1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright 2014 Garrett D'Amore <garrett@damore.org>
  25  */
  26 
  27 #include <sys/note.h>
  28 #include <sys/types.h>
  29 #include <sys/param.h>
  30 #include <sys/systm.h>
  31 #include <sys/buf.h>
  32 #include <sys/uio.h>
  33 #include <sys/cred.h>
  34 #include <sys/poll.h>
  35 #include <sys/mman.h>
  36 #include <sys/kmem.h>
  37 #include <sys/model.h>
  38 #include <sys/file.h>
  39 #include <sys/proc.h>
  40 #include <sys/open.h>
  41 #include <sys/user.h>
  42 #include <sys/t_lock.h>
  43 #include <sys/vm.h>
  44 #include <sys/stat.h>
  45 #include <vm/hat.h>
  46 #include <vm/seg.h>
  47 #include <vm/seg_vn.h>
  48 #include <vm/seg_dev.h>
  49 #include <vm/as.h>
  50 #include <sys/cmn_err.h>
  51 #include <sys/cpuvar.h>
  52 #include <sys/debug.h>
  53 #include <sys/autoconf.h>
  54 #include <sys/sunddi.h>
  55 #include <sys/esunddi.h>
  56 #include <sys/sunndi.h>
  57 #include <sys/kstat.h>
  58 #include <sys/conf.h>
  59 #include <sys/ddi_impldefs.h>     /* include implementation structure defs */
  60 #include <sys/ndi_impldefs.h>     /* include prototypes */
  61 #include <sys/ddi_periodic.h>
  62 #include <sys/hwconf.h>
  63 #include <sys/pathname.h>
  64 #include <sys/modctl.h>
  65 #include <sys/epm.h>
  66 #include <sys/devctl.h>
  67 #include <sys/callb.h>
  68 #include <sys/cladm.h>
  69 #include <sys/sysevent.h>
  70 #include <sys/dacf_impl.h>
  71 #include <sys/ddidevmap.h>
  72 #include <sys/bootconf.h>
  73 #include <sys/disp.h>
  74 #include <sys/atomic.h>
  75 #include <sys/promif.h>
  76 #include <sys/instance.h>
  77 #include <sys/sysevent/eventdefs.h>
  78 #include <sys/task.h>
  79 #include <sys/project.h>
  80 #include <sys/taskq.h>
  81 #include <sys/devpolicy.h>
  82 #include <sys/ctype.h>
  83 #include <net/if.h>
  84 #include <sys/rctl.h>
  85 #include <sys/zone.h>
  86 #include <sys/clock_impl.h>
  87 #include <sys/ddi.h>
  88 #include <sys/modhash.h>
  89 #include <sys/sunldi_impl.h>
  90 #include <sys/fs/dv_node.h>
  91 #include <sys/fs/snode.h>
  92 
  93 extern  pri_t   minclsyspri;
  94 
  95 extern  rctl_hndl_t rc_project_locked_mem;
  96 extern  rctl_hndl_t rc_zone_locked_mem;
  97 
  98 #ifdef DEBUG
  99 static int sunddi_debug = 0;
 100 #endif /* DEBUG */
 101 
 102 /* ddi_umem_unlock miscellaneous */
 103 
 104 static  void    i_ddi_umem_unlock_thread_start(void);
 105 
 106 static  kmutex_t        ddi_umem_unlock_mutex; /* unlock list mutex */
 107 static  kcondvar_t      ddi_umem_unlock_cv; /* unlock list block/unblock */
 108 static  kthread_t       *ddi_umem_unlock_thread;
 109 /*
 110  * The ddi_umem_unlock FIFO list.  NULL head pointer indicates empty list.
 111  */
 112 static  struct  ddi_umem_cookie *ddi_umem_unlock_head = NULL;
 113 static  struct  ddi_umem_cookie *ddi_umem_unlock_tail = NULL;
 114 
 115 /*
 116  * DDI(Sun) Function and flag definitions:
 117  */
 118 
 119 #if defined(__x86)
 120 /*
 121  * Used to indicate which entries were chosen from a range.
 122  */
 123 char    *chosen_reg = "chosen-reg";
 124 #endif
 125 
 126 /*
 127  * Function used to ring system console bell
 128  */
 129 void (*ddi_console_bell_func)(clock_t duration);
 130 
 131 /*
 132  * Creating register mappings and handling interrupts:
 133  */
 134 
 135 /*
 136  * Generic ddi_map: Call parent to fulfill request...
 137  */
 138 
 139 int
 140 ddi_map(dev_info_t *dp, ddi_map_req_t *mp, off_t offset,
 141     off_t len, caddr_t *addrp)
 142 {
 143         dev_info_t *pdip;
 144 
 145         ASSERT(dp);
 146         pdip = (dev_info_t *)DEVI(dp)->devi_parent;
 147         return ((DEVI(pdip)->devi_ops->devo_bus_ops->bus_map)(pdip,
 148             dp, mp, offset, len, addrp));
 149 }
 150 
 151 /*
 152  * ddi_apply_range: (Called by nexi only.)
 153  * Apply ranges in parent node dp, to child regspec rp...
 154  */
 155 
 156 int
 157 ddi_apply_range(dev_info_t *dp, dev_info_t *rdip, struct regspec *rp)
 158 {
 159         return (i_ddi_apply_range(dp, rdip, rp));
 160 }
 161 
 162 int
 163 ddi_map_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, off_t offset,
 164     off_t len)
 165 {
 166         ddi_map_req_t mr;
 167 #if defined(__x86)
 168         struct {
 169                 int     bus;
 170                 int     addr;
 171                 int     size;
 172         } reg, *reglist;
 173         uint_t  length;
 174         int     rc;
 175 
 176         /*
 177          * get the 'registers' or the 'reg' property.
 178          * We look up the reg property as an array of
 179          * int's.
 180          */
 181         rc = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
 182             DDI_PROP_DONTPASS, "registers", (int **)&reglist, &length);
 183         if (rc != DDI_PROP_SUCCESS)
 184                 rc = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
 185                     DDI_PROP_DONTPASS, "reg", (int **)&reglist, &length);
 186         if (rc == DDI_PROP_SUCCESS) {
 187                 /*
 188                  * point to the required entry.
 189                  */
 190                 reg = reglist[rnumber];
 191                 reg.addr += offset;
 192                 if (len != 0)
 193                         reg.size = len;
 194                 /*
 195                  * make a new property containing ONLY the required tuple.
 196                  */
 197                 if (ddi_prop_update_int_array(DDI_DEV_T_NONE, dip,
 198                     chosen_reg, (int *)&reg, (sizeof (reg)/sizeof (int)))
 199                     != DDI_PROP_SUCCESS) {
 200                         cmn_err(CE_WARN, "%s%d: cannot create '%s' "
 201                             "property", DEVI(dip)->devi_name,
 202                             DEVI(dip)->devi_instance, chosen_reg);
 203                 }
 204                 /*
 205                  * free the memory allocated by
 206                  * ddi_prop_lookup_int_array ().
 207                  */
 208                 ddi_prop_free((void *)reglist);
 209         }
 210 #endif
 211         mr.map_op = DDI_MO_MAP_LOCKED;
 212         mr.map_type = DDI_MT_RNUMBER;
 213         mr.map_obj.rnumber = rnumber;
 214         mr.map_prot = PROT_READ | PROT_WRITE;
 215         mr.map_flags = DDI_MF_KERNEL_MAPPING;
 216         mr.map_handlep = NULL;
 217         mr.map_vers = DDI_MAP_VERSION;
 218 
 219         /*
 220          * Call my parent to map in my regs.
