Print this page
    
NEX-16819 loader UEFI support
Includes work by Toomas Soome <tsoome@me.com>
Upstream commits:
    loader: pxe receive cleanup
    9475 libefi: Do not return only if ReceiveFilter
    installboot: should support efi system partition
    8931 boot1.efi: scan all display modes rather than
    loader: spinconsole updates
    loader: gfx experiment to try GOP Blt() function.
    sha1 build test
    loader: add sha1 hash calculation
    common/sha1: update for loader build
    loader: biosdisk rework
    uts: 32-bit kernel FB needs mapping in low memory
    uts: add diag-device
    uts: boot console mirror with diag-device
    uts: enable very early console on ttya
    kmdb: add diag-device as input/output device
    uts: test VGA memory exclusion from mapping
    uts: clear boot mapping and protect boot pages test
    uts: add dboot map debug printf
    uts: need to release FB pages in release_bootstrap()
    uts: add screenmap ioctl
    uts: update sys/queue.h
    loader: add illumos uts/common to include path
    loader: tem/gfx font cleanup
    loader: vbe checks
    uts: gfx_private set KD_TEXT when KD_RESETTEXT is
    uts: gfx 8-bit update
    loader: gfx 8-bit fix
    loader: always set media size from partition.
    uts: MB2 support for 32-bit kernel
    loader: x86 should have tem 80x25
    uts: x86 should have tem 80x25
    uts: font update
    loader: font update
    uts: tem attributes
    loader: tem.c comment added
    uts: use font module
    loader: add font module
    loader: build rules for new font setup
    uts: gfx_private update for new font structure
    uts: early boot update for new font structure
    uts: font update
    uts: font build rules update for new fonts
    uts: tem update to new font structure
    loader: module.c needs to include tem_impl.h
    uts: gfx_private 8x16 font rework
    uts: make font_lookup public
    loader: font rework
    uts: font rework
    9259 libefi: efi_alloc_and_read should check for PMBR
    uts: tem utf-8 support
    loader: implement tem utf-8 support
    loader: tem should be able to display UTF-8
    7784 uts: console input should support utf-8
    7796 uts: ldterm default to utf-8
    uts: do not reset serial console
    uts: set up colors even if tem is not console
    uts: add type for early boot properties
    uts: gfx_private experiment with drm and vga
    uts: gfx_private should use setmode drm callback.
    uts: identify FB types and set up gfx_private based
    loader: replace gop and vesa with framebuffer
    uts: boot needs simple tem to support mdb
    uts: boot_keyboard should emit esc sequences for
    uts: gfx_private FB showuld be written by line
    kmdb: set terminal window size
    uts: gfx_private needs to keep track of early boot FB
    pnglite: move pnglite to usr/src/common
    loader: gfx_fb
    ficl-sys: add gfx primitives
    loader: add illumos.png logo
    ficl: add fb-putimage
    loader: add png support
    loader: add alpha blending for gfx_fb
    loader: use term-drawrect for menu frame
    ficl: add simple gfx words
    uts: provide fb_info via fbgattr dev_specific array.
    uts: gfx_private add alpha blending
    uts: update sys/ascii.h
    uts: tem OSC support (incomplete)
    uts: implement env module support and use data from
    uts: tem get colors from early boot data
    loader: use crc32 from libstand (libz)
    loader: optimize for size
    loader: pass tem info to the environment
    loader: import tem for loader console
    loader: UEFI loader needs to set ISADIR based on
    loader: need UEFI32 support
    8918 loader.efi: add vesa edid support
    uts: tem_safe_pix_clear_prom_output() should only
    uts: tem_safe_pix_clear_entire_screen() should use
    uts: tem_safe_check_first_time() should query cursor
    uts: tem implement cls callback & visual_io v4
    uts: gfx_vgatext use block cursor for vgatext
    uts: gfx_private implement cls callback & visual_io
    uts: gfx_private bitmap framebuffer implementation
    uts: early start frame buffer console support
    uts: font functions should check the input char
    uts: font rendering should support 16/24/32bit depths
    uts: use smallest font as fallback default.
    uts: update terminal dimensions based on selected
    7834 uts: vgatext should use gfx_private
    uts: add spacing property to 8859-1.bdf
    terminfo: add underline for sun-color
    terminfo: sun-color has 16 colors
    uts: add font load callback type
    loader: do not repeat int13 calls with error 0x20 and
    8905 loader: add skein/edonr support
    8904 common/crypto: make skein and edonr loader
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Reviewed by: Sanjay Nadkarni <sanjay.nadkarni@nexenta.com>
Reviewed by: Evan Layton <evan.layton@nexenta.com>
Revert "NEX-16819 loader UEFI support"
This reverts commit ec06b9fc617b99234e538bf2e7e4d02a24993e0c.
Reverting due to failures in the zfs-tests and the sharefs-tests
NEX-16819 loader UEFI support
Includes work by Toomas Soome <tsoome@me.com>
Upstream commits:
    loader: pxe receive cleanup
    9475 libefi: Do not return only if ReceiveFilter
    installboot: should support efi system partition
    8931 boot1.efi: scan all display modes rather than
    loader: spinconsole updates
    loader: gfx experiment to try GOP Blt() function.
    sha1 build test
    loader: add sha1 hash calculation
    common/sha1: update for loader build
    loader: biosdisk rework
    uts: 32-bit kernel FB needs mapping in low memory
    uts: add diag-device
    uts: boot console mirror with diag-device
    uts: enable very early console on ttya
    kmdb: add diag-device as input/output device
    uts: test VGA memory exclusion from mapping
    uts: clear boot mapping and protect boot pages test
    uts: add dboot map debug printf
    uts: need to release FB pages in release_bootstrap()
    uts: add screenmap ioctl
    uts: update sys/queue.h
    loader: add illumos uts/common to include path
    loader: tem/gfx font cleanup
    loader: vbe checks
    uts: gfx_private set KD_TEXT when KD_RESETTEXT is
    uts: gfx 8-bit update
    loader: gfx 8-bit fix
    loader: always set media size from partition.
    uts: MB2 support for 32-bit kernel
    loader: x86 should have tem 80x25
    uts: x86 should have tem 80x25
    uts: font update
    loader: font update
    uts: tem attributes
    loader: tem.c comment added
    uts: use font module
    loader: add font module
    loader: build rules for new font setup
    uts: gfx_private update for new font structure
    uts: early boot update for new font structure
    uts: font update
    uts: font build rules update for new fonts
    uts: tem update to new font structure
    loader: module.c needs to include tem_impl.h
    uts: gfx_private 8x16 font rework
    uts: make font_lookup public
    loader: font rework
    uts: font rework
    libefi: efi_alloc_and_read should check for PMBR
    uts: tem utf-8 support
    loader: implement tem utf-8 support
    loader: tem should be able to display UTF-8
    7784 uts: console input should support utf-8
    7796 uts: ldterm default to utf-8
    uts: do not reset serial console
    uts: set up colors even if tem is not console
    uts: add type for early boot properties
    uts: gfx_private experiment with drm and vga
    uts: gfx_private should use setmode drm callback.
    uts: identify FB types and set up gfx_private based
    loader: replace gop and vesa with framebuffer
    uts: boot needs simple tem to support mdb
    uts: boot_keyboard should emit esc sequences for
    uts: gfx_private FB showuld be written by line
    kmdb: set terminal window size
    uts: gfx_private needs to keep track of early boot FB
    pnglite: move pnglite to usr/src/common
    loader: gfx_fb
    ficl-sys: add gfx primitives
    loader: add illumos.png logo
    ficl: add fb-putimage
    loader: add png support
    loader: add alpha blending for gfx_fb
    loader: use term-drawrect for menu frame
    ficl: add simple gfx words
    uts: provide fb_info via fbgattr dev_specific array.
    uts: gfx_private add alpha blending
    uts: update sys/ascii.h
    uts: tem OSC support (incomplete)
    uts: implement env module support and use data from
    uts: tem get colors from early boot data
    loader: use crc32 from libstand (libz)
    loader: optimize for size
    loader: pass tem info to the environment
    loader: import tem for loader console
    loader: UEFI loader needs to set ISADIR based on
    loader: need UEFI32 support
    8918 loader.efi: add vesa edid support
    uts: tem_safe_pix_clear_prom_output() should only
    uts: tem_safe_pix_clear_entire_screen() should use
    uts: tem_safe_check_first_time() should query cursor
    uts: tem implement cls callback & visual_io v4
    uts: gfx_vgatext use block cursor for vgatext
    uts: gfx_private implement cls callback & visual_io
    uts: gfx_private bitmap framebuffer implementation
    uts: early start frame buffer console support
    uts: font functions should check the input char
    uts: font rendering should support 16/24/32bit depths
    uts: use smallest font as fallback default.
    uts: update terminal dimensions based on selected
    7834 uts: vgatext should use gfx_private
    uts: add spacing property to 8859-1.bdf
    terminfo: add underline for sun-color
    terminfo: sun-color has 16 colors
    uts: add font load callback type
    loader: do not repeat int13 calls with error 0x20 and
    8905 loader: add skein/edonr support
    8904 common/crypto: make skein and edonr loader
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Reviewed by: Sanjay Nadkarni <sanjay.nadkarni@nexenta.com>
Reviewed by: Evan Layton <evan.layton@nexenta.com>
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/i86pc/os/ddi_impl.c
          +++ new/usr/src/uts/i86pc/os/ddi_impl.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  
  22   22  /*
  23   23   * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
  24   24   * Copyright 2012 Garrett D'Amore <garrett@damore.org>
  25   25   * Copyright 2014 Pluribus Networks, Inc.
  26   26   * Copyright 2016 Nexenta Systems, Inc.
  27   27   */
  28   28  
  29   29  /*
  30   30   * PC specific DDI implementation
  31   31   */
  32   32  #include <sys/types.h>
  33   33  #include <sys/autoconf.h>
  34   34  #include <sys/avintr.h>
  35   35  #include <sys/bootconf.h>
  36   36  #include <sys/conf.h>
  37   37  #include <sys/cpuvar.h>
  38   38  #include <sys/ddi_impldefs.h>
  39   39  #include <sys/ddi_subrdefs.h>
  40   40  #include <sys/ethernet.h>
  41   41  #include <sys/fp.h>
  42   42  #include <sys/instance.h>
  43   43  #include <sys/kmem.h>
  44   44  #include <sys/machsystm.h>
  45   45  #include <sys/modctl.h>
  46   46  #include <sys/promif.h>
  47   47  #include <sys/prom_plat.h>
  48   48  #include <sys/sunndi.h>
  49   49  #include <sys/ndi_impldefs.h>
  50   50  #include <sys/ddi_impldefs.h>
  51   51  #include <sys/sysmacros.h>
  52   52  #include <sys/systeminfo.h>
  53   53  #include <sys/utsname.h>
  54   54  #include <sys/atomic.h>
  55   55  #include <sys/spl.h>
  56   56  #include <sys/archsystm.h>
  57   57  #include <vm/seg_kmem.h>
  58   58  #include <sys/ontrap.h>
  59   59  #include <sys/fm/protocol.h>
  60   60  #include <sys/ramdisk.h>
  
