1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /*
28 * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
29 * Copyright 2017 Nexenta Systems, Inc.
30 */
31
32 /*
33 * xdf.c - Xen Virtual Block Device Driver
34 * TODO:
35 * - support alternate block size (currently only DEV_BSIZE supported)
36 * - revalidate geometry for removable devices
37 *
38 * This driver exports disk device nodes, accepts IO requests from those
39 * nodes, and services those requests by talking to a backend device
40 * in another domain.
41 *
42 * Communication with the backend device is done via a ringbuffer (which is
43 * managed via xvdi interfaces) and dma memory (which is managed via ddi
44 * interfaces).
45 *
46 * Communication with the backend device is dependant upon establishing a
47 * connection to the backend device. This connection process involves
48 * reading device configuration information from xenbus and publishing
49 * some frontend runtime configuration parameters via the xenbus (for
50 * consumption by the backend). Once we've published runtime configuration
51 * information via the xenbus, the backend device can enter the connected
52 * state and we'll enter the XD_CONNECTED state. But before we can allow
53 * random IO to begin, we need to do IO to the backend device to determine
54 * the device label and if flush operations are supported. Once this is
55 * done we enter the XD_READY state and can process any IO operations.
56 *
57 * We receive notifications of xenbus state changes for the backend device
58 * (aka, the "other end") via the xdf_oe_change() callback. This callback
59 * is single threaded, meaning that we can't receive new notification of
60 * other end state changes while we're processing an outstanding
61 * notification of an other end state change. There for we can't do any
62 * blocking operations from the xdf_oe_change() callback. This is why we
63 * have a seperate taskq (xdf_ready_tq) which exists to do the necessary
64 * IO to get us from the XD_CONNECTED to the XD_READY state. All IO
65 * generated by the xdf_ready_tq thread (xdf_ready_tq_thread) will go
66 * throught xdf_lb_rdwr(), which is a synchronous IO interface. IOs
67 * generated by the xdf_ready_tq_thread thread have priority over all
68 * other IO requests.
69 *
70 * We also communicate with the backend device via the xenbus "media-req"
71 * (XBP_MEDIA_REQ) property. For more information on this see the
72 * comments in blkif.h.
73 */
74
75 #include <io/xdf.h>
76
77 #include <sys/conf.h>
78 #include <sys/dkio.h>
79 #include <sys/promif.h>
80 #include <sys/sysmacros.h>
81 #include <sys/kstat.h>
82 #include <sys/mach_mmu.h>
83 #ifdef XPV_HVM_DRIVER
84 #include <sys/xpv_support.h>
85 #else /* !XPV_HVM_DRIVER */
86 #include <sys/evtchn_impl.h>
87 #endif /* !XPV_HVM_DRIVER */
88 #include <sys/sunndi.h>
89 #include <public/io/xenbus.h>
90 #include <xen/sys/xenbus_impl.h>
91 #include <sys/scsi/generic/inquiry.h>
92 #include <xen/io/blkif_impl.h>
93 #include <sys/fdio.h>
94 #include <sys/cdio.h>
95
96 /*
97 * DEBUG_EVAL can be used to include debug only statements without
98 * having to use '#ifdef DEBUG' statements
99 */
100 #ifdef DEBUG
101 #define DEBUG_EVAL(x) (x)
102 #else /* !DEBUG */
103 #define DEBUG_EVAL(x)
104 #endif /* !DEBUG */
105
106 #define XDF_DRAIN_MSEC_DELAY (50*1000) /* 00.05 sec */
107 #define XDF_DRAIN_RETRY_COUNT 200 /* 10.00 sec */
108 #define XDF_STATE_TIMEOUT (30*1000*1000) /* 30.00 sec */
109
110 #define INVALID_DOMID ((domid_t)-1)
111 #define FLUSH_DISKCACHE 0x1
112 #define WRITE_BARRIER 0x2
113 #define DEFAULT_FLUSH_BLOCK 156 /* block to write to cause a cache flush */
114 #define USE_WRITE_BARRIER(vdp) \
115 ((vdp)->xdf_feature_barrier && !(vdp)->xdf_flush_supported)
116 #define USE_FLUSH_DISKCACHE(vdp) \
117 ((vdp)->xdf_feature_barrier && (vdp)->xdf_flush_supported)
118 #define IS_WRITE_BARRIER(vdp, bp) \
119 (!IS_READ(bp) && USE_WRITE_BARRIER(vdp) && \
120 ((bp)->b_un.b_addr == (vdp)->xdf_cache_flush_block))
121 #define IS_FLUSH_DISKCACHE(bp) \
122 (!IS_READ(bp) && USE_FLUSH_DISKCACHE(vdp) && ((bp)->b_bcount == 0))
123
124 #define VREQ_DONE(vreq) \
125 VOID2BOOLEAN(((vreq)->v_status == VREQ_DMAWIN_DONE) && \
126 (((vreq)->v_flush_diskcache == FLUSH_DISKCACHE) || \
127 (((vreq)->v_dmaw + 1) == (vreq)->v_ndmaws)))
128
129 #define BP_VREQ(bp) ((v_req_t *)((bp)->av_back))
130 #define BP_VREQ_SET(bp, vreq) (((bp)->av_back = (buf_t *)(vreq)))
131
132 extern int do_polled_io;
133
134 /* run-time tunables that we don't want the compiler to optimize away */
135 volatile int xdf_debug = 0;
136 volatile boolean_t xdf_barrier_flush_disable = B_FALSE;
137
138 /* per module globals */
139 major_t xdf_major;
140 static void *xdf_ssp;
141 static kmem_cache_t *xdf_vreq_cache;
142 static kmem_cache_t *xdf_gs_cache;
143 static int xdf_maxphys = XB_MAXPHYS;
144 static diskaddr_t xdf_flush_block = DEFAULT_FLUSH_BLOCK;
145 static int xdf_fbrewrites; /* flush block re-write count */
146
147 /* misc public functions */
148 int xdf_lb_rdwr(dev_info_t *, uchar_t, void *, diskaddr_t, size_t, void *);
149 int xdf_lb_getinfo(dev_info_t *, int, void *, void *);
150
151 /* misc private functions */
152 static void xdf_io_start(xdf_t *);
153 static void xdf_devid_setup(xdf_t *);
154
155 /* callbacks from commmon label */
156 static cmlb_tg_ops_t xdf_lb_ops = {
157 TG_DK_OPS_VERSION_1,
158 xdf_lb_rdwr,
159 xdf_lb_getinfo
160 };
161
162 /*
163 * I/O buffer DMA attributes
164 * Make sure: one DMA window contains BLKIF_MAX_SEGMENTS_PER_REQUEST at most
165 */
166 static ddi_dma_attr_t xb_dma_attr = {
167 DMA_ATTR_V0,
168 (uint64_t)0, /* lowest address */
169 (uint64_t)0xffffffffffffffff, /* highest usable address */
170 (uint64_t)0xffffff, /* DMA counter limit max */
171 (uint64_t)XB_BSIZE, /* alignment in bytes */
172 XB_BSIZE - 1, /* bitmap of burst sizes */
173 XB_BSIZE, /* min transfer */
174 (uint64_t)XB_MAX_XFER, /* maximum transfer */
175 (uint64_t)PAGEOFFSET, /* 1 page segment length */
176 BLKIF_MAX_SEGMENTS_PER_REQUEST, /* maximum number of segments */
177 XB_BSIZE, /* granularity */
178 0, /* flags (reserved) */
179 };
180
181 static ddi_device_acc_attr_t xc_acc_attr = {
182 DDI_DEVICE_ATTR_V0,
183 DDI_NEVERSWAP_ACC,
184 DDI_STRICTORDER_ACC
185 };
186
187 static void
188 xdf_timeout_handler(void *arg)
189 {
190 xdf_t *vdp = arg;
191
192 mutex_enter(&vdp->xdf_dev_lk);
193 vdp->xdf_timeout_id = 0;
194 mutex_exit(&vdp->xdf_dev_lk);
195
196 /* new timeout thread could be re-scheduled */
197 xdf_io_start(vdp);
198 }
199
200 /*
201 * callback func when DMA/GTE resources is available
202 *
203 * Note: we only register one callback function to grant table subsystem
204 * since we only have one 'struct gnttab_free_callback' in xdf_t.
205 */
206 static int
207 xdf_dmacallback(caddr_t arg)
208 {
209 xdf_t *vdp = (xdf_t *)arg;
210 ASSERT(vdp != NULL);
211
212 DPRINTF(DMA_DBG, ("xdf@%s: DMA callback started\n",
213 vdp->xdf_addr));
214
215 ddi_trigger_softintr(vdp->xdf_softintr_id);
216 return (DDI_DMA_CALLBACK_DONE);
217 }
218
219 static ge_slot_t *
220 gs_get(xdf_t *vdp, int isread)
221 {
222 grant_ref_t gh;
223 ge_slot_t *gs;
224
225 /* try to alloc GTEs needed in this slot, first */
226 if (gnttab_alloc_grant_references(
227 BLKIF_MAX_SEGMENTS_PER_REQUEST, &gh) == -1) {
228 if (vdp->xdf_gnt_callback.next == NULL) {
229 SETDMACBON(vdp);
230 gnttab_request_free_callback(
231 &vdp->xdf_gnt_callback,
232 (void (*)(void *))xdf_dmacallback,
233 (void *)vdp,
234 BLKIF_MAX_SEGMENTS_PER_REQUEST);
235 }
236 return (NULL);
237 }
238
239 gs = kmem_cache_alloc(xdf_gs_cache, KM_NOSLEEP);
240 if (gs == NULL) {
241 gnttab_free_grant_references(gh);
242 if (vdp->xdf_timeout_id == 0)
243 /* restart I/O after one second */
244 vdp->xdf_timeout_id =
245 timeout(xdf_timeout_handler, vdp, hz);
246 return (NULL);
247 }
248
249 /* init gs_slot */
250 gs->gs_oeid = vdp->xdf_peer;
251 gs->gs_isread = isread;
252 gs->gs_ghead = gh;
253 gs->gs_ngrefs = 0;
254
255 return (gs);
256 }
257
258 static void
259 gs_free(ge_slot_t *gs)
260 {
261 int i;
262
263 /* release all grant table entry resources used in this slot */
264 for (i = 0; i < gs->gs_ngrefs; i++)
265 gnttab_end_foreign_access(gs->gs_ge[i], !gs->gs_isread, 0);
266 gnttab_free_grant_references(gs->gs_ghead);
267 list_remove(&gs->gs_vreq->v_gs, gs);
268 kmem_cache_free(xdf_gs_cache, gs);
269 }
270
271 static grant_ref_t
272 gs_grant(ge_slot_t *gs, mfn_t mfn)
273 {
274 grant_ref_t gr = gnttab_claim_grant_reference(&gs->gs_ghead);
275
276 ASSERT(gr != -1);
277 ASSERT(gs->gs_ngrefs < BLKIF_MAX_SEGMENTS_PER_REQUEST);
278 gs->gs_ge[gs->gs_ngrefs++] = gr;
279 gnttab_grant_foreign_access_ref(gr, gs->gs_oeid, mfn, !gs->gs_isread);
280
281 return (gr);
282 }
283
284 /*
285 * Alloc a vreq for this bp
286 * bp->av_back contains the pointer to the vreq upon return
287 */
288 static v_req_t *
289 vreq_get(xdf_t *vdp, buf_t *bp)
290 {
291 v_req_t *vreq = NULL;
292
293 ASSERT(BP_VREQ(bp) == NULL);
294
295 vreq = kmem_cache_alloc(xdf_vreq_cache, KM_NOSLEEP);
296 if (vreq == NULL) {
297 if (vdp->xdf_timeout_id == 0)
298 /* restart I/O after one second */
299 vdp->xdf_timeout_id =
300 timeout(xdf_timeout_handler, vdp, hz);
301 return (NULL);
302 }
303 bzero(vreq, sizeof (v_req_t));
304 list_create(&vreq->v_gs, sizeof (ge_slot_t),
305 offsetof(ge_slot_t, gs_vreq_link));
306 vreq->v_buf = bp;
307 vreq->v_status = VREQ_INIT;
308 vreq->v_runq = B_FALSE;
309 BP_VREQ_SET(bp, vreq);
310 /* init of other fields in vreq is up to the caller */
311
312 list_insert_head(&vdp->xdf_vreq_act, (void *)vreq);
313
314 return (vreq);
315 }
316
317 static void
318 vreq_free(xdf_t *vdp, v_req_t *vreq)
319 {
320 buf_t *bp = vreq->v_buf;
321
322 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
323 ASSERT(BP_VREQ(bp) == vreq);
324
325 list_remove(&vdp->xdf_vreq_act, vreq);
326
327 if (vreq->v_flush_diskcache == FLUSH_DISKCACHE)
328 goto done;
329
330 switch (vreq->v_status) {
331 case VREQ_DMAWIN_DONE:
332 case VREQ_GS_ALLOCED:
333 case VREQ_DMABUF_BOUND:
334 (void) ddi_dma_unbind_handle(vreq->v_dmahdl);
335 /*FALLTHRU*/
336 case VREQ_DMAMEM_ALLOCED:
337 if (!ALIGNED_XFER(bp)) {
338 ASSERT(vreq->v_abuf != NULL);
339 if (!IS_ERROR(bp) && IS_READ(bp))
340 bcopy(vreq->v_abuf, bp->b_un.b_addr,
341 bp->b_bcount);
342 ddi_dma_mem_free(&vreq->v_align);
343 }
344 /*FALLTHRU*/
345 case VREQ_MEMDMAHDL_ALLOCED:
346 if (!ALIGNED_XFER(bp))
347 ddi_dma_free_handle(&vreq->v_memdmahdl);
348 /*FALLTHRU*/
349 case VREQ_DMAHDL_ALLOCED:
350 ddi_dma_free_handle(&vreq->v_dmahdl);
351 break;
352 default:
353 break;
354 }
355 done:
356 ASSERT(!vreq->v_runq);
357 list_destroy(&vreq->v_gs);
358 kmem_cache_free(xdf_vreq_cache, vreq);
359 }
360
361 /*
362 * Snarf new data if our flush block was re-written
363 */
364 static void
365 check_fbwrite(xdf_t *vdp, buf_t *bp, daddr_t blkno)
366 {
367 int nblks;
368 boolean_t mapin;
369
370 if (IS_WRITE_BARRIER(vdp, bp))
371 return; /* write was a flush write */
372
373 mapin = B_FALSE;
374 nblks = bp->b_bcount >> DEV_BSHIFT;
375 if (xdf_flush_block >= blkno && xdf_flush_block < (blkno + nblks)) {
376 xdf_fbrewrites++;
377 if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
378 mapin = B_TRUE;
379 bp_mapin(bp);
380 }
381 bcopy(bp->b_un.b_addr +
382 ((xdf_flush_block - blkno) << DEV_BSHIFT),
383 vdp->xdf_cache_flush_block, DEV_BSIZE);
384 if (mapin)
385 bp_mapout(bp);
386 }
387 }
388
389 /*
390 * Initalize the DMA and grant table resources for the buf
391 */
392 static int
393 vreq_setup(xdf_t *vdp, v_req_t *vreq)
394 {
395 int rc;
396 ddi_dma_attr_t dmaattr;
397 uint_t ndcs, ndws;
398 ddi_dma_handle_t dh;
399 ddi_dma_handle_t mdh;
400 ddi_dma_cookie_t dc;
401 ddi_acc_handle_t abh;
402 caddr_t aba;
403 ge_slot_t *gs;
404 size_t bufsz;
405 off_t off;
406 size_t sz;
407 buf_t *bp = vreq->v_buf;
408 int dma_flags = (IS_READ(bp) ? DDI_DMA_READ : DDI_DMA_WRITE) |
409 DDI_DMA_STREAMING | DDI_DMA_PARTIAL;
410
411 switch (vreq->v_status) {
412 case VREQ_INIT:
413 if (IS_FLUSH_DISKCACHE(bp)) {
414 if ((gs = gs_get(vdp, IS_READ(bp))) == NULL) {
415 DPRINTF(DMA_DBG, ("xdf@%s: "
416 "get ge_slotfailed\n", vdp->xdf_addr));
417 return (DDI_FAILURE);
418 }
419 vreq->v_blkno = 0;
420 vreq->v_nslots = 1;
421 vreq->v_flush_diskcache = FLUSH_DISKCACHE;
422 vreq->v_status = VREQ_GS_ALLOCED;
423 gs->gs_vreq = vreq;
424 list_insert_head(&vreq->v_gs, gs);
425 return (DDI_SUCCESS);
426 }
427
428 if (IS_WRITE_BARRIER(vdp, bp))
429 vreq->v_flush_diskcache = WRITE_BARRIER;
430 vreq->v_blkno = bp->b_blkno +
431 (diskaddr_t)(uintptr_t)bp->b_private;
432 /* See if we wrote new data to our flush block */
433 if (!IS_READ(bp) && USE_WRITE_BARRIER(vdp))
434 check_fbwrite(vdp, bp, vreq->v_blkno);
435 vreq->v_status = VREQ_INIT_DONE;
436 /*FALLTHRU*/
437
438 case VREQ_INIT_DONE:
439 /*
440 * alloc DMA handle
441 */
442 rc = ddi_dma_alloc_handle(vdp->xdf_dip, &xb_dma_attr,
443 xdf_dmacallback, (caddr_t)vdp, &dh);
444 if (rc != DDI_SUCCESS) {
445 SETDMACBON(vdp);
446 DPRINTF(DMA_DBG, ("xdf@%s: DMA handle alloc failed\n",
447 vdp->xdf_addr));
448 return (DDI_FAILURE);
449 }
450
451 vreq->v_dmahdl = dh;
452 vreq->v_status = VREQ_DMAHDL_ALLOCED;
453 /*FALLTHRU*/
454
455 case VREQ_DMAHDL_ALLOCED:
456 /*
457 * alloc dma handle for 512-byte aligned buf
458 */
459 if (!ALIGNED_XFER(bp)) {
460 /*
461 * XXPV: we need to temporarily enlarge the seg
462 * boundary and s/g length to work round CR6381968
463 */
464 dmaattr = xb_dma_attr;
465 dmaattr.dma_attr_seg = (uint64_t)-1;
466 dmaattr.dma_attr_sgllen = INT_MAX;
467 rc = ddi_dma_alloc_handle(vdp->xdf_dip, &dmaattr,
468 xdf_dmacallback, (caddr_t)vdp, &mdh);
469 if (rc != DDI_SUCCESS) {
470 SETDMACBON(vdp);
471 DPRINTF(DMA_DBG, ("xdf@%s: "
472 "unaligned buf DMAhandle alloc failed\n",
473 vdp->xdf_addr));
474 return (DDI_FAILURE);
475 }
476 vreq->v_memdmahdl = mdh;
477 vreq->v_status = VREQ_MEMDMAHDL_ALLOCED;
478 }
479 /*FALLTHRU*/
480
481 case VREQ_MEMDMAHDL_ALLOCED:
482 /*
483 * alloc 512-byte aligned buf
484 */
485 if (!ALIGNED_XFER(bp)) {
