value cannot exceed
1432 * KERNELBASE_MAX. we large page align eprom_kernelbase
1433 *
1434 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t.
1435 * On large memory systems we must lower kernelbase to allow
1436 * enough room for page_t's for all of memory.
1437 *
1438 * The value set here, might be changed a little later.
1439 */
1440 if (eprom_kernelbase) {
1441 kernelbase = eprom_kernelbase & mmu.level_mask[1];
1442 if (kernelbase > KERNELBASE_MAX)
1443 kernelbase = KERNELBASE_MAX;
1444 } else {
1445 kernelbase = (uintptr_t)KERNELBASE;
1446 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz);
1447 }
1448 ASSERT((kernelbase & mmu.level_offset[1]) == 0);
1449 core_base = valloc_base;
1450 core_size = 0;
1451 #endif /* __i386 */
1452
1453 PRM_DEBUG(core_base);
1454 PRM_DEBUG(core_size);
1455 PRM_DEBUG(kernelbase);
1456
1457 #if defined(__i386)
1458 segkp_fromheap = 1;
1459 #endif /* __i386 */
1460
1461 ekernelheap = (char *)core_base;
1462 PRM_DEBUG(ekernelheap);
1463
1464 /*
1465 * Now that we know the real value of kernelbase,
1466 * update variables that were initialized with a value of
1467 * KERNELBASE (in common/conf/param.c).
1468 *
1469 * XXX The problem with this sort of hackery is that the
1470 * compiler just may feel like putting the const declarations
1471 * (in param.c) into the .text section. Perhaps they should
1472 * just be declared as variables there?
1473 */
1474
1475 *(uintptr_t *)&_kernelbase = kernelbase;
1476 *(uintptr_t *)&_userlimit = kernelbase;
1477 #if defined(__amd64)
1478 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT;
1479 #else
1480 *(uintptr_t *)&_userlimit32 = _userlimit;
1481 #endif
1482 PRM_DEBUG(_kernelbase);
1483 PRM_DEBUG(_userlimit);
1484 PRM_DEBUG(_userlimit32);
1485
1486 layout_kernel_va();
1487
1488 #if defined(__i386)
1489 /*
1490 * If segmap is too large we can push the bottom of the kernel heap
1491 * higher than the base. Or worse, it could exceed the top of the
1492 * VA space entirely, causing it to wrap around.
1493 */
1494 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase)
1495 panic("too little address space available for kernelheap,"
1496 " use eeprom for lower kernelbase or smaller segmapsize");
1497 #endif /* __i386 */
1498
1499 /*
1500 * Initialize the kernel heap. Note 3rd argument must be > 1st.
1501 */
1502 kernelheap_init(kernelheap, ekernelheap,
1503 kernelheap + MMU_PAGESIZE,
1504 (void *)core_base, (void *)(core_base + core_size));
1505
1506 #if defined(__xpv)
1507 /*
1508 * Link pending events struct into cpu struct
1509 */
1510 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data;
1511 #endif
1512 /*
1513 * Initialize kernel memory allocator.
1514 */
1515 kmem_init();
1516
1517 /*
1518 * Factor in colorequiv to check additional 'equivalent' bins
1519 */
1520 page_set_colorequiv_arr();
1521
1522 /*
1523 * print this out early so that we know what's going on
1524 */
1525 print_x86_featureset(x86_featureset);
1526
1527 /*
1528 * Initialize bp_mapin().
1529 */
1530 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
1531
1532 /*
1533 * orig_npages is non-zero if physmem has been configured for less
1534 * than the available memory.
1535 */
1536 if (orig_npages) {
1537 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages",
1538 (npages == PHYSMEM ? "Due to virtual address space " : ""),
1539 npages, orig_npages);
1540 }
1541 #if defined(__i386)
1542 if (eprom_kernelbase && (eprom_kernelbase != kernelbase))
1543 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, "
1544 "System using 0x%lx",
1545 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase);
1546 #endif
1547
1548 #ifdef KERNELBASE_ABI_MIN
1549 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
1550 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
1551 "i386 ABI compliant.", (uintptr_t)kernelbase);
1552 }
1553 #endif
1554
1555 #ifndef __xpv
1556 if (plat_dr_support_memory()) {
1557 mem_config_init();
1558 }
1559 #else /* __xpv */
1560 /*
1561 * Some of the xen start information has to be relocated up
1562 * into the kernel's permanent address space.
1563 */
1564 PRM_POINT("calling xen_relocate_start_info()");
1565 xen_relocate_start_info();
1566 PRM_POINT("xen_relocate_start_info() done");
1567
1568 /*
1569 * (Update the vcpu pointer in our cpu structure to point into
1570 * the relocated shared info.)
1571 */
1572 CPU->cpu_m.mcpu_vcpu_info =
1573 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id];
1574 #endif /* __xpv */
1575
1576 PRM_POINT("startup_kmem() done");
1577 }
1578
1579 #ifndef __xpv
1580 /*
1581 * If we have detected that we are running in an HVM environment, we need
1582 * to prepend the PV driver directory to the module search path.
1583 */
1584 #define HVM_MOD_DIR "/platform/i86hvm/kernel"
1585 static void
1586 update_default_path()
1587 {
1588 char *current, *newpath;
1589 int newlen;
1590
1591 /*
1592 * We are about to resync with krtld. krtld will reset its
1593 * internal module search path iff Solaris has set default_path.
1594 * We want to be sure we're prepending this new directory to the
1595 * right search path.
1596 */
1597 current = (default_path == NULL) ? kobj_module_path : default_path;
1598
1599 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2;
1600 newpath = kmem_alloc(newlen, KM_SLEEP);
1601 (void) strcpy(newpath, HVM_MOD_DIR);
1602 (void) strcat(newpath, " ");
1603 (void) strcat(newpath, current);
1604
1605 default_path = newpath;
1606 }
1607 #endif
1608
1609 static void
1610 startup_modules(void)
1611 {
1612 int cnt;
1613 extern void prom_setup(void);
1614 int32_t v, h;
1615 char d[11];
1616 char *cp;
1617 cmi_hdl_t hdl;
1618
1619 PRM_POINT("startup_modules() starting...");
1620
1621 #ifndef __xpv
1622 /*
1623 * Initialize ten-micro second timer so that drivers will
1624 * not get short changed in their init phase. This was
1625 * not getting called until clkinit which, on fast cpu's
1626 * caused the drv_usecwait to be way too short.
1627 */
1628 microfind();
1629
1630 if ((get_hwenv() & HW_XEN_HVM) != 0)
1631 update_default_path();
1632 #endif
1633
1634 /*
1635 * Read the GMT lag from /etc/rtc_config.
1636 */
1637 sgmtl(process_rtc_config_file());
1638
1639 /*
1640 * Calculate default settings of system parameters based upon
1641 * maxusers, yet allow to be overridden via the /etc/system file.
1642 */
1643 param_calc(0);
1644
1645 mod_setup();
1646
1647 /*
1648 * Initialize system parameters.
1649 */
1650 param_init();
1651
1652 /*
1653 * Initialize the default brands
1654 */
1655 brand_init();
1656
1657 /*
1658 * maxmem is the amount of physical memory we're playing with.
1659 */
1660 maxmem = physmem;
1661
1662 /*
1663 * Initialize segment management stuff.
1664 */
1665 seg_init();
1666
1667 if (modload("fs", "specfs") == -1)
1668 halt("Can't load specfs");
1669
1670 if (modload("fs", "devfs") == -1)
1671 halt("Can't load devfs");
1672
1673 if (modload("fs", "dev") == -1)
1674 halt("Can't load dev");
1675
1676 if (modload("fs", "procfs") == -1)
1677 halt("Can't load procfs");
1678
1679 (void) modloadonly("sys", "lbl_edition");
1680
1681 dispinit();
1682
1683 /* Read cluster configuration data. */
1684 clconf_init();
1685
1686 #if defined(__xpv)
1687 (void) ec_init();
1688 gnttab_init();
1689 (void) xs_early_init();
1690 #endif /* __xpv */
1691
1692 /*
1693 * Create a kernel device tree. First, create rootnex and
1694 * then invoke bus specific code to probe devices.