    | 
      ↓ open down ↓ | 
    60 lines elided | 
    
      ↑ open up ↑ | 
  
  61   61  #include <sys/sunndi.h>
  62   62  #include <sys/vmem.h>
  63   63  #include <sys/pci_impl.h>
  64   64  #if defined(__xpv)
  65   65  #include <sys/hypervisor.h>
  66   66  #endif
  67   67  #include <sys/mach_intr.h>
  68   68  #include <vm/hat_i86.h>
  69   69  #include <sys/x86_archext.h>
  70   70  #include <sys/avl.h>
       71 +#include <sys/font.h>
  71   72  
  72   73  /*
  73   74   * DDI Boot Configuration
  74   75   */
  75   76  
  76   77  /*
  77   78   * Platform drivers on this platform
  78   79   */
  79   80  char *platform_module_list[] = {
  80   81          "acpippm",
  81   82          "ppm",
  82   83          (char *)0
  83   84  };
  84   85  
  85   86  /* pci bus resource maps */
  86   87  struct pci_bus_resource *pci_bus_res;
  87   88  
  88   89  size_t dma_max_copybuf_size = 0x101000;         /* 1M + 4K */
  89   90  
  90   91  uint64_t ramdisk_start, ramdisk_end;
  91   92  
  92   93  int pseudo_isa = 0;
  93   94  
  94   95  /*
  95   96   * Forward declarations
  96   97   */
  97   98  static int getlongprop_buf();
  98   99  static void get_boot_properties(void);
  99  100  static void impl_bus_initialprobe(void);
 100  101  static void impl_bus_reprobe(void);
 101  102  
 102  103  static int poke_mem(peekpoke_ctlops_t *in_args);
 103  104  static int peek_mem(peekpoke_ctlops_t *in_args);
 104  105  
 105  106  static int kmem_override_cache_attrs(caddr_t, size_t, uint_t);
 106  107  
 107  108  #if defined(__amd64) && !defined(__xpv)
 108  109  extern void immu_init(void);
 109  110  #endif
 110  111  
 111  112  /*
 112  113   * We use an AVL tree to store contiguous address allocations made with the
 113  114   * kalloca() routine, so that we can return the size to free with kfreea().
 114  115   * Note that in the future it would be vastly faster if we could eliminate
 115  116   * this lookup by insisting that all callers keep track of their own sizes,
 116  117   * just as for kmem_alloc().
 117  118   */
 118  119  struct ctgas {
 119  120          avl_node_t ctg_link;
 120  121          void *ctg_addr;
 121  122          size_t ctg_size;
 122  123  };
 123  124  
 124  125  static avl_tree_t ctgtree;
 125  126  
 126  127  static kmutex_t         ctgmutex;
 127  128  #define CTGLOCK()       mutex_enter(&ctgmutex)
 128  129  #define CTGUNLOCK()     mutex_exit(&ctgmutex)
 129  130  
 130  131  /*
 131  132   * Minimum pfn value of page_t's put on the free list.  This is to simplify
 132  133   * support of ddi dma memory requests which specify small, non-zero addr_lo
 133  134   * values.
 134  135   *
 135  136   * The default value of 2, which corresponds to the only known non-zero addr_lo
 136  137   * value used, means a single page will be sacrificed (pfn typically starts
 137  138   * at 1).  ddiphysmin can be set to 0 to disable. It cannot be set above 0x100
 138  139   * otherwise mp startup panics.
 139  140   */
 140  141  pfn_t   ddiphysmin = 2;
 141  142  
 142  143  static void
 143  144  check_driver_disable(void)
 144  145  {
 145  146          int proplen = 128;
 146  147          char *prop_name;
 147  148          char *drv_name, *propval;
 148  149          major_t major;
 149  150  
 150  151          prop_name = kmem_alloc(proplen, KM_SLEEP);
 151  152          for (major = 0; major < devcnt; major++) {
 152  153                  drv_name = ddi_major_to_name(major);
 153  154                  if (drv_name == NULL)
 154  155                          continue;
 155  156                  (void) snprintf(prop_name, proplen, "disable-%s", drv_name);
 156  157                  if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
 157  158                      DDI_PROP_DONTPASS, prop_name, &propval) == DDI_SUCCESS) {
 158  159                          if (strcmp(propval, "true") == 0) {
 159  160                                  devnamesp[major].dn_flags |= DN_DRIVER_REMOVED;
 160  161                                  cmn_err(CE_NOTE, "driver %s disabled",
 161  162                                      drv_name);
 162  163                          }
 163  164                          ddi_prop_free(propval);
 164  165                  }
 165  166          }
 166  167          kmem_free(prop_name, proplen);
 167  168  }
 168  169  
 169  170  
 170  171  /*
 171  172   * Configure the hardware on the system.
 172  173   * Called before the rootfs is mounted
 173  174   */
 174  175  void
 175  176  configure(void)
 176  177  {
 177  178          extern void i_ddi_init_root();
 178  179  
 179  180  #if defined(__i386)
 180  181          extern int fpu_pentium_fdivbug;
 181  182  #endif  /* __i386 */
 182  183          extern int fpu_ignored;
 183  184  
 184  185          /*
 185  186           * Determine if an FPU is attached
 186  187           */
 187  188  
 188  189          fpu_probe();
 189  190  
 190  191  #if defined(__i386)
 191  192          if (fpu_pentium_fdivbug) {
 192  193                  printf("\
 193  194  FP hardware exhibits Pentium floating point divide problem\n");
 194  195          }
 195  196  #endif  /* __i386 */
 196  197  
 197  198          if (fpu_ignored) {
 198  199                  printf("FP hardware will not be used\n");
 199  200          } else if (!fpu_exists) {
 200  201                  printf("No FPU in configuration\n");
 201  202          }
 202  203  
 203  204          /*
 204  205           * Initialize devices on the machine.
 205  206           * Uses configuration tree built by the PROMs to determine what
 206  207           * is present, and builds a tree of prototype dev_info nodes
 207  208           * corresponding to the hardware which identified itself.
 208  209           */
 209  210  
 210  211          /*
 211  212           * Initialize root node.
 212  213           */
 213  214          i_ddi_init_root();
 214  215  
 215  216          /* reprogram devices not set up by firmware (BIOS) */
 216  217          impl_bus_reprobe();
 217  218  
 218  219  #if defined(__amd64) && !defined(__xpv)
 219  220          /*
 220  221           * Setup but don't startup the IOMMU
 221  222           * Startup happens later via a direct call
 222  223           * to IOMMU code by boot code.
 223  224           * At this point, all PCI bus renumbering
 224  225           * is done, so safe to init the IMMU
 225  226           * AKA Intel IOMMU.
 226  227           */
 227  228          immu_init();
 228  229  #endif
 229  230  
 230  231          /*
 231  232           * attach the isa nexus to get ACPI resource usage
 232  233           * isa is "kind of" a pseudo node
 233  234           */
 234  235  #if defined(__xpv)
 235  236          if (DOMAIN_IS_INITDOMAIN(xen_info)) {
 236  237                  if (pseudo_isa)
 237  238                          (void) i_ddi_attach_pseudo_node("isa");
 238  239                  else
 239  240                          (void) i_ddi_attach_hw_nodes("isa");
 240  241          }
 241  242  #else
 242  243          if (pseudo_isa)
 243  244                  (void) i_ddi_attach_pseudo_node("isa");
 244  245          else
 245  246                  (void) i_ddi_attach_hw_nodes("isa");
 246  247  #endif
 247  248  }
 248  249  
 249  250  /*
 250  251   * The "status" property indicates the operational status of a device.
 251  252   * If this property is present, the value is a string indicating the
 252  253   * status of the device as follows:
 253  254   *
 254  255   *      "okay"          operational.
 255  256   *      "disabled"      not operational, but might become operational.
 256  257   *      "fail"          not operational because a fault has been detected,
 257  258   *                      and it is unlikely that the device will become
 258  259   *                      operational without repair. no additional details
 259  260   *                      are available.
 260  261   *      "fail-xxx"      not operational because a fault has been detected,
 261  262   *                      and it is unlikely that the device will become
 262  263   *                      operational without repair. "xxx" is additional
 263  264   *                      human-readable information about the particular
 264  265   *                      fault condition that was detected.
 265  266   *
 266  267   * The absence of this property means that the operational status is
 267  268   * unknown or okay.
 268  269   *
 269  270   * This routine checks the status property of the specified device node
 270  271   * and returns 0 if the operational status indicates failure, and 1 otherwise.
 271  272   *
 272  273   * The property may exist on plug-in cards the existed before IEEE 1275-1994.
 273  274   * And, in that case, the property may not even be a string. So we carefully
 274  275   * check for the value "fail", in the beginning of the string, noting
 275  276   * the property length.
 276  277   */
 277  278  int
 278  279  status_okay(int id, char *buf, int buflen)
 279  280  {
 280  281          char status_buf[OBP_MAXPROPNAME];
 281  282          char *bufp = buf;
 282  283          int len = buflen;
 283  284          int proplen;
 284  285          static const char *status = "status";
 285  286          static const char *fail = "fail";
 286  287          int fail_len = (int)strlen(fail);
 287  288  
 288  289          /*
 289  290           * Get the proplen ... if it's smaller than "fail",
 290  291           * or doesn't exist ... then we don't care, since
 291  292           * the value can't begin with the char string "fail".
 292  293           *
 293  294           * NB: proplen, if it's a string, includes the NULL in the
 294  295           * the size of the property, and fail_len does not.
 295  296           */
 296  297          proplen = prom_getproplen((pnode_t)id, (caddr_t)status);
 297  298          if (proplen <= fail_len)        /* nonexistant or uninteresting len */
 298  299                  return (1);
 299  300  
 300  301          /*
 301  302           * if a buffer was provided, use it
 302  303           */
 303  304          if ((buf == (char *)NULL) || (buflen <= 0)) {
 304  305                  bufp = status_buf;
 305  306                  len = sizeof (status_buf);
 306  307          }
 307  308          *bufp = (char)0;
 308  309  
 309  310          /*
 310  311           * Get the property into the buffer, to the extent of the buffer,
 311  312           * and in case the buffer is smaller than the property size,
 312  313           * NULL terminate the buffer. (This handles the case where
 313  314           * a buffer was passed in and the caller wants to print the
 314  315           * value, but the buffer was too small).
 315  316           */
 316  317          (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status,
 317  318              (caddr_t)bufp, len);
 318  319          *(bufp + len - 1) = (char)0;
 319  320  
 320  321          /*
 321  322           * If the value begins with the char string "fail",
 322  323           * then it means the node is failed. We don't care
 323  324           * about any other values. We assume the node is ok
 324  325           * although it might be 'disabled'.
 325  326           */
 326  327          if (strncmp(bufp, fail, fail_len) == 0)
 327  328                  return (0);
 328  329  
 329  330          return (1);
 330  331  }
 331  332  
 332  333  /*
 333  334   * Check the status of the device node passed as an argument.
 334  335   *
 335  336   *      if ((status is OKAY) || (status is DISABLED))
 336  337   *              return DDI_SUCCESS
 337  338   *      else
 338  339   *              print a warning and return DDI_FAILURE
 339  340   */
 340  341  /*ARGSUSED1*/
 341  342  int
 342  343  check_status(int id, char *name, dev_info_t *parent)
 343  344  {
 344  345          char status_buf[64];
 345  346          char devtype_buf[OBP_MAXPROPNAME];
 346  347          int retval = DDI_FAILURE;
 347  348  
 348  349          /*
 349  350           * is the status okay?
 350  351           */
 351  352          if (status_okay(id, status_buf, sizeof (status_buf)))
 352  353                  return (DDI_SUCCESS);
 353  354  
 354  355          /*
 355  356           * a status property indicating bad memory will be associated
 356  357           * with a node which has a "device_type" property with a value of
 357  358           * "memory-controller". in this situation, return DDI_SUCCESS
 358  359           */
 359  360          if (getlongprop_buf(id, OBP_DEVICETYPE, devtype_buf,
 360  361              sizeof (devtype_buf)) > 0) {
 361  362                  if (strcmp(devtype_buf, "memory-controller") == 0)
 362  363                          retval = DDI_SUCCESS;
 363  364          }
 364  365  
 365  366          /*
 366  367           * print the status property information
 367  368           */
 368  369          cmn_err(CE_WARN, "status '%s' for '%s'", status_buf, name);
 369  370          return (retval);
 370  371  }
 371  372  
 372  373  /*ARGSUSED*/
 373  374  uint_t
 374  375  softlevel1(caddr_t arg1, caddr_t arg2)
 375  376  {
 376  377          softint();
 377  378          return (1);
 378  379  }
 379  380  
 380  381  /*
 381  382   * Allow for implementation specific correction of PROM property values.
 382  383   */
 383  384  
 384  385  /*ARGSUSED*/
 385  386  void
 386  387  impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len,
 387  388      caddr_t buffer)
 388  389  {
 389  390          /*
 390  391           * There are no adjustments needed in this implementation.
 391  392           */
 392  393  }
 393  394  
 394  395  static int
 395  396  getlongprop_buf(int id, char *name, char *buf, int maxlen)
 396  397  {
 397  398          int size;
 398  399  
 399  400          size = prom_getproplen((pnode_t)id, name);
 400  401          if (size <= 0 || (size > maxlen - 1))
 401  402                  return (-1);
 402  403  
 403  404          if (-1 == prom_getprop((pnode_t)id, name, buf))
 404  405                  return (-1);
 405  406  
 406  407          if (strcmp("name", name) == 0) {
 407  408                  if (buf[size - 1] != '\0') {
 408  409                          buf[size] = '\0';
 409  410                          size += 1;
 410  411                  }
 411  412          }
 412  413  
 413  414          return (size);
 414  415  }
 415  416  
 416  417  static int
 417  418  get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen)
 418  419  {
 419  420          int ret;
 420  421  
 421  422          if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di,
 422  423              DDI_PROP_DONTPASS, pname, pval, plen))
 423  424              == DDI_PROP_SUCCESS) {
 424  425                  *plen = (*plen) * (sizeof (int));
 425  426          }
 426  427          return (ret);
 427  428  }
 428  429  
 429  430  
 430  431  /*
 431  432   * Node Configuration
 432  433   */
 433  434  
 434  435  struct prop_ispec {
 435  436          uint_t  pri, vec;
 436  437  };
 437  438  
 438  439  /*
 439  440   * For the x86, we're prepared to claim that the interrupt string
 440  441   * is in the form of a list of <ipl,vec> specifications.
 441  442   */
 442  443  
 443  444  #define VEC_MIN 1
 444  445  #define VEC_MAX 255
 445  446  
 446  447  static int
 447  448  impl_xlate_intrs(dev_info_t *child, int *in,
 448  449      struct ddi_parent_private_data *pdptr)
 449  450  {
 450  451          size_t size;
 451  452          int n;
 452  453          struct intrspec *new;
 453  454          caddr_t got_prop;
 454  455          int *inpri;
 455  456          int got_len;
 456  457          extern int ignore_hardware_nodes;       /* force flag from ddi_impl.c */
 457  458  
 458  459          static char bad_intr_fmt[] =
 459  460              "bad interrupt spec from %s%d - ipl %d, irq %d\n";
 460  461  
 461  462          /*
 462  463           * determine if the driver is expecting the new style "interrupts"
 463  464           * property which just contains the IRQ, or the old style which
 464  465           * contains pairs of <IPL,IRQ>.  if it is the new style, we always
 465  466           * assign IPL 5 unless an "interrupt-priorities" property exists.
 466  467           * in that case, the "interrupt-priorities" property contains the
 467  468           * IPL values that match, one for one, the IRQ values in the
 468  469           * "interrupts" property.
 469  470           */
 470  471          inpri = NULL;
 471  472          if ((ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
 472  473              "ignore-hardware-nodes", -1) != -1) || ignore_hardware_nodes) {
 473  474                  /* the old style "interrupts" property... */
 474  475  
 475  476                  /*
 476  477                   * The list consists of <ipl,vec> elements
 477  478                   */
 478  479                  if ((n = (*in++ >> 1)) < 1)
 479  480                          return (DDI_FAILURE);
 480  481  
 481  482                  pdptr->par_nintr = n;
 482  483                  size = n * sizeof (struct intrspec);
 483  484                  new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP);
 484  485  
 485  486                  while (n--) {
 486  487                          int level = *in++;
 487  488                          int vec = *in++;
 488  489  
 489  490                          if (level < 1 || level > MAXIPL ||
 490  491                              vec < VEC_MIN || vec > VEC_MAX) {
 491  492                                  cmn_err(CE_CONT, bad_intr_fmt,
 492  493                                      DEVI(child)->devi_name,
 493  494                                      DEVI(child)->devi_instance, level, vec);
 494  495                                  goto broken;
 495  496                          }
 496  497                          new->intrspec_pri = level;
 497  498                          if (vec != 2)
 498  499                                  new->intrspec_vec = vec;
 499  500                          else
 500  501                                  /*
 501  502                                   * irq 2 on the PC bus is tied to irq 9
 502  503                                   * on ISA, EISA and MicroChannel
 503  504                                   */
 504  505                                  new->intrspec_vec = 9;
 505  506                          new++;
 506  507                  }
 507  508  
 508  509                  return (DDI_SUCCESS);
 509  510          } else {
 510  511                  /* the new style "interrupts" property... */
 511  512  
 512  513                  /*
 513  514                   * The list consists of <vec> elements
 514  515                   */
 515  516                  if ((n = (*in++)) < 1)
 516  517                          return (DDI_FAILURE);
 517  518  
 518  519                  pdptr->par_nintr = n;
 519  520                  size = n * sizeof (struct intrspec);
 520  521                  new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP);
 521  522  
 522  523                  /* XXX check for "interrupt-priorities" property... */
 523  524                  if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
 524  525                      "interrupt-priorities", (caddr_t)&got_prop, &got_len)
 525  526                      == DDI_PROP_SUCCESS) {
 526  527                          if (n != (got_len / sizeof (int))) {
 527  528                                  cmn_err(CE_CONT,
 528  529                                      "bad interrupt-priorities length"
 529  530                                      " from %s%d: expected %d, got %d\n",
 530  531                                      DEVI(child)->devi_name,
 531  532                                      DEVI(child)->devi_instance, n,
 532  533                                      (int)(got_len / sizeof (int)));
 533  534                                  goto broken;
 534  535                          }
 535  536                          inpri = (int *)got_prop;
 536  537                  }
 537  538  
 538  539                  while (n--) {
 539  540                          int level;
 540  541                          int vec = *in++;
 541  542  
 542  543                          if (inpri == NULL)
 543  544                                  level = 5;
 544  545                          else
 545  546                                  level = *inpri++;
 546  547  
 547  548                          if (level < 1 || level > MAXIPL ||
 548  549                              vec < VEC_MIN || vec > VEC_MAX) {
 549  550                                  cmn_err(CE_CONT, bad_intr_fmt,
 550  551                                      DEVI(child)->devi_name,
 551  552                                      DEVI(child)->devi_instance, level, vec);
 552  553                                  goto broken;
 553  554                          }
 554  555                          new->intrspec_pri = level;
 555  556                          if (vec != 2)
 556  557                                  new->intrspec_vec = vec;
 557  558                          else
 558  559                                  /*
 559  560                                   * irq 2 on the PC bus is tied to irq 9
 560  561                                   * on ISA, EISA and MicroChannel
 561  562                                   */
 562  563                                  new->intrspec_vec = 9;
 563  564                          new++;
 564  565                  }
 565  566  
 566  567                  if (inpri != NULL)
 567  568                          kmem_free(got_prop, got_len);
 568  569                  return (DDI_SUCCESS);
 569  570          }
 570  571  
 571  572  broken:
 572  573          kmem_free(pdptr->par_intr, size);
 573  574          pdptr->par_intr = NULL;
 574  575          pdptr->par_nintr = 0;
 575  576          if (inpri != NULL)
 576  577                  kmem_free(got_prop, got_len);
 577  578  
 578  579          return (DDI_FAILURE);
 579  580  }
 580  581  
 581  582  /*
 582  583   * Create a ddi_parent_private_data structure from the ddi properties of
 583  584   * the dev_info node.
 584  585   *
 585  586   * The "reg" and either an "intr" or "interrupts" properties are required
 586  587   * if the driver wishes to create mappings or field interrupts on behalf
 587  588   * of the device.
 588  589   *
 589  590   * The "reg" property is assumed to be a list of at least one triple
 590  591   *
 591  592   *      <bustype, address, size>*1
 592  593   *
 593  594   * The "intr" property is assumed to be a list of at least one duple
 594  595   *
 595  596   *      <SPARC ipl, vector#>*1
 596  597   *
 597  598   * The "interrupts" property is assumed to be a list of at least one
 598  599   * n-tuples that describes the interrupt capabilities of the bus the device
 599  600   * is connected to.  For SBus, this looks like
 600  601   *
 601  602   *      <SBus-level>*1
 602  603   *
 603  604   * (This property obsoletes the 'intr' property).
 604  605   *
 605  606   * The "ranges" property is optional.
 606  607   */
 607  608  void
 608  609  make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd)
 609  610  {
 610  611          struct ddi_parent_private_data *pdptr;
 611  612          int n;
 612  613          int *reg_prop, *rng_prop, *intr_prop, *irupts_prop;
 613  614          uint_t reg_len, rng_len, intr_len, irupts_len;
 614  615  
 615  616          *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
 616  617  
 617  618          /*
 618  619           * Handle the 'reg' property.
 619  620           */
 620  621          if ((get_prop_int_array(child, "reg", ®_prop, ®_len) ==
 621  622              DDI_PROP_SUCCESS) && (reg_len != 0)) {
 622  623                  pdptr->par_nreg = reg_len / (int)sizeof (struct regspec);
 623  624                  pdptr->par_reg = (struct regspec *)reg_prop;
 624  625          }
 625  626  
 626  627          /*
 627  628           * See if I have a range (adding one where needed - this
 628  629           * means to add one for sbus node in sun4c, when romvec > 0,
 629  630           * if no range is already defined in the PROM node.
 630  631           * (Currently no sun4c PROMS define range properties,
 631  632           * but they should and may in the future.)  For the SBus
 632  633           * node, the range is defined by the SBus reg property.
 633  634           */
 634  635          if (get_prop_int_array(child, "ranges", &rng_prop, &rng_len)
 635  636              == DDI_PROP_SUCCESS) {
 636  637                  pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
 637  638                  pdptr->par_rng = (struct rangespec *)rng_prop;