486 if (bp->b_flags & (B_PAGEIO | B_PHYS))
487 bp_mapin(bp);
488 rc = ddi_dma_mem_alloc(vreq->v_memdmahdl,
489 roundup(bp->b_bcount, XB_BSIZE), &xc_acc_attr,
490 DDI_DMA_STREAMING, xdf_dmacallback, (caddr_t)vdp,
491 &aba, &bufsz, &abh);
492 if (rc != DDI_SUCCESS) {
493 SETDMACBON(vdp);
494 DPRINTF(DMA_DBG, ("xdf@%s: "
495 "DMA mem allocation failed\n",
496 vdp->xdf_addr));
497 return (DDI_FAILURE);
498 }
499
500 vreq->v_abuf = aba;
501 vreq->v_align = abh;
502 vreq->v_status = VREQ_DMAMEM_ALLOCED;
503
504 ASSERT(bufsz >= bp->b_bcount);
505 if (!IS_READ(bp))
506 bcopy(bp->b_un.b_addr, vreq->v_abuf,
507 bp->b_bcount);
508 }
509 /*FALLTHRU*/
510
511 case VREQ_DMAMEM_ALLOCED:
512 /*
513 * dma bind
514 */
515 if (ALIGNED_XFER(bp)) {
516 rc = ddi_dma_buf_bind_handle(vreq->v_dmahdl, bp,
517 dma_flags, xdf_dmacallback, (caddr_t)vdp,
518 &dc, &ndcs);
519 } else {
520 rc = ddi_dma_addr_bind_handle(vreq->v_dmahdl,
521 NULL, vreq->v_abuf, bp->b_bcount, dma_flags,
522 xdf_dmacallback, (caddr_t)vdp, &dc, &ndcs);
523 }
524 if (rc == DDI_DMA_MAPPED || rc == DDI_DMA_PARTIAL_MAP) {
525 /* get num of dma windows */
526 if (rc == DDI_DMA_PARTIAL_MAP) {
527 rc = ddi_dma_numwin(vreq->v_dmahdl, &ndws);
528 ASSERT(rc == DDI_SUCCESS);
529 } else {
530 ndws = 1;
531 }
532 } else {
533 SETDMACBON(vdp);
534 DPRINTF(DMA_DBG, ("xdf@%s: DMA bind failed\n",
535 vdp->xdf_addr));
536 return (DDI_FAILURE);
537 }
538
539 vreq->v_dmac = dc;
540 vreq->v_dmaw = 0;
541 vreq->v_ndmacs = ndcs;
542 vreq->v_ndmaws = ndws;
543 vreq->v_nslots = ndws;
544 vreq->v_status = VREQ_DMABUF_BOUND;
545 /*FALLTHRU*/
546
547 case VREQ_DMABUF_BOUND:
548 /*
549 * get ge_slot, callback is set upon failure from gs_get(),
550 * if not set previously
551 */
552 if ((gs = gs_get(vdp, IS_READ(bp))) == NULL) {
553 DPRINTF(DMA_DBG, ("xdf@%s: get ge_slot failed\n",
554 vdp->xdf_addr));
555 return (DDI_FAILURE);
556 }
557
558 vreq->v_status = VREQ_GS_ALLOCED;
559 gs->gs_vreq = vreq;
560 list_insert_head(&vreq->v_gs, gs);
561 break;
562
563 case VREQ_GS_ALLOCED:
564 /* nothing need to be done */
565 break;
566
567 case VREQ_DMAWIN_DONE:
568 /*
569 * move to the next dma window
570 */
571 ASSERT((vreq->v_dmaw + 1) < vreq->v_ndmaws);
572
573 /* get a ge_slot for this DMA window */
574 if ((gs = gs_get(vdp, IS_READ(bp))) == NULL) {
575 DPRINTF(DMA_DBG, ("xdf@%s: get ge_slot failed\n",
576 vdp->xdf_addr));
577 return (DDI_FAILURE);
578 }
579
580 vreq->v_dmaw++;
581 VERIFY(ddi_dma_getwin(vreq->v_dmahdl, vreq->v_dmaw, &off, &sz,
582 &vreq->v_dmac, &vreq->v_ndmacs) == DDI_SUCCESS);
583 vreq->v_status = VREQ_GS_ALLOCED;
584 gs->gs_vreq = vreq;
585 list_insert_head(&vreq->v_gs, gs);
586 break;
587
588 default:
589 return (DDI_FAILURE);
590 }
591
592 return (DDI_SUCCESS);
593 }
594
595 static int
596 xdf_cmlb_attach(xdf_t *vdp)
597 {
598 dev_info_t *dip = vdp->xdf_dip;
599
600 return (cmlb_attach(dip, &xdf_lb_ops,
601 XD_IS_CD(vdp) ? DTYPE_RODIRECT : DTYPE_DIRECT,
602 XD_IS_RM(vdp), B_TRUE,
603 XD_IS_CD(vdp) ? DDI_NT_CD_XVMD : DDI_NT_BLOCK_XVMD,
604 0, vdp->xdf_vd_lbl, NULL));
605 }
606
607 static void
608 xdf_io_err(buf_t *bp, int err, size_t resid)
609 {
610 bioerror(bp, err);
611 if (resid == 0)
612 bp->b_resid = bp->b_bcount;
613 biodone(bp);
614 }
615
616 static void
617 xdf_kstat_enter(xdf_t *vdp, buf_t *bp)
618 {
619 v_req_t *vreq = BP_VREQ(bp);
620
621 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
622
623 if (vdp->xdf_xdev_iostat == NULL)
624 return;
625 if ((vreq != NULL) && vreq->v_runq) {
626 kstat_runq_enter(KSTAT_IO_PTR(vdp->xdf_xdev_iostat));
627 } else {
628 kstat_waitq_enter(KSTAT_IO_PTR(vdp->xdf_xdev_iostat));
629 }
630 }
631
632 static void
633 xdf_kstat_exit(xdf_t *vdp, buf_t *bp)
634 {
635 v_req_t *vreq = BP_VREQ(bp);
636
637 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
638
639 if (vdp->xdf_xdev_iostat == NULL)
640 return;
641
642 if ((vreq != NULL) && vreq->v_runq) {
643 kstat_runq_exit(KSTAT_IO_PTR(vdp->xdf_xdev_iostat));
644 } else {
645 kstat_waitq_exit(KSTAT_IO_PTR(vdp->xdf_xdev_iostat));
646 }
647
648 if (bp->b_flags & B_READ) {
649 KSTAT_IO_PTR(vdp->xdf_xdev_iostat)->reads++;
650 KSTAT_IO_PTR(vdp->xdf_xdev_iostat)->nread += bp->b_bcount;
651 } else if (bp->b_flags & B_WRITE) {
652 KSTAT_IO_PTR(vdp->xdf_xdev_iostat)->writes++;
653 KSTAT_IO_PTR(vdp->xdf_xdev_iostat)->nwritten += bp->b_bcount;
654 }
655 }
656
657 static void
658 xdf_kstat_waitq_to_runq(xdf_t *vdp, buf_t *bp)
659 {
660 v_req_t *vreq = BP_VREQ(bp);
661
662 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
663 ASSERT(!vreq->v_runq);
664
665 vreq->v_runq = B_TRUE;
666 if (vdp->xdf_xdev_iostat == NULL)
667 return;
668 kstat_waitq_to_runq(KSTAT_IO_PTR(vdp->xdf_xdev_iostat));
669 }
670
671 static void
672 xdf_kstat_runq_to_waitq(xdf_t *vdp, buf_t *bp)
673 {
674 v_req_t *vreq = BP_VREQ(bp);
675
676 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
677 ASSERT(vreq->v_runq);
678
679 vreq->v_runq = B_FALSE;
680 if (vdp->xdf_xdev_iostat == NULL)
681 return;
682 kstat_runq_back_to_waitq(KSTAT_IO_PTR(vdp->xdf_xdev_iostat));
683 }
684
685 int
686 xdf_kstat_create(dev_info_t *dip)
687 {
688 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip);
689 kstat_t *kstat;
690 buf_t *bp;
691
692 if ((kstat = kstat_create("xdf", ddi_get_instance(dip), NULL, "disk",
693 KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT)) == NULL)
694 return (-1);
695
696 /* See comment about locking in xdf_kstat_delete(). */
697 mutex_enter(&vdp->xdf_iostat_lk);
698 mutex_enter(&vdp->xdf_dev_lk);
699
700 /* only one kstat can exist at a time */
701 if (vdp->xdf_xdev_iostat != NULL) {
702 mutex_exit(&vdp->xdf_dev_lk);
703 mutex_exit(&vdp->xdf_iostat_lk);
704 kstat_delete(kstat);
705 return (-1);
706 }
707
708 vdp->xdf_xdev_iostat = kstat;
709 vdp->xdf_xdev_iostat->ks_lock = &vdp->xdf_dev_lk;
710 kstat_install(vdp->xdf_xdev_iostat);
711
712 /*
713 * Now that we've created a kstat, we need to update the waitq and
714 * runq counts for the kstat to reflect our current state.
715 *
716 * For a buf_t structure to be on the runq, it must have a ring
717 * buffer slot associated with it. To get a ring buffer slot the
718 * buf must first have a v_req_t and a ge_slot_t associated with it.
719 * Then when it is granted a ring buffer slot, v_runq will be set to
720 * true.
721 *
722 * For a buf_t structure to be on the waitq, it must not be on the
723 * runq. So to find all the buf_t's that should be on waitq, we
724 * walk the active buf list and add any buf_t's which aren't on the
725 * runq to the waitq.
726 */
727 bp = vdp->xdf_f_act;
728 while (bp != NULL) {
729 xdf_kstat_enter(vdp, bp);
730 bp = bp->av_forw;
731 }
732 if (vdp->xdf_ready_tq_bp != NULL)
733 xdf_kstat_enter(vdp, vdp->xdf_ready_tq_bp);
734
735 mutex_exit(&vdp->xdf_dev_lk);
736 mutex_exit(&vdp->xdf_iostat_lk);
737 return (0);
738 }
739
740 void
741 xdf_kstat_delete(dev_info_t *dip)
742 {
743 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip);
744 kstat_t *kstat;
745 buf_t *bp;
746
747 /*
748 * The locking order here is xdf_iostat_lk and then xdf_dev_lk.
749 * xdf_dev_lk is used to protect the xdf_xdev_iostat pointer
750 * and the contents of the our kstat. xdf_iostat_lk is used
751 * to protect the allocation and freeing of the actual kstat.
752 * xdf_dev_lk can't be used for this purpose because kstat
753 * readers use it to access the contents of the kstat and
754 * hence it can't be held when calling kstat_delete().
755 */
756 mutex_enter(&vdp->xdf_iostat_lk);
757 mutex_enter(&vdp->xdf_dev_lk);
758
759 if (vdp->xdf_xdev_iostat == NULL) {
760 mutex_exit(&vdp->xdf_dev_lk);
761 mutex_exit(&vdp->xdf_iostat_lk);
762 return;
763 }
764
765 /*
766 * We're about to destroy the kstat structures, so it isn't really
767 * necessary to update the runq and waitq counts. But, since this
768 * isn't a hot code path we can afford to be a little pedantic and
769 * go ahead and decrement the runq and waitq kstat counters to zero
770 * before free'ing them. This helps us ensure that we've gotten all
771 * our accounting correct.
772 *
773 * For an explanation of how we determine which buffers go on the
774 * runq vs which go on the waitq, see the comments in
775 * xdf_kstat_create().
776 */
777 bp = vdp->xdf_f_act;
778 while (bp != NULL) {
779 xdf_kstat_exit(vdp, bp);
780 bp = bp->av_forw;
781 }
782 if (vdp->xdf_ready_tq_bp != NULL)
783 xdf_kstat_exit(vdp, vdp->xdf_ready_tq_bp);
784
785 kstat = vdp->xdf_xdev_iostat;
786 vdp->xdf_xdev_iostat = NULL;
787 mutex_exit(&vdp->xdf_dev_lk);
788 kstat_delete(kstat);
789 mutex_exit(&vdp->xdf_iostat_lk);
790 }
791
792 /*
793 * Add an IO requests onto the active queue.
794 *
795 * We have to detect IOs generated by xdf_ready_tq_thread. These IOs
796 * are used to establish a connection to the backend, so they receive
797 * priority over all other IOs. Since xdf_ready_tq_thread only does
798 * synchronous IO, there can only be one xdf_ready_tq_thread request at any
799 * given time and we record the buf associated with that request in
800 * xdf_ready_tq_bp.
801 */
802 static void
803 xdf_bp_push(xdf_t *vdp, buf_t *bp)
804 {
805 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
806 ASSERT(bp->av_forw == NULL);
807
808 xdf_kstat_enter(vdp, bp);
809
810 if (curthread == vdp->xdf_ready_tq_thread) {
811 /* new IO requests from the ready thread */
812 ASSERT(vdp->xdf_ready_tq_bp == NULL);
813 vdp->xdf_ready_tq_bp = bp;
814 return;
815 }
816
817 /* this is normal IO request */
818 ASSERT(bp != vdp->xdf_ready_tq_bp);
819
820 if (vdp->xdf_f_act == NULL) {
821 /* this is only only IO on the active queue */
822 ASSERT(vdp->xdf_l_act == NULL);
823 ASSERT(vdp->xdf_i_act == NULL);
824 vdp->xdf_f_act = vdp->xdf_l_act = vdp->xdf_i_act = bp;
825 return;
826 }
827
828 /* add this IO to the tail of the active queue */
829 vdp->xdf_l_act->av_forw = bp;
830 vdp->xdf_l_act = bp;
831 if (vdp->xdf_i_act == NULL)
832 vdp->xdf_i_act = bp;
833 }
834
835 static void
836 xdf_bp_pop(xdf_t *vdp, buf_t *bp)
837 {
838 buf_t *bp_iter;
839
840 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
841 ASSERT(VREQ_DONE(BP_VREQ(bp)));
842
843 if (vdp->xdf_ready_tq_bp == bp) {
844 /* we're done with a ready thread IO request */
845 ASSERT(bp->av_forw == NULL);
846 vdp->xdf_ready_tq_bp = NULL;
847 return;
848 }
849
850 /* we're done with a normal IO request */
851 ASSERT((bp->av_forw != NULL) || (bp == vdp->xdf_l_act));
852 ASSERT((bp->av_forw == NULL) || (bp != vdp->xdf_l_act));
853 ASSERT(VREQ_DONE(BP_VREQ(vdp->xdf_f_act)));
854 ASSERT(vdp->xdf_f_act != vdp->xdf_i_act);
855
856 if (bp == vdp->xdf_f_act) {
857 /* This IO was at the head of our active queue. */
858 vdp->xdf_f_act = bp->av_forw;
859 if (bp == vdp->xdf_l_act)
860 vdp->xdf_l_act = NULL;
861 } else {
862 /* There IO finished before some other pending IOs. */
863 bp_iter = vdp->xdf_f_act;
864 while (bp != bp_iter->av_forw) {
865 bp_iter = bp_iter->av_forw;
866 ASSERT(VREQ_DONE(BP_VREQ(bp_iter)));
867 ASSERT(bp_iter != vdp->xdf_i_act);
868 }
869 bp_iter->av_forw = bp->av_forw;
870 if (bp == vdp->xdf_l_act)
871 vdp->xdf_l_act = bp_iter;
872 }
873 bp->av_forw = NULL;
874 }
875
876 static buf_t *
877 xdf_bp_next(xdf_t *vdp)
878 {
879 v_req_t *vreq;
880 buf_t *bp;
881
882 if (vdp->xdf_state == XD_CONNECTED) {
883 /*
884 * If we're in the XD_CONNECTED state, we only service IOs
885 * from the xdf_ready_tq_thread thread.
886 */
887 if ((bp = vdp->xdf_ready_tq_bp) == NULL)
888 return (NULL);
889 if (((vreq = BP_VREQ(bp)) == NULL) || (!VREQ_DONE(vreq)))
890 return (bp);
891 return (NULL);
892 }
893
894 /* if we're not in the XD_CONNECTED or XD_READY state we can't do IO */
895 if (vdp->xdf_state != XD_READY)
896 return (NULL);
897
898 ASSERT(vdp->xdf_ready_tq_bp == NULL);
899 for (;;) {
900 if ((bp = vdp->xdf_i_act) == NULL)
901 return (NULL);
902 if (((vreq = BP_VREQ(bp)) == NULL) || (!VREQ_DONE(vreq)))
903 return (bp);
904
905 /* advance the active buf index pointer */
906 vdp->xdf_i_act = bp->av_forw;
907 }
908 }
909
910 static void
911 xdf_io_fini(xdf_t *vdp, uint64_t id, int bioerr)
912 {
913 ge_slot_t *gs = (ge_slot_t *)(uintptr_t)id;
914 v_req_t *vreq = gs->gs_vreq;
915 buf_t *bp = vreq->v_buf;
916
917 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
918 ASSERT(BP_VREQ(bp) == vreq);
919
920 gs_free(gs);
921
922 if (bioerr != 0)
923 bioerror(bp, bioerr);
924 ASSERT(vreq->v_nslots > 0);
925 if (--vreq->v_nslots > 0)
926 return;
927
928 /* remove this IO from our active queue */
929 xdf_bp_pop(vdp, bp);
930
931 ASSERT(vreq->v_runq);
932 xdf_kstat_exit(vdp, bp);
933 vreq->v_runq = B_FALSE;
934 vreq_free(vdp, vreq);
935
936 if (IS_ERROR(bp)) {
937 xdf_io_err(bp, geterror(bp), 0);
938 } else if (bp->b_resid != 0) {
939 /* Partial transfers are an error */
940 xdf_io_err(bp, EIO, bp->b_resid);
941 } else {
942 biodone(bp);
943 }
944 }
945
946 /*
947 * xdf interrupt handler
948 */
949 static uint_t
950 xdf_intr_locked(xdf_t *vdp)
951 {
952 xendev_ring_t *xbr;
953 blkif_response_t *resp;
954 int bioerr;
955 uint64_t id;
956 uint8_t op;
957 uint16_t status;
958 ddi_acc_handle_t acchdl;
959
960 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
961
962 if ((xbr = vdp->xdf_xb_ring) == NULL)
963 return (DDI_INTR_UNCLAIMED);
964
965 acchdl = vdp->xdf_xb_ring_hdl;
966
967 /*
968 * complete all requests which have a response
969 */
970 while (resp = xvdi_ring_get_response(xbr)) {
971 id = ddi_get64(acchdl, &resp->id);
972 op = ddi_get8(acchdl, &resp->operation);
973 status = ddi_get16(acchdl, (uint16_t *)&resp->status);
974 DPRINTF(INTR_DBG, ("resp: op %d id %"PRIu64" status %d\n",
975 op, id, status));
976
977 if (status != BLKIF_RSP_OKAY) {
978 DPRINTF(IO_DBG, ("xdf@%s: I/O error while %s",
979 vdp->xdf_addr,
980 (op == BLKIF_OP_READ) ? "reading" : "writing"));
981 bioerr = EIO;
982 } else {
983 bioerr = 0;
984 }
985
986 xdf_io_fini(vdp, id, bioerr);
987 }
988 return (DDI_INTR_CLAIMED);
989 }
990
991 /*
992 * xdf_intr runs at PIL 5, so no one else can grab xdf_dev_lk and
993 * block at a lower pil.
