1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 *
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
28 *
29 * Copyright 2013 Joyent, Inc. All rights reserved.
30 */
31
32 /*
33 * This file contains the functionality that mimics the boot operations
34 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
35 * The x86 kernel now does everything on its own.
36 */
37
38 #include <sys/types.h>
39 #include <sys/bootconf.h>
40 #include <sys/bootsvcs.h>
41 #include <sys/bootinfo.h>
42 #include <sys/multiboot.h>
43 #include <sys/multiboot2.h>
44 #include <sys/multiboot2_impl.h>
45 #include <sys/bootvfs.h>
46 #include <sys/bootprops.h>
47 #include <sys/varargs.h>
48 #include <sys/param.h>
49 #include <sys/machparam.h>
50 #include <sys/machsystm.h>
51 #include <sys/archsystm.h>
52 #include <sys/boot_console.h>
53 #include <sys/framebuffer.h>
54 #include <sys/cmn_err.h>
55 #include <sys/systm.h>
56 #include <sys/promif.h>
57 #include <sys/archsystm.h>
58 #include <sys/x86_archext.h>
59 #include <sys/kobj.h>
60 #include <sys/privregs.h>
61 #include <sys/sysmacros.h>
62 #include <sys/ctype.h>
63 #include <sys/fastboot.h>
64 #ifdef __xpv
65 #include <sys/hypervisor.h>
66 #include <net/if.h>
67 #endif
68 #include <vm/kboot_mmu.h>
69 #include <vm/hat_pte.h>
70 #include <sys/kobj.h>
71 #include <sys/kobj_lex.h>
72 #include <sys/pci_cfgspace_impl.h>
73 #include <sys/fastboot_impl.h>
74 #include <sys/acpi/acconfig.h>
75 #include <sys/acpi/acpi.h>
76 #include <sys/ddipropdefs.h> /* For DDI prop types */
77
78 static int have_console = 0; /* set once primitive console is initialized */
79 static char *boot_args = "";
80
81 /*
82 * Debugging macros
83 */
84 static uint_t kbm_debug = 0;
85 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); }
86 #define DBG(x) { if (kbm_debug) \
87 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \
88 }
89
90 #define PUT_STRING(s) { \
91 char *cp; \
92 for (cp = (s); *cp; ++cp) \
93 bcons_putchar(*cp); \
94 }
95
96 /* callback to boot_fb to set shadow frame buffer */
97 extern void boot_fb_shadow_init(bootops_t *);
98
99 bootops_t bootop; /* simple bootops we'll pass on to kernel */
100 struct bsys_mem bm;
101
102 /*
103 * Boot info from "glue" code in low memory. xbootp is used by:
104 * do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish().
105 */
106 static struct xboot_info *xbootp;
107 static uintptr_t next_virt; /* next available virtual address */
108 static paddr_t next_phys; /* next available physical address from dboot */
109 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */
110
111 /*
112 * buffer for vsnprintf for console I/O
113 */
114 #define BUFFERSIZE 512
115 static char buffer[BUFFERSIZE];
116
117 /*
118 * stuff to store/report/manipulate boot property settings.
119 */
120 typedef struct bootprop {
121 struct bootprop *bp_next;
122 char *bp_name;
123 int bp_flags; /* DDI prop type */
124 uint_t bp_vlen; /* 0 for boolean */
125 char *bp_value;
126 } bootprop_t;
127
128 static bootprop_t *bprops = NULL;
129 static char *curr_page = NULL; /* ptr to avail bprop memory */
130 static int curr_space = 0; /* amount of memory at curr_page */
131
132 #ifdef __xpv
133 start_info_t *xen_info;
134 shared_info_t *HYPERVISOR_shared_info;
135 #endif
136
137 /*
138 * some allocator statistics
139 */
140 static ulong_t total_bop_alloc_scratch = 0;
141 static ulong_t total_bop_alloc_kernel = 0;
142
143 static void build_firmware_properties(struct xboot_info *);
144
145 static int early_allocation = 1;
146
147 int force_fastreboot = 0;
148 volatile int fastreboot_onpanic = 0;
149 int post_fastreboot = 0;
150 #ifdef __xpv
151 volatile int fastreboot_capable = 0;
152 #else
153 volatile int fastreboot_capable = 1;
154 #endif
155
156 /*
157 * Information saved from current boot for fast reboot.
158 * If the information size exceeds what we have allocated, fast reboot
159 * will not be supported.
160 */
161 multiboot_info_t saved_mbi;
162 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
163 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
164 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
165 int saved_cmdline_len = 0;
166 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
167
168 /*
169 * Turn off fastreboot_onpanic to avoid panic loop.
170 */
171 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
172 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
173
174 /*
175 * Pointers to where System Resource Affinity Table (SRAT), System Locality
176 * Information Table (SLIT) and Maximum System Capability Table (MSCT)
177 * are mapped into virtual memory
178 */
179 ACPI_TABLE_SRAT *srat_ptr = NULL;
180 ACPI_TABLE_SLIT *slit_ptr = NULL;
181 ACPI_TABLE_MSCT *msct_ptr = NULL;
182
183 /*
184 * Arbitrary limit on number of localities we handle; if
185 * this limit is raised to more than UINT16_MAX, make sure
186 * process_slit() knows how to handle it.
187 */
188 #define SLIT_LOCALITIES_MAX (4096)
189
190 #define SLIT_NUM_PROPNAME "acpi-slit-localities"
191 #define SLIT_PROPNAME "acpi-slit"
192
193 /*
194 * Allocate aligned physical memory at boot time. This allocator allocates
195 * from the highest possible addresses. This avoids exhausting memory that
196 * would be useful for DMA buffers.
197 */
198 paddr_t
199 do_bop_phys_alloc(uint64_t size, uint64_t align)
200 {
201 paddr_t pa = 0;
202 paddr_t start;
203 paddr_t end;
204 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install;
205
206 /*
207 * Be careful if high memory usage is limited in startup.c
208 * Since there are holes in the low part of the physical address
209 * space we can treat physmem as a pfn (not just a pgcnt) and
210 * get a conservative upper limit.
211 */
212 if (physmem != 0 && high_phys > pfn_to_pa(physmem))
213 high_phys = pfn_to_pa(physmem);
214
215 /*
216 * find the highest available memory in physinstalled
217 */
218 size = P2ROUNDUP(size, align);
219 for (; ml; ml = ml->ml_next) {
220 start = P2ROUNDUP(ml->ml_address, align);
221 end = P2ALIGN(ml->ml_address + ml->ml_size, align);
222 if (start < next_phys)
223 start = P2ROUNDUP(next_phys, align);
224 if (end > high_phys)
225 end = P2ALIGN(high_phys, align);
226
227 if (end <= start)
228 continue;
229 if (end - start < size)
230 continue;
231
232 /*
233 * Early allocations need to use low memory, since
234 * physmem might be further limited by bootenv.rc
235 */
236 if (early_allocation) {
237 if (pa == 0 || start < pa)
238 pa = start;
239 } else {
240 if (end - size > pa)
241 pa = end - size;
242 }
243 }
244 if (pa != 0) {
245 if (early_allocation)
246 next_phys = pa + size;
247 else
248 high_phys = pa;
249 return (pa);
250 }
251 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
252 ") Out of memory\n", size, align);
253 /*NOTREACHED*/
254 }
255
256 uintptr_t
257 alloc_vaddr(size_t size, paddr_t align)
258 {
259 uintptr_t rv;
260
261 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
262 rv = (uintptr_t)next_virt;
263 next_virt += size;
264 return (rv);
265 }
266
267 /*
268 * Allocate virtual memory. The size is always rounded up to a multiple
269 * of base pagesize.
270 */
271
272 /*ARGSUSED*/
273 static caddr_t
274 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
275 {
276 paddr_t a = align; /* same type as pa for masking */
277 uint_t pgsize;
278 paddr_t pa;
279 uintptr_t va;
280 ssize_t s; /* the aligned size */
281 uint_t level;
282 uint_t is_kernel = (virthint != 0);
283
284 if (a < MMU_PAGESIZE)
285 a = MMU_PAGESIZE;
286 else if (!ISP2(a))
287 prom_panic("do_bsys_alloc() incorrect alignment");
288 size = P2ROUNDUP(size, MMU_PAGESIZE);
289
290 /*
291 * Use the next aligned virtual address if we weren't given one.
292 */
293 if (virthint == NULL) {
294 virthint = (caddr_t)alloc_vaddr(size, a);
295 total_bop_alloc_scratch += size;
296 } else {
297 total_bop_alloc_kernel += size;
298 }
299
300 /*
301 * allocate the physical memory
302 */
303 pa = do_bop_phys_alloc(size, a);
304
305 /*
306 * Add the mappings to the page tables, try large pages first.
307 */
308 va = (uintptr_t)virthint;
309 s = size;
310 level = 1;
311 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
312 if (xbootp->bi_use_largepage && a == pgsize) {
313 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
314 s >= pgsize) {
315 kbm_map(va, pa, level, is_kernel);
316 va += pgsize;
317 pa += pgsize;
318 s -= pgsize;
319 }
320 }
321
322 /*
323 * Map remaining pages use small mappings
324 */
325 level = 0;
326 pgsize = MMU_PAGESIZE;
327 while (s > 0) {
328 kbm_map(va, pa, level, is_kernel);
329 va += pgsize;
330 pa += pgsize;
331 s -= pgsize;
332 }
333 return (virthint);
334 }
335
336 /*
337 * Free virtual memory - we'll just ignore these.