1695 */
1696 setup_ddi();
1697
1698 #ifdef __xpv
1699 if (DOMAIN_IS_INITDOMAIN(xen_info))
1700 #endif
1701 {
1702 id_t smid;
1703 smbios_system_t smsys;
1704 smbios_info_t sminfo;
1705 char *mfg;
1706 /*
1707 * Load the System Management BIOS into the global ksmbios
1708 * handle, if an SMBIOS is present on this system.
1709 * Also set "si-hw-provider" property, if not already set.
1710 */
1711 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL);
1712 if (ksmbios != NULL &&
1713 ((smid = smbios_info_system(ksmbios, &smsys)) != SMB_ERR) &&
1714 (smbios_info_common(ksmbios, smid, &sminfo)) != SMB_ERR) {
1715 mfg = (char *)sminfo.smbi_manufacturer;
1716 if (BOP_GETPROPLEN(bootops, "si-hw-provider") < 0) {
1717 extern char hw_provider[];
1718 int i;
1719 for (i = 0; i < SYS_NMLN; i++) {
1720 if (isprint(mfg[i]))
1721 hw_provider[i] = mfg[i];
1722 else {
1723 hw_provider[i] = '\0';
1724 break;
1725 }
1726 }
1727 hw_provider[SYS_NMLN - 1] = '\0';
1728 }
1729 }
1730 }
1731
1732
1733 /*
1734 * Originally clconf_init() apparently needed the hostid. But
1735 * this no longer appears to be true - it uses its own nodeid.
1736 * By placing the hostid logic here, we are able to make use of
1737 * the SMBIOS UUID.
1738 */
1739 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) {
1740 cmn_err(CE_WARN, "Unable to set hostid");
1741 } else {
1742 for (v = h, cnt = 0; cnt < 10; cnt++) {
1743 d[cnt] = (char)(v % 10);
1744 v /= 10;
1745 if (v == 0)
1746 break;
1747 }
1748 for (cp = hw_serial; cnt >= 0; cnt--)
1749 *cp++ = d[cnt] + '0';
1750 *cp = 0;
1751 }
1752
1753 /*
1754 * Set up the CPU module subsystem for the boot cpu in the native
1755 * case, and all physical cpu resource in the xpv dom0 case.
1756 * Modifies the device tree, so this must be done after
1757 * setup_ddi().
1758 */
1759 #ifdef __xpv
1760 /*
1761 * If paravirtualized and on dom0 then we initialize all physical
1762 * cpu handles now; if paravirtualized on a domU then do not
1763 * initialize.
1764 */
1765 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1766 xen_mc_lcpu_cookie_t cpi;
1767
1768 for (cpi = xen_physcpu_next(NULL); cpi != NULL;
1769 cpi = xen_physcpu_next(cpi)) {
1770 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA,
1771 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi),
1772 xen_physcpu_strandid(cpi))) != NULL &&
1773 is_x86_feature(x86_featureset, X86FSET_MCA))
1774 cmi_mca_init(hdl);
1775 }
1776 }
1777 #else
1778 /*
1779 * Initialize a handle for the boot cpu - others will initialize
1780 * as they startup.
1781 */
1782 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1783 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) {
1784 if (is_x86_feature(x86_featureset, X86FSET_MCA))
1785 cmi_mca_init(hdl);
1786 CPU->cpu_m.mcpu_cmi_hdl = hdl;
1787 }
1788 #endif /* __xpv */
1789
1790 /*
1791 * Fake a prom tree such that /dev/openprom continues to work
1792 */
1793 PRM_POINT("startup_modules: calling prom_setup...");
1794 prom_setup();
1795 PRM_POINT("startup_modules: done");
1796
1797 /*
1798 * Load all platform specific modules
1799 */
1800 PRM_POINT("startup_modules: calling psm_modload...");
1801 psm_modload();
1802
1803 PRM_POINT("startup_modules() done");
1804 }
1805
1806 /*
1807 * claim a "setaside" boot page for use in the kernel
1808 */
1809 page_t *
1810 boot_claim_page(pfn_t pfn)
1811 {
1812 page_t *pp;
1813
1814 pp = page_numtopp_nolock(pfn);
1815 ASSERT(pp != NULL);
1816
1817 if (PP_ISBOOTPAGES(pp)) {
1818 if (pp->p_next != NULL)
1819 pp->p_next->p_prev = pp->p_prev;
1820 if (pp->p_prev == NULL)
1821 bootpages = pp->p_next;
1822 else
1823 pp->p_prev->p_next = pp->p_next;
1824 } else {
1825 /*
1826 * htable_attach() expects a base pagesize page
1827 */
1828 if (pp->p_szc != 0)
1829 page_boot_demote(pp);
1830 pp = page_numtopp(pfn, SE_EXCL);
1831 }
1832 return (pp);
1833 }
1834
1835 /*
1836 * Walk through the pagetables looking for pages mapped in by boot. If the
1837 * setaside flag is set the pages are expected to be returned to the
1838 * kernel later in boot, so we add them to the bootpages list.
1839 */
1840 static void
1841 protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
1842 {
1843 uintptr_t va = low;
1844 size_t len;
1845 uint_t prot;
1846 pfn_t pfn;
1847 page_t *pp;
1848 pgcnt_t boot_protect_cnt = 0;
1849
1850 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
1851 if (va + len >= high)
1852 panic("0x%lx byte mapping at 0x%p exceeds boot's "
1853 "legal range.", len, (void *)va);
1854
1855 while (len > 0) {
1856 pp = page_numtopp_alloc(pfn);
1857 if (pp != NULL) {
1858 if (setaside == 0)
1859 panic("Unexpected mapping by boot. "
1860 "addr=%p pfn=%lx\n",
1861 (void *)va, pfn);
1862
1863 pp->p_next = bootpages;
1864 pp->p_prev = NULL;
1865 PP_SETBOOTPAGES(pp);
1866 if (bootpages != NULL) {
1867 bootpages->p_prev = pp;
1868 }
1869 bootpages = pp;
1870 ++boot_protect_cnt;
1871 }
1872
1873 ++pfn;
1874 len -= MMU_PAGESIZE;
1875 va += MMU_PAGESIZE;
1876 }
1877 }
1878 PRM_DEBUG(boot_protect_cnt);
1879 }
1880
1881 /*
1882 *
1883 */
1884 static void
1885 layout_kernel_va(void)
1886 {
1887 PRM_POINT("layout_kernel_va() starting...");
1888 /*
1889 * Establish the final size of the kernel's heap, size of segmap,
1890 * segkp, etc.
1891 */
1892
1893 #if defined(__amd64)
1894
1895 kpm_vbase = (caddr_t)segkpm_base;
1896 if (physmax + 1 < plat_dr_physmax) {
1897 kpm_size = ROUND_UP_LPAGE(mmu_ptob(plat_dr_physmax));
1898 } else {
1899 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1));
1900 }
1901 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base)
1902 panic("not enough room for kpm!");
1903 PRM_DEBUG(kpm_size);
1904 PRM_DEBUG(kpm_vbase);
1905
1906 /*
1907 * By default we create a seg_kp in 64 bit kernels, it's a little
1908 * faster to access than embedding it in the heap.
1909 */
1910 segkp_base = (caddr_t)valloc_base + valloc_sz;
1911 if (!segkp_fromheap) {
1912 size_t sz = mmu_ptob(segkpsize);
1913
1914 /*
1915 * determine size of segkp
1916 */
1917 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) {
1918 sz = SEGKPDEFSIZE;
1919 cmn_err(CE_WARN, "!Illegal value for segkpsize. "
1920 "segkpsize has been reset to %ld pages",
1921 mmu_btop(sz));
1922 }
1923 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem)));
1924
1925 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz));
1926 }
1927 PRM_DEBUG(segkp_base);
1928 PRM_DEBUG(segkpsize);
1929
1930 /*
1931 * segzio is used for ZFS cached data. It uses a distinct VA
1932 * segment (from kernel heap) so that we can easily tell not to
1933 * include it in kernel crash dumps on 64 bit kernels. The trick is
1934 * to give it lots of VA, but not constrain the kernel heap.