994 */
995 static uint_t
996 xdf_intr(caddr_t arg)
997 {
998 xdf_t *vdp = (xdf_t *)arg;
999 int rv;
1000
1001 mutex_enter(&vdp->xdf_dev_lk);
1002 rv = xdf_intr_locked(vdp);
1003 mutex_exit(&vdp->xdf_dev_lk);
1004
1005 if (!do_polled_io)
1006 xdf_io_start(vdp);
1007
1008 return (rv);
1009 }
1010
1011 static void
1012 xdf_ring_push(xdf_t *vdp)
1013 {
1014 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
1015
1016 if (vdp->xdf_xb_ring == NULL)
1017 return;
1018
1019 if (xvdi_ring_push_request(vdp->xdf_xb_ring)) {
1020 DPRINTF(IO_DBG, (
1021 "xdf@%s: xdf_ring_push: sent request(s) to backend\n",
1022 vdp->xdf_addr));
1023 }
1024
1025 if (xvdi_get_evtchn(vdp->xdf_dip) != INVALID_EVTCHN)
1026 xvdi_notify_oe(vdp->xdf_dip);
1027 }
1028
1029 static int
1030 xdf_ring_drain_locked(xdf_t *vdp)
1031 {
1032 int pollc, rv = 0;
1033
1034 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
1035
1036 if (xdf_debug & SUSRES_DBG)
1037 xen_printf("xdf_ring_drain: start\n");
1038
1039 for (pollc = 0; pollc < XDF_DRAIN_RETRY_COUNT; pollc++) {
1040 if (vdp->xdf_xb_ring == NULL)
1041 goto out;
1042
1043 if (xvdi_ring_has_unconsumed_responses(vdp->xdf_xb_ring))
1044 (void) xdf_intr_locked(vdp);
1045 if (!xvdi_ring_has_incomp_request(vdp->xdf_xb_ring))
1046 goto out;
1047 xdf_ring_push(vdp);
1048
1049 /* file-backed devices can be slow */
1050 mutex_exit(&vdp->xdf_dev_lk);
1051 #ifdef XPV_HVM_DRIVER
1052 (void) HYPERVISOR_yield();
1053 #endif /* XPV_HVM_DRIVER */
1054 delay(drv_usectohz(XDF_DRAIN_MSEC_DELAY));
1055 mutex_enter(&vdp->xdf_dev_lk);
1056 }
1057 cmn_err(CE_WARN, "xdf@%s: xdf_ring_drain: timeout", vdp->xdf_addr);
1058
1059 out:
1060 if (vdp->xdf_xb_ring != NULL) {
1061 if (xvdi_ring_has_incomp_request(vdp->xdf_xb_ring) ||
1062 xvdi_ring_has_unconsumed_responses(vdp->xdf_xb_ring))
1063 rv = EIO;
1064 }
1065 if (xdf_debug & SUSRES_DBG)
1066 xen_printf("xdf@%s: xdf_ring_drain: end, err=%d\n",
1067 vdp->xdf_addr, rv);
1068 return (rv);
1069 }
1070
1071 static int
1072 xdf_ring_drain(xdf_t *vdp)
1073 {
1074 int rv;
1075 mutex_enter(&vdp->xdf_dev_lk);
1076 rv = xdf_ring_drain_locked(vdp);
1077 mutex_exit(&vdp->xdf_dev_lk);
1078 return (rv);
1079 }
1080
1081 /*
1082 * Destroy all v_req_t, grant table entries, and our ring buffer.
1083 */
1084 static void
1085 xdf_ring_destroy(xdf_t *vdp)
1086 {
1087 v_req_t *vreq;
1088 buf_t *bp;
1089 ge_slot_t *gs;
1090
1091 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk));
1092 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
1093
1094 if ((vdp->xdf_state != XD_INIT) &&
1095 (vdp->xdf_state != XD_CONNECTED) &&
1096 (vdp->xdf_state != XD_READY)) {
1097 ASSERT(vdp->xdf_xb_ring == NULL);
1098 ASSERT(vdp->xdf_xb_ring_hdl == NULL);
1099 ASSERT(vdp->xdf_peer == INVALID_DOMID);
1100 ASSERT(vdp->xdf_evtchn == INVALID_EVTCHN);
1101 ASSERT(list_is_empty(&vdp->xdf_vreq_act));
1102 return;
1103 }
1104
1105 /*
1106 * We don't want to receive async notifications from the backend
1107 * when it finishes processing ring entries.
1108 */
1109 #ifdef XPV_HVM_DRIVER
1110 ec_unbind_evtchn(vdp->xdf_evtchn);
1111 #else /* !XPV_HVM_DRIVER */
1112 (void) ddi_remove_intr(vdp->xdf_dip, 0, NULL);
1113 #endif /* !XPV_HVM_DRIVER */
1114
1115 /*
1116 * Drain any requests in the ring. We need to do this before we
1117 * can free grant table entries, because if active ring entries
1118 * point to grants, then the backend could be trying to access
1119 * those grants.
1120 */
1121 (void) xdf_ring_drain_locked(vdp);
1122
1123 /* We're done talking to the backend so free up our event channel */
1124 xvdi_free_evtchn(vdp->xdf_dip);
1125 vdp->xdf_evtchn = INVALID_EVTCHN;
1126
1127 while ((vreq = list_head(&vdp->xdf_vreq_act)) != NULL) {
1128 bp = vreq->v_buf;
1129 ASSERT(BP_VREQ(bp) == vreq);
1130
1131 /* Free up any grant table entries associaed with this IO */
1132 while ((gs = list_head(&vreq->v_gs)) != NULL)
1133 gs_free(gs);
1134
1135 /* If this IO was on the runq, move it back to the waitq. */
1136 if (vreq->v_runq)
1137 xdf_kstat_runq_to_waitq(vdp, bp);
1138
1139 /*
1140 * Reset any buf IO state since we're going to re-issue the
1141 * IO when we reconnect.
1142 */
1143 vreq_free(vdp, vreq);
1144 BP_VREQ_SET(bp, NULL);
1145 bioerror(bp, 0);
1146 }
1147
1148 /* reset the active queue index pointer */
1149 vdp->xdf_i_act = vdp->xdf_f_act;
1150
1151 /* Destroy the ring */
1152 xvdi_free_ring(vdp->xdf_xb_ring);
1153 vdp->xdf_xb_ring = NULL;
1154 vdp->xdf_xb_ring_hdl = NULL;
1155 vdp->xdf_peer = INVALID_DOMID;
1156 }
1157
1158 void
1159 xdfmin(struct buf *bp)
1160 {
1161 if (bp->b_bcount > xdf_maxphys)
1162 bp->b_bcount = xdf_maxphys;
1163 }
1164
1165 /*
1166 * Check if we have a pending "eject" media request.
1167 */
1168 static int
1169 xdf_eject_pending(xdf_t *vdp)
1170 {
1171 dev_info_t *dip = vdp->xdf_dip;
1172 char *xsname, *str;
1173
1174 if (!vdp->xdf_media_req_supported)
1175 return (B_FALSE);
1176
1177 if (((xsname = xvdi_get_xsname(dip)) == NULL) ||
1178 (xenbus_read_str(xsname, XBP_MEDIA_REQ, &str) != 0))
1179 return (B_FALSE);
1180
1181 if (strcmp(str, XBV_MEDIA_REQ_EJECT) != 0) {
1182 strfree(str);
1183 return (B_FALSE);
1184 }
1185 strfree(str);
1186 return (B_TRUE);
1187 }
1188
1189 /*
1190 * Generate a media request.
1191 */
1192 static int
1193 xdf_media_req(xdf_t *vdp, char *req, boolean_t media_required)
1194 {
1195 dev_info_t *dip = vdp->xdf_dip;
1196 char *xsname;
1197
1198 /*
1199 * we can't be holding xdf_dev_lk because xenbus_printf() can
1200 * block while waiting for a PIL 1 interrupt message. this
1201 * would cause a deadlock with xdf_intr() which needs to grab
1202 * xdf_dev_lk as well and runs at PIL 5.
1203 */
1204 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk));
1205 ASSERT(MUTEX_NOT_HELD(&vdp->xdf_dev_lk));
1206
1207 if ((xsname = xvdi_get_xsname(dip)) == NULL)
1208 return (ENXIO);
1209
1210 /* Check if we support media requests */
1211 if (!XD_IS_CD(vdp) || !vdp->xdf_media_req_supported)
1212 return (ENOTTY);
1213
1214 /* If an eject is pending then don't allow any new requests */
1215 if (xdf_eject_pending(vdp))
1216 return (ENXIO);
1217
1218 /* Make sure that there is media present */
1219 if (media_required && (vdp->xdf_xdev_nblocks == 0))
1220 return (ENXIO);
1221
1222 /* We only allow operations when the device is ready and connected */
1223 if (vdp->xdf_state != XD_READY)
1224 return (EIO);
1225
1226 if (xenbus_printf(XBT_NULL, xsname, XBP_MEDIA_REQ, "%s", req) != 0)
1227 return (EIO);
1228
1229 return (0);
1230 }
1231
1232 /*
1233 * populate a single blkif_request_t w/ a buf
1234 */
1235 static void
1236 xdf_process_rreq(xdf_t *vdp, struct buf *bp, blkif_request_t *rreq)
1237 {
1238 grant_ref_t gr;
1239 uint8_t fsect, lsect;
1240 size_t bcnt;
1241 paddr_t dma_addr;
1242 off_t blk_off;
1243 dev_info_t *dip = vdp->xdf_dip;
1244 blkif_vdev_t vdev = xvdi_get_vdevnum(dip);
1245 v_req_t *vreq = BP_VREQ(bp);
1246 uint64_t blkno = vreq->v_blkno;
1247 uint_t ndmacs = vreq->v_ndmacs;
1248 ddi_acc_handle_t acchdl = vdp->xdf_xb_ring_hdl;
1249 int seg = 0;
1250 int isread = IS_READ(bp);
1251 ge_slot_t *gs = list_head(&vreq->v_gs);
1252
1253 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
1254 ASSERT(vreq->v_status == VREQ_GS_ALLOCED);
1255
1256 if (isread)
1257 ddi_put8(acchdl, &rreq->operation, BLKIF_OP_READ);
1258 else {
1259 switch (vreq->v_flush_diskcache) {
1260 case FLUSH_DISKCACHE:
1261 ddi_put8(acchdl, &rreq->operation,
1262 BLKIF_OP_FLUSH_DISKCACHE);
1263 ddi_put16(acchdl, &rreq->handle, vdev);
1264 ddi_put64(acchdl, &rreq->id,
1265 (uint64_t)(uintptr_t)(gs));
1266 ddi_put8(acchdl, &rreq->nr_segments, 0);
1267 vreq->v_status = VREQ_DMAWIN_DONE;
1268 return;
1269 case WRITE_BARRIER:
1270 ddi_put8(acchdl, &rreq->operation,
1271 BLKIF_OP_WRITE_BARRIER);
1272 break;
1273 default:
1274 if (!vdp->xdf_wce)
1275 ddi_put8(acchdl, &rreq->operation,
1276 BLKIF_OP_WRITE_BARRIER);
1277 else
1278 ddi_put8(acchdl, &rreq->operation,
1279 BLKIF_OP_WRITE);
1280 break;
1281 }
1282 }
1283
1284 ddi_put16(acchdl, &rreq->handle, vdev);
1285 ddi_put64(acchdl, &rreq->sector_number, blkno);
1286 ddi_put64(acchdl, &rreq->id, (uint64_t)(uintptr_t)(gs));
1287
1288 /*
1289 * loop until all segments are populated or no more dma cookie in buf
1290 */
1291 for (;;) {
1292 /*
1293 * Each segment of a blkif request can transfer up to
1294 * one 4K page of data.
1295 */
1296 bcnt = vreq->v_dmac.dmac_size;
1297 dma_addr = vreq->v_dmac.dmac_laddress;
1298 blk_off = (uint_t)((paddr_t)XB_SEGOFFSET & dma_addr);
1299 fsect = blk_off >> XB_BSHIFT;
1300 lsect = fsect + (bcnt >> XB_BSHIFT) - 1;
1301
1302 ASSERT(bcnt <= PAGESIZE);
1303 ASSERT((bcnt % XB_BSIZE) == 0);
1304 ASSERT((blk_off & XB_BMASK) == 0);
1305 ASSERT(fsect < XB_MAX_SEGLEN / XB_BSIZE &&
1306 lsect < XB_MAX_SEGLEN / XB_BSIZE);
1307
1308 gr = gs_grant(gs, PATOMA(dma_addr) >> PAGESHIFT);
1309 ddi_put32(acchdl, &rreq->seg[seg].gref, gr);
1310 ddi_put8(acchdl, &rreq->seg[seg].first_sect, fsect);
1311 ddi_put8(acchdl, &rreq->seg[seg].last_sect, lsect);
1312
1313 DPRINTF(IO_DBG, (
1314 "xdf@%s: seg%d: dmacS %lu blk_off %ld\n",
1315 vdp->xdf_addr, seg, vreq->v_dmac.dmac_size, blk_off));
1316 DPRINTF(IO_DBG, (
1317 "xdf@%s: seg%d: fs %d ls %d gr %d dma 0x%"PRIx64"\n",
1318 vdp->xdf_addr, seg, fsect, lsect, gr, dma_addr));
1319
1320 blkno += (bcnt >> XB_BSHIFT);
1321 seg++;
1322 ASSERT(seg <= BLKIF_MAX_SEGMENTS_PER_REQUEST);
1323 if (--ndmacs) {
1324 ddi_dma_nextcookie(vreq->v_dmahdl, &vreq->v_dmac);
1325 continue;
1326 }
1327
1328 vreq->v_status = VREQ_DMAWIN_DONE;
1329 vreq->v_blkno = blkno;
1330 break;
1331 }
1332 ddi_put8(acchdl, &rreq->nr_segments, seg);
1333 DPRINTF(IO_DBG, (
1334 "xdf@%s: xdf_process_rreq: request id=%"PRIx64" ready\n",
1335 vdp->xdf_addr, rreq->id));
1336 }
1337
1338 static void
1339 xdf_io_start(xdf_t *vdp)
1340 {
1341 struct buf *bp;
1342 v_req_t *vreq;
1343 blkif_request_t *rreq;
1344 boolean_t rreqready = B_FALSE;
1345
1346 mutex_enter(&vdp->xdf_dev_lk);
1347
1348 /*
1349 * Populate the ring request(s). Loop until there is no buf to
1350 * transfer or no free slot available in I/O ring.
1351 */
1352 for (;;) {
1353 /* don't start any new IO if we're suspending */
1354 if (vdp->xdf_suspending)
1355 break;
1356 if ((bp = xdf_bp_next(vdp)) == NULL)
1357 break;
1358
1359 /* if the buf doesn't already have a vreq, allocate one */
1360 if (((vreq = BP_VREQ(bp)) == NULL) &&
1361 ((vreq = vreq_get(vdp, bp)) == NULL))
1362 break;
1363
1364 /* alloc DMA/GTE resources */
1365 if (vreq_setup(vdp, vreq) != DDI_SUCCESS)
1366 break;
1367
1368 /* get next blkif_request in the ring */
1369 if ((rreq = xvdi_ring_get_request(vdp->xdf_xb_ring)) == NULL)
1370 break;
1371 bzero(rreq, sizeof (blkif_request_t));
1372 rreqready = B_TRUE;
1373
1374 /* populate blkif_request with this buf */
1375 xdf_process_rreq(vdp, bp, rreq);
1376
1377 /*
1378 * This buffer/vreq pair is has been allocated a ring buffer
1379 * resources, so if it isn't already in our runq, add it.
1380 */
1381 if (!vreq->v_runq)
1382 xdf_kstat_waitq_to_runq(vdp, bp);
1383 }
1384
1385 /* Send the request(s) to the backend */
1386 if (rreqready)
1387 xdf_ring_push(vdp);
1388
1389 mutex_exit(&vdp->xdf_dev_lk);
1390 }
1391
1392
1393 /* check if partition is open, -1 - check all partitions on the disk */
1394 static boolean_t
1395 xdf_isopen(xdf_t *vdp, int partition)
1396 {
1397 int i;
1398 ulong_t parbit;
1399 boolean_t rval = B_FALSE;
1400
1401 ASSERT((partition == -1) ||
1402 ((partition >= 0) || (partition < XDF_PEXT)));
1403
1404 if (partition == -1)
1405 parbit = (ulong_t)-1;
1406 else
1407 parbit = 1 << partition;
1408
1409 for (i = 0; i < OTYPCNT; i++) {
1410 if (vdp->xdf_vd_open[i] & parbit)
1411 rval = B_TRUE;
1412 }
1413
1414 return (rval);
1415 }
1416
1417 /*
1418 * The connection should never be closed as long as someone is holding
1419 * us open, there is pending IO, or someone is waiting waiting for a
1420 * connection.
1421 */
1422 static boolean_t
1423 xdf_busy(xdf_t *vdp)
1424 {
1425 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
1426
1427 if ((vdp->xdf_xb_ring != NULL) &&
1428 xvdi_ring_has_unconsumed_responses(vdp->xdf_xb_ring)) {
1429 ASSERT(vdp->xdf_state != XD_CLOSED);
1430 return (B_TRUE);
1431 }
1432
1433 if (!list_is_empty(&vdp->xdf_vreq_act) || (vdp->xdf_f_act != NULL)) {
1434 ASSERT(vdp->xdf_state != XD_CLOSED);
1435 return (B_TRUE);
1436 }
1437
1438 if (xdf_isopen(vdp, -1)) {
1439 ASSERT(vdp->xdf_state != XD_CLOSED);
1440 return (B_TRUE);
1441 }
1442
1443 if (vdp->xdf_connect_req > 0) {
1444 ASSERT(vdp->xdf_state != XD_CLOSED);
1445 return (B_TRUE);
1446 }
1447
1448 return (B_FALSE);
1449 }
1450
1451 static void
1452 xdf_set_state(xdf_t *vdp, xdf_state_t new_state)
1453 {
1454 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk));
1455 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
1456 DPRINTF(DDI_DBG, ("xdf@%s: state change %d -> %d\n",
1457 vdp->xdf_addr, vdp->xdf_state, new_state));
1458 vdp->xdf_state = new_state;
1459 cv_broadcast(&vdp->xdf_dev_cv);
1460 }
1461
1462 static void
1463 xdf_disconnect(xdf_t *vdp, xdf_state_t new_state, boolean_t quiet)
1464 {
1465 dev_info_t *dip = vdp->xdf_dip;
1466 boolean_t busy;
1467
1468 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk));
1469 ASSERT(MUTEX_NOT_HELD(&vdp->xdf_dev_lk));
1470 ASSERT((new_state == XD_UNKNOWN) || (new_state == XD_CLOSED));
1471
1472 /* Check if we're already there. */
1473 if (vdp->xdf_state == new_state)
1474 return;
1475
1476 mutex_enter(&vdp->xdf_dev_lk);
1477 busy = xdf_busy(vdp);
1478
1479 /* If we're already closed then there's nothing todo. */
1480 if (vdp->xdf_state == XD_CLOSED) {
1481 ASSERT(!busy);
1482 xdf_set_state(vdp, new_state);
1483 mutex_exit(&vdp->xdf_dev_lk);
1484 return;
1485 }
1486
1487 #ifdef DEBUG
1488 /* UhOh. Warn the user that something bad has happened. */
1489 if (!quiet && busy && (vdp->xdf_state == XD_READY) &&
1490 (vdp->xdf_xdev_nblocks != 0)) {
1491 cmn_err(CE_WARN, "xdf@%s: disconnected while in use",
1492 vdp->xdf_addr);
1493 }
1494 #endif /* DEBUG */
1495
1496 xdf_ring_destroy(vdp);
1497
1498 /* If we're busy then we can only go into the unknown state */
1499 xdf_set_state(vdp, (busy) ? XD_UNKNOWN : new_state);
1500 mutex_exit(&vdp->xdf_dev_lk);
1501
1502 /* if we're closed now, let the other end know */
1503 if (vdp->xdf_state == XD_CLOSED)
1504 (void) xvdi_switch_state(dip, XBT_NULL, XenbusStateClosed);
1505 }
1506
1507
1508 /*
1509 * Kick-off connect process
1510 * Status should be XD_UNKNOWN or XD_CLOSED
1511 * On success, status will be changed to XD_INIT
1512 * On error, it will be changed to XD_UNKNOWN
1513 */
1514 static int
1515 xdf_setstate_init(xdf_t *vdp)
1516 {
1517 dev_info_t *dip = vdp->xdf_dip;
1518 xenbus_transaction_t xbt;
1519 grant_ref_t gref;
1520 char *xsname, *str;
1521 int rv;
1522
1523 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk));
1524 ASSERT(MUTEX_NOT_HELD(&vdp->xdf_dev_lk));
1525 ASSERT((vdp->xdf_state == XD_UNKNOWN) ||
1526 (vdp->xdf_state == XD_CLOSED));
1527
1528 DPRINTF(DDI_DBG,
1529 ("xdf@%s: starting connection process\n", vdp->xdf_addr));
1530
1531 /*
1532 * If an eject is pending then don't allow a new connection.