338 */
339 /*ARGSUSED*/
340 static void
341 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
342 {
343 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
344 (void *)virt, size);
345 }
346
347 /*
348 * Old interface
349 */
350 /*ARGSUSED*/
351 static caddr_t
352 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size,
353 int align, int flags)
354 {
355 prom_panic("unsupported call to BOP_EALLOC()\n");
356 return (0);
357 }
358
359
360 static void
361 bsetprop(int flags, char *name, int nlen, void *value, int vlen)
362 {
363 uint_t size;
364 uint_t need_size;
365 bootprop_t *b;
366
367 /*
368 * align the size to 16 byte boundary
369 */
370 size = sizeof (bootprop_t) + nlen + 1 + vlen;
371 size = (size + 0xf) & ~0xf;
372 if (size > curr_space) {
373 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
374 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
375 curr_space = need_size;
376 }
377
378 /*
379 * use a bootprop_t at curr_page and link into list
380 */
381 b = (bootprop_t *)curr_page;
382 curr_page += sizeof (bootprop_t);
383 curr_space -= sizeof (bootprop_t);
384 b->bp_next = bprops;
385 bprops = b;
386
387 /*
388 * follow by name and ending zero byte
389 */
390 b->bp_name = curr_page;
391 bcopy(name, curr_page, nlen);
392 curr_page += nlen;
393 *curr_page++ = 0;
394 curr_space -= nlen + 1;
395
396 /*
397 * set the property type
398 */
399 b->bp_flags = flags & DDI_PROP_TYPE_MASK;
400
401 /*
402 * copy in value, but no ending zero byte
403 */
404 b->bp_value = curr_page;
405 b->bp_vlen = vlen;
406 if (vlen > 0) {
407 bcopy(value, curr_page, vlen);
408 curr_page += vlen;
409 curr_space -= vlen;
410 }
411
412 /*
413 * align new values of curr_page, curr_space
414 */
415 while (curr_space & 0xf) {
416 ++curr_page;
417 --curr_space;
418 }
419 }
420
421 static void
422 bsetprops(char *name, char *value)
423 {
424 bsetprop(DDI_PROP_TYPE_STRING, name, strlen(name),
425 value, strlen(value) + 1);
426 }
427
428 static void
429 bsetprop32(char *name, uint32_t value)
430 {
431 bsetprop(DDI_PROP_TYPE_INT, name, strlen(name),
432 (void *)&value, sizeof (value));
433 }
434
435 static void
436 bsetprop64(char *name, uint64_t value)
437 {
438 bsetprop(DDI_PROP_TYPE_INT64, name, strlen(name),
439 (void *)&value, sizeof (value));
440 }
441
442 static void
443 bsetpropsi(char *name, int value)
444 {
445 char prop_val[32];
446
447 (void) snprintf(prop_val, sizeof (prop_val), "%d", value);
448 bsetprops(name, prop_val);
449 }
450
451 /*
452 * to find the type of the value associated with this name
453 */
454 /*ARGSUSED*/
455 int
456 do_bsys_getproptype(bootops_t *bop, const char *name)
457 {
458 bootprop_t *b;
459
460 for (b = bprops; b; b = b->bp_next) {
461 if (strcmp(name, b->bp_name) != 0)
462 continue;
463 return (b->bp_flags);
464 }
465 return (-1);
466 }
467
468 /*
469 * to find the size of the buffer to allocate
470 */
471 /*ARGSUSED*/
472 int
473 do_bsys_getproplen(bootops_t *bop, const char *name)
474 {
475 bootprop_t *b;
476
477 for (b = bprops; b; b = b->bp_next) {
478 if (strcmp(name, b->bp_name) != 0)
479 continue;
480 return (b->bp_vlen);
481 }
482 return (-1);
483 }
484
485 /*
486 * get the value associated with this name
487 */
488 /*ARGSUSED*/
489 int
490 do_bsys_getprop(bootops_t *bop, const char *name, void *value)
491 {
492 bootprop_t *b;
493
494 for (b = bprops; b; b = b->bp_next) {
495 if (strcmp(name, b->bp_name) != 0)
496 continue;
497 bcopy(b->bp_value, value, b->bp_vlen);
498 return (0);
499 }
500 return (-1);
501 }
502
503 /*
504 * get the name of the next property in succession from the standalone
505 */
506 /*ARGSUSED*/
507 static char *
508 do_bsys_nextprop(bootops_t *bop, char *name)
509 {
510 bootprop_t *b;
511
512 /*
513 * A null name is a special signal for the 1st boot property
514 */
515 if (name == NULL || strlen(name) == 0) {
516 if (bprops == NULL)
517 return (NULL);
518 return (bprops->bp_name);
519 }
520
521 for (b = bprops; b; b = b->bp_next) {
522 if (name != b->bp_name)
523 continue;
524 b = b->bp_next;
525 if (b == NULL)
526 return (NULL);
527 return (b->bp_name);
528 }
529 return (NULL);
530 }
531
532 /*
533 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
534 */
535 static int
536 parse_value(char *p, uint64_t *retval)
537 {
538 int adjust = 0;
539 uint64_t tmp = 0;
540 int digit;
541 int radix = 10;
542
543 *retval = 0;
544 if (*p == '-' || *p == '~')
545 adjust = *p++;
546
547 if (*p == '0') {
548 ++p;
549 if (*p == 0)
550 return (0);
551 if (*p == 'x' || *p == 'X') {
552 radix = 16;
553 ++p;
554 } else {
555 radix = 8;
556 ++p;
557 }
558 }
559 while (*p) {
560 if ('0' <= *p && *p <= '9')
561 digit = *p - '0';
562 else if ('a' <= *p && *p <= 'f')
563 digit = 10 + *p - 'a';
564 else if ('A' <= *p && *p <= 'F')
565 digit = 10 + *p - 'A';
566 else
567 return (-1);
568 if (digit >= radix)
569 return (-1);
570 tmp = tmp * radix + digit;
571 ++p;
572 }
573 if (adjust == '-')
574 tmp = -tmp;
575 else if (adjust == '~')
576 tmp = ~tmp;
577 *retval = tmp;
578 return (0);
579 }
580
581 static boolean_t
582 unprintable(char *value, int size)
583 {
584 int i;
585
586 if (size <= 0 || value[0] == '\0')
587 return (B_TRUE);
588
589 for (i = 0; i < size; i++) {
590 if (value[i] == '\0')
591 return (i != (size - 1));
592
593 if (!isprint(value[i]))
594 return (B_TRUE);
595 }
596 return (B_FALSE);
597 }
598
599 /*
600 * Print out information about all boot properties.
601 * buffer is pointer to pre-allocated space to be used as temporary
602 * space for property values.
603 */
604 static void
605 boot_prop_display(char *buffer)
606 {
607 char *name = "";
608 int i, len, flags, *buf32;
609 uint64_t *buf64;
610
611 bop_printf(NULL, "\nBoot properties:\n");
612
613 while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
614 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
615 (void) do_bsys_getprop(NULL, name, buffer);
616 len = do_bsys_getproplen(NULL, name);
617 flags = do_bsys_getproptype(NULL, name);
618 bop_printf(NULL, "len=%d ", len);
619
620 switch (flags) {
621 case DDI_PROP_TYPE_INT:
622 len = len / sizeof (int);
623 buf32 = (int *)buffer;
624 for (i = 0; i < len; i++) {
625 bop_printf(NULL, "%08x", buf32[i]);
626 if (i < len - 1)
627 bop_printf(NULL, ".");
628 }
629 break;
630 case DDI_PROP_TYPE_STRING:
631 bop_printf(NULL, buffer);
632 break;
633 case DDI_PROP_TYPE_INT64:
634 len = len / sizeof (uint64_t);
635 buf64 = (uint64_t *)buffer;
636 for (i = 0; i < len; i++) {
637 bop_printf(NULL, "%016" PRIx64, buf64[i]);
638 if (i < len - 1)
639 bop_printf(NULL, ".");
640 }
641 break;
642 default:
643 if (!unprintable(buffer, len)) {
644 buffer[len] = 0;
645 bop_printf(NULL, "%s", buffer);
646 break;
647 }
648 for (i = 0; i < len; i++) {
649 bop_printf(NULL, "%02x", buffer[i] & 0xff);
650 if (i < len - 1)
651 bop_printf(NULL, ".");
652 }
653 break;
654 }
655 bop_printf(NULL, "\n");
656 }
657 }
658
659 /*
660 * 2nd part of building the table of boot properties. This includes:
661 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
662 *
663 * lines look like one of:
664 * ^$
665 * ^# comment till end of line
666 * setprop name 'value'
667 * setprop name value
668 * setprop name "value"
669 *
670 * we do single character I/O since this is really just looking at memory
671 */
672 void
673 boot_prop_finish(void)
674 {
675 int fd;
676 char *line;
677 int c;
678 int bytes_read;
679 char *name;
680 int n_len;
681 char *value;
682 int v_len;
683 char *inputdev; /* these override the command line if serial ports */
684 char *outputdev;
685 char *consoledev;
686 uint64_t lvalue;
687 int use_xencons = 0;
688
689 #ifdef __xpv
690 if (!DOMAIN_IS_INITDOMAIN(xen_info))
691 use_xencons = 1;
692 #endif /* __xpv */
693
694 DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
695 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
696 DBG(fd);
697
698 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
699 while (fd >= 0) {
700
701 /*
702 * get a line
703 */
704 for (c = 0; ; ++c) {
705 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
706 if (bytes_read == 0) {
707 if (c == 0)
708 goto done;
709 break;
710 }
711 if (line[c] == '\n')
712 break;
713 }
714 line[c] = 0;
715
716 /*
717 * ignore comment lines
718 */
719 c = 0;
720 while (ISSPACE(line[c]))
721 ++c;
722 if (line[c] == '#' || line[c] == 0)
723 continue;
724
725 /*
726 * must have "setprop " or "setprop\t"
727 */
728 if (strncmp(line + c, "setprop ", 8) != 0 &&
729 strncmp(line + c, "setprop\t", 8) != 0)
730 continue;
731 c += 8;
732 while (ISSPACE(line[c]))
733 ++c;
734 if (line[c] == 0)
735 continue;
736
737 /*
738 * gather up the property name
739 */
740 name = line + c;
741 n_len = 0;
742 while (line[c] && !ISSPACE(line[c]))
743 ++n_len, ++c;
744
745 /*
746 * gather up the value, if any
747 */
748 value = "";
749 v_len = 0;
750 while (ISSPACE(line[c]))
751 ++c;
752 if (line[c] != 0) {
753 value = line + c;
754 while (line[c] && !ISSPACE(line[c]))
755 ++v_len, ++c;
756 }
757
758 if (v_len >= 2 && value[0] == value[v_len - 1] &&
759 (value[0] == '\'' || value[0] == '"')) {
760 ++value;
761 v_len -= 2;
762 }
763 name[n_len] = 0;
764 if (v_len > 0)
765 value[v_len] = 0;
766 else
767 continue;
768
769 /*
770 * ignore "boot-file" property, it's now meaningless
771 */
772 if (strcmp(name, "boot-file") == 0)
773 continue;
774 if (strcmp(name, "boot-args") == 0 &&
775 strlen(boot_args) > 0)
776 continue;
777
778 /*
779 * If a property was explicitly set on the command line
780 * it will override a setting in bootenv.rc
781 */
782 if (do_bsys_getproplen(NULL, name) >= 0)
783 continue;
784
785 bsetprops(name, value);
786 }
787 done:
788 if (fd >= 0)
789 (void) BRD_CLOSE(bfs_ops, fd);
790
791 /*
792 * Check if we have to limit the boot time allocator
793 */
794 if (do_bsys_getproplen(NULL, "physmem") != -1 &&
795 do_bsys_getprop(NULL, "physmem", line) >= 0 &&
796 parse_value(line, &lvalue) != -1) {
797 if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
798 physmem = (pgcnt_t)lvalue;
799 DBG(physmem);
800 }
801 }
802 early_allocation = 0;
803
804 /*
805 * check to see if we have to override the default value of the console
806 */
807 if (!use_xencons) {
808 inputdev = line;
809 v_len = do_bsys_getproplen(NULL, "input-device");
810 if (v_len > 0)
811 (void) do_bsys_getprop(NULL, "input-device", inputdev);
812 else
813 v_len = 0;
814 inputdev[v_len] = 0;
815
816 outputdev = inputdev + v_len + 1;
817 v_len = do_bsys_getproplen(NULL, "output-device");
818 if (v_len > 0)
819 (void) do_bsys_getprop(NULL, "output-device",
820 outputdev);
821 else
822 v_len = 0;
823 outputdev[v_len] = 0;
824
825 consoledev = outputdev + v_len + 1;
826 v_len = do_bsys_getproplen(NULL, "console");
827 if (v_len > 0) {
828 (void) do_bsys_getprop(NULL, "console", consoledev);
829 if (post_fastreboot &&
830 strcmp(consoledev, "graphics") == 0) {
831 bsetprops("console", "text");
832 v_len = strlen("text");
833 bcopy("text", consoledev, v_len);
834 }
835 } else {
836 v_len = 0;
837 }
838 consoledev[v_len] = 0;
839 bcons_init2(inputdev, outputdev, consoledev);
840 } else {
841 /*
842 * Ensure console property exists
843 * If not create it as "hypervisor"
844 */
845 v_len = do_bsys_getproplen(NULL, "console");
846 if (v_len < 0)
847 bsetprops("console", "hypervisor");
848 inputdev = outputdev = consoledev = "hypervisor";
849 bcons_init2(inputdev, outputdev, consoledev);
850 }
851
852 if (find_boot_prop("prom_debug") || kbm_debug)
853 boot_prop_display(line);
854 }
855
856 /*
857 * print formatted output
858 */
859 /*PRINTFLIKE2*/
860 /*ARGSUSED*/
861 void
862 bop_printf(bootops_t *bop, const char *fmt, ...)