1935 * We can use 1.5x physmem for segzio, leaving approximately
1936 * another 1.5x physmem for heap. See also the comment in
1937 * startup_memlist().
1938 */
1939 segzio_base = segkp_base + mmu_ptob(segkpsize);
1940 if (segzio_fromheap) {
1941 segziosize = 0;
1942 } else {
1943 size_t physmem_size = mmu_ptob(physmem);
1944 size_t size = (segziosize == 0) ?
1945 physmem_size * 3 / 2 : mmu_ptob(segziosize);
1946
1947 if (size < SEGZIOMINSIZE)
1948 size = SEGZIOMINSIZE;
1949 segziosize = mmu_btop(ROUND_UP_LPAGE(size));
1950 }
1951 PRM_DEBUG(segziosize);
1952 PRM_DEBUG(segzio_base);
1953
1954 /*
1955 * Put the range of VA for device mappings next, kmdb knows to not
1956 * grep in this range of addresses.
1957 */
1958 toxic_addr =
1959 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize));
1960 PRM_DEBUG(toxic_addr);
1961 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size);
1962 #else /* __i386 */
1963 segmap_start = ROUND_UP_LPAGE(kernelbase);
1964 #endif /* __i386 */
1965 PRM_DEBUG(segmap_start);
1966
1967 /*
1968 * Users can change segmapsize through eeprom. If the variable
1969 * is tuned through eeprom, there is no upper bound on the
1970 * size of segmap.
1971 */
1972 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
1973
1974 #if defined(__i386)
1975 /*
1976 * 32-bit systems don't have segkpm or segkp, so segmap appears at
1977 * the bottom of the kernel's address range. Set aside space for a
1978 * small red zone just below the start of segmap.
1979 */
1980 segmap_start += KERNEL_REDZONE_SIZE;
1981 segmapsize -= KERNEL_REDZONE_SIZE;
1982 #endif
1983
1984 PRM_DEBUG(segmap_start);
1985 PRM_DEBUG(segmapsize);
1986 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize);
1987 PRM_DEBUG(kernelheap);
1988 PRM_POINT("layout_kernel_va() done...");
1989 }
1990
1991 /*
1992 * Finish initializing the VM system, now that we are no longer
1993 * relying on the boot time memory allocators.
1994 */
1995 static void
1996 startup_vm(void)
1997 {
1998 struct segmap_crargs a;
1999
2000 extern int use_brk_lpg, use_stk_lpg;
2001
2002 PRM_POINT("startup_vm() starting...");
2003
2004 /*
2005 * Initialize the hat layer.
2006 */
2007 hat_init();
2008
2009 /*
2010 * Do final allocations of HAT data structures that need to
2011 * be allocated before quiescing the boot loader.
2012 */
2013 PRM_POINT("Calling hat_kern_alloc()...");
2014 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap);
2015 PRM_POINT("hat_kern_alloc() done");
2016
2017 #ifndef __xpv
2018 /*
2019 * Setup Page Attribute Table
2020 */
2021 pat_sync();
2022 #endif
2023
2024 /*
2025 * The next two loops are done in distinct steps in order
2026 * to be sure that any page that is doubly mapped (both above
2027 * KERNEL_TEXT and below kernelbase) is dealt with correctly.
2028 * Note this may never happen, but it might someday.
2029 */
2030 bootpages = NULL;
2031 PRM_POINT("Protecting boot pages");
2032
2033 /*
2034 * Protect any pages mapped above KERNEL_TEXT that somehow have
2035 * page_t's. This can only happen if something weird allocated
2036 * in this range (like kadb/kmdb).
2037 */
2038 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
2039
2040 /*
2041 * Before we can take over memory allocation/mapping from the boot
2042 * loader we must remove from our free page lists any boot allocated
2043 * pages that stay mapped until release_bootstrap().
2044 */
2045 protect_boot_range(0, kernelbase, 1);
2046
2047
2048 /*
2049 * Switch to running on regular HAT (not boot_mmu)
2050 */
2051 PRM_POINT("Calling hat_kern_setup()...");
2052 hat_kern_setup();
2053
2054 /*
2055 * It is no longer safe to call BOP_ALLOC(), so make sure we don't.
2056 */
2057 bop_no_more_mem();
2058
2059 PRM_POINT("hat_kern_setup() done");
2060
2061 hat_cpu_online(CPU);
2062
2063 /*
2064 * Initialize VM system
2065 */
2066 PRM_POINT("Calling kvm_init()...");
2067 kvm_init();
2068 PRM_POINT("kvm_init() done");
2069
2070 /*
2071 * Tell kmdb that the VM system is now working
2072 */
2073 if (boothowto & RB_DEBUG)
2074 kdi_dvec_vmready();
2075
2076 #if defined(__xpv)
2077 /*
2078 * Populate the I/O pool on domain 0
2079 */
2080 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2081 extern long populate_io_pool(void);
2082 long init_io_pool_cnt;
2083
2084 PRM_POINT("Populating reserve I/O page pool");
2085 init_io_pool_cnt = populate_io_pool();
2086 PRM_DEBUG(init_io_pool_cnt);
2087 }
2088 #endif
2089 /*
2090 * Mangle the brand string etc.
2091 */
2092 cpuid_pass3(CPU);
2093
2094 #if defined(__amd64)
2095
2096 /*
2097 * Create the device arena for toxic (to dtrace/kmdb) mappings.
2098 */
2099 device_arena = vmem_create("device", (void *)toxic_addr,
2100 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
2101
2102 #else /* __i386 */
2103
2104 /*
2105 * allocate the bit map that tracks toxic pages
2106 */
2107 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase));
2108 PRM_DEBUG(toxic_bit_map_len);
2109 toxic_bit_map =
2110 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP);
2111 ASSERT(toxic_bit_map != NULL);
2112 PRM_DEBUG(toxic_bit_map);
2113
2114 #endif /* __i386 */
2115
2116
2117 /*
2118 * Now that we've got more VA, as well as the ability to allocate from
2119 * it, tell the debugger.
2120 */
2121 if (boothowto & RB_DEBUG)
2122 kdi_dvec_memavail();
2123
2124 /*
2125 * The following code installs a special page fault handler (#pf)
2126 * to work around a pentium bug.
2127 */
2128 #if !defined(__amd64) && !defined(__xpv)
2129 if (x86_type == X86_TYPE_P5) {
2130 desctbr_t idtr;
2131 gate_desc_t *newidt;
2132
2133 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL)
2134 panic("failed to install pentium_pftrap");
2135
2136 bcopy(idt0, newidt, NIDT * sizeof (*idt0));
2137 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap,
2138 KCS_SEL, SDT_SYSIGT, TRP_KPL, 0);
2139
2140 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE,
2141 PROT_READ | PROT_EXEC);
2142
2143 CPU->cpu_idt = newidt;
2144 idtr.dtr_base = (uintptr_t)CPU->cpu_idt;
2145 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1;
2146 wr_idtr(&idtr);
2147 }
2148 #endif /* !__amd64 */
2149
2150 #if !defined(__xpv)
2151 /*
2152 * Map page pfn=0 for drivers, such as kd, that need to pick up
2153 * parameters left there by controllers/BIOS.
2154 */
2155 PRM_POINT("setup up p0_va");
2156 p0_va = i86devmap(0, 1, PROT_READ);
2157 PRM_DEBUG(p0_va);
2158 #endif
2159
2160 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
2161 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
2162
2163 /*
2164 * disable automatic large pages for small memory systems or
2165 * when the disable flag is set.
2166 *
2167 * Do not yet consider page sizes larger than 2m/4m.