 221          */
 222 
 223         return (ddi_map(dip, &mr, offset, len, kaddrp));
 224 }
 225 
 226 void
 227 ddi_unmap_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, off_t offset,
 228     off_t len)
 229 {
 230         ddi_map_req_t mr;
 231 
 232         mr.map_op = DDI_MO_UNMAP;
 233         mr.map_type = DDI_MT_RNUMBER;
 234         mr.map_flags = DDI_MF_KERNEL_MAPPING;
 235         mr.map_prot = PROT_READ | PROT_WRITE;   /* who cares? */
 236         mr.map_obj.rnumber = rnumber;
 237         mr.map_handlep = NULL;
 238         mr.map_vers = DDI_MAP_VERSION;
 239 
 240         /*
 241          * Call my parent to unmap my regs.
 242          */
 243 
 244         (void) ddi_map(dip, &mr, offset, len, kaddrp);
 245         *kaddrp = (caddr_t)0;
 246 #if defined(__x86)
 247         (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, chosen_reg);
 248 #endif
 249 }
 250 
 251 int
 252 ddi_bus_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
 253         off_t offset, off_t len, caddr_t *vaddrp)
 254 {
 255         return (i_ddi_bus_map(dip, rdip, mp, offset, len, vaddrp));
 256 }
 257 
 258 /*
 259  * nullbusmap:  The/DDI default bus_map entry point for nexi
 260  *              not conforming to the reg/range paradigm (i.e. scsi, etc.)
 261  *              with no HAT/MMU layer to be programmed at this level.
 262  *
 263  *              If the call is to map by rnumber, return an error,
 264  *              otherwise pass anything else up the tree to my parent.
 265  */
 266 int
 267 nullbusmap(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
 268         off_t offset, off_t len, caddr_t *vaddrp)
 269 {
 270         _NOTE(ARGUNUSED(rdip))
 271         if (mp->map_type == DDI_MT_RNUMBER)
 272                 return (DDI_ME_UNSUPPORTED);
 273 
 274         return (ddi_map(dip, mp, offset, len, vaddrp));
 275 }
 276 
 277 /*
 278  * ddi_rnumber_to_regspec: Not for use by leaf drivers.
 279  *                         Only for use by nexi using the reg/range paradigm.
 280  */
 281 struct regspec *
 282 ddi_rnumber_to_regspec(dev_info_t *dip, int rnumber)
 283 {
 284         return (i_ddi_rnumber_to_regspec(dip, rnumber));
 285 }
 286 
 287 
 288 /*
 289  * Note that we allow the dip to be nil because we may be called
 290  * prior even to the instantiation of the devinfo tree itself - all
 291  * regular leaf and nexus drivers should always use a non-nil dip!
 292  *
 293  * We treat peek in a somewhat cavalier fashion .. assuming that we'll
 294  * simply get a synchronous fault as soon as we touch a missing address.
 295  *
 296  * Poke is rather more carefully handled because we might poke to a write
 297  * buffer, "succeed", then only find some time later that we got an
 298  * asynchronous fault that indicated that the address we were writing to
 299  * was not really backed by hardware.
 300  */
 301 
 302 static int
 303 i_ddi_peekpoke(dev_info_t *devi, ddi_ctl_enum_t cmd, size_t size,
 304     void *addr, void *value_p)
 305 {
 306         union {
 307                 uint64_t        u64;
 308                 uint32_t        u32;
 309                 uint16_t        u16;
 310                 uint8_t         u8;
 311         } peekpoke_value;
 312 
 313         peekpoke_ctlops_t peekpoke_args;
 314         uint64_t dummy_result;
 315         int rval;
 316 
 317         /* Note: size is assumed to be correct;  it is not checked. */
 318         peekpoke_args.size = size;
 319         peekpoke_args.dev_addr = (uintptr_t)addr;
 320         peekpoke_args.handle = NULL;
 321         peekpoke_args.repcount = 1;
 322         peekpoke_args.flags = 0;
 323 
 324         if (cmd == DDI_CTLOPS_POKE) {
 325                 switch (size) {
 326                 case sizeof (uint8_t):
 327                         peekpoke_value.u8 = *(uint8_t *)value_p;
 328                         break;
 329                 case sizeof (uint16_t):
 330                         peekpoke_value.u16 = *(uint16_t *)value_p;
 331                         break;
 332                 case sizeof (uint32_t):
 333                         peekpoke_value.u32 = *(uint32_t *)value_p;
 334                         break;
 335                 case sizeof (uint64_t):
 336                         peekpoke_value.u64 = *(uint64_t *)value_p;
 337                         break;
 338                 }
 339         }
 340 
 341         peekpoke_args.host_addr = (uintptr_t)&peekpoke_value.u64;
 342 
 343         if (devi != NULL)
 344                 rval = ddi_ctlops(devi, devi, cmd, &peekpoke_args,
 345                     &dummy_result);
 346         else
 347                 rval = peekpoke_mem(cmd, &peekpoke_args);
 348 
 349         /*
 350          * A NULL value_p is permitted by ddi_peek(9F); discard the result.
 351          */
 352         if ((cmd == DDI_CTLOPS_PEEK) & (value_p != NULL)) {
 353                 switch (size) {
 354                 case sizeof (uint8_t):
 355                         *(uint8_t *)value_p = peekpoke_value.u8;
 356                         break;
 357                 case sizeof (uint16_t):
 358                         *(uint16_t *)value_p = peekpoke_value.u16;
 359                         break;
 360                 case sizeof (uint32_t):
 361                         *(uint32_t *)value_p = peekpoke_value.u32;
 362                         break;
 363                 case sizeof (uint64_t):
 364                         *(uint64_t *)value_p = peekpoke_value.u64;
 365                         break;
 366                 }
 367         }
 368 
 369         return (rval);
 370 }
 371 
 372 /*
 373  * Keep ddi_peek() and ddi_poke() in case 3rd parties are calling this.
 374  * they shouldn't be, but the 9f manpage kind of pseudo exposes it.
 375  */
 376 int
 377 ddi_peek(dev_info_t *devi, size_t size, void *addr, void *value_p)
 378 {
 379         switch (size) {
 380         case sizeof (uint8_t):
 381         case sizeof (uint16_t):
 382         case sizeof (uint32_t):
 383         case sizeof (uint64_t):
 384                 break;
 385         default:
 386                 return (DDI_FAILURE);
 387         }
 388 
 389         return (i_ddi_peekpoke(devi, DDI_CTLOPS_PEEK, size, addr, value_p));
 390 }
 391 
 392 int
 393 ddi_poke(dev_info_t *devi, size_t size, void *addr, void *value_p)
 394 {
 395         switch (size) {
 396         case sizeof (uint8_t):
 397         case sizeof (uint16_t):
 398         case sizeof (uint32_t):
 399         case sizeof (uint64_t):
 400                 break;
 401         default:
 402                 return (DDI_FAILURE);
 403         }
 404 
 405         return (i_ddi_peekpoke(devi, DDI_CTLOPS_POKE, size, addr, value_p));
 406 }
 407 
 408 int
 409 ddi_peek8(dev_info_t *dip, int8_t *addr, int8_t *val_p)
 410 {
 411         return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
 412             val_p));
 413 }
 414 
 415 int
 416 ddi_peek16(dev_info_t *dip, int16_t *addr, int16_t *val_p)
 417 {
 418         return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
 419             val_p));
 420 }
 421 
 422 int
 423 ddi_peek32(dev_info_t *dip, int32_t *addr, int32_t *val_p)
 424 {
 425         return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
 426             val_p));
 427 }
 428 
 429 int
 430 ddi_peek64(dev_info_t *dip, int64_t *addr, int64_t *val_p)
 431 {
 432         return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
 433             val_p));
 434 }
 435 
 436 
 437 /*
 438  * We need to separate the old interfaces from the new ones and leave them
 439  * in here for a while. Previous versions of the OS defined the new interfaces
 440  * to the old interfaces. This way we can fix things up so that we can
 441  * eventually remove these interfaces.