863 {
864 va_list ap;
865
866 if (have_console == 0)
867 return;
868
869 va_start(ap, fmt);
870 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
871 va_end(ap);
872 PUT_STRING(buffer);
873 }
874
875 /*
876 * Another panic() variant; this one can be used even earlier during boot than
877 * prom_panic().
878 */
879 /*PRINTFLIKE1*/
880 void
881 bop_panic(const char *fmt, ...)
882 {
883 va_list ap;
884
885 va_start(ap, fmt);
886 bop_printf(NULL, fmt, ap);
887 va_end(ap);
888
889 bop_printf(NULL, "\nPress any key to reboot.\n");
890 (void) bcons_getchar();
891 bop_printf(NULL, "Resetting...\n");
892 pc_reset();
893 }
894
895 /*
896 * Do a real mode interrupt BIOS call
897 */
898 typedef struct bios_regs {
899 unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
900 } bios_regs_t;
901 typedef int (*bios_func_t)(int, bios_regs_t *);
902
903 /*ARGSUSED*/
904 static void
905 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
906 {
907 #if defined(__xpv)
908 prom_panic("unsupported call to BOP_DOINT()\n");
909 #else /* __xpv */
910 static int firsttime = 1;
911 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
912 bios_regs_t br;
913
914 /*
915 * The first time we do this, we have to copy the pre-packaged
916 * low memory bios call code image into place.
917 */
918 if (firsttime) {
919 extern char bios_image[];
920 extern uint32_t bios_size;
921
922 bcopy(bios_image, (void *)bios_func, bios_size);
923 firsttime = 0;
924 }
925
926 br.ax = rp->eax.word.ax;
927 br.bx = rp->ebx.word.bx;
928 br.cx = rp->ecx.word.cx;
929 br.dx = rp->edx.word.dx;
930 br.bp = rp->ebp.word.bp;
931 br.si = rp->esi.word.si;
932 br.di = rp->edi.word.di;
933 br.ds = rp->ds;
934 br.es = rp->es;
935
936 DBG_MSG("Doing BIOS call...");
937 DBG(br.ax);
938 DBG(br.bx);
939 DBG(br.dx);
940 rp->eflags = bios_func(intnum, &br);
941 DBG_MSG("done\n");
942
943 rp->eax.word.ax = br.ax;
944 rp->ebx.word.bx = br.bx;
945 rp->ecx.word.cx = br.cx;
946 rp->edx.word.dx = br.dx;
947 rp->ebp.word.bp = br.bp;
948 rp->esi.word.si = br.si;
949 rp->edi.word.di = br.di;
950 rp->ds = br.ds;
951 rp->es = br.es;
952 #endif /* __xpv */
953 }
954
955 static struct boot_syscalls bop_sysp = {
956 bcons_getchar,
957 bcons_putchar,
958 bcons_ischar,
959 };
960
961 static char *whoami;
962
963 #define BUFLEN 64
964
965 #if defined(__xpv)
966
967 static char namebuf[32];
968
969 static void
970 xen_parse_props(char *s, char *prop_map[], int n_prop)
971 {
972 char **prop_name = prop_map;
973 char *cp = s, *scp;
974
975 do {
976 scp = cp;
977 while ((*cp != NULL) && (*cp != ':'))
978 cp++;
979
980 if ((scp != cp) && (*prop_name != NULL)) {
981 *cp = NULL;
982 bsetprops(*prop_name, scp);
983 }
984
985 cp++;
986 prop_name++;
987 n_prop--;
988 } while (n_prop > 0);
989 }
990
991 #define VBDPATHLEN 64
992
993 /*
994 * parse the 'xpv-root' property to create properties used by
995 * ufs_mountroot.
996 */
997 static void
998 xen_vbdroot_props(char *s)
999 {
1000 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
1001 const char lnamefix[] = "/dev/dsk/c0d";
1002 char *pnp;
1003 char *prop_p;
1004 char mi;
1005 short minor;
1006 long addr = 0;
1007
1008 pnp = vbdpath + strlen(vbdpath);
1009 prop_p = s + strlen(lnamefix);
1010 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
1011 addr = addr * 10 + *prop_p++ - '0';
1012 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
1013 pnp = vbdpath + strlen(vbdpath);
1014 if (*prop_p == 's')
1015 mi = 'a';
1016 else if (*prop_p == 'p')
1017 mi = 'q';
1018 else
1019 ASSERT(0); /* shouldn't be here */
1020 prop_p++;
1021 ASSERT(*prop_p != '\0');
1022 if (ISDIGIT(*prop_p)) {
1023 minor = *prop_p - '0';
1024 prop_p++;
1025 if (ISDIGIT(*prop_p)) {
1026 minor = minor * 10 + *prop_p - '0';
1027 }
1028 } else {
1029 /* malformed root path, use 0 as default */
1030 minor = 0;
1031 }
1032 ASSERT(minor < 16); /* at most 16 partitions */
1033 mi += minor;
1034 *pnp++ = ':';
1035 *pnp++ = mi;
1036 *pnp++ = '\0';
1037 bsetprops("fstype", "ufs");
1038 bsetprops("bootpath", vbdpath);
1039
1040 DBG_MSG("VBD bootpath set to ");
1041 DBG_MSG(vbdpath);
1042 DBG_MSG("\n");
1043 }
1044
1045 /*
1046 * parse the xpv-nfsroot property to create properties used by
1047 * nfs_mountroot.
1048 */
1049 static void
1050 xen_nfsroot_props(char *s)
1051 {
1052 char *prop_map[] = {
1053 BP_SERVER_IP, /* server IP address */
1054 BP_SERVER_NAME, /* server hostname */
1055 BP_SERVER_PATH, /* root path */
1056 };
1057 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1058
1059 bsetprops("fstype", "nfs");
1060
1061 xen_parse_props(s, prop_map, n_prop);
1062
1063 /*
1064 * If a server name wasn't specified, use a default.
1065 */
1066 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
1067 bsetprops(BP_SERVER_NAME, "unknown");
1068 }
1069
1070 /*
1071 * Extract our IP address, etc. from the "xpv-ip" property.
1072 */
1073 static void
1074 xen_ip_props(char *s)
1075 {
1076 char *prop_map[] = {
1077 BP_HOST_IP, /* IP address */
1078 NULL, /* NFS server IP address (ignored in */
1079 /* favour of xpv-nfsroot) */
1080 BP_ROUTER_IP, /* IP gateway */
1081 BP_SUBNET_MASK, /* IP subnet mask */
1082 "xpv-hostname", /* hostname (ignored) */
1083 BP_NETWORK_INTERFACE, /* interface name */
1084 "xpv-hcp", /* host configuration protocol */
1085 };
1086 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1087 char ifname[IFNAMSIZ];
1088
1089 xen_parse_props(s, prop_map, n_prop);
1090
1091 /*
1092 * A Linux dom0 administrator expects all interfaces to be
1093 * called "ethX", which is not the case here.
1094 *
1095 * If the interface name specified is "eth0", presume that
1096 * this is really intended to be "xnf0" (the first domU ->
1097 * dom0 interface for this domain).
1098 */
1099 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
1100 (strcmp("eth0", ifname) == 0)) {
1101 bsetprops(BP_NETWORK_INTERFACE, "xnf0");
1102 bop_printf(NULL,
1103 "network interface name 'eth0' replaced with 'xnf0'\n");
1104 }
1105 }
1106
1107 #else /* __xpv */
1108
1109 static void
1110 setup_rarp_props(struct sol_netinfo *sip)
1111 {
1112 char buf[BUFLEN]; /* to hold ip/mac addrs */
1113 uint8_t *val;
1114
1115 val = (uint8_t *)&sip->sn_ciaddr;
1116 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1117 val[0], val[1], val[2], val[3]);
1118 bsetprops(BP_HOST_IP, buf);
1119
1120 val = (uint8_t *)&sip->sn_siaddr;
1121 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1122 val[0], val[1], val[2], val[3]);
1123 bsetprops(BP_SERVER_IP, buf);
1124
1125 if (sip->sn_giaddr != 0) {
1126 val = (uint8_t *)&sip->sn_giaddr;
1127 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1128 val[0], val[1], val[2], val[3]);
1129 bsetprops(BP_ROUTER_IP, buf);
1130 }
1131
1132 if (sip->sn_netmask != 0) {
1133 val = (uint8_t *)&sip->sn_netmask;
1134 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1135 val[0], val[1], val[2], val[3]);
1136 bsetprops(BP_SUBNET_MASK, buf);
1137 }
1138
1139 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1140 bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1141 sip->sn_mactype, sip->sn_maclen);
1142 } else {
1143 val = sip->sn_macaddr;
1144 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1145 val[0], val[1], val[2], val[3], val[4], val[5]);
1146 bsetprops(BP_BOOT_MAC, buf);
1147 }
1148 }
1149
1150 #endif /* __xpv */
1151
1152 static void
1153 build_panic_cmdline(const char *cmd, int cmdlen)
1154 {
1155 int proplen;
1156 size_t arglen;
1157
1158 arglen = sizeof (fastreboot_onpanic_args);
1159 /*
1160 * If we allready have fastreboot-onpanic set to zero,
1161 * don't add them again.
1162 */
1163 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1164 proplen <= sizeof (fastreboot_onpanic_cmdline)) {
1165 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1166 fastreboot_onpanic_cmdline);
1167 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1168 arglen = 1;
1169 }
1170
1171 /*
1172 * construct fastreboot_onpanic_cmdline
1173 */
1174 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1175 DBG_MSG("Command line too long: clearing "
1176 FASTREBOOT_ONPANIC "\n");
1177 fastreboot_onpanic = 0;
1178 } else {
1179 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1180 if (arglen != 1)
1181 bcopy(fastreboot_onpanic_args,
1182 fastreboot_onpanic_cmdline + cmdlen, arglen);
1183 else
1184 fastreboot_onpanic_cmdline[cmdlen] = 0;
1185 }
1186 }
1187
1188
1189 #ifndef __xpv
1190 /*
1191 * Construct boot command line for Fast Reboot. The saved_cmdline
1192 * is also reported by "eeprom bootcmd".