2168 */
2169 if (!auto_lpg_disable && mmu.max_page_level > 0) {
2170 max_uheap_lpsize = LEVEL_SIZE(1);
2171 max_ustack_lpsize = LEVEL_SIZE(1);
2172 max_privmap_lpsize = LEVEL_SIZE(1);
2173 max_uidata_lpsize = LEVEL_SIZE(1);
2174 max_utext_lpsize = LEVEL_SIZE(1);
2175 max_shm_lpsize = LEVEL_SIZE(1);
2176 }
2177 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 ||
2178 auto_lpg_disable) {
2179 use_brk_lpg = 0;
2180 use_stk_lpg = 0;
2181 }
2182 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level);
2183
2184 PRM_POINT("Calling hat_init_finish()...");
2185 hat_init_finish();
2186 PRM_POINT("hat_init_finish() done");
2187
2188 /*
2189 * Initialize the segkp segment type.
2190 */
2191 rw_enter(&kas.a_lock, RW_WRITER);
2192 PRM_POINT("Attaching segkp");
2193 if (segkp_fromheap) {
2194 segkp->s_as = &kas;
2195 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
2196 segkp) < 0) {
2197 panic("startup: cannot attach segkp");
2198 /*NOTREACHED*/
2199 }
2200 PRM_POINT("Doing segkp_create()");
2201 if (segkp_create(segkp) != 0) {
2202 panic("startup: segkp_create failed");
2203 /*NOTREACHED*/
2204 }
2205 PRM_DEBUG(segkp);
2206 rw_exit(&kas.a_lock);
2207
2208 /*
2209 * kpm segment
2210 */
2211 segmap_kpm = 0;
2212 if (kpm_desired) {
2213 kpm_init();
2214 kpm_enable = 1;
2215 }
2216
2217 /*
2218 * Now create segmap segment.
2219 */
2220 rw_enter(&kas.a_lock, RW_WRITER);
2221 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) {
2222 panic("cannot attach segmap");
2223 /*NOTREACHED*/
2224 }
2225 PRM_DEBUG(segmap);
2226
2227 a.prot = PROT_READ | PROT_WRITE;
2228 a.shmsize = 0;
2229 a.nfreelist = segmapfreelists;
2230
2231 if (segmap_create(segmap, (caddr_t)&a) != 0)
2232 panic("segmap_create segmap");
2233 rw_exit(&kas.a_lock);
2234
2235 setup_vaddr_for_ppcopy(CPU);
2236
2237 segdev_init();
2238 #if defined(__xpv)
2239 if (DOMAIN_IS_INITDOMAIN(xen_info))
2240 #endif
2241 pmem_init();
2242
2243 PRM_POINT("startup_vm() done");
2244 }
2245
2246 /*
2247 * Load a tod module for the non-standard tod part found on this system.
2248 */
2249 static void
2250 load_tod_module(char *todmod)
2251 {
2252 if (modload("tod", todmod) == -1)
2253 halt("Can't load TOD module");
2254 }
2255
2256 static void
2257 startup_end(void)
2258 {
2259 int i;
2260 extern void setx86isalist(void);
2261 extern void cpu_event_init(void);
2262
2263 PRM_POINT("startup_end() starting...");
2264
2265 /*
2266 * Perform tasks that get done after most of the VM
2267 * initialization has been done but before the clock
2268 * and other devices get started.
2269 */
2270 kern_setup1();
2271
2272 /*
2273 * Perform CPC initialization for this CPU.
2274 */
2275 kcpc_hw_init(CPU);
2276
2277 /*
2278 * Initialize cpu event framework.
2279 */
2280 cpu_event_init();
2281
2282 #if defined(OPTERON_WORKAROUND_6323525)
2283 if (opteron_workaround_6323525)
2284 patch_workaround_6323525();
2285 #endif
2286 /*
2287 * If needed, load TOD module now so that ddi_get_time(9F) etc. work
2288 * (For now, "needed" is defined as set tod_module_name in /etc/system)
2289 */
2290 if (tod_module_name != NULL) {
2291 PRM_POINT("load_tod_module()");
2292 load_tod_module(tod_module_name);
2293 }
2294
2295 #if defined(__xpv)
2296 /*
2297 * Forceload interposing TOD module for the hypervisor.
2298 */
2299 PRM_POINT("load_tod_module()");
2300 load_tod_module("xpvtod");
2301 #endif
2302
2303 /*
2304 * Configure the system.
2305 */
2306 PRM_POINT("Calling configure()...");
2307 configure(); /* set up devices */
2308 PRM_POINT("configure() done");
2309
2310 /*
2311 * We can now setup for XSAVE because fpu_probe is done in configure().
2312 */
2313 if (fp_save_mech == FP_XSAVE) {
2314 xsave_setup_msr(CPU);
2315 }
2316
2317 /*
2318 * Set the isa_list string to the defined instruction sets we
2319 * support.
2320 */
2321 setx86isalist();
2322 cpu_intr_alloc(CPU, NINTR_THREADS);
2323 psm_install();
2324
2325 /*
2326 * We're done with bootops. We don't unmap the bootstrap yet because
2327 * we're still using bootsvcs.
2328 */
2329 PRM_POINT("NULLing out bootops");
2330 *bootopsp = (struct bootops *)NULL;
2331 bootops = (struct bootops *)NULL;
2332
2333 #if defined(__xpv)
2334 ec_init_debug_irq();
2335 xs_domu_init();
2336 #endif
2337
2338 #if defined(__amd64) && !defined(__xpv)
2339 /*
2340 * Intel IOMMU has been setup/initialized in ddi_impl.c
2341 * Start it up now.
2342 */
2343 immu_startup();
2344 #endif
2345
2346 PRM_POINT("Enabling interrupts");
2347 (*picinitf)();
2348 sti();
2349 #if defined(__xpv)
2350 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0);
2351 xen_late_startup();
2352 #endif
2353
2354 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
2355 "softlevel1", NULL, NULL); /* XXX to be moved later */
2356
2357 /*
2358 * Register software interrupt handlers for ddi_periodic_add(9F).
2359 * Software interrupts up to the level 10 are supported.
2360 */
2361 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
2362 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i,
2363 (avfunc)ddi_periodic_softintr, "ddi_periodic",
2364 (caddr_t)(uintptr_t)i, NULL);
2365 }
2366
2367 #if !defined(__xpv)
2368 if (modload("drv", "amd_iommu") < 0) {
2369 PRM_POINT("No AMD IOMMU present\n");
2370 } else if (ddi_hold_installed_driver(ddi_name_to_major(
2371 "amd_iommu")) == NULL) {
2372 prom_printf("ERROR: failed to attach AMD IOMMU\n");
2373 }
2374 #endif
2375 post_startup_cpu_fixups();
2376
2377 PRM_POINT("startup_end() done");
2378 }
2379
2380 /*
2381 * Don't remove the following 2 variables. They are necessary
2382 * for reading the hostid from the legacy file (/kernel/misc/sysinit).
2383 */
2384 char *_hs1107 = hw_serial;
2385 ulong_t _bdhs34;
2386
2387 void
2388 post_startup(void)
2389 {
2390 extern void cpupm_init(cpu_t *);
2391 extern void cpu_event_init_cpu(cpu_t *);
2392
2393 /*
2394 * Set the system wide, processor-specific flags to be passed
2395 * to userland via the aux vector for performance hints and
2396 * instruction set extensions.
2397 */
2398 bind_hwcap();
2399
2400 #ifdef __xpv
2401 if (DOMAIN_IS_INITDOMAIN(xen_info))
2402 #endif
2403 {
2404 #if defined(__xpv)
2405 xpv_panic_init();
2406 #else
2407 /*
2408 * Startup the memory scrubber.
2409 * XXPV This should be running somewhere ..
2410 */
2411 if ((get_hwenv() & HW_VIRTUAL) == 0)
2412 memscrub_init();
2413 #endif
2414 }
2415
2416 /*
2417 * Complete CPU module initialization
2418 */
2419 cmi_post_startup();
2420
2421 /*
2422 * Perform forceloading tasks for /etc/system.