 638  639          }
 639  640  
 640  641          /*
 641  642           * Handle the 'intr' and 'interrupts' properties
 642  643           */
 643  644  
 644  645          /*
 645  646           * For backwards compatibility
 646  647           * we first look for the 'intr' property for the device.
 647  648           */
 648  649          if (get_prop_int_array(child, "intr", &intr_prop, &intr_len)
 649  650              != DDI_PROP_SUCCESS) {
 650  651                  intr_len = 0;
 651  652          }
 652  653  
 653  654          /*
 654  655           * If we're to support bus adapters and future platforms cleanly,
 655  656           * we need to support the generalized 'interrupts' property.
 656  657           */
 657  658          if (get_prop_int_array(child, "interrupts", &irupts_prop,
 658  659              &irupts_len) != DDI_PROP_SUCCESS) {
 659  660                  irupts_len = 0;
 660  661          } else if (intr_len != 0) {
 661  662                  /*
 662  663                   * If both 'intr' and 'interrupts' are defined,
 663  664                   * then 'interrupts' wins and we toss the 'intr' away.
 664  665                   */
 665  666                  ddi_prop_free((void *)intr_prop);
 666  667                  intr_len = 0;
 667  668          }
 668  669  
 669  670          if (intr_len != 0) {
 670  671  
 671  672                  /*
 672  673                   * Translate the 'intr' property into an array
 673  674                   * an array of struct intrspec's.  There's not really
 674  675                   * very much to do here except copy what's out there.
 675  676                   */
 676  677  
 677  678                  struct intrspec *new;
 678  679                  struct prop_ispec *l;
 679  680  
 680  681                  n = pdptr->par_nintr = intr_len / sizeof (struct prop_ispec);
 681  682                  l = (struct prop_ispec *)intr_prop;
 682  683                  pdptr->par_intr =
 683  684                      new = kmem_zalloc(n * sizeof (struct intrspec), KM_SLEEP);
 684  685                  while (n--) {
 685  686                          new->intrspec_pri = l->pri;
 686  687                          new->intrspec_vec = l->vec;
 687  688                          new++;
 688  689                          l++;
 689  690                  }
 690  691                  ddi_prop_free((void *)intr_prop);
 691  692  
 692  693          } else if ((n = irupts_len) != 0) {
 693  694                  size_t size;
 694  695                  int *out;
 695  696  
 696  697                  /*
 697  698                   * Translate the 'interrupts' property into an array
 698  699                   * of intrspecs for the rest of the DDI framework to
 699  700                   * toy with.  Only our ancestors really know how to
 700  701                   * do this, so ask 'em.  We massage the 'interrupts'
 701  702                   * property so that it is pre-pended by a count of
 702  703                   * the number of integers in the argument.
 703  704                   */
 704  705                  size = sizeof (int) + n;
 705  706                  out = kmem_alloc(size, KM_SLEEP);
 706  707                  *out = n / sizeof (int);
 707  708                  bcopy(irupts_prop, out + 1, (size_t)n);
 708  709                  ddi_prop_free((void *)irupts_prop);
 709  710                  if (impl_xlate_intrs(child, out, pdptr) != DDI_SUCCESS) {
 710  711                          cmn_err(CE_CONT,
 711  712                              "Unable to translate 'interrupts' for %s%d\n",
 712  713                              DEVI(child)->devi_binding_name,
 713  714                              DEVI(child)->devi_instance);
 714  715                  }
 715  716                  kmem_free(out, size);
 716  717          }
 717  718  }
 718  719  
 719  720  /*
 720  721   * Name a child
 721  722   */
 722  723  static int
 723  724  impl_sunbus_name_child(dev_info_t *child, char *name, int namelen)
 724  725  {
 725  726          /*
 726  727           * Fill in parent-private data and this function returns to us
 727  728           * an indication if it used "registers" to fill in the data.
 728  729           */
 729  730          if (ddi_get_parent_data(child) == NULL) {
 730  731                  struct ddi_parent_private_data *pdptr;
 731  732                  make_ddi_ppd(child, &pdptr);
 732  733                  ddi_set_parent_data(child, pdptr);
 733  734          }
 734  735  
 735  736          name[0] = '\0';
 736  737          if (sparc_pd_getnreg(child) > 0) {
 737  738                  (void) snprintf(name, namelen, "%x,%x",
 738  739                      (uint_t)sparc_pd_getreg(child, 0)->regspec_bustype,
 739  740                      (uint_t)sparc_pd_getreg(child, 0)->regspec_addr);
 740  741          }
 741  742  
 742  743          return (DDI_SUCCESS);
 743  744  }
 744  745  
 745  746  /*
 746  747   * Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers
 747  748   * to implement the DDI_CTLOPS_INITCHILD operation.  That is, it names
 748  749   * the children of sun busses based on the reg spec.
 749  750   *
 750  751   * Handles the following properties (in make_ddi_ppd):
 751  752   *      Property                value
 752  753   *        Name                  type
 753  754   *      reg             register spec
 754  755   *      intr            old-form interrupt spec
 755  756   *      interrupts      new (bus-oriented) interrupt spec
 756  757   *      ranges          range spec
 757  758   */
 758  759  int
 759  760  impl_ddi_sunbus_initchild(dev_info_t *child)
 760  761  {
 761  762          char name[MAXNAMELEN];
 762  763          void impl_ddi_sunbus_removechild(dev_info_t *);
 763  764  
 764  765          /*
 765  766           * Name the child, also makes parent private data
 766  767           */
 767  768          (void) impl_sunbus_name_child(child, name, MAXNAMELEN);
 768  769          ddi_set_name_addr(child, name);
 769  770  
 770  771          /*
 771  772           * Attempt to merge a .conf node; if successful, remove the
 772  773           * .conf node.
 773  774           */
 774  775          if ((ndi_dev_is_persistent_node(child) == 0) &&
 775  776              (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) {
 776  777                  /*
 777  778                   * Return failure to remove node
 778  779                   */
 779  780                  impl_ddi_sunbus_removechild(child);
 780  781                  return (DDI_FAILURE);
 781  782          }
 782  783          return (DDI_SUCCESS);
 783  784  }
 784  785  
 785  786  void
 786  787  impl_free_ddi_ppd(dev_info_t *dip)
 787  788  {
 788  789          struct ddi_parent_private_data *pdptr;
 789  790          size_t n;
 790  791  
 791  792          if ((pdptr = ddi_get_parent_data(dip)) == NULL)
 792  793                  return;
 793  794  
 794  795          if ((n = (size_t)pdptr->par_nintr) != 0)
 795  796                  /*
 796  797                   * Note that kmem_free is used here (instead of
 797  798                   * ddi_prop_free) because the contents of the
 798  799                   * property were placed into a separate buffer and
 799  800                   * mucked with a bit before being stored in par_intr.
 800  801                   * The actual return value from the prop lookup
 801  802                   * was freed with ddi_prop_free previously.
 802  803                   */
 803  804                  kmem_free(pdptr->par_intr, n * sizeof (struct intrspec));
 804  805  
 805  806          if ((n = (size_t)pdptr->par_nrng) != 0)
 806  807                  ddi_prop_free((void *)pdptr->par_rng);
 807  808  
 808  809          if ((n = pdptr->par_nreg) != 0)
 809  810                  ddi_prop_free((void *)pdptr->par_reg);
 810  811  
 811  812          kmem_free(pdptr, sizeof (*pdptr));
 812  813          ddi_set_parent_data(dip, NULL);
 813  814  }
 814  815  
 815  816  void
 816  817  impl_ddi_sunbus_removechild(dev_info_t *dip)
 817  818  {
 818  819          impl_free_ddi_ppd(dip);
 819  820          ddi_set_name_addr(dip, NULL);
 820  821          /*
 821  822           * Strip the node to properly convert it back to prototype form
 822  823           */
 823  824          impl_rem_dev_props(dip);
 824  825  }
 825  826  
 826  827  /*
 827  828   * DDI Interrupt
 828  829   */
 829  830  
 830  831  /*
 831  832   * turn this on to force isa, eisa, and mca device to ignore the new
 832  833   * hardware nodes in the device tree (normally turned on only for
 833  834   * drivers that need it by setting the property "ignore-hardware-nodes"
 834  835   * in their driver.conf file).
 835  836   *
 836  837   * 7/31/96 -- Turned off globally.  Leaving variable in for the moment
 837  838   *              as safety valve.
 838  839   */
 839  840  int ignore_hardware_nodes = 0;
 840  841  
 841  842  /*
 842  843   * Local data
 843  844   */
 844  845  static struct impl_bus_promops *impl_busp;
 845  846  
 846  847  
 847  848  /*
 848  849   * New DDI interrupt framework
 849  850   */
 850  851  
 851  852  /*
 852  853   * i_ddi_intr_ops:
 853  854   *
 854  855   * This is the interrupt operator function wrapper for the bus function
 855  856   * bus_intr_op.
 856  857   */
 857  858  int
 858  859  i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op,
 859  860      ddi_intr_handle_impl_t *hdlp, void * result)
 860  861  {
 861  862          dev_info_t      *pdip = (dev_info_t *)DEVI(dip)->devi_parent;
 862  863          int             ret = DDI_FAILURE;
 863  864  
 864  865          /* request parent to process this interrupt op */
 865  866          if (NEXUS_HAS_INTR_OP(pdip))
 866  867                  ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->bus_intr_op))(
 867  868                      pdip, rdip, op, hdlp, result);
 868  869          else
 869  870                  cmn_err(CE_WARN, "Failed to process interrupt "
 870  871                      "for %s%d due to down-rev nexus driver %s%d",
 871  872                      ddi_get_name(rdip), ddi_get_instance(rdip),
 872  873                      ddi_get_name(pdip), ddi_get_instance(pdip));
 873  874          return (ret);
 874  875  }
 875  876  
 876  877  /*
 877  878   * i_ddi_add_softint - allocate and add a soft interrupt to the system
 878  879   */
 879  880  int
 880  881  i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp)
 881  882  {
 882  883          int ret;
 883  884  
 884  885          /* add soft interrupt handler */
 885  886          ret = add_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func,
 886  887              DEVI(hdlp->ih_dip)->devi_name, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2);
 887  888          return (ret ? DDI_SUCCESS : DDI_FAILURE);
 888  889  }
 889  890  
 890  891  
 891  892  void
 892  893  i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp)
 893  894  {
 894  895          (void) rem_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func);
 895  896  }
 896  897  
 897  898  
 898  899  extern void (*setsoftint)(int, struct av_softinfo *);
 899  900  extern boolean_t av_check_softint_pending(struct av_softinfo *, boolean_t);
 900  901  
 901  902  int
 902  903  i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2)
 903  904  {
 904  905          if (av_check_softint_pending(hdlp->ih_pending, B_FALSE))
 905  906                  return (DDI_EPENDING);
 906  907  
 907  908          update_avsoftintr_args((void *)hdlp, hdlp->ih_pri, arg2);
 908  909  
 909  910          (*setsoftint)(hdlp->ih_pri, hdlp->ih_pending);
 910  911          return (DDI_SUCCESS);
 911  912  }
 912  913  
 913  914  /*
 914  915   * i_ddi_set_softint_pri:
 915  916   *
 916  917   * The way this works is that it first tries to add a softint vector
 917  918   * at the new priority in hdlp. If that succeeds; then it removes the
 918  919   * existing softint vector at the old priority.
 919  920   */
 920  921  int
 921  922  i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri)
 922  923  {
 923  924          int ret;
 924  925  
 925  926          /*
 926  927           * If a softint is pending at the old priority then fail the request.
 927  928           */
 928  929          if (av_check_softint_pending(hdlp->ih_pending, B_TRUE))
 929  930                  return (DDI_FAILURE);
 930  931  
 931  932          ret = av_softint_movepri((void *)hdlp, old_pri);
 932  933          return (ret ? DDI_SUCCESS : DDI_FAILURE);
 933  934  }
 934  935  
 935  936  void
 936  937  i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp)
 937  938  {
 938  939          hdlp->ih_private = (void *)kmem_zalloc(sizeof (ihdl_plat_t), KM_SLEEP);
 939  940  }
 940  941  
 941  942  void
 942  943  i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp)
 943  944  {
 944  945          kmem_free(hdlp->ih_private, sizeof (ihdl_plat_t));
 945  946          hdlp->ih_private = NULL;
 946  947  }
 947  948  
 948  949  int
 949  950  i_ddi_get_intx_nintrs(dev_info_t *dip)
 950  951  {
 951  952          struct ddi_parent_private_data *pdp;
 952  953  
 953  954          if ((pdp = ddi_get_parent_data(dip)) == NULL)
 954  955                  return (0);
 955  956  
 956  957          return (pdp->par_nintr);
 957  958  }
 958  959  
 959  960  /*
 960  961   * DDI Memory/DMA
 961  962   */
 962  963  
 963  964  /*
 964  965   * Support for allocating DMAable memory to implement
 965  966   * ddi_dma_mem_alloc(9F) interface.
 966  967   */
 967  968  
 968  969  #define KA_ALIGN_SHIFT  7
 969  970  #define KA_ALIGN        (1 << KA_ALIGN_SHIFT)
 970  971  #define KA_NCACHE       (PAGESHIFT + 1 - KA_ALIGN_SHIFT)
 971  972  
 972  973  /*
 973  974   * Dummy DMA attribute template for kmem_io[].kmem_io_attr.  We only
 974  975   * care about addr_lo, addr_hi, and align.  addr_hi will be dynamically set.
 975  976   */
 976  977  
 977  978  static ddi_dma_attr_t kmem_io_attr = {
 978  979          DMA_ATTR_V0,
 979  980          0x0000000000000000ULL,          /* dma_attr_addr_lo */
 980  981          0x0000000000000000ULL,          /* dma_attr_addr_hi */
 981  982          0x00ffffff,
 982  983          0x1000,                         /* dma_attr_align */
 983  984          1, 1, 0xffffffffULL, 0xffffffffULL, 0x1, 1, 0
 984  985  };
 985  986  
 986  987  /* kmem io memory ranges and indices */
 987  988  enum {
 988  989          IO_4P, IO_64G, IO_4G, IO_2G, IO_1G, IO_512M,
 989  990          IO_256M, IO_128M, IO_64M, IO_32M, IO_16M, MAX_MEM_RANGES
 990  991  };
 991  992  
 992  993  static struct {
 993  994          vmem_t          *kmem_io_arena;
 994  995          kmem_cache_t    *kmem_io_cache[KA_NCACHE];
 995  996          ddi_dma_attr_t  kmem_io_attr;
 996  997  } kmem_io[MAX_MEM_RANGES];
 997  998  
 998  999  static int kmem_io_idx;         /* index of first populated kmem_io[] */
 999 1000  
1000 1001  static page_t *
1001 1002  page_create_io_wrapper(void *addr, size_t len, int vmflag, void *arg)
1002 1003  {
1003 1004          extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
1004 1005              uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
1005 1006  
1006 1007          return (page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, len,
1007 1008              PG_EXCL | ((vmflag & VM_NOSLEEP) ? 0 : PG_WAIT), &kas, addr, arg));
1008 1009  }
1009 1010  
1010 1011  #ifdef __xpv
1011 1012  static void
1012 1013  segkmem_free_io(vmem_t *vmp, void * ptr, size_t size)
1013 1014  {
1014 1015          extern void page_destroy_io(page_t *);
1015 1016          segkmem_xfree(vmp, ptr, size, page_destroy_io);
1016 1017  }
1017 1018  #endif
1018 1019  
1019 1020  static void *
1020 1021  segkmem_alloc_io_4P(vmem_t *vmp, size_t size, int vmflag)
1021 1022  {
1022 1023          return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1023 1024              page_create_io_wrapper, &kmem_io[IO_4P].kmem_io_attr));
1024 1025  }
1025 1026  
1026 1027  static void *
1027 1028  segkmem_alloc_io_64G(vmem_t *vmp, size_t size, int vmflag)
1028 1029  {
1029 1030          return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1030 1031              page_create_io_wrapper, &kmem_io[IO_64G].kmem_io_attr));
1031 1032  }
1032 1033  
1033 1034  static void *
1034 1035  segkmem_alloc_io_4G(vmem_t *vmp, size_t size, int vmflag)
1035 1036  {
1036 1037          return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1037 1038              page_create_io_wrapper, &kmem_io[IO_4G].kmem_io_attr));
1038 1039  }
1039 1040  
1040 1041  static void *
1041 1042  segkmem_alloc_io_2G(vmem_t *vmp, size_t size, int vmflag)
1042 1043  {
1043 1044          return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1044 1045              page_create_io_wrapper, &kmem_io[IO_2G].kmem_io_attr));
1045 1046  }
1046 1047  
1047 1048  static void *
1048 1049  segkmem_alloc_io_1G(vmem_t *vmp, size_t size, int vmflag)
1049 1050  {
1050 1051          return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1051 1052              page_create_io_wrapper, &kmem_io[IO_1G].kmem_io_attr));
1052 1053  }
1053 1054  
1054 1055  static void *
1055 1056  segkmem_alloc_io_512M(vmem_t *vmp, size_t size, int vmflag)
1056 1057  {
1057 1058          return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1058 1059              page_create_io_wrapper, &kmem_io[IO_512M].kmem_io_attr));
1059 1060  }
1060 1061  
1061 1062  static void *
1062 1063  segkmem_alloc_io_256M(vmem_t *vmp, size_t size, int vmflag)
1063 1064  {
1064 1065          return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1065 1066              page_create_io_wrapper, &kmem_io[IO_256M].kmem_io_attr));
1066 1067  }
1067 1068  
1068 1069  static void *
1069 1070  segkmem_alloc_io_128M(vmem_t *vmp, size_t size, int vmflag)
1070 1071  {
1071 1072          return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1072 1073              page_create_io_wrapper, &kmem_io[IO_128M].kmem_io_attr));
1073 1074  }
1074 1075  
1075 1076  static void *
1076 1077  segkmem_alloc_io_64M(vmem_t *vmp, size_t size, int vmflag)
1077 1078  {
1078 1079          return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1079 1080              page_create_io_wrapper, &kmem_io[IO_64M].kmem_io_attr));
1080 1081  }
1081 1082  
1082 1083  static void *
1083 1084  segkmem_alloc_io_32M(vmem_t *vmp, size_t size, int vmflag)
1084 1085  {
1085 1086          return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1086 1087              page_create_io_wrapper, &kmem_io[IO_32M].kmem_io_attr));
1087 1088  }
1088 1089  
1089 1090  static void *
1090 1091  segkmem_alloc_io_16M(vmem_t *vmp, size_t size, int vmflag)
1091 1092  {
1092 1093          return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1093 1094              page_create_io_wrapper, &kmem_io[IO_16M].kmem_io_attr));
1094 1095  }
1095 1096  
1096 1097  struct {
1097 1098          uint64_t        io_limit;
1098 1099          char            *io_name;
1099 1100          void            *(*io_alloc)(vmem_t *, size_t, int);
1100 1101          int             io_initial;     /* kmem_io_init during startup */
1101 1102  } io_arena_params[MAX_MEM_RANGES] = {
1102 1103          {0x000fffffffffffffULL, "kmem_io_4P",   segkmem_alloc_io_4P,    1},
1103 1104          {0x0000000fffffffffULL, "kmem_io_64G",  segkmem_alloc_io_64G,   0},
1104 1105          {0x00000000ffffffffULL, "kmem_io_4G",   segkmem_alloc_io_4G,    1},
1105 1106          {0x000000007fffffffULL, "kmem_io_2G",   segkmem_alloc_io_2G,    1},
1106 1107          {0x000000003fffffffULL, "kmem_io_1G",   segkmem_alloc_io_1G,    0},
1107 1108          {0x000000001fffffffULL, "kmem_io_512M", segkmem_alloc_io_512M,  0},
1108 1109          {0x000000000fffffffULL, "kmem_io_256M", segkmem_alloc_io_256M,  0},
1109 1110          {0x0000000007ffffffULL, "kmem_io_128M", segkmem_alloc_io_128M,  0},
1110 1111          {0x0000000003ffffffULL, "kmem_io_64M",  segkmem_alloc_io_64M,   0},
1111 1112          {0x0000000001ffffffULL, "kmem_io_32M",  segkmem_alloc_io_32M,   0},
1112 1113          {0x0000000000ffffffULL, "kmem_io_16M",  segkmem_alloc_io_16M,   1}
1113 1114  };
1114 1115  
1115 1116  void
1116 1117  kmem_io_init(int a)
1117 1118  {
1118 1119          int     c;
1119 1120          char name[40];
1120 1121  
1121 1122          kmem_io[a].kmem_io_arena = vmem_create(io_arena_params[a].io_name,
1122 1123              NULL, 0, PAGESIZE, io_arena_params[a].io_alloc,
1123 1124  #ifdef __xpv
1124 1125              segkmem_free_io,
1125 1126  #else
1126 1127              segkmem_free,
1127 1128  #endif
1128 1129              heap_arena, 0, VM_SLEEP);
1129 1130  
1130 1131          for (c = 0; c < KA_NCACHE; c++) {
1131 1132                  size_t size = KA_ALIGN << c;
1132 1133                  (void) sprintf(name, "%s_%lu",
1133 1134                      io_arena_params[a].io_name, size);
1134 1135                  kmem_io[a].kmem_io_cache[c] = kmem_cache_create(name,
1135 1136                      size, size, NULL, NULL, NULL, NULL,
1136 1137                      kmem_io[a].kmem_io_arena, 0);
1137 1138          }
1138 1139  }
1139 1140  
1140 1141  /*
1141 1142   * Return the index of the highest memory range for addr.
1142 1143   */
1143 1144  static int
1144 1145  kmem_io_index(uint64_t addr)
1145 1146  {
1146 1147          int n;
1147 1148  
1148 1149          for (n = kmem_io_idx; n < MAX_MEM_RANGES; n++) {
1149 1150                  if (kmem_io[n].kmem_io_attr.dma_attr_addr_hi <= addr) {
1150 1151                          if (kmem_io[n].kmem_io_arena == NULL)
1151 1152                                  kmem_io_init(n);
1152 1153                          return (n);
1153 1154                  }
1154 1155          }
1155 1156          panic("kmem_io_index: invalid addr - must be at least 16m");
1156 1157  
1157 1158          /*NOTREACHED*/
1158 1159  }
1159 1160  
1160 1161  /*
1161 1162   * Return the index of the next kmem_io populated memory range
1162 1163   * after curindex.
1163 1164   */
1164 1165  static int
1165 1166  kmem_io_index_next(int curindex)
1166 1167  {
1167 1168          int n;
1168 1169  
1169 1170          for (n = curindex + 1; n < MAX_MEM_RANGES; n++) {
1170 1171                  if (kmem_io[n].kmem_io_arena)
1171 1172                          return (n);
1172 1173          }
1173 1174          return (-1);
1174 1175  }
1175 1176  
1176 1177  /*
1177 1178   * allow kmem to be mapped in with different PTE cache attribute settings.
1178 1179   * Used by i_ddi_mem_alloc()
1179 1180   */
1180 1181  int
1181 1182  kmem_override_cache_attrs(caddr_t kva, size_t size, uint_t order)
1182 1183  {
1183 1184          uint_t hat_flags;
1184 1185          caddr_t kva_end;
1185 1186          uint_t hat_attr;
1186 1187          pfn_t pfn;
1187 1188  
1188 1189          if (hat_getattr(kas.a_hat, kva, &hat_attr) == -1) {
1189 1190                  return (-1);
1190 1191          }
1191 1192  
1192 1193          hat_attr &= ~HAT_ORDER_MASK;
1193 1194          hat_attr |= order | HAT_NOSYNC;
1194 1195          hat_flags = HAT_LOAD_LOCK;
1195 1196  
1196 1197          kva_end = (caddr_t)(((uintptr_t)kva + size + PAGEOFFSET) &
1197 1198              (uintptr_t)PAGEMASK);
1198 1199          kva = (caddr_t)((uintptr_t)kva & (uintptr_t)PAGEMASK);
1199 1200  
1200 1201          while (kva < kva_end) {
1201 1202                  pfn = hat_getpfnum(kas.a_hat, kva);
1202 1203                  hat_unload(kas.a_hat, kva, PAGESIZE, HAT_UNLOAD_UNLOCK);
1203 1204                  hat_devload(kas.a_hat, kva, PAGESIZE, pfn, hat_attr, hat_flags);
1204 1205                  kva += MMU_PAGESIZE;
1205 1206          }
1206 1207  
1207 1208          return (0);
1208 1209  }
1209 1210  
1210 1211  static int
1211 1212  ctgcompare(const void *a1, const void *a2)
1212 1213  {
1213 1214          /* we just want to compare virtual addresses */
1214 1215          a1 = ((struct ctgas *)a1)->ctg_addr;
1215 1216          a2 = ((struct ctgas *)a2)->ctg_addr;
1216 1217          return (a1 == a2 ? 0 : (a1 < a2 ? -1 : 1));
1217 1218  }
1218 1219  
1219 1220  void
1220 1221  ka_init(void)
1221 1222  {
1222 1223          int a;
1223 1224          paddr_t maxphysaddr;
1224 1225  #if !defined(__xpv)
1225 1226          extern pfn_t physmax;
1226 1227  
1227 1228          maxphysaddr = mmu_ptob((paddr_t)physmax) + MMU_PAGEOFFSET;
1228 1229  #else
1229 1230          maxphysaddr = mmu_ptob((paddr_t)HYPERVISOR_memory_op(
1230 1231              XENMEM_maximum_ram_page, NULL)) + MMU_PAGEOFFSET;
1231 1232  #endif
1232 1233  
1233 1234          ASSERT(maxphysaddr <= io_arena_params[0].io_limit);
1234 1235  
1235 1236          for (a = 0; a < MAX_MEM_RANGES; a++) {
