Print this page
    
NEX-17845 Remove support for BZIP2 from dump
Reviewed by: Sanjay Nadkarni <sanjay.nadkarni@nexenta.com>
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
re #13613 rb4516 Tunables needs volatile keyword
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/i86pc/os/machdep.c
          +++ new/usr/src/uts/i86pc/os/machdep.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  
    | 
      ↓ open down ↓ | 
    13 lines elided | 
    
      ↑ open up ↑ | 
  
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  
  22   22  /*
  23   23   * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
       24 + * Copyright 2018 Nexenta Systems, Inc.  All rights reserved.
  24   25   * Copyright 2017, Joyent, Inc.
  25   26   */
  26   27  /*
  27   28   * Copyright (c) 2010, Intel Corporation.
  28   29   * All rights reserved.
  29   30   */
  30   31  
  31   32  #include <sys/types.h>
  32   33  #include <sys/t_lock.h>
  33   34  #include <sys/param.h>
  34   35  #include <sys/segments.h>
  35   36  #include <sys/sysmacros.h>
  36   37  #include <sys/signal.h>
  37   38  #include <sys/systm.h>
  38   39  #include <sys/user.h>
  39   40  #include <sys/mman.h>
  40   41  #include <sys/vm.h>
  41   42  
  42   43  #include <sys/disp.h>
  43   44  #include <sys/class.h>
  44   45  
  45   46  #include <sys/proc.h>
  46   47  #include <sys/buf.h>
  47   48  #include <sys/kmem.h>
  48   49  
  49   50  #include <sys/reboot.h>
  50   51  #include <sys/uadmin.h>
  51   52  #include <sys/callb.h>
  52   53  
  53   54  #include <sys/cred.h>
  54   55  #include <sys/vnode.h>
  55   56  #include <sys/file.h>
  56   57  
  57   58  #include <sys/procfs.h>
  58   59  #include <sys/acct.h>
  59   60  
  60   61  #include <sys/vfs.h>
  61   62  #include <sys/dnlc.h>
  62   63  #include <sys/var.h>
  63   64  #include <sys/cmn_err.h>
  64   65  #include <sys/utsname.h>
  65   66  #include <sys/debug.h>
  66   67  
  67   68  #include <sys/dumphdr.h>
  68   69  #include <sys/bootconf.h>
  69   70  #include <sys/varargs.h>
  70   71  #include <sys/promif.h>
  71   72  #include <sys/modctl.h>
  72   73  
  73   74  #include <sys/consdev.h>
  74   75  #include <sys/frame.h>
  75   76  
  76   77  #include <sys/sunddi.h>
  77   78  #include <sys/ddidmareq.h>
  78   79  #include <sys/psw.h>
  79   80  #include <sys/regset.h>
  80   81  #include <sys/privregs.h>
  81   82  #include <sys/clock.h>
  82   83  #include <sys/tss.h>
  83   84  #include <sys/cpu.h>
  84   85  #include <sys/stack.h>
  85   86  #include <sys/trap.h>
  86   87  #include <sys/pic.h>
  87   88  #include <vm/hat.h>
  88   89  #include <vm/anon.h>
  89   90  #include <vm/as.h>
  90   91  #include <vm/page.h>
  91   92  #include <vm/seg.h>
  92   93  #include <vm/seg_kmem.h>
  93   94  #include <vm/seg_map.h>
  94   95  #include <vm/seg_vn.h>
  95   96  #include <vm/seg_kp.h>
  96   97  #include <vm/hat_i86.h>
  97   98  #include <sys/swap.h>
  98   99  #include <sys/thread.h>
  99  100  #include <sys/sysconf.h>
 100  101  #include <sys/vm_machparam.h>
 101  102  #include <sys/archsystm.h>
 102  103  #include <sys/machsystm.h>
 103  104  #include <sys/machlock.h>
 104  105  #include <sys/x_call.h>
 105  106  #include <sys/instance.h>
 106  107  
 107  108  #include <sys/time.h>
 108  109  #include <sys/smp_impldefs.h>
 109  110  #include <sys/psm_types.h>
 110  111  #include <sys/atomic.h>
 111  112  #include <sys/panic.h>
 112  113  #include <sys/cpuvar.h>
 113  114  #include <sys/dtrace.h>
 114  115  #include <sys/bl.h>
 115  116  #include <sys/nvpair.h>
 116  117  #include <sys/x86_archext.h>
 117  118  #include <sys/pool_pset.h>
 118  119  #include <sys/autoconf.h>
 119  120  #include <sys/mem.h>
 120  121  #include <sys/dumphdr.h>
 121  122  #include <sys/compress.h>
 122  123  #include <sys/cpu_module.h>
 123  124  #if defined(__xpv)
 124  125  #include <sys/hypervisor.h>
 125  126  #include <sys/xpv_panic.h>
 126  127  #endif
 127  128  
 128  129  #include <sys/fastboot.h>
 129  130  #include <sys/machelf.h>
 130  131  #include <sys/kobj.h>
 131  132  #include <sys/multiboot.h>
 132  133  
 133  134  #ifdef  TRAPTRACE
 134  135  #include <sys/traptrace.h>
 135  136  #endif  /* TRAPTRACE */
 136  137  
 137  138  #include <c2/audit.h>
 138  139  #include <sys/clock_impl.h>
 139  140  
 140  141  extern void audit_enterprom(int);
 141  142  extern void audit_exitprom(int);
 142  143  
 143  144  /*
 144  145   * Tunable to enable apix PSM; if set to 0, pcplusmp PSM will be used.
 145  146   */
 146  147  int     apix_enable = 1;
 147  148  
 148  149  int     apic_nvidia_io_max = 0; /* no. of NVIDIA i/o apics */
 149  150  
 150  151  /*
 151  152   * Occassionally the kernel knows better whether to power-off or reboot.
 152  153   */
 153  154  int force_shutdown_method = AD_UNKNOWN;
 154  155  
 155  156  /*
 156  157   * The panicbuf array is used to record messages and state:
 157  158   */
 158  159  char panicbuf[PANICBUFSIZE];
 159  160  
 160  161  /*
 161  162   * Flags to control Dynamic Reconfiguration features.
 162  163   */
 163  164  uint64_t plat_dr_options;
  
    | 
      ↓ open down ↓ | 
    130 lines elided | 
    
      ↑ open up ↑ | 
  
 164  165  
 165  166  /*
 166  167   * Maximum physical address for memory DR operations.
 167  168   */
 168  169  uint64_t plat_dr_physmax;
 169  170  
 170  171  /*
 171  172   * maxphys - used during physio
 172  173   * klustsize - used for klustering by swapfs and specfs
 173  174   */
 174      -int maxphys = 56 * 1024;    /* XXX See vm_subr.c - max b_count in physio */
      175 +volatile int maxphys = 56 * 1024; /* See vm_subr.c - max b_bcount in physio */
 175  176  int klustsize = 56 * 1024;
 176  177  
 177  178  caddr_t p0_va;          /* Virtual address for accessing physical page 0 */
 178  179  
 179  180  /*
 180  181   * defined here, though unused on x86,
 181  182   * to make kstat_fr.c happy.
 182  183   */
 183  184  int vac;
 184  185  
 185  186  void debug_enter(char *);
 186  187  
 187  188  extern void pm_cfb_check_and_powerup(void);
 188  189  extern void pm_cfb_rele(void);
 189  190  
 190  191  extern fastboot_info_t newkernel;
 191  192  
 192  193  /*
 193  194   * Machine dependent code to reboot.