2423 */
2424 (void) mod_sysctl(SYS_FORCELOAD, NULL);
2425
2426 /*
2427 * ON4.0: Force /proc module in until clock interrupt handle fixed
2428 * ON4.0: This must be fixed or restated in /etc/systems.
2429 */
2430 (void) modload("fs", "procfs");
2431
2432 (void) i_ddi_attach_hw_nodes("pit_beep");
2433
2434 #if defined(__i386)
2435 /*
2436 * Check for required functional Floating Point hardware,
2437 * unless FP hardware explicitly disabled.
2438 */
2439 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO))
2440 halt("No working FP hardware found");
2441 #endif
2442
2443 maxmem = freemem;
2444
2445 cpu_event_init_cpu(CPU);
2446 cpupm_init(CPU);
2447 (void) mach_cpu_create_device_node(CPU, NULL);
2448
2449 pg_init();
2450 }
2451
2452 static int
2453 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr)
2454 {
2455 return ((pp->p_pagenum >= btop(low_addr)) &&
2456 (pp->p_pagenum < btopr(high_addr)));
2457 }
2458
2459 static int
2460 pp_in_module(page_t *pp, const rd_existing_t *modranges)
2461 {
2462 uint_t i;
2463
2464 for (i = 0; modranges[i].phys != 0; i++) {
2465 if (pp_in_range(pp, modranges[i].phys,
2466 modranges[i].phys + modranges[i].size))
2467 return (1);
2468 }
2469
2470 return (0);
2471 }
2472
2473 void
2474 release_bootstrap(void)
2475 {
2476 int root_is_ramdisk;
2477 page_t *pp;
2478 extern void kobj_boot_unmountroot(void);
2479 extern dev_t rootdev;
2480 uint_t i;
2481 char propname[32];
2482 rd_existing_t *modranges;
2483 #if !defined(__xpv)
2484 pfn_t pfn;
2485 #endif
2486
2487 /*
2488 * Save the bootfs module ranges so that we can reserve them below
2489 * for the real bootfs.
2490 */
2491 modranges = kmem_alloc(sizeof (rd_existing_t) * MAX_BOOT_MODULES,
2492 KM_SLEEP);
2493 for (i = 0; ; i++) {
2494 uint64_t start, size;
2495
2496 modranges[i].phys = 0;
2497
2498 (void) snprintf(propname, sizeof (propname),
2499 "module-addr-%u", i);
2500 if (do_bsys_getproplen(NULL, propname) <= 0)
2501 break;
2502 (void) do_bsys_getprop(NULL, propname, &start);
2503
2504 (void) snprintf(propname, sizeof (propname),
2505 "module-size-%u", i);
2506 if (do_bsys_getproplen(NULL, propname) <= 0)
2507 break;
2508 (void) do_bsys_getprop(NULL, propname, &size);
2509
2510 modranges[i].phys = start;
2511 modranges[i].size = size;
2512 }
2513
2514 /* unmount boot ramdisk and release kmem usage */
2515 kobj_boot_unmountroot();
2516
2517 /*
2518 * We're finished using the boot loader so free its pages.
2519 */
2520 PRM_POINT("Unmapping lower boot pages");
2521
2522 clear_boot_mappings(0, _userlimit);
2523
2524 postbootkernelbase = kernelbase;
2525
2526 /*
2527 * If root isn't on ramdisk, destroy the hardcoded
2528 * ramdisk node now and release the memory. Else,
2529 * ramdisk memory is kept in rd_pages.
2530 */
2531 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
2532 if (!root_is_ramdisk) {
2533 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
2534 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
2535 ndi_rele_devi(dip); /* held from ddi_find_devinfo */
2536 (void) ddi_remove_child(dip, 0);
2537 }
2538
2539 PRM_POINT("Releasing boot pages");
2540 while (bootpages) {
2541 extern uint64_t ramdisk_start, ramdisk_end;
2542 pp = bootpages;
2543 bootpages = pp->p_next;
2544
2545
2546 /* Keep pages for the lower 64K */
2547 if (pp_in_range(pp, 0, 0x40000)) {
2548 pp->p_next = lower_pages;
2549 lower_pages = pp;
2550 lower_pages_count++;
2551 continue;
2552 }
2553
2554 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start,
2555 ramdisk_end) || pp_in_module(pp, modranges)) {
2556 pp->p_next = rd_pages;
2557 rd_pages = pp;
2558 continue;
2559 }
2560 pp->p_next = (struct page *)0;
2561 pp->p_prev = (struct page *)0;
2562 PP_CLRBOOTPAGES(pp);
2563 page_free(pp, 1);
2564 }
2565 PRM_POINT("Boot pages released");
2566
2567 kmem_free(modranges, sizeof (rd_existing_t) * 99);
2568
2569 #if !defined(__xpv)
2570 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */
2571 /*
2572 * Find 1 page below 1 MB so that other processors can boot up or
2573 * so that any processor can resume.
2574 * Make sure it has a kernel VA as well as a 1:1 mapping.
2575 * We should have just free'd one up.
2576 */
2577
2578 /*
2579 * 0x10 pages is 64K. Leave the bottom 64K alone
2580 * for BIOS.
2581 */
2582 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) {
2583 if (page_numtopp_alloc(pfn) == NULL)
2584 continue;
2585 rm_platter_va = i86devmap(pfn, 1,
2586 PROT_READ | PROT_WRITE | PROT_EXEC);
2587 rm_platter_pa = ptob(pfn);
2588 break;
2589 }
2590 if (pfn == btop(1*1024*1024) && use_mp)
2591 panic("No page below 1M available for starting "
2592 "other processors or for resuming from system-suspend");
2593 #endif /* !__xpv */
2594 }
2595
2596 /*
2597 * Initialize the platform-specific parts of a page_t.
2598 */
2599 void
2600 add_physmem_cb(page_t *pp, pfn_t pnum)
2601 {
2602 pp->p_pagenum = pnum;
2603 pp->p_mapping = NULL;
2604 pp->p_embed = 0;
2605 pp->p_share = 0;
2606 pp->p_mlentry = 0;
2607 }
2608
2609 /*
2610 * kphysm_init() initializes physical memory.
2611 */
2612 static pgcnt_t
2613 kphysm_init(
2614 page_t *pp,
2615 pgcnt_t npages)
2616 {
2617 struct memlist *pmem;
2618 struct memseg *cur_memseg;
2619 pfn_t base_pfn;
2620 pfn_t end_pfn;
2621 pgcnt_t num;
2622 pgcnt_t pages_done = 0;
2623 uint64_t addr;
2624 uint64_t size;
2625 extern pfn_t ddiphysmin;
2626 extern int mnode_xwa;
2627 int ms = 0, me = 0;
2628
2629 ASSERT(page_hash != NULL && page_hashsz != 0);
2630
2631 cur_memseg = memseg_base;
2632 for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) {
2633 /*
2634 * In a 32 bit kernel can't use higher memory if we're
2635 * not booting in PAE mode. This check takes care of that.
2636 */
2637 addr = pmem->ml_address;
2638 size = pmem->ml_size;
2639 if (btop(addr) > physmax)
2640 continue;
2641
2642 /*
2643 * align addr and size - they may not be at page boundaries
2644 */
2645 if ((addr & MMU_PAGEOFFSET) != 0) {
2646 addr += MMU_PAGEOFFSET;
2647 addr &= ~(uint64_t)MMU_PAGEOFFSET;
2648 size -= addr - pmem->ml_address;
2649 }
2650
2651 /* only process pages below or equal to physmax */
2652 if ((btop(addr + size) - 1) > physmax)
2653 size = ptob(physmax - btop(addr) + 1);
2654
2655 num = btop(size);
2656 if (num == 0)
2657 continue;
2658
2659 if (num > npages)
2660 num = npages;
2661
2662 npages -= num;
2663 pages_done += num;
2664 base_pfn = btop(addr);
2665
2666 if (prom_debug)
2667 prom_printf("MEMSEG addr=0x%" PRIx64
2668 " pgs=0x%lx pfn 0x%lx-0x%lx\n",
2669 addr, num, base_pfn, base_pfn + num);
2670
2671 /*
2672 * Ignore pages below ddiphysmin to simplify ddi memory
2673 * allocation with non-zero addr_lo requests.
