1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2012 Garrett D'Amore <garrett@damore.org>. All rights reserved.
25 * Copyright 2016 Joyent, Inc.
26 * Copyright (c) 2016 by Delphix. All rights reserved.
27 * Copyright 2018 Nexenta Systems, Inc.
28 */
29
30 #ifndef _SYS_DDI_IMPLDEFS_H
31 #define _SYS_DDI_IMPLDEFS_H
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/t_lock.h>
36 #include <sys/ddipropdefs.h>
37 #include <sys/devops.h>
38 #include <sys/autoconf.h>
39 #include <sys/mutex.h>
40 #include <vm/page.h>
41 #include <sys/dacf_impl.h>
42 #include <sys/ndifm.h>
43 #include <sys/epm.h>
44 #include <sys/ddidmareq.h>
45 #include <sys/ddi_intr.h>
46 #include <sys/ddi_hp.h>
47 #include <sys/ddi_hp_impl.h>
48 #include <sys/ddi_isa.h>
49 #include <sys/id_space.h>
50 #include <sys/modhash.h>
51 #include <sys/bitset.h>
52
53 #ifdef __cplusplus
54 extern "C" {
55 #endif
56
57 /*
58 * The device id implementation has been switched to be based on properties.
59 * For compatibility with di_devid libdevinfo interface the following
60 * must be defined:
61 */
62 #define DEVID_COMPATIBILITY ((ddi_devid_t)-1)
63
64 /*
65 * Definitions for node class.
66 * DDI_NC_PROM: a node with a nodeid that may be used in a promif call.
67 * DDI_NC_PSEUDO: a software created node with a software assigned nodeid.
68 */
69 typedef enum {
70 DDI_NC_PROM = 0,
71 DDI_NC_PSEUDO
72 } ddi_node_class_t;
73
74 /*
75 * Definitions for generic callback mechanism.
76 */
77 typedef enum {
78 DDI_CB_INTR_ADD, /* More available interrupts */
79 DDI_CB_INTR_REMOVE /* Fewer available interrupts */
80 } ddi_cb_action_t;
81
82 typedef enum {
83 DDI_CB_FLAG_INTR = 0x1 /* Driver is IRM aware */
84 } ddi_cb_flags_t;
85
86 #define DDI_CB_FLAG_VALID(f) ((f) & DDI_CB_FLAG_INTR)
87
88 typedef int (*ddi_cb_func_t)(dev_info_t *dip, ddi_cb_action_t action,
89 void *cbarg, void *arg1, void *arg2);
90
91 typedef struct ddi_cb {
92 uint64_t cb_flags;
93 dev_info_t *cb_dip;
94 ddi_cb_func_t cb_func;
95 void *cb_arg1;
96 void *cb_arg2;
97 } ddi_cb_t;
98
99 /*
100 * dev_info: The main device information structure this is intended to be
101 * opaque to drivers and drivers should use ddi functions to
102 * access *all* driver accessible fields.
103 *
104 * devi_parent_data includes property lists (interrupts, registers, etc.)
105 * devi_driver_data includes whatever the driver wants to place there.
106 */
107 struct devinfo_audit;
108
109 typedef struct devi_port {
110 union {
111 struct {
112 uint32_t type;
113 uint32_t pad;
114 } port;
115 uint64_t type64;
116 } info;
117 void *priv_p;
118 } devi_port_t;
119
120 typedef struct devi_bus_priv {
121 devi_port_t port_up;
122 devi_port_t port_down;
123 } devi_bus_priv_t;
124
125 #if defined(__x86)
126 struct iommulib_unit;
127 typedef struct iommulib_unit *iommulib_handle_t;
128 struct iommulib_nex;
129 typedef struct iommulib_nex *iommulib_nexhandle_t;
130 #endif
131
132 typedef uint8_t ndi_flavor_t;
133 struct ddi_hp_cn_handle;
134
135 struct in_node;
136
137 struct dev_info {
138
139 struct dev_info *devi_parent; /* my parent node in tree */
140 struct dev_info *devi_child; /* my child list head */
141 struct dev_info *devi_sibling; /* next element on my level */
142
143 char *devi_binding_name; /* name used to bind driver: */
144 /* shared storage, points to */
145 /* devi_node_name, devi_compat_names */
146 /* or devi_rebinding_name */
147
148 char *devi_addr; /* address part of name */
149
150 int devi_nodeid; /* device nodeid */
151 int devi_instance; /* device instance number */
152
153 struct dev_ops *devi_ops; /* driver operations */
154
155 void *devi_parent_data; /* parent private data */
156 void *devi_driver_data; /* driver private data */
157
158 ddi_prop_t *devi_drv_prop_ptr; /* head of driver prop list */
159 ddi_prop_t *devi_sys_prop_ptr; /* head of system prop list */
160
161 struct ddi_minor_data *devi_minor; /* head of minor list */
162 struct dev_info *devi_next; /* Next instance of this device */
163 kmutex_t devi_lock; /* Protects per-devinfo data */
164
165 /* logical parents for busop primitives */
166
167 struct dev_info *devi_bus_map_fault; /* bus_map_fault parent */
168 void *devi_obsolete; /* obsolete placeholder */
169 struct dev_info *devi_bus_dma_allochdl; /* bus_dma_newhdl parent */
170 struct dev_info *devi_bus_dma_freehdl; /* bus_dma_freehdl parent */
171 struct dev_info *devi_bus_dma_bindhdl; /* bus_dma_bindhdl parent */
172 struct dev_info *devi_bus_dma_unbindhdl; /* bus_dma_unbindhdl parent */
173 struct dev_info *devi_bus_dma_flush; /* bus_dma_flush parent */
174 struct dev_info *devi_bus_dma_win; /* bus_dma_win parent */
175 struct dev_info *devi_bus_dma_ctl; /* bus_dma_ctl parent */
176 struct dev_info *devi_bus_ctl; /* bus_ctl parent */
177
178 ddi_prop_t *devi_hw_prop_ptr; /* head of hw prop list */
179
180 char *devi_node_name; /* The 'name' of the node */
181 char *devi_compat_names; /* A list of driver names */
182 size_t devi_compat_length; /* Size of compat_names */
183
184 int (*devi_bus_dma_bindfunc)(dev_info_t *, dev_info_t *,
185 ddi_dma_handle_t, struct ddi_dma_req *, ddi_dma_cookie_t *,
186 uint_t *);
187 int (*devi_bus_dma_unbindfunc)(dev_info_t *, dev_info_t *,
188 ddi_dma_handle_t);
189
190 char *devi_devid_str; /* registered device id */
191
192 /*
193 * power management entries
194 * components exist even if the device is not currently power managed
195 */
196 struct pm_info *devi_pm_info; /* 0 => dev not power managed */
197 uint_t devi_pm_flags; /* pm flags */
198 int devi_pm_num_components; /* number of components */
199 size_t devi_pm_comp_size; /* size of devi_components */
200 struct pm_component *devi_pm_components; /* array of pm components */
201 struct dev_info *devi_pm_ppm; /* ppm attached to this one */
202 void *devi_pm_ppm_private; /* for use by ppm driver */