1533 * (Only the backend can clear media request eject request.)
1534 */
1535 if (xdf_eject_pending(vdp))
1536 return (DDI_FAILURE);
1537
1538 if ((xsname = xvdi_get_xsname(dip)) == NULL)
1539 goto errout;
1540
1541 if ((vdp->xdf_peer = xvdi_get_oeid(dip)) == INVALID_DOMID)
1542 goto errout;
1543
1544 (void) xvdi_switch_state(dip, XBT_NULL, XenbusStateInitialising);
1545
1546 /*
1547 * Sanity check for the existance of the xenbus device-type property.
1548 * This property might not exist if our xenbus device nodes were
1549 * force destroyed while we were still connected to the backend.
1550 */
1551 if (xenbus_read_str(xsname, XBP_DEV_TYPE, &str) != 0)
1552 goto errout;
1553 strfree(str);
1554
1555 if (xvdi_alloc_evtchn(dip) != DDI_SUCCESS)
1556 goto errout;
1557
1558 vdp->xdf_evtchn = xvdi_get_evtchn(dip);
1559 #ifdef XPV_HVM_DRIVER
1560 ec_bind_evtchn_to_handler(vdp->xdf_evtchn, IPL_VBD, xdf_intr, vdp);
1561 #else /* !XPV_HVM_DRIVER */
1562 if (ddi_add_intr(dip, 0, NULL, NULL, xdf_intr, (caddr_t)vdp) !=
1563 DDI_SUCCESS) {
1564 cmn_err(CE_WARN, "xdf@%s: xdf_setstate_init: "
1565 "failed to add intr handler", vdp->xdf_addr);
1566 goto errout1;
1567 }
1568 #endif /* !XPV_HVM_DRIVER */
1569
1570 if (xvdi_alloc_ring(dip, BLKIF_RING_SIZE,
1571 sizeof (union blkif_sring_entry), &gref, &vdp->xdf_xb_ring) !=
1572 DDI_SUCCESS) {
1573 cmn_err(CE_WARN, "xdf@%s: failed to alloc comm ring",
1574 vdp->xdf_addr);
1575 goto errout2;
1576 }
1577 vdp->xdf_xb_ring_hdl = vdp->xdf_xb_ring->xr_acc_hdl; /* ugly!! */
1578
1579 /*
1580 * Write into xenstore the info needed by backend
1581 */
1582 trans_retry:
1583 if (xenbus_transaction_start(&xbt)) {
1584 cmn_err(CE_WARN, "xdf@%s: failed to start transaction",
1585 vdp->xdf_addr);
1586 xvdi_fatal_error(dip, EIO, "connect transaction init");
1587 goto fail_trans;
1588 }
1589
1590 /*
1591 * XBP_PROTOCOL is written by the domain builder in the case of PV
1592 * domains. However, it is not written for HVM domains, so let's
1593 * write it here.
1594 */
1595 if (((rv = xenbus_printf(xbt, xsname,
1596 XBP_MEDIA_REQ, "%s", XBV_MEDIA_REQ_NONE)) != 0) ||
1597 ((rv = xenbus_printf(xbt, xsname,
1598 XBP_RING_REF, "%u", gref)) != 0) ||
1599 ((rv = xenbus_printf(xbt, xsname,
1600 XBP_EVENT_CHAN, "%u", vdp->xdf_evtchn)) != 0) ||
1601 ((rv = xenbus_printf(xbt, xsname,
1602 XBP_PROTOCOL, "%s", XEN_IO_PROTO_ABI_NATIVE)) != 0) ||
1603 ((rv = xvdi_switch_state(dip, xbt, XenbusStateInitialised)) > 0)) {
1604 (void) xenbus_transaction_end(xbt, 1);
1605 xvdi_fatal_error(dip, rv, "connect transaction setup");
1606 goto fail_trans;
1607 }
1608
1609 /* kick-off connect process */
1610 if (rv = xenbus_transaction_end(xbt, 0)) {
1611 if (rv == EAGAIN)
1612 goto trans_retry;
1613 xvdi_fatal_error(dip, rv, "connect transaction commit");
1614 goto fail_trans;
1615 }
1616
1617 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk));
1618 mutex_enter(&vdp->xdf_dev_lk);
1619 xdf_set_state(vdp, XD_INIT);
1620 mutex_exit(&vdp->xdf_dev_lk);
1621
1622 return (DDI_SUCCESS);
1623
1624 fail_trans:
1625 xvdi_free_ring(vdp->xdf_xb_ring);
1626 errout2:
1627 #ifdef XPV_HVM_DRIVER
1628 ec_unbind_evtchn(vdp->xdf_evtchn);
1629 #else /* !XPV_HVM_DRIVER */
1630 (void) ddi_remove_intr(vdp->xdf_dip, 0, NULL);
1631 #endif /* !XPV_HVM_DRIVER */
1632 errout1:
1633 xvdi_free_evtchn(dip);
1634 vdp->xdf_evtchn = INVALID_EVTCHN;
1635 errout:
1636 xdf_disconnect(vdp, XD_UNKNOWN, B_FALSE);
1637 cmn_err(CE_WARN, "xdf@%s: failed to start connection to backend",
1638 vdp->xdf_addr);
1639 return (DDI_FAILURE);
1640 }
1641
1642 int
1643 xdf_get_flush_block(xdf_t *vdp)
1644 {
1645 /*
1646 * Get a DEV_BSIZE aligned bufer
1647 */
1648 vdp->xdf_flush_mem = kmem_alloc(vdp->xdf_xdev_secsize * 2, KM_SLEEP);
1649 vdp->xdf_cache_flush_block =
1650 (char *)P2ROUNDUP((uintptr_t)(vdp->xdf_flush_mem),
1651 (int)vdp->xdf_xdev_secsize);
1652
1653 if (xdf_lb_rdwr(vdp->xdf_dip, TG_READ, vdp->xdf_cache_flush_block,
1654 xdf_flush_block, vdp->xdf_xdev_secsize, NULL) != 0)
1655 return (DDI_FAILURE);
1656 return (DDI_SUCCESS);
1657 }
1658
1659 static void
1660 xdf_setstate_ready(void *arg)
1661 {
1662 xdf_t *vdp = (xdf_t *)arg;
1663 dev_info_t *dip = vdp->xdf_dip;
1664
1665 vdp->xdf_ready_tq_thread = curthread;
1666
1667 /* Create minor nodes now when we are almost connected */
1668 mutex_enter(&vdp->xdf_dev_lk);
1669 if (vdp->xdf_cmlb_reattach) {
1670 vdp->xdf_cmlb_reattach = B_FALSE;
1671 mutex_exit(&vdp->xdf_dev_lk);
1672 if (xdf_cmlb_attach(vdp) != 0) {
1673 cmn_err(CE_WARN,
1674 "xdf@%s: cmlb attach failed",
1675 ddi_get_name_addr(dip));
1676 xdf_disconnect(vdp, XD_UNKNOWN, B_FALSE);
1677 return;
1678 }
1679 mutex_enter(&vdp->xdf_dev_lk);
1680 }
1681
1682 /* If we're not still trying to get to the ready state, then bail. */
1683 if (vdp->xdf_state != XD_CONNECTED) {
1684 mutex_exit(&vdp->xdf_dev_lk);
1685 return;
1686 }
1687 mutex_exit(&vdp->xdf_dev_lk);
1688
1689 /*
1690 * If backend has feature-barrier, see if it supports disk
1691 * cache flush op.
1692 */
1693 vdp->xdf_flush_supported = B_FALSE;
1694 if (vdp->xdf_feature_barrier) {
1695 /*
1696 * Pretend we already know flush is supported so probe
1697 * will attempt the correct op.
1698 */
1699 vdp->xdf_flush_supported = B_TRUE;
1700 if (xdf_lb_rdwr(vdp->xdf_dip, TG_WRITE, NULL, 0, 0, 0) == 0) {
1701 vdp->xdf_flush_supported = B_TRUE;
1702 } else {
1703 vdp->xdf_flush_supported = B_FALSE;
1704 /*
1705 * If the other end does not support the cache flush op
1706 * then we must use a barrier-write to force disk
1707 * cache flushing. Barrier writes require that a data
1708 * block actually be written.
1709 * Cache a block to barrier-write when we are
1710 * asked to perform a flush.
1711 * XXX - would it be better to just copy 1 block
1712 * (512 bytes) from whatever write we did last
1713 * and rewrite that block?
1714 */
1715 if (xdf_get_flush_block(vdp) != DDI_SUCCESS) {
1716 xdf_disconnect(vdp, XD_UNKNOWN, B_FALSE);
1717 return;
1718 }
1719 }
1720 }
1721
1722 mutex_enter(&vdp->xdf_cb_lk);
1723 mutex_enter(&vdp->xdf_dev_lk);
1724 if (vdp->xdf_state == XD_CONNECTED)
1725 xdf_set_state(vdp, XD_READY);
1726 mutex_exit(&vdp->xdf_dev_lk);
1727
1728 /* Restart any currently queued up io */
1729 xdf_io_start(vdp);
1730
1731 mutex_exit(&vdp->xdf_cb_lk);
1732 }
1733
1734 /*
1735 * synthetic geometry
1736 */
1737 #define XDF_NSECTS 256
1738 #define XDF_NHEADS 16
1739
1740 static void
1741 xdf_synthetic_pgeom(dev_info_t *dip, cmlb_geom_t *geomp)
1742 {
1743 xdf_t *vdp;
1744 uint_t ncyl;
1745
1746 vdp = ddi_get_soft_state(xdf_ssp, ddi_get_instance(dip));
1747
1748 ncyl = vdp->xdf_xdev_nblocks / (XDF_NHEADS * XDF_NSECTS);
1749
1750 bzero(geomp, sizeof (*geomp));
1751 geomp->g_ncyl = ncyl == 0 ? 1 : ncyl;
1752 geomp->g_acyl = 0;
1753 geomp->g_nhead = XDF_NHEADS;
1754 geomp->g_nsect = XDF_NSECTS;
1755 geomp->g_secsize = vdp->xdf_xdev_secsize;
1756 geomp->g_capacity = vdp->xdf_xdev_nblocks;
1757 geomp->g_intrlv = 0;
1758 geomp->g_rpm = 7200;
1759 }
1760
1761 /*
1762 * Finish other initialization after we've connected to backend
1763 * Status should be XD_INIT before calling this routine
1764 * On success, status should be changed to XD_CONNECTED.
1765 * On error, status should stay XD_INIT
1766 */
1767 static int
1768 xdf_setstate_connected(xdf_t *vdp)
1769 {
1770 dev_info_t *dip = vdp->xdf_dip;
1771 cmlb_geom_t pgeom;
1772 diskaddr_t nblocks = 0;
1773 uint_t secsize = 0;
1774 char *oename, *xsname, *str;
1775 uint_t dinfo;
1776
1777 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk));
1778 ASSERT(MUTEX_NOT_HELD(&vdp->xdf_dev_lk));
1779 ASSERT(vdp->xdf_state == XD_INIT);
1780
1781 if (((xsname = xvdi_get_xsname(dip)) == NULL) ||
1782 ((oename = xvdi_get_oename(dip)) == NULL))
1783 return (DDI_FAILURE);
1784
1785 /* Make sure the other end is XenbusStateConnected */
1786 if (xenbus_read_driver_state(oename) != XenbusStateConnected)
1787 return (DDI_FAILURE);
1788
1789 /* Determine if feature barrier is supported by backend */
1790 if (!(vdp->xdf_feature_barrier = xenbus_exists(oename, XBP_FB)))
1791 cmn_err(CE_NOTE, "!xdf@%s: feature-barrier not supported",
1792 vdp->xdf_addr);
1793
1794 /*
1795 * Probe backend. Read the device size into xdf_xdev_nblocks
1796 * and set the VDISK_READONLY, VDISK_CDROM, and VDISK_REMOVABLE
1797 * flags in xdf_dinfo. If the emulated device type is "cdrom",
1798 * we always set VDISK_CDROM, regardless of if it's present in
1799 * the xenbus info parameter.
1800 */
1801 if (xenbus_gather(XBT_NULL, oename,
1802 XBP_SECTORS, "%"SCNu64, &nblocks,
1803 XBP_SECTOR_SIZE, "%u", &secsize,
1804 XBP_INFO, "%u", &dinfo,
1805 NULL) != 0) {
1806 cmn_err(CE_WARN, "xdf@%s: xdf_setstate_connected: "
1807 "cannot read backend info", vdp->xdf_addr);
1808 return (DDI_FAILURE);
1809 }
1810 if (xenbus_read_str(xsname, XBP_DEV_TYPE, &str) != 0) {
1811 cmn_err(CE_WARN, "xdf@%s: cannot read device-type",
1812 vdp->xdf_addr);
1813 return (DDI_FAILURE);
1814 }
1815 if (strcmp(str, XBV_DEV_TYPE_CD) == 0)
1816 dinfo |= VDISK_CDROM;
1817 strfree(str);
1818
1819 if (secsize == 0 || !(ISP2(secsize / DEV_BSIZE)))
1820 secsize = DEV_BSIZE;
1821 vdp->xdf_xdev_nblocks = nblocks;
1822 vdp->xdf_xdev_secsize = secsize;
1823 #ifdef _ILP32
1824 if (vdp->xdf_xdev_nblocks > DK_MAX_BLOCKS) {
1825 cmn_err(CE_WARN, "xdf@%s: xdf_setstate_connected: "
1826 "backend disk device too large with %llu blocks for"
1827 " 32-bit kernel", vdp->xdf_addr, vdp->xdf_xdev_nblocks);
1828 xvdi_fatal_error(dip, EFBIG, "reading backend info");
1829 return (DDI_FAILURE);
1830 }
1831 #endif
1832
1833 /*
1834 * If the physical geometry for a fixed disk has been explicity
1835 * set then make sure that the specified physical geometry isn't
1836 * larger than the device we connected to.
1837 */
1838 if (vdp->xdf_pgeom_fixed &&
1839 (vdp->xdf_pgeom.g_capacity > vdp->xdf_xdev_nblocks)) {
1840 cmn_err(CE_WARN,
1841 "xdf@%s: connect failed, fixed geometry too large",
1842 vdp->xdf_addr);
1843 return (DDI_FAILURE);
1844 }
1845
1846 vdp->xdf_media_req_supported = xenbus_exists(oename, XBP_MEDIA_REQ_SUP);
1847
1848 /* mark vbd is ready for I/O */
1849 mutex_enter(&vdp->xdf_dev_lk);
1850 xdf_set_state(vdp, XD_CONNECTED);
1851
1852 /* check if the cmlb label should be updated */
1853 xdf_synthetic_pgeom(dip, &pgeom);
1854 if ((vdp->xdf_dinfo != dinfo) ||
1855 (!vdp->xdf_pgeom_fixed &&
1856 (memcmp(&vdp->xdf_pgeom, &pgeom, sizeof (pgeom)) != 0))) {
1857 vdp->xdf_cmlb_reattach = B_TRUE;
1858
1859 vdp->xdf_dinfo = dinfo;
1860 if (!vdp->xdf_pgeom_fixed)
1861 vdp->xdf_pgeom = pgeom;
1862 }
1863
1864 if (XD_IS_CD(vdp) || XD_IS_RM(vdp)) {
1865 if (vdp->xdf_xdev_nblocks == 0) {
1866 vdp->xdf_mstate = DKIO_EJECTED;
1867 cv_broadcast(&vdp->xdf_mstate_cv);
1868 } else {
1869 vdp->xdf_mstate = DKIO_INSERTED;
1870 cv_broadcast(&vdp->xdf_mstate_cv);
1871 }
1872 } else {
1873 if (vdp->xdf_mstate != DKIO_NONE) {
1874 vdp->xdf_mstate = DKIO_NONE;
1875 cv_broadcast(&vdp->xdf_mstate_cv);
1876 }
1877 }
1878
1879 mutex_exit(&vdp->xdf_dev_lk);
1880
1881 cmn_err(CE_CONT, "?xdf@%s: %"PRIu64" blocks", vdp->xdf_addr,
1882 (uint64_t)vdp->xdf_xdev_nblocks);
1883
1884 /* Restart any currently queued up io */
1885 xdf_io_start(vdp);
1886
1887 /*
1888 * To get to the ready state we have to do IO to the backend device,
1889 * but we can't initiate IO from the other end change callback thread
1890 * (which is the current context we're executing in.) This is because
1891 * if the other end disconnects while we're doing IO from the callback
1892 * thread, then we can't receive that disconnect event and we hang
1893 * waiting for an IO that can never complete.