2674 */
2675 if (base_pfn < ddiphysmin) {
2676 if (base_pfn + num <= ddiphysmin)
2677 continue;
2678 pp += (ddiphysmin - base_pfn);
2679 num -= (ddiphysmin - base_pfn);
2680 base_pfn = ddiphysmin;
2681 }
2682
2683 /*
2684 * mnode_xwa is greater than 1 when large pages regions can
2685 * cross memory node boundaries. To prevent the formation
2686 * of these large pages, configure the memsegs based on the
2687 * memory node ranges which had been made non-contiguous.
2688 */
2689 if (mnode_xwa > 1) {
2690
2691 end_pfn = base_pfn + num - 1;
2692 ms = PFN_2_MEM_NODE(base_pfn);
2693 me = PFN_2_MEM_NODE(end_pfn);
2694
2695 if (ms != me) {
2696 /*
2697 * current range spans more than 1 memory node.
2698 * Set num to only the pfn range in the start
2699 * memory node.
2700 */
2701 num = mem_node_config[ms].physmax - base_pfn
2702 + 1;
2703 ASSERT(end_pfn > mem_node_config[ms].physmax);
2704 }
2705 }
2706
2707 for (;;) {
2708 /*
2709 * Build the memsegs entry
2710 */
2711 cur_memseg->pages = pp;
2712 cur_memseg->epages = pp + num;
2713 cur_memseg->pages_base = base_pfn;
2714 cur_memseg->pages_end = base_pfn + num;
2715
2716 /*
2717 * Insert into memseg list in decreasing pfn range
2718 * order. Low memory is typically more fragmented such
2719 * that this ordering keeps the larger ranges at the
2720 * front of the list for code that searches memseg.
2721 * This ASSERTS that the memsegs coming in from boot
2722 * are in increasing physical address order and not
2723 * contiguous.
2724 */
2725 if (memsegs != NULL) {
2726 ASSERT(cur_memseg->pages_base >=
2727 memsegs->pages_end);
2728 cur_memseg->next = memsegs;
2729 }
2730 memsegs = cur_memseg;
2731
2732 /*
2733 * add_physmem() initializes the PSM part of the page
2734 * struct by calling the PSM back with add_physmem_cb().
2735 * In addition it coalesces pages into larger pages as
2736 * it initializes them.
2737 */
2738 add_physmem(pp, num, base_pfn);
2739 cur_memseg++;
2740 availrmem_initial += num;
2741 availrmem += num;
2742
2743 pp += num;
2744 if (ms >= me)
2745 break;
2746
2747 /* process next memory node range */
2748 ms++;
2749 base_pfn = mem_node_config[ms].physbase;
2750 num = MIN(mem_node_config[ms].physmax,
2751 end_pfn) - base_pfn + 1;
2752 }
2753 }
2754
2755 PRM_DEBUG(availrmem_initial);
2756 PRM_DEBUG(availrmem);
2757 PRM_DEBUG(freemem);
2758 build_pfn_hash();
2759 return (pages_done);
2760 }
2761
2762 /*
2763 * Kernel VM initialization.
2764 */
2765 static void
2766 kvm_init(void)
2767 {
2768 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
2769
2770 /*
2771 * Put the kernel segments in kernel address space.
2772 */
2773 rw_enter(&kas.a_lock, RW_WRITER);
2774 as_avlinit(&kas);
2775
2776 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
2777 (void) segkmem_create(&ktextseg);
2778
2779 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
2780 (void) segkmem_create(&kvalloc);
2781
2782 (void) seg_attach(&kas, kernelheap,
2783 ekernelheap - kernelheap, &kvseg);
2784 (void) segkmem_create(&kvseg);
2785
2786 if (core_size > 0) {
2787 PRM_POINT("attaching kvseg_core");
2788 (void) seg_attach(&kas, (caddr_t)core_base, core_size,
2789 &kvseg_core);
2790 (void) segkmem_create(&kvseg_core);
2791 }
2792
2793 if (segziosize > 0) {
2794 PRM_POINT("attaching segzio");
2795 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2796 &kzioseg);
2797 (void) segkmem_zio_create(&kzioseg);
2798
2799 /* create zio area covering new segment */
2800 segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2801 }
2802
2803 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2804 (void) segkmem_create(&kdebugseg);
2805
2806 rw_exit(&kas.a_lock);
2807
2808 /*
2809 * Ensure that the red zone at kernelbase is never accessible.
2810 */
2811 PRM_POINT("protecting redzone");
2812 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
2813
2814 /*
2815 * Make the text writable so that it can be hot patched by DTrace.
2816 */
2817 (void) as_setprot(&kas, s_text, e_modtext - s_text,
2818 PROT_READ | PROT_WRITE | PROT_EXEC);
2819
2820 /*
2821 * Make data writable until end.
2822 */
2823 (void) as_setprot(&kas, s_data, e_moddata - s_data,
2824 PROT_READ | PROT_WRITE | PROT_EXEC);
2825 }
2826
2827 #ifndef __xpv
2828 /*
2829 * Solaris adds an entry for Write Combining caching to the PAT
2830 */
2831 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
2832
2833 void
2834 pat_sync(void)
2835 {
2836 ulong_t cr0, cr0_orig, cr4;
2837
2838 if (!is_x86_feature(x86_featureset, X86FSET_PAT))
2839 return;
2840 cr0_orig = cr0 = getcr0();
2841 cr4 = getcr4();
2842
2843 /* disable caching and flush all caches and TLBs */
2844 cr0 |= CR0_CD;
2845 cr0 &= ~CR0_NW;
2846 setcr0(cr0);
2847 invalidate_cache();
2848 if (cr4 & CR4_PGE) {
2849 setcr4(cr4 & ~(ulong_t)CR4_PGE);
2850 setcr4(cr4);
2851 } else {
2852 reload_cr3();
2853 }
2854
2855 /* add our entry to the PAT */
2856 wrmsr(REG_PAT, pat_attr_reg);
2857
2858 /* flush TLBs and cache again, then reenable cr0 caching */
2859 if (cr4 & CR4_PGE) {
2860 setcr4(cr4 & ~(ulong_t)CR4_PGE);
2861 setcr4(cr4);
2862 } else {
2863 reload_cr3();
2864 }
2865 invalidate_cache();
2866 setcr0(cr0_orig);
2867 }
2868
2869 #endif /* !__xpv */
2870
2871 #if defined(_SOFT_HOSTID)
2872 /*
2873 * On platforms that do not have a hardware serial number, attempt
2874 * to set one based on the contents of /etc/hostid. If this file does
2875 * not exist, assume that we are to generate a new hostid and set
2876 * it in the kernel, for subsequent saving by a userland process
2877 * once the system is up and the root filesystem is mounted r/w.
2878 *
2879 * In order to gracefully support upgrade on OpenSolaris, if
2880 * /etc/hostid does not exist, we will attempt to get a serial number
2881 * using the legacy method (/kernel/misc/sysinit).
2882 *
2883 * If that isn't present, we attempt to use an SMBIOS UUID, which is
2884 * a hardware serial number. Note that we don't automatically trust
2885 * all SMBIOS UUIDs (some older platforms are defective and ship duplicate
2886 * UUIDs in violation of the standard), we check against a blacklist.
2887 *
2888 * In an attempt to make the hostid less prone to abuse
2889 * (for license circumvention, etc), we store it in /etc/hostid
2890 * in rot47 format.
2891 */
2892 extern volatile unsigned long tenmicrodata;
2893 static int atoi(char *);
2894
2895 /*
2896 * Set this to non-zero in /etc/system if you think your SMBIOS returns a
2897 * UUID that is not unique. (Also report it so that the smbios_uuid_blacklist
2898 * array can be updated.)