 442  * e.g. A 3rd party module/driver using ddi_peek8 and built against S10
 443  * or earlier will actually have a reference to ddi_peekc in the binary.
 444  */
 445 #ifdef _ILP32
 446 int
 447 ddi_peekc(dev_info_t *dip, int8_t *addr, int8_t *val_p)
 448 {
 449         return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
 450             val_p));
 451 }
 452 
 453 int
 454 ddi_peeks(dev_info_t *dip, int16_t *addr, int16_t *val_p)
 455 {
 456         return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
 457             val_p));
 458 }
 459 
 460 int
 461 ddi_peekl(dev_info_t *dip, int32_t *addr, int32_t *val_p)
 462 {
 463         return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
 464             val_p));
 465 }
 466 
 467 int
 468 ddi_peekd(dev_info_t *dip, int64_t *addr, int64_t *val_p)
 469 {
 470         return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
 471             val_p));
 472 }
 473 #endif /* _ILP32 */
 474 
 475 int
 476 ddi_poke8(dev_info_t *dip, int8_t *addr, int8_t val)
 477 {
 478         return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
 479 }
 480 
 481 int
 482 ddi_poke16(dev_info_t *dip, int16_t *addr, int16_t val)
 483 {
 484         return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
 485 }
 486 
 487 int
 488 ddi_poke32(dev_info_t *dip, int32_t *addr, int32_t val)
 489 {
 490         return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
 491 }
 492 
 493 int
 494 ddi_poke64(dev_info_t *dip, int64_t *addr, int64_t val)
 495 {
 496         return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
 497 }
 498 
 499 /*
 500  * We need to separate the old interfaces from the new ones and leave them
 501  * in here for a while. Previous versions of the OS defined the new interfaces
 502  * to the old interfaces. This way we can fix things up so that we can
 503  * eventually remove these interfaces.
 504  * e.g. A 3rd party module/driver using ddi_poke8 and built against S10
 505  * or earlier will actually have a reference to ddi_pokec in the binary.
 506  */
 507 #ifdef _ILP32
 508 int
 509 ddi_pokec(dev_info_t *dip, int8_t *addr, int8_t val)
 510 {
 511         return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
 512 }
 513 
 514 int
 515 ddi_pokes(dev_info_t *dip, int16_t *addr, int16_t val)
 516 {
 517         return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
 518 }
 519 
 520 int
 521 ddi_pokel(dev_info_t *dip, int32_t *addr, int32_t val)
 522 {
 523         return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
 524 }
 525 
 526 int
 527 ddi_poked(dev_info_t *dip, int64_t *addr, int64_t val)
 528 {
 529         return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
 530 }
 531 #endif /* _ILP32 */
 532 
 533 /*
 534  * ddi_peekpokeio() is used primarily by the mem drivers for moving
 535  * data to and from uio structures via peek and poke.  Note that we
 536  * use "internal" routines ddi_peek and ddi_poke to make this go
 537  * slightly faster, avoiding the call overhead ..
 538  */
 539 int
 540 ddi_peekpokeio(dev_info_t *devi, struct uio *uio, enum uio_rw rw,
 541     caddr_t addr, size_t len, uint_t xfersize)
 542 {
 543         int64_t ibuffer;
 544         int8_t w8;
 545         size_t sz;
 546         int o;
 547 
 548         if (xfersize > sizeof (long))
 549                 xfersize = sizeof (long);
 550 
 551         while (len != 0) {
 552                 if ((len | (uintptr_t)addr) & 1) {
 553                         sz = sizeof (int8_t);
 554                         if (rw == UIO_WRITE) {
 555                                 if ((o = uwritec(uio)) == -1)
 556                                         return (DDI_FAILURE);
 557                                 if (ddi_poke8(devi, (int8_t *)addr,
 558                                     (int8_t)o) != DDI_SUCCESS)
 559                                         return (DDI_FAILURE);
 560                         } else {
 561                                 if (i_ddi_peekpoke(devi, DDI_CTLOPS_PEEK, sz,
 562                                     (int8_t *)addr, &w8) != DDI_SUCCESS)
 563                                         return (DDI_FAILURE);
 564                                 if (ureadc(w8, uio))
 565                                         return (DDI_FAILURE);
 566                         }
 567                 } else {
 568                         switch (xfersize) {
 569                         case sizeof (int64_t):
 570                                 if (((len | (uintptr_t)addr) &
 571                                     (sizeof (int64_t) - 1)) == 0) {
 572                                         sz = xfersize;
 573                                         break;
 574                                 }
 575                                 /*FALLTHROUGH*/
 576                         case sizeof (int32_t):
 577                                 if (((len | (uintptr_t)addr) &
 578                                     (sizeof (int32_t) - 1)) == 0) {
 579                                         sz = xfersize;
 580                                         break;
 581                                 }
 582                                 /*FALLTHROUGH*/
 583                         default:
 584                                 /*
 585                                  * This still assumes that we might have an
 586                                  * I/O bus out there that permits 16-bit
 587                                  * transfers (and that it would be upset by
 588                                  * 32-bit transfers from such locations).
 589                                  */
 590                                 sz = sizeof (int16_t);
 591                                 break;
 592                         }
 593 
 594                         if (rw == UIO_READ) {
 595                                 if (i_ddi_peekpoke(devi, DDI_CTLOPS_PEEK, sz,
 596                                     addr, &ibuffer) != DDI_SUCCESS)
 597                                         return (DDI_FAILURE);
 598                         }
 599 
 600                         if (uiomove(&ibuffer, sz, rw, uio))
 601                                 return (DDI_FAILURE);
 602 
 603                         if (rw == UIO_WRITE) {
 604                                 if (i_ddi_peekpoke(devi, DDI_CTLOPS_POKE, sz,
 605                                     addr, &ibuffer) != DDI_SUCCESS)
 606                                         return (DDI_FAILURE);
 607                         }
 608                 }
 609                 addr += sz;
 610                 len -= sz;
 611         }
 612         return (DDI_SUCCESS);
 613 }
 614 
 615 /*
 616  * These routines are used by drivers that do layered ioctls
 617  * On sparc, they're implemented in assembler to avoid spilling
 618  * register windows in the common (copyin) case ..
 619  */
 620 #if !defined(__sparc)
 621 int
 622 ddi_copyin(const void *buf, void *kernbuf, size_t size, int flags)
 623 {
 624         if (flags & FKIOCTL)
 625                 return (kcopy(buf, kernbuf, size) ? -1 : 0);
 626         return (copyin(buf, kernbuf, size));
 627 }
 628 
 629 int
 630 ddi_copyout(const void *buf, void *kernbuf, size_t size, int flags)
 631 {
 632         if (flags & FKIOCTL)
 633                 return (kcopy(buf, kernbuf, size) ? -1 : 0);
 634         return (copyout(buf, kernbuf, size));
 635 }
 636 #endif  /* !__sparc */
 637 
 638 /*
 639  * Conversions in nexus pagesize units.  We don't duplicate the
 640  * 'nil dip' semantics of peek/poke because btopr/btop/ptob are DDI/DKI
 641  * routines anyway.