 194  195   * "mdep" is interpreted as a character pointer; if non-null, it is a pointer
 195  196   * to a string to be used as the argument string when rebooting.
 196  197   *
 197  198   * "invoke_cb" is a boolean. It is set to true when mdboot() can safely
 198  199   * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when
 199  200   * we are in a normal shutdown sequence (interrupts are not blocked, the
 200  201   * system is not panic'ing or being suspended).
 201  202   */
 202  203  /*ARGSUSED*/
 203  204  void
 204  205  mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb)
 205  206  {
 206  207          processorid_t bootcpuid = 0;
 207  208          static int is_first_quiesce = 1;
 208  209          static int is_first_reset = 1;
 209  210          int reset_status = 0;
 210  211          static char fallback_str[] = "Falling back to regular reboot.\n";
 211  212  
 212  213          if (fcn == AD_FASTREBOOT && !newkernel.fi_valid)
 213  214                  fcn = AD_BOOT;
 214  215  
 215  216          if (!panicstr) {
 216  217                  kpreempt_disable();
 217  218                  if (fcn == AD_FASTREBOOT) {
 218  219                          mutex_enter(&cpu_lock);
 219  220                          if (CPU_ACTIVE(cpu_get(bootcpuid))) {
 220  221                                  affinity_set(bootcpuid);
 221  222                          }
 222  223                          mutex_exit(&cpu_lock);
 223  224                  } else {
 224  225                          affinity_set(CPU_CURRENT);
 225  226                  }
 226  227          }
 227  228  
 228  229          if (force_shutdown_method != AD_UNKNOWN)
 229  230                  fcn = force_shutdown_method;
 230  231  
 231  232          /*
 232  233           * XXX - rconsvp is set to NULL to ensure that output messages
 233  234           * are sent to the underlying "hardware" device using the
 234  235           * monitor's printf routine since we are in the process of
 235  236           * either rebooting or halting the machine.
 236  237           */
 237  238          rconsvp = NULL;
 238  239  
 239  240          /*
 240  241           * Print the reboot message now, before pausing other cpus.
 241  242           * There is a race condition in the printing support that
 242  243           * can deadlock multiprocessor machines.
 243  244           */
 244  245          if (!(fcn == AD_HALT || fcn == AD_POWEROFF))
 245  246                  prom_printf("rebooting...\n");
 246  247  
 247  248          if (IN_XPV_PANIC())
 248  249                  reset();
 249  250  
 250  251          /*
 251  252           * We can't bring up the console from above lock level, so do it now
 252  253           */
 253  254          pm_cfb_check_and_powerup();
 254  255  
 255  256          /* make sure there are no more changes to the device tree */
 256  257          devtree_freeze();
 257  258  
 258  259          if (invoke_cb)
 259  260                  (void) callb_execute_class(CB_CL_MDBOOT, NULL);
 260  261  
 261  262          /*
 262  263           * Clear any unresolved UEs from memory.
 263  264           */
 264  265          page_retire_mdboot();
 265  266  
 266  267  #if defined(__xpv)
 267  268          /*
 268  269           * XXPV Should probably think some more about how we deal
 269  270           *      with panicing before it's really safe to panic.
 270  271           *      On hypervisors, we reboot very quickly..  Perhaps panic
 271  272           *      should only attempt to recover by rebooting if,
 272  273           *      say, we were able to mount the root filesystem,
 273  274           *      or if we successfully launched init(1m).
 274  275           */
 275  276          if (panicstr && proc_init == NULL)
 276  277                  (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff);
 277  278  #endif
 278  279          /*
 279  280           * stop other cpus and raise our priority.  since there is only
 280  281           * one active cpu after this, and our priority will be too high
 281  282           * for us to be preempted, we're essentially single threaded
 282  283           * from here on out.
 283  284           */
 284  285          (void) spl6();
 285  286          if (!panicstr) {
 286  287                  mutex_enter(&cpu_lock);
 287  288                  pause_cpus(NULL, NULL);
 288  289                  mutex_exit(&cpu_lock);
 289  290          }
 290  291  
 291  292          /*
 292  293           * If the system is panicking, the preloaded kernel is valid, and
 293  294           * fastreboot_onpanic has been set, and the system has been up for
 294  295           * longer than fastreboot_onpanic_uptime (default to 10 minutes),
 295  296           * choose Fast Reboot.
 296  297           */
 297  298          if (fcn == AD_BOOT && panicstr && newkernel.fi_valid &&
 298  299              fastreboot_onpanic &&
 299  300              (panic_lbolt - lbolt_at_boot) > fastreboot_onpanic_uptime) {
 300  301                  fcn = AD_FASTREBOOT;
 301  302          }
 302  303  
 303  304          /*
 304  305           * Try to quiesce devices.
 305  306           */
 306  307          if (is_first_quiesce) {
 307  308                  /*
 308  309                   * Clear is_first_quiesce before calling quiesce_devices()
 309  310                   * so that if quiesce_devices() causes panics, it will not
 310  311                   * be invoked again.
 311  312                   */
 312  313                  is_first_quiesce = 0;
 313  314  
 314  315                  quiesce_active = 1;
 315  316                  quiesce_devices(ddi_root_node(), &reset_status);
 316  317                  if (reset_status == -1) {
 317  318                          if (fcn == AD_FASTREBOOT && !force_fastreboot) {
 318  319                                  prom_printf("Driver(s) not capable of fast "
 319  320                                      "reboot.\n");
 320  321                                  prom_printf(fallback_str);
 321  322                                  fastreboot_capable = 0;
 322  323                                  fcn = AD_BOOT;
 323  324                          } else if (fcn != AD_FASTREBOOT)
 324  325                                  fastreboot_capable = 0;
 325  326                  }
 326  327                  quiesce_active = 0;
 327  328          }
 328  329  
 329  330          /*
 330  331           * Try to reset devices. reset_leaves() should only be called
 331  332           * a) when there are no other threads that could be accessing devices,
 332  333           *    and
 333  334           * b) on a system that's not capable of fast reboot (fastreboot_capable
 334  335           *    being 0), or on a system where quiesce_devices() failed to
 335  336           *    complete (quiesce_active being 1).
 336  337           */
 337  338          if (is_first_reset && (!fastreboot_capable || quiesce_active)) {
 338  339                  /*
 339  340                   * Clear is_first_reset before calling reset_devices()
 340  341                   * so that if reset_devices() causes panics, it will not
 341  342                   * be invoked again.