1193 */
1194 static void
1195 build_fastboot_cmdline(struct xboot_info *xbp)
1196 {
1197 saved_cmdline_len = strlen(xbp->bi_cmdline) + 1;
1198 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1199 DBG(saved_cmdline_len);
1200 DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1201 fastreboot_capable = 0;
1202 } else {
1203 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline,
1204 saved_cmdline_len);
1205 saved_cmdline[saved_cmdline_len - 1] = '\0';
1206 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1207 }
1208 }
1209
1210 /*
1211 * Save memory layout, disk drive information, unix and boot archive sizes for
1212 * Fast Reboot.
1213 */
1214 static void
1215 save_boot_info(struct xboot_info *xbi)
1216 {
1217 multiboot_info_t *mbi = xbi->bi_mb_info;
1218 struct boot_modules *modp;
1219 int i;
1220
1221 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1222 if (mbi->mmap_length > sizeof (saved_mmap)) {
1223 DBG_MSG("mbi->mmap_length too big: clearing "
1224 "fastreboot_capable\n");
1225 fastreboot_capable = 0;
1226 } else {
1227 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1228 mbi->mmap_length);
1229 }
1230
1231 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1232 if (mbi->drives_length > sizeof (saved_drives)) {
1233 DBG(mbi->drives_length);
1234 DBG_MSG("mbi->drives_length too big: clearing "
1235 "fastreboot_capable\n");
1236 fastreboot_capable = 0;
1237 } else {
1238 bcopy((void *)(uintptr_t)mbi->drives_addr,
1239 (void *)saved_drives, mbi->drives_length);
1240 }
1241 } else {
1242 saved_mbi.drives_length = 0;
1243 saved_mbi.drives_addr = NULL;
1244 }
1245
1246 /*
1247 * Current file sizes. Used by fastboot.c to figure out how much
1248 * memory to reserve for panic reboot.
1249 * Use the module list from the dboot-constructed xboot_info
1250 * instead of the list referenced by the multiboot structure
1251 * because that structure may not be addressable now.
1252 */
1253 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1254 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1255 i < xbi->bi_module_cnt; i++, modp++) {
1256 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1257 }
1258 }
1259 #endif /* __xpv */
1260
1261 /*
1262 * Import boot environment module variables as properties, applying
1263 * blacklist filter for variables we know we will not use.
1264 *
1265 * Since the environment can be relatively large, containing many variables
1266 * used only for boot loader purposes, we will use a blacklist based filter.
1267 * To keep the blacklist from growing too large, we use prefix based filtering.
1268 * This is possible because in many cases, the loader variable names are
1269 * using a structured layout.
1270 *
1271 * We will not overwrite already set properties.
1272 */
1273 static struct bop_blacklist {
1274 const char *bl_name;
1275 int bl_name_len;
1276 } bop_prop_blacklist[] = {
1277 { "ISADIR", sizeof ("ISADIR") },
1278 { "acpi", sizeof ("acpi") },
1279 { "autoboot_delay", sizeof ("autoboot_delay") },
1280 { "autoboot_delay", sizeof ("autoboot_delay") },
1281 { "beansi_", sizeof ("beansi_") },
1282 { "beastie", sizeof ("beastie") },
1283 { "bemenu", sizeof ("bemenu") },
1284 { "boot.", sizeof ("boot.") },
1285 { "bootenv", sizeof ("bootenv") },
1286 { "currdev", sizeof ("currdev") },
1287 { "dhcp.", sizeof ("dhcp.") },
1288 { "interpret", sizeof ("interpret") },
1289 { "kernel", sizeof ("kernel") },
1290 { "loaddev", sizeof ("loaddev") },
1291 { "loader_", sizeof ("loader_") },
1292 { "module_path", sizeof ("module_path") },
1293 { "nfs.", sizeof ("nfs.") },
1294 { "pcibios", sizeof ("pcibios") },
1295 { "prompt", sizeof ("prompt") },
1296 { "smbios", sizeof ("smbios") },
1297 { "tem", sizeof ("tem") },
1298 { "twiddle_divisor", sizeof ("twiddle_divisor") },
1299 { "zfs_be", sizeof ("zfs_be") },
1300 };
1301
1302 /*
1303 * Match the name against prefixes in above blacklist. If the match was
1304 * found, this name is blacklisted.
1305 */
1306 static boolean_t
1307 name_is_blacklisted(const char *name)
1308 {
1309 int i, n;
1310
1311 n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]);
1312 for (i = 0; i < n; i++) {
1313 if (strncmp(bop_prop_blacklist[i].bl_name, name,
1314 bop_prop_blacklist[i].bl_name_len - 1) == 0) {
1315 return (B_TRUE);
1316 }
1317 }
1318 return (B_FALSE);
1319 }
1320
1321 static void
1322 process_boot_environment(struct boot_modules *benv)
1323 {
1324 char *env, *ptr, *name, *value;
1325 uint32_t size, name_len, value_len;
1326
1327 if (benv == NULL || benv->bm_type != BMT_ENV)
1328 return;
1329 ptr = env = benv->bm_addr;
1330 size = benv->bm_size;
1331 do {
1332 name = ptr;
1333 /* find '=' */
1334 while (*ptr != '=') {
1335 ptr++;
1336 if (ptr > env + size) /* Something is very wrong. */
1337 return;
1338 }
1339 name_len = ptr - name;
1340 if (sizeof (buffer) <= name_len)
1341 continue;
1342
1343 (void) strncpy(buffer, name, sizeof (buffer));
1344 buffer[name_len] = '\0';
1345 name = buffer;
1346
1347 value_len = 0;
1348 value = ++ptr;
1349 while ((uintptr_t)ptr - (uintptr_t)env < size) {
1350 if (*ptr == '\0') {
1351 ptr++;
1352 value_len = (uintptr_t)ptr - (uintptr_t)env;
1353 break;
1354 }
1355 ptr++;
1356 }
1357
1358 /* Did we reach the end of the module? */
1359 if (value_len == 0)
1360 return;
1361
1362 if (*value == '\0')
1363 continue;
1364
1365 /* Is this property already set? */
1366 if (do_bsys_getproplen(NULL, name) >= 0)
1367 continue;
1368
1369 if (name_is_blacklisted(name) == B_TRUE)
1370 continue;
1371
1372 /* Create new property. */
1373 bsetprops(name, value);
1374
1375 /* Avoid reading past the module end. */
1376 if (size <= (uintptr_t)ptr - (uintptr_t)env)
1377 return;
1378 } while (*ptr != '\0');
1379 }
1380
1381 /*
1382 * 1st pass at building the table of boot properties. This includes:
1383 * - values set on the command line: -B a=x,b=y,c=z ....
1384 * - known values we just compute (ie. from xbp)
1385 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1386 *
1387 * the grub command line looked like:
1388 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1389 *
1390 * whoami is the same as boot-file
1391 */
1392 static void
1393 build_boot_properties(struct xboot_info *xbp)
1394 {
1395 char *name;
1396 int name_len;
1397 char *value;
1398 int value_len;
1399 struct boot_modules *bm, *rdbm, *benv = NULL;
1400 char *propbuf;
1401 int quoted = 0;
1402 int boot_arg_len;
1403 uint_t i, midx;
1404 char modid[32];
1405 #ifndef __xpv
1406 static int stdout_val = 0;
1407 uchar_t boot_device;
1408 char str[3];
1409 #endif
1410
1411 /*
1412 * These have to be done first, so that kobj_mount_root() works
1413 */
1414 DBG_MSG("Building boot properties\n");
1415 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1416 DBG((uintptr_t)propbuf);
1417 if (xbp->bi_module_cnt > 0) {
1418 bm = xbp->bi_modules;
1419 rdbm = NULL;
1420 for (midx = i = 0; i < xbp->bi_module_cnt; i++) {
1421 if (bm[i].bm_type == BMT_ROOTFS) {
1422 rdbm = &bm[i];
1423 continue;
1424 }
1425 if (bm[i].bm_type == BMT_HASH ||
1426 bm[i].bm_type == BMT_FONT ||
1427 bm[i].bm_name == NULL)
1428 continue;
1429
1430 if (bm[i].bm_type == BMT_ENV) {
1431 if (benv == NULL)
1432 benv = &bm[i];
1433 else
1434 continue;
1435 }
1436
1437 (void) snprintf(modid, sizeof (modid),
1438 "module-name-%u", midx);
1439 bsetprops(modid, (char *)bm[i].bm_name);
1440 (void) snprintf(modid, sizeof (modid),
1441 "module-addr-%u", midx);
1442 bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr);
1443 (void) snprintf(modid, sizeof (modid),
1444 "module-size-%u", midx);
1445 bsetprop64(modid, (uint64_t)bm[i].bm_size);
1446 ++midx;
1447 }
1448 if (rdbm != NULL) {
1449 bsetprop64("ramdisk_start",
1450 (uint64_t)(uintptr_t)rdbm->bm_addr);
1451 bsetprop64("ramdisk_end",
1452 (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size);
1453 }
1454 }
1455
1456 /*
1457 * If there are any boot time modules or hashes present, then disable
1458 * fast reboot.
1459 */
1460 if (xbp->bi_module_cnt > 1) {
1461 fastreboot_disable(FBNS_BOOTMOD);
1462 }
1463
1464 #ifndef __xpv
1465 /*
1466 * Disable fast reboot if we're using the Multiboot 2 boot protocol,
1467 * since we don't currently support MB2 info and module relocation.
1468 * Note that fast reboot will have already been disabled if multiple
1469 * modules are present, since the current implementation assumes that
1470 * we only have a single module, the boot_archive.
1471 */
1472 if (xbp->bi_mb_version != 1) {
1473 fastreboot_disable(FBNS_MULTIBOOT2);
1474 }
1475 #endif
1476
1477 DBG_MSG("Parsing command line for boot properties\n");
1478 value = xbp->bi_cmdline;
1479
1480 /*
1481 * allocate memory to collect boot_args into
1482 */
1483 boot_arg_len = strlen(xbp->bi_cmdline) + 1;
1484 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1485 boot_args[0] = 0;
1486 boot_arg_len = 0;
1487
1488 #ifdef __xpv
1489 /*
1490 * Xen puts a lot of device information in front of the kernel name
1491 * let's grab them and make them boot properties. The first
1492 * string w/o an "=" in it will be the boot-file property.