 642  */
 643 unsigned long
 644 ddi_btop(dev_info_t *dip, unsigned long bytes)
 645 {
 646         unsigned long pages;
 647 
 648         (void) ddi_ctlops(dip, dip, DDI_CTLOPS_BTOP, &bytes, &pages);
 649         return (pages);
 650 }
 651 
 652 unsigned long
 653 ddi_btopr(dev_info_t *dip, unsigned long bytes)
 654 {
 655         unsigned long pages;
 656 
 657         (void) ddi_ctlops(dip, dip, DDI_CTLOPS_BTOPR, &bytes, &pages);
 658         return (pages);
 659 }
 660 
 661 unsigned long
 662 ddi_ptob(dev_info_t *dip, unsigned long pages)
 663 {
 664         unsigned long bytes;
 665 
 666         (void) ddi_ctlops(dip, dip, DDI_CTLOPS_PTOB, &pages, &bytes);
 667         return (bytes);
 668 }
 669 
 670 unsigned int
 671 ddi_enter_critical(void)
 672 {
 673         return ((uint_t)spl7());
 674 }
 675 
 676 void
 677 ddi_exit_critical(unsigned int spl)
 678 {
 679         splx((int)spl);
 680 }
 681 
 682 /*
 683  * Nexus ctlops punter
 684  */
 685 
 686 #if !defined(__sparc)
 687 /*
 688  * Request bus_ctl parent to handle a bus_ctl request
 689  *
 690  * (The sparc version is in sparc_ddi.s)
 691  */
 692 int
 693 ddi_ctlops(dev_info_t *d, dev_info_t *r, ddi_ctl_enum_t op, void *a, void *v)
 694 {
 695         int (*fp)();
 696 
 697         if (!d || !r)
 698                 return (DDI_FAILURE);
 699 
 700         if ((d = (dev_info_t *)DEVI(d)->devi_bus_ctl) == NULL)
 701                 return (DDI_FAILURE);
 702 
 703         fp = DEVI(d)->devi_ops->devo_bus_ops->bus_ctl;
 704         return ((*fp)(d, r, op, a, v));
 705 }
 706 
 707 #endif
 708 
 709 /*
 710  * DMA/DVMA setup
 711  */
 712 
 713 #if !defined(__sparc)
 714 /*
 715  * Request bus_dma_ctl parent to fiddle with a dma request.
 716  *
 717  * (The sparc version is in sparc_subr.s)
 718  */
 719 int
 720 ddi_dma_mctl(dev_info_t *dip, dev_info_t *rdip,
 721     ddi_dma_handle_t handle, enum ddi_dma_ctlops request,
 722     off_t *offp, size_t *lenp, caddr_t *objp, uint_t flags)
 723 {
 724         int (*fp)();
 725 
 726         if (dip != ddi_root_node())
 727                 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_ctl;
 728         fp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_ctl;
 729         return ((*fp) (dip, rdip, handle, request, offp, lenp, objp, flags));
 730 }
 731 #endif
 732 
 733 /*
 734  * For all DMA control functions, call the DMA control
 735  * routine and return status.
 736  *
 737  * Just plain assume that the parent is to be called.
 738  * If a nexus driver or a thread outside the framework
 739  * of a nexus driver or a leaf driver calls these functions,
 740  * it is up to them to deal with the fact that the parent's
 741  * bus_dma_ctl function will be the first one called.
 742  */
 743 
 744 #define HD      ((ddi_dma_impl_t *)h)->dmai_rdip
 745 
 746 /*
 747  * This routine is left in place to satisfy link dependencies
 748  * for any 3rd party nexus drivers that rely on it.  It is never
 749  * called, though.
 750  */
 751 /*ARGSUSED*/
 752 int
 753 ddi_dma_map(dev_info_t *dip, dev_info_t *rdip,
 754     struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep)
 755 {
 756         return (DDI_FAILURE);
 757 }
 758 
 759 #if !defined(__sparc)
 760 
 761 /*
 762  * The SPARC versions of these routines are done in assembler to
 763  * save register windows, so they're in sparc_subr.s.
 764  */
 765 
 766 int
 767 ddi_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
 768     int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
 769 {
 770         int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_attr_t *,
 771             int (*)(caddr_t), caddr_t, ddi_dma_handle_t *);
 772 
 773         if (dip != ddi_root_node())
 774                 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_allochdl;
 775 
 776         funcp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_allochdl;
 777         return ((*funcp)(dip, rdip, attr, waitfp, arg, handlep));
 778 }
 779 
 780 int
 781 ddi_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handlep)
 782 {
 783         int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t);
 784 
 785         if (dip != ddi_root_node())
 786                 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_allochdl;
 787 
 788         funcp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_freehdl;
 789         return ((*funcp)(dip, rdip, handlep));
 790 }
 791 
 792 int
 793 ddi_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
 794     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
 795     ddi_dma_cookie_t *cp, uint_t *ccountp)
 796 {
 797         int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t,
 798             struct ddi_dma_req *, ddi_dma_cookie_t *, uint_t *);
 799 
 800         if (dip != ddi_root_node())
 801                 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_bindhdl;
 802 
 803         funcp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_bindhdl;
 804         return ((*funcp)(dip, rdip, handle, dmareq, cp, ccountp));
 805 }
 806 
 807 int
 808 ddi_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
 809     ddi_dma_handle_t handle)
 810 {
 811         int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t);
 812 
 813         if (dip != ddi_root_node())
 814                 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_unbindhdl;
 815 
 816         funcp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_unbindhdl;
 817         return ((*funcp)(dip, rdip, handle));
 818 }
 819 
 820 
 821 int
 822 ddi_dma_flush(dev_info_t *dip, dev_info_t *rdip,
 823     ddi_dma_handle_t handle, off_t off, size_t len,
 824     uint_t cache_flags)
 825 {
 826         int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t,
 827             off_t, size_t, uint_t);
 828 
 829         if (dip != ddi_root_node())
 830                 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_flush;
 831 
 832         funcp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_flush;
 833         return ((*funcp)(dip, rdip, handle, off, len, cache_flags));
 834 }
 835 
 836 int
 837 ddi_dma_win(dev_info_t *dip, dev_info_t *rdip,
 838     ddi_dma_handle_t handle, uint_t win, off_t *offp,
 839     size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp)
 840 {
 841         int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t,
 842             uint_t, off_t *, size_t *, ddi_dma_cookie_t *, uint_t *);
 843 
 844         if (dip != ddi_root_node())
 845                 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_win;
 846 
 847         funcp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_win;
 848         return ((*funcp)(dip, rdip, handle, win, offp, lenp,
 849             cookiep, ccountp));
 850 }
 851 
 852 int
 853 ddi_dma_sync(ddi_dma_handle_t h, off_t o, size_t l, uint_t whom)
 854 {
 855         ddi_dma_impl_t *hp = (ddi_dma_impl_t *)h;
 856         dev_info_t *dip, *rdip;
 857         int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t, off_t,
 858             size_t, uint_t);
 859 
 860         /*
 861          * the DMA nexus driver will set DMP_NOSYNC if the
 862          * platform does not require any sync operation. For
 863          * example if the memory is uncached or consistent
 864          * and without any I/O write buffers involved.