1236 1237                  if (maxphysaddr >= io_arena_params[a + 1].io_limit) {
1237 1238                          if (maxphysaddr > io_arena_params[a + 1].io_limit)
1238 1239                                  io_arena_params[a].io_limit = maxphysaddr;
1239 1240                          else
1240 1241                                  a++;
1241 1242                          break;
1242 1243                  }
1243 1244          }
1244 1245          kmem_io_idx = a;
1245 1246  
1246 1247          for (; a < MAX_MEM_RANGES; a++) {
1247 1248                  kmem_io[a].kmem_io_attr = kmem_io_attr;
1248 1249                  kmem_io[a].kmem_io_attr.dma_attr_addr_hi =
1249 1250                      io_arena_params[a].io_limit;
1250 1251                  /*
1251 1252                   * initialize kmem_io[] arena/cache corresponding to
1252 1253                   * maxphysaddr and to the "common" io memory ranges that
1253 1254                   * have io_initial set to a non-zero value.
1254 1255                   */
1255 1256                  if (io_arena_params[a].io_initial || a == kmem_io_idx)
1256 1257                          kmem_io_init(a);
1257 1258          }
1258 1259  
1259 1260          /* initialize ctgtree */
1260 1261          avl_create(&ctgtree, ctgcompare, sizeof (struct ctgas),
1261 1262              offsetof(struct ctgas, ctg_link));
1262 1263  }
1263 1264  
1264 1265  /*
1265 1266   * put contig address/size
1266 1267   */
1267 1268  static void *
1268 1269  putctgas(void *addr, size_t size)
1269 1270  {
1270 1271          struct ctgas    *ctgp;
1271 1272          if ((ctgp = kmem_zalloc(sizeof (*ctgp), KM_NOSLEEP)) != NULL) {
1272 1273                  ctgp->ctg_addr = addr;
1273 1274                  ctgp->ctg_size = size;
1274 1275                  CTGLOCK();
1275 1276                  avl_add(&ctgtree, ctgp);
1276 1277                  CTGUNLOCK();
1277 1278          }
1278 1279          return (ctgp);
1279 1280  }
1280 1281  
1281 1282  /*
1282 1283   * get contig size by addr
1283 1284   */
1284 1285  static size_t
1285 1286  getctgsz(void *addr)
1286 1287  {
1287 1288          struct ctgas    *ctgp;
1288 1289          struct ctgas    find;
1289 1290          size_t          sz = 0;
1290 1291  
1291 1292          find.ctg_addr = addr;
1292 1293          CTGLOCK();
1293 1294          if ((ctgp = avl_find(&ctgtree, &find, NULL)) != NULL) {
1294 1295                  avl_remove(&ctgtree, ctgp);
1295 1296          }
1296 1297          CTGUNLOCK();
1297 1298  
1298 1299          if (ctgp != NULL) {
1299 1300                  sz = ctgp->ctg_size;
1300 1301                  kmem_free(ctgp, sizeof (*ctgp));
1301 1302          }
1302 1303  
1303 1304          return (sz);
1304 1305  }
1305 1306  
1306 1307  /*
1307 1308   * contig_alloc:
1308 1309   *
1309 1310   *      allocates contiguous memory to satisfy the 'size' and dma attributes
1310 1311   *      specified in 'attr'.
1311 1312   *
1312 1313   *      Not all of memory need to be physically contiguous if the
1313 1314   *      scatter-gather list length is greater than 1.
1314 1315   */
1315 1316  
1316 1317  /*ARGSUSED*/
1317 1318  void *
1318 1319  contig_alloc(size_t size, ddi_dma_attr_t *attr, uintptr_t align, int cansleep)
1319 1320  {
1320 1321          pgcnt_t         pgcnt = btopr(size);
1321 1322          size_t          asize = pgcnt * PAGESIZE;
1322 1323          page_t          *ppl;
1323 1324          int             pflag;
1324 1325          void            *addr;
1325 1326  
1326 1327          extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
1327 1328              uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
1328 1329  
1329 1330          /* segkmem_xalloc */
1330 1331  
1331 1332          if (align <= PAGESIZE)
1332 1333                  addr = vmem_alloc(heap_arena, asize,
1333 1334                      (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1334 1335          else
1335 1336                  addr = vmem_xalloc(heap_arena, asize, align, 0, 0, NULL, NULL,
1336 1337                      (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1337 1338          if (addr) {
1338 1339                  ASSERT(!((uintptr_t)addr & (align - 1)));
1339 1340  
1340 1341                  if (page_resv(pgcnt, (cansleep) ? KM_SLEEP : KM_NOSLEEP) == 0) {
1341 1342                          vmem_free(heap_arena, addr, asize);
1342 1343                          return (NULL);
1343 1344                  }
1344 1345                  pflag = PG_EXCL;
1345 1346  
1346 1347                  if (cansleep)
1347 1348                          pflag |= PG_WAIT;
1348 1349  
1349 1350                  /* 4k req gets from freelists rather than pfn search */
1350 1351                  if (pgcnt > 1 || align > PAGESIZE)
1351 1352                          pflag |= PG_PHYSCONTIG;
1352 1353  
1353 1354                  ppl = page_create_io(&kvp, (u_offset_t)(uintptr_t)addr,
1354 1355                      asize, pflag, &kas, (caddr_t)addr, attr);
1355 1356  
1356 1357                  if (!ppl) {
1357 1358                          vmem_free(heap_arena, addr, asize);
1358 1359                          page_unresv(pgcnt);
1359 1360                          return (NULL);
1360 1361                  }
1361 1362  
1362 1363                  while (ppl != NULL) {
1363 1364                          page_t  *pp = ppl;
1364 1365                          page_sub(&ppl, pp);
1365 1366                          ASSERT(page_iolock_assert(pp));
1366 1367                          page_io_unlock(pp);
1367 1368                          page_downgrade(pp);
1368 1369                          hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset,
1369 1370                              pp, (PROT_ALL & ~PROT_USER) |
1370 1371                              HAT_NOSYNC, HAT_LOAD_LOCK);
1371 1372                  }
1372 1373          }
1373 1374          return (addr);
1374 1375  }
1375 1376  
1376 1377  void
1377 1378  contig_free(void *addr, size_t size)
1378 1379  {
1379 1380          pgcnt_t pgcnt = btopr(size);
1380 1381          size_t  asize = pgcnt * PAGESIZE;
1381 1382          caddr_t a, ea;
1382 1383          page_t  *pp;
1383 1384  
1384 1385          hat_unload(kas.a_hat, addr, asize, HAT_UNLOAD_UNLOCK);
1385 1386  
1386 1387          for (a = addr, ea = a + asize; a < ea; a += PAGESIZE) {
1387 1388                  pp = page_find(&kvp, (u_offset_t)(uintptr_t)a);
1388 1389                  if (!pp)
1389 1390                          panic("contig_free: contig pp not found");
1390 1391  
1391 1392                  if (!page_tryupgrade(pp)) {
1392 1393                          page_unlock(pp);
1393 1394                          pp = page_lookup(&kvp,
1394 1395                              (u_offset_t)(uintptr_t)a, SE_EXCL);
1395 1396                          if (pp == NULL)
1396 1397                                  panic("contig_free: page freed");
1397 1398                  }
1398 1399                  page_destroy(pp, 0);
1399 1400          }
1400 1401  
1401 1402          page_unresv(pgcnt);
1402 1403          vmem_free(heap_arena, addr, asize);
1403 1404  }
1404 1405  
1405 1406  /*
1406 1407   * Allocate from the system, aligned on a specific boundary.
1407 1408   * The alignment, if non-zero, must be a power of 2.
1408 1409   */
1409 1410  static void *
1410 1411  kalloca(size_t size, size_t align, int cansleep, int physcontig,
1411 1412      ddi_dma_attr_t *attr)
1412 1413  {
1413 1414          size_t *addr, *raddr, rsize;
1414 1415          size_t hdrsize = 4 * sizeof (size_t);   /* must be power of 2 */
1415 1416          int a, i, c;
1416 1417          vmem_t *vmp;
1417 1418          kmem_cache_t *cp = NULL;
1418 1419  
1419 1420          if (attr->dma_attr_addr_lo > mmu_ptob((uint64_t)ddiphysmin))
1420 1421                  return (NULL);
1421 1422  
1422 1423          align = MAX(align, hdrsize);
1423 1424          ASSERT((align & (align - 1)) == 0);
1424 1425  
1425 1426          /*
1426 1427           * All of our allocators guarantee 16-byte alignment, so we don't
1427 1428           * need to reserve additional space for the header.
1428 1429           * To simplify picking the correct kmem_io_cache, we round up to
1429 1430           * a multiple of KA_ALIGN.
1430 1431           */
1431 1432          rsize = P2ROUNDUP_TYPED(size + align, KA_ALIGN, size_t);
1432 1433  
1433 1434          if (physcontig && rsize > PAGESIZE) {
1434 1435                  if (addr = contig_alloc(size, attr, align, cansleep)) {
1435 1436                          if (!putctgas(addr, size))
1436 1437                                  contig_free(addr, size);
1437 1438                          else
1438 1439                                  return (addr);
1439 1440                  }
1440 1441                  return (NULL);
1441 1442          }
1442 1443  
1443 1444          a = kmem_io_index(attr->dma_attr_addr_hi);
1444 1445  
1445 1446          if (rsize > PAGESIZE) {
1446 1447                  vmp = kmem_io[a].kmem_io_arena;
1447 1448                  raddr = vmem_alloc(vmp, rsize,
1448 1449                      (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1449 1450          } else {
1450 1451                  c = highbit((rsize >> KA_ALIGN_SHIFT) - 1);
1451 1452                  cp = kmem_io[a].kmem_io_cache[c];
1452 1453                  raddr = kmem_cache_alloc(cp, (cansleep) ? KM_SLEEP :
1453 1454                      KM_NOSLEEP);
1454 1455          }
1455 1456  
1456 1457          if (raddr == NULL) {
1457 1458                  int     na;
1458 1459  
1459 1460                  ASSERT(cansleep == 0);
1460 1461                  if (rsize > PAGESIZE)
1461 1462                          return (NULL);
1462 1463                  /*
1463 1464                   * System does not have memory in the requested range.
1464 1465                   * Try smaller kmem io ranges and larger cache sizes
1465 1466                   * to see if there might be memory available in
1466 1467                   * these other caches.
1467 1468                   */
1468 1469  
1469 1470                  for (na = kmem_io_index_next(a); na >= 0;
1470 1471                      na = kmem_io_index_next(na)) {
1471 1472                          ASSERT(kmem_io[na].kmem_io_arena);
1472 1473                          cp = kmem_io[na].kmem_io_cache[c];
1473 1474                          raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
1474 1475                          if (raddr)
1475 1476                                  goto kallocdone;
1476 1477                  }
1477 1478                  /* now try the larger kmem io cache sizes */
1478 1479                  for (na = a; na >= 0; na = kmem_io_index_next(na)) {
1479 1480                          for (i = c + 1; i < KA_NCACHE; i++) {
1480 1481                                  cp = kmem_io[na].kmem_io_cache[i];
1481 1482                                  raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
1482 1483                                  if (raddr)
1483 1484                                          goto kallocdone;
1484 1485                          }
1485 1486                  }
1486 1487                  return (NULL);
1487 1488          }
1488 1489  
1489 1490  kallocdone:
1490 1491          ASSERT(!P2BOUNDARY((uintptr_t)raddr, rsize, PAGESIZE) ||
1491 1492              rsize > PAGESIZE);
1492 1493  
1493 1494          addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align);
1494 1495          ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize);
1495 1496  
1496 1497          addr[-4] = (size_t)cp;
1497 1498          addr[-3] = (size_t)vmp;
1498 1499          addr[-2] = (size_t)raddr;
1499 1500          addr[-1] = rsize;
1500 1501  
1501 1502          return (addr);
1502 1503  }
1503 1504  
1504 1505  static void
1505 1506  kfreea(void *addr)
1506 1507  {
1507 1508          size_t          size;
1508 1509  
1509 1510          if (!((uintptr_t)addr & PAGEOFFSET) && (size = getctgsz(addr))) {
1510 1511                  contig_free(addr, size);
1511 1512          } else {
1512 1513                  size_t  *saddr = addr;
1513 1514                  if (saddr[-4] == 0)
1514 1515                          vmem_free((vmem_t *)saddr[-3], (void *)saddr[-2],
1515 1516                              saddr[-1]);
1516 1517                  else
1517 1518                          kmem_cache_free((kmem_cache_t *)saddr[-4],
1518 1519                              (void *)saddr[-2]);
1519 1520          }
1520 1521  }
1521 1522  
1522 1523  /*ARGSUSED*/
1523 1524  void
1524 1525  i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp)
1525 1526  {
1526 1527  }
1527 1528  
1528 1529  /*
1529 1530   * Check if the specified cache attribute is supported on the platform.
1530 1531   * This function must be called before i_ddi_cacheattr_to_hatacc().
1531 1532   */
1532 1533  boolean_t
1533 1534  i_ddi_check_cache_attr(uint_t flags)
1534 1535  {
1535 1536          /*
1536 1537           * The cache attributes are mutually exclusive. Any combination of
1537 1538           * the attributes leads to a failure.
1538 1539           */
1539 1540          uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1540 1541          if ((cache_attr != 0) && !ISP2(cache_attr))
1541 1542                  return (B_FALSE);
1542 1543  
1543 1544          /* All cache attributes are supported on X86/X64 */
1544 1545          if (cache_attr & (IOMEM_DATA_UNCACHED | IOMEM_DATA_CACHED |
1545 1546              IOMEM_DATA_UC_WR_COMBINE))
1546 1547                  return (B_TRUE);
1547 1548  
1548 1549          /* undefined attributes */
1549 1550          return (B_FALSE);
1550 1551  }
1551 1552  
1552 1553  /* set HAT cache attributes from the cache attributes */
1553 1554  void
1554 1555  i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp)
1555 1556  {
1556 1557          uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1557 1558          static char *fname = "i_ddi_cacheattr_to_hatacc";
1558 1559  
1559 1560          /*
1560 1561           * If write-combining is not supported, then it falls back
1561 1562           * to uncacheable.
1562 1563           */
1563 1564          if (cache_attr == IOMEM_DATA_UC_WR_COMBINE &&
1564 1565              !is_x86_feature(x86_featureset, X86FSET_PAT))
1565 1566                  cache_attr = IOMEM_DATA_UNCACHED;
1566 1567  
1567 1568          /*
1568 1569           * set HAT attrs according to the cache attrs.
1569 1570           */
1570 1571          switch (cache_attr) {
1571 1572          case IOMEM_DATA_UNCACHED:
1572 1573                  *hataccp &= ~HAT_ORDER_MASK;
1573 1574                  *hataccp |= (HAT_STRICTORDER | HAT_PLAT_NOCACHE);
1574 1575                  break;
1575 1576          case IOMEM_DATA_UC_WR_COMBINE:
1576 1577                  *hataccp &= ~HAT_ORDER_MASK;
1577 1578                  *hataccp |= (HAT_MERGING_OK | HAT_PLAT_NOCACHE);
1578 1579                  break;
1579 1580          case IOMEM_DATA_CACHED:
1580 1581                  *hataccp &= ~HAT_ORDER_MASK;
1581 1582                  *hataccp |= HAT_UNORDERED_OK;
1582 1583                  break;
1583 1584          /*
1584 1585           * This case must not occur because the cache attribute is scrutinized
1585 1586           * before this function is called.
1586 1587           */
1587 1588          default:
1588 1589                  /*
1589 1590                   * set cacheable to hat attrs.
1590 1591                   */
1591 1592                  *hataccp &= ~HAT_ORDER_MASK;
1592 1593                  *hataccp |= HAT_UNORDERED_OK;
1593 1594                  cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.",
1594 1595                      fname, cache_attr);
1595 1596          }
1596 1597  }
1597 1598  
1598 1599  /*
1599 1600   * This should actually be called i_ddi_dma_mem_alloc. There should
1600 1601   * also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call
1601 1602   * through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to
1602 1603   * get alignment requirements for DMA memory. i_ddi_pio_mem_alloc
1603 1604   * should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc
1604 1605   * so far which is used for both, DMA and PIO, we have to use the DMA
1605 1606   * ctl ops to make everybody happy.
1606 1607   */
1607 1608  /*ARGSUSED*/
1608 1609  int
1609 1610  i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr,
1610 1611      size_t length, int cansleep, int flags,
1611 1612      ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
1612 1613      size_t *real_length, ddi_acc_hdl_t *ap)
1613 1614  {
1614 1615          caddr_t a;
1615 1616          int iomin;
1616 1617          ddi_acc_impl_t *iap;
1617 1618          int physcontig = 0;
1618 1619          pgcnt_t npages;
1619 1620          pgcnt_t minctg;
1620 1621          uint_t order;
1621 1622          int e;
1622 1623  
1623 1624          /*
1624 1625           * Check legality of arguments
1625 1626           */
1626 1627          if (length == 0 || kaddrp == NULL || attr == NULL) {
1627 1628                  return (DDI_FAILURE);
1628 1629          }
1629 1630  
1630 1631          if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 ||
1631 1632              !ISP2(attr->dma_attr_align) || !ISP2(attr->dma_attr_minxfer)) {
1632 1633                  return (DDI_FAILURE);
1633 1634          }
1634 1635  
1635 1636          /*
1636 1637           * figure out most restrictive alignment requirement
1637 1638           */
1638 1639          iomin = attr->dma_attr_minxfer;
1639 1640          iomin = maxbit(iomin, attr->dma_attr_align);
1640 1641          if (iomin == 0)
1641 1642                  return (DDI_FAILURE);
1642 1643  
1643 1644          ASSERT((iomin & (iomin - 1)) == 0);
1644 1645  
1645 1646          /*
1646 1647           * if we allocate memory with IOMEM_DATA_UNCACHED or
1647 1648           * IOMEM_DATA_UC_WR_COMBINE, make sure we allocate a page aligned
1648 1649           * memory that ends on a page boundry.
1649 1650           * Don't want to have to different cache mappings to the same
1650 1651           * physical page.
1651 1652           */
1652 1653          if (OVERRIDE_CACHE_ATTR(flags)) {
1653 1654                  iomin = (iomin + MMU_PAGEOFFSET) & MMU_PAGEMASK;
1654 1655                  length = (length + MMU_PAGEOFFSET) & (size_t)MMU_PAGEMASK;
1655 1656          }
1656 1657  
1657 1658          /*
1658 1659           * Determine if we need to satisfy the request for physically
1659 1660           * contiguous memory or alignments larger than pagesize.
1660 1661           */
1661 1662          npages = btopr(length + attr->dma_attr_align);
1662 1663          minctg = howmany(npages, attr->dma_attr_sgllen);
1663 1664  
1664 1665          if (minctg > 1) {
1665 1666                  uint64_t pfnseg = attr->dma_attr_seg >> PAGESHIFT;
1666 1667                  /*
1667 1668                   * verify that the minimum contig requirement for the
1668 1669                   * actual length does not cross segment boundary.
1669 1670                   */
1670 1671                  length = P2ROUNDUP_TYPED(length, attr->dma_attr_minxfer,
1671 1672                      size_t);
1672 1673                  npages = btopr(length);
1673 1674                  minctg = howmany(npages, attr->dma_attr_sgllen);
1674 1675                  if (minctg > pfnseg + 1)
1675 1676                          return (DDI_FAILURE);
1676 1677                  physcontig = 1;
1677 1678          } else {
1678 1679                  length = P2ROUNDUP_TYPED(length, iomin, size_t);
1679 1680          }
1680 1681  
1681 1682          /*
1682 1683           * Allocate the requested amount from the system.
1683 1684           */
1684 1685          a = kalloca(length, iomin, cansleep, physcontig, attr);
1685 1686  
1686 1687          if ((*kaddrp = a) == NULL)
1687 1688                  return (DDI_FAILURE);
1688 1689  
1689 1690          /*
1690 1691           * if we to modify the cache attributes, go back and muck with the
1691 1692           * mappings.
1692 1693           */
1693 1694          if (OVERRIDE_CACHE_ATTR(flags)) {
1694 1695                  order = 0;
1695 1696                  i_ddi_cacheattr_to_hatacc(flags, &order);
1696 1697                  e = kmem_override_cache_attrs(a, length, order);
1697 1698                  if (e != 0) {
1698 1699                          kfreea(a);
1699 1700                          return (DDI_FAILURE);
1700 1701                  }
1701 1702          }
1702 1703  
1703 1704          if (real_length) {
1704 1705                  *real_length = length;
1705 1706          }
1706 1707          if (ap) {
1707 1708                  /*
1708 1709                   * initialize access handle
1709 1710                   */
1710 1711                  iap = (ddi_acc_impl_t *)ap->ah_platform_private;
1711 1712                  iap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR;
1712 1713                  impl_acc_hdl_init(ap);
1713 1714          }
1714 1715  
1715 1716          return (DDI_SUCCESS);
1716 1717  }
1717 1718  
1718 1719  /* ARGSUSED */
1719 1720  void
1720 1721  i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap)
1721 1722  {
1722 1723          if (ap != NULL) {
1723 1724                  /*
1724 1725                   * if we modified the cache attributes on alloc, go back and
1725 1726                   * fix them since this memory could be returned to the
1726 1727                   * general pool.
1727 1728                   */
1728 1729                  if (OVERRIDE_CACHE_ATTR(ap->ah_xfermodes)) {
1729 1730                          uint_t order = 0;
1730 1731                          int e;
1731 1732                          i_ddi_cacheattr_to_hatacc(IOMEM_DATA_CACHED, &order);
1732 1733                          e = kmem_override_cache_attrs(kaddr, ap->ah_len, order);
1733 1734                          if (e != 0) {
1734 1735                                  cmn_err(CE_WARN, "i_ddi_mem_free() failed to "
1735 1736                                      "override cache attrs, memory leaked\n");
1736 1737                                  return;
1737 1738                          }
1738 1739                  }
1739 1740          }
1740 1741          kfreea(kaddr);
1741 1742  }
1742 1743  
1743 1744  /*
1744 1745   * Access Barriers
1745 1746   *
1746 1747   */
1747 1748  /*ARGSUSED*/
1748 1749  int
1749 1750  i_ddi_ontrap(ddi_acc_handle_t hp)
1750 1751  {
1751 1752          return (DDI_FAILURE);
1752 1753  }
1753 1754  
1754 1755  /*ARGSUSED*/
1755 1756  void
1756 1757  i_ddi_notrap(ddi_acc_handle_t hp)
1757 1758  {
1758 1759  }
1759 1760  
1760 1761  
1761 1762  /*
1762 1763   * Misc Functions
1763 1764   */
1764 1765  
1765 1766  /*
1766 1767   * Implementation instance override functions
1767 1768   *
1768 1769   * No override on i86pc
1769 1770   */
1770 1771  /*ARGSUSED*/
1771 1772  uint_t
1772 1773  impl_assign_instance(dev_info_t *dip)
1773 1774  {
1774 1775          return ((uint_t)-1);
1775 1776  }
1776 1777  
1777 1778  /*ARGSUSED*/
1778 1779  int
1779 1780  impl_keep_instance(dev_info_t *dip)
1780 1781  {
1781 1782  
1782 1783  #if defined(__xpv)
1783 1784          /*
1784 1785           * Do not persist instance numbers assigned to devices in dom0
1785 1786           */
1786 1787          dev_info_t *pdip;
1787 1788          if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1788 1789                  if (((pdip = ddi_get_parent(dip)) != NULL) &&
1789 1790                      (strcmp(ddi_get_name(pdip), "xpvd") == 0))
1790 1791                          return (DDI_SUCCESS);
1791 1792          }
1792 1793  #endif
1793 1794          return (DDI_FAILURE);
1794 1795  }
1795 1796  
1796 1797  /*ARGSUSED*/
1797 1798  int
1798 1799  impl_free_instance(dev_info_t *dip)
1799 1800  {
1800 1801          return (DDI_FAILURE);
1801 1802  }
1802 1803  
1803 1804  /*ARGSUSED*/
1804 1805  int
1805 1806  impl_check_cpu(dev_info_t *devi)
1806 1807  {
1807 1808          return (DDI_SUCCESS);
1808 1809  }
1809 1810  
1810 1811  /*
1811 1812   * Referenced in common/cpr_driver.c: Power off machine.
1812 1813   * Don't know how to power off i86pc.
1813 1814   */
1814 1815  void
1815 1816  arch_power_down()
1816 1817  {}
1817 1818  
1818 1819  /*
1819 1820   * Copy name to property_name, since name
1820 1821   * is in the low address range below kernelbase.
1821 1822   */
1822 1823  static void
1823 1824  copy_boot_str(const char *boot_str, char *kern_str, int len)
1824 1825  {
1825 1826          int i = 0;
1826 1827  
1827 1828          while (i < len - 1 && boot_str[i] != '\0') {
1828 1829                  kern_str[i] = boot_str[i];
1829 1830                  i++;
1830 1831          }
1831 1832  
1832 1833          kern_str[i] = 0;        /* null terminate */
1833 1834          if (boot_str[i] != '\0')
  