1493 */
1494 (void) strcpy(namebuf, "xpv-");
1495 for (;;) {
1496 /*
1497 * get to next property
1498 */
1499 while (ISSPACE(*value))
1500 ++value;
1501 name = value;
1502 /*
1503 * look for an "="
1504 */
1505 while (*value && !ISSPACE(*value) && *value != '=') {
1506 value++;
1507 }
1508 if (*value != '=') { /* no "=" in the property */
1509 value = name;
1510 break;
1511 }
1512 name_len = value - name;
1513 value_len = 0;
1514 /*
1515 * skip over the "="
1516 */
1517 value++;
1518 while (value[value_len] && !ISSPACE(value[value_len])) {
1519 ++value_len;
1520 }
1521 /*
1522 * build property name with "xpv-" prefix
1523 */
1524 if (name_len + 4 > 32) { /* skip if name too long */
1525 value += value_len;
1526 continue;
1527 }
1528 bcopy(name, &namebuf[4], name_len);
1529 name_len += 4;
1530 namebuf[name_len] = 0;
1531 bcopy(value, propbuf, value_len);
1532 propbuf[value_len] = 0;
1533 bsetprops(namebuf, propbuf);
1534
1535 /*
1536 * xpv-root is set to the logical disk name of the xen
1537 * VBD when booting from a disk-based filesystem.
1538 */
1539 if (strcmp(namebuf, "xpv-root") == 0)
1540 xen_vbdroot_props(propbuf);
1541 /*
1542 * While we're here, if we have a "xpv-nfsroot" property
1543 * then we need to set "fstype" to "nfs" so we mount
1544 * our root from the nfs server. Also parse the xpv-nfsroot
1545 * property to create the properties that nfs_mountroot will
1546 * need to find the root and mount it.
1547 */
1548 if (strcmp(namebuf, "xpv-nfsroot") == 0)
1549 xen_nfsroot_props(propbuf);
1550
1551 if (strcmp(namebuf, "xpv-ip") == 0)
1552 xen_ip_props(propbuf);
1553 value += value_len;
1554 }
1555 #endif
1556
1557 while (ISSPACE(*value))
1558 ++value;
1559 /*
1560 * value now points at the boot-file
1561 */
1562 value_len = 0;
1563 while (value[value_len] && !ISSPACE(value[value_len]))
1564 ++value_len;
1565 if (value_len > 0) {
1566 whoami = propbuf;
1567 bcopy(value, whoami, value_len);
1568 whoami[value_len] = 0;
1569 bsetprops("boot-file", whoami);
1570 /*
1571 * strip leading path stuff from whoami, so running from
1572 * PXE/miniroot makes sense.
1573 */
1574 if (strstr(whoami, "/platform/") != NULL)
1575 whoami = strstr(whoami, "/platform/");
1576 bsetprops("whoami", whoami);
1577 }
1578
1579 /*
1580 * Values forcibly set boot properties on the command line via -B.
1581 * Allow use of quotes in values. Other stuff goes on kernel
1582 * command line.
1583 */
1584 name = value + value_len;
1585 while (*name != 0) {
1586 /*
1587 * anything not " -B" is copied to the command line
1588 */
1589 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1590 boot_args[boot_arg_len++] = *name;
1591 boot_args[boot_arg_len] = 0;
1592 ++name;
1593 continue;
1594 }
1595
1596 /*
1597 * skip the " -B" and following white space
1598 */
1599 name += 3;
1600 while (ISSPACE(*name))
1601 ++name;
1602 while (*name && !ISSPACE(*name)) {
1603 value = strstr(name, "=");
1604 if (value == NULL)
1605 break;
1606 name_len = value - name;
1607 ++value;
1608 value_len = 0;
1609 quoted = 0;
1610 for (; ; ++value_len) {
1611 if (!value[value_len])
1612 break;
1613
1614 /*
1615 * is this value quoted?
1616 */
1617 if (value_len == 0 &&
1618 (value[0] == '\'' || value[0] == '"')) {
1619 quoted = value[0];
1620 ++value_len;
1621 }
1622
1623 /*
1624 * In the quote accept any character,
1625 * but look for ending quote.
1626 */
1627 if (quoted) {
1628 if (value[value_len] == quoted)
1629 quoted = 0;
1630 continue;
1631 }
1632
1633 /*
1634 * a comma or white space ends the value
1635 */
1636 if (value[value_len] == ',' ||
1637 ISSPACE(value[value_len]))
1638 break;
1639 }
1640
1641 if (value_len == 0) {
1642 bsetprop(DDI_PROP_TYPE_ANY, name, name_len,
1643 NULL, 0);
1644 } else {
1645 char *v = value;
1646 int l = value_len;
1647 if (v[0] == v[l - 1] &&
1648 (v[0] == '\'' || v[0] == '"')) {
1649 ++v;
1650 l -= 2;
1651 }
1652 bcopy(v, propbuf, l);
1653 propbuf[l] = '\0';
1654 bsetprop(DDI_PROP_TYPE_STRING, name, name_len,
1655 propbuf, l + 1);
1656 }
1657 name = value + value_len;
1658 while (*name == ',')
1659 ++name;
1660 }
1661 }
1662
1663 /*
1664 * set boot-args property
1665 * 1275 name is bootargs, so set
1666 * that too
1667 */
1668 bsetprops("boot-args", boot_args);
1669 bsetprops("bootargs", boot_args);
1670
1671 process_boot_environment(benv);
1672
1673 #ifndef __xpv
1674 /*
1675 * Build boot command line for Fast Reboot
1676 */
1677 build_fastboot_cmdline(xbp);
1678
1679 if (xbp->bi_mb_version == 1) {
1680 multiboot_info_t *mbi = xbp->bi_mb_info;
1681 int netboot;
1682 struct sol_netinfo *sip;
1683
1684 /*
1685 * set the BIOS boot device from GRUB
1686 */
1687 netboot = 0;
1688
1689 /*
1690 * Save various boot information for Fast Reboot
1691 */
1692 save_boot_info(xbp);
1693
1694 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1695 boot_device = mbi->boot_device >> 24;
1696 if (boot_device == 0x20)
1697 netboot++;
1698 str[0] = (boot_device >> 4) + '0';
1699 str[1] = (boot_device & 0xf) + '0';
1700 str[2] = 0;
1701 bsetprops("bios-boot-device", str);
1702 } else {
1703 netboot = 1;
1704 }
1705
1706 /*
1707 * In the netboot case, drives_info is overloaded with the
1708 * dhcp ack. This is not multiboot compliant and requires
1709 * special pxegrub!
1710 */
1711 if (netboot && mbi->drives_length != 0) {
1712 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1713 if (sip->sn_infotype == SN_TYPE_BOOTP)
1714 bsetprop(DDI_PROP_TYPE_BYTE,
1715 "bootp-response",
1716 sizeof ("bootp-response"),
1717 (void *)(uintptr_t)mbi->drives_addr,
1718 mbi->drives_length);
1719 else if (sip->sn_infotype == SN_TYPE_RARP)
1720 setup_rarp_props(sip);
1721 }
1722 } else {
1723 multiboot2_info_header_t *mbi = xbp->bi_mb_info;
1724 multiboot_tag_bootdev_t *bootdev = NULL;
1725 multiboot_tag_network_t *netdev = NULL;
1726
1727 if (mbi != NULL) {
1728 bootdev = dboot_multiboot2_find_tag(mbi,
1729 MULTIBOOT_TAG_TYPE_BOOTDEV);
1730 netdev = dboot_multiboot2_find_tag(mbi,
1731 MULTIBOOT_TAG_TYPE_NETWORK);
1732 }
1733 if (bootdev != NULL) {
1734 DBG(bootdev->mb_biosdev);
1735 boot_device = bootdev->mb_biosdev;
1736 str[0] = (boot_device >> 4) + '0';
1737 str[1] = (boot_device & 0xf) + '0';
1738 str[2] = 0;
1739 bsetprops("bios-boot-device", str);
1740 }
1741 if (netdev != NULL) {
1742 bsetprop(DDI_PROP_TYPE_BYTE,
1743 "bootp-response", sizeof ("bootp-response"),
1744 (void *)(uintptr_t)netdev->mb_dhcpack,
1745 netdev->mb_size -
1746 sizeof (multiboot_tag_network_t));
1747 }
1748 }
1749
1750 bsetprop32("stdout", stdout_val);
1751 #endif /* __xpv */
1752
1753 /*
1754 * more conjured up values for made up things....
1755 */
1756 #if defined(__xpv)
1757 bsetprops("mfg-name", "i86xpv");
1758 bsetprops("impl-arch-name", "i86xpv");
1759 #else
1760 bsetprops("mfg-name", "i86pc");
1761 bsetprops("impl-arch-name", "i86pc");
1762 #endif
1763
1764 /*
1765 * Build firmware-provided system properties
1766 */
1767 build_firmware_properties(xbp);
1768
1769 /*
1770 * XXPV
1771 *
1772 * Find out what these are:
1773 * - cpuid_feature_ecx_include
1774 * - cpuid_feature_ecx_exclude
1775 * - cpuid_feature_edx_include
1776 * - cpuid_feature_edx_exclude
1777 *
1778 * Find out what these are in multiboot:
1779 * - netdev-path
1780 * - fstype
1781 */
1782 }
1783
1784 #ifdef __xpv
1785 /*
1786 * Under the Hypervisor, memory usable for DMA may be scarce. One
1787 * very likely large pool of DMA friendly memory is occupied by
1788 * the boot_archive, as it was loaded by grub into low MFNs.
1789 *
1790 * Here we free up that memory by copying the boot archive to what are
1791 * likely higher MFN pages and then swapping the mfn/pfn mappings.
1792 */
1793 #define PFN_2GIG 0x80000
1794 static void
1795 relocate_boot_archive(struct xboot_info *xbp)
1796 {
1797 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1798 struct boot_modules *bm = xbp->bi_modules;
1799 uintptr_t va;
1800 pfn_t va_pfn;
1801 mfn_t va_mfn;
1802 caddr_t copy;
1803 pfn_t copy_pfn;
1804 mfn_t copy_mfn;
1805 size_t len;
1806 int slop;
1807 int total = 0;
1808 int relocated = 0;
1809 int mmu_update_return;
1810 mmu_update_t t[2];
1811 x86pte_t pte;
1812
1813 /*
1814 * If all MFN's are below 2Gig, don't bother doing this.
1815 */
1816 if (max_mfn < PFN_2GIG)
1817 return;
1818 if (xbp->bi_module_cnt < 1) {
1819 DBG_MSG("no boot_archive!");
1820 return;
1821 }
1822
1823 DBG_MSG("moving boot_archive to high MFN memory\n");
1824 va = (uintptr_t)bm->bm_addr;
1825 len = bm->bm_size;
1826 slop = va & MMU_PAGEOFFSET;
1827 if (slop) {
1828 va += MMU_PAGESIZE - slop;
1829 len -= MMU_PAGESIZE - slop;
1830 }
1831 len = P2ALIGN(len, MMU_PAGESIZE);
1832
1833 /*
1834 * Go through all boot_archive pages, swapping any low MFN pages
1835 * with memory at next_phys.