 342  343                   */
 343  344                  is_first_reset = 0;
 344  345                  reset_leaves();
 345  346          }
 346  347  
 347  348          /* Verify newkernel checksum */
 348  349          if (fastreboot_capable && fcn == AD_FASTREBOOT &&
 349  350              fastboot_cksum_verify(&newkernel) != 0) {
 350  351                  fastreboot_capable = 0;
 351  352                  prom_printf("Fast reboot: checksum failed for the new "
 352  353                      "kernel.\n");
 353  354                  prom_printf(fallback_str);
 354  355          }
 355  356  
 356  357          (void) spl8();
 357  358  
 358  359          if (fastreboot_capable && fcn == AD_FASTREBOOT) {
 359  360                  /*
 360  361                   * psm_shutdown is called within fast_reboot()
 361  362                   */
 362  363                  fast_reboot();
 363  364          } else {
 364  365                  (*psm_shutdownf)(cmd, fcn);
 365  366  
 366  367                  if (fcn == AD_HALT || fcn == AD_POWEROFF)
 367  368                          halt((char *)NULL);
 368  369                  else
 369  370                          prom_reboot("");
 370  371          }
 371  372          /*NOTREACHED*/
 372  373  }
 373  374  
 374  375  /* mdpreboot - may be called prior to mdboot while root fs still mounted */
 375  376  /*ARGSUSED*/
 376  377  void
 377  378  mdpreboot(int cmd, int fcn, char *mdep)
 378  379  {
 379  380          if (fcn == AD_FASTREBOOT && !fastreboot_capable) {
 380  381                  fcn = AD_BOOT;
 381  382  #ifdef  __xpv
 382  383                  cmn_err(CE_WARN, "Fast reboot is not supported on xVM");
 383  384  #else
 384  385                  cmn_err(CE_WARN,
 385  386                      "Fast reboot is not supported on this platform%s",
 386  387                      fastreboot_nosup_message());
 387  388  #endif
 388  389          }
 389  390  
 390  391          if (fcn == AD_FASTREBOOT) {
 391  392                  fastboot_load_kernel(mdep);
 392  393                  if (!newkernel.fi_valid)
 393  394                          fcn = AD_BOOT;
 394  395          }
 395  396  
 396  397          (*psm_preshutdownf)(cmd, fcn);
 397  398  }
 398  399  
 399  400  static void
 400  401  stop_other_cpus(void)
 401  402  {
 402  403          ulong_t s = clear_int_flag(); /* fast way to keep CPU from changing */
 403  404          cpuset_t xcset;
 404  405  
 405  406          CPUSET_ALL_BUT(xcset, CPU->cpu_id);
 406  407          xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)mach_cpu_halt);
 407  408          restore_int_flag(s);
 408  409  }
 409  410  
 410  411  /*
 411  412   *      Machine dependent abort sequence handling
 412  413   */
 413  414  void
 414  415  abort_sequence_enter(char *msg)
 415  416  {
 416  417          if (abort_enable == 0) {
 417  418                  if (AU_ZONE_AUDITING(GET_KCTX_GZ))
 418  419                          audit_enterprom(0);
 419  420                  return;
 420  421          }
 421  422          if (AU_ZONE_AUDITING(GET_KCTX_GZ))
 422  423                  audit_enterprom(1);
 423  424          debug_enter(msg);
 424  425          if (AU_ZONE_AUDITING(GET_KCTX_GZ))
 425  426                  audit_exitprom(1);
 426  427  }
 427  428  
 428  429  /*
 429  430   * Enter debugger.  Called when the user types ctrl-alt-d or whenever
 430  431   * code wants to enter the debugger and possibly resume later.
 431  432   *
 432  433   * msg: message to print, possibly NULL.
 433  434   */
 434  435  void
 435  436  debug_enter(char *msg)
 436  437  {
 437  438          if (dtrace_debugger_init != NULL)
 438  439                  (*dtrace_debugger_init)();
 439  440  
 440  441          if (msg != NULL || (boothowto & RB_DEBUG))
 441  442                  prom_printf("\n");
 442  443  
 443  444          if (msg != NULL)
 444  445                  prom_printf("%s\n", msg);
 445  446  
 446  447          if (boothowto & RB_DEBUG)
 447  448                  kmdb_enter();
 448  449  
 449  450          if (dtrace_debugger_fini != NULL)
 450  451                  (*dtrace_debugger_fini)();
 451  452  }
 452  453  
 453  454  void
 454  455  reset(void)
 455  456  {
 456  457          extern  void acpi_reset_system();
 457  458  #if !defined(__xpv)
 458  459          ushort_t *bios_memchk;
 459  460  
 460  461          /*
 461  462           * Can't use psm_map_phys or acpi_reset_system before the hat is
 462  463           * initialized.
 463  464           */
 464  465          if (khat_running) {
 465  466                  bios_memchk = (ushort_t *)psm_map_phys(0x472,
 466  467                      sizeof (ushort_t), PROT_READ | PROT_WRITE);
 467  468                  if (bios_memchk)
 468  469                          *bios_memchk = 0x1234;  /* bios memory check disable */
 469  470  
 470  471                  if (options_dip != NULL &&
 471  472                      ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0,
 472  473                      "efi-systab")) {
 473  474                          if (bootops == NULL)
 474  475                                  acpi_reset_system();
 475  476                          efi_reset();
 476  477                  }
 477  478  
 478  479                  /*
 479  480                   * The problem with using stubs is that we can call
 480  481                   * acpi_reset_system only after the kernel is up and running.
 481  482                   *
 482  483                   * We should create a global state to keep track of how far
 483  484                   * up the kernel is but for the time being we will depend on
 484  485                   * bootops. bootops cleared in startup_end().
 485  486                   */
 486  487                  if (bootops == NULL)
 487  488                          acpi_reset_system();
 488  489          }
 489  490  
 490  491          pc_reset();
 491  492  #else
 492  493          if (IN_XPV_PANIC()) {
 493  494                  if (khat_running && bootops == NULL) {
 494  495                          acpi_reset_system();
 495  496                  }
 496  497  
 497  498                  pc_reset();
 498  499          }
 499  500  
 500  501          (void) HYPERVISOR_shutdown(SHUTDOWN_reboot);
 501  502          panic("HYPERVISOR_shutdown() failed");
 502  503  #endif
 503  504          /*NOTREACHED*/
 504  505  }
 505  506  
 506  507  /*
 507  508   * Halt the machine and return to the monitor
 508  509   */
 509  510  void
 510  511  halt(char *s)
 511  512  {
 512  513          stop_other_cpus();      /* send stop signal to other CPUs */
 513  514          if (s)
 514  515                  prom_printf("(%s) \n", s);
 515  516          prom_exit_to_mon();
 516  517          /*NOTREACHED*/
 517  518  }
 518  519  
 519  520  /*
 520  521   * Initiate interrupt redistribution.