    | 
      ↓ open down ↓ | 
    1753 lines elided | 
    
      ↑ open up ↑ | 
  
1834 1835                  cmn_err(CE_WARN,
1835 1836                      "boot property string is truncated to %s", kern_str);
1836 1837  }
1837 1838  
1838 1839  static void
1839 1840  get_boot_properties(void)
1840 1841  {
1841 1842          extern char hw_provider[];
1842 1843          dev_info_t *devi;
1843 1844          char *name;
1844      -        int length;
     1845 +        int length, flags;
1845 1846          char property_name[50], property_val[50];
1846 1847          void *bop_staging_area;
1847 1848  
1848 1849          bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP);
1849 1850  
1850 1851          /*
1851 1852           * Import "root" properties from the boot.
1852 1853           *
1853 1854           * We do this by invoking BOP_NEXTPROP until the list
1854 1855           * is completely copied in.
1855 1856           */
1856 1857  
1857 1858          devi = ddi_root_node();
1858 1859          for (name = BOP_NEXTPROP(bootops, "");          /* get first */
1859 1860              name;                                       /* NULL => DONE */
1860 1861              name = BOP_NEXTPROP(bootops, name)) {       /* get next */
1861 1862  
1862 1863                  /* copy string to memory above kernelbase */
1863 1864                  copy_boot_str(name, property_name, 50);
1864 1865  
  