2899 */
2900 int smbios_broken_uuid = 0;
2901
2902 /*
2903 * List of known bad UUIDs. This is just the lower 32-bit values, since
2904 * that's what we use for the host id. If your hostid falls here, you need
2905 * to contact your hardware OEM for a fix for your BIOS.
2906 */
2907 static unsigned char
2908 smbios_uuid_blacklist[][16] = {
2909
2910 { /* Reported bad UUID (Google search) */
2911 0x00, 0x02, 0x00, 0x03, 0x00, 0x04, 0x00, 0x05,
2912 0x00, 0x06, 0x00, 0x07, 0x00, 0x08, 0x00, 0x09,
2913 },
2914 { /* Known bad DELL UUID */
2915 0x4C, 0x4C, 0x45, 0x44, 0x00, 0x00, 0x20, 0x10,
2916 0x80, 0x20, 0x80, 0xC0, 0x4F, 0x20, 0x20, 0x20,
2917 },
2918 { /* Uninitialized flash */
2919 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
2920 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2921 },
2922 { /* All zeros */
2923 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2924 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
2925 },
2926 };
2927
2928 static int32_t
2929 uuid_to_hostid(const uint8_t *uuid)
2930 {
2931 /*
2932 * Although the UUIDs are 128-bits, they may not distribute entropy
2933 * evenly. We would like to use SHA or MD5, but those are located
2934 * in loadable modules and not available this early in boot. As we
2935 * don't need the values to be cryptographically strong, we just
2936 * generate 32-bit vaue by xor'ing the various sequences together,
2937 * which ensures that the entire UUID contributes to the hostid.
2938 */
2939 uint32_t id = 0;
2940
2941 /* first check against the blacklist */
2942 for (int i = 0; i < (sizeof (smbios_uuid_blacklist) / 16); i++) {
2943 if (bcmp(smbios_uuid_blacklist[0], uuid, 16) == 0) {
2944 cmn_err(CE_CONT, "?Broken SMBIOS UUID. "
2945 "Contact BIOS manufacturer for repair.\n");
2946 return ((int32_t)HW_INVALID_HOSTID);
2947 }
2948 }
2949
2950 for (int i = 0; i < 16; i++)
2951 id ^= ((uuid[i]) << (8 * (i % sizeof (id))));
2952
2953 /* Make sure return value is positive */
2954 return (id & 0x7fffffff);
2955 }
2956
2957 static int32_t
2958 set_soft_hostid(void)
2959 {
2960 struct _buf *file;
2961 char tokbuf[MAXNAMELEN];
2962 token_t token;
2963 int done = 0;
2964 u_longlong_t tmp;
2965 int i;
2966 int32_t hostid = (int32_t)HW_INVALID_HOSTID;
2967 unsigned char *c;
2968 hrtime_t tsc;
2969 smbios_system_t smsys;
2970
2971 /*
2972 * If /etc/hostid file not found, we'd like to get a pseudo
2973 * random number to use at the hostid. A nice way to do this
2974 * is to read the real time clock. To remain xen-compatible,
2975 * we can't poke the real hardware, so we use tsc_read() to
2976 * read the real time clock. However, there is an ominous
2977 * warning in tsc_read that says it can return zero, so we
2978 * deal with that possibility by falling back to using the
2979 * (hopefully random enough) value in tenmicrodata.
2980 */
2981
2982 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) {
2983 /*
2984 * hostid file not found - try to load sysinit module
2985 * and see if it has a nonzero hostid value...use that
2986 * instead of generating a new hostid here if so.
2987 */
2988 if ((i = modload("misc", "sysinit")) != -1) {
2989 if (strlen(hw_serial) > 0)
2990 hostid = (int32_t)atoi(hw_serial);
2991 (void) modunload(i);
2992 }
2993
2994 /*
2995 * We try to use the SMBIOS UUID. But not if it is blacklisted
2996 * in /etc/system.
2997 */
2998 if ((hostid == HW_INVALID_HOSTID) &&
2999 (smbios_broken_uuid == 0) &&
3000 (ksmbios != NULL) &&
3001 (smbios_info_system(ksmbios, &smsys) != SMB_ERR) &&
3002 (smsys.smbs_uuidlen >= 16)) {
3003 hostid = uuid_to_hostid(smsys.smbs_uuid);
3004 }
3005
3006 /*
3007 * Generate a "random" hostid using the clock. These
3008 * hostids will change on each boot if the value is not
3009 * saved to a persistent /etc/hostid file.
3010 */
3011 if (hostid == HW_INVALID_HOSTID) {
3012 tsc = tsc_read();
3013 if (tsc == 0) /* tsc_read can return zero sometimes */
3014 hostid = (int32_t)tenmicrodata & 0x0CFFFFF;
3015 else
3016 hostid = (int32_t)tsc & 0x0CFFFFF;
3017 }
3018 } else {
3019 /* hostid file found */
3020 while (!done) {
3021 token = kobj_lex(file, tokbuf, sizeof (tokbuf));
3022
3023 switch (token) {
3024 case POUND:
3025 /*
3026 * skip comments
3027 */
3028 kobj_find_eol(file);
3029 break;
3030 case STRING:
3031 /*
3032 * un-rot47 - obviously this
3033 * nonsense is ascii-specific
3034 */
3035 for (c = (unsigned char *)tokbuf;
3036 *c != '\0'; c++) {
3037 *c += 47;
3038 if (*c > '~')
3039 *c -= 94;
3040 else if (*c < '!')
3041 *c += 94;
3042 }
3043 /*
3044 * now we should have a real number
3045 */
3046
3047 if (kobj_getvalue(tokbuf, &tmp) != 0)
3048 kobj_file_err(CE_WARN, file,
3049 "Bad value %s for hostid",
3050 tokbuf);
3051 else
3052 hostid = (int32_t)tmp;
3053
3054 break;
3055 case EOF:
3056 done = 1;
3057 /* FALLTHROUGH */
3058 case NEWLINE:
3059 kobj_newline(file);
3060 break;
3061 default:
3062 break;
3063
3064 }
3065 }
3066 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */
3067 kobj_file_err(CE_WARN, file,
3068 "hostid missing or corrupt");
3069
3070 kobj_close_file(file);
3071 }
3072 /*
3073 * hostid is now the value read from /etc/hostid, or the
3074 * new hostid we generated in this routine or HW_INVALID_HOSTID if not
3075 * set.
3076 */
3077 return (hostid);
3078 }
3079
3080 static int
3081 atoi(char *p)
3082 {
3083 int i = 0;
3084
3085 while (*p != '\0')
3086 i = 10 * i + (*p++ - '0');
3087
3088 return (i);
3089 }
3090
3091 #endif /* _SOFT_HOSTID */
3092
3093 void
3094 get_system_configuration(void)
3095 {
3096 char prop[32];
3097 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
3098
3099 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) ||
3100 BOP_GETPROP(bootops, "nodes", prop) < 0 ||
3101 kobj_getvalue(prop, &nodes_ll) == -1 ||
3102 nodes_ll > MAXNODES ||
3103 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) ||
3104 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 ||
3105 kobj_getvalue(prop, &cpus_pernode_ll) == -1) {
3106 system_hardware.hd_nodes = 1;
3107 system_hardware.hd_cpus_per_node = 0;
3108 } else {
3109 system_hardware.hd_nodes = (int)nodes_ll;
3110 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
3111 }
3112
3113 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) ||
3114 BOP_GETPROP(bootops, "kernelbase", prop) < 0 ||
3115 kobj_getvalue(prop, &lvalue) == -1)
3116 eprom_kernelbase = NULL;
3117 else
3118 eprom_kernelbase = (uintptr_t)lvalue;
3119
3120 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) ||
3121 BOP_GETPROP(bootops, "segmapsize", prop) < 0 ||
3122 kobj_getvalue(prop, &lvalue) == -1)
3123 segmapsize = SEGMAPDEFAULT;
3124 else
3125 segmapsize = (uintptr_t)lvalue;
3126
3127 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) ||
3128 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 ||
3129 kobj_getvalue(prop, &lvalue) == -1)
3130 segmapfreelists = 0; /* use segmap driver default */
3131 else
3132 segmapfreelists = (int)lvalue;
3133
3134 /* physmem used to be here, but moved much earlier to fakebop.c */
3135 }
3136
3137 /*
3138 * Add to a memory list.