 865          */
 866         if ((hp->dmai_rflags & DMP_NOSYNC) == DMP_NOSYNC)
 867                 return (DDI_SUCCESS);
 868 
 869         dip = rdip = hp->dmai_rdip;
 870         if (dip != ddi_root_node())
 871                 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_flush;
 872         funcp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_flush;
 873         return ((*funcp)(dip, rdip, h, o, l, whom));
 874 }
 875 
 876 int
 877 ddi_dma_unbind_handle(ddi_dma_handle_t h)
 878 {
 879         ddi_dma_impl_t *hp = (ddi_dma_impl_t *)h;
 880         dev_info_t *dip, *rdip;
 881         int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t);
 882 
 883         dip = rdip = hp->dmai_rdip;
 884         if (dip != ddi_root_node())
 885                 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_unbindhdl;
 886         funcp = DEVI(rdip)->devi_bus_dma_unbindfunc;
 887         return ((*funcp)(dip, rdip, h));
 888 }
 889 
 890 #endif  /* !__sparc */
 891 
 892 /*
 893  * DMA burst sizes, and transfer minimums
 894  */
 895 
 896 int
 897 ddi_dma_burstsizes(ddi_dma_handle_t handle)
 898 {
 899         ddi_dma_impl_t *dimp = (ddi_dma_impl_t *)handle;
 900 
 901         if (!dimp)
 902                 return (0);
 903         else
 904                 return (dimp->dmai_burstsizes);
 905 }
 906 
 907 /*
 908  * Given two DMA attribute structures, apply the attributes
 909  * of one to the other, following the rules of attributes
 910  * and the wishes of the caller.
 911  *
 912  * The rules of DMA attribute structures are that you cannot
 913  * make things *less* restrictive as you apply one set
 914  * of attributes to another.
 915  *
 916  */
 917 void
 918 ddi_dma_attr_merge(ddi_dma_attr_t *attr, ddi_dma_attr_t *mod)
 919 {
 920         attr->dma_attr_addr_lo =
 921             MAX(attr->dma_attr_addr_lo, mod->dma_attr_addr_lo);
 922         attr->dma_attr_addr_hi =
 923             MIN(attr->dma_attr_addr_hi, mod->dma_attr_addr_hi);
 924         attr->dma_attr_count_max =
 925             MIN(attr->dma_attr_count_max, mod->dma_attr_count_max);
 926         attr->dma_attr_align =
 927             MAX(attr->dma_attr_align,  mod->dma_attr_align);
 928         attr->dma_attr_burstsizes =
 929             (uint_t)(attr->dma_attr_burstsizes & mod->dma_attr_burstsizes);
 930         attr->dma_attr_minxfer =
 931             maxbit(attr->dma_attr_minxfer, mod->dma_attr_minxfer);
 932         attr->dma_attr_maxxfer =
 933             MIN(attr->dma_attr_maxxfer, mod->dma_attr_maxxfer);
 934         attr->dma_attr_seg = MIN(attr->dma_attr_seg, mod->dma_attr_seg);
 935         attr->dma_attr_sgllen = MIN((uint_t)attr->dma_attr_sgllen,
 936             (uint_t)mod->dma_attr_sgllen);
 937         attr->dma_attr_granular =
 938             MAX(attr->dma_attr_granular, mod->dma_attr_granular);
 939 }
 940 
 941 /*
 942  * mmap/segmap interface:
 943  */
 944 
 945 /*
 946  * ddi_segmap:          setup the default segment driver. Calls the drivers
 947  *                      XXmmap routine to validate the range to be mapped.
 948  *                      Return ENXIO of the range is not valid.  Create
 949  *                      a seg_dev segment that contains all of the
 950  *                      necessary information and will reference the
 951  *                      default segment driver routines. It returns zero
 952  *                      on success or non-zero on failure.
 953  */
 954 int
 955 ddi_segmap(dev_t dev, off_t offset, struct as *asp, caddr_t *addrp, off_t len,
 956     uint_t prot, uint_t maxprot, uint_t flags, cred_t *credp)
 957 {
 958         extern int spec_segmap(dev_t, off_t, struct as *, caddr_t *,
 959             off_t, uint_t, uint_t, uint_t, struct cred *);
 960 
 961         return (spec_segmap(dev, offset, asp, addrp, len,
 962             prot, maxprot, flags, credp));
 963 }
 964 
 965 /*
 966  * ddi_map_fault:       Resolve mappings at fault time.  Used by segment
 967  *                      drivers. Allows each successive parent to resolve
 968  *                      address translations and add its mappings to the
 969  *                      mapping list supplied in the page structure. It
 970  *                      returns zero on success or non-zero on failure.
 971  */
 972 
 973 int
 974 ddi_map_fault(dev_info_t *dip, struct hat *hat, struct seg *seg,
 975     caddr_t addr, struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock)
 976 {
 977         return (i_ddi_map_fault(dip, dip, hat, seg, addr, dp, pfn, prot, lock));
 978 }
 979 
 980 /*
 981  * ddi_device_mapping_check:    Called from ddi_segmap_setup.
 982  *      Invokes platform specific DDI to determine whether attributes specified
 983  *      in attr(9s) are valid for the region of memory that will be made
 984  *      available for direct access to user process via the mmap(2) system call.
 985  */
 986 int
 987 ddi_device_mapping_check(dev_t dev, ddi_device_acc_attr_t *accattrp,
 988     uint_t rnumber, uint_t *hat_flags)
 989 {
 990         ddi_acc_handle_t handle;
 991         ddi_map_req_t mr;
 992         ddi_acc_hdl_t *hp;
 993         int result;
 994         dev_info_t *dip;
 995 
 996         /*
 997          * we use e_ddi_hold_devi_by_dev to search for the devi.  We
 998          * release it immediately since it should already be held by
 999          * a devfs vnode.
1000          */
1001         if ((dip =
1002             e_ddi_hold_devi_by_dev(dev, E_DDI_HOLD_DEVI_NOATTACH)) == NULL)
1003                 return (-1);
1004         ddi_release_devi(dip);          /* for e_ddi_hold_devi_by_dev() */
1005 
1006         /*
1007          * Allocate and initialize the common elements of data
1008          * access handle.
1009          */
1010         handle = impl_acc_hdl_alloc(KM_SLEEP, NULL);
1011         if (handle == NULL)
1012                 return (-1);
1013 
1014         hp = impl_acc_hdl_get(handle);
1015         hp->ah_vers = VERS_ACCHDL;
1016         hp->ah_dip = dip;
1017         hp->ah_rnumber = rnumber;
1018         hp->ah_offset = 0;
1019         hp->ah_len = 0;
1020         hp->ah_acc = *accattrp;
1021 
1022         /*
1023          * Set up the mapping request and call to parent.
1024          */
1025         mr.map_op = DDI_MO_MAP_HANDLE;
1026         mr.map_type = DDI_MT_RNUMBER;
1027         mr.map_obj.rnumber = rnumber;
1028         mr.map_prot = PROT_READ | PROT_WRITE;
1029         mr.map_flags = DDI_MF_KERNEL_MAPPING;
1030         mr.map_handlep = hp;
1031         mr.map_vers = DDI_MAP_VERSION;
1032         result = ddi_map(dip, &mr, 0, 0, NULL);
1033 
1034         /*
1035          * Region must be mappable, pick up flags from the framework.
1036          */
1037         *hat_flags = hp->ah_hat_flags;
1038 
1039         impl_acc_hdl_free(handle);
1040 
1041         /*
1042          * check for end result.