    | 
      ↓ open down ↓ | 
    10 lines elided | 
    
      ↑ open up ↑ | 
  
1865 1866                  /*
1866 1867                   * Skip vga properties. They will be picked up later
1867 1868                   * by get_vga_properties.
1868 1869                   */
1869 1870                  if (strcmp(property_name, "display-edif-block") == 0 ||
1870 1871                      strcmp(property_name, "display-edif-id") == 0) {
1871 1872                          continue;
1872 1873                  }
1873 1874  
1874 1875                  length = BOP_GETPROPLEN(bootops, property_name);
1875      -                if (length == 0)
     1876 +                if (length < 0)
1876 1877                          continue;
1877 1878                  if (length > MMU_PAGESIZE) {
1878 1879                          cmn_err(CE_NOTE,
1879 1880                              "boot property %s longer than 0x%x, ignored\n",
1880 1881                              property_name, MMU_PAGESIZE);
1881 1882                          continue;
1882 1883                  }
1883 1884                  BOP_GETPROP(bootops, property_name, bop_staging_area);
     1885 +                flags = do_bsys_getproptype(bootops, property_name);
1884 1886  
1885 1887                  /*
1886 1888                   * special properties:
1887 1889                   * si-machine, si-hw-provider
1888 1890                   *      goes to kernel data structures.
1889 1891                   * bios-boot-device and stdout
1890 1892                   *      goes to hardware property list so it may show up
1891 1893                   *      in the prtconf -vp output. This is needed by
1892 1894                   *      Install/Upgrade. Once we fix install upgrade,
1893 1895                   *      this can be taken out.
1894 1896                   */
1895 1897                  if (strcmp(name, "si-machine") == 0) {
1896 1898                          (void) strncpy(utsname.machine, bop_staging_area,
1897 1899                              SYS_NMLN);
1898      -                        utsname.machine[SYS_NMLN - 1] = (char)NULL;
1899      -                } else if (strcmp(name, "si-hw-provider") == 0) {
     1900 +                        utsname.machine[SYS_NMLN - 1] = '\0';
     1901 +                        continue;
     1902 +                }
     1903 +                if (strcmp(name, "si-hw-provider") == 0) {
1900 1904                          (void) strncpy(hw_provider, bop_staging_area, SYS_NMLN);
1901      -                        hw_provider[SYS_NMLN - 1] = (char)NULL;
1902      -                } else if (strcmp(name, "bios-boot-device") == 0) {
     1905 +                        hw_provider[SYS_NMLN - 1] = '\0';
     1906 +                        continue;
     1907 +                }
     1908 +                if (strcmp(name, "bios-boot-device") == 0) {
1903 1909                          copy_boot_str(bop_staging_area, property_val, 50);
1904 1910                          (void) ndi_prop_update_string(DDI_DEV_T_NONE, devi,
1905 1911                              property_name, property_val);
1906      -                } else if (strcmp(name, "acpi-root-tab") == 0) {
1907      -                        (void) ndi_prop_update_int64(DDI_DEV_T_NONE, devi,
1908      -                            property_name, *((int64_t *)bop_staging_area));
1909      -                } else if (strcmp(name, "smbios-address") == 0) {
1910      -                        (void) ndi_prop_update_int64(DDI_DEV_T_NONE, devi,
1911      -                            property_name, *((int64_t *)bop_staging_area));
1912      -                } else if (strcmp(name, "efi-systab") == 0) {
1913      -                        (void) ndi_prop_update_int64(DDI_DEV_T_NONE, devi,
1914      -                            property_name, *((int64_t *)bop_staging_area));
1915      -                } else if (strcmp(name, "efi-systype") == 0) {
1916      -                        copy_boot_str(bop_staging_area, property_val, 50);
1917      -                        (void) ndi_prop_update_string(DDI_DEV_T_NONE, devi,
1918      -                            property_name, property_val);
1919      -                } else if (strcmp(name, "stdout") == 0) {
     1912 +                        continue;
     1913 +                }
     1914 +                if (strcmp(name, "stdout") == 0) {
1920 1915                          (void) ndi_prop_update_int(DDI_DEV_T_NONE, devi,
1921 1916                              property_name, *((int *)bop_staging_area));
1922      -                } else if (strcmp(name, "boot-args") == 0) {
1923      -                        copy_boot_str(bop_staging_area, property_val, 50);
     1917 +                        continue;
     1918 +                }
     1919 +
     1920 +                /* Boolean property */
     1921 +                if (length == 0) {
     1922 +                        (void) e_ddi_prop_create(DDI_DEV_T_NONE, devi,
     1923 +                            DDI_PROP_CANSLEEP, property_name, NULL, 0);
     1924 +                        continue;
     1925 +                }
     1926 +
     1927 +                /* Now anything else based on type. */
     1928 +                switch (flags) {
     1929 +                case DDI_PROP_TYPE_INT:
     1930 +                        if (length == sizeof (int)) {
     1931 +                                (void) e_ddi_prop_update_int(DDI_DEV_T_NONE,
     1932 +                                    devi, property_name,
     1933 +                                    *((int *)bop_staging_area));
     1934 +                        } else {
     1935 +                                (void) e_ddi_prop_update_int_array(
     1936 +                                    DDI_DEV_T_NONE, devi, property_name,
     1937 +                                    bop_staging_area, length / sizeof (int));
     1938 +                        }
     1939 +                        break;
     1940 +                case DDI_PROP_TYPE_STRING:
1924 1941                          (void) e_ddi_prop_update_string(DDI_DEV_T_NONE, devi,
1925      -                            property_name, property_val);
1926      -                } else if (strcmp(name, "bootargs") == 0) {
1927      -                        copy_boot_str(bop_staging_area, property_val, 50);
1928      -                        (void) e_ddi_prop_update_string(DDI_DEV_T_NONE, devi,
1929      -                            property_name, property_val);
1930      -                } else if (strcmp(name, "bootp-response") == 0) {
     1942 +                            property_name, bop_staging_area);
     1943 +                        break;
     1944 +                case DDI_PROP_TYPE_BYTE:
1931 1945                          (void) e_ddi_prop_update_byte_array(DDI_DEV_T_NONE,
1932 1946                              devi, property_name, bop_staging_area, length);
1933      -                } else if (strcmp(name, "ramdisk_start") == 0) {
1934      -                        (void) e_ddi_prop_update_int64(DDI_DEV_T_NONE, devi,
1935      -                            property_name, *((int64_t *)bop_staging_area));
1936      -                } else if (strcmp(name, "ramdisk_end") == 0) {
1937      -                        (void) e_ddi_prop_update_int64(DDI_DEV_T_NONE, devi,
1938      -                            property_name, *((int64_t *)bop_staging_area));
1939      -                } else if (strncmp(name, "module-addr-", 12) == 0) {
1940      -                        (void) e_ddi_prop_update_int64(DDI_DEV_T_NONE, devi,
1941      -                            property_name, *((int64_t *)bop_staging_area));
1942      -                } else if (strncmp(name, "module-size-", 12) == 0) {
1943      -                        (void) e_ddi_prop_update_int64(DDI_DEV_T_NONE, devi,
1944      -                            property_name, *((int64_t *)bop_staging_area));
1945      -                } else {
     1947 +                        break;
     1948 +                case DDI_PROP_TYPE_INT64:
     1949 +                        if (length == sizeof (uint64_t)) {
     1950 +                                (void) e_ddi_prop_update_int64(DDI_DEV_T_NONE,
     1951 +                                    devi, property_name,
     1952 +                                    *((uint64_t *)bop_staging_area));
     1953 +                        } else {
     1954 +                                (void) e_ddi_prop_update_int64_array(
     1955 +                                    DDI_DEV_T_NONE, devi, property_name,
     1956 +                                    bop_staging_area,
     1957 +                                    length / sizeof (uint64_t));
     1958 +                        }
     1959 +                        break;
     1960 +                default:
1946 1961                          /* Property type unknown, use old prop interface */
1947 1962                          (void) e_ddi_prop_create(DDI_DEV_T_NONE, devi,
1948 1963                              DDI_PROP_CANSLEEP, property_name, bop_staging_area,
1949 1964                              length);
1950 1965                  }
1951 1966          }
1952 1967  
1953 1968          kmem_free(bop_staging_area, MMU_PAGESIZE);
1954 1969  }
1955 1970  
1956 1971  static void
1957 1972  get_vga_properties(void)
1958 1973  {
1959 1974          dev_info_t *devi;
1960 1975          major_t major;
1961 1976          char *name;
1962 1977          int length;
1963 1978          char property_val[50];
1964 1979          void *bop_staging_area;
1965 1980  
1966 1981          /*
1967 1982           * XXXX Hack Allert!
1968 1983           * There really needs to be a better way for identifying various
1969 1984           * console framebuffers and their related issues.  Till then,
1970 1985           * check for this one as a replacement to vgatext.
1971 1986           */
1972 1987          major = ddi_name_to_major("ragexl");
1973 1988          if (major == (major_t)-1) {
1974 1989                  major = ddi_name_to_major("vgatext");
1975 1990                  if (major == (major_t)-1)
1976 1991                          return;
1977 1992          }
1978 1993          devi = devnamesp[major].dn_head;
1979 1994          if (devi == NULL)
1980 1995                  return;
1981 1996  
1982 1997          bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
1983 1998  
1984 1999          /*
1985 2000           * Import "vga" properties from the boot.
1986 2001           */
1987 2002          name = "display-edif-block";
1988 2003          length = BOP_GETPROPLEN(bootops, name);
1989 2004          if (length > 0 && length < MMU_PAGESIZE) {
1990 2005                  BOP_GETPROP(bootops, name, bop_staging_area);
1991 2006                  (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE,
1992 2007                      devi, name, bop_staging_area, length);
1993 2008          }
1994 2009  
1995 2010          /*
1996 2011           * kdmconfig is also looking for display-type and
1997 2012           * video-adapter-type. We default to color and svga.
1998 2013           *
1999 2014           * Could it be "monochrome", "vga"?
2000 2015           * Nah, you've got to come to the 21st century...
2001 2016           * And you can set monitor type manually in kdmconfig
2002 2017           * if you are really an old junky.
2003 2018           */
2004 2019          (void) ndi_prop_update_string(DDI_DEV_T_NONE,
2005 2020              devi, "display-type", "color");
2006 2021          (void) ndi_prop_update_string(DDI_DEV_T_NONE,
2007 2022              devi, "video-adapter-type", "svga");
2008 2023  
2009 2024          name = "display-edif-id";
2010 2025          length = BOP_GETPROPLEN(bootops, name);
  