3139 * start = start of new memory segment
3140 * len = length of new memory segment in bytes
3141 * new = pointer to a new struct memlist
3142 * memlistp = memory list to which to add segment.
3143 */
3144 void
3145 memlist_add(
3146 uint64_t start,
3147 uint64_t len,
3148 struct memlist *new,
3149 struct memlist **memlistp)
3150 {
3151 struct memlist *cur;
3152 uint64_t end = start + len;
3153
3154 new->ml_address = start;
3155 new->ml_size = len;
3156
3157 cur = *memlistp;
3158
3159 while (cur) {
3160 if (cur->ml_address >= end) {
3161 new->ml_next = cur;
3162 *memlistp = new;
3163 new->ml_prev = cur->ml_prev;
3164 cur->ml_prev = new;
3165 return;
3166 }
3167 ASSERT(cur->ml_address + cur->ml_size <= start);
3168 if (cur->ml_next == NULL) {
3169 cur->ml_next = new;
3170 new->ml_prev = cur;
3171 new->ml_next = NULL;
3172 return;
3173 }
3174 memlistp = &cur->ml_next;
3175 cur = cur->ml_next;
3176 }
3177 }
3178
3179 void
3180 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3181 {
3182 size_t tsize = e_modtext - modtext;
3183 size_t dsize = e_moddata - moddata;
3184
3185 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
3186 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
3187 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
3188 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3189 }
3190
3191 caddr_t
3192 kobj_text_alloc(vmem_t *arena, size_t size)
3193 {
3194 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
3195 }
3196
3197 /*ARGSUSED*/
3198 caddr_t
3199 kobj_texthole_alloc(caddr_t addr, size_t size)
3200 {
3201 panic("unexpected call to kobj_texthole_alloc()");
3202 /*NOTREACHED*/
3203 return (0);
3204 }
3205
3206 /*ARGSUSED*/
3207 void
3208 kobj_texthole_free(caddr_t addr, size_t size)
3209 {
3210 panic("unexpected call to kobj_texthole_free()");
3211 }
3212
3213 /*
3214 * This is called just after configure() in startup().
3215 *
3216 * The ISALIST concept is a bit hopeless on Intel, because
3217 * there's no guarantee of an ever-more-capable processor
3218 * given that various parts of the instruction set may appear
3219 * and disappear between different implementations.
3220 *
3221 * While it would be possible to correct it and even enhance
3222 * it somewhat, the explicit hardware capability bitmask allows
3223 * more flexibility.
3224 *
3225 * So, we just leave this alone.
3226 */
3227 void
3228 setx86isalist(void)
3229 {
3230 char *tp;
3231 size_t len;
3232 extern char *isa_list;
3233
3234 #define TBUFSIZE 1024
3235
3236 tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
3237 *tp = '\0';
3238
3239 #if defined(__amd64)
3240 (void) strcpy(tp, "amd64 ");
3241 #endif
3242
3243 switch (x86_vendor) {
3244 case X86_VENDOR_Intel:
3245 case X86_VENDOR_AMD:
3246 case X86_VENDOR_TM:
3247 if (is_x86_feature(x86_featureset, X86FSET_CMOV)) {
3248 /*
3249 * Pentium Pro or later
3250 */
3251 (void) strcat(tp, "pentium_pro");
3252 (void) strcat(tp,
3253 is_x86_feature(x86_featureset, X86FSET_MMX) ?
3254 "+mmx pentium_pro " : " ");
3255 }
3256 /*FALLTHROUGH*/
3257 case X86_VENDOR_Cyrix:
3258 /*
3259 * The Cyrix 6x86 does not have any Pentium features
3260 * accessible while not at privilege level 0.
3261 */
3262 if (is_x86_feature(x86_featureset, X86FSET_CPUID)) {
3263 (void) strcat(tp, "pentium");
3264 (void) strcat(tp,
3265 is_x86_feature(x86_featureset, X86FSET_MMX) ?
3266 "+mmx pentium " : " ");
3267 }
3268 break;
3269 default:
3270 break;
3271 }
3272 (void) strcat(tp, "i486 i386 i86");
3273 len = strlen(tp) + 1; /* account for NULL at end of string */
3274 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
3275 kmem_free(tp, TBUFSIZE);
3276
3277 #undef TBUFSIZE
3278 }
3279
3280
3281 #ifdef __amd64
3282
3283 void *
3284 device_arena_alloc(size_t size, int vm_flag)
3285 {
3286 return (vmem_alloc(device_arena, size, vm_flag));
3287 }
3288
3289 void
3290 device_arena_free(void *vaddr, size_t size)
3291 {
3292 vmem_free(device_arena, vaddr, size);
3293 }
3294
3295 #else /* __i386 */
3296
3297 void *
3298 device_arena_alloc(size_t size, int vm_flag)
3299 {
3300 caddr_t vaddr;
3301 uintptr_t v;
3302 size_t start;
3303 size_t end;
3304
3305 vaddr = vmem_alloc(heap_arena, size, vm_flag);
3306 if (vaddr == NULL)
3307 return (NULL);
3308
3309 v = (uintptr_t)vaddr;
3310 ASSERT(v >= kernelbase);
3311 ASSERT(v + size <= valloc_base);
3312
3313 start = btop(v - kernelbase);
3314 end = btop(v + size - 1 - kernelbase);
3315 ASSERT(start < toxic_bit_map_len);
3316 ASSERT(end < toxic_bit_map_len);
3317
3318 while (start <= end) {
3319 BT_ATOMIC_SET(toxic_bit_map, start);
3320 ++start;
3321 }
3322 return (vaddr);
3323 }
3324
3325 void
3326 device_arena_free(void *vaddr, size_t size)
3327 {
3328 uintptr_t v = (uintptr_t)vaddr;
3329 size_t start;
3330 size_t end;
3331
3332 ASSERT(v >= kernelbase);
3333 ASSERT(v + size <= valloc_base);
3334
3335 start = btop(v - kernelbase);
3336 end = btop(v + size - 1 - kernelbase);
3337 ASSERT(start < toxic_bit_map_len);
3338 ASSERT(end < toxic_bit_map_len);
3339
3340 while (start <= end) {
3341 ASSERT(BT_TEST(toxic_bit_map, start) != 0);
3342 BT_ATOMIC_CLEAR(toxic_bit_map, start);
3343 ++start;
3344 }
3345 vmem_free(heap_arena, vaddr, size);
3346 }
3347
3348 /*
3349 * returns 1st address in range that is in device arena, or NULL
3350 * if len is not NULL it returns the length of the toxic range
3351 */
3352 void *
3353 device_arena_contains(void *vaddr, size_t size, size_t *len)
3354 {
3355 uintptr_t v = (uintptr_t)vaddr;
3356 uintptr_t eaddr = v + size;
3357 size_t start;
3358 size_t end;
3359
3360 /*
3361 * if called very early by kmdb, just return NULL
3362 */
3363 if (toxic_bit_map == NULL)
3364 return (NULL);
3365
3366 /*
3367 * First check if we're completely outside the bitmap range.
3368 */
3369 if (v >= valloc_base || eaddr < kernelbase)
3370 return (NULL);
3371
3372 /*
3373 * Trim ends of search to look at only what the bitmap covers.
3374 */
3375 if (v < kernelbase)
3376 v = kernelbase;
3377 start = btop(v - kernelbase);
3378 end = btop(eaddr - kernelbase);
3379 if (end >= toxic_bit_map_len)
3380 end = toxic_bit_map_len;
3381
3382 if (bt_range(toxic_bit_map, &start, &end, end) == 0)
3383 return (NULL);
3384
3385 v = kernelbase + ptob(start);
3386 if (len != NULL)
3387 *len = ptob(end - start);
3388 return ((void *)v);
3389 }
3390
3391 #endif /* __i386 */