1894 */
1895 (void) ddi_taskq_dispatch(vdp->xdf_ready_tq, xdf_setstate_ready, vdp,
1896 DDI_SLEEP);
1897
1898 (void) xvdi_switch_state(dip, XBT_NULL, XenbusStateConnected);
1899 return (DDI_SUCCESS);
1900 }
1901
1902 /*ARGSUSED*/
1903 static void
1904 xdf_oe_change(dev_info_t *dip, ddi_eventcookie_t id, void *arg, void *impl_data)
1905 {
1906 XenbusState new_state = *(XenbusState *)impl_data;
1907 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip);
1908
1909 DPRINTF(DDI_DBG, ("xdf@%s: otherend state change to %d!\n",
1910 vdp->xdf_addr, new_state));
1911
1912 mutex_enter(&vdp->xdf_cb_lk);
1913
1914 /* We assume that this callback is single threaded */
1915 ASSERT(vdp->xdf_oe_change_thread == NULL);
1916 DEBUG_EVAL(vdp->xdf_oe_change_thread = curthread);
1917
1918 /* ignore any backend state changes if we're suspending/suspended */
1919 if (vdp->xdf_suspending || (vdp->xdf_state == XD_SUSPEND)) {
1920 DEBUG_EVAL(vdp->xdf_oe_change_thread = NULL);
1921 mutex_exit(&vdp->xdf_cb_lk);
1922 return;
1923 }
1924
1925 switch (new_state) {
1926 case XenbusStateUnknown:
1927 case XenbusStateInitialising:
1928 case XenbusStateInitWait:
1929 case XenbusStateInitialised:
1930 if (vdp->xdf_state == XD_INIT)
1931 break;
1932
1933 xdf_disconnect(vdp, XD_UNKNOWN, B_FALSE);
1934 if (xdf_setstate_init(vdp) != DDI_SUCCESS)
1935 break;
1936 ASSERT(vdp->xdf_state == XD_INIT);
1937 break;
1938
1939 case XenbusStateConnected:
1940 if ((vdp->xdf_state == XD_CONNECTED) ||
1941 (vdp->xdf_state == XD_READY))
1942 break;
1943
1944 if (vdp->xdf_state != XD_INIT) {
1945 xdf_disconnect(vdp, XD_UNKNOWN, B_FALSE);
1946 if (xdf_setstate_init(vdp) != DDI_SUCCESS)
1947 break;
1948 ASSERT(vdp->xdf_state == XD_INIT);
1949 }
1950
1951 if (xdf_setstate_connected(vdp) != DDI_SUCCESS) {
1952 xdf_disconnect(vdp, XD_UNKNOWN, B_FALSE);
1953 break;
1954 }
1955 ASSERT(vdp->xdf_state == XD_CONNECTED);
1956 break;
1957
1958 case XenbusStateClosing:
1959 if (xdf_isopen(vdp, -1)) {
1960 cmn_err(CE_NOTE,
1961 "xdf@%s: hot-unplug failed, still in use",
1962 vdp->xdf_addr);
1963 break;
1964 }
1965 /*FALLTHROUGH*/
1966 case XenbusStateClosed:
1967 xdf_disconnect(vdp, XD_CLOSED, B_FALSE);
1968 break;
1969 }
1970
1971 /* notify anybody waiting for oe state change */
1972 cv_broadcast(&vdp->xdf_dev_cv);
1973 DEBUG_EVAL(vdp->xdf_oe_change_thread = NULL);
1974 mutex_exit(&vdp->xdf_cb_lk);
1975 }
1976
1977 static int
1978 xdf_connect_locked(xdf_t *vdp, boolean_t wait)
1979 {
1980 int rv, timeouts = 0, reset = 20;
1981
1982 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk));
1983 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
1984
1985 /* we can't connect once we're in the closed state */
1986 if (vdp->xdf_state == XD_CLOSED)
1987 return (XD_CLOSED);
1988
1989 vdp->xdf_connect_req++;
1990 while (vdp->xdf_state != XD_READY) {
1991 mutex_exit(&vdp->xdf_dev_lk);
1992
1993 /* only one thread at a time can be the connection thread */
1994 if (vdp->xdf_connect_thread == NULL)
1995 vdp->xdf_connect_thread = curthread;
1996
1997 if (vdp->xdf_connect_thread == curthread) {
1998 if ((timeouts > 0) && ((timeouts % reset) == 0)) {
1999 /*
2000 * If we haven't establised a connection
2001 * within the reset time, then disconnect
2002 * so we can try again, and double the reset
2003 * time. The reset time starts at 2 sec.
2004 */
2005 (void) xdf_disconnect(vdp, XD_UNKNOWN, B_TRUE);
2006 reset *= 2;
2007 }
2008 if (vdp->xdf_state == XD_UNKNOWN)
2009 (void) xdf_setstate_init(vdp);
2010 if (vdp->xdf_state == XD_INIT)
2011 (void) xdf_setstate_connected(vdp);
2012 }
2013
2014 mutex_enter(&vdp->xdf_dev_lk);
2015 if (!wait || (vdp->xdf_state == XD_READY))
2016 goto out;
2017
2018 mutex_exit((&vdp->xdf_cb_lk));
2019 if (vdp->xdf_connect_thread != curthread) {
2020 rv = cv_wait_sig(&vdp->xdf_dev_cv, &vdp->xdf_dev_lk);
2021 } else {
2022 /* delay for 0.1 sec */
2023 rv = cv_reltimedwait_sig(&vdp->xdf_dev_cv,
2024 &vdp->xdf_dev_lk, drv_usectohz(100*1000),
2025 TR_CLOCK_TICK);
2026 if (rv == -1)
2027 timeouts++;
2028 }
2029 mutex_exit((&vdp->xdf_dev_lk));
2030 mutex_enter((&vdp->xdf_cb_lk));
2031 mutex_enter((&vdp->xdf_dev_lk));
2032 if (rv == 0)
2033 goto out;
2034 }
2035
2036 out:
2037 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk));
2038 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
2039
2040 if (vdp->xdf_connect_thread == curthread) {
2041 /*
2042 * wake up someone else so they can become the connection
2043 * thread.
2044 */
2045 cv_signal(&vdp->xdf_dev_cv);
2046 vdp->xdf_connect_thread = NULL;
2047 }
2048
2049 /* Try to lock the media */
2050 mutex_exit((&vdp->xdf_dev_lk));
2051 (void) xdf_media_req(vdp, XBV_MEDIA_REQ_LOCK, B_TRUE);
2052 mutex_enter((&vdp->xdf_dev_lk));
2053
2054 vdp->xdf_connect_req--;
2055 return (vdp->xdf_state);
2056 }
2057
2058 static uint_t
2059 xdf_iorestart(caddr_t arg)
2060 {
2061 xdf_t *vdp = (xdf_t *)arg;
2062
2063 ASSERT(vdp != NULL);
2064
2065 mutex_enter(&vdp->xdf_dev_lk);
2066 ASSERT(ISDMACBON(vdp));
2067 SETDMACBOFF(vdp);
2068 mutex_exit(&vdp->xdf_dev_lk);
2069
2070 xdf_io_start(vdp);
2071
2072 return (DDI_INTR_CLAIMED);
2073 }
2074
2075 #ifdef XPV_HVM_DRIVER
2076
2077 typedef struct xdf_hvm_entry {
2078 list_node_t xdf_he_list;
2079 char *xdf_he_path;
2080 dev_info_t *xdf_he_dip;
2081 } xdf_hvm_entry_t;
2082
2083 static list_t xdf_hvm_list;
2084 static kmutex_t xdf_hvm_list_lock;
2085
2086 static xdf_hvm_entry_t *
2087 i_xdf_hvm_find(const char *path, dev_info_t *dip)
2088 {
2089 xdf_hvm_entry_t *i;
2090
2091 ASSERT((path != NULL) || (dip != NULL));
2092 ASSERT(MUTEX_HELD(&xdf_hvm_list_lock));
2093
2094 i = list_head(&xdf_hvm_list);
2095 while (i != NULL) {
2096 if ((path != NULL) && strcmp(i->xdf_he_path, path) != 0) {
2097 i = list_next(&xdf_hvm_list, i);
2098 continue;
2099 }
2100 if ((dip != NULL) && (i->xdf_he_dip != dip)) {
2101 i = list_next(&xdf_hvm_list, i);
2102 continue;
2103 }
2104 break;
2105 }
2106 return (i);
2107 }
2108
2109 dev_info_t *
2110 xdf_hvm_hold(const char *path)
2111 {
2112 xdf_hvm_entry_t *i;
2113 dev_info_t *dip;
2114
2115 mutex_enter(&xdf_hvm_list_lock);
2116 i = i_xdf_hvm_find(path, NULL);
2117 if (i == NULL) {
2118 mutex_exit(&xdf_hvm_list_lock);
2119 return (B_FALSE);
2120 }
2121 ndi_hold_devi(dip = i->xdf_he_dip);
2122 mutex_exit(&xdf_hvm_list_lock);
2123 return (dip);
2124 }
2125
2126 static void
2127 xdf_hvm_add(dev_info_t *dip)
2128 {
2129 xdf_hvm_entry_t *i;
2130 char *path;
2131
2132 /* figure out the path for the dip */
2133 path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
2134 (void) ddi_pathname(dip, path);
2135
2136 i = kmem_alloc(sizeof (*i), KM_SLEEP);
2137 i->xdf_he_dip = dip;
2138 i->xdf_he_path = i_ddi_strdup(path, KM_SLEEP);
2139
2140 mutex_enter(&xdf_hvm_list_lock);
2141 ASSERT(i_xdf_hvm_find(path, NULL) == NULL);
2142 ASSERT(i_xdf_hvm_find(NULL, dip) == NULL);
2143 list_insert_head(&xdf_hvm_list, i);
2144 mutex_exit(&xdf_hvm_list_lock);
2145
2146 kmem_free(path, MAXPATHLEN);
2147 }
2148
2149 static void
2150 xdf_hvm_rm(dev_info_t *dip)
2151 {
2152 xdf_hvm_entry_t *i;
2153
2154 mutex_enter(&xdf_hvm_list_lock);
2155 VERIFY((i = i_xdf_hvm_find(NULL, dip)) != NULL);
2156 list_remove(&xdf_hvm_list, i);
2157 mutex_exit(&xdf_hvm_list_lock);
2158
2159 kmem_free(i->xdf_he_path, strlen(i->xdf_he_path) + 1);
2160 kmem_free(i, sizeof (*i));
2161 }
2162
2163 static void
2164 xdf_hvm_init(void)
2165 {
2166 list_create(&xdf_hvm_list, sizeof (xdf_hvm_entry_t),
2167 offsetof(xdf_hvm_entry_t, xdf_he_list));
2168 mutex_init(&xdf_hvm_list_lock, NULL, MUTEX_DEFAULT, NULL);
2169 }
2170
2171 static void
2172 xdf_hvm_fini(void)
2173 {
2174 ASSERT(list_head(&xdf_hvm_list) == NULL);
2175 list_destroy(&xdf_hvm_list);
2176 mutex_destroy(&xdf_hvm_list_lock);
2177 }
2178
2179 boolean_t
2180 xdf_hvm_connect(dev_info_t *dip)
2181 {
2182 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip);
2183 char *oename, *str;
2184 int rv;
2185
2186 mutex_enter(&vdp->xdf_cb_lk);
2187
2188 /*
2189 * Before try to establish a connection we need to wait for the
2190 * backend hotplug scripts to have run. Once they are run the
2191 * "<oename>/hotplug-status" property will be set to "connected".
2192 */
2193 for (;;) {
2194 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk));
2195
2196 /*
2197 * Get the xenbus path to the backend device. Note that
2198 * we can't cache this path (and we look it up on each pass
2199 * through this loop) because it could change during
2200 * suspend, resume, and migration operations.
2201 */
2202 if ((oename = xvdi_get_oename(dip)) == NULL) {
2203 mutex_exit(&vdp->xdf_cb_lk);
2204 return (B_FALSE);
2205 }
2206
2207 str = NULL;
2208 if ((xenbus_read_str(oename, XBP_HP_STATUS, &str) == 0) &&
2209 (strcmp(str, XBV_HP_STATUS_CONN) == 0))
2210 break;
2211
2212 if (str != NULL)
2213 strfree(str);
2214
2215 /* wait for an update to "<oename>/hotplug-status" */
2216 if (cv_wait_sig(&vdp->xdf_hp_status_cv, &vdp->xdf_cb_lk) == 0) {
2217 /* we got interrupted by a signal */
2218 mutex_exit(&vdp->xdf_cb_lk);
2219 return (B_FALSE);
2220 }
2221 }
2222
2223 /* Good news. The backend hotplug scripts have been run. */
2224 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk));
2225 ASSERT(strcmp(str, XBV_HP_STATUS_CONN) == 0);
2226 strfree(str);
2227
2228 /*
2229 * If we're emulating a cd device and if the backend doesn't support
2230 * media request opreations, then we're not going to bother trying
2231 * to establish a connection for a couple reasons. First off, media
2232 * requests support is required to support operations like eject and
2233 * media locking. Second, other backend platforms like Linux don't
2234 * support hvm pv cdrom access. They don't even have a backend pv
2235 * driver for cdrom device nodes, so we don't want to block forever
2236 * waiting for a connection to a backend driver that doesn't exist.
2237 */
2238 if (XD_IS_CD(vdp) && !xenbus_exists(oename, XBP_MEDIA_REQ_SUP)) {
2239 mutex_exit(&vdp->xdf_cb_lk);
2240 return (B_FALSE);
2241 }
2242
2243 mutex_enter(&vdp->xdf_dev_lk);
2244 rv = xdf_connect_locked(vdp, B_TRUE);
2245 mutex_exit(&vdp->xdf_dev_lk);
2246 mutex_exit(&vdp->xdf_cb_lk);
2247
2248 return ((rv == XD_READY) ? B_TRUE : B_FALSE);
2249 }
2250
2251 int
2252 xdf_hvm_setpgeom(dev_info_t *dip, cmlb_geom_t *geomp)
2253 {
2254 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip);
2255
2256 /* sanity check the requested physical geometry */
2257 mutex_enter(&vdp->xdf_dev_lk);
2258 if ((geomp->g_secsize != XB_BSIZE) ||
2259 (geomp->g_capacity == 0)) {
2260 mutex_exit(&vdp->xdf_dev_lk);
2261 return (EINVAL);
2262 }
2263
2264 /*
2265 * If we've already connected to the backend device then make sure
2266 * we're not defining a physical geometry larger than our backend
2267 * device.
2268 */
2269 if ((vdp->xdf_xdev_nblocks != 0) &&
2270 (geomp->g_capacity > vdp->xdf_xdev_nblocks)) {
2271 mutex_exit(&vdp->xdf_dev_lk);
2272 return (EINVAL);
2273 }
2274
2275 bzero(&vdp->xdf_pgeom, sizeof (vdp->xdf_pgeom));
2276 vdp->xdf_pgeom.g_ncyl = geomp->g_ncyl;
2277 vdp->xdf_pgeom.g_acyl = geomp->g_acyl;
2278 vdp->xdf_pgeom.g_nhead = geomp->g_nhead;
2279 vdp->xdf_pgeom.g_nsect = geomp->g_nsect;
2280 vdp->xdf_pgeom.g_secsize = geomp->g_secsize;
2281 vdp->xdf_pgeom.g_capacity = geomp->g_capacity;
2282 vdp->xdf_pgeom.g_intrlv = geomp->g_intrlv;
2283 vdp->xdf_pgeom.g_rpm = geomp->g_rpm;
2284
2285 vdp->xdf_pgeom_fixed = B_TRUE;
2286 mutex_exit(&vdp->xdf_dev_lk);
2287
2288 /* force a re-validation */
2289 cmlb_invalidate(vdp->xdf_vd_lbl, NULL);
2290
2291 return (0);
2292 }
2293
2294 boolean_t
2295 xdf_is_cd(dev_info_t *dip)
2296 {
2297 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip);
2298 boolean_t rv;
2299
2300 mutex_enter(&vdp->xdf_cb_lk);
2301 rv = XD_IS_CD(vdp);
2302 mutex_exit(&vdp->xdf_cb_lk);
2303 return (rv);
2304 }
2305
2306 boolean_t
2307 xdf_is_rm(dev_info_t *dip)
2308 {
2309 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip);
2310 boolean_t rv;
2311
2312 mutex_enter(&vdp->xdf_cb_lk);
2313 rv = XD_IS_RM(vdp);
2314 mutex_exit(&vdp->xdf_cb_lk);
2315 return (rv);
2316 }
2317
2318 boolean_t
2319 xdf_media_req_supported(dev_info_t *dip)
2320 {
2321 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip);
2322 boolean_t rv;
2323
2324 mutex_enter(&vdp->xdf_cb_lk);
2325 rv = vdp->xdf_media_req_supported;
2326 mutex_exit(&vdp->xdf_cb_lk);
2327 return (rv);
2328 }
2329
2330 #endif /* XPV_HVM_DRIVER */
2331
2332 static int
2333 xdf_lb_getcap(dev_info_t *dip, diskaddr_t *capp)
2334 {
2335 xdf_t *vdp;
2336 vdp = ddi_get_soft_state(xdf_ssp, ddi_get_instance(dip));
2337
2338 if (vdp == NULL)
2339 return (ENXIO);
2340
2341 mutex_enter(&vdp->xdf_dev_lk);
2342 *capp = vdp->xdf_pgeom.g_capacity;
2343 DPRINTF(LBL_DBG, ("xdf@%s:capacity %llu\n", vdp->xdf_addr, *capp));
2344 mutex_exit(&vdp->xdf_dev_lk);
2345 return (0);
2346 }
2347
2348 static int
2349 xdf_lb_getpgeom(dev_info_t *dip, cmlb_geom_t *geomp)
2350 {
2351 xdf_t *vdp;
2352
2353 if ((vdp = ddi_get_soft_state(xdf_ssp, ddi_get_instance(dip))) == NULL)
2354 return (ENXIO);
2355 *geomp = vdp->xdf_pgeom;
2356 return (0);
2357 }
2358
2359 /*
2360 * No real HBA, no geometry available from it
2361 */
2362 /*ARGSUSED*/
2363 static int
2364 xdf_lb_getvgeom(dev_info_t *dip, cmlb_geom_t *geomp)
2365 {
2366 return (EINVAL);
2367 }
2368
2369 static int
2370 xdf_lb_getattribute(dev_info_t *dip, tg_attribute_t *tgattributep)
2371 {
2372 xdf_t *vdp;
2373
2374 if (!(vdp = ddi_get_soft_state(xdf_ssp, ddi_get_instance(dip))))
2375 return (ENXIO);
2376
2377 if (XD_IS_RO(vdp))
2378 tgattributep->media_is_writable = 0;
2379 else
2380 tgattributep->media_is_writable = 1;
2381 tgattributep->media_is_rotational = 0;
2382 return (0);
2383 }
2384
2385 /* ARGSUSED3 */
2386 int
2387 xdf_lb_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie)
2388 {
2389 int instance;
2390 xdf_t *vdp;
2391
2392 instance = ddi_get_instance(dip);
2393
2394 if ((vdp = ddi_get_soft_state(xdf_ssp, instance)) == NULL)
2395 return (ENXIO);
2396
2397 switch (cmd) {
2398 case TG_GETPHYGEOM:
2399 return (xdf_lb_getpgeom(dip, (cmlb_geom_t *)arg));
2400 case TG_GETVIRTGEOM:
2401 return (xdf_lb_getvgeom(dip, (cmlb_geom_t *)arg));
2402 case TG_GETCAPACITY:
2403 return (xdf_lb_getcap(dip, (diskaddr_t *)arg));
2404 case TG_GETBLOCKSIZE:
2405 mutex_enter(&vdp->xdf_cb_lk);
2406 *(uint32_t *)arg = vdp->xdf_xdev_secsize;
2407 mutex_exit(&vdp->xdf_cb_lk);
2408 return (0);
2409 case TG_GETATTR:
2410 return (xdf_lb_getattribute(dip, (tg_attribute_t *)arg));
2411 default:
2412 return (ENOTTY);
2413 }
2414 }
2415
2416 /* ARGSUSED5 */
2417 int
2418 xdf_lb_rdwr(dev_info_t *dip, uchar_t cmd, void *bufp,
2419 diskaddr_t start, size_t reqlen, void *tg_cookie)
2420 {
2421 xdf_t *vdp;
2422 struct buf *bp;
2423 int err = 0;
2424
2425 vdp = ddi_get_soft_state(xdf_ssp, ddi_get_instance(dip));
2426
2427 /* We don't allow IO from the oe_change callback thread */
2428 ASSERT(curthread != vdp->xdf_oe_change_thread);
2429
2430 /*
2431 * Having secsize of 0 means that device isn't connected yet.
2432 * FIXME This happens for CD devices, and there's nothing we
2433 * can do about it at the moment.
2434 */
2435 if (vdp->xdf_xdev_secsize == 0)
2436 return (EIO);
2437
2438 if ((start + ((reqlen / (vdp->xdf_xdev_secsize / DEV_BSIZE))
2439 >> DEV_BSHIFT)) > vdp->xdf_pgeom.g_capacity)
2440 return (EINVAL);
2441
2442 bp = getrbuf(KM_SLEEP);
2443 if (cmd == TG_READ)
2444 bp->b_flags = B_BUSY | B_READ;
2445 else
2446 bp->b_flags = B_BUSY | B_WRITE;
2447
2448 bp->b_un.b_addr = bufp;
2449 bp->b_bcount = reqlen;
2450 bp->b_blkno = start * (vdp->xdf_xdev_secsize / DEV_BSIZE);
2451 bp->b_edev = DDI_DEV_T_NONE; /* don't have dev_t */
2452
2453 mutex_enter(&vdp->xdf_dev_lk);
2454 xdf_bp_push(vdp, bp);
2455 mutex_exit(&vdp->xdf_dev_lk);
2456 xdf_io_start(vdp);
2457 if (curthread == vdp->xdf_ready_tq_thread)
2458 (void) xdf_ring_drain(vdp);
2459 err = biowait(bp);
2460 ASSERT(bp->b_flags & B_DONE);
2461 freerbuf(bp);
2462 return (err);
2463 }
2464
2465 /*
2466 * Lock the current media. Set the media state to "lock".
2467 * (Media locks are only respected by the backend driver.)
2468 */
2469 static int
2470 xdf_ioctl_mlock(xdf_t *vdp)
2471 {
2472 int rv;
2473 mutex_enter(&vdp->xdf_cb_lk);
2474 rv = xdf_media_req(vdp, XBV_MEDIA_REQ_LOCK, B_TRUE);
2475 mutex_exit(&vdp->xdf_cb_lk);
2476 return (rv);
2477 }
2478
2479 /*
2480 * Release a media lock. Set the media state to "none".
2481 */
2482 static int
2483 xdf_ioctl_munlock(xdf_t *vdp)
2484 {
2485 int rv;
2486 mutex_enter(&vdp->xdf_cb_lk);
2487 rv = xdf_media_req(vdp, XBV_MEDIA_REQ_NONE, B_TRUE);
2488 mutex_exit(&vdp->xdf_cb_lk);
2489 return (rv);
2490 }
2491
2492 /*
2493 * Eject the current media. Ignores any media locks. (Media locks
2494 * are only for benifit of the the backend.)
2495 */
2496 static int
2497 xdf_ioctl_eject(xdf_t *vdp)
2498 {
2499 int rv;
2500
2501 mutex_enter(&vdp->xdf_cb_lk);
2502 if ((rv = xdf_media_req(vdp, XBV_MEDIA_REQ_EJECT, B_FALSE)) != 0) {
2503 mutex_exit(&vdp->xdf_cb_lk);
2504 return (rv);
2505 }
2506
2507 /*
2508 * We've set the media requests xenbus parameter to eject, so now
2509 * disconnect from the backend, wait for the backend to clear
2510 * the media requets xenbus paramter, and then we can reconnect
2511 * to the backend.
2512 */
2513 (void) xdf_disconnect(vdp, XD_UNKNOWN, B_TRUE);
2514 mutex_enter(&vdp->xdf_dev_lk);
2515 if (xdf_connect_locked(vdp, B_TRUE) != XD_READY) {
2516 mutex_exit(&vdp->xdf_dev_lk);
2517 mutex_exit(&vdp->xdf_cb_lk);
2518 return (EIO);
2519 }
2520 mutex_exit(&vdp->xdf_dev_lk);
2521 mutex_exit(&vdp->xdf_cb_lk);
2522 return (0);
2523 }
2524
2525 /*
2526 * Watch for media state changes. This can be an insertion of a device
2527 * (triggered by a 'xm block-configure' request in another domain) or
2528 * the ejection of a device (triggered by a local "eject" operation).
2529 * For a full description of the DKIOCSTATE ioctl behavior see dkio(7I).
2530 */
2531 static int
2532 xdf_dkstate(xdf_t *vdp, enum dkio_state mstate)
2533 {
2534 enum dkio_state prev_state;
2535
2536 mutex_enter(&vdp->xdf_cb_lk);
2537 prev_state = vdp->xdf_mstate;
2538
2539 if (vdp->xdf_mstate == mstate) {
2540 while (vdp->xdf_mstate == prev_state) {
2541 if (cv_wait_sig(&vdp->xdf_mstate_cv,
2542 &vdp->xdf_cb_lk) == 0) {
2543 mutex_exit(&vdp->xdf_cb_lk);
2544 return (EINTR);
2545 }
2546 }
2547 }
2548
2549 if ((prev_state != DKIO_INSERTED) &&
2550 (vdp->xdf_mstate == DKIO_INSERTED)) {
2551 (void) xdf_media_req(vdp, XBV_MEDIA_REQ_LOCK, B_TRUE);
2552 mutex_exit(&vdp->xdf_cb_lk);
2553 return (0);
2554 }
2555
2556 mutex_exit(&vdp->xdf_cb_lk);
2557 return (0);
2558 }
2559
2560 /*ARGSUSED*/
2561 static int
2562 xdf_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
2563 int *rvalp)
2564 {
2565 minor_t minor = getminor(dev);
2566 int part = XDF_PART(minor);
2567 xdf_t *vdp;
2568 int rv;
2569
2570 if (((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL) ||
2571 (!xdf_isopen(vdp, part)))
2572 return (ENXIO);
2573
2574 DPRINTF(IOCTL_DBG, ("xdf@%s:ioctl: cmd %d (0x%x)\n",
2575 vdp->xdf_addr, cmd, cmd));
2576
2577 switch (cmd) {
2578 default:
2579 return (ENOTTY);
2580 case DKIOCG_PHYGEOM:
2581 case DKIOCG_VIRTGEOM:
2582 case DKIOCGGEOM:
2583 case DKIOCSGEOM:
2584 case DKIOCGAPART:
2585 case DKIOCSAPART:
2586 case DKIOCGVTOC:
2587 case DKIOCSVTOC:
2588 case DKIOCPARTINFO:
2589 case DKIOCGEXTVTOC:
2590 case DKIOCSEXTVTOC:
2591 case DKIOCEXTPARTINFO:
2592 case DKIOCGMBOOT:
2593 case DKIOCSMBOOT:
2594 case DKIOCGETEFI:
2595 case DKIOCSETEFI:
2596 case DKIOCSETEXTPART:
2597 case DKIOCPARTITION:
2598 rv = cmlb_ioctl(vdp->xdf_vd_lbl, dev, cmd, arg, mode, credp,
2599 rvalp, NULL);
2600 if (rv != 0)
2601 return (rv);
2602 /*
2603 * If we're labelling the disk, we have to update the geometry
2604 * in the cmlb data structures, and we also have to write a new
2605 * devid to the disk. Note that writing an EFI label currently
2606 * requires 4 ioctls, and devid setup will fail on all but the
2607 * last.
2608 */
2609 if (cmd == DKIOCSEXTVTOC || cmd == DKIOCSVTOC ||
2610 cmd == DKIOCSETEFI) {
2611 rv = cmlb_validate(vdp->xdf_vd_lbl, 0, 0);
2612 if (rv == 0) {
2613 xdf_devid_setup(vdp);
2614 } else {
2615 cmn_err(CE_WARN,
2616 "xdf@%s, labeling failed on validate",
2617 vdp->xdf_addr);
2618 }
2619 }
2620 return (rv);
2621 case FDEJECT:
2622 case DKIOCEJECT:
2623 case CDROMEJECT:
2624 return (xdf_ioctl_eject(vdp));
2625 case DKIOCLOCK:
2626 return (xdf_ioctl_mlock(vdp));
2627 case DKIOCUNLOCK:
2628 return (xdf_ioctl_munlock(vdp));
2629 case CDROMREADOFFSET: {
2630 int offset = 0;
2631 if (!XD_IS_CD(vdp))
2632 return (ENOTTY);
2633 if (ddi_copyout(&offset, (void *)arg, sizeof (int), mode))
2634 return (EFAULT);
2635 return (0);
2636 }
2637 case DKIOCGMEDIAINFO: {
2638 struct dk_minfo media_info;
2639
2640 media_info.dki_lbsize = vdp->xdf_xdev_secsize;
2641 media_info.dki_capacity = vdp->xdf_pgeom.g_capacity;
2642 if (XD_IS_CD(vdp))
2643 media_info.dki_media_type = DK_CDROM;
2644 else
2645 media_info.dki_media_type = DK_FIXED_DISK;
2646
2647 if (ddi_copyout(&media_info, (void *)arg,
2648 sizeof (struct dk_minfo), mode))
2649 return (EFAULT);
2650 return (0);
2651 }
2652 case DKIOCINFO: {
2653 struct dk_cinfo info;
2654
2655 /* controller information */
2656 if (XD_IS_CD(vdp))
2657 info.dki_ctype = DKC_CDROM;
2658 else
2659 info.dki_ctype = DKC_VBD;
2660
2661 info.dki_cnum = 0;
2662 (void) strncpy((char *)(&info.dki_cname), "xdf", 8);
2663
2664 /* unit information */
2665 info.dki_unit = ddi_get_instance(vdp->xdf_dip);
2666 (void) strncpy((char *)(&info.dki_dname), "xdf", 8);
2667 info.dki_flags = DKI_FMTVOL;
2668 info.dki_partition = part;
2669 info.dki_maxtransfer = maxphys / DEV_BSIZE;
2670 info.dki_addr = 0;
2671 info.dki_space = 0;
2672 info.dki_prio = 0;
2673 info.dki_vec = 0;
2674
2675 if (ddi_copyout(&info, (void *)arg, sizeof (info), mode))
2676 return (EFAULT);
2677 return (0);
2678 }
2679 case DKIOCSTATE: {
2680 enum dkio_state mstate;
2681
2682 if (ddi_copyin((void *)arg, &mstate,
2683 sizeof (mstate), mode) != 0)
2684 return (EFAULT);
2685 if ((rv = xdf_dkstate(vdp, mstate)) != 0)
2686 return (rv);
2687 mstate = vdp->xdf_mstate;
2688 if (ddi_copyout(&mstate, (void *)arg,
2689 sizeof (mstate), mode) != 0)
2690 return (EFAULT);
2691 return (0);
2692 }
2693 case DKIOCREMOVABLE: {
2694 int i = BOOLEAN2VOID(XD_IS_RM(vdp));
2695 if (ddi_copyout(&i, (caddr_t)arg, sizeof (i), mode))
2696 return (EFAULT);
2697 return (0);
2698 }
2699 case DKIOCGETWCE: {
2700 int i = BOOLEAN2VOID(XD_IS_RM(vdp));
2701 if (ddi_copyout(&i, (void *)arg, sizeof (i), mode))
2702 return (EFAULT);
2703 return (0);
2704 }
2705 case DKIOCSETWCE: {
2706 int i;
2707 if (ddi_copyin((void *)arg, &i, sizeof (i), mode))
2708 return (EFAULT);
2709 vdp->xdf_wce = VOID2BOOLEAN(i);
2710 return (0);
2711 }
2712 case DKIOCFLUSHWRITECACHE: {
2713 struct dk_callback *dkc = (struct dk_callback *)arg;
2714
2715 if (vdp->xdf_flush_supported) {
2716 rv = xdf_lb_rdwr(vdp->xdf_dip, TG_WRITE,
2717 NULL, 0, 0, (void *)dev);
2718 } else if (vdp->xdf_feature_barrier &&
2719 !xdf_barrier_flush_disable) {
2720 rv = xdf_lb_rdwr(vdp->xdf_dip, TG_WRITE,
2721 vdp->xdf_cache_flush_block, xdf_flush_block,
2722 vdp->xdf_xdev_secsize, (void *)dev);
2723 } else {
2724 return (ENOTTY);
2725 }
2726 if ((mode & FKIOCTL) && (dkc != NULL) &&
2727 (dkc->dkc_callback != NULL)) {
2728 (*dkc->dkc_callback)(dkc->dkc_cookie, rv);
2729 /* need to return 0 after calling callback */
2730 rv = 0;
2731 }
2732 return (rv);
2733 }
2734 }
2735 /*NOTREACHED*/
2736 }
2737
2738 static int
2739 xdf_strategy(struct buf *bp)
2740 {
2741 xdf_t *vdp;
2742 minor_t minor;
2743 diskaddr_t p_blkct, p_blkst;
2744 daddr_t blkno;
2745 ulong_t nblks;
2746 int part;
2747
2748 minor = getminor(bp->b_edev);
2749 part = XDF_PART(minor);
2750 vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor));
2751
2752 mutex_enter(&vdp->xdf_dev_lk);
2753 if (!xdf_isopen(vdp, part)) {
2754 mutex_exit(&vdp->xdf_dev_lk);
2755 xdf_io_err(bp, ENXIO, 0);
2756 return (0);
2757 }
2758
2759 /* We don't allow IO from the oe_change callback thread */
2760 ASSERT(curthread != vdp->xdf_oe_change_thread);
2761
2762 /* Check for writes to a read only device */
2763 if (!IS_READ(bp) && XD_IS_RO(vdp)) {
2764 mutex_exit(&vdp->xdf_dev_lk);
2765 xdf_io_err(bp, EROFS, 0);
2766 return (0);
2767 }
2768
2769 /* Check if this I/O is accessing a partition or the entire disk */
2770 if ((long)bp->b_private == XB_SLICE_NONE) {
2771 /* This I/O is using an absolute offset */
2772 p_blkct = vdp->xdf_xdev_nblocks;
2773 p_blkst = 0;
2774 } else {
2775 /* This I/O is using a partition relative offset */
2776 mutex_exit(&vdp->xdf_dev_lk);
2777 if (cmlb_partinfo(vdp->xdf_vd_lbl, part, &p_blkct,
2778 &p_blkst, NULL, NULL, NULL)) {
2779 xdf_io_err(bp, ENXIO, 0);
2780 return (0);
2781 }
2782 mutex_enter(&vdp->xdf_dev_lk);
2783 }
2784
2785 /*
2786 * Adjust the real blkno and bcount according to the underline
2787 * physical sector size.
2788 */
2789 blkno = bp->b_blkno / (vdp->xdf_xdev_secsize / XB_BSIZE);
2790
2791 /* check for a starting block beyond the disk or partition limit */
2792 if (blkno > p_blkct) {
2793 DPRINTF(IO_DBG, ("xdf@%s: block %lld exceeds VBD size %"PRIu64,
2794 vdp->xdf_addr, (longlong_t)blkno, (uint64_t)p_blkct));
2795 mutex_exit(&vdp->xdf_dev_lk);
2796 xdf_io_err(bp, EINVAL, 0);
2797 return (0);
2798 }
2799
2800 /* Legacy: don't set error flag at this case */
2801 if (blkno == p_blkct) {
2802 mutex_exit(&vdp->xdf_dev_lk);
2803 bp->b_resid = bp->b_bcount;
2804 biodone(bp);
2805 return (0);
2806 }
2807
2808 /* sanitize the input buf */
2809 bioerror(bp, 0);
2810 bp->b_resid = 0;
2811 bp->av_back = bp->av_forw = NULL;
2812
2813 /* Adjust for partial transfer, this will result in an error later */
2814 if (vdp->xdf_xdev_secsize != 0 &&
2815 vdp->xdf_xdev_secsize != XB_BSIZE) {
2816 nblks = bp->b_bcount / vdp->xdf_xdev_secsize;
2817 } else {
2818 nblks = bp->b_bcount >> XB_BSHIFT;
2819 }
2820
2821 if ((blkno + nblks) > p_blkct) {
2822 if (vdp->xdf_xdev_secsize != 0 &&
2823 vdp->xdf_xdev_secsize != XB_BSIZE) {
2824 bp->b_resid =
2825 ((blkno + nblks) - p_blkct) *
2826 vdp->xdf_xdev_secsize;
2827 } else {
2828 bp->b_resid =
2829 ((blkno + nblks) - p_blkct) <<
2830 XB_BSHIFT;
2831 }
2832 bp->b_bcount -= bp->b_resid;
2833 }
2834
2835 DPRINTF(IO_DBG, ("xdf@%s: strategy blk %lld len %lu\n",
2836 vdp->xdf_addr, (longlong_t)blkno, (ulong_t)bp->b_bcount));
2837
2838 /* Fix up the buf struct */
2839 bp->b_flags |= B_BUSY;
2840 bp->b_private = (void *)(uintptr_t)p_blkst;
2841
2842 xdf_bp_push(vdp, bp);
2843 mutex_exit(&vdp->xdf_dev_lk);
2844 xdf_io_start(vdp);
2845 if (do_polled_io)
2846 (void) xdf_ring_drain(vdp);
2847 return (0);
2848 }
2849
2850 /*ARGSUSED*/
2851 static int
2852 xdf_read(dev_t dev, struct uio *uiop, cred_t *credp)
2853 {
2854 xdf_t *vdp;
2855 minor_t minor;
2856 diskaddr_t p_blkcnt;
2857 int part;
2858
2859 minor = getminor(dev);
2860 if ((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL)
2861 return (ENXIO);
2862
2863 DPRINTF(IO_DBG, ("xdf@%s: read offset 0x%"PRIx64"\n",
2864 vdp->xdf_addr, (int64_t)uiop->uio_offset));
2865
2866 part = XDF_PART(minor);
2867 if (!xdf_isopen(vdp, part))
2868 return (ENXIO);
2869
2870 if (cmlb_partinfo(vdp->xdf_vd_lbl, part, &p_blkcnt,
2871 NULL, NULL, NULL, NULL))
2872 return (ENXIO);
2873
2874 if (uiop->uio_loffset >= XB_DTOB(p_blkcnt, vdp))
2875 return (ENOSPC);
2876
2877 if (U_INVAL(uiop))
2878 return (EINVAL);
2879
2880 return (physio(xdf_strategy, NULL, dev, B_READ, xdfmin, uiop));
2881 }
2882
2883 /*ARGSUSED*/
2884 static int
2885 xdf_write(dev_t dev, struct uio *uiop, cred_t *credp)
2886 {
2887 xdf_t *vdp;
2888 minor_t minor;
2889 diskaddr_t p_blkcnt;
2890 int part;
2891
2892 minor = getminor(dev);
2893 if ((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL)
2894 return (ENXIO);
2895
2896 DPRINTF(IO_DBG, ("xdf@%s: write offset 0x%"PRIx64"\n",
2897 vdp->xdf_addr, (int64_t)uiop->uio_offset));
2898
2899 part = XDF_PART(minor);
2900 if (!xdf_isopen(vdp, part))
2901 return (ENXIO);
2902
2903 if (cmlb_partinfo(vdp->xdf_vd_lbl, part, &p_blkcnt,
2904 NULL, NULL, NULL, NULL))
2905 return (ENXIO);
2906
2907 if (uiop->uio_loffset >= XB_DTOB(p_blkcnt, vdp))
2908 return (ENOSPC);
2909
2910 if (U_INVAL(uiop))
2911 return (EINVAL);
2912
2913 return (physio(xdf_strategy, NULL, dev, B_WRITE, xdfmin, uiop));
2914 }
2915
2916 /*ARGSUSED*/
2917 static int
2918 xdf_aread(dev_t dev, struct aio_req *aiop, cred_t *credp)
2919 {
2920 xdf_t *vdp;
2921 minor_t minor;
2922 struct uio *uiop = aiop->aio_uio;
2923 diskaddr_t p_blkcnt;
2924 int part;
2925
2926 minor = getminor(dev);
2927 if ((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL)
2928 return (ENXIO);
2929
2930 part = XDF_PART(minor);
2931 if (!xdf_isopen(vdp, part))
2932 return (ENXIO);
2933
2934 if (cmlb_partinfo(vdp->xdf_vd_lbl, part, &p_blkcnt,
2935 NULL, NULL, NULL, NULL))
2936 return (ENXIO);
2937
2938 if (uiop->uio_loffset >= XB_DTOB(p_blkcnt, vdp))
2939 return (ENOSPC);
2940
2941 if (U_INVAL(uiop))
2942 return (EINVAL);
2943
2944 return (aphysio(xdf_strategy, anocancel, dev, B_READ, xdfmin, aiop));
2945 }
2946
2947 /*ARGSUSED*/
2948 static int
2949 xdf_awrite(dev_t dev, struct aio_req *aiop, cred_t *credp)
2950 {
2951 xdf_t *vdp;
2952 minor_t minor;
2953 struct uio *uiop = aiop->aio_uio;
2954 diskaddr_t p_blkcnt;
2955 int part;
2956
2957 minor = getminor(dev);
2958 if ((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL)
2959 return (ENXIO);
2960
2961 part = XDF_PART(minor);
2962 if (!xdf_isopen(vdp, part))
2963 return (ENXIO);
2964
2965 if (cmlb_partinfo(vdp->xdf_vd_lbl, part, &p_blkcnt,
2966 NULL, NULL, NULL, NULL))
2967 return (ENXIO);
2968
2969 if (uiop->uio_loffset >= XB_DTOB(p_blkcnt, vdp))
2970 return (ENOSPC);
2971
2972 if (U_INVAL(uiop))
2973 return (EINVAL);
2974
2975 return (aphysio(xdf_strategy, anocancel, dev, B_WRITE, xdfmin, aiop));
2976 }
2977
2978 static int
2979 xdf_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
2980 {
2981 struct buf dumpbuf, *dbp = &dumpbuf;
2982 xdf_t *vdp;
2983 minor_t minor;
2984 int err = 0;
2985 int part;
2986 diskaddr_t p_blkcnt, p_blkst;
2987
2988 minor = getminor(dev);
2989 if ((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL)
2990 return (ENXIO);
2991
2992 DPRINTF(IO_DBG, ("xdf@%s: dump addr (0x%p) blk (%ld) nblks (%d)\n",
2993 vdp->xdf_addr, (void *)addr, blkno, nblk));
2994
2995 /* We don't allow IO from the oe_change callback thread */
2996 ASSERT(curthread != vdp->xdf_oe_change_thread);
2997
2998 part = XDF_PART(minor);
2999 if (!xdf_isopen(vdp, part))
3000 return (ENXIO);
3001
3002 if (cmlb_partinfo(vdp->xdf_vd_lbl, part, &p_blkcnt, &p_blkst,
3003 NULL, NULL, NULL))
3004 return (ENXIO);
3005
3006 if ((blkno + nblk) >
3007 (p_blkcnt * (vdp->xdf_xdev_secsize / XB_BSIZE))) {
3008 cmn_err(CE_WARN, "xdf@%s: block %ld exceeds VBD size %"PRIu64,
3009 vdp->xdf_addr, (daddr_t)((blkno + nblk) /
3010 (vdp->xdf_xdev_secsize / XB_BSIZE)), (uint64_t)p_blkcnt);
3011 return (EINVAL);
3012 }
3013
3014 bioinit(dbp);
3015 dbp->b_flags = B_BUSY;
3016 dbp->b_un.b_addr = addr;
3017 dbp->b_bcount = nblk << DEV_BSHIFT;
3018 dbp->b_blkno = blkno;
3019 dbp->b_edev = dev;
3020 dbp->b_private = (void *)(uintptr_t)p_blkst;
3021
3022 mutex_enter(&vdp->xdf_dev_lk);
3023 xdf_bp_push(vdp, dbp);
3024 mutex_exit(&vdp->xdf_dev_lk);
3025 xdf_io_start(vdp);
3026 err = xdf_ring_drain(vdp);
3027 biofini(dbp);
3028 return (err);
3029 }
3030
3031 /*ARGSUSED*/
3032 static int
3033 xdf_close(dev_t dev, int flag, int otyp, struct cred *credp)
3034 {
3035 minor_t minor;
3036 xdf_t *vdp;
3037 int part;
3038 ulong_t parbit;
3039
3040 minor = getminor(dev);
3041 if ((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL)
3042 return (ENXIO);
3043
3044 mutex_enter(&vdp->xdf_dev_lk);
3045 part = XDF_PART(minor);
3046 if (!xdf_isopen(vdp, part)) {
3047 mutex_exit(&vdp->xdf_dev_lk);
3048 return (ENXIO);
3049 }
3050 parbit = 1 << part;
3051
3052 ASSERT((vdp->xdf_vd_open[otyp] & parbit) != 0);
3053 if (otyp == OTYP_LYR) {
3054 ASSERT(vdp->xdf_vd_lyropen[part] > 0);
3055 if (--vdp->xdf_vd_lyropen[part] == 0)
3056 vdp->xdf_vd_open[otyp] &= ~parbit;
3057 } else {
3058 vdp->xdf_vd_open[otyp] &= ~parbit;
3059 }
3060 vdp->xdf_vd_exclopen &= ~parbit;
3061
3062 mutex_exit(&vdp->xdf_dev_lk);
3063 return (0);
3064 }
3065
3066 static int
3067 xdf_open(dev_t *devp, int flag, int otyp, cred_t *credp)
3068 {
3069 minor_t minor;
3070 xdf_t *vdp;
3071 int part;
3072 ulong_t parbit;
3073 diskaddr_t p_blkct = 0;
3074 boolean_t firstopen;
3075 boolean_t nodelay;
3076
3077 minor = getminor(*devp);
3078 if ((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL)
3079 return (ENXIO);
3080
3081 nodelay = (flag & (FNDELAY | FNONBLOCK));
3082
3083 DPRINTF(DDI_DBG, ("xdf@%s: opening\n", vdp->xdf_addr));
3084
3085 /* do cv_wait until connected or failed */
3086 mutex_enter(&vdp->xdf_cb_lk);
3087 mutex_enter(&vdp->xdf_dev_lk);
3088 if (!nodelay && (xdf_connect_locked(vdp, B_TRUE) != XD_READY)) {
3089 mutex_exit(&vdp->xdf_dev_lk);
3090 mutex_exit(&vdp->xdf_cb_lk);
3091 return (ENXIO);
3092 }
3093 mutex_exit(&vdp->xdf_cb_lk);
3094
3095 if ((flag & FWRITE) && XD_IS_RO(vdp)) {
3096 mutex_exit(&vdp->xdf_dev_lk);
3097 return (EROFS);
3098 }
3099
3100 part = XDF_PART(minor);
3101 parbit = 1 << part;
3102 if ((vdp->xdf_vd_exclopen & parbit) ||
3103 ((flag & FEXCL) && xdf_isopen(vdp, part))) {
3104 mutex_exit(&vdp->xdf_dev_lk);
3105 return (EBUSY);
3106 }
3107
3108 /* are we the first one to open this node? */
3109 firstopen = !xdf_isopen(vdp, -1);
3110
3111 if (otyp == OTYP_LYR)
3112 vdp->xdf_vd_lyropen[part]++;
3113
3114 vdp->xdf_vd_open[otyp] |= parbit;
3115
3116 if (flag & FEXCL)
3117 vdp->xdf_vd_exclopen |= parbit;
3118
3119 mutex_exit(&vdp->xdf_dev_lk);
3120
3121 /* force a re-validation */
3122 if (firstopen)
3123 cmlb_invalidate(vdp->xdf_vd_lbl, NULL);
3124
3125 /* If this is a non-blocking open then we're done */
3126 if (nodelay)
3127 return (0);
3128
3129 /*
3130 * This is a blocking open, so we require:
3131 * - that the disk have a valid label on it
3132 * - that the size of the partition that we're opening is non-zero
3133 */
3134 if ((cmlb_partinfo(vdp->xdf_vd_lbl, part, &p_blkct,
3135 NULL, NULL, NULL, NULL) != 0) || (p_blkct == 0)) {
3136 (void) xdf_close(*devp, flag, otyp, credp);
3137 return (ENXIO);
3138 }
3139
3140 return (0);
3141 }
3142
3143 /*ARGSUSED*/
3144 static void
3145 xdf_watch_hp_status_cb(dev_info_t *dip, const char *path, void *arg)
3146 {
3147 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip);
3148 cv_broadcast(&vdp->xdf_hp_status_cv);
3149 }
3150
3151 static int
3152 xdf_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int flags,
3153 char *name, caddr_t valuep, int *lengthp)
3154 {
3155 xdf_t *vdp = ddi_get_soft_state(xdf_ssp, ddi_get_instance(dip));
3156
3157 /*
3158 * Sanity check that if a dev_t or dip were specified that they
3159 * correspond to this device driver. On debug kernels we'll
3160 * panic and on non-debug kernels we'll return failure.
3161 */
3162 ASSERT(ddi_driver_major(dip) == xdf_major);
3163 ASSERT((dev == DDI_DEV_T_ANY) || (getmajor(dev) == xdf_major));
3164 if ((ddi_driver_major(dip) != xdf_major) ||
3165 ((dev != DDI_DEV_T_ANY) && (getmajor(dev) != xdf_major)))
3166 return (DDI_PROP_NOT_FOUND);
3167
3168 if (vdp == NULL)
3169 return (ddi_prop_op(dev, dip, prop_op, flags,
3170 name, valuep, lengthp));
3171
3172 return (cmlb_prop_op(vdp->xdf_vd_lbl,
3173 dev, dip, prop_op, flags, name, valuep, lengthp,
3174 XDF_PART(getminor(dev)), NULL));
3175 }
3176
3177 /*ARGSUSED*/
3178 static int
3179 xdf_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **rp)
3180 {
3181 int instance = XDF_INST(getminor((dev_t)arg));
3182 xdf_t *vbdp;
3183
3184 switch (cmd) {
3185 case DDI_INFO_DEVT2DEVINFO:
3186 if ((vbdp = ddi_get_soft_state(xdf_ssp, instance)) == NULL) {
3187 *rp = NULL;
3188 return (DDI_FAILURE);
3189 }
3190 *rp = vbdp->xdf_dip;
3191 return (DDI_SUCCESS);
3192
3193 case DDI_INFO_DEVT2INSTANCE:
3194 *rp = (void *)(uintptr_t)instance;
3195 return (DDI_SUCCESS);
3196
3197 default:
3198 return (DDI_FAILURE);
3199 }
3200 }
3201
3202 /*ARGSUSED*/
3203 static int
3204 xdf_resume(dev_info_t *dip)
3205 {
3206 xdf_t *vdp;
3207 char *oename;
3208
3209 if ((vdp = ddi_get_soft_state(xdf_ssp, ddi_get_instance(dip))) == NULL)
3210 goto err;
3211
3212 if (xdf_debug & SUSRES_DBG)
3213 xen_printf("xdf@%s: xdf_resume\n", vdp->xdf_addr);
3214
3215 mutex_enter(&vdp->xdf_cb_lk);
3216
3217 if (xvdi_resume(dip) != DDI_SUCCESS) {
3218 mutex_exit(&vdp->xdf_cb_lk);
3219 goto err;
3220 }
3221
3222 if (((oename = xvdi_get_oename(dip)) == NULL) ||
3223 (xvdi_add_xb_watch_handler(dip, oename, XBP_HP_STATUS,
3224 xdf_watch_hp_status_cb, NULL) != DDI_SUCCESS)) {
3225 mutex_exit(&vdp->xdf_cb_lk);
3226 goto err;
3227 }
3228
3229 mutex_enter(&vdp->xdf_dev_lk);
3230 ASSERT(vdp->xdf_state != XD_READY);
3231 xdf_set_state(vdp, XD_UNKNOWN);
3232 mutex_exit(&vdp->xdf_dev_lk);
3233
3234 if (xdf_setstate_init(vdp) != DDI_SUCCESS) {
3235 mutex_exit(&vdp->xdf_cb_lk);
3236 goto err;
3237 }
3238
3239 mutex_exit(&vdp->xdf_cb_lk);
3240
3241 if (xdf_debug & SUSRES_DBG)
3242 xen_printf("xdf@%s: xdf_resume: done\n", vdp->xdf_addr);
3243 return (DDI_SUCCESS);
3244 err:
3245 if (xdf_debug & SUSRES_DBG)
3246 xen_printf("xdf@%s: xdf_resume: fail\n", vdp->xdf_addr);
3247 return (DDI_FAILURE);
3248 }
3249
3250 /*
3251 * Uses the in-memory devid if one exists.
3252 *
3253 * Create a devid and write it on the first block of the last track of
3254 * the last cylinder.
3255 * Return DDI_SUCCESS or DDI_FAILURE.
3256 */
3257 static int
3258 xdf_devid_fabricate(xdf_t *vdp)
3259 {
3260 ddi_devid_t devid = vdp->xdf_tgt_devid; /* null if no devid */
3261 struct dk_devid *dkdevidp = NULL; /* devid struct stored on disk */
3262 diskaddr_t blk;
3263 uint_t *ip, chksum;
3264 int i, devid_size;
3265
3266 if (cmlb_get_devid_block(vdp->xdf_vd_lbl, &blk, NULL) != 0)
3267 goto err;
3268
3269 if (devid == NULL && ddi_devid_init(vdp->xdf_dip, DEVID_FAB, 0,
3270 NULL, &devid) != DDI_SUCCESS)
3271 goto err;
3272
3273 /* allocate a buffer */
3274 dkdevidp = (struct dk_devid *)kmem_zalloc(NBPSCTR, KM_SLEEP);
3275
3276 /* Fill in the revision */
3277 dkdevidp->dkd_rev_hi = DK_DEVID_REV_MSB;
3278 dkdevidp->dkd_rev_lo = DK_DEVID_REV_LSB;
3279
3280 /* Copy in the device id */
3281 devid_size = ddi_devid_sizeof(devid);
3282 if (devid_size > DK_DEVID_SIZE)
3283 goto err;
3284 bcopy(devid, dkdevidp->dkd_devid, devid_size);
3285
3286 /* Calculate the chksum */
3287 chksum = 0;
3288 ip = (uint_t *)dkdevidp;
3289 for (i = 0; i < (NBPSCTR / sizeof (int)) - 1; i++)
3290 chksum ^= ip[i];
3291
3292 /* Fill in the checksum */
3293 DKD_FORMCHKSUM(chksum, dkdevidp);
3294
3295 if (xdf_lb_rdwr(vdp->xdf_dip, TG_WRITE, dkdevidp, blk,
3296 NBPSCTR, NULL) != 0)
3297 goto err;
3298
3299 kmem_free(dkdevidp, NBPSCTR);
3300
3301 vdp->xdf_tgt_devid = devid;
3302 return (DDI_SUCCESS);
3303
3304 err:
3305 if (dkdevidp != NULL)
3306 kmem_free(dkdevidp, NBPSCTR);
3307 if (devid != NULL && vdp->xdf_tgt_devid == NULL)
3308 ddi_devid_free(devid);
3309 return (DDI_FAILURE);
3310 }
3311
3312 /*
3313 * xdf_devid_read() is a local copy of xdfs_devid_read(), modified to use xdf
3314 * functions.
3315 *
3316 * Read a devid from on the first block of the last track of
3317 * the last cylinder. Make sure what we read is a valid devid.
3318 * Return DDI_SUCCESS or DDI_FAILURE.
3319 */
3320 static int
3321 xdf_devid_read(xdf_t *vdp)
3322 {
3323 diskaddr_t blk;
3324 struct dk_devid *dkdevidp;
3325 uint_t *ip, chksum;
3326 int i;
3327
3328 if (cmlb_get_devid_block(vdp->xdf_vd_lbl, &blk, NULL) != 0)
3329 return (DDI_FAILURE);
3330
3331 dkdevidp = kmem_zalloc(NBPSCTR, KM_SLEEP);
3332 if (xdf_lb_rdwr(vdp->xdf_dip, TG_READ, dkdevidp, blk,
3333 NBPSCTR, NULL) != 0)
3334 goto err;
3335
3336 /* Validate the revision */
3337 if ((dkdevidp->dkd_rev_hi != DK_DEVID_REV_MSB) ||
3338 (dkdevidp->dkd_rev_lo != DK_DEVID_REV_LSB))
3339 goto err;
3340
3341 /* Calculate the checksum */
3342 chksum = 0;
3343 ip = (uint_t *)dkdevidp;
3344 for (i = 0; i < (NBPSCTR / sizeof (int)) - 1; i++)
3345 chksum ^= ip[i];
3346 if (DKD_GETCHKSUM(dkdevidp) != chksum)
3347 goto err;
3348
3349 /* Validate the device id */
3350 if (ddi_devid_valid((ddi_devid_t)dkdevidp->dkd_devid) != DDI_SUCCESS)
3351 goto err;
3352
3353 /* keep a copy of the device id */
3354 i = ddi_devid_sizeof((ddi_devid_t)dkdevidp->dkd_devid);
3355 vdp->xdf_tgt_devid = kmem_alloc(i, KM_SLEEP);
3356 bcopy(dkdevidp->dkd_devid, vdp->xdf_tgt_devid, i);
3357 kmem_free(dkdevidp, NBPSCTR);
3358 return (DDI_SUCCESS);
3359
3360 err:
3361 kmem_free(dkdevidp, NBPSCTR);
3362 return (DDI_FAILURE);
3363 }
3364
3365 /*
3366 * xdf_devid_setup() is a modified copy of cmdk_devid_setup().
3367 *
3368 * This function creates a devid if we don't already have one, and
3369 * registers it. If we already have one, we make sure that it can be
3370 * read from the disk, otherwise we write it to the disk ourselves. If
3371 * we didn't already have a devid, and we create one, we also need to
3372 * register it.
3373 */
3374 void
3375 xdf_devid_setup(xdf_t *vdp)
3376 {
3377 int rc;
3378 boolean_t existed = vdp->xdf_tgt_devid != NULL;
3379
3380 /* Read devid from the disk, if present */
3381 rc = xdf_devid_read(vdp);
3382
3383 /* Otherwise write a devid (which we create if necessary) on the disk */
3384 if (rc != DDI_SUCCESS)
3385 rc = xdf_devid_fabricate(vdp);
3386
3387 /* If we created a devid or found it on the disk, register it */
3388 if (rc == DDI_SUCCESS && !existed)
3389 (void) ddi_devid_register(vdp->xdf_dip, vdp->xdf_tgt_devid);
3390 }
3391
3392 static int
3393 xdf_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3394 {
3395 int n, instance = ddi_get_instance(dip);
3396 ddi_iblock_cookie_t ibc, softibc;
3397 boolean_t dev_iscd = B_FALSE;
3398 xdf_t *vdp;
3399 char *oename, *xsname, *str;
3400 clock_t timeout;
3401 int err = 0;
3402
3403 if ((n = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_NOTPROM,
3404 "xdf_debug", 0)) != 0)
3405 xdf_debug = n;
3406
3407 switch (cmd) {
3408 case DDI_RESUME:
3409 return (xdf_resume(dip));
3410 case DDI_ATTACH:
3411 break;
3412 default:
3413 return (DDI_FAILURE);
3414 }
3415 /* DDI_ATTACH */
3416
3417 if ((xsname = xvdi_get_xsname(dip)) == NULL ||
3418 (oename = xvdi_get_oename(dip)) == NULL)
3419 return (DDI_FAILURE);
3420
3421 /*
3422 * Disable auto-detach. This is necessary so that we don't get
3423 * detached while we're disconnected from the back end.
3424 */
3425 if ((ddi_prop_update_int(DDI_DEV_T_NONE, dip,
3426 DDI_NO_AUTODETACH, 1) != DDI_PROP_SUCCESS))
3427 return (DDI_FAILURE);
3428
3429 /* driver handles kernel-issued IOCTLs */
3430 if (ddi_prop_create(DDI_DEV_T_NONE, dip,
3431 DDI_PROP_CANSLEEP, DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS)
3432 return (DDI_FAILURE);
3433
3434 if (ddi_get_iblock_cookie(dip, 0, &ibc) != DDI_SUCCESS)
3435 return (DDI_FAILURE);
3436
3437 if (ddi_get_soft_iblock_cookie(dip,
3438 DDI_SOFTINT_LOW, &softibc) != DDI_SUCCESS)
3439 return (DDI_FAILURE);
3440
3441 if (xenbus_read_str(xsname, XBP_DEV_TYPE, &str) != 0) {
3442 cmn_err(CE_WARN, "xdf@%s: cannot read device-type",
3443 ddi_get_name_addr(dip));
3444 return (DDI_FAILURE);
3445 }
3446 if (strcmp(str, XBV_DEV_TYPE_CD) == 0)
3447 dev_iscd = B_TRUE;
3448 strfree(str);
3449
3450 if (ddi_soft_state_zalloc(xdf_ssp, instance) != DDI_SUCCESS)
3451 return (DDI_FAILURE);
3452
3453 DPRINTF(DDI_DBG, ("xdf@%s: attaching\n", ddi_get_name_addr(dip)));
3454 vdp = ddi_get_soft_state(xdf_ssp, instance);
3455 ddi_set_driver_private(dip, vdp);
3456 vdp->xdf_dip = dip;
3457 vdp->xdf_addr = ddi_get_name_addr(dip);
3458 vdp->xdf_suspending = B_FALSE;
3459 vdp->xdf_media_req_supported = B_FALSE;
3460 vdp->xdf_peer = INVALID_DOMID;
3461 vdp->xdf_evtchn = INVALID_EVTCHN;
3462 list_create(&vdp->xdf_vreq_act, sizeof (v_req_t),
3463 offsetof(v_req_t, v_link));
3464 cv_init(&vdp->xdf_dev_cv, NULL, CV_DEFAULT, NULL);
3465 cv_init(&vdp->xdf_hp_status_cv, NULL, CV_DEFAULT, NULL);
3466 cv_init(&vdp->xdf_mstate_cv, NULL, CV_DEFAULT, NULL);
3467 mutex_init(&vdp->xdf_dev_lk, NULL, MUTEX_DRIVER, (void *)ibc);
3468 mutex_init(&vdp->xdf_cb_lk, NULL, MUTEX_DRIVER, (void *)ibc);
3469 mutex_init(&vdp->xdf_iostat_lk, NULL, MUTEX_DRIVER, (void *)ibc);
3470 vdp->xdf_cmlb_reattach = B_TRUE;
3471 if (dev_iscd) {
3472 vdp->xdf_dinfo |= VDISK_CDROM;
3473 vdp->xdf_mstate = DKIO_EJECTED;
3474 } else {
3475 vdp->xdf_mstate = DKIO_NONE;
3476 }
3477
3478 if ((vdp->xdf_ready_tq = ddi_taskq_create(dip, "xdf_ready_tq",
3479 1, TASKQ_DEFAULTPRI, 0)) == NULL)
3480 goto errout0;
3481
3482 if (xvdi_add_xb_watch_handler(dip, oename, XBP_HP_STATUS,
3483 xdf_watch_hp_status_cb, NULL) != DDI_SUCCESS)
3484 goto errout0;
3485
3486 if (ddi_add_softintr(dip, DDI_SOFTINT_LOW, &vdp->xdf_softintr_id,
3487 &softibc, NULL, xdf_iorestart, (caddr_t)vdp) != DDI_SUCCESS) {
3488 cmn_err(CE_WARN, "xdf@%s: failed to add softintr",
3489 ddi_get_name_addr(dip));
3490 goto errout0;
3491 }
3492
3493 /*
3494 * Initialize the physical geometry stucture. Note that currently
3495 * we don't know the size of the backend device so the number
3496 * of blocks on the device will be initialized to zero. Once
3497 * we connect to the backend device we'll update the physical
3498 * geometry to reflect the real size of the device.
3499 */
3500 xdf_synthetic_pgeom(dip, &vdp->xdf_pgeom);
3501 vdp->xdf_pgeom_fixed = B_FALSE;
3502
3503 /*
3504 * Allocate the cmlb handle, minor nodes will be created once
3505 * the device is connected with backend.
3506 */
3507 cmlb_alloc_handle(&vdp->xdf_vd_lbl);
3508
3509 /* We ship with cache-enabled disks */
3510 vdp->xdf_wce = B_TRUE;
3511
3512 mutex_enter(&vdp->xdf_cb_lk);
3513 /* Watch backend XenbusState change */
3514 if (xvdi_add_event_handler(dip,
3515 XS_OE_STATE, xdf_oe_change, NULL) != DDI_SUCCESS) {
3516 mutex_exit(&vdp->xdf_cb_lk);
3517 goto errout0;
3518 }
3519
3520 if (xdf_setstate_init(vdp) != DDI_SUCCESS) {
3521 cmn_err(CE_WARN, "xdf@%s: start connection failed",
3522 ddi_get_name_addr(dip));
3523 mutex_exit(&vdp->xdf_cb_lk);
3524 goto errout1;
3525 }
3526
3527 /* Nothing else to do for CD devices */
3528 if (dev_iscd) {
3529 mutex_exit(&vdp->xdf_cb_lk);
3530 goto done;
3531 }
3532
3533 /*
3534 * In order to do cmlb_validate, we have to wait for the disk to
3535 * acknowledge the attach, so we can query the backend for the disk
3536 * geometry (see xdf_setstate_connected).
3537 *
3538 * We only wait 30 seconds; if this is the root disk, the boot
3539 * will fail, but it would fail anyway if the device never
3540 * connected. If this is a non-boot disk, that disk will fail
3541 * to connect, but again, it would fail anyway.
3542 */
3543 timeout = ddi_get_lbolt() + drv_usectohz(XDF_STATE_TIMEOUT);
3544 while (vdp->xdf_state != XD_CONNECTED && vdp->xdf_state != XD_READY) {
3545 if (cv_timedwait(&vdp->xdf_dev_cv, &vdp->xdf_cb_lk,
3546 timeout) < 0) {
3547 cmn_err(CE_WARN, "xdf@%s: disk failed to connect",
3548 ddi_get_name_addr(dip));
3549 mutex_exit(&vdp->xdf_cb_lk);
3550 goto errout1;
3551 }
3552 }
3553 mutex_exit(&vdp->xdf_cb_lk);
3554
3555 /*
3556 * We call cmlb_validate so that the geometry information in
3557 * vdp->xdf_vd_lbl is correct; this fills out the number of
3558 * alternate cylinders so that we have a place to write the
3559 * devid.
3560 */
3561 if ((err = cmlb_validate(vdp->xdf_vd_lbl, 0, NULL)) != 0) {
3562 cmn_err(CE_NOTE,
3563 "xdf@%s: cmlb_validate failed: %d",
3564 ddi_get_name_addr(dip), err);
3565 /*
3566 * We can carry on even if cmlb_validate() returns EINVAL here,
3567 * as we'll rewrite the disk label anyway.
3568 */
3569 if (err != EINVAL)
3570 goto errout1;
3571 }
3572
3573 /*
3574 * xdf_devid_setup will only write a devid if one isn't
3575 * already present. If it fails to find or create one, we
3576 * create one in-memory so that when we label the disk later,
3577 * it will have a devid to use. This is helpful to deal with
3578 * cases where people use the devids of their disks before
3579 * labelling them; note that this does cause problems if
3580 * people rely on the devids of unlabelled disks to persist
3581 * across reboot.
3582 */
3583 xdf_devid_setup(vdp);
3584 if (vdp->xdf_tgt_devid == NULL) {
3585 if (ddi_devid_init(vdp->xdf_dip, DEVID_FAB, 0, NULL,
3586 &vdp->xdf_tgt_devid) != DDI_SUCCESS) {
3587 cmn_err(CE_WARN,
3588 "xdf@%s_ attach failed, devid_init failed",
3589 ddi_get_name_addr(dip));
3590 goto errout1;
3591 } else {
3592 (void) ddi_devid_register(vdp->xdf_dip,
3593 vdp->xdf_tgt_devid);
3594 }
3595 }
3596
3597 done:
3598 #ifdef XPV_HVM_DRIVER
3599 xdf_hvm_add(dip);
3600
3601 /* Report our version to dom0 */
3602 (void) xenbus_printf(XBT_NULL, "guest/xdf", "version", "%d",
3603 HVMPV_XDF_VERS);
3604 #endif /* XPV_HVM_DRIVER */
3605
3606 /* Create kstat for iostat(1M) */
3607 if (xdf_kstat_create(dip) != 0) {
3608 cmn_err(CE_WARN, "xdf@%s: failed to create kstat",
3609 ddi_get_name_addr(dip));
3610 goto errout1;
3611 }
3612
3613 /*
3614 * Don't bother with getting real device identification
3615 * strings (is it even possible?), they are unlikely to
3616 * change often (if at all).
3617 */
3618 (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, INQUIRY_VENDOR_ID,
3619 "Xen");
3620 (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, INQUIRY_PRODUCT_ID,
3621 dev_iscd ? "Virtual CD" : "Virtual disk");
3622 (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, INQUIRY_REVISION_ID,
3623 "1.0");
3624
3625 ddi_report_dev(dip);
3626 DPRINTF(DDI_DBG, ("xdf@%s: attached\n", vdp->xdf_addr));
3627 return (DDI_SUCCESS);
3628
3629 errout1:
3630 (void) xvdi_switch_state(vdp->xdf_dip, XBT_NULL, XenbusStateClosed);
3631 xvdi_remove_event_handler(dip, XS_OE_STATE);
3632 errout0:
3633 if (vdp->xdf_vd_lbl != NULL) {
3634 cmlb_free_handle(&vdp->xdf_vd_lbl);
3635 vdp->xdf_vd_lbl = NULL;
3636 }
3637 if (vdp->xdf_softintr_id != NULL)
3638 ddi_remove_softintr(vdp->xdf_softintr_id);
3639 xvdi_remove_xb_watch_handlers(dip);
3640 if (vdp->xdf_ready_tq != NULL)
3641 ddi_taskq_destroy(vdp->xdf_ready_tq);
3642 mutex_destroy(&vdp->xdf_cb_lk);
3643 mutex_destroy(&vdp->xdf_dev_lk);
3644 cv_destroy(&vdp->xdf_dev_cv);
3645 cv_destroy(&vdp->xdf_hp_status_cv);
3646 ddi_soft_state_free(xdf_ssp, instance);
3647 ddi_set_driver_private(dip, NULL);
3648 ddi_prop_remove_all(dip);
3649 cmn_err(CE_WARN, "xdf@%s: attach failed", ddi_get_name_addr(dip));
3650 return (DDI_FAILURE);
3651 }
3652
3653 static int
3654 xdf_suspend(dev_info_t *dip)
3655 {
3656 int instance = ddi_get_instance(dip);
3657 xdf_t *vdp;
3658
3659 if ((vdp = ddi_get_soft_state(xdf_ssp, instance)) == NULL)
3660 return (DDI_FAILURE);
3661
3662 if (xdf_debug & SUSRES_DBG)
3663 xen_printf("xdf@%s: xdf_suspend\n", vdp->xdf_addr);
3664
3665 xvdi_suspend(dip);
3666
3667 mutex_enter(&vdp->xdf_cb_lk);
3668 mutex_enter(&vdp->xdf_dev_lk);
3669
3670 vdp->xdf_suspending = B_TRUE;
3671 xdf_ring_destroy(vdp);
3672 xdf_set_state(vdp, XD_SUSPEND);
3673 vdp->xdf_suspending = B_FALSE;
3674
3675 mutex_exit(&vdp->xdf_dev_lk);
3676 mutex_exit(&vdp->xdf_cb_lk);
3677
3678 if (xdf_debug & SUSRES_DBG)
3679 xen_printf("xdf@%s: xdf_suspend: done\n", vdp->xdf_addr);
3680
3681 return (DDI_SUCCESS);
3682 }
3683
3684 static int
3685 xdf_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3686 {
3687 xdf_t *vdp;
3688 int instance;
3689
3690 switch (cmd) {
3691
3692 case DDI_PM_SUSPEND:
3693 break;
3694
3695 case DDI_SUSPEND:
3696 return (xdf_suspend(dip));
3697
3698 case DDI_DETACH:
3699 break;
3700
3701 default:
3702 return (DDI_FAILURE);
3703 }
3704
3705 instance = ddi_get_instance(dip);
3706 DPRINTF(DDI_DBG, ("xdf@%s: detaching\n", ddi_get_name_addr(dip)));
3707 vdp = ddi_get_soft_state(xdf_ssp, instance);
3708
3709 if (vdp == NULL)
3710 return (DDI_FAILURE);
3711
3712 mutex_enter(&vdp->xdf_cb_lk);
3713 xdf_disconnect(vdp, XD_CLOSED, B_FALSE);
3714 if (vdp->xdf_state != XD_CLOSED) {
3715 mutex_exit(&vdp->xdf_cb_lk);
3716 return (DDI_FAILURE);
3717 }
3718 mutex_exit(&vdp->xdf_cb_lk);
3719
3720 ASSERT(!ISDMACBON(vdp));
3721
3722 #ifdef XPV_HVM_DRIVER
3723 xdf_hvm_rm(dip);
3724 #endif /* XPV_HVM_DRIVER */
3725
3726 if (vdp->xdf_timeout_id != 0)
3727 (void) untimeout(vdp->xdf_timeout_id);
3728
3729 xvdi_remove_event_handler(dip, XS_OE_STATE);
3730 ddi_taskq_destroy(vdp->xdf_ready_tq);
3731
3732 cmlb_detach(vdp->xdf_vd_lbl, NULL);
3733 cmlb_free_handle(&vdp->xdf_vd_lbl);
3734
3735 /* we'll support backend running in domU later */
3736 #ifdef DOMU_BACKEND
3737 (void) xvdi_post_event(dip, XEN_HP_REMOVE);
3738 #endif
3739
3740 list_destroy(&vdp->xdf_vreq_act);
3741 ddi_prop_remove_all(dip);
3742 xdf_kstat_delete(dip);
3743 ddi_remove_softintr(vdp->xdf_softintr_id);
3744 xvdi_remove_xb_watch_handlers(dip);
3745 ddi_set_driver_private(dip, NULL);
3746 cv_destroy(&vdp->xdf_dev_cv);
3747 mutex_destroy(&vdp->xdf_cb_lk);
3748 mutex_destroy(&vdp->xdf_dev_lk);
3749 if (vdp->xdf_cache_flush_block != NULL)
3750 kmem_free(vdp->xdf_flush_mem, 2 * vdp->xdf_xdev_secsize);
3751 ddi_soft_state_free(xdf_ssp, instance);
3752 return (DDI_SUCCESS);
3753 }
3754
3755 /*
3756 * Driver linkage structures.
3757 */
3758 static struct cb_ops xdf_cbops = {
3759 xdf_open,
3760 xdf_close,
3761 xdf_strategy,
3762 nodev,
3763 xdf_dump,
3764 xdf_read,
3765 xdf_write,
3766 xdf_ioctl,
3767 nodev,
3768 nodev,
3769 nodev,
3770 nochpoll,
3771 xdf_prop_op,
3772 NULL,
3773 D_MP | D_NEW | D_64BIT,
3774 CB_REV,
3775 xdf_aread,
3776 xdf_awrite
3777 };
3778
3779 struct dev_ops xdf_devops = {
3780 DEVO_REV, /* devo_rev */
3781 0, /* devo_refcnt */
3782 xdf_getinfo, /* devo_getinfo */
3783 nulldev, /* devo_identify */
3784 nulldev, /* devo_probe */
3785 xdf_attach, /* devo_attach */
3786 xdf_detach, /* devo_detach */
3787 nodev, /* devo_reset */
3788 &xdf_cbops, /* devo_cb_ops */
3789 NULL, /* devo_bus_ops */
3790 NULL, /* devo_power */
3791 ddi_quiesce_not_supported, /* devo_quiesce */
3792 };
3793
3794 /*
3795 * Module linkage structures.
3796 */
3797 static struct modldrv modldrv = {
3798 &mod_driverops, /* Type of module. This one is a driver */
3799 "virtual block driver", /* short description */
3800 &xdf_devops /* driver specific ops */
3801 };
3802
3803 static struct modlinkage xdf_modlinkage = {
3804 MODREV_1, (void *)&modldrv, NULL
3805 };
3806
3807 /*
3808 * standard module entry points
3809 */
3810 int
3811 _init(void)
3812 {
3813 int rc;
3814
3815 xdf_major = ddi_name_to_major("xdf");
3816 if (xdf_major == (major_t)-1)
3817 return (EINVAL);
3818
3819 if ((rc = ddi_soft_state_init(&xdf_ssp, sizeof (xdf_t), 0)) != 0)
3820 return (rc);
3821
3822 xdf_vreq_cache = kmem_cache_create("xdf_vreq_cache",
3823 sizeof (v_req_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3824 xdf_gs_cache = kmem_cache_create("xdf_gs_cache",
3825 sizeof (ge_slot_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3826
3827 #ifdef XPV_HVM_DRIVER
3828 xdf_hvm_init();
3829 #endif /* XPV_HVM_DRIVER */
3830
3831 if ((rc = mod_install(&xdf_modlinkage)) != 0) {
3832 #ifdef XPV_HVM_DRIVER
3833 xdf_hvm_fini();
3834 #endif /* XPV_HVM_DRIVER */
3835 kmem_cache_destroy(xdf_vreq_cache);
3836 kmem_cache_destroy(xdf_gs_cache);
3837 ddi_soft_state_fini(&xdf_ssp);
3838 return (rc);
3839 }
3840
3841 return (rc);
3842 }
3843
3844 int
3845 _fini(void)
3846 {
3847 int err;
3848 if ((err = mod_remove(&xdf_modlinkage)) != 0)
3849 return (err);
3850
3851 #ifdef XPV_HVM_DRIVER
3852 xdf_hvm_fini();
3853 #endif /* XPV_HVM_DRIVER */
3854
3855 kmem_cache_destroy(xdf_vreq_cache);
3856 kmem_cache_destroy(xdf_gs_cache);
3857 ddi_soft_state_fini(&xdf_ssp);
3858
3859 return (0);
3860 }
3861
3862 int
3863 _info(struct modinfo *modinfop)
3864 {
3865 return (mod_info(&xdf_modlinkage, modinfop));
3866 }