1836 */
1837 while (len != 0) {
1838 ++total;
1839 va_pfn = mmu_btop(va - ONE_GIG);
1840 va_mfn = mfn_list[va_pfn];
1841 if (mfn_list[va_pfn] < PFN_2GIG) {
1842 copy = kbm_remap_window(next_phys, 1);
1843 bcopy((void *)va, copy, MMU_PAGESIZE);
1844 copy_pfn = mmu_btop(next_phys);
1845 copy_mfn = mfn_list[copy_pfn];
1846
1847 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1848 if (HYPERVISOR_update_va_mapping(va, pte,
1849 UVMF_INVLPG | UVMF_LOCAL))
1850 bop_panic("relocate_boot_archive(): "
1851 "HYPERVISOR_update_va_mapping() failed");
1852
1853 mfn_list[va_pfn] = copy_mfn;
1854 mfn_list[copy_pfn] = va_mfn;
1855
1856 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1857 t[0].val = va_pfn;
1858 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1859 t[1].val = copy_pfn;
1860 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1861 DOMID_SELF) != 0 || mmu_update_return != 2)
1862 bop_panic("relocate_boot_archive(): "
1863 "HYPERVISOR_mmu_update() failed");
1864
1865 next_phys += MMU_PAGESIZE;
1866 ++relocated;
1867 }
1868 len -= MMU_PAGESIZE;
1869 va += MMU_PAGESIZE;
1870 }
1871 DBG_MSG("Relocated pages:\n");
1872 DBG(relocated);
1873 DBG_MSG("Out of total pages:\n");
1874 DBG(total);
1875 }
1876 #endif /* __xpv */
1877
1878 #if !defined(__xpv)
1879 /*
1880 * simple description of a stack frame (args are 32 bit only currently)
1881 */
1882 typedef struct bop_frame {
1883 struct bop_frame *old_frame;
1884 pc_t retaddr;
1885 long arg[1];
1886 } bop_frame_t;
1887
1888 void
1889 bop_traceback(bop_frame_t *frame)
1890 {
1891 pc_t pc;
1892 int cnt;
1893 char *ksym;
1894 ulong_t off;
1895
1896 bop_printf(NULL, "Stack traceback:\n");
1897 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */
1898 pc = frame->retaddr;
1899 if (pc == 0)
1900 break;
1901 ksym = kobj_getsymname(pc, &off);
1902 if (ksym)
1903 bop_printf(NULL, " %s+%lx", ksym, off);
1904 else
1905 bop_printf(NULL, " 0x%lx", pc);
1906
1907 frame = frame->old_frame;
1908 if (frame == 0) {
1909 bop_printf(NULL, "\n");
1910 break;
1911 }
1912 bop_printf(NULL, "\n");
1913 }
1914 }
1915
1916 struct trapframe {
1917 ulong_t error_code; /* optional */
1918 ulong_t inst_ptr;
1919 ulong_t code_seg;
1920 ulong_t flags_reg;
1921 ulong_t stk_ptr;
1922 ulong_t stk_seg;
1923 };
1924
1925 void
1926 bop_trap(ulong_t *tfp)
1927 {
1928 struct trapframe *tf = (struct trapframe *)tfp;
1929 bop_frame_t fakeframe;
1930 static int depth = 0;
1931
1932 /*
1933 * Check for an infinite loop of traps.
1934 */
1935 if (++depth > 2)
1936 bop_panic("Nested trap");
1937
1938 bop_printf(NULL, "Unexpected trap\n");
1939
1940 /*
1941 * adjust the tf for optional error_code by detecting the code selector
1942 */
1943 if (tf->code_seg != B64CODE_SEL)
1944 tf = (struct trapframe *)(tfp - 1);
1945 else
1946 bop_printf(NULL, "error code 0x%lx\n",
1947 tf->error_code & 0xffffffff);
1948
1949 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr);
1950 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff);
1951 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg);
1952 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr);
1953 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff);
1954
1955 /* grab %[er]bp pushed by our code from the stack */
1956 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
1957 fakeframe.retaddr = (pc_t)tf->inst_ptr;
1958 bop_printf(NULL, "Attempting stack backtrace:\n");
1959 bop_traceback(&fakeframe);
1960 bop_panic("unexpected trap in early boot");
1961 }
1962
1963 extern void bop_trap_handler(void);
1964
1965 static gate_desc_t *bop_idt;
1966
1967 static desctbr_t bop_idt_info;
1968
1969 /*
1970 * Install a temporary IDT that lets us catch errors in the boot time code.
1971 * We shouldn't get any faults at all while this is installed, so we'll
1972 * just generate a traceback and exit.
1973 */
1974 static void
1975 bop_idt_init(void)
1976 {
1977 int t;
1978
1979 bop_idt = (gate_desc_t *)
1980 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1981 bzero(bop_idt, MMU_PAGESIZE);
1982 for (t = 0; t < NIDT; ++t) {
1983 /*
1984 * Note that since boot runs without a TSS, the
1985 * double fault handler cannot use an alternate stack (64-bit).
1986 */
1987 set_gatesegd(&bop_idt[t], &bop_trap_handler, B64CODE_SEL,
1988 SDT_SYSIGT, TRP_KPL, 0);
1989 }
1990 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
1991 bop_idt_info.dtr_base = (uintptr_t)bop_idt;
1992 wr_idtr(&bop_idt_info);
1993 }
1994 #endif /* !defined(__xpv) */
1995
1996 /*
1997 * This is where we enter the kernel. It dummies up the boot_ops and
1998 * boot_syscalls vectors and jumps off to _kobj_boot()
1999 */
2000 void
2001 _start(struct xboot_info *xbp)
2002 {
2003 bootops_t *bops = &bootop;
2004 extern void _kobj_boot();
2005
2006 /*
2007 * 1st off - initialize the console for any error messages
2008 */
2009 xbootp = xbp;
2010 #ifdef __xpv
2011 HYPERVISOR_shared_info = (void *)xbp->bi_shared_info;
2012 xen_info = xbp->bi_xen_start_info;
2013 #endif
2014
2015 #ifndef __xpv
2016 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
2017 FASTBOOT_MAGIC) {
2018 post_fastreboot = 1;
2019 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
2020 }
2021 #endif
2022
2023 bcons_init(xbp);
2024 have_console = 1;
2025
2026 /*
2027 * enable debugging
2028 */
2029 if (find_boot_prop("kbm_debug") != NULL)
2030 kbm_debug = 1;
2031
2032 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
2033 DBG_MSG((char *)xbp->bi_cmdline);
2034 DBG_MSG("\n\n\n");
2035
2036 /*
2037 * physavail is no longer used by startup
2038 */
2039 bm.physinstalled = xbp->bi_phys_install;
2040 bm.pcimem = xbp->bi_pcimem;
2041 bm.rsvdmem = xbp->bi_rsvdmem;
2042 bm.physavail = NULL;
2043
2044 /*
2045 * initialize the boot time allocator
2046 */
2047 next_phys = xbp->bi_next_paddr;
2048 DBG(next_phys);
2049 next_virt = (uintptr_t)xbp->bi_next_vaddr;
2050 DBG(next_virt);
2051 DBG_MSG("Initializing boot time memory management...");
2052 #ifdef __xpv
2053 {
2054 xen_platform_parameters_t p;
2055
2056 /* This call shouldn't fail, dboot already did it once. */
2057 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
2058 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
2059 DBG(xen_virt_start);
2060 }
2061 #endif
2062 kbm_init(xbp);
2063 DBG_MSG("done\n");
2064
2065 /*
2066 * Fill in the bootops vector
2067 */
2068 bops->bsys_version = BO_VERSION;
2069 bops->boot_mem = &bm;
2070 bops->bsys_alloc = do_bsys_alloc;
2071 bops->bsys_free = do_bsys_free;
2072 bops->bsys_getproplen = do_bsys_getproplen;
2073 bops->bsys_getprop = do_bsys_getprop;
2074 bops->bsys_nextprop = do_bsys_nextprop;
2075 bops->bsys_printf = bop_printf;
2076 bops->bsys_doint = do_bsys_doint;
2077
2078 /*
2079 * BOP_EALLOC() is no longer needed
2080 */
2081 bops->bsys_ealloc = do_bsys_ealloc;
2082
2083 #ifdef __xpv
2084 /*
2085 * On domain 0 we need to free up some physical memory that is
2086 * usable for DMA. Since GRUB loaded the boot_archive, it is
2087 * sitting in low MFN memory. We'll relocated the boot archive
2088 * pages to high PFN memory.
2089 */
2090 if (DOMAIN_IS_INITDOMAIN(xen_info))
2091 relocate_boot_archive(xbp);
2092 #endif
2093
2094 #ifndef __xpv
2095 /*
2096 * Install an IDT to catch early pagefaults (shouldn't have any).
2097 * Also needed for kmdb.
2098 */
2099 bop_idt_init();
2100 #endif
2101 /* Set up the shadow fb for framebuffer console */
2102 boot_fb_shadow_init(bops);
2103
2104 /*
2105 * Start building the boot properties from the command line
2106 */
2107 DBG_MSG("Initializing boot properties:\n");
2108 build_boot_properties(xbp);
2109
2110 if (find_boot_prop("prom_debug") || kbm_debug) {
2111 char *value;
2112
2113 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2114 boot_prop_display(value);
2115 }
2116
2117 /*
2118 * jump into krtld...