203 int devi_pm_dev_thresh; /* "device" threshold */
204 uint_t devi_pm_kidsupcnt; /* # of kids powered up */
205 struct pm_scan *devi_pm_scan; /* pm scan info */
206 uint_t devi_pm_noinvolpm; /* # of descendents no-invol */
207 uint_t devi_pm_volpmd; /* # of voluntarily pm'ed */
208 kmutex_t devi_pm_lock; /* pm lock for state */
209 kmutex_t devi_pm_busy_lock; /* for component busy count */
210
211 uint_t devi_state; /* device/bus state flags */
212 /* see below for definitions */
213 kcondvar_t devi_cv; /* cv */
214 int devi_ref; /* reference count */
215
216 dacf_rsrvlist_t *devi_dacf_tasks; /* dacf reservation queue */
217
218 ddi_node_class_t devi_node_class; /* Node class */
219 int devi_node_attributes; /* Node attributes: See below */
220
221 char *devi_device_class;
222
223 /*
224 * New mpxio kernel hooks entries
225 */
226 int devi_mdi_component; /* mpxio component type */
227 void *devi_mdi_client; /* mpxio client information */
228 void *devi_mdi_xhci; /* vhci/phci info */
229
230 ddi_prop_list_t *devi_global_prop_list; /* driver global properties */
231 major_t devi_major; /* driver major number */
232 ddi_node_state_t devi_node_state; /* state of node */
233 uint_t devi_flags; /* configuration flags */
234 int devi_circular; /* for recursive operations */
235 void *devi_busy_thread; /* thread operating on node */
236 void *devi_taskq; /* hotplug taskq */
237
238 /* device driver statistical and audit info */
239 struct devinfo_audit *devi_audit; /* last state change */
240
241 /*
242 * FMA support for resource caches and error handlers
243 */
244 struct i_ddi_fmhdl *devi_fmhdl;
245
246 uint_t devi_cpr_flags;
247
248 /* Owned by DDI interrupt framework */
249 devinfo_intr_t *devi_intr_p;
250
251 void *devi_nex_pm; /* nexus PM private */
252
253 char *devi_addr_buf; /* buffer for devi_addr */
254
255 char *devi_rebinding_name; /* binding_name of rebind */
256
257 /* For device contracts that have this dip's minor node as resource */
258 kmutex_t devi_ct_lock; /* contract lock */
259 kcondvar_t devi_ct_cv; /* contract cv */
260 int devi_ct_count; /* # of outstanding responses */
261 int devi_ct_neg; /* neg. occurred on dip */
262 list_t devi_ct;
263
264 /* owned by bus framework */
265 devi_bus_priv_t devi_bus; /* bus private data */
266
267 /* Declarations of the pure dynamic properties to snapshot */
268 struct i_ddi_prop_dyn *devi_prop_dyn_driver; /* prop_op */
269 struct i_ddi_prop_dyn *devi_prop_dyn_parent; /* bus_prop_op */
270
271 #if defined(__x86)
272 /* For x86 (Intel and AMD) IOMMU support */
273 void *devi_iommu;
274 iommulib_handle_t devi_iommulib_handle;
275 iommulib_nexhandle_t devi_iommulib_nex_handle;
276 #endif
277
278 /* Generic callback mechanism */
279 ddi_cb_t *devi_cb_p;
280
281 /* ndi 'flavors' */
282 ndi_flavor_t devi_flavor; /* flavor assigned by parent */
283 ndi_flavor_t devi_flavorv_n; /* number of child-flavors */
284 void **devi_flavorv; /* child-flavor specific data */
285
286 /* Owned by hotplug framework */
287 struct ddi_hp_cn_handle *devi_hp_hdlp; /* hotplug handle list */
288
289 struct in_node *devi_in_node; /* pointer to devinfo node's in_node_t */
290 };
291
292 #define DEVI(dev_info_type) ((struct dev_info *)(dev_info_type))
293
294 /*
295 * NB: The 'name' field, for compatibility with old code (both existing
296 * device drivers and userland code), is now defined as the name used
297 * to bind the node to a device driver, and not the device node name.
298 * If the device node name does not define a binding to a device driver,
299 * and the framework uses a different algorithm to create the binding to
300 * the driver, the node name and binding name will be different.
301 *
302 * Note that this implies that the node name plus instance number does
303 * NOT create a unique driver id; only the binding name plus instance
304 * number creates a unique driver id.
305 *
306 * New code should not use 'devi_name'; use 'devi_binding_name' or
307 * 'devi_node_name' and/or the routines that access those fields.
308 */
309
310 #define devi_name devi_binding_name
311
312 /*
313 * DDI_CF1, DDI_CF2 and DDI_DRV_UNLOADED are obsolete. They are kept
314 * around to allow legacy drivers to to compile.
315 */
316 #define DDI_CF1(devi) (DEVI(devi)->devi_addr != NULL)
317 #define DDI_CF2(devi) (DEVI(devi)->devi_ops != NULL)
318 #define DDI_DRV_UNLOADED(devi) (DEVI(devi)->devi_ops == &mod_nodev_ops)
319
320 /*
321 * The device state flags (devi_state) contains information regarding
322 * the state of the device (Online/Offline/Down). For bus nexus
323 * devices, the device state also contains state information regarding
324 * the state of the bus represented by this nexus node.
325 *
326 * Device state information is stored in bits [0-7], bus state in bits
327 * [8-15].
328 *
329 * NOTE: all devi_state updates should be protected by devi_lock.
330 */
331 #define DEVI_DEVICE_OFFLINE 0x00000001
332 #define DEVI_DEVICE_DOWN 0x00000002
333 #define DEVI_DEVICE_DEGRADED 0x00000004
334 #define DEVI_DEVICE_REMOVED 0x00000008 /* hardware removed */
335
336 #define DEVI_BUS_QUIESCED 0x00000100
337 #define DEVI_BUS_DOWN 0x00000200
338 #define DEVI_NDI_CONFIG 0x00000400 /* perform config when attaching */
339
340 #define DEVI_S_ATTACHING 0x00010000
341 #define DEVI_S_DETACHING 0x00020000
342 #define DEVI_S_ONLINING 0x00040000
343 #define DEVI_S_OFFLINING 0x00080000
344
345 #define DEVI_S_INVOKING_DACF 0x00100000 /* busy invoking a dacf task */
346
347 #define DEVI_S_UNBOUND 0x00200000
348 #define DEVI_S_REPORT 0x08000000 /* report status change */
349
350 #define DEVI_S_EVADD 0x10000000 /* state of devfs event */
351 #define DEVI_S_EVREMOVE 0x20000000 /* state of devfs event */
352 #define DEVI_S_NEED_RESET 0x40000000 /* devo_reset should be called */
353
354 /*
355 * Device state macros.
356 * o All SET/CLR/DONE users must protect context with devi_lock.