    | 
      ↓ open down ↓ | 
    55 lines elided | 
    
      ↑ open up ↑ | 
  
2011 2026          if (length > 0 && length < MMU_PAGESIZE) {
2012 2027                  BOP_GETPROP(bootops, name, bop_staging_area);
2013 2028                  copy_boot_str(bop_staging_area, property_val, length);
2014 2029                  (void) ndi_prop_update_string(DDI_DEV_T_NONE,
2015 2030                      devi, name, property_val);
2016 2031          }
2017 2032  
2018 2033          kmem_free(bop_staging_area, MMU_PAGESIZE);
2019 2034  }
2020 2035  
     2036 +/*
     2037 + * Copy console font to kernel memory. The temporary font setup
     2038 + * to use font module was done in early console setup, using low
     2039 + * memory and data from font module. Now we need to allocate
     2040 + * kernel memory and copy data over, so the low memory can be freed.
     2041 + * We can have at most one entry in font list from early boot.
     2042 + */
     2043 +static void
     2044 +get_console_font(void)
     2045 +{
     2046 +        struct fontlist *fp, *fl;
     2047 +        bitmap_data_t *bd;
     2048 +        struct font *fd, *tmp;
     2049 +        int i;
2021 2050  
     2051 +        if (STAILQ_EMPTY(&fonts))
     2052 +                return;
     2053 +
     2054 +        fl = STAILQ_FIRST(&fonts);
     2055 +        STAILQ_REMOVE_HEAD(&fonts, font_next);
     2056 +        fp = kmem_zalloc(sizeof (*fp), KM_SLEEP);
     2057 +        bd = kmem_zalloc(sizeof (*bd), KM_SLEEP);
     2058 +        fd = kmem_zalloc(sizeof (*fd), KM_SLEEP);
     2059 +
     2060 +        fp->font_name = NULL;
     2061 +        fp->font_flags = FONT_BOOT;
     2062 +        fp->font_data = bd;
     2063 +
     2064 +        bd->width = fl->font_data->width;
     2065 +        bd->height = fl->font_data->height;
     2066 +        bd->uncompressed_size = fl->font_data->uncompressed_size;
     2067 +        bd->font = fd;
     2068 +
     2069 +        tmp = fl->font_data->font;
     2070 +        fd->vf_width = tmp->vf_width;
     2071 +        fd->vf_height = tmp->vf_height;
     2072 +        for (i = 0; i < VFNT_MAPS; i++) {
     2073 +                if (tmp->vf_map_count[i] == 0)
     2074 +                        continue;
     2075 +                fd->vf_map_count[i] = tmp->vf_map_count[i];
     2076 +                fd->vf_map[i] = kmem_alloc(fd->vf_map_count[i] *
     2077 +                    sizeof (*fd->vf_map[i]), KM_SLEEP);
     2078 +                bcopy(tmp->vf_map[i], fd->vf_map[i], fd->vf_map_count[i] *
     2079 +                    sizeof (*fd->vf_map[i]));
     2080 +        }
     2081 +        fd->vf_bytes = kmem_alloc(bd->uncompressed_size, KM_SLEEP);
     2082 +        bcopy(tmp->vf_bytes, fd->vf_bytes, bd->uncompressed_size);
     2083 +        STAILQ_INSERT_HEAD(&fonts, fp, font_next);
     2084 +}
     2085 +
2022 2086  /*
2023 2087   * This is temporary, but absolutely necessary.  If we are being
2024 2088   * booted with a device tree created by the DevConf project's bootconf
2025 2089   * program, then we have device information nodes that reflect
2026 2090   * reality.  At this point in time in the Solaris release schedule, the
2027 2091   * kernel drivers aren't prepared for reality.  They still depend on their
2028 2092   * own ad-hoc interpretations of the properties created when their .conf
2029 2093   * files were interpreted. These drivers use an "ignore-hardware-nodes"
2030 2094   * property to prevent them from using the nodes passed up from the bootconf
2031 2095   * device tree.
2032 2096   *
2033 2097   * Trying to assemble root file system drivers as we are booting from
2034 2098   * devconf will fail if the kernel driver is basing its name_addr's on the
2035 2099   * psuedo-node device info while the bootpath passed up from bootconf is using
2036 2100   * reality-based name_addrs.  We help the boot along in this case by
2037 2101   * looking at the pre-bootconf bootpath and determining if we would have
2038 2102   * successfully matched if that had been the bootpath we had chosen.
2039 2103   *
2040 2104   * Note that we only even perform this extra check if we've booted
2041 2105   * using bootconf's 1275 compliant bootpath, this is the boot device, and
2042 2106   * we're trying to match the name_addr specified in the 1275 bootpath.
2043 2107   */
2044 2108  
2045 2109  #define MAXCOMPONENTLEN 32
2046 2110  
2047 2111  int
2048 2112  x86_old_bootpath_name_addr_match(dev_info_t *cdip, char *caddr, char *naddr)
2049 2113  {
2050 2114          /*
2051 2115           *  There are multiple criteria to be met before we can even
2052 2116           *  consider allowing a name_addr match here.
2053 2117           *
2054 2118           *  1) We must have been booted such that the bootconf program
2055 2119           *      created device tree nodes and properties.  This can be
2056 2120           *      determined by examining the 'bootpath' property.  This
2057 2121           *      property will be a non-null string iff bootconf was
2058 2122           *      involved in the boot.
2059 2123           *
2060 2124           *  2) The module that we want to match must be the boot device.
2061 2125           *
2062 2126           *  3) The instance of the module we are thinking of letting be
2063 2127           *      our match must be ignoring hardware nodes.
2064 2128           *
2065 2129           *  4) The name_addr we want to match must be the name_addr
2066 2130           *      specified in the 1275 bootpath.
2067 2131           */
2068 2132          static char bootdev_module[MAXCOMPONENTLEN];
2069 2133          static char bootdev_oldmod[MAXCOMPONENTLEN];
2070 2134          static char bootdev_newaddr[MAXCOMPONENTLEN];
2071 2135          static char bootdev_oldaddr[MAXCOMPONENTLEN];
2072 2136          static int  quickexit;
2073 2137  
2074 2138          char *daddr;
2075 2139          int dlen;
2076 2140  
2077 2141          char    *lkupname;
2078 2142          int     rv = DDI_FAILURE;
2079 2143  
2080 2144          if ((ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2081 2145              "devconf-addr", (caddr_t)&daddr, &dlen) == DDI_PROP_SUCCESS) &&
2082 2146              (ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2083 2147              "ignore-hardware-nodes", -1) != -1)) {
2084 2148                  if (strcmp(daddr, caddr) == 0) {
2085 2149                          return (DDI_SUCCESS);
2086 2150                  }
2087 2151          }
2088 2152  
2089 2153          if (quickexit)
2090 2154                  return (rv);
2091 2155  
2092 2156          if (bootdev_module[0] == '\0') {
2093 2157                  char *addrp, *eoaddrp;
2094 2158                  char *busp, *modp, *atp;
2095 2159                  char *bp1275, *bp;
2096 2160                  int  bp1275len, bplen;
2097 2161  
2098 2162                  bp1275 = bp = addrp = eoaddrp = busp = modp = atp = NULL;
2099 2163  
2100 2164                  if (ddi_getlongprop(DDI_DEV_T_ANY,
2101 2165                      ddi_root_node(), 0, "bootpath",
2102 2166                      (caddr_t)&bp1275, &bp1275len) != DDI_PROP_SUCCESS ||
2103 2167                      bp1275len <= 1) {
2104 2168                          /*
2105 2169                           * We didn't boot from bootconf so we never need to
2106 2170                           * do any special matches.
2107 2171                           */
2108 2172                          quickexit = 1;
2109 2173                          if (bp1275)
2110 2174                                  kmem_free(bp1275, bp1275len);
2111 2175                          return (rv);
2112 2176                  }
2113 2177  
2114 2178                  if (ddi_getlongprop(DDI_DEV_T_ANY,
2115 2179                      ddi_root_node(), 0, "boot-path",
2116 2180                      (caddr_t)&bp, &bplen) != DDI_PROP_SUCCESS || bplen <= 1) {
2117 2181                          /*
2118 2182                           * No fallback position for matching. This is
2119 2183                           * certainly unexpected, but we'll handle it
2120 2184                           * just in case.
2121 2185                           */
2122 2186                          quickexit = 1;
2123 2187                          kmem_free(bp1275, bp1275len);
2124 2188                          if (bp)
2125 2189                                  kmem_free(bp, bplen);
2126 2190                          return (rv);
2127 2191                  }
2128 2192  
2129 2193                  /*
2130 2194                   *  Determine boot device module and 1275 name_addr
2131 2195                   *
2132 2196                   *  bootpath assumed to be of the form /bus/module@name_addr
2133 2197                   */
2134 2198                  if (busp = strchr(bp1275, '/')) {
2135 2199                          if (modp = strchr(busp + 1, '/')) {
2136 2200                                  if (atp = strchr(modp + 1, '@')) {
2137 2201                                          *atp = '\0';
2138 2202                                          addrp = atp + 1;
2139 2203                                          if (eoaddrp = strchr(addrp, '/'))
2140 2204                                                  *eoaddrp = '\0';
2141 2205                                  }
2142 2206                          }
2143 2207                  }
2144 2208  
2145 2209                  if (modp && addrp) {
2146 2210                          (void) strncpy(bootdev_module, modp + 1,
2147 2211                              MAXCOMPONENTLEN);
2148 2212                          bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
2149 2213  
2150 2214                          (void) strncpy(bootdev_newaddr, addrp, MAXCOMPONENTLEN);
2151 2215                          bootdev_newaddr[MAXCOMPONENTLEN - 1] = '\0';
2152 2216                  } else {
2153 2217                          quickexit = 1;
2154 2218                          kmem_free(bp1275, bp1275len);
2155 2219                          kmem_free(bp, bplen);
2156 2220                          return (rv);
2157 2221                  }
2158 2222  
2159 2223                  /*
2160 2224                   *  Determine fallback name_addr
2161 2225                   *
2162 2226                   *  10/3/96 - Also save fallback module name because it
2163 2227                   *  might actually be different than the current module
2164 2228                   *  name.  E.G., ISA pnp drivers have new names.
2165 2229                   *
2166 2230                   *  bootpath assumed to be of the form /bus/module@name_addr
2167 2231                   */
2168 2232                  addrp = NULL;
2169 2233                  if (busp = strchr(bp, '/')) {
2170 2234                          if (modp = strchr(busp + 1, '/')) {
2171 2235                                  if (atp = strchr(modp + 1, '@')) {
2172 2236                                          *atp = '\0';
2173 2237                                          addrp = atp + 1;
2174 2238                                          if (eoaddrp = strchr(addrp, '/'))
2175 2239                                                  *eoaddrp = '\0';
2176 2240                                  }
2177 2241                          }
2178 2242                  }
2179 2243  
2180 2244                  if (modp && addrp) {
2181 2245                          (void) strncpy(bootdev_oldmod, modp + 1,
2182 2246                              MAXCOMPONENTLEN);
2183 2247                          bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
2184 2248  
2185 2249                          (void) strncpy(bootdev_oldaddr, addrp, MAXCOMPONENTLEN);
2186 2250                          bootdev_oldaddr[MAXCOMPONENTLEN - 1] = '\0';
2187 2251                  }
2188 2252  
2189 2253                  /* Free up the bootpath storage now that we're done with it. */
2190 2254                  kmem_free(bp1275, bp1275len);
2191 2255                  kmem_free(bp, bplen);
2192 2256  
2193 2257                  if (bootdev_oldaddr[0] == '\0') {
2194 2258                          quickexit = 1;
2195 2259                          return (rv);
2196 2260                  }
2197 2261          }
2198 2262  
2199 2263          if (((lkupname = ddi_get_name(cdip)) != NULL) &&
2200 2264              (strcmp(bootdev_module, lkupname) == 0 ||
2201 2265              strcmp(bootdev_oldmod, lkupname) == 0) &&
2202 2266              ((ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2203 2267              "ignore-hardware-nodes", -1) != -1) ||
2204 2268              ignore_hardware_nodes) &&
2205 2269              strcmp(bootdev_newaddr, caddr) == 0 &&
2206 2270              strcmp(bootdev_oldaddr, naddr) == 0) {
2207 2271                  rv = DDI_SUCCESS;
2208 2272          }
2209 2273  
2210 2274          return (rv);
2211 2275  }
2212 2276  
2213 2277  /*
2214 2278   * Perform a copy from a memory mapped device (whose devinfo pointer is devi)
2215 2279   * separately mapped at devaddr in the kernel to a kernel buffer at kaddr.
2216 2280   */
2217 2281  /*ARGSUSED*/
2218 2282  int
2219 2283  e_ddi_copyfromdev(dev_info_t *devi,
2220 2284      off_t off, const void *devaddr, void *kaddr, size_t len)
2221 2285  {
2222 2286          bcopy(devaddr, kaddr, len);
2223 2287          return (0);
2224 2288  }
2225 2289  
2226 2290  /*
2227 2291   * Perform a copy to a memory mapped device (whose devinfo pointer is devi)
2228 2292   * separately mapped at devaddr in the kernel from a kernel buffer at kaddr.
2229 2293   */
2230 2294  /*ARGSUSED*/
2231 2295  int
2232 2296  e_ddi_copytodev(dev_info_t *devi,
2233 2297      off_t off, const void *kaddr, void *devaddr, size_t len)
2234 2298  {
2235 2299          bcopy(kaddr, devaddr, len);
2236 2300          return (0);
2237 2301  }
2238 2302  
2239 2303  
2240 2304  static int
2241 2305  poke_mem(peekpoke_ctlops_t *in_args)
2242 2306  {
2243 2307          int err = DDI_SUCCESS;
2244 2308          on_trap_data_t otd;
2245 2309  
2246 2310          /* Set up protected environment. */
2247 2311          if (!on_trap(&otd, OT_DATA_ACCESS)) {
2248 2312                  switch (in_args->size) {
2249 2313                  case sizeof (uint8_t):
2250 2314                          *(uint8_t *)(in_args->dev_addr) =
2251 2315                              *(uint8_t *)in_args->host_addr;
2252 2316                          break;
2253 2317  
2254 2318                  case sizeof (uint16_t):
2255 2319                          *(uint16_t *)(in_args->dev_addr) =
2256 2320                              *(uint16_t *)in_args->host_addr;
2257 2321                          break;
2258 2322  
2259 2323                  case sizeof (uint32_t):
2260 2324                          *(uint32_t *)(in_args->dev_addr) =
2261 2325                              *(uint32_t *)in_args->host_addr;
2262 2326                          break;
2263 2327  
2264 2328                  case sizeof (uint64_t):
2265 2329                          *(uint64_t *)(in_args->dev_addr) =
2266 2330                              *(uint64_t *)in_args->host_addr;
2267 2331                          break;
2268 2332  
2269 2333                  default:
2270 2334                          err = DDI_FAILURE;
2271 2335                          break;
2272 2336                  }
2273 2337          } else
2274 2338                  err = DDI_FAILURE;
2275 2339  
2276 2340          /* Take down protected environment. */
2277 2341          no_trap();
2278 2342  
2279 2343          return (err);
2280 2344  }
2281 2345  
2282 2346  
2283 2347  static int
2284 2348  peek_mem(peekpoke_ctlops_t *in_args)
2285 2349  {
2286 2350          int err = DDI_SUCCESS;
2287 2351          on_trap_data_t otd;
2288 2352  
2289 2353          if (!on_trap(&otd, OT_DATA_ACCESS)) {
2290 2354                  switch (in_args->size) {
2291 2355                  case sizeof (uint8_t):
2292 2356                          *(uint8_t *)in_args->host_addr =
2293 2357                              *(uint8_t *)in_args->dev_addr;
2294 2358                          break;
2295 2359  
2296 2360                  case sizeof (uint16_t):
2297 2361                          *(uint16_t *)in_args->host_addr =
2298 2362                              *(uint16_t *)in_args->dev_addr;
2299 2363                          break;
2300 2364  
2301 2365                  case sizeof (uint32_t):
2302 2366                          *(uint32_t *)in_args->host_addr =
2303 2367                              *(uint32_t *)in_args->dev_addr;
2304 2368                          break;
2305 2369  
2306 2370                  case sizeof (uint64_t):
2307 2371                          *(uint64_t *)in_args->host_addr =
2308 2372                              *(uint64_t *)in_args->dev_addr;
2309 2373                          break;
2310 2374  
2311 2375                  default:
2312 2376                          err = DDI_FAILURE;
2313 2377                          break;
2314 2378                  }
2315 2379          } else
2316 2380                  err = DDI_FAILURE;
2317 2381  
2318 2382          no_trap();
2319 2383          return (err);
2320 2384  }
2321 2385  
2322 2386  
2323 2387  /*
2324 2388   * This is called only to process peek/poke when the DIP is NULL.
2325 2389   * Assume that this is for memory, as nexi take care of device safe accesses.
2326 2390   */
2327 2391  int
2328 2392  peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args)
2329 2393  {
2330 2394          return (cmd == DDI_CTLOPS_PEEK ? peek_mem(in_args) : poke_mem(in_args));
2331 2395  }
2332 2396  
2333 2397  /*
2334 2398   * we've just done a cautious put/get. Check if it was successful by
2335 2399   * calling pci_ereport_post() on all puts and for any gets that return -1
2336 2400   */
2337 2401  static int
2338 2402  pci_peekpoke_check_fma(dev_info_t *dip, void *arg, ddi_ctl_enum_t ctlop,
2339 2403      void (*scan)(dev_info_t *, ddi_fm_error_t *))
2340 2404  {
2341 2405          int     rval = DDI_SUCCESS;
2342 2406          peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2343 2407          ddi_fm_error_t de;
2344 2408          ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2345 2409          ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle;
2346 2410          int check_err = 0;
2347 2411          int repcount = in_args->repcount;
2348 2412  
2349 2413          if (ctlop == DDI_CTLOPS_POKE &&
2350 2414              hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC)
2351 2415                  return (DDI_SUCCESS);
2352 2416  
2353 2417          if (ctlop == DDI_CTLOPS_PEEK &&
2354 2418              hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) {
2355 2419                  for (; repcount; repcount--) {
2356 2420                          switch (in_args->size) {
2357 2421                          case sizeof (uint8_t):
2358 2422                                  if (*(uint8_t *)in_args->host_addr == 0xff)
2359 2423                                          check_err = 1;
2360 2424                                  break;
2361 2425                          case sizeof (uint16_t):
2362 2426                                  if (*(uint16_t *)in_args->host_addr == 0xffff)
2363 2427                                          check_err = 1;
2364 2428                                  break;
2365 2429                          case sizeof (uint32_t):
2366 2430                                  if (*(uint32_t *)in_args->host_addr ==
2367 2431                                      0xffffffff)
2368 2432                                          check_err = 1;
2369 2433                                  break;
2370 2434                          case sizeof (uint64_t):
2371 2435                                  if (*(uint64_t *)in_args->host_addr ==
2372 2436                                      0xffffffffffffffff)
2373 2437                                          check_err = 1;
2374 2438                                  break;
2375 2439                          }
2376 2440                  }
2377 2441                  if (check_err == 0)
2378 2442                          return (DDI_SUCCESS);
2379 2443          }
2380 2444          /*
2381 2445           * for a cautious put or get or a non-cautious get that returned -1 call
2382 2446           * io framework to see if there really was an error
2383 2447           */
2384 2448          bzero(&de, sizeof (ddi_fm_error_t));
2385 2449          de.fme_version = DDI_FME_VERSION;
2386 2450          de.fme_ena = fm_ena_generate(0, FM_ENA_FMT1);
2387 2451          if (hdlp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) {
2388 2452                  de.fme_flag = DDI_FM_ERR_EXPECTED;
2389 2453                  de.fme_acc_handle = in_args->handle;
2390 2454          } else if (hdlp->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) {
2391 2455                  /*
2392 2456                   * We only get here with DDI_DEFAULT_ACC for config space gets.
2393 2457                   * Non-hardened drivers may be probing the hardware and
2394 2458                   * expecting -1 returned. So need to treat errors on
2395 2459                   * DDI_DEFAULT_ACC as DDI_FM_ERR_EXPECTED.
2396 2460                   */
2397 2461                  de.fme_flag = DDI_FM_ERR_EXPECTED;
2398 2462                  de.fme_acc_handle = in_args->handle;
2399 2463          } else {
2400 2464                  /*
2401 2465                   * Hardened driver doing protected accesses shouldn't
2402 2466                   * get errors unless there's a hardware problem. Treat
2403 2467                   * as nonfatal if there's an error, but set UNEXPECTED
2404 2468                   * so we raise ereports on any errors and potentially
2405 2469                   * fault the device
2406 2470                   */
2407 2471                  de.fme_flag = DDI_FM_ERR_UNEXPECTED;
2408 2472          }
2409 2473          (void) scan(dip, &de);
2410 2474          if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC &&
2411 2475              de.fme_status != DDI_FM_OK) {
2412 2476                  ndi_err_t *errp = (ndi_err_t *)hp->ahi_err;
2413 2477                  rval = DDI_FAILURE;
2414 2478                  errp->err_ena = de.fme_ena;
2415 2479                  errp->err_expected = de.fme_flag;
2416 2480                  errp->err_status = DDI_FM_NONFATAL;
2417 2481          }
2418 2482          return (rval);
2419 2483  }
2420 2484  
2421 2485  /*
2422 2486   * pci_peekpoke_check_nofma() is for when an error occurs on a register access
2423 2487   * during pci_ereport_post(). We can't call pci_ereport_post() again or we'd
2424 2488   * recurse, so assume all puts are OK and gets have failed if they return -1
2425 2489   */
2426 2490  static int
2427 2491  pci_peekpoke_check_nofma(void *arg, ddi_ctl_enum_t ctlop)
2428 2492  {
2429 2493          int rval = DDI_SUCCESS;
2430 2494          peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2431 2495          ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2432 2496          ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle;
2433 2497          int repcount = in_args->repcount;
2434 2498  
2435 2499          if (ctlop == DDI_CTLOPS_POKE)
2436 2500                  return (rval);
2437 2501  
2438 2502          for (; repcount; repcount--) {
2439 2503                  switch (in_args->size) {
2440 2504                  case sizeof (uint8_t):
2441 2505                          if (*(uint8_t *)in_args->host_addr == 0xff)
2442 2506                                  rval = DDI_FAILURE;
2443 2507                          break;
2444 2508                  case sizeof (uint16_t):
2445 2509                          if (*(uint16_t *)in_args->host_addr == 0xffff)
2446 2510                                  rval = DDI_FAILURE;
2447 2511                          break;
2448 2512                  case sizeof (uint32_t):
2449 2513                          if (*(uint32_t *)in_args->host_addr == 0xffffffff)
2450 2514                                  rval = DDI_FAILURE;
2451 2515                          break;
2452 2516                  case sizeof (uint64_t):
2453 2517                          if (*(uint64_t *)in_args->host_addr ==
2454 2518                              0xffffffffffffffff)
2455 2519                                  rval = DDI_FAILURE;
2456 2520                          break;
2457 2521                  }
2458 2522          }
2459 2523          if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC &&
2460 2524              rval == DDI_FAILURE) {
2461 2525                  ndi_err_t *errp = (ndi_err_t *)hp->ahi_err;
2462 2526                  errp->err_ena = fm_ena_generate(0, FM_ENA_FMT1);
2463 2527                  errp->err_expected = DDI_FM_ERR_UNEXPECTED;
2464 2528                  errp->err_status = DDI_FM_NONFATAL;
2465 2529          }
2466 2530          return (rval);
2467 2531  }
2468 2532  
2469 2533  int
2470 2534  pci_peekpoke_check(dev_info_t *dip, dev_info_t *rdip,
2471 2535      ddi_ctl_enum_t ctlop, void *arg, void *result,
2472 2536      int (*handler)(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *,
2473 2537      void *), kmutex_t *err_mutexp, kmutex_t *peek_poke_mutexp,
2474 2538      void (*scan)(dev_info_t *, ddi_fm_error_t *))
2475 2539  {
2476 2540          int rval;
2477 2541          peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2478 2542          ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2479 2543  
2480 2544          /*
2481 2545           * this function only supports cautious accesses, not peeks/pokes
2482 2546           * which don't have a handle
2483 2547           */
2484 2548          if (hp == NULL)
2485 2549                  return (DDI_FAILURE);
2486 2550  
2487 2551          if (hp->ahi_acc_attr & DDI_ACCATTR_CONFIG_SPACE) {
2488 2552                  if (!mutex_tryenter(err_mutexp)) {
2489 2553                          /*
2490 2554                           * As this may be a recursive call from within
2491 2555                           * pci_ereport_post() we can't wait for the mutexes.
2492 2556                           * Fortunately we know someone is already calling
2493 2557                           * pci_ereport_post() which will handle the error bits
2494 2558                           * for us, and as this is a config space access we can
2495 2559                           * just do the access and check return value for -1
2496 2560                           * using pci_peekpoke_check_nofma().
2497 2561                           */
2498 2562                          rval = handler(dip, rdip, ctlop, arg, result);
2499 2563                          if (rval == DDI_SUCCESS)
2500 2564                                  rval = pci_peekpoke_check_nofma(arg, ctlop);
2501 2565                          return (rval);
2502 2566                  }
2503 2567                  /*
2504 2568                   * This can't be a recursive call. Drop the err_mutex and get
2505 2569                   * both mutexes in the right order. If an error hasn't already
2506 2570                   * been detected by the ontrap code, use pci_peekpoke_check_fma
2507 2571                   * which will call pci_ereport_post() to check error status.
2508 2572                   */
2509 2573                  mutex_exit(err_mutexp);
2510 2574          }
2511 2575          mutex_enter(peek_poke_mutexp);
2512 2576          rval = handler(dip, rdip, ctlop, arg, result);
2513 2577          if (rval == DDI_SUCCESS) {
2514 2578                  mutex_enter(err_mutexp);
2515 2579                  rval = pci_peekpoke_check_fma(dip, arg, ctlop, scan);
2516 2580                  mutex_exit(err_mutexp);
2517 2581          }
2518 2582          mutex_exit(peek_poke_mutexp);
2519 2583          return (rval);
2520 2584  }
2521 2585  
2522 2586  void
2523 2587  impl_setup_ddi(void)
2524 2588  {
2525 2589  #if !defined(__xpv)
2526 2590          extern void startup_bios_disk(void);
2527 2591          extern int post_fastreboot;
2528 2592  #endif
2529 2593          dev_info_t *xdip, *isa_dip;
2530 2594          rd_existing_t rd_mem_prop;
2531 2595          int err;
2532 2596  
2533 2597          ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk",
2534 2598              (pnode_t)DEVI_SID_NODEID, &xdip);
2535 2599  
2536 2600          (void) BOP_GETPROP(bootops,
2537 2601              "ramdisk_start", (void *)&ramdisk_start);
2538 2602          (void) BOP_GETPROP(bootops,
2539 2603              "ramdisk_end", (void *)&ramdisk_end);
2540 2604  
2541 2605  #ifdef __xpv
2542 2606          ramdisk_start -= ONE_GIG;
2543 2607          ramdisk_end -= ONE_GIG;
2544 2608  #endif
2545 2609          rd_mem_prop.phys = ramdisk_start;
2546 2610          rd_mem_prop.size = ramdisk_end - ramdisk_start + 1;
2547 2611  
2548 2612          (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, xdip,
2549 2613              RD_EXISTING_PROP_NAME, (uchar_t *)&rd_mem_prop,
2550 2614              sizeof (rd_mem_prop));
2551 2615          err = ndi_devi_bind_driver(xdip, 0);
2552 2616          ASSERT(err == 0);
2553 2617  
2554 2618          /* isa node */
2555 2619          if (pseudo_isa) {
2556 2620                  ndi_devi_alloc_sleep(ddi_root_node(), "isa",
2557 2621                      (pnode_t)DEVI_SID_NODEID, &isa_dip);
2558 2622                  (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
2559 2623                      "device_type", "isa");
2560 2624                  (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
2561 2625                      "bus-type", "isa");
2562 2626                  (void) ndi_devi_bind_driver(isa_dip, 0);
  