 521  522   */
 522  523  void
 523  524  i_ddi_intr_redist_all_cpus()
 524  525  {
 525  526  }
 526  527  
 527  528  /*
 528  529   * XXX These probably ought to live somewhere else
 529  530   * XXX They are called from mem.c
 530  531   */
 531  532  
 532  533  /*
 533  534   * Convert page frame number to an OBMEM page frame number
 534  535   * (i.e. put in the type bits -- zero for this implementation)
 535  536   */
 536  537  pfn_t
 537  538  impl_obmem_pfnum(pfn_t pf)
 538  539  {
 539  540          return (pf);
 540  541  }
 541  542  
 542  543  #ifdef  NM_DEBUG
 543  544  int nmi_test = 0;       /* checked in intentry.s during clock int */
 544  545  int nmtest = -1;
 545  546  nmfunc1(int arg, struct regs *rp)
 546  547  {
 547  548          printf("nmi called with arg = %x, regs = %x\n", arg, rp);
 548  549          nmtest += 50;
 549  550          if (arg == nmtest) {
 550  551                  printf("ip = %x\n", rp->r_pc);
 551  552                  return (1);
 552  553          }
 553  554          return (0);
 554  555  }
 555  556  
 556  557  #endif
 557  558  
 558  559  #include <sys/bootsvcs.h>
 559  560  
 560  561  /* Hacked up initialization for initial kernel check out is HERE. */
 561  562  /* The basic steps are: */
 562  563  /*      kernel bootfuncs definition/initialization for KADB */
 563  564  /*      kadb bootfuncs pointer initialization */
 564  565  /*      putchar/getchar (interrupts disabled) */
 565  566  
 566  567  /* kadb bootfuncs pointer initialization */
 567  568  
 568  569  int
 569  570  sysp_getchar()
 570  571  {
 571  572          int i;
 572  573          ulong_t s;
 573  574  
 574  575          if (cons_polledio == NULL) {
 575  576                  /* Uh oh */
 576  577                  prom_printf("getchar called with no console\n");
 577  578                  for (;;)
 578  579                          /* LOOP FOREVER */;
 579  580          }
 580  581  
 581  582          s = clear_int_flag();
 582  583          i = cons_polledio->cons_polledio_getchar(
 583  584              cons_polledio->cons_polledio_argument);
 584  585          restore_int_flag(s);
 585  586          return (i);
 586  587  }
 587  588  
 588  589  void
 589  590  sysp_putchar(int c)
 590  591  {
 591  592          ulong_t s;
 592  593  
 593  594          /*
 594  595           * We have no alternative but to drop the output on the floor.
 595  596           */
 596  597          if (cons_polledio == NULL ||
 597  598              cons_polledio->cons_polledio_putchar == NULL)
 598  599                  return;
 599  600  
 600  601          s = clear_int_flag();
 601  602          cons_polledio->cons_polledio_putchar(
 602  603              cons_polledio->cons_polledio_argument, c);
 603  604          restore_int_flag(s);
 604  605  }
 605  606  
 606  607  int
 607  608  sysp_ischar()
 608  609  {
 609  610          int i;
 610  611          ulong_t s;
 611  612  
 612  613          if (cons_polledio == NULL ||
 613  614              cons_polledio->cons_polledio_ischar == NULL)
 614  615                  return (0);
 615  616  
 616  617          s = clear_int_flag();
 617  618          i = cons_polledio->cons_polledio_ischar(
 618  619              cons_polledio->cons_polledio_argument);
 619  620          restore_int_flag(s);
 620  621          return (i);
 621  622  }
 622  623  
 623  624  int
 624  625  goany(void)
 625  626  {
 626  627          prom_printf("Type any key to continue ");
 627  628          (void) prom_getchar();
 628  629          prom_printf("\n");
 629  630          return (1);
 630  631  }
 631  632  
 632  633  static struct boot_syscalls kern_sysp = {
 633  634          sysp_getchar,   /*      unchar  (*getchar)();   7  */
 634  635          sysp_putchar,   /*      int     (*putchar)();   8  */
 635  636          sysp_ischar,    /*      int     (*ischar)();    9  */
 636  637  };
 637  638  
 638  639  #if defined(__xpv)
 639  640  int using_kern_polledio;
 640  641  #endif
 641  642  
 642  643  void
 643  644  kadb_uses_kernel()
 644  645  {
 645  646          /*
 646  647           * This routine is now totally misnamed, since it does not in fact
 647  648           * control kadb's I/O; it only controls the kernel's prom_* I/O.
 648  649           */
 649  650          sysp = &kern_sysp;
 650  651  #if defined(__xpv)
 651  652          using_kern_polledio = 1;
 652  653  #endif
 653  654  }
 654  655  
 655  656  /*
 656  657   *      the interface to the outside world
 657  658   */
 658  659  
 659  660  /*
 660  661   * poll_port -- wait for a register to achieve a
 661  662   *              specific state.  Arguments are a mask of bits we care about,
 662  663   *              and two sub-masks.  To return normally, all the bits in the
 663  664   *              first sub-mask must be ON, all the bits in the second sub-
 664  665   *              mask must be OFF.  If about seconds pass without the register
 665  666   *              achieving the desired bit configuration, we return 1, else
 666  667   *              0.
 667  668   */
 668  669  int
 669  670  poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits)
 670  671  {
 671  672          int i;
 672  673          ushort_t maskval;
 673  674  
 674  675          for (i = 500000; i; i--) {
 675  676                  maskval = inb(port) & mask;
 676  677                  if (((maskval & onbits) == onbits) &&
 677  678                      ((maskval & offbits) == 0))
 678  679                          return (0);
 679  680                  drv_usecwait(10);
 680  681          }
 681  682          return (1);
 682  683  }
 683  684  
 684  685  /*
 685  686   * set_idle_cpu is called from idle() when a CPU becomes idle.
 686  687   */
 687  688  /*LINTED: static unused */
 688  689  static uint_t last_idle_cpu;
 689  690  
 690  691  /*ARGSUSED*/
 691  692  void
 692  693  set_idle_cpu(int cpun)
 693  694  {
 694  695          last_idle_cpu = cpun;
 695  696          (*psm_set_idle_cpuf)(cpun);
 696  697  }
 697  698  
 698  699  /*
 699  700   * unset_idle_cpu is called from idle() when a CPU is no longer idle.
 700  701   */
 701  702  /*ARGSUSED*/
 702  703  void
 703  704  unset_idle_cpu(int cpun)
 704  705  {
 705  706          (*psm_unset_idle_cpuf)(cpun);
 706  707  }
 707  708  
 708  709  /*
 709  710   * This routine is almost correct now, but not quite.  It still needs the
 710  711   * equivalent concept of "hres_last_tick", just like on the sparc side.
 711  712   * The idea is to take a snapshot of the hi-res timer while doing the
 712  713   * hrestime_adj updates under hres_lock in locore, so that the small
 713  714   * interval between interrupt assertion and interrupt processing is
 714  715   * accounted for correctly.  Once we have this, the code below should
 715  716   * be modified to subtract off hres_last_tick rather than hrtime_base.
 716  717   *
 717  718   * I'd have done this myself, but I don't have source to all of the
 718  719   * vendor-specific hi-res timer routines (grrr...).  The generic hook I
 719  720   * need is something like "gethrtime_unlocked()", which would be just like
 720  721   * gethrtime() but would assume that you're already holding CLOCK_LOCK().
 721  722   * This is what the GET_HRTIME() macro is for on sparc (although it also
 722  723   * serves the function of making time available without a function call
 723  724   * so you don't take a register window overflow while traps are disabled).
 724  725   */
 725  726  void
 726  727  pc_gethrestime(timestruc_t *tp)
 727  728  {
 728  729          int lock_prev;
 729  730          timestruc_t now;
 730  731          int nslt;               /* nsec since last tick */
 731  732          int adj;                /* amount of adjustment to apply */
 732  733  
 733  734  loop:
 734  735          lock_prev = hres_lock;
 735  736          now = hrestime;
 736  737          nslt = (int)(gethrtime() - hres_last_tick);
 737  738          if (nslt < 0) {
 738  739                  /*
 739  740                   * nslt < 0 means a tick came between sampling
 740  741                   * gethrtime() and hres_last_tick; restart the loop
 741  742                   */
 742  743  
 743  744                  goto loop;
 744  745          }
 745  746          now.tv_nsec += nslt;
 746  747          if (hrestime_adj != 0) {
 747  748                  if (hrestime_adj > 0) {
 748  749                          adj = (nslt >> ADJ_SHIFT);
 749  750                          if (adj > hrestime_adj)
 750  751                                  adj = (int)hrestime_adj;
 751  752                  } else {
 752  753                          adj = -(nslt >> ADJ_SHIFT);
 753  754                          if (adj < hrestime_adj)
 754  755                                  adj = (int)hrestime_adj;
 755  756                  }
 756  757                  now.tv_nsec += adj;
 757  758          }
 758  759          while ((unsigned long)now.tv_nsec >= NANOSEC) {
 759  760  
 760  761                  /*
 761  762                   * We might have a large adjustment or have been in the
 762  763                   * debugger for a long time; take care of (at most) four
 763  764                   * of those missed seconds (tv_nsec is 32 bits, so
 764  765                   * anything >4s will be wrapping around).  However,
 765  766                   * anything more than 2 seconds out of sync will trigger
 766  767                   * timedelta from clock() to go correct the time anyway,
 767  768                   * so do what we can, and let the big crowbar do the
 768  769                   * rest.  A similar correction while loop exists inside
 769  770                   * hres_tick(); in all cases we'd like tv_nsec to
 770  771                   * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing
 771  772                   * user processes, but if tv_sec's a little behind for a
 772  773                   * little while, that's OK; time still monotonically
 773  774                   * increases.
 774  775                   */
 775  776  
 776  777                  now.tv_nsec -= NANOSEC;
 777  778                  now.tv_sec++;
 778  779          }
 779  780          if ((hres_lock & ~1) != lock_prev)
 780  781                  goto loop;
 781  782  
 782  783          *tp = now;
 783  784  }
 784  785  
 785  786  void
 786  787  gethrestime_lasttick(timespec_t *tp)
 787  788  {
 788  789          int s;
 789  790  
 790  791          s = hr_clock_lock();
 791  792          *tp = hrestime;
 792  793          hr_clock_unlock(s);
 793  794  }
 794  795  
 795  796  time_t
 796  797  gethrestime_sec(void)
 797  798  {
 798  799          timestruc_t now;
 799  800  
 800  801          gethrestime(&now);
 801  802          return (now.tv_sec);
 802  803  }
 803  804  
 804  805  /*
 805  806   * Initialize a kernel thread's stack
 806  807   */
 807  808  
 808  809  caddr_t
 809  810  thread_stk_init(caddr_t stk)
 810  811  {
 811  812          ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0);
 812  813          return (stk - SA(MINFRAME));
 813  814  }
 814  815  
 815  816  /*
 816  817   * Initialize lwp's kernel stack.
 817  818   */
 818  819  
 819  820  #ifdef TRAPTRACE
 820  821  /*
 821  822   * There's a tricky interdependency here between use of sysenter and
 822  823   * TRAPTRACE which needs recording to avoid future confusion (this is
 823  824   * about the third time I've re-figured this out ..)
 824  825   *
 825  826   * Here's how debugging lcall works with TRAPTRACE.
 826  827   *
 827  828   * 1 We're in userland with a breakpoint on the lcall instruction.
 828  829   * 2 We execute the instruction - the instruction pushes the userland
 829  830   *   %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel
 830  831   *   via the call gate.
 831  832   * 3 The hardware raises a debug trap in kernel mode, the hardware
 832  833   *   pushes %efl, %cs, %eip and gets to dbgtrap via the idt.
 833  834   * 4 dbgtrap pushes the error code and trapno and calls cmntrap
 834  835   * 5 cmntrap finishes building a trap frame
 835  836   * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk
 836  837   *   off the stack into the traptrace buffer.
 837  838   *
 838  839   * This means that the traptrace buffer contains the wrong values in
 839  840   * %esp and %ss, but everything else in there is correct.
 840  841   *
 841  842   * Here's how debugging sysenter works with TRAPTRACE.
 842  843   *
 843  844   * a We're in userland with a breakpoint on the sysenter instruction.
 844  845   * b We execute the instruction - the instruction pushes -nothing-
 845  846   *   on the stack, but sets %cs, %eip, %ss, %esp to prearranged
 846  847   *   values to take us to sys_sysenter, at the top of the lwp's
 847  848   *   stack.
 848  849   * c goto 3
 849  850   *
 850  851   * At this point, because we got into the kernel without the requisite
 851  852   * five pushes on the stack, if we didn't make extra room, we'd
 852  853   * end up with the TRACE_REGS macro fetching the saved %ss and %esp
 853  854   * values from negative (unmapped) stack addresses -- which really bites.
 854  855   * That's why we do the '-= 8' below.
 855  856   *
 856  857   * XXX  Note that reading "up" lwp0's stack works because t0 is declared
 857  858   *      right next to t0stack in locore.s
 858  859   */
 859  860  #endif
 860  861  
 861  862  caddr_t
 862  863  lwp_stk_init(klwp_t *lwp, caddr_t stk)
 863  864  {
 864  865          caddr_t oldstk;
 865  866          struct pcb *pcb = &lwp->lwp_pcb;
 866  867  
 867  868          oldstk = stk;
 868  869          stk -= SA(sizeof (struct regs) + SA(MINFRAME));
 869  870  #ifdef TRAPTRACE
 870  871          stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */
 871  872  #endif
 872  873          stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul));
 873  874          bzero(stk, oldstk - stk);
 874  875          lwp->lwp_regs = (void *)(stk + SA(MINFRAME));
 875  876  
 876  877          /*
 877  878           * Arrange that the virtualized %fs and %gs GDT descriptors
 878  879           * have a well-defined initial state (present, ring 3
 879  880           * and of type data).
 880  881           */
 881  882  #if defined(__amd64)
 882  883          if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE)
 883  884                  pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
 884  885          else
 885  886                  pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc;
 886  887  #elif defined(__i386)
 887  888          pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
 888  889  #endif  /* __i386 */
 889  890          lwp_installctx(lwp);
 890  891          return (stk);
 891  892  }
 892  893  
 893  894  /*
 894  895   * Use this opportunity to free any dynamically allocated fp storage.
 895  896   */
 896  897  void
 897  898  lwp_stk_fini(klwp_t *lwp)
 898  899  {
 899  900          fp_lwp_cleanup(lwp);
 900  901  }
 901  902  
 902  903  void
 903  904  lwp_fp_init(klwp_t *lwp)
 904  905  {
 905  906          fp_lwp_init(lwp);
 906  907  }
 907  908  
 908  909  /*
 909  910   * If we're not the panic CPU, we wait in panic_idle for reboot.
 910  911   */
 911  912  void
 912  913  panic_idle(void)
 913  914  {
 914  915          splx(ipltospl(CLOCK_LEVEL));
 915  916          (void) setjmp(&curthread->t_pcb);
 916  917  
 917  918          dumpsys_helper();
 918  919  
 919  920  #ifndef __xpv
 920  921          for (;;)
 921  922                  i86_halt();
 922  923  #else
 923  924          for (;;)
 924  925                  ;
 925  926  #endif
 926  927  }
 927  928  
 928  929  /*
 929  930   * Stop the other CPUs by cross-calling them and forcing them to enter
 930  931   * the panic_idle() loop above.
 931  932   */
 932  933  /*ARGSUSED*/
 933  934  void
 934  935  panic_stopcpus(cpu_t *cp, kthread_t *t, int spl)
 935  936  {
 936  937          processorid_t i;
 937  938          cpuset_t xcset;
 938  939  
 939  940          /*
 940  941           * In the case of a Xen panic, the hypervisor has already stopped
 941  942           * all of the CPUs.