357 * o DEVI_SET_DEVICE_ONLINE users must do their own DEVI_SET_REPORT.
358 * o DEVI_SET_DEVICE_{DOWN|DEGRADED|UP} should only be used when !OFFLINE.
359 * o DEVI_SET_DEVICE_UP clears DOWN and DEGRADED.
360 */
361 #define DEVI_IS_DEVICE_OFFLINE(dip) \
362 ((DEVI(dip)->devi_state & DEVI_DEVICE_OFFLINE) == DEVI_DEVICE_OFFLINE)
363
364 #define DEVI_SET_DEVICE_ONLINE(dip) { \
365 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
366 if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) { \
367 mutex_exit(&DEVI(dip)->devi_lock); \
368 e_ddi_undegrade_finalize(dip); \
369 mutex_enter(&DEVI(dip)->devi_lock); \
370 } \
371 /* setting ONLINE clears DOWN, DEGRADED, OFFLINE */ \
372 DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DOWN | \
373 DEVI_DEVICE_DEGRADED | DEVI_DEVICE_OFFLINE); \
374 }
375
376 #define DEVI_SET_DEVICE_OFFLINE(dip) { \
377 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
378 DEVI(dip)->devi_state |= (DEVI_DEVICE_OFFLINE | DEVI_S_REPORT); \
379 }
380
381 #define DEVI_IS_DEVICE_DOWN(dip) \
382 ((DEVI(dip)->devi_state & DEVI_DEVICE_DOWN) == DEVI_DEVICE_DOWN)
383
384 #define DEVI_SET_DEVICE_DOWN(dip) { \
385 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
386 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \
387 DEVI(dip)->devi_state |= (DEVI_DEVICE_DOWN | DEVI_S_REPORT); \
388 }
389
390 #define DEVI_IS_DEVICE_DEGRADED(dip) \
391 ((DEVI(dip)->devi_state & \
392 (DEVI_DEVICE_DEGRADED|DEVI_DEVICE_DOWN)) == DEVI_DEVICE_DEGRADED)
393
394 #define DEVI_SET_DEVICE_DEGRADED(dip) { \
395 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
396 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \
397 mutex_exit(&DEVI(dip)->devi_lock); \
398 e_ddi_degrade_finalize(dip); \
399 mutex_enter(&DEVI(dip)->devi_lock); \
400 DEVI(dip)->devi_state |= (DEVI_DEVICE_DEGRADED | DEVI_S_REPORT); \
401 }
402
403 #define DEVI_SET_DEVICE_UP(dip) { \
404 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
405 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \
406 if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) { \
407 mutex_exit(&DEVI(dip)->devi_lock); \
408 e_ddi_undegrade_finalize(dip); \
409 mutex_enter(&DEVI(dip)->devi_lock); \
410 } \
411 DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DEGRADED | DEVI_DEVICE_DOWN); \
412 DEVI(dip)->devi_state |= DEVI_S_REPORT; \
413 }
414
415 /* Device removal and insertion */
416 #define DEVI_IS_DEVICE_REMOVED(dip) \
417 ((DEVI(dip)->devi_state & DEVI_DEVICE_REMOVED) == DEVI_DEVICE_REMOVED)
418
419 #define DEVI_SET_DEVICE_REMOVED(dip) { \
420 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
421 DEVI(dip)->devi_state |= DEVI_DEVICE_REMOVED | DEVI_S_REPORT; \
422 }
423
424 #define DEVI_SET_DEVICE_REINSERTED(dip) { \
425 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
426 DEVI(dip)->devi_state &= ~DEVI_DEVICE_REMOVED; \
427 DEVI(dip)->devi_state |= DEVI_S_REPORT; \
428 }
429
430 /* Bus state change macros */
431 #define DEVI_IS_BUS_QUIESCED(dip) \
432 ((DEVI(dip)->devi_state & DEVI_BUS_QUIESCED) == DEVI_BUS_QUIESCED)
433
434 #define DEVI_SET_BUS_ACTIVE(dip) { \
435 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
436 DEVI(dip)->devi_state &= ~DEVI_BUS_QUIESCED; \
437 DEVI(dip)->devi_state |= DEVI_S_REPORT; \
438 }
439
440 #define DEVI_SET_BUS_QUIESCE(dip) { \
441 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
442 DEVI(dip)->devi_state |= (DEVI_BUS_QUIESCED | DEVI_S_REPORT); \
443 }
444
445 #define DEVI_IS_BUS_DOWN(dip) \
446 ((DEVI(dip)->devi_state & DEVI_BUS_DOWN) == DEVI_BUS_DOWN)
447
448 #define DEVI_SET_BUS_UP(dip) { \
449 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
450 DEVI(dip)->devi_state &= ~DEVI_BUS_DOWN; \
451 DEVI(dip)->devi_state |= DEVI_S_REPORT; \
452 }
453
454 #define DEVI_SET_BUS_DOWN(dip) { \
455 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
456 DEVI(dip)->devi_state |= (DEVI_BUS_DOWN | DEVI_S_REPORT); \
457 }
458
459 /* Status change report needed */
460 #define DEVI_NEED_REPORT(dip) \
461 ((DEVI(dip)->devi_state & DEVI_S_REPORT) == DEVI_S_REPORT)
462
463 #define DEVI_SET_REPORT(dip) { \
464 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
465 DEVI(dip)->devi_state |= DEVI_S_REPORT; \
466 }
467
468 #define DEVI_REPORT_DONE(dip) { \
469 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
470 DEVI(dip)->devi_state &= ~DEVI_S_REPORT; \
471 }
472
473 /* Do an NDI_CONFIG for its children */
474 #define DEVI_NEED_NDI_CONFIG(dip) \
475 ((DEVI(dip)->devi_state & DEVI_NDI_CONFIG) == DEVI_NDI_CONFIG)
476
477 #define DEVI_SET_NDI_CONFIG(dip) { \
478 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
479 DEVI(dip)->devi_state |= DEVI_NDI_CONFIG; \
480 }
481
482 #define DEVI_CLR_NDI_CONFIG(dip) { \
483 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
484 DEVI(dip)->devi_state &= ~DEVI_NDI_CONFIG; \
485 }
486
487 /* Attaching or detaching state */
488 #define DEVI_IS_ATTACHING(dip) \
489 ((DEVI(dip)->devi_state & DEVI_S_ATTACHING) == DEVI_S_ATTACHING)
490
491 #define DEVI_SET_ATTACHING(dip) { \
492 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
493 DEVI(dip)->devi_state |= DEVI_S_ATTACHING; \
494 }
495
496 #define DEVI_CLR_ATTACHING(dip) { \
497 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
498 DEVI(dip)->devi_state &= ~DEVI_S_ATTACHING; \
499 }
500
501 #define DEVI_IS_DETACHING(dip) \
502 ((DEVI(dip)->devi_state & DEVI_S_DETACHING) == DEVI_S_DETACHING)
503
504 #define DEVI_SET_DETACHING(dip) { \
505 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