2119 */
2120 _kobj_boot(&bop_sysp, NULL, bops, NULL);
2121 }
2122
2123
2124 /*ARGSUSED*/
2125 static caddr_t
2126 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
2127 {
2128 panic("Attempt to bsys_alloc() too late\n");
2129 return (NULL);
2130 }
2131
2132 /*ARGSUSED*/
2133 static void
2134 no_more_free(bootops_t *bop, caddr_t virt, size_t size)
2135 {
2136 panic("Attempt to bsys_free() too late\n");
2137 }
2138
2139 void
2140 bop_no_more_mem(void)
2141 {
2142 DBG(total_bop_alloc_scratch);
2143 DBG(total_bop_alloc_kernel);
2144 bootops->bsys_alloc = no_more_alloc;
2145 bootops->bsys_free = no_more_free;
2146 }
2147
2148
2149 /*
2150 * Set ACPI firmware properties
2151 */
2152
2153 static caddr_t
2154 vmap_phys(size_t length, paddr_t pa)
2155 {
2156 paddr_t start, end;
2157 caddr_t va;
2158 size_t len, page;
2159
2160 #ifdef __xpv
2161 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
2162 #endif
2163 start = P2ALIGN(pa, MMU_PAGESIZE);
2164 end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
2165 len = end - start;
2166 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
2167 for (page = 0; page < len; page += MMU_PAGESIZE)
2168 kbm_map((uintptr_t)va + page, start + page, 0, 0);
2169 return (va + (pa & MMU_PAGEOFFSET));
2170 }
2171
2172 static uint8_t
2173 checksum_table(uint8_t *tp, size_t len)
2174 {
2175 uint8_t sum = 0;
2176
2177 while (len-- > 0)
2178 sum += *tp++;
2179
2180 return (sum);
2181 }
2182
2183 static int
2184 valid_rsdp(ACPI_TABLE_RSDP *rp)
2185 {
2186
2187 /* validate the V1.x checksum */
2188 if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0)
2189 return (0);
2190
2191 /* If pre-ACPI 2.0, this is a valid RSDP */
2192 if (rp->Revision < 2)
2193 return (1);
2194
2195 /* validate the V2.x checksum */
2196 if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0)
2197 return (0);
2198
2199 return (1);
2200 }
2201
2202 /*
2203 * Scan memory range for an RSDP;
2204 * see ACPI 3.0 Spec, 5.2.5.1
2205 */
2206 static ACPI_TABLE_RSDP *
2207 scan_rsdp(paddr_t start, paddr_t end)
2208 {
2209 ssize_t len = end - start;
2210 caddr_t ptr;
2211
2212 ptr = vmap_phys(len, start);
2213 while (len > 0) {
2214 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 &&
2215 valid_rsdp((ACPI_TABLE_RSDP *)ptr))
2216 return ((ACPI_TABLE_RSDP *)ptr);
2217
2218 ptr += ACPI_RSDP_SCAN_STEP;
2219 len -= ACPI_RSDP_SCAN_STEP;
2220 }
2221
2222 return (NULL);
2223 }
2224
2225 /*
2226 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function
2227 */
2228 static ACPI_TABLE_RSDP *
2229 find_rsdp()
2230 {
2231 ACPI_TABLE_RSDP *rsdp;
2232 uint64_t rsdp_val = 0;
2233 uint16_t *ebda_seg;
2234 paddr_t ebda_addr;
2235
2236 /* check for "acpi-root-tab" property */
2237 if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) {
2238 (void) do_bsys_getprop(NULL, "acpi-root-tab", &rsdp_val);
2239 if (rsdp_val != 0) {
2240 rsdp = scan_rsdp(rsdp_val, rsdp_val + sizeof (*rsdp));
2241 if (rsdp != NULL) {
2242 if (kbm_debug) {
2243 bop_printf(NULL,
2244 "Using RSDP from bootloader: "
2245 "0x%p\n", (void *)rsdp);
2246 }
2247 return (rsdp);
2248 }
2249 }
2250 }
2251
2252 /*
2253 * Get the EBDA segment and scan the first 1K
2254 */
2255 ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t),
2256 ACPI_EBDA_PTR_LOCATION);
2257 ebda_addr = *ebda_seg << 4;
2258 rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE);
2259 if (rsdp == NULL)
2260 /* if EBDA doesn't contain RSDP, look in BIOS memory */
2261 rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE,
2262 ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE);
2263 return (rsdp);
2264 }
2265
2266 static ACPI_TABLE_HEADER *
2267 map_fw_table(paddr_t table_addr)
2268 {
2269 ACPI_TABLE_HEADER *tp;
2270 size_t len = MAX(sizeof (*tp), MMU_PAGESIZE);
2271
2272 /*
2273 * Map at least a page; if the table is larger than this, remap it
2274 */
2275 tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr);
2276 if (tp->Length > len)
2277 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr);
2278 return (tp);
2279 }
2280
2281 static ACPI_TABLE_HEADER *
2282 find_fw_table(char *signature)
2283 {
2284 static int revision = 0;
2285 static ACPI_TABLE_XSDT *xsdt;
2286 static int len;
2287 paddr_t xsdt_addr;
2288 ACPI_TABLE_RSDP *rsdp;
2289 ACPI_TABLE_HEADER *tp;
2290 paddr_t table_addr;
2291 int n;
2292
2293 if (strlen(signature) != ACPI_NAME_SIZE)
2294 return (NULL);
2295
2296 /*
2297 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
2298 * understand this code. If we haven't already found the RSDT/XSDT,
2299 * revision will be 0. Find the RSDP and check the revision
2300 * to find out whether to use the RSDT or XSDT. If revision is
2301 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
2302 * use the XSDT. If the XSDT address is 0, though, fall back to
2303 * revision 1 and use the RSDT.
2304 */
2305 if (revision == 0) {
2306 if ((rsdp = find_rsdp()) != NULL) {
2307 revision = rsdp->Revision;
2308 /*
2309 * ACPI 6.0 states that current revision is 2
2310 * from acpi_table_rsdp definition:
2311 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+
2312 */
2313 if (revision > 2)
2314 revision = 2;
2315 switch (revision) {
2316 case 2:
2317 /*
2318 * Use the XSDT unless BIOS is buggy and
2319 * claims to be rev 2 but has a null XSDT
2320 * address
2321 */
2322 xsdt_addr = rsdp->XsdtPhysicalAddress;
2323 if (xsdt_addr != 0)
2324 break;
2325 /* FALLTHROUGH */
2326 case 0:
2327 /* treat RSDP rev 0 as revision 1 internally */
2328 revision = 1;
2329 /* FALLTHROUGH */
2330 case 1:
2331 /* use the RSDT for rev 0/1 */
2332 xsdt_addr = rsdp->RsdtPhysicalAddress;
2333 break;
2334 default:
2335 /* unknown revision */
2336 revision = 0;
2337 break;
2338 }
2339 }
2340 if (revision == 0)
2341 return (NULL);
2342
2343 /* cache the XSDT info */
2344 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr);
2345 len = (xsdt->Header.Length - sizeof (xsdt->Header)) /
2346 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2347 }
2348
2349 /*
2350 * Scan the table headers looking for a signature match
2351 */
2352 for (n = 0; n < len; n++) {
2353 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt;
2354 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] :
2355 xsdt->TableOffsetEntry[n];
2356
2357 if (table_addr == 0)
2358 continue;
2359 tp = map_fw_table(table_addr);
2360 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) {
2361 return (tp);
2362 }
2363 }
2364 return (NULL);
2365 }
2366
2367 static void
2368 process_mcfg(ACPI_TABLE_MCFG *tp)
2369 {
2370 ACPI_MCFG_ALLOCATION *cfg_baap;
2371 char *cfg_baa_endp;
2372 int64_t ecfginfo[4];
2373
2374 cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp));
2375 cfg_baa_endp = ((char *)tp) + tp->Header.Length;
2376 while ((char *)cfg_baap < cfg_baa_endp) {
2377 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) {
2378 ecfginfo[0] = cfg_baap->Address;
2379 ecfginfo[1] = cfg_baap->PciSegment;
2380 ecfginfo[2] = cfg_baap->StartBusNumber;
2381 ecfginfo[3] = cfg_baap->EndBusNumber;
2382 bsetprop(DDI_PROP_TYPE_INT64,
2383 MCFG_PROPNAME, strlen(MCFG_PROPNAME),
2384 ecfginfo, sizeof (ecfginfo));
2385 break;
2386 }
2387 cfg_baap++;
2388 }
2389 }
2390
2391 #ifndef __xpv
2392 static void
2393 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp,
2394 uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array)
2395 {
2396 ACPI_SUBTABLE_HEADER *item, *end;
2397 uint32_t cpu_count = 0;
2398 uint32_t cpu_possible_count = 0;
2399
2400 /*
2401 * Determine number of CPUs and keep track of "final" APIC ID
2402 * for each CPU by walking through ACPI MADT processor list
2403 */
2404 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2405 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2406
2407 while (item < end) {
2408 switch (item->Type) {
2409 case ACPI_MADT_TYPE_LOCAL_APIC: {
2410 ACPI_MADT_LOCAL_APIC *cpu =
2411 (ACPI_MADT_LOCAL_APIC *) item;
2412
2413 if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2414 if (cpu_apicid_array != NULL)
2415 cpu_apicid_array[cpu_count] = cpu->Id;
2416 cpu_count++;
2417 }
2418 cpu_possible_count++;
2419 break;
2420 }
2421 case ACPI_MADT_TYPE_LOCAL_X2APIC: {
2422 ACPI_MADT_LOCAL_X2APIC *cpu =
2423 (ACPI_MADT_LOCAL_X2APIC *) item;
2424
2425 if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2426 if (cpu_apicid_array != NULL)
2427 cpu_apicid_array[cpu_count] =
2428 cpu->LocalApicId;
2429 cpu_count++;
2430 }
2431 cpu_possible_count++;
2432 break;
2433 }
2434 default:
2435 if (kbm_debug)
2436 bop_printf(NULL, "MADT type %d\n", item->Type);
2437 break;
2438 }
2439
2440 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
2441 }
2442 if (cpu_countp)
2443 *cpu_countp = cpu_count;
2444 if (cpu_possible_countp)
2445 *cpu_possible_countp = cpu_possible_count;
2446 }
2447
2448 static void
2449 process_madt(ACPI_TABLE_MADT *tp)
2450 {
2451 uint32_t cpu_count = 0;
2452 uint32_t cpu_possible_count = 0;
2453 uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */
2454
2455 if (tp != NULL) {
2456 /* count cpu's */
2457 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL);
2458
2459 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL,
2460 cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE);
2461 if (cpu_apicid_array == NULL)
2462 bop_panic("Not enough memory for APIC ID array");
2463
2464 /* copy IDs */
2465 process_madt_entries(tp, NULL, NULL, cpu_apicid_array);
2466
2467 /*
2468 * Make boot property for array of "final" APIC IDs for each
2469 * CPU
2470 */
2471 bsetprop(DDI_PROP_TYPE_INT,
2472 BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2473 cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array));
2474 }
2475
2476 /*
2477 * Check whether property plat-max-ncpus is already set.
2478 */
2479 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2480 /*
2481 * Set plat-max-ncpus to number of maximum possible CPUs given
2482 * in MADT if it hasn't been set.
2483 * There's no formal way to detect max possible CPUs supported
2484 * by platform according to ACPI spec3.0b. So current CPU
2485 * hotplug implementation expects that all possible CPUs will
2486 * have an entry in MADT table and set plat-max-ncpus to number
2487 * of entries in MADT.
2488 * With introducing of ACPI4.0, Maximum System Capability Table
2489 * (MSCT) provides maximum number of CPUs supported by platform.
2490 * If MSCT is unavailable, fall back to old way.
2491 */
2492 if (tp != NULL)
2493 bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count);
2494 }
2495
2496 /*
2497 * Set boot property boot-max-ncpus to number of CPUs existing at
2498 * boot time. boot-max-ncpus is mainly used for optimization.
2499 */
2500 if (tp != NULL)
2501 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count);
2502
2503 /*
2504 * User-set boot-ncpus overrides firmware count
2505 */
2506 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2507 return;
2508
2509 /*
2510 * Set boot property boot-ncpus to number of active CPUs given in MADT
2511 * if it hasn't been set yet.