1043          */
1044         if (result != DDI_SUCCESS)
1045                 return (-1);
1046         return (0);
1047 }
1048 
1049 
1050 /*
1051  * Property functions:   See also, ddipropdefs.h.
1052  *
1053  * These functions are the framework for the property functions,
1054  * i.e. they support software defined properties.  All implementation
1055  * specific property handling (i.e.: self-identifying devices and
1056  * PROM defined properties are handled in the implementation specific
1057  * functions (defined in ddi_implfuncs.h).
1058  */
1059 
1060 /*
1061  * nopropop:    Shouldn't be called, right?
1062  */
1063 int
1064 nopropop(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
1065     char *name, caddr_t valuep, int *lengthp)
1066 {
1067         _NOTE(ARGUNUSED(dev, dip, prop_op, mod_flags, name, valuep, lengthp))
1068         return (DDI_PROP_NOT_FOUND);
1069 }
1070 
1071 #ifdef  DDI_PROP_DEBUG
1072 int ddi_prop_debug_flag = 0;
1073 
1074 int
1075 ddi_prop_debug(int enable)
1076 {
1077         int prev = ddi_prop_debug_flag;
1078 
1079         if ((enable != 0) || (prev != 0))
1080                 printf("ddi_prop_debug: debugging %s\n",
1081                     enable ? "enabled" : "disabled");
1082         ddi_prop_debug_flag = enable;
1083         return (prev);
1084 }
1085 
1086 #endif  /* DDI_PROP_DEBUG */
1087 
1088 /*
1089  * Search a property list for a match, if found return pointer
1090  * to matching prop struct, else return NULL.
1091  */
1092 
1093 ddi_prop_t *
1094 i_ddi_prop_search(dev_t dev, char *name, uint_t flags, ddi_prop_t **list_head)
1095 {
1096         ddi_prop_t      *propp;
1097 
1098         /*
1099          * find the property in child's devinfo:
1100          * Search order defined by this search function is first matching
1101          * property with input dev == DDI_DEV_T_ANY matching any dev or
1102          * dev == propp->prop_dev, name == propp->name, and the correct
1103          * data type as specified in the flags.  If a DDI_DEV_T_NONE dev
1104          * value made it this far then it implies a DDI_DEV_T_ANY search.
1105          */
1106         if (dev == DDI_DEV_T_NONE)
1107                 dev = DDI_DEV_T_ANY;
1108 
1109         for (propp = *list_head; propp != NULL; propp = propp->prop_next)  {
1110 
1111                 if (!DDI_STRSAME(propp->prop_name, name))
1112                         continue;
1113 
1114                 if ((dev != DDI_DEV_T_ANY) && (propp->prop_dev != dev))
1115                         continue;
1116 
1117                 if (((propp->prop_flags & flags) & DDI_PROP_TYPE_MASK) == 0)
1118                         continue;
1119 
1120                 return (propp);
1121         }
1122 
1123         return ((ddi_prop_t *)0);
1124 }
1125 
1126 /*
1127  * Search for property within devnames structures
1128  */
1129 ddi_prop_t *
1130 i_ddi_search_global_prop(dev_t dev, char *name, uint_t flags)
1131 {
1132         major_t         major;
1133         struct devnames *dnp;
1134         ddi_prop_t      *propp;
1135 
1136         /*
1137          * Valid dev_t value is needed to index into the
1138          * correct devnames entry, therefore a dev_t
1139          * value of DDI_DEV_T_ANY is not appropriate.
1140          */
1141         ASSERT(dev != DDI_DEV_T_ANY);
1142         if (dev == DDI_DEV_T_ANY) {
1143                 return ((ddi_prop_t *)0);
1144         }
1145 
1146         major = getmajor(dev);
1147         dnp = &(devnamesp[major]);
1148 
1149         if (dnp->dn_global_prop_ptr == NULL)
1150                 return ((ddi_prop_t *)0);
1151 
1152         LOCK_DEV_OPS(&dnp->dn_lock);
1153 
1154         for (propp = dnp->dn_global_prop_ptr->prop_list;
1155             propp != NULL;
1156             propp = (ddi_prop_t *)propp->prop_next) {
1157 
1158                 if (!DDI_STRSAME(propp->prop_name, name))
1159                         continue;
1160 
1161                 if ((!(flags & DDI_PROP_ROOTNEX_GLOBAL)) &&
1162                     (!(flags & LDI_DEV_T_ANY)) && (propp->prop_dev != dev))
1163                         continue;
1164 
1165                 if (((propp->prop_flags & flags) & DDI_PROP_TYPE_MASK) == 0)
1166                         continue;
1167 
1168                 /* Property found, return it */
1169                 UNLOCK_DEV_OPS(&dnp->dn_lock);
1170                 return (propp);
1171         }
1172 
1173         UNLOCK_DEV_OPS(&dnp->dn_lock);
1174         return ((ddi_prop_t *)0);
1175 }
1176 
1177 static char prop_no_mem_msg[] = "can't allocate memory for ddi property <%s>";
1178 
1179 /*
1180  * ddi_prop_search_global:
1181  *      Search the global property list within devnames
1182  *      for the named property.  Return the encoded value.
1183  */
1184 static int
1185 i_ddi_prop_search_global(dev_t dev, uint_t flags, char *name,
1186     void *valuep, uint_t *lengthp)
1187 {
1188         ddi_prop_t      *propp;
1189         caddr_t         buffer;
1190 
1191         propp =  i_ddi_search_global_prop(dev, name, flags);
1192 
1193         /* Property NOT found, bail */
1194         if (propp == (ddi_prop_t *)0)
1195                 return (DDI_PROP_NOT_FOUND);
1196 
1197         if (propp->prop_flags & DDI_PROP_UNDEF_IT)
1198                 return (DDI_PROP_UNDEFINED);
1199 
1200         if ((buffer = kmem_alloc(propp->prop_len,
1201             (flags & DDI_PROP_CANSLEEP) ? KM_SLEEP : KM_NOSLEEP)) == NULL) {
1202                 cmn_err(CE_CONT, prop_no_mem_msg, name);
1203                 return (DDI_PROP_NO_MEMORY);
1204         }
1205 
1206         /*
1207          * Return the encoded data
1208          */
1209         *(caddr_t *)valuep = buffer;
1210         *lengthp = propp->prop_len;
1211         bcopy(propp->prop_val, buffer, propp->prop_len);
1212 
1213         return (DDI_PROP_SUCCESS);
1214 }
1215 
1216 /*
1217  * ddi_prop_search_common:      Lookup and return the encoded value
1218  */
1219 int
1220 ddi_prop_search_common(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1221     uint_t flags, char *name, void *valuep, uint_t *lengthp)
1222 {
1223         ddi_prop_t      *propp;
1224         int             i;
1225         caddr_t         buffer;
1226         caddr_t         prealloc = NULL;
1227         int             plength = 0;
1228         dev_info_t      *pdip;
1229         int             (*bop)();
1230 
1231         /*CONSTANTCONDITION*/
1232         while (1)  {
1233 
1234                 mutex_enter(&(DEVI(dip)->devi_lock));
1235 
1236 
1237                 /*
1238                  * find the property in child's devinfo:
1239                  * Search order is:
1240                  *      1. driver defined properties
1241                  *      2. system defined properties
1242                  *      3. driver global properties
1243                  *      4. boot defined properties
1244                  */
1245 
1246                 propp = i_ddi_prop_search(dev, name, flags,
1247                     &(DEVI(dip)->devi_drv_prop_ptr));
1248                 if (propp == NULL)  {
1249                         propp = i_ddi_prop_search(dev, name, flags,
1250                             &(DEVI(dip)->devi_sys_prop_ptr));
1251                 }
1252                 if ((propp == NULL) && DEVI(dip)->devi_global_prop_list) {
1253                         propp = i_ddi_prop_search(dev, name, flags,
1254                             &DEVI(dip)->devi_global_prop_list->prop_list);
1255                 }
1256 
1257                 if (propp == NULL)  {
1258                         propp = i_ddi_prop_search(dev, name, flags,
1259                             &(DEVI(dip)->devi_hw_prop_ptr));
1260                 }
1261 
1262                 /*
1263                  * Software property found?
1264                  */
1265                 if (propp != (ddi_prop_t *)0)   {
1266 
1267                         /*
1268                          * If explicit undefine, return now.
1269                          */
1270                         if (propp->prop_flags & DDI_PROP_UNDEF_IT) {
1271                                 mutex_exit(&(DEVI(dip)->devi_lock));
1272                                 if (prealloc)
1273                                         kmem_free(prealloc, plength);
1274                                 return (DDI_PROP_UNDEFINED);
1275                         }
1276 
1277                         /*
1278                          * If we only want to know if it exists, return now
1279                          */
1280                         if (prop_op == PROP_EXISTS) {
1281                                 mutex_exit(&(DEVI(dip)->devi_lock));
1282                                 ASSERT(prealloc == NULL);
1283                                 return (DDI_PROP_SUCCESS);
1284                         }
1285 
1286                         /*
1287                          * If length only request or prop length == 0,
1288                          * service request and return now.
1289                          */
1290                         if ((prop_op == PROP_LEN) ||(propp->prop_len == 0)) {
1291                                 *lengthp = propp->prop_len;
1292 
1293                                 /*
1294                                  * if prop_op is PROP_LEN_AND_VAL_ALLOC
1295                                  * that means prop_len is 0, so set valuep
1296                                  * also to NULL
1297                                  */
1298                                 if (prop_op == PROP_LEN_AND_VAL_ALLOC)
1299                                         *(caddr_t *)valuep = NULL;
1300 
1301                                 mutex_exit(&(DEVI(dip)->devi_lock));
1302                                 if (prealloc)
1303                                         kmem_free(prealloc, plength);
1304                                 return (DDI_PROP_SUCCESS);
1305                         }
1306 
1307                         /*
1308                          * If LEN_AND_VAL_ALLOC and the request can sleep,
1309                          * drop the mutex, allocate the buffer, and go
1310                          * through the loop again.  If we already allocated
1311                          * the buffer, and the size of the property changed,
1312                          * keep trying...
1313                          */
1314                         if ((prop_op == PROP_LEN_AND_VAL_ALLOC) &&
1315                             (flags & DDI_PROP_CANSLEEP))  {
1316                                 if (prealloc && (propp->prop_len != plength)) {
1317                                         kmem_free(prealloc, plength);
1318                                         prealloc = NULL;
1319                                 }
1320                                 if (prealloc == NULL)  {
1321                                         plength = propp->prop_len;
1322                                         mutex_exit(&(DEVI(dip)->devi_lock));
1323                                         prealloc = kmem_alloc(plength,
1324                                             KM_SLEEP);
1325                                         continue;
1326                                 }
1327                         }
1328 
1329                         /*
1330                          * Allocate buffer, if required.  Either way,
1331                          * set `buffer' variable.
1332                          */
1333                         i = *lengthp;                   /* Get callers length */
1334                         *lengthp = propp->prop_len;  /* Set callers length */
1335 
1336                         switch (prop_op) {
1337 
1338                         case PROP_LEN_AND_VAL_ALLOC:
1339 
1340                                 if (prealloc == NULL) {
1341                                         buffer = kmem_alloc(propp->prop_len,
1342                                             KM_NOSLEEP);
1343                                 } else {
1344                                         buffer = prealloc;
1345                                 }
1346 
1347                                 if (buffer == NULL)  {
1348                                         mutex_exit(&(DEVI(dip)->devi_lock));
1349                                         cmn_err(CE_CONT, prop_no_mem_msg, name);
1350                                         return (DDI_PROP_NO_MEMORY);
1351                                 }
1352                                 /* Set callers buf ptr */
1353                                 *(caddr_t *)valuep = buffer;
1354                                 break;
1355 
1356                         case PROP_LEN_AND_VAL_BUF:
1357 
1358                                 if (propp->prop_len > (i)) {
1359                                         mutex_exit(&(DEVI(dip)->devi_lock));
1360                                         return (DDI_PROP_BUF_TOO_SMALL);
1361                                 }
1362 
1363                                 buffer = valuep;  /* Get callers buf ptr */
1364                                 break;
1365 
1366                         default:
1367                                 break;
1368                         }
1369 
1370                         /*
1371                          * Do the copy.
1372                          */
1373                         bcopy(propp->prop_val, buffer, propp->prop_len);
1374                         mutex_exit(&(DEVI(dip)->devi_lock));
1375                         return (DDI_PROP_SUCCESS);
1376                 }
1377 
1378                 mutex_exit(&(DEVI(dip)->devi_lock));
1379                 if (prealloc)
1380                         kmem_free(prealloc, plength);
1381                 prealloc = NULL;
1382 
1383                 /*
1384                  * Prop not found, call parent bus_ops to deal with possible
1385                  * h/w layer (possible PROM defined props, etc.) and to
1386                  * possibly ascend the hierarchy, if allowed by flags.
1387                  */
1388                 pdip = (dev_info_t *)DEVI(dip)->devi_parent;
1389 
1390                 /*
1391                  * One last call for the root driver PROM props?
1392                  */
1393                 if (dip == ddi_root_node())  {
1394                         return (ddi_bus_prop_op(dev, dip, dip, prop_op,
1395                             flags, name, valuep, (int *)lengthp));
1396                 }
1397 
1398                 /*
1399                  * We may have been called to check for properties
1400                  * within a single devinfo node that has no parent -
1401                  * see make_prop()
1402                  */
1403                 if (pdip == NULL) {
1404                         ASSERT((flags &
1405                             (DDI_PROP_DONTPASS | DDI_PROP_NOTPROM)) ==
1406                             (DDI_PROP_DONTPASS | DDI_PROP_NOTPROM));
1407                         return (DDI_PROP_NOT_FOUND);
1408                 }
1409 
1410                 /*
1411                  * Instead of recursing, we do iterative calls up the tree.
1412                  * As a bit of optimization, skip the bus_op level if the
1413                  * node is a s/w node and if the parent's bus_prop_op function
1414                  * is `ddi_bus_prop_op', because we know that in this case,
1415                  * this function does nothing.
1416                  *
1417                  * 4225415: If the parent isn't attached, or the child
1418                  * hasn't been named by the parent yet, use the default
1419                  * ddi_bus_prop_op as a proxy for the parent.  This
1420                  * allows property lookups in any child/parent state to
1421                  * include 'prom' and inherited properties, even when
1422                  * there are no drivers attached to the child or parent.
1423                  */
1424 
1425                 bop = ddi_bus_prop_op;
1426                 if (i_ddi_devi_attached(pdip) &&
1427                     (i_ddi_node_state(dip) >= DS_INITIALIZED))
1428                         bop = DEVI(pdip)->devi_ops->devo_bus_ops->bus_prop_op;
1429 
1430                 i = DDI_PROP_NOT_FOUND;
1431 
1432                 if ((bop != ddi_bus_prop_op) || ndi_dev_is_prom_node(dip)) {
1433                         i = (*bop)(dev, pdip, dip, prop_op,
1434                             flags | DDI_PROP_DONTPASS,
1435                             name, valuep, lengthp);
1436                 }
1437 
1438                 if ((flags & DDI_PROP_DONTPASS) ||
1439                     (i != DDI_PROP_NOT_FOUND))
1440                         return (i);
1441 
1442                 dip = pdip;
1443         }
1444         /*NOTREACHED*/
1445 }
1446 
1447 
1448 /*
1449  * ddi_prop_op: The basic property operator for drivers.
1450  *
1451  * In ddi_prop_op, the type of valuep is interpreted based on prop_op:
1452  *
1453  *      prop_op                 valuep
1454  *      ------                  ------
1455  *
1456  *      PROP_LEN                <unused>
1457  *
1458  *      PROP_LEN_AND_VAL_BUF    Pointer to callers buffer
1459  *
1460  *      PROP_LEN_AND_VAL_ALLOC  Address of callers pointer (will be set to
1461  *                              address of allocated buffer, if successful)
1462  */
1463 int
1464 ddi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
1465     char *name, caddr_t valuep, int *lengthp)
1466 {
1467         int     i;
1468 
1469         ASSERT((mod_flags & DDI_PROP_TYPE_MASK) == 0);
1470 
1471         /*
1472          * If this was originally an LDI prop lookup then we bail here.
1473          * The reason is that the LDI property lookup interfaces first call
1474          * a drivers prop_op() entry point to allow it to override
1475          * properties.  But if we've made it here, then the driver hasn't
1476          * overriden any properties.  We don't want to continue with the
1477          * property search here because we don't have any type inforamtion.
1478          * When we return failure, the LDI interfaces will then proceed to
1479          * call the typed property interfaces to look up the property.
1480          */
1481         if (mod_flags & DDI_PROP_DYNAMIC)
1482                 return (DDI_PROP_NOT_FOUND);
1483 
1484         /*
1485          * check for pre-typed property consumer asking for typed property:
1486          * see e_ddi_getprop_int64.
1487          */
1488         if (mod_flags & DDI_PROP_CONSUMER_TYPED)
1489                 mod_flags |= DDI_PROP_TYPE_INT64;
1490         mod_flags |= DDI_PROP_TYPE_ANY;
1491 
1492         i = ddi_prop_search_common(dev, dip, prop_op,
1493             mod_flags, name, valuep, (uint_t *)lengthp);
1494         if (i == DDI_PROP_FOUND_1275)
1495                 return (DDI_PROP_SUCCESS);
1496         return (i);
1497 }
1498 
1499 /*
1500  * ddi_prop_op_nblocks_blksize: The basic property operator for drivers that
1501  * maintain size in number of blksize blocks.  Provides a dynamic property
1502  * implementation for size oriented properties based on nblocks64 and blksize
1503  * values passed in by the driver.  Fallback to ddi_prop_op if the nblocks64
1504  * is too large.  This interface should not be used with a nblocks64 that
1505  * represents the driver's idea of how to represent unknown, if nblocks is
1506  * unknown use ddi_prop_op.
1507  */
1508 int
1509 ddi_prop_op_nblocks_blksize(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1510     int mod_flags, char *name, caddr_t valuep, int *lengthp,
1511     uint64_t nblocks64, uint_t blksize)
1512 {
1513         uint64_t size64;
1514         int     blkshift;
1515 
1516         /* convert block size to shift value */
1517         ASSERT(BIT_ONLYONESET(blksize));
1518         blkshift = highbit(blksize) - 1;
1519 
1520         /*
1521          * There is no point in supporting nblocks64 values that don't have
1522          * an accurate uint64_t byte count representation.
1523          */
1524         if (nblocks64 >= (UINT64_MAX >> blkshift))
1525                 return (ddi_prop_op(dev, dip, prop_op, mod_flags,
1526                     name, valuep, lengthp));
1527 
1528         size64 = nblocks64 << blkshift;
1529         return (ddi_prop_op_size_blksize(dev, dip, prop_op, mod_flags,
1530             name, valuep, lengthp, size64, blksize));
1531 }
1532 
1533 /*
1534  * ddi_prop_op_nblocks: ddi_prop_op_nblocks_blksize with DEV_BSIZE blksize.
1535  */
1536 int
1537 ddi_prop_op_nblocks(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1538     int mod_flags, char *name, caddr_t valuep, int *lengthp, uint64_t nblocks64)
1539 {
1540         return (ddi_prop_op_nblocks_blksize(dev, dip, prop_op,
1541             mod_flags, name, valuep, lengthp, nblocks64, DEV_BSIZE));
1542 }
1543 
1544 /*
1545  * ddi_prop_op_size_blksize: The basic property operator for block drivers that
1546  * maintain size in bytes. Provides a of dynamic property implementation for
1547  * size oriented properties based on size64 value and blksize passed in by the
1548  * driver.  Fallback to ddi_prop_op if the size64 is too large. This interface
1549  * should not be used with a size64 that represents the driver's idea of how
1550  * to represent unknown, if size is unknown use ddi_prop_op.
1551  *
1552  * NOTE: the legacy "nblocks"/"size" properties are treated as 32-bit unsigned
1553  * integers. While the most likely interface to request them ([bc]devi_size)
1554  * is declared int (signed) there is no enforcement of this, which means we
1555  * can't enforce limitations here without risking regression.
1556  */
1557 int
1558 ddi_prop_op_size_blksize(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1559     int mod_flags, char *name, caddr_t valuep, int *lengthp, uint64_t size64,
1560     uint_t blksize)
1561 {
1562         uint64_t nblocks64;
1563         int     callers_length;
1564         caddr_t buffer;
1565         int     blkshift;
1566 
1567         /*
1568          * This is a kludge to support capture of size(9P) pure dynamic
1569          * properties in snapshots for non-cmlb code (without exposing
1570          * i_ddi_prop_dyn changes). When everyone uses cmlb, this code
1571          * should be removed.
1572          */
1573         if (i_ddi_prop_dyn_driver_get(dip) == NULL) {
1574                 static i_ddi_prop_dyn_t prop_dyn_size[] = {
1575                     {"Size",            DDI_PROP_TYPE_INT64,    S_IFCHR},
1576                     {"Nblocks",         DDI_PROP_TYPE_INT64,    S_IFBLK},
1577                     {NULL}
1578                 };
1579                 i_ddi_prop_dyn_driver_set(dip, prop_dyn_size);
1580         }
1581 
1582         /* convert block size to shift value */
1583         ASSERT(BIT_ONLYONESET(blksize));
1584         blkshift = highbit(blksize) - 1;
1585 
1586         /* compute DEV_BSIZE nblocks value */
1587         nblocks64 = size64 >> blkshift;
1588 
1589         /* get callers length, establish length of our dynamic properties */
1590         callers_length = *lengthp;
1591 
1592         if (strcmp(name, "Nblocks") == 0)
1593                 *lengthp = sizeof (uint64_t);
1594         else if (strcmp(name, "Size") == 0)
1595                 *lengthp = sizeof (uint64_t);
1596         else if ((strcmp(name, "nblocks") == 0) && (nblocks64 < UINT_MAX))
1597                 *lengthp = sizeof (uint32_t);
1598         else if ((strcmp(name, "size") == 0) && (size64 < UINT_MAX))
1599                 *lengthp = sizeof (uint32_t);
1600         else if ((strcmp(name, "blksize") == 0) && (blksize < UINT_MAX))
1601                 *lengthp = sizeof