506 DEVI(dip)->devi_state |= DEVI_S_DETACHING; \
507 }
508
509 #define DEVI_CLR_DETACHING(dip) { \
510 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
511 DEVI(dip)->devi_state &= ~DEVI_S_DETACHING; \
512 }
513
514 /* Onlining or offlining state */
515 #define DEVI_IS_ONLINING(dip) \
516 ((DEVI(dip)->devi_state & DEVI_S_ONLINING) == DEVI_S_ONLINING)
517
518 #define DEVI_SET_ONLINING(dip) { \
519 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
520 DEVI(dip)->devi_state |= DEVI_S_ONLINING; \
521 }
522
523 #define DEVI_CLR_ONLINING(dip) { \
524 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
525 DEVI(dip)->devi_state &= ~DEVI_S_ONLINING; \
526 }
527
528 #define DEVI_IS_OFFLINING(dip) \
529 ((DEVI(dip)->devi_state & DEVI_S_OFFLINING) == DEVI_S_OFFLINING)
530
531 #define DEVI_SET_OFFLINING(dip) { \
532 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
533 DEVI(dip)->devi_state |= DEVI_S_OFFLINING; \
534 }
535
536 #define DEVI_CLR_OFFLINING(dip) { \
537 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
538 DEVI(dip)->devi_state &= ~DEVI_S_OFFLINING; \
539 }
540
541 #define DEVI_IS_IN_RECONFIG(dip) \
542 (DEVI(dip)->devi_state & (DEVI_S_OFFLINING | DEVI_S_ONLINING))
543
544 /* Busy invoking a dacf task against this node */
545 #define DEVI_IS_INVOKING_DACF(dip) \
546 ((DEVI(dip)->devi_state & DEVI_S_INVOKING_DACF) == DEVI_S_INVOKING_DACF)
547
548 #define DEVI_SET_INVOKING_DACF(dip) { \
549 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
550 DEVI(dip)->devi_state |= DEVI_S_INVOKING_DACF; \
551 }
552
553 #define DEVI_CLR_INVOKING_DACF(dip) { \
554 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
555 DEVI(dip)->devi_state &= ~DEVI_S_INVOKING_DACF; \
556 }
557
558 /* Events for add/remove */
559 #define DEVI_EVADD(dip) \
560 ((DEVI(dip)->devi_state & DEVI_S_EVADD) == DEVI_S_EVADD)
561
562 #define DEVI_SET_EVADD(dip) { \
563 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
564 DEVI(dip)->devi_state &= ~DEVI_S_EVREMOVE; \
565 DEVI(dip)->devi_state |= DEVI_S_EVADD; \
566 }
567
568 #define DEVI_EVREMOVE(dip) \
569 ((DEVI(dip)->devi_state & DEVI_S_EVREMOVE) == DEVI_S_EVREMOVE)
570
571 #define DEVI_SET_EVREMOVE(dip) { \
572 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
573 DEVI(dip)->devi_state &= ~DEVI_S_EVADD; \
574 DEVI(dip)->devi_state |= DEVI_S_EVREMOVE; \
575 }
576
577 #define DEVI_SET_EVUNINIT(dip) { \
578 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
579 DEVI(dip)->devi_state &= ~(DEVI_S_EVADD | DEVI_S_EVREMOVE); \
580 }
581
582 /* Need to call the devo_reset entry point for this device at shutdown */
583 #define DEVI_NEED_RESET(dip) \
584 ((DEVI(dip)->devi_state & DEVI_S_NEED_RESET) == DEVI_S_NEED_RESET)
585
586 #define DEVI_SET_NEED_RESET(dip) { \
587 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
588 DEVI(dip)->devi_state |= DEVI_S_NEED_RESET; \
589 }
590
591 #define DEVI_CLR_NEED_RESET(dip) { \
592 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
593 DEVI(dip)->devi_state &= ~DEVI_S_NEED_RESET; \
594 }
595
596 /*
597 * devi_flags bits
598 *
599 * NOTE: all devi_state updates should be protected by devi_lock.
600 */
601 #define DEVI_BUSY 0x00000001 /* busy configuring children */
602 #define DEVI_MADE_CHILDREN 0x00000002 /* children made from specs */
603 #define DEVI_ATTACHED_CHILDREN 0x00000004 /* attached all existing children */
604 #define DEVI_BRANCH_HELD 0x00000008 /* branch rooted at this dip held */
605 #define DEVI_NO_BIND 0x00000010 /* prevent driver binding */
606 #define DEVI_CACHED_DEVID 0x00000020 /* devid cached in devid cache */
607 #define DEVI_PHCI_SIGNALS_VHCI 0x00000040 /* pHCI ndi_devi_exit signals vHCI */
608 #define DEVI_REBIND 0x00000080 /* post initchild driver rebind */
609 #define DEVI_RETIRED 0x00000100 /* device is retired */
610 #define DEVI_RETIRING 0x00000200 /* being evaluated for retire */
611 #define DEVI_R_CONSTRAINT 0x00000400 /* constraints have been applied */
612 #define DEVI_R_BLOCKED 0x00000800 /* constraints block retire */
613 #define DEVI_CT_NOP 0x00001000 /* NOP contract event occurred */
614 #define DEVI_PCI_DEVICE 0x00002000 /* dip is PCI */
615 #define DEVI_GONE 0x00004000 /* device is physically removed */
616
617 #define DEVI_BUSY_CHANGING(dip) (DEVI(dip)->devi_flags & DEVI_BUSY)
618 #define DEVI_BUSY_OWNED(dip) (DEVI_BUSY_CHANGING(dip) && \
619 ((DEVI(dip))->devi_busy_thread == curthread))
620
621 #define DEVI_IS_PCI(dip) (DEVI(dip)->devi_flags & DEVI_PCI_DEVICE)
622 #define DEVI_SET_PCI(dip) (DEVI(dip)->devi_flags |= (DEVI_PCI_DEVICE))
623
624 #define DEVI_IS_GONE(dip) (DEVI(dip)->devi_flags & DEVI_GONE)
625 #define DEVI_SET_GONE(dip) (DEVI(dip)->devi_flags |= DEVI_GONE)
626 #define DEVI_UNSET_GONE(dip) (DEVI(dip)->devi_flags &= ~DEVI_GONE)
627
628 char *i_ddi_devi_class(dev_info_t *);
629 int i_ddi_set_devi_class(dev_info_t *, char *, int);
630
631 /*
632 * This structure represents one piece of bus space occupied by a given
633 * device. It is used in an array for devices with multiple address windows.
634 */
635 struct regspec {
636 uint_t regspec_bustype; /* cookie for bus type it's on */
637 uint_t regspec_addr; /* address of reg relative to bus */
638 uint_t regspec_size; /* size of this register set */
639 };
640
641 /*
642 * This is a version of the above structure that works for 64-bit mappings and
643 * doesn't rely on overloading of fields as is done on SPARC. Eventually the
644 * struct regspec should be replaced with this.
645 */
646 struct regspec64 {
647 uint64_t regspec_bustype; /* cookie for bus type it's on */
648 uint64_t regspec_addr; /* address of reg relative to bus */
649 uint64_t regspec_size; /* size of this register set */
650 };
651
652 /*
653 * This structure represents one piece of nexus bus space.
654 * It is used in an array for nexi with multiple bus spaces
655 * to define the childs offsets in the parents bus space.
656 */
657 struct rangespec {
658 uint_t rng_cbustype; /* Child's address, hi order */
659 uint_t rng_coffset; /* Child's address, lo order */
660 uint_t rng_bustype; /* Parent's address, hi order */
661 uint_t rng_offset; /* Parent's address, lo order */
662 uint_t rng_size; /* size of space for this entry */
663 };
664
665 #ifdef _KERNEL
666
667 typedef enum {
668 DDI_PRE = 0,
669 DDI_POST = 1
670 } ddi_pre_post_t;
671
672 /*
673 * This structure represents notification of a child attach event
674 * These could both be the same if attach/detach commands were in the
675 * same name space.
676 * Note that the target dip is passed as an arg already.
677 */
678 struct attachspec {
679 ddi_attach_cmd_t cmd; /* type of event */
680 ddi_pre_post_t when; /* one of DDI_PRE or DDI_POST */
681 dev_info_t *pdip; /* parent of attaching node */
682 int result; /* result of attach op (post command only) */
683 };
684
685 /*
686 * This structure represents notification of a child detach event
687 * Note that the target dip is passed as an arg already.
688 */
689 struct detachspec {
690 ddi_detach_cmd_t cmd; /* type of event */
691 ddi_pre_post_t when; /* one of DDI_PRE or DDI_POST */
692 dev_info_t *pdip; /* parent of detaching node */
693 int result; /* result of detach op (post command only) */
694 };
695
696 #endif /* _KERNEL */
697
698 typedef enum {
699 DDM_MINOR = 0,
700 DDM_ALIAS,
701 DDM_DEFAULT,
702 DDM_INTERNAL_PATH
703 } ddi_minor_type;
704
705 /* implementation flags for driver specified device access control */
706 #define DM_NO_FSPERM 0x1
707
708 struct devplcy;
709
710 struct ddi_minor {
711 char *name; /* name of node */
712 dev_t dev; /* device number */
713 int spec_type; /* block or char */
714 int flags; /* access flags */
715 char *node_type; /* block, byte, serial, network */
716 struct devplcy *node_priv; /* privilege for this minor */
717 mode_t priv_mode; /* default apparent privilege mode */
718 };
719
720 /*
721 * devi_node_attributes contains node attributes private to the
722 * ddi implementation. As a consumer, do not use these bit definitions
723 * directly, use the ndi functions that check for the existence of the
724 * specific node attributes.
725 *
726 * DDI_PERSISTENT indicates a 'persistent' node; one that is not
727 * automatically freed by the framework if the driver is unloaded
728 * or the driver fails to attach to this node.
729 *
730 * DDI_AUTO_ASSIGNED_NODEID indicates that the nodeid was auto-assigned
731 * by the framework and should be auto-freed if the node is removed.
732 *
733 * DDI_VHCI_NODE indicates that the node type is VHCI. This flag
734 * must be set by ndi_devi_config_vhci() routine only.
735 *
736 * DDI_HIDDEN_NODE indicates that the node should not show up in snapshots
737 * or in /devices.
738 *
739 * DDI_HOTPLUG_NODE indicates that the node created by nexus hotplug.
740 */
741 #define DDI_PERSISTENT 0x01
742 #define DDI_AUTO_ASSIGNED_NODEID 0x02
743 #define DDI_VHCI_NODE 0x04
744 #define DDI_HIDDEN_NODE 0x08
745 #define DDI_HOTPLUG_NODE 0x10
746
747 #define DEVI_VHCI_NODE(dip) \
748 (DEVI(dip)->devi_node_attributes & DDI_VHCI_NODE)
749
750 /*
751 * The ddi_minor_data structure gets filled in by ddi_create_minor_node.
752 * It then gets attached to the devinfo node as a property.
753 */
754 struct ddi_minor_data {
755 struct ddi_minor_data *next; /* next one in the chain */
756 dev_info_t *dip; /* pointer to devinfo node */
757 ddi_minor_type type; /* Following data type */
758 struct ddi_minor d_minor; /* Actual minor node data */
759 };
760
761 #define ddm_name d_minor.name
762 #define ddm_dev d_minor.dev
763 #define ddm_flags d_minor.flags
764 #define ddm_spec_type d_minor.spec_type
765 #define ddm_node_type d_minor.node_type
766 #define ddm_node_priv d_minor.node_priv
767 #define ddm_priv_mode d_minor.priv_mode
768
769 /*
770 * parent private data structure contains register, interrupt, property
771 * and range information.
772 */
773 struct ddi_parent_private_data {
774 int par_nreg; /* number of regs */
775 struct regspec *par_reg; /* array of regs */
776 int par_nintr; /* number of interrupts */
777 struct intrspec *par_intr; /* array of possible interrupts */
778 int par_nrng; /* number of ranges */
779 struct rangespec *par_rng; /* array of ranges */
780 };
781 #define DEVI_PD(d) \
782 ((struct ddi_parent_private_data *)DEVI((d))->devi_parent_data)
783
784 #define sparc_pd_getnreg(dev) (DEVI_PD(dev)->par_nreg)
785 #define sparc_pd_getnintr(dev) (DEVI_PD(dev)->par_nintr)
786 #define sparc_pd_getnrng(dev) (DEVI_PD(dev)->par_nrng)
787 #define sparc_pd_getreg(dev, n) (&DEVI_PD(dev)->par_reg[(n)])
788 #define sparc_pd_getintr(dev, n) (&DEVI_PD(dev)->par_intr[(n)])
789 #define sparc_pd_getrng(dev, n) (&DEVI_PD(dev)->par_rng[(n)])
790
791 #ifdef _KERNEL
792 /*
793 * This data structure is private to the indexed soft state allocator.
794 */
795 typedef struct i_ddi_soft_state {
796 void **array; /* the array of pointers */
797 kmutex_t lock; /* serialize access to this struct */
798 size_t size; /* how many bytes per state struct */
799 size_t n_items; /* how many structs herein */
800 struct i_ddi_soft_state *next; /* 'dirty' elements */
801 } i_ddi_soft_state;
802
803 /*
804 * This data structure is private to the stringhashed soft state allocator.
805 */
806 typedef struct i_ddi_soft_state_bystr {
807 size_t ss_size; /* how many bytes per state struct */
808 mod_hash_t *ss_mod_hash; /* hash implementation */
809 } i_ddi_soft_state_bystr;
810
811 /*
812 * This data structure is private to the ddi_strid_* implementation
813 */
814 typedef struct i_ddi_strid {
815 size_t strid_chunksz;
816 size_t strid_spacesz;
817 id_space_t *strid_space;
818 mod_hash_t *strid_byid;
819 mod_hash_t *strid_bystr;
820 } i_ddi_strid;
821 #endif /* _KERNEL */
822
823 /*
824 * Solaris DDI DMA implementation structure and function definitions.
825 *
826 * Note: no callers of DDI functions must depend upon data structures
827 * declared below. They are not guaranteed to remain constant.
828 */
829
830 /*
831 * Implementation DMA mapping structure.
832 *
833 * The publicly visible ddi_dma_req structure is filled
834 * in by a caller that wishes to map a memory object
835 * for DMA. Internal to this implementation of the public
836 * DDI DMA functions this request structure is put together
837 * with bus nexus specific functions that have additional
838 * information and constraints as to how to go about doing
839 * the requested mapping function
840 *
841 * In this implementation, some of the information from the
842 * original requester is retained throughout the lifetime
843 * of the I/O mapping being active.
844 */
845
846 /*
847 * This is the implementation specific description
848 * of how we've mapped an object for DMA.
849 */
850 #if defined(__sparc)
851 typedef struct ddi_dma_impl {
852 /*
853 * DMA mapping information
854 */
855 ulong_t dmai_mapping; /* mapping cookie */
856
857 /*
858 * Size of the current mapping, in bytes.
859 *
860 * Note that this is distinct from the size of the object being mapped
861 * for DVMA. We might have only a portion of the object mapped at any
862 * given point in time.
863 */
864 uint_t dmai_size;
865
866 /*
867 * Offset, in bytes, into object that is currently mapped.
868 */
869 off_t dmai_offset;
870
871 /*
872 * Information gathered from the original DMA mapping
873 * request and saved for the lifetime of the mapping.
874 */
875 uint_t dmai_minxfer;
876 uint_t dmai_burstsizes;
877 uint_t dmai_ndvmapages;
878 uint_t dmai_pool; /* cached DVMA space */
879 uint_t dmai_rflags; /* requester's flags + ours */
880 uint_t dmai_inuse; /* active handle? */
881 uint_t dmai_nwin;
882 uint_t dmai_winsize;
883 caddr_t dmai_nexus_private;
884 void *dmai_iopte;
885 uint_t *dmai_sbi;
886 void *dmai_minfo; /* random mapping information */
887 dev_info_t *dmai_rdip; /* original requester's dev_info_t */
888 ddi_dma_obj_t dmai_object; /* requester's object */
889 ddi_dma_attr_t dmai_attr; /* DMA attributes */
890 ddi_dma_cookie_t *dmai_cookie; /* pointer to first DMA cookie */
891
892 int (*dmai_fault_check)(struct ddi_dma_impl *handle);
893 void (*dmai_fault_notify)(struct ddi_dma_impl *handle);
894 int dmai_fault;
895 ndi_err_t dmai_error;
896
897 } ddi_dma_impl_t;
898
899 #elif defined(__x86)
900
901 /*
902 * ddi_dma_impl portion that genunix (sunddi.c) depends on. x86 rootnex
903 * implementation specific state is in dmai_private.
904 */
905 typedef struct ddi_dma_impl {
906 ddi_dma_cookie_t *dmai_cookie; /* array of DMA cookies */
907 void *dmai_private;
908
909 /*
910 * Information gathered from the original dma mapping
911 * request and saved for the lifetime of the mapping.
912 */
913 uint_t dmai_minxfer;
914 uint_t dmai_burstsizes;
915 uint_t dmai_rflags; /* requester's flags + ours */
916 int dmai_nwin;
917 dev_info_t *dmai_rdip; /* original requester's dev_info_t */
918
919 ddi_dma_attr_t dmai_attr; /* DMA attributes */
920
921 int (*dmai_fault_check)(struct ddi_dma_impl *handle);
922 void (*dmai_fault_notify)(struct ddi_dma_impl *handle);
923 int dmai_fault;
924 ndi_err_t dmai_error;
925 } ddi_dma_impl_t;
926
927 #else
928 #error "struct ddi_dma_impl not defined for this architecture"
929 #endif /* defined(__sparc) */
930
931 /*
932 * For now DMA segments share state with the DMA handle
933 */
934 typedef ddi_dma_impl_t ddi_dma_seg_impl_t;
935
936 /*
937 * These flags use reserved bits from the dma request flags.
938 *
939 * A note about the DMP_NOSYNC flags: the root nexus will
940 * set these as it sees best. If an intermediate nexus
941 * actually needs these operations, then during the unwind
942 * from the call to ddi_dma_bind, the nexus driver *must*
943 * clear the appropriate flag(s). This is because, as an
944 * optimization, ddi_dma_sync(9F) looks at these flags before
945 * deciding to spend the time going back up the tree.
946 */
947
948 #define _DMCM1 DDI_DMA_RDWR|DDI_DMA_REDZONE|DDI_DMA_PARTIAL
949 #define _DMCM2 DDI_DMA_CONSISTENT|DMP_VMEREQ
950 #define DMP_DDIFLAGS (_DMCM1|_DMCM2)
951 #define DMP_SHADOW 0x20
952 #define DMP_LKIOPB 0x40
953 #define DMP_LKSYSV 0x80
954 #define DMP_IOCACHE 0x100
955 #define DMP_USEHAT 0x200
956 #define DMP_PHYSADDR 0x400
957 #define DMP_INVALID 0x800
958 #define DMP_NOLIMIT 0x1000
959 #define DMP_VMEREQ 0x10000000
960 #define DMP_BYPASSNEXUS 0x20000000
961 #define DMP_NODEVSYNC 0x40000000
962 #define DMP_NOCPUSYNC 0x80000000
963 #define DMP_NOSYNC (DMP_NODEVSYNC|DMP_NOCPUSYNC)
964
965 /*
966 * In order to complete a device to device mapping that
967 * has percolated as high as an IU nexus (gone that high
968 * because the DMA request is a VADDR type), we define
969 * structure to use with the DDI_CTLOPS_DMAPMAPC request
970 * that re-traverses the request tree to finish the
971 * DMA 'mapping' for a device.
972 */
973 struct dma_phys_mapc {
974 struct ddi_dma_req *dma_req; /* original request */
975 ddi_dma_impl_t *mp; /* current handle, or none */
976 int nptes; /* number of ptes */
977 void *ptes; /* ptes already read */
978 };
979
980 #define MAXCALLBACK 20
981
982 /*
983 * Callback definitions
984 */
985 struct ddi_callback {
986 struct ddi_callback *c_nfree;
987 struct ddi_callback *c_nlist;
988 int (*c_call)();
989 int c_count;
990 caddr_t c_arg;
991 size_t c_size;
992 };
993
994 /*
995 * Pure dynamic property declaration. A pure dynamic property is a property
996 * for which a driver's prop_op(9E) implementation will return a value on
997 * demand, but the property name does not exist on a property list (global,
998 * driver, system, or hardware) - the person asking for the value must know
999 * the name and type information.
1000 *
1001 * For a pure dynamic property to show up in a di_init() devinfo shapshot, the
1002 * devinfo driver must know name and type. The i_ddi_prop_dyn_t mechanism
1003 * allows a driver to define an array of the name/type information of its
1004 * dynamic properties. When a driver declares its dynamic properties in a
1005 * i_ddi_prop_dyn_t array, and registers that array using
1006 * i_ddi_prop_dyn_driver_set() the devinfo driver has sufficient information
1007 * to represent the properties in a snapshot - calling the driver's
1008 * prop_op(9E) to obtain values.
1009 *
1010 * The last element of a i_ddi_prop_dyn_t is detected via a NULL dp_name value.
1011 *
1012 * A pure dynamic property name associated with a minor_node/dev_t should be
1013 * defined with a dp_spec_type of S_IFCHR or S_IFBLK, as appropriate. The
1014 * driver's prop_op(9E) entry point will be called for all
1015 * ddi_create_minor_node(9F) nodes of the specified spec_type. For a driver
1016 * where not all minor_node/dev_t combinations support the same named
1017 * properties, it is the responsibility of the prop_op(9E) implementation to
1018 * sort out what combinations are appropriate.
1019 *
1020 * A pure dynamic property of a devinfo node should be defined with a
1021 * dp_spec_type of 0.
1022 *
1023 * NB: Public DDI property interfaces no longer support pure dynamic
1024 * properties, but they are still still used. A prime example is the cmlb
1025 * implementation of size(9P) properties. Using pure dynamic properties
1026 * reduces the space required to maintain per-partition information. Since
1027 * there are no public interfaces to create pure dynamic properties,
1028 * the i_ddi_prop_dyn_t mechanism should remain private.
1029 */
1030 typedef struct i_ddi_prop_dyn {
1031 char *dp_name; /* name of dynamic property */
1032 int dp_type; /* DDI_PROP_TYPE_ of property */
1033 int dp_spec_type; /* 0, S_IFCHR, S_IFBLK */
1034 } i_ddi_prop_dyn_t;
1035 void i_ddi_prop_dyn_driver_set(dev_info_t *,
1036 i_ddi_prop_dyn_t *);
1037 i_ddi_prop_dyn_t *i_ddi_prop_dyn_driver_get(dev_info_t *);
1038 void i_ddi_prop_dyn_parent_set(dev_info_t *,
1039 i_ddi_prop_dyn_t *);
1040 i_ddi_prop_dyn_t *i_ddi_prop_dyn_parent_get(dev_info_t *);
1041 void i_ddi_prop_dyn_cache_invalidate(dev_info_t *,
1042 i_ddi_prop_dyn_t *);
1043
1044 /*
1045 * Device id - Internal definition.
1046 */
1047 #define DEVID_MAGIC_MSB 0x69
1048 #define DEVID_MAGIC_LSB 0x64
1049 #define DEVID_REV_MSB 0x00
1050 #define DEVID_REV_LSB 0x01
1051 #define DEVID_HINT_SIZE 4
1052
1053 typedef struct impl_devid {
1054 uchar_t did_magic_hi; /* device id magic # (msb) */
1055 uchar_t did_magic_lo; /* device id magic # (lsb) */
1056 uchar_t did_rev_hi; /* device id revision # (msb) */
1057 uchar_t did_rev_lo; /* device id revision # (lsb) */
1058 uchar_t did_type_hi; /* device id type (msb) */
1059 uchar_t did_type_lo; /* device id type (lsb) */
1060 uchar_t did_len_hi; /* length of devid data (msb) */
1061 uchar_t did_len_lo; /* length of devid data (lsb) */
1062 char did_driver[DEVID_HINT_SIZE]; /* driver name - HINT */
1063 char did_id[1]; /* start of device id data */
1064 } impl_devid_t;
1065
1066 #define DEVID_GETTYPE(devid) ((ushort_t) \
1067 (((devid)->did_type_hi << NBBY) + \
1068 (devid)->did_type_lo))
1069
1070 #define DEVID_FORMTYPE(devid, type) (devid)->did_type_hi = hibyte((type)); \
1071 (devid)->did_type_lo = lobyte((type));
1072
1073 #define DEVID_GETLEN(devid) ((ushort_t) \
1074 (((devid)->did_len_hi << NBBY) + \
1075 (devid)->did_len_lo))
1076
1077 #define DEVID_FORMLEN(devid, len) (devid)->did_len_hi = hibyte((len)); \
1078 (devid)->did_len_lo = lobyte((len));
1079
1080 /*
1081 * Per PSARC/1995/352, a binary devid contains fields for <magic number>,
1082 * <revision>, <driver_hint>, <type>, <id_length>, and the <id> itself.
1083 * This proposal would encode the binary devid into a string consisting
1084 * of "<magic><revision>,<driver_hint>@<type><id>" as indicated below
1085 * (<id_length> is rederived from the length of the string
1086 * representation of the <id>):
1087 *
1088 * <magic> ->"id"
1089 *
1090 * <rev> ->"%d" // "0" -> type of DEVID_NONE "id0"
1091 * // NOTE: PSARC/1995/352 <revision> is "1".
1092 * // NOTE: support limited to 10 revisions
1093 * // in current implementation
1094 *
1095 * <driver_hint> ->"%s" // "sd"/"ssd"
1096 * // NOTE: driver names limited to 4
1097 * // characters for <revision> "1"
1098 *
1099 * <type> ->'w' | // DEVID_SCSI3_WWN <hex_id>
1100 * 'W' | // DEVID_SCSI3_WWN <ascii_id>
1101 * 't' | // DEVID_SCSI3_VPD_T10 <hex_id>
1102 * 'T' | // DEVID_SCSI3_VPD_T10 <ascii_id>
1103 * 'x' | // DEVID_SCSI3_VPD_EUI <hex_id>
1104 * 'X' | // DEVID_SCSI3_VPD_EUI <ascii_id>
1105 * 'n' | // DEVID_SCSI3_VPD_NAA <hex_id>
1106 * 'N' | // DEVID_SCSI3_VPD_NAA <ascii_id>
1107 * 's' | // DEVID_SCSI_SERIAL <hex_id>
1108 * 'S' | // DEVID_SCSI_SERIAL <ascii_id>
1109 * 'f' | // DEVID_FAB <hex_id>
1110 * 'F' | // DEVID_FAB <ascii_id>
1111 * 'e' | // DEVID_ENCAP <hex_id>
1112 * 'E' | // DEVID_ENCAP <ascii_id>
1113 * 'a' | // DEVID_ATA_SERIAL <hex_id>
1114 * 'A' | // DEVID_ATA_SERIAL <ascii_id>
1115 * 'u' | // unknown <hex_id>
1116 * 'U' // unknown <ascii_id>
1117 * // NOTE:lower case -> <hex_id>
1118 * // upper case -> <ascii_id>
1119 * // NOTE:this covers all types currently
1120 * // defined for <revision> 1.
1121 * // NOTE:a <type> can be added
1122 * // without changing the <revision>.
1123 *
1124 * <id> -> <ascii_id> | // <type> is upper case
1125 * <hex_id> // <type> is lower case
1126 *
1127 * <ascii_id> // only if all bytes of binary <id> field
1128 * // are in the set:
1129 * // [A-Z][a-z][0-9]+-.= and space and 0x00
1130 * // the encoded form is:
1131 * // [A-Z][a-z][0-9]+-.= and _ and ~
1132 * // NOTE: ' ' <=> '_', 0x00 <=> '~'
1133 * // these sets are chosen to avoid shell
1134 * // and conflicts with DDI node names.
1135 *
1136 * <hex_id> // if not <ascii_id>; each byte of binary
1137 * // <id> maps a to 2 digit ascii hex
1138 * // representation in the string.
1139 *
1140 * This encoding provides a meaningful correlation between the /devices
1141 * path and the devid string where possible.
1142 *
1143 * Fibre:
1144 * sbus@6,0/SUNW,socal@d,10000/sf@1,0/ssd@w21000020370bb488,0:c,raw
1145 * id1,ssd@w20000020370bb488:c,raw
1146 *
1147 * Copper:
1148 * sbus@7,0/SUNW,fas@3,8800000/sd@a,0:c
1149 * id1,sd@SIBM_____1XY210__________:c
1150 */
1151 /* determine if a byte of an id meets ASCII representation requirements */
1152 #define DEVID_IDBYTE_ISASCII(b) ( \
1153 (((b) >= 'a') && ((b) <= 'z')) || \
1154 (((b) >= 'A') && ((b) <= 'Z')) || \
1155 (((b) >= '0') && ((b) <= '9')) || \
1156 (b == '+') || (b == '-') || (b == '.') || (b == '=') || \
1157 (b == ' ') || (b == 0x00))
1158
1159 /* set type to lower case to indicate that the did_id field is ascii */
1160 #define DEVID_TYPE_SETASCII(c) (c - 0x20) /* 'a' -> 'A' */
1161
1162 /* determine from type if did_id field is binary or ascii */
1163 #define DEVID_TYPE_ISASCII(c) (((c) >= 'A') && ((c) <= 'Z'))
1164
1165 /* convert type field from binary to ascii */
1166 #define DEVID_TYPE_BINTOASCII(b) ( \
1167 ((b) == DEVID_SCSI3_WWN) ? 'w' : \
1168 ((b) == DEVID_SCSI3_VPD_T10) ? 't' : \
1169 ((b) == DEVID_SCSI3_VPD_EUI) ? 'x' : \
1170 ((b) == DEVID_SCSI3_VPD_NAA) ? 'n' : \
1171 ((b) == DEVID_SCSI_SERIAL) ? 's' : \
1172 ((b) == DEVID_FAB) ? 'f' : \
1173 ((b) == DEVID_ENCAP) ? 'e' : \
1174 ((b) == DEVID_ATA_SERIAL) ? 'a' : \
1175 'u') /* unknown */
1176
1177 /* convert type field from ascii to binary */
1178 #define DEVID_TYPE_ASCIITOBIN(c) ( \
1179 (((c) == 'w') || ((c) == 'W')) ? DEVID_SCSI3_WWN : \
1180 (((c) == 't') || ((c) == 'T')) ? DEVID_SCSI3_VPD_T10 : \
1181 (((c) == 'x') || ((c) == 'X')) ? DEVID_SCSI3_VPD_EUI : \
1182 (((c) == 'n') || ((c) == 'N')) ? DEVID_SCSI3_VPD_NAA : \
1183 (((c) == 's') || ((c) == 'S')) ? DEVID_SCSI_SERIAL : \
1184 (((c) == 'f') || ((c) == 'F')) ? DEVID_FAB : \
1185 (((c) == 'e') || ((c) == 'E')) ? DEVID_ENCAP : \
1186 (((c) == 'a') || ((c) == 'A')) ? DEVID_ATA_SERIAL : \
1187 DEVID_MAXTYPE +1) /* unknown */
1188
1189 /* determine if the type should be forced to hex encoding (non-ascii) */
1190 #define DEVID_TYPE_BIN_FORCEHEX(b) ( \
1191 ((b) == DEVID_SCSI3_WWN) || \
1192 ((b) == DEVID_SCSI3_VPD_EUI) || \
1193 ((b) == DEVID_SCSI3_VPD_NAA) || \
1194 ((b) == DEVID_FAB))
1195
1196 /* determine if the type is from a scsi3 vpd */
1197 #define IS_DEVID_SCSI3_VPD_TYPE(b) ( \
1198 ((b) == DEVID_SCSI3_VPD_T10) || \
1199 ((b) == DEVID_SCSI3_VPD_EUI) || \
1200 ((b) == DEVID_SCSI3_VPD_NAA))
1201
1202 /* convert rev field from binary to ascii (only supports 10 revs) */
1203 #define DEVID_REV_BINTOASCII(b) (b + '0')
1204
1205 /* convert rev field from ascii to binary (only supports 10 revs) */
1206 #define DEVID_REV_ASCIITOBIN(c) (c - '0')
1207
1208 /* name of devid property */
1209 #define DEVID_PROP_NAME "devid"
1210
1211 /*
1212 * prop_name used by pci_{save,restore}_config_regs()
1213 */
1214 #define SAVED_CONFIG_REGS "pci-config-regs"
1215 #define SAVED_CONFIG_REGS_MASK "pcie-config-regs-mask"
1216 #define SAVED_CONFIG_REGS_CAPINFO "pci-cap-info"
1217
1218 typedef struct pci_config_header_state {
1219 uint16_t chs_command;
1220 uint8_t chs_cache_line_size;
1221 uint8_t chs_latency_timer;
1222 uint8_t chs_header_type;
1223 uint8_t chs_sec_latency_timer;
1224 uint8_t chs_bridge_control;
1225 uint32_t chs_base0;
1226 uint32_t chs_base1;
1227 uint32_t chs_base2;
1228 uint32_t chs_base3;
1229 uint32_t chs_base4;
1230 uint32_t chs_base5;
1231 } pci_config_header_state_t;
1232
1233 #ifdef _KERNEL
1234
1235 typedef struct pci_cap_save_desc {
1236 uint16_t cap_offset;
1237 uint16_t cap_id;
1238 uint32_t cap_nregs;
1239 } pci_cap_save_desc_t;
1240
1241 typedef struct pci_cap_entry {
1242 uint16_t cap_id;
1243 uint16_t cap_reg;
1244 uint16_t cap_mask;
1245 uint32_t cap_ndwords;
1246 uint32_t (*cap_save_func)(ddi_acc_handle_t confhdl, uint16_t cap_ptr,
1247 uint32_t *regbuf, uint32_t ndwords);
1248 } pci_cap_entry_t;
1249
1250 #endif /* _KERNEL */
1251
1252 #ifdef __cplusplus
1253 }
1254 #endif
1255
1256 #endif /* _SYS_DDI_IMPLDEFS_H */