 942  943           */
 943  944          if (!IN_XPV_PANIC()) {
 944  945                  (void) splzs();
 945  946  
 946  947                  CPUSET_ALL_BUT(xcset, cp->cpu_id);
 947  948                  xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)panic_idle);
 948  949          }
 949  950  
 950  951          for (i = 0; i < NCPU; i++) {
 951  952                  if (i != cp->cpu_id && cpu[i] != NULL &&
 952  953                      (cpu[i]->cpu_flags & CPU_EXISTS))
 953  954                          cpu[i]->cpu_flags |= CPU_QUIESCED;
 954  955          }
 955  956  }
 956  957  
 957  958  /*
 958  959   * Platform callback following each entry to panicsys().
 959  960   */
 960  961  /*ARGSUSED*/
 961  962  void
 962  963  panic_enter_hw(int spl)
 963  964  {
 964  965          /* Nothing to do here */
 965  966  }
 966  967  
 967  968  /*
 968  969   * Platform-specific code to execute after panicstr is set: we invoke
 969  970   * the PSM entry point to indicate that a panic has occurred.
 970  971   */
 971  972  /*ARGSUSED*/
 972  973  void
 973  974  panic_quiesce_hw(panic_data_t *pdp)
 974  975  {
 975  976          psm_notifyf(PSM_PANIC_ENTER);
 976  977  
 977  978          cmi_panic_callback();
 978  979  
 979  980  #ifdef  TRAPTRACE
 980  981          /*
 981  982           * Turn off TRAPTRACE
 982  983           */
 983  984          TRAPTRACE_FREEZE;
 984  985  #endif  /* TRAPTRACE */
 985  986  }
 986  987  
 987  988  /*
 988  989   * Platform callback prior to writing crash dump.
 989  990   */
 990  991  /*ARGSUSED*/
 991  992  void
 992  993  panic_dump_hw(int spl)
 993  994  {
 994  995          /* Nothing to do here */
 995  996  }
 996  997  
 997  998  void *
 998  999  plat_traceback(void *fpreg)
 999 1000  {
1000 1001  #ifdef __xpv
1001 1002          if (IN_XPV_PANIC())
1002 1003                  return (xpv_traceback(fpreg));
1003 1004  #endif
1004 1005          return (fpreg);
1005 1006  }
1006 1007  
1007 1008  /*ARGSUSED*/
1008 1009  void
1009 1010  plat_tod_fault(enum tod_fault_type tod_bad)
1010 1011  {}
1011 1012  
1012 1013  /*ARGSUSED*/
1013 1014  int
1014 1015  blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class)
1015 1016  {
1016 1017          return (ENOTSUP);
1017 1018  }
1018 1019  
1019 1020  /*
1020 1021   * The underlying console output routines are protected by raising IPL in case
1021 1022   * we are still calling into the early boot services.  Once we start calling
1022 1023   * the kernel console emulator, it will disable interrupts completely during
1023 1024   * character rendering (see sysp_putchar, for example).  Refer to the comments
1024 1025   * and code in common/os/console.c for more information on these callbacks.
1025 1026   */
1026 1027  /*ARGSUSED*/
1027 1028  int
1028 1029  console_enter(int busy)
1029 1030  {
1030 1031          return (splzs());
1031 1032  }
1032 1033  
1033 1034  /*ARGSUSED*/
1034 1035  void
1035 1036  console_exit(int busy, int spl)
1036 1037  {
1037 1038          splx(spl);
1038 1039  }
1039 1040  
1040 1041  /*
1041 1042   * Allocate a region of virtual address space, unmapped.
1042 1043   * Stubbed out except on sparc, at least for now.
1043 1044   */
1044 1045  /*ARGSUSED*/
1045 1046  void *
1046 1047  boot_virt_alloc(void *addr, size_t size)
1047 1048  {
1048 1049          return (addr);
1049 1050  }
1050 1051  
1051 1052  volatile unsigned long  tenmicrodata;
1052 1053  
1053 1054  void
1054 1055  tenmicrosec(void)
1055 1056  {
1056 1057          extern int gethrtime_hires;
1057 1058  
1058 1059          if (gethrtime_hires) {
1059 1060                  hrtime_t start, end;
1060 1061                  start = end =  gethrtime();
1061 1062                  while ((end - start) < (10 * (NANOSEC / MICROSEC))) {
1062 1063                          SMT_PAUSE();
1063 1064                          end = gethrtime();
1064 1065                  }
1065 1066          } else {
1066 1067  #if defined(__xpv)
1067 1068                  hrtime_t newtime;
1068 1069  
1069 1070                  newtime = xpv_gethrtime() + 10000; /* now + 10 us */
1070 1071                  while (xpv_gethrtime() < newtime)
1071 1072                          SMT_PAUSE();
1072 1073  #else   /* __xpv */
1073 1074                  int i;
1074 1075  
1075 1076                  /*
1076 1077                   * Artificial loop to induce delay.
1077 1078                   */
1078 1079                  for (i = 0; i < microdata; i++)
1079 1080                          tenmicrodata = microdata;
1080 1081  #endif  /* __xpv */
1081 1082          }
1082 1083  }
1083 1084  
1084 1085  /*
1085 1086   * get_cpu_mstate() is passed an array of timestamps, NCMSTATES
1086 1087   * long, and it fills in the array with the time spent on cpu in
1087 1088   * each of the mstates, where time is returned in nsec.
1088 1089   *
1089 1090   * No guarantee is made that the returned values in times[] will
1090 1091   * monotonically increase on sequential calls, although this will
1091 1092   * be true in the long run. Any such guarantee must be handled by
1092 1093   * the caller, if needed. This can happen if we fail to account
1093 1094   * for elapsed time due to a generation counter conflict, yet we
1094 1095   * did account for it on a prior call (see below).
1095 1096   *
1096 1097   * The complication is that the cpu in question may be updating
1097 1098   * its microstate at the same time that we are reading it.
1098 1099   * Because the microstate is only updated when the CPU's state
1099 1100   * changes, the values in cpu_intracct[] can be indefinitely out
1100 1101   * of date. To determine true current values, it is necessary to
1101 1102   * compare the current time with cpu_mstate_start, and add the
1102 1103   * difference to times[cpu_mstate].
1103 1104   *
1104 1105   * This can be a problem if those values are changing out from
1105 1106   * under us. Because the code path in new_cpu_mstate() is
1106 1107   * performance critical, we have not added a lock to it. Instead,
1107 1108   * we have added a generation counter. Before beginning
1108 1109   * modifications, the counter is set to 0. After modifications,
1109 1110   * it is set to the old value plus one.
1110 1111   *
1111 1112   * get_cpu_mstate() will not consider the values of cpu_mstate
1112 1113   * and cpu_mstate_start to be usable unless the value of
1113 1114   * cpu_mstate_gen is both non-zero and unchanged, both before and
1114 1115   * after reading the mstate information. Note that we must
1115 1116   * protect against out-of-order loads around accesses to the
1116 1117   * generation counter. Also, this is a best effort approach in
1117 1118   * that we do not retry should the counter be found to have
1118 1119   * changed.
1119 1120   *
1120 1121   * cpu_intracct[] is used to identify time spent in each CPU
1121 1122   * mstate while handling interrupts. Such time should be reported
1122 1123   * against system time, and so is subtracted out from its
1123 1124   * corresponding cpu_acct[] time and added to
1124 1125   * cpu_acct[CMS_SYSTEM].
1125 1126   */
1126 1127  
1127 1128  void
1128 1129  get_cpu_mstate(cpu_t *cpu, hrtime_t *times)
1129 1130  {
1130 1131          int i;
1131 1132          hrtime_t now, start;
1132 1133          uint16_t gen;
1133 1134          uint16_t state;
1134 1135          hrtime_t intracct[NCMSTATES];
1135 1136  
1136 1137          /*
1137 1138           * Load all volatile state under the protection of membar.
1138 1139           * cpu_acct[cpu_mstate] must be loaded to avoid double counting
1139 1140           * of (now - cpu_mstate_start) by a change in CPU mstate that
1140 1141           * arrives after we make our last check of cpu_mstate_gen.
1141 1142           */
1142 1143  
1143 1144          now = gethrtime_unscaled();
1144 1145          gen = cpu->cpu_mstate_gen;
1145 1146  
1146 1147          membar_consumer();      /* guarantee load ordering */
1147 1148          start = cpu->cpu_mstate_start;
1148 1149          state = cpu->cpu_mstate;
1149 1150          for (i = 0; i < NCMSTATES; i++) {
1150 1151                  intracct[i] = cpu->cpu_intracct[i];
1151 1152                  times[i] = cpu->cpu_acct[i];
1152 1153          }
1153 1154          membar_consumer();      /* guarantee load ordering */
1154 1155  
1155 1156          if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start)
1156 1157                  times[state] += now - start;
1157 1158  
1158 1159          for (i = 0; i < NCMSTATES; i++) {
1159 1160                  if (i == CMS_SYSTEM)
1160 1161                          continue;
1161 1162                  times[i] -= intracct[i];
1162 1163                  if (times[i] < 0) {
1163 1164                          intracct[i] += times[i];
1164 1165                          times[i] = 0;
1165 1166                  }
1166 1167                  times[CMS_SYSTEM] += intracct[i];
1167 1168                  scalehrtime(×[i]);
1168 1169          }
1169 1170          scalehrtime(×[CMS_SYSTEM]);
1170 1171  }
1171 1172  
1172 1173  /*
1173 1174   * This is a version of the rdmsr instruction that allows
1174 1175   * an error code to be returned in the case of failure.
1175 1176   */
1176 1177  int
1177 1178  checked_rdmsr(uint_t msr, uint64_t *value)
1178 1179  {
1179 1180          if (!is_x86_feature(x86_featureset, X86FSET_MSR))
1180 1181                  return (ENOTSUP);
1181 1182          *value = rdmsr(msr);
1182 1183          return (0);
1183 1184  }
1184 1185  
1185 1186  /*
1186 1187   * This is a version of the wrmsr instruction that allows
1187 1188   * an error code to be returned in the case of failure.
1188 1189   */
1189 1190  int
1190 1191  checked_wrmsr(uint_t msr, uint64_t value)
1191 1192  {
1192 1193          if (!is_x86_feature(x86_featureset, X86FSET_MSR))
1193 1194                  return (ENOTSUP);
1194 1195          wrmsr(msr, value);
1195 1196          return (0);
1196 1197  }
1197 1198  
1198 1199  /*
1199 1200   * The mem driver's usual method of using hat_devload() to establish a
1200 1201   * temporary mapping will not work for foreign pages mapped into this
1201 1202   * domain or for the special hypervisor-provided pages.  For the foreign
1202 1203   * pages, we often don't know which domain owns them, so we can't ask the
1203 1204   * hypervisor to set up a new mapping.  For the other pages, we don't have
1204 1205   * a pfn, so we can't create a new PTE.  For these special cases, we do a
1205 1206   * direct uiomove() from the existing kernel virtual address.
1206 1207   */
1207 1208  /*ARGSUSED*/
1208 1209  int
1209 1210  plat_mem_do_mmio(struct uio *uio, enum uio_rw rw)
1210 1211  {
1211 1212  #if defined(__xpv)
1212 1213          void *va = (void *)(uintptr_t)uio->uio_loffset;
1213 1214          off_t pageoff = uio->uio_loffset & PAGEOFFSET;
1214 1215          size_t nbytes = MIN((size_t)(PAGESIZE - pageoff),
1215 1216              (size_t)uio->uio_iov->iov_len);
1216 1217  
1217 1218          if ((rw == UIO_READ &&
1218 1219              (va == HYPERVISOR_shared_info || va == xen_info)) ||
1219 1220              (pfn_is_foreign(hat_getpfnum(kas.a_hat, va))))
1220 1221                  return (uiomove(va, nbytes, rw, uio));
1221 1222  #endif
1222 1223          return (ENOTSUP);
1223 1224  }
1224 1225  
1225 1226  pgcnt_t
1226 1227  num_phys_pages()
1227 1228  {
1228 1229          pgcnt_t npages = 0;
1229 1230          struct memlist *mp;
1230 1231  
1231 1232  #if defined(__xpv)
  
    | 
      ↓ open down ↓ | 
    1047 lines elided | 
    
      ↑ open up ↑ | 
  
1232 1233          if (DOMAIN_IS_INITDOMAIN(xen_info))
1233 1234                  return (xpv_nr_phys_pages());
1234 1235  #endif /* __xpv */
1235 1236  
1236 1237          for (mp = phys_install; mp != NULL; mp = mp->ml_next)
1237 1238                  npages += mp->ml_size >> PAGESHIFT;
1238 1239  
1239 1240          return (npages);
1240 1241  }
1241 1242  
1242      -/* cpu threshold for compressed dumps */
1243      -#ifdef _LP64
1244      -uint_t dump_plat_mincpu_default = DUMP_PLAT_X86_64_MINCPU;
1245      -#else
1246      -uint_t dump_plat_mincpu_default = DUMP_PLAT_X86_32_MINCPU;
1247      -#endif
1248      -
1249 1243  int
1250 1244  dump_plat_addr()
1251 1245  {
1252 1246  #ifdef __xpv
1253 1247          pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1254 1248          mem_vtop_t mem_vtop;
1255 1249          int cnt;
1256 1250  
1257 1251          /*
1258 1252           * On the hypervisor, we want to dump the page with shared_info on it.
1259 1253           */
1260 1254          if (!IN_XPV_PANIC()) {
1261 1255                  mem_vtop.m_as = &kas;
1262 1256                  mem_vtop.m_va = HYPERVISOR_shared_info;
1263 1257                  mem_vtop.m_pfn = pfn;
1264 1258                  dumpvp_write(&mem_vtop, sizeof (mem_vtop_t));
1265 1259                  cnt = 1;
1266 1260          } else {
1267 1261                  cnt = dump_xpv_addr();
1268 1262          }
1269 1263          return (cnt);
1270 1264  #else
1271 1265          return (0);
1272 1266  #endif
1273 1267  }
1274 1268  
1275 1269  void
1276 1270  dump_plat_pfn()
1277 1271  {
1278 1272  #ifdef __xpv
1279 1273          pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1280 1274  
1281 1275          if (!IN_XPV_PANIC())
1282 1276                  dumpvp_write(&pfn, sizeof (pfn));
1283 1277          else
1284 1278                  dump_xpv_pfn();
1285 1279  #endif
1286 1280  }
1287 1281  
1288 1282  /*ARGSUSED*/
1289 1283  int
1290 1284  dump_plat_data(void *dump_cbuf)
1291 1285  {
1292 1286  #ifdef __xpv
1293 1287          uint32_t csize;
1294 1288          int cnt;
1295 1289  
1296 1290          if (!IN_XPV_PANIC()) {
1297 1291                  csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf,
1298 1292                      PAGESIZE);
1299 1293                  dumpvp_write(&csize, sizeof (uint32_t));
1300 1294                  dumpvp_write(dump_cbuf, csize);
1301 1295                  cnt = 1;
1302 1296          } else {
1303 1297                  cnt = dump_xpv_data(dump_cbuf);
1304 1298          }
1305 1299          return (cnt);
1306 1300  #else
1307 1301          return (0);
1308 1302  #endif
1309 1303  }
1310 1304  
1311 1305  /*
1312 1306   * Calculates a linear address, given the CS selector and PC values
1313 1307   * by looking up the %cs selector process's LDT or the CPU's GDT.
1314 1308   * proc->p_ldtlock must be held across this call.
1315 1309   */
1316 1310  int
1317 1311  linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1318 1312  {
1319 1313          user_desc_t     *descrp;
1320 1314          caddr_t         baseaddr;
1321 1315          uint16_t        idx = SELTOIDX(rp->r_cs);
1322 1316  
1323 1317          ASSERT(rp->r_cs <= 0xFFFF);
1324 1318          ASSERT(MUTEX_HELD(&p->p_ldtlock));
1325 1319  
1326 1320          if (SELISLDT(rp->r_cs)) {
1327 1321                  /*
1328 1322                   * Currently 64 bit processes cannot have private LDTs.
1329 1323                   */
1330 1324                  ASSERT(p->p_model != DATAMODEL_LP64);
1331 1325  
1332 1326                  if (p->p_ldt == NULL)
1333 1327                          return (-1);
1334 1328  
1335 1329                  descrp = &p->p_ldt[idx];
1336 1330                  baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1337 1331  
1338 1332                  /*
1339 1333                   * Calculate the linear address (wraparound is not only ok,
1340 1334                   * it's expected behavior).  The cast to uint32_t is because
1341 1335                   * LDT selectors are only allowed in 32-bit processes.
1342 1336                   */
1343 1337                  *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1344 1338                      rp->r_pc);
1345 1339          } else {
1346 1340  #ifdef DEBUG
1347 1341                  descrp = &CPU->cpu_gdt[idx];
1348 1342                  baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1349 1343                  /* GDT-based descriptors' base addresses should always be 0 */
1350 1344                  ASSERT(baseaddr == 0);
1351 1345  #endif
1352 1346                  *linearp = (caddr_t)(uintptr_t)rp->r_pc;
1353 1347          }
1354 1348  
1355 1349          return (0);
1356 1350  }
1357 1351  
1358 1352  /*
1359 1353   * The implementation of dtrace_linear_pc is similar to the that of
1360 1354   * linear_pc, above, but here we acquire p_ldtlock before accessing
1361 1355   * p_ldt.  This implementation is used by the pid provider; we prefix
1362 1356   * it with "dtrace_" to avoid inducing spurious tracing events.
1363 1357   */
1364 1358  int
1365 1359  dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1366 1360  {
1367 1361          user_desc_t     *descrp;
1368 1362          caddr_t         baseaddr;
1369 1363          uint16_t        idx = SELTOIDX(rp->r_cs);
1370 1364  
1371 1365          ASSERT(rp->r_cs <= 0xFFFF);
1372 1366  
1373 1367          if (SELISLDT(rp->r_cs)) {
1374 1368                  /*
1375 1369                   * Currently 64 bit processes cannot have private LDTs.
1376 1370                   */
1377 1371                  ASSERT(p->p_model != DATAMODEL_LP64);
1378 1372  
1379 1373                  mutex_enter(&p->p_ldtlock);
1380 1374                  if (p->p_ldt == NULL) {
1381 1375                          mutex_exit(&p->p_ldtlock);
1382 1376                          return (-1);
1383 1377                  }
1384 1378                  descrp = &p->p_ldt[idx];
1385 1379                  baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1386 1380                  mutex_exit(&p->p_ldtlock);
1387 1381  
1388 1382                  /*
1389 1383                   * Calculate the linear address (wraparound is not only ok,
1390 1384                   * it's expected behavior).  The cast to uint32_t is because
1391 1385                   * LDT selectors are only allowed in 32-bit processes.
1392 1386                   */
1393 1387                  *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1394 1388                      rp->r_pc);
1395 1389          } else {
1396 1390  #ifdef DEBUG
1397 1391                  descrp = &CPU->cpu_gdt[idx];
1398 1392                  baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1399 1393                  /* GDT-based descriptors' base addresses should always be 0 */
1400 1394                  ASSERT(baseaddr == 0);
1401 1395  #endif
1402 1396                  *linearp = (caddr_t)(uintptr_t)rp->r_pc;
1403 1397          }
1404 1398  
1405 1399          return (0);
1406 1400  }
1407 1401  
1408 1402  /*
1409 1403   * We need to post a soft interrupt to reprogram the lbolt cyclic when
1410 1404   * switching from event to cyclic driven lbolt. The following code adds
1411 1405   * and posts the softint for x86.
1412 1406   */
1413 1407  static ddi_softint_hdl_impl_t lbolt_softint_hdl =
1414 1408          {0, NULL, NULL, NULL, 0, NULL, NULL, NULL};
1415 1409  
1416 1410  void
1417 1411  lbolt_softint_add(void)
1418 1412  {
1419 1413          (void) add_avsoftintr((void *)&lbolt_softint_hdl, LOCK_LEVEL,
1420 1414              (avfunc)lbolt_ev_to_cyclic, "lbolt_ev_to_cyclic", NULL, NULL);
1421 1415  }
1422 1416  
1423 1417  void
1424 1418  lbolt_softint_post(void)
1425 1419  {
1426 1420          (*setsoftint)(CBE_LOCK_PIL, lbolt_softint_hdl.ih_pending);
1427 1421  }
1428 1422  
1429 1423  boolean_t
1430 1424  plat_dr_check_capability(uint64_t features)
1431 1425  {
1432 1426          return ((plat_dr_options & features) == features);
1433 1427  }
1434 1428  
1435 1429  boolean_t
1436 1430  plat_dr_support_cpu(void)
1437 1431  {
1438 1432          return (plat_dr_options & PLAT_DR_FEATURE_CPU);
1439 1433  }
1440 1434  
1441 1435  boolean_t
1442 1436  plat_dr_support_memory(void)
1443 1437  {
1444 1438          return (plat_dr_options & PLAT_DR_FEATURE_MEMORY);
1445 1439  }
1446 1440  
1447 1441  void
1448 1442  plat_dr_enable_capability(uint64_t features)
1449 1443  {
1450 1444          atomic_or_64(&plat_dr_options, features);
1451 1445  }
1452 1446  
1453 1447  void
1454 1448  plat_dr_disable_capability(uint64_t features)
1455 1449  {
1456 1450          atomic_and_64(&plat_dr_options, ~features);
1457 1451  }
  
    | 
      ↓ open down ↓ | 
    199 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX