1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License, Version 1.0 only
   6  * (the "License").  You may not use this file except in compliance
   7  * with the License.
   8  *
   9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
  10  * or http://www.opensolaris.org/os/licensing.
  11  * See the License for the specific language governing permissions
  12  * and limitations under the License.
  13  *
  14  * When distributing Covered Code, include this CDDL HEADER in each
  15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  16  * If applicable, add the following below this CDDL HEADER, with the
  17  * fields enclosed by brackets "[]" replaced with your own identifying
  18  * information: Portions Copyright [yyyy] [name of copyright owner]
  19  *
  20  * CDDL HEADER END
  21  */
  22 
  23 /*
  24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
  25  */
  26 
  27 /*
  28  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
  29  * Use is subject to license terms.
  30  * Copyright 2015 Joyent, Inc.
  31  */
  32 
  33 #ifndef _SYS_FLOCK_IMPL_H
  34 #define _SYS_FLOCK_IMPL_H
  35 
  36 #include <sys/types.h>
  37 #include <sys/fcntl.h>            /* flock definition */
  38 #include <sys/file.h>             /* FREAD etc */
  39 #include <sys/flock.h>            /* RCMD etc */
  40 #include <sys/kmem.h>
  41 #include <sys/user.h>
  42 #include <sys/thread.h>
  43 #include <sys/proc.h>
  44 #include <sys/cred.h>
  45 #include <sys/debug.h>
  46 #include <sys/cmn_err.h>
  47 #include <sys/errno.h>
  48 #include <sys/systm.h>
  49 #include <sys/vnode.h>
  50 #include <sys/share.h>            /* just to get GETSYSID def */
  51 #include <sys/time.h>
  52 
  53 #ifdef  __cplusplus
  54 extern "C" {
  55 #endif
  56 
  57 struct  edge {
  58         struct  edge    *edge_adj_next; /* adjacency list next */
  59         struct  edge    *edge_adj_prev; /* adjacency list prev */
  60         struct  edge    *edge_in_next;  /* incoming edges list next */
  61         struct  edge    *edge_in_prev;  /* incoming edges list prev */
  62         struct  lock_descriptor *from_vertex;   /* edge emanating from lock */
  63         struct  lock_descriptor *to_vertex;     /* edge pointing to lock */
  64 };
  65 
  66 typedef struct  edge    edge_t;
  67 
  68 struct lock_descriptor {
  69         struct  lock_descriptor *l_next;        /* next active/sleep lock */
  70         struct  lock_descriptor *l_prev;        /* previous active/sleep lock */
  71         struct  edge            l_edge;         /* edge for adj and in lists */
  72         struct  lock_descriptor *l_stack;       /* for stack operations */
  73         struct  lock_descriptor *l_stack1;      /* for stack operations */
  74         struct  lock_descriptor *l_dstack;      /* stack for debug functions */
  75         struct  edge            *l_sedge;       /* start edge for graph alg. */
  76         int                     l_index;        /* used for barrier count */
  77         struct  graph           *l_graph;       /* graph this belongs to */
  78         vnode_t                 *l_vnode;       /* vnode being locked */
  79         int                     l_type;         /* type of lock */
  80         int                     l_state;        /* state described below */
  81         u_offset_t              l_start;        /* start offset */
  82         u_offset_t              l_end;          /* end offset */
  83         flock64_t               l_flock;        /* original flock request */
  84         int                     l_color;        /* color used for graph alg */
  85         kcondvar_t              l_cv;           /* wait condition for lock */
  86         int                     pvertex;        /* index to proc vertex */
  87         int                     l_status;       /* status described below */
  88         flk_nlm_status_t        l_nlm_state;    /* state of NLM server */
  89         flk_callback_t          *l_callbacks;   /* callbacks, or NULL */
  90         zoneid_t                l_zoneid;       /* zone of request */
  91         hrtime_t                l_blocker;      /* time when this lock */
  92                                                 /* started to prevent other */
  93                                                 /* locks from being set */
  94         file_t                  *l_ofd;         /* OFD-style reference */
  95 };
  96 
  97 typedef struct  lock_descriptor lock_descriptor_t;
  98 
  99 /*
 100  * Each graph holds locking information for some number of vnodes.  The
 101  * active and sleeping lists are circular, with a dummy head element.
 102  */
 103 
 104 struct  graph {
 105         kmutex_t        gp_mutex;       /* mutex for this graph */
 106         struct  lock_descriptor active_locks;
 107         struct  lock_descriptor sleeping_locks;
 108         int index;      /* index of this graph into the hash table */
 109         int mark;       /* used for coloring the graph */
 110 };
 111 
 112 typedef struct  graph   graph_t;
 113 
 114 /*
 115  * The possible states a lock can be in.  These states are stored in the
 116  * 'l_status' member of the 'lock_descriptor_t' structure.  All locks start
 117  * life in the INITIAL state, and end up in the DEAD state.  Possible state
 118  * transitions are :
 119  *
 120  * INITIAL--> START    --> ACTIVE    --> DEAD
 121  *
 122  *                     --> DEAD
 123  *
 124  *        --> ACTIVE   --> DEAD          (new locks from flk_relation)
 125  *
 126  *        --> SLEEPING --> GRANTED   --> START     --> ACTIVE --> DEAD
 127  *
 128  *                                   --> INTR      --> DEAD
 129  *
 130  *                                   --> CANCELLED --> DEAD
 131  *
 132  *                                                 --> INTR   --> DEAD
 133  *
 134  *                     --> INTR      --> DEAD
 135  *
 136  *                     --> CANCELLED --> DEAD
 137  *
 138  *                                   --> INTR      --> DEAD
 139  *
 140  * Lock transitions are done in the following functions:
 141  * --> INITIAL               flk_get_lock(), reclock()
 142  * --> START         flk_execute_request()
 143  * --> ACTIVE                flk_insert_active_lock()
 144  * --> SLEEPING              flk_insert_sleeping_lock()
 145  * --> GRANTED               GRANT_WAKEUP
 146  * --> INTERRUPTED   INTERRUPT_WAKEUP
 147  * --> CANCELLED     CANCEL_WAKEUP
 148  * --> DEAD          reclock(), flk_delete_active_lock(), and
 149  *                          flk_cancel_sleeping_lock()
 150  */
 151 
 152 #define FLK_INITIAL_STATE       1       /* Initial state of all requests */
 153 #define FLK_START_STATE         2       /* Request has started execution */
 154 #define FLK_ACTIVE_STATE        3       /* In active queue */
 155 #define FLK_SLEEPING_STATE      4       /* Request is blocked */
 156 #define FLK_GRANTED_STATE       5       /* Request is granted */
 157 #define FLK_INTERRUPTED_STATE   6       /* Request is interrupted */
 158 #define FLK_CANCELLED_STATE     7       /* Request is cancelled */
 159 #define FLK_DEAD_STATE          8       /* Request is done - will be deleted */
 160 
 161 /* flags defining state of locks */
 162 
 163 /*
 164  * The LLM design has been modified so that lock states are now stored
 165  * in the l_status field of lock_descriptor_t.  The l_state field is
 166  * currently preserved for binary compatibility, but may be modified or
 167  * removed in a minor release of Solaris.  Note that both of these
 168  * fields (and the rest of the lock_descriptor_t structure) are private
 169  * to the implementation of the lock manager and should not be used
 170  * externally.
 171  */
 172 
 173 #define ACTIVE_LOCK             0x0001  /* in active queue */
 174 #define SLEEPING_LOCK           0x0002  /* in sleep queue */
 175 #define IO_LOCK                 0x0004  /* is an IO lock */
 176 #define REFERENCED_LOCK         0x0008  /* referenced some where */
 177 #define QUERY_LOCK              0x0010  /* querying about lock */
 178 #define WILLING_TO_SLEEP_LOCK   0x0020  /* lock can be put in sleep queue */
 179 #define RECOMPUTE_LOCK          0x0040  /* used for recomputing dependencies */
 180 #define RECOMPUTE_DONE          0x0080  /* used for recomputing dependencies */
 181 #define BARRIER_LOCK            0x0100  /* used for recomputing dependencies */
 182 #define GRANTED_LOCK            0x0200  /* granted but still in sleep queue */
 183 #define CANCELLED_LOCK          0x0400  /* cancelled will be thrown out */
 184 #define DELETED_LOCK            0x0800  /* deleted - free at earliest */
 185 #define INTERRUPTED_LOCK        0x1000  /* pretend signal */
 186 #define LOCKMGR_LOCK            0x2000  /* remote lock (server-side) */
 187 /* Clustering: flag for PXFS locks */
 188 #define PXFS_LOCK               0x4000  /* lock created by PXFS file system */
 189 #define NBMAND_LOCK             0x8000  /* non-blocking mandatory locking */
 190 
 191 #define HASH_SIZE       32
 192 #define HASH_SHIFT      (HASH_SIZE - 1)
 193 #define HASH_INDEX(vp)  (((uintptr_t)vp >> 7) & HASH_SHIFT)
 194 
 195 /* extern definitions */
 196 
 197 extern struct graph     *lock_graph[HASH_SIZE];
 198 extern struct kmem_cache *flk_edge_cache;
 199 
 200 /* Clustering: functions called by PXFS */
 201 int flk_execute_request(lock_descriptor_t *);
 202 void flk_cancel_sleeping_lock(lock_descriptor_t *, int);
 203 void flk_set_state(lock_descriptor_t *, int);
 204 graph_t *flk_get_lock_graph(vnode_t *, int);
 205 
 206 /* flags used for readability in flock.c */
 207 
 208 #define FLK_USE_GRAPH   0       /* don't initialize the lock_graph */
 209 #define FLK_INIT_GRAPH  1       /* initialize the lock graph */
 210 #define NO_COLOR        0       /* vertex is not colored */
 211 #define NO_CHECK_CYCLE  0       /* don't mark vertex's in flk_add_edge */
 212 #define CHECK_CYCLE     1       /* mark vertex's in flk_add_edge */
 213 
 214 #define SAME_OWNER(lock1, lock2)        \
 215         (((lock1)->l_flock.l_pid == (lock2)->l_flock.l_pid) && \
 216                 ((lock1)->l_flock.l_sysid == (lock2)->l_flock.l_sysid) && \
 217                 ((lock1)->l_ofd == (lock2)->l_ofd))
 218 
 219 #define COLORED(vertex)         ((vertex)->l_color == (vertex)->l_graph->mark)
 220 #define COLOR(vertex)           ((vertex)->l_color = (vertex)->l_graph->mark)
 221 
 222 /*
 223  * stack data structure and operations
 224  */
 225 
 226 #define STACK_INIT(stack)       ((stack) = NULL)
 227 #define STACK_PUSH(stack, ptr, stack_link)      (ptr)->stack_link = (stack),\
 228                                 (stack) = (ptr)
 229 #define STACK_POP(stack, stack_link)    (stack) = (stack)->stack_link
 230 #define STACK_TOP(stack)        (stack)
 231 #define STACK_EMPTY(stack)      ((stack) == NULL)
 232 
 233 
 234 #define ACTIVE_HEAD(gp) (&(gp)->active_locks)
 235 
 236 #define SLEEPING_HEAD(gp)       (&(gp)->sleeping_locks)
 237 
 238 #define SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp) \
 239 { \
 240         (lock) = (lock_descriptor_t *)vp->v_filocks; \
 241 }
 242 
 243 #define SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp) \
 244 { \
 245 for ((lock) = SLEEPING_HEAD((gp))->l_next; ((lock) != SLEEPING_HEAD((gp)) && \
 246                         (lock)->l_vnode != (vp)); (lock) = (lock)->l_next) \
 247                         ; \
 248 (lock) = ((lock) == SLEEPING_HEAD((gp))) ? NULL : (lock); \
 249 }
 250 
 251 #define OVERLAP(lock1, lock2) \
 252         (((lock1)->l_start <= (lock2)->l_start && \
 253                 (lock2)->l_start <= (lock1)->l_end) || \
 254         ((lock2)->l_start <= (lock1)->l_start && \
 255                 (lock1)->l_start <= (lock2)->l_end))
 256 
 257 #define IS_INITIAL(lock)        ((lock)->l_status == FLK_INITIAL_STATE)
 258 #define IS_ACTIVE(lock)         ((lock)->l_status == FLK_ACTIVE_STATE)
 259 #define IS_SLEEPING(lock)       ((lock)->l_status == FLK_SLEEPING_STATE)
 260 #define IS_GRANTED(lock)        ((lock)->l_status == FLK_GRANTED_STATE)
 261 #define IS_INTERRUPTED(lock)    ((lock)->l_status == FLK_INTERRUPTED_STATE)
 262 #define IS_CANCELLED(lock)      ((lock)->l_status == FLK_CANCELLED_STATE)
 263 #define IS_DEAD(lock)           ((lock)->l_status == FLK_DEAD_STATE)
 264 
 265 #define IS_QUERY_LOCK(lock)     ((lock)->l_state & QUERY_LOCK)
 266 #define IS_RECOMPUTE(lock)      ((lock)->l_state & RECOMPUTE_LOCK)
 267 #define IS_BARRIER(lock)        ((lock)->l_state & BARRIER_LOCK)
 268 #define IS_DELETED(lock)        ((lock)->l_state & DELETED_LOCK)
 269 #define IS_REFERENCED(lock)     ((lock)->l_state & REFERENCED_LOCK)
 270 #define IS_IO_LOCK(lock)        ((lock)->l_state & IO_LOCK)
 271 #define IS_WILLING_TO_SLEEP(lock)       \
 272                 ((lock)->l_state & WILLING_TO_SLEEP_LOCK)
 273 #define IS_LOCKMGR(lock)        ((lock)->l_state & LOCKMGR_LOCK)
 274 #define IS_NLM_UP(lock)         ((lock)->l_nlm_state == FLK_NLM_UP)
 275 /* Clustering: Macro for PXFS locks */
 276 #define IS_PXFS(lock)           ((lock)->l_state & PXFS_LOCK)
 277 
 278 /*
 279  * "local" requests don't involve the NFS lock manager in any way.
 280  * "remote" requests can be on the server (requests from a remote client),
 281  * in which case they should be associated with a local vnode (UFS, tmpfs,
 282  * etc.).  These requests are flagged with LOCKMGR_LOCK and are made using
 283  * kernel service threads.  Remote requests can also be on an NFS client,
 284  * because the NFS lock manager uses local locking for some of its
 285  * bookkeeping.  These requests are made by regular user processes.
 286  */
 287 #define IS_LOCAL(lock)  (GETSYSID((lock)->l_flock.l_sysid) == 0)
 288 #define IS_REMOTE(lock) (! IS_LOCAL(lock))
 289 
 290 /* Clustering: Return value for blocking PXFS locks */
 291 /*
 292  * For PXFS locks, reclock() will return this error code for requests that
 293  * need to block
 294  */
 295 #define PXFS_LOCK_BLOCKED -1
 296 
 297 /* Clustering: PXFS callback function */
 298 /*
 299  * This function is a callback from the LLM into the PXFS server module.  It
 300  * is initialized as a weak stub, and is functional when the pxfs server module
 301  * is loaded.
 302  */
 303 extern void cl_flk_state_transition_notify(lock_descriptor_t *lock,
 304     int old_state, int new_state);
 305 
 306 #define BLOCKS(lock1, lock2)    (!SAME_OWNER((lock1), (lock2)) && \
 307                                         (((lock1)->l_type == F_WRLCK) || \
 308                                         ((lock2)->l_type == F_WRLCK)) && \
 309                                         OVERLAP((lock1), (lock2)))
 310 
 311 #define COVERS(lock1, lock2)    \
 312                 (((lock1)->l_start <= (lock2)->l_start) && \
 313                         ((lock1)->l_end >= (lock2)->l_end))
 314 
 315 #define IN_LIST_REMOVE(ep)      \
 316         { \
 317         (ep)->edge_in_next->edge_in_prev = (ep)->edge_in_prev; \
 318         (ep)->edge_in_prev->edge_in_next = (ep)->edge_in_next; \
 319         }
 320 
 321 #define ADJ_LIST_REMOVE(ep)     \
 322         { \
 323         (ep)->edge_adj_next->edge_adj_prev = (ep)->edge_adj_prev; \
 324         (ep)->edge_adj_prev->edge_adj_next = (ep)->edge_adj_next; \
 325         }
 326 
 327 #define NOT_BLOCKED(lock)       \
 328         ((lock)->l_edge.edge_adj_next == &(lock)->l_edge && !IS_GRANTED(lock))
 329 
 330 #define GRANT_WAKEUP(lock)      \
 331         {       \
 332                 flk_set_state(lock, FLK_GRANTED_STATE); \
 333                 (lock)->l_state |= GRANTED_LOCK; \
 334                 /* \
 335                  * Clustering: PXFS locks do not sleep in the LLM, \
 336                  * so there is no need to signal them \
 337                  */ \
 338                 if (!IS_PXFS(lock)) { \
 339                         cv_signal(&(lock)->l_cv); \
 340                 } \
 341         }
 342 
 343 #define CANCEL_WAKEUP(lock)     \
 344         { \
 345                 flk_set_state(lock, FLK_CANCELLED_STATE); \
 346                 (lock)->l_state |= CANCELLED_LOCK; \
 347                 /* \
 348                  * Clustering: PXFS locks do not sleep in the LLM, \
 349                  * so there is no need to signal them \
 350                  */ \
 351                 if (!IS_PXFS(lock)) { \
 352                         cv_signal(&(lock)->l_cv); \
 353                 } \
 354         }
 355 
 356 #define INTERRUPT_WAKEUP(lock)  \
 357         { \
 358                 flk_set_state(lock, FLK_INTERRUPTED_STATE); \
 359                 (lock)->l_state |= INTERRUPTED_LOCK; \
 360                 /* \
 361                  * Clustering: PXFS locks do not sleep in the LLM, \
 362                  * so there is no need to signal them \
 363                  */ \
 364                 if (!IS_PXFS(lock)) { \
 365                         cv_signal(&(lock)->l_cv); \
 366                 } \
 367         }
 368 
 369 #define REMOVE_SLEEP_QUEUE(lock)        \
 370         { \
 371         ASSERT(IS_SLEEPING(lock) || IS_GRANTED(lock) || \
 372             IS_INTERRUPTED(lock) || IS_CANCELLED(lock)); \
 373         (lock)->l_state &= ~SLEEPING_LOCK; \
 374         (lock)->l_next->l_prev = (lock)->l_prev; \
 375         (lock)->l_prev->l_next = (lock)->l_next; \
 376         (lock)->l_next = (lock)->l_prev = (lock_descriptor_t *)NULL; \
 377         }
 378 
 379 #define NO_DEPENDENTS(lock)     \
 380         ((lock)->l_edge.edge_in_next == &(lock)->l_edge)
 381 
 382 #define GRANT(lock)     \
 383         { \
 384         (lock)->l_state |= GRANTED_LOCK; \
 385         flk_set_state(lock, FLK_GRANTED_STATE); \
 386         }
 387 
 388 #define FIRST_IN(lock)  ((lock)->l_edge.edge_in_next)
 389 #define FIRST_ADJ(lock) ((lock)->l_edge.edge_adj_next)
 390 #define HEAD(lock)      (&(lock)->l_edge)
 391 #define NEXT_ADJ(ep)    ((ep)->edge_adj_next)
 392 #define NEXT_IN(ep)     ((ep)->edge_in_next)
 393 #define IN_ADJ_INIT(lock)       \
 394 {       \
 395 (lock)->l_edge.edge_adj_next = (lock)->l_edge.edge_adj_prev = &(lock)->l_edge; \
 396 (lock)->l_edge.edge_in_next = (lock)->l_edge.edge_in_prev = &(lock)->l_edge; \
 397 }
 398 
 399 #define COPY(lock1, lock2)      \
 400 {       \
 401 (lock1)->l_graph = (lock2)->l_graph; \
 402 (lock1)->l_vnode = (lock2)->l_vnode; \
 403 (lock1)->l_type = (lock2)->l_type; \
 404 (lock1)->l_state = (lock2)->l_state; \
 405 (lock1)->l_start = (lock2)->l_start; \
 406 (lock1)->l_end = (lock2)->l_end; \
 407 (lock1)->l_flock = (lock2)->l_flock; \
 408 (lock1)->l_zoneid = (lock2)->l_zoneid; \
 409 (lock1)->pvertex = (lock2)->pvertex; \
 410 (lock1)->l_blocker = (lock2)->l_blocker; \
 411 }
 412 
 413 /*
 414  * Clustering
 415  */
 416 /* Routines to set and get the NLM state in a lock request */
 417 #define SET_NLM_STATE(lock, nlm_state)  ((lock)->l_nlm_state = nlm_state)
 418 #define GET_NLM_STATE(lock)     ((lock)->l_nlm_state)
 419 /*
 420  * NLM registry abstraction:
 421  *   Abstraction overview:
 422  *   This registry keeps track of the NLM servers via their nlmids
 423  *   that have requested locks at the LLM this registry is associated
 424  *   with.
 425  */
 426 /* Routines to manipulate the NLM registry object state */
 427 #define FLK_REGISTRY_IS_NLM_UNKNOWN(nlmreg, nlmid) \
 428             ((nlmreg)[nlmid] == FLK_NLM_UNKNOWN)
 429 #define FLK_REGISTRY_IS_NLM_UP(nlmreg, nlmid) \
 430             ((nlmreg)[nlmid] == FLK_NLM_UP)
 431 #define FLK_REGISTRY_ADD_NLMID(nlmreg, nlmid) \
 432             ((nlmreg)[nlmid] = FLK_NLM_UP)
 433 #define FLK_REGISTRY_CHANGE_NLM_STATE(nlmreg, nlmid, state) \
 434             ((nlmreg)[nlmid] = state)
 435 
 436 /* Indicates the effect of executing a request on the existing locks */
 437 
 438 #define FLK_UNLOCK      0x1     /* request unlocks the existing lock */
 439 #define FLK_DOWNGRADE   0x2     /* request downgrades the existing lock */
 440 #define FLK_UPGRADE     0x3     /* request upgrades the existing lock */
 441 #define FLK_STAY_SAME   0x4     /* request type is same as existing lock */
 442 
 443 
 444 /*      proc graph definitions  */
 445 
 446 /*
 447  * Proc graph is the global process graph that maintains information
 448  * about the dependencies between processes. An edge is added between two
 449  * processes represented by proc_vertex's A and B, iff there exists l1
 450  * owned by process A in any of the lock_graph's dependent on l2
 451  * (thus having an edge to l2) owned by process B.
 452  */
 453 struct proc_vertex {
 454         pid_t   pid;    /* pid of the process */
 455         long    sysid;  /* sysid of the process */
 456         struct proc_edge        *edge;  /* adajcent edges of this process */
 457         int incount;            /* Number of inedges to this process */
 458         struct proc_edge *p_sedge;      /* used for implementing stack alg. */
 459         struct proc_vertex      *p_stack;       /* used for stack alg. */
 460         int atime;      /* used for cycle detection algorithm */
 461         int dtime;      /* used for cycle detection algorithm */
 462         int index;      /* index into the  array of proc_graph vertices */
 463 };
 464 
 465 typedef struct proc_vertex proc_vertex_t;
 466 
 467 struct proc_edge {
 468         struct proc_edge        *next;  /* next edge in adjacency list */
 469         int  refcount;                  /* reference count of this edge */
 470         struct proc_vertex      *to_proc;       /* process this points to */
 471 };
 472 
 473 typedef struct proc_edge proc_edge_t;
 474 
 475 
 476 #define PROC_CHUNK      100
 477 
 478 struct proc_graph {
 479         struct proc_vertex **proc;      /* list of proc_vertexes */
 480         int gcount;             /* list size */
 481         int free;               /* number of free slots in the list */
 482         int mark;               /* used for graph coloring */
 483 };
 484 
 485 typedef struct proc_graph proc_graph_t;
 486 
 487 extern  struct proc_graph       pgraph;
 488 
 489 #define PROC_SAME_OWNER(lock, pvertex)  \
 490         (((lock)->l_flock.l_pid == (pvertex)->pid) && \
 491                 ((lock)->l_flock.l_sysid == (pvertex)->sysid))
 492 
 493 #define PROC_ARRIVE(pvertex)    ((pvertex)->atime = pgraph.mark)
 494 #define PROC_DEPART(pvertex)    ((pvertex)->dtime = pgraph.mark)
 495 #define PROC_ARRIVED(pvertex)   ((pvertex)->atime == pgraph.mark)
 496 #define PROC_DEPARTED(pvertex)  ((pvertex)->dtime == pgraph.mark)
 497 
 498 #ifdef  __cplusplus
 499 }
 500 #endif
 501 
 502 #endif  /* _SYS_FLOCK_IMPL_H */