2512 */
2513 if (tp != NULL)
2514 bsetpropsi(BOOT_NCPUS_NAME, cpu_count);
2515 }
2516
2517 static void
2518 process_srat(ACPI_TABLE_SRAT *tp)
2519 {
2520 ACPI_SUBTABLE_HEADER *item, *end;
2521 int i;
2522 int proc_num, mem_num;
2523 #pragma pack(1)
2524 struct {
2525 uint32_t domain;
2526 uint32_t apic_id;
2527 uint32_t sapic_id;
2528 } processor;
2529 struct {
2530 uint32_t domain;
2531 uint32_t x2apic_id;
2532 } x2apic;
2533 struct {
2534 uint32_t domain;
2535 uint64_t addr;
2536 uint64_t length;
2537 uint32_t flags;
2538 } memory;
2539 #pragma pack()
2540 char prop_name[30];
2541 uint64_t maxmem = 0;
2542
2543 if (tp == NULL)
2544 return;
2545
2546 proc_num = mem_num = 0;
2547 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2548 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2549 while (item < end) {
2550 switch (item->Type) {
2551 case ACPI_SRAT_TYPE_CPU_AFFINITY: {
2552 ACPI_SRAT_CPU_AFFINITY *cpu =
2553 (ACPI_SRAT_CPU_AFFINITY *) item;
2554
2555 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2556 break;
2557 processor.domain = cpu->ProximityDomainLo;
2558 for (i = 0; i < 3; i++)
2559 processor.domain +=
2560 cpu->ProximityDomainHi[i] << ((i + 1) * 8);
2561 processor.apic_id = cpu->ApicId;
2562 processor.sapic_id = cpu->LocalSapicEid;
2563 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2564 proc_num);
2565 bsetprop(DDI_PROP_TYPE_INT,
2566 prop_name, strlen(prop_name), &processor,
2567 sizeof (processor));
2568 proc_num++;
2569 break;
2570 }
2571 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: {
2572 ACPI_SRAT_MEM_AFFINITY *mem =
2573 (ACPI_SRAT_MEM_AFFINITY *)item;
2574
2575 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
2576 break;
2577 memory.domain = mem->ProximityDomain;
2578 memory.addr = mem->BaseAddress;
2579 memory.length = mem->Length;
2580 memory.flags = mem->Flags;
2581 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2582 mem_num);
2583 bsetprop(DDI_PROP_TYPE_INT,
2584 prop_name, strlen(prop_name), &memory,
2585 sizeof (memory));
2586 if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) &&
2587 (memory.addr + memory.length > maxmem)) {
2588 maxmem = memory.addr + memory.length;
2589 }
2590 mem_num++;
2591 break;
2592 }
2593 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: {
2594 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
2595 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
2596
2597 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2598 break;
2599 x2apic.domain = x2cpu->ProximityDomain;
2600 x2apic.x2apic_id = x2cpu->ApicId;
2601 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2602 proc_num);
2603 bsetprop(DDI_PROP_TYPE_INT,
2604 prop_name, strlen(prop_name), &x2apic,
2605 sizeof (x2apic));
2606 proc_num++;
2607 break;
2608 }
2609 default:
2610 if (kbm_debug)
2611 bop_printf(NULL, "SRAT type %d\n", item->Type);
2612 break;
2613 }
2614
2615 item = (ACPI_SUBTABLE_HEADER *)
2616 (item->Length + (uintptr_t)item);
2617 }
2618
2619 /*
2620 * The maximum physical address calculated from the SRAT table is more
2621 * accurate than that calculated from the MSCT table.
2622 */
2623 if (maxmem != 0) {
2624 plat_dr_physmax = btop(maxmem);
2625 }
2626 }
2627
2628 static void
2629 process_slit(ACPI_TABLE_SLIT *tp)
2630 {
2631
2632 /*
2633 * Check the number of localities; if it's too huge, we just
2634 * return and locality enumeration code will handle this later,
2635 * if possible.
2636 *
2637 * Note that the size of the table is the square of the
2638 * number of localities; if the number of localities exceeds
2639 * UINT16_MAX, the table size may overflow an int when being
2640 * passed to bsetprop() below.
2641 */
2642 if (tp->LocalityCount >= SLIT_LOCALITIES_MAX)
2643 return;
2644
2645 bsetprop64(SLIT_NUM_PROPNAME, tp->LocalityCount);
2646 bsetprop(DDI_PROP_TYPE_BYTE,
2647 SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry,
2648 tp->LocalityCount * tp->LocalityCount);
2649 }
2650
2651 static ACPI_TABLE_MSCT *
2652 process_msct(ACPI_TABLE_MSCT *tp)
2653 {
2654 int last_seen = 0;
2655 int proc_num = 0;
2656 ACPI_MSCT_PROXIMITY *item, *end;
2657 extern uint64_t plat_dr_options;
2658
2659 ASSERT(tp != NULL);
2660
2661 end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp);
2662 for (item = (void *)((uintptr_t)tp + tp->ProximityOffset);
2663 item < end;
2664 item = (void *)(item->Length + (uintptr_t)item)) {
2665 /*
2666 * Sanity check according to section 5.2.19.1 of ACPI 4.0.
2667 * Revision 1
2668 * Length 22
2669 */
2670 if (item->Revision != 1 || item->Length != 22) {
2671 cmn_err(CE_CONT,
2672 "?boot: unknown proximity domain structure in MSCT "
2673 "with Revision(%d), Length(%d).\n",
2674 (int)item->Revision, (int)item->Length);
2675 return (NULL);
2676 } else if (item->RangeStart > item->RangeEnd) {
2677 cmn_err(CE_CONT,
2678 "?boot: invalid proximity domain structure in MSCT "
2679 "with RangeStart(%u), RangeEnd(%u).\n",
2680 item->RangeStart, item->RangeEnd);
2681 return (NULL);
2682 } else if (item->RangeStart != last_seen) {
2683 /*
2684 * Items must be organized in ascending order of the
2685 * proximity domain enumerations.
2686 */
2687 cmn_err(CE_CONT,
2688 "?boot: invalid proximity domain structure in MSCT,"
2689 " items are not orginized in ascending order.\n");
2690 return (NULL);
2691 }
2692
2693 /*
2694 * If ProcessorCapacity is 0 then there would be no CPUs in this
2695 * domain.
2696 */
2697 if (item->ProcessorCapacity != 0) {
2698 proc_num += (item->RangeEnd - item->RangeStart + 1) *
2699 item->ProcessorCapacity;
2700 }
2701
2702 last_seen = item->RangeEnd - item->RangeStart + 1;
2703 /*
2704 * Break out if all proximity domains have been processed.
2705 * Some BIOSes may have unused items at the end of MSCT table.
2706 */
2707 if (last_seen > tp->MaxProximityDomains) {
2708 break;
2709 }
2710 }
2711 if (last_seen != tp->MaxProximityDomains + 1) {
2712 cmn_err(CE_CONT,
2713 "?boot: invalid proximity domain structure in MSCT, "
2714 "proximity domain count doesn't match.\n");
2715 return (NULL);
2716 }
2717
2718 /*
2719 * Set plat-max-ncpus property if it hasn't been set yet.
2720 */
2721 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2722 if (proc_num != 0) {
2723 bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num);
2724 }
2725 }
2726
2727 /*
2728 * Use Maximum Physical Address from the MSCT table as upper limit for
2729 * memory hot-adding by default. It may be overridden by value from
2730 * the SRAT table or the "plat-dr-physmax" boot option.
2731 */
2732 plat_dr_physmax = btop(tp->MaxAddress + 1);
2733
2734 /*
2735 * Existence of MSCT implies CPU/memory hotplug-capability for the
2736 * platform.
2737 */
2738 plat_dr_options |= PLAT_DR_FEATURE_CPU;
2739 plat_dr_options |= PLAT_DR_FEATURE_MEMORY;
2740
2741 return (tp);
2742 }
2743
2744 #else /* __xpv */
2745 static void
2746 enumerate_xen_cpus()
2747 {
2748 processorid_t id, max_id;
2749
2750 /*
2751 * User-set boot-ncpus overrides enumeration
2752 */
2753 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2754 return;
2755
2756 /*
2757 * Probe every possible virtual CPU id and remember the
2758 * highest id present; the count of CPUs is one greater
2759 * than this. This tacitly assumes at least cpu 0 is present.
2760 */
2761 max_id = 0;
2762 for (id = 0; id < MAX_VIRT_CPUS; id++)
2763 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2764 max_id = id;
2765
2766 bsetpropsi(BOOT_NCPUS_NAME, max_id+1);
2767
2768 }
2769 #endif /* __xpv */
2770
2771 /*ARGSUSED*/
2772 static void
2773 build_firmware_properties(struct xboot_info *xbp)
2774 {
2775 ACPI_TABLE_HEADER *tp = NULL;
2776
2777 #ifndef __xpv
2778 if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_64) {
2779 bsetprops("efi-systype", "64");
2780 bsetprop64("efi-systab",
2781 (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2782 if (kbm_debug)
2783 bop_printf(NULL, "64-bit UEFI detected.\n");
2784 } else if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_32) {
2785 bsetprops("efi-systype", "32");
2786 bsetprop64("efi-systab",
2787 (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2788 if (kbm_debug)
2789 bop_printf(NULL, "32-bit UEFI detected.\n");
2790 }
2791
2792 if (xbp->bi_acpi_rsdp != NULL) {
2793 bsetprop64("acpi-root-tab",
2794 (uint64_t)(uintptr_t)xbp->bi_acpi_rsdp);
2795 }
2796
2797 if (xbp->bi_smbios != NULL) {
2798 bsetprop64("smbios-address",
2799 (uint64_t)(uintptr_t)xbp->bi_smbios);
2800 }
2801
2802 if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL)
2803 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp);
2804 else
2805 msct_ptr = NULL;
2806
2807 if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL)
2808 process_madt((ACPI_TABLE_MADT *)tp);
2809
2810 if ((srat_ptr = (ACPI_TABLE_SRAT *)
2811 find_fw_table(ACPI_SIG_SRAT)) != NULL)
2812 process_srat(srat_ptr);
2813
2814 if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT))
2815 process_slit(slit_ptr);
2816
2817 tp = find_fw_table(ACPI_SIG_MCFG);
2818 #else /* __xpv */
2819 enumerate_xen_cpus();
2820 if (DOMAIN_IS_INITDOMAIN(xen_info))
2821 tp = find_fw_table(ACPI_SIG_MCFG);
2822 #endif /* __xpv */
2823 if (tp != NULL)
2824 process_mcfg((ACPI_TABLE_MCFG *)tp);
2825 }
2826
2827 /*
2828 * fake up a boot property for deferred early console output
2829 * this is used by both graphical boot and the (developer only)
2830 * USB serial console
2831 */
2832 void *
2833 defcons_init(size_t size)
2834 {
2835 static char *p = NULL;
2836
2837 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2838 *p = 0;
2839 bsetprop32("deferred-console-buf", (uint32_t)((uintptr_t)&p));
2840 return (p);
2841 }
2842
2843 /*ARGSUSED*/
2844 int
2845 boot_compinfo(int fd, struct compinfo *cbp)
2846 {
2847 cbp->iscmp = 0;
2848 cbp->blksize = MAXBSIZE;
2849 return (0);
2850 }
2851
2852 #define BP_MAX_STRLEN 32
2853
2854 /*
2855 * Get value for given boot property
2856 */
2857 int
2858 bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2859 {
2860 int boot_prop_len;
2861 char str[BP_MAX_STRLEN];
2862 u_longlong_t value;
2863
2864 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2865 if (boot_prop_len < 0 || boot_prop_len > sizeof (str) ||
2866 BOP_GETPROP(bootops, prop_name, str) < 0 ||
2867 kobj_getvalue(str, &value) == -1)
2868 return (-1);
2869
2870 if (prop_value)
2871 *prop_value = value;
2872
2873 return (0);
2874 }