    | 
      ↓ open down ↓ | 
    531 lines elided | 
    
      ↑ open up ↑ | 
  
2563 2627          }
2564 2628  
2565 2629          /*
2566 2630           * Read in the properties from the boot.
2567 2631           */
2568 2632          get_boot_properties();
2569 2633  
2570 2634          /* not framebuffer should be enumerated, if present */
2571 2635          get_vga_properties();
2572 2636  
     2637 +        /* Copy console font if provided by boot. */
     2638 +        get_console_font();
     2639 +
2573 2640          /*
2574 2641           * Check for administratively disabled drivers.
2575 2642           */
2576 2643          check_driver_disable();
2577 2644  
2578 2645  #if !defined(__xpv)
2579 2646          if (!post_fastreboot && BOP_GETPROPLEN(bootops, "efi-systab") < 0)
2580 2647                  startup_bios_disk();
2581 2648  #endif
2582 2649          /* do bus dependent probes. */
2583 2650          impl_bus_initialprobe();
2584 2651  }
2585 2652  
2586 2653  dev_t
2587 2654  getrootdev(void)
2588 2655  {
2589 2656          /*
2590 2657           * Usually rootfs.bo_name is initialized by the
2591 2658           * the bootpath property from bootenv.rc, but
2592 2659           * defaults to "/ramdisk:a" otherwise.
2593 2660           */
2594 2661          return (ddi_pathname_to_dev_t(rootfs.bo_name));
2595 2662  }
2596 2663  
2597 2664  static struct bus_probe {
2598 2665          struct bus_probe *next;
2599 2666          void (*probe)(int);
2600 2667  } *bus_probes;
2601 2668  
2602 2669  void
2603 2670  impl_bus_add_probe(void (*func)(int))
2604 2671  {
2605 2672          struct bus_probe *probe;
2606 2673          struct bus_probe *lastprobe = NULL;
2607 2674  
2608 2675          probe = kmem_alloc(sizeof (*probe), KM_SLEEP);
2609 2676          probe->probe = func;
2610 2677          probe->next = NULL;
2611 2678  
2612 2679          if (!bus_probes) {
2613 2680                  bus_probes = probe;
2614 2681                  return;
2615 2682          }
2616 2683  
2617 2684          lastprobe = bus_probes;
2618 2685          while (lastprobe->next)
2619 2686                  lastprobe = lastprobe->next;
2620 2687          lastprobe->next = probe;
2621 2688  }
2622 2689  
2623 2690  /*ARGSUSED*/
2624 2691  void
2625 2692  impl_bus_delete_probe(void (*func)(int))
2626 2693  {
2627 2694          struct bus_probe *prev = NULL;
2628 2695          struct bus_probe *probe = bus_probes;
2629 2696  
2630 2697          while (probe) {
2631 2698                  if (probe->probe == func)
2632 2699                          break;
2633 2700                  prev = probe;
2634 2701                  probe = probe->next;
2635 2702          }
2636 2703  
2637 2704          if (probe == NULL)
2638 2705                  return;
2639 2706  
2640 2707          if (prev)
2641 2708                  prev->next = probe->next;
2642 2709          else
2643 2710                  bus_probes = probe->next;
2644 2711  
2645 2712          kmem_free(probe, sizeof (struct bus_probe));
2646 2713  }
2647 2714  
2648 2715  /*
2649 2716   * impl_bus_initialprobe
2650 2717   *      Modload the prom simulator, then let it probe to verify existence
2651 2718   *      and type of PCI support.
2652 2719   */
2653 2720  static void
2654 2721  impl_bus_initialprobe(void)
2655 2722  {
2656 2723          struct bus_probe *probe;
2657 2724  
2658 2725          /* load modules to install bus probes */
2659 2726  #if defined(__xpv)
2660 2727          if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2661 2728                  if (modload("misc", "pci_autoconfig") < 0) {
2662 2729                          panic("failed to load misc/pci_autoconfig");
2663 2730                  }
2664 2731  
2665 2732                  if (modload("drv", "isa") < 0)
2666 2733                          panic("failed to load drv/isa");
2667 2734          }
2668 2735  
2669 2736          (void) modload("misc", "xpv_autoconfig");
2670 2737  #else
2671 2738          if (modload("misc", "pci_autoconfig") < 0) {
2672 2739                  panic("failed to load misc/pci_autoconfig");
2673 2740          }
2674 2741  
2675 2742          (void) modload("misc", "acpidev");
2676 2743  
2677 2744          if (modload("drv", "isa") < 0)
2678 2745                  panic("failed to load drv/isa");
2679 2746  #endif
2680 2747  
2681 2748          probe = bus_probes;
2682 2749          while (probe) {
2683 2750                  /* run the probe functions */
2684 2751                  (*probe->probe)(0);
2685 2752                  probe = probe->next;
2686 2753          }
2687 2754  }
2688 2755  
2689 2756  /*
2690 2757   * impl_bus_reprobe
2691 2758   *      Reprogram devices not set up by firmware.
2692 2759   */
2693 2760  static void
2694 2761  impl_bus_reprobe(void)
2695 2762  {
2696 2763          struct bus_probe *probe;
2697 2764  
2698 2765          probe = bus_probes;
2699 2766          while (probe) {
2700 2767                  /* run the probe function */
2701 2768                  (*probe->probe)(1);
2702 2769                  probe = probe->next;
2703 2770          }
2704 2771  }
2705 2772  
2706 2773  
2707 2774  /*
2708 2775   * The following functions ready a cautious request to go up to the nexus
2709 2776   * driver.  It is up to the nexus driver to decide how to process the request.
2710 2777   * It may choose to call i_ddi_do_caut_get/put in this file, or do it
2711 2778   * differently.
2712 2779   */
2713 2780  
2714 2781  static void
2715 2782  i_ddi_caut_getput_ctlops(ddi_acc_impl_t *hp, uint64_t host_addr,
2716 2783      uint64_t dev_addr, size_t size, size_t repcount, uint_t flags,
2717 2784      ddi_ctl_enum_t cmd)
2718 2785  {
2719 2786          peekpoke_ctlops_t       cautacc_ctlops_arg;
2720 2787  
2721 2788          cautacc_ctlops_arg.size = size;
2722 2789          cautacc_ctlops_arg.dev_addr = dev_addr;
2723 2790          cautacc_ctlops_arg.host_addr = host_addr;
2724 2791          cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp;
2725 2792          cautacc_ctlops_arg.repcount = repcount;
2726 2793          cautacc_ctlops_arg.flags = flags;
2727 2794  
2728 2795          (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd,
2729 2796              &cautacc_ctlops_arg, NULL);
2730 2797  }
2731 2798  
2732 2799  uint8_t
2733 2800  i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr)
2734 2801  {
2735 2802          uint8_t value;
2736 2803          i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2737 2804              sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK);
2738 2805  
2739 2806          return (value);
2740 2807  }
2741 2808  
2742 2809  uint16_t
2743 2810  i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr)
2744 2811  {
2745 2812          uint16_t value;
2746 2813          i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2747 2814              sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK);
2748 2815  
2749 2816          return (value);
2750 2817  }
2751 2818  
2752 2819  uint32_t
2753 2820  i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr)
2754 2821  {
2755 2822          uint32_t value;
2756 2823          i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2757 2824              sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK);
2758 2825  
2759 2826          return (value);
2760 2827  }
2761 2828  
2762 2829  uint64_t
2763 2830  i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr)
2764 2831  {
2765 2832          uint64_t value;
2766 2833          i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2767 2834              sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK);
2768 2835  
2769 2836          return (value);
2770 2837  }
2771 2838  
2772 2839  void
2773 2840  i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value)
2774 2841  {
2775 2842          i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2776 2843              sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE);
2777 2844  }
2778 2845  
2779 2846  void
2780 2847  i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value)
2781 2848  {
2782 2849          i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2783 2850              sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE);
2784 2851  }
2785 2852  
2786 2853  void
2787 2854  i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value)
2788 2855  {
2789 2856          i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2790 2857              sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE);
2791 2858  }
2792 2859  
2793 2860  void
2794 2861  i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value)
2795 2862  {
2796 2863          i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2797 2864              sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE);
2798 2865  }
2799 2866  
2800 2867  void
2801 2868  i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
2802 2869      size_t repcount, uint_t flags)
2803 2870  {
2804 2871          i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2805 2872              sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK);
2806 2873  }
2807 2874  
2808 2875  void
2809 2876  i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr,
2810 2877      uint16_t *dev_addr, size_t repcount, uint_t flags)
2811 2878  {
2812 2879          i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2813 2880              sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK);
2814 2881  }
2815 2882  
2816 2883  void
2817 2884  i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr,
2818 2885      uint32_t *dev_addr, size_t repcount, uint_t flags)
2819 2886  {
2820 2887          i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2821 2888              sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK);
2822 2889  }
2823 2890  
2824 2891  void
2825 2892  i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr,
2826 2893      uint64_t *dev_addr, size_t repcount, uint_t flags)
2827 2894  {
2828 2895          i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2829 2896              sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK);
2830 2897  }
2831 2898  
2832 2899  void
2833 2900  i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
2834 2901      size_t repcount, uint_t flags)
2835 2902  {
2836 2903          i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2837 2904              sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE);
2838 2905  }
2839 2906  
2840 2907  void
2841 2908  i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr,
2842 2909      uint16_t *dev_addr, size_t repcount, uint_t flags)
2843 2910  {
2844 2911          i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2845 2912              sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE);
2846 2913  }
2847 2914  
2848 2915  void
2849 2916  i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr,
2850 2917      uint32_t *dev_addr, size_t repcount, uint_t flags)
2851 2918  {
2852 2919          i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2853 2920              sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE);
2854 2921  }
2855 2922  
2856 2923  void
2857 2924  i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr,
2858 2925      uint64_t *dev_addr, size_t repcount, uint_t flags)
2859 2926  {
2860 2927          i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2861 2928              sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE);
2862 2929  }
2863 2930  
2864 2931  boolean_t
2865 2932  i_ddi_copybuf_required(ddi_dma_attr_t *attrp)
2866 2933  {
2867 2934          uint64_t hi_pa;
2868 2935  
2869 2936          hi_pa = ((uint64_t)physmax + 1ull) << PAGESHIFT;
2870 2937          if (attrp->dma_attr_addr_hi < hi_pa) {
2871 2938                  return (B_TRUE);
2872 2939          }
2873 2940  
2874 2941          return (B_FALSE);
2875 2942  }
2876 2943  
2877 2944  size_t
2878 2945  i_ddi_copybuf_size()
2879 2946  {
2880 2947          return (dma_max_copybuf_size);
2881 2948  }
2882 2949  
2883 2950  /*
2884 2951   * i_ddi_dma_max()
2885 2952   *    returns the maximum DMA size which can be performed in a single DMA
2886 2953   *    window taking into account the devices DMA contraints (attrp), the
2887 2954   *    maximum copy buffer size (if applicable), and the worse case buffer
2888 2955   *    fragmentation.
2889 2956   */
2890 2957  /*ARGSUSED*/
2891 2958  uint32_t
2892 2959  i_ddi_dma_max(dev_info_t *dip, ddi_dma_attr_t *attrp)
2893 2960  {
2894 2961          uint64_t maxxfer;
2895 2962  
2896 2963  
2897 2964          /*
2898 2965           * take the min of maxxfer and the the worse case fragementation
2899 2966           * (e.g. every cookie <= 1 page)
2900 2967           */
2901 2968          maxxfer = MIN(attrp->dma_attr_maxxfer,
2902 2969              ((uint64_t)(attrp->dma_attr_sgllen - 1) << PAGESHIFT));
2903 2970  
2904 2971          /*
2905 2972           * If the DMA engine can't reach all off memory, we also need to take
2906 2973           * the max size of the copybuf into consideration.
2907 2974           */
2908 2975          if (i_ddi_copybuf_required(attrp)) {
2909 2976                  maxxfer = MIN(i_ddi_copybuf_size(), maxxfer);
2910 2977          }
2911 2978  
2912 2979          /*
2913 2980           * we only return a 32-bit value. Make sure it's not -1. Round to a
2914 2981           * page so it won't be mistaken for an error value during debug.
2915 2982           */
2916 2983          if (maxxfer >= 0xFFFFFFFF) {
2917 2984                  maxxfer = 0xFFFFF000;
2918 2985          }
2919 2986  
2920 2987          /*
2921 2988           * make sure the value we return is a whole multiple of the
2922 2989           * granlarity.
2923 2990           */
2924 2991          if (attrp->dma_attr_granular > 1) {
2925 2992                  maxxfer = maxxfer - (maxxfer % attrp->dma_attr_granular);
2926 2993          }
2927 2994  
2928 2995          return ((uint32_t)maxxfer);
2929 2996  }
2930 2997  
2931 2998  /*ARGSUSED*/
2932 2999  void
2933 3000  translate_devid(dev_info_t *dip)
2934 3001  {
2935 3002  }
2936 3003  
2937 3004  pfn_t
2938 3005  i_ddi_paddr_to_pfn(paddr_t paddr)
2939 3006  {
2940 3007          pfn_t pfn;
2941 3008  
2942 3009  #ifdef __xpv
2943 3010          if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2944 3011                  pfn = xen_assign_pfn(mmu_btop(paddr));
2945 3012          } else {
2946 3013                  pfn = mmu_btop(paddr);
2947 3014          }
2948 3015  #else
2949 3016          pfn = mmu_btop(paddr);
2950 3017  #endif
2951 3018  
2952 3019          return (pfn);
2953 3020  }
  
    | 
      ↓ open down ↓ | 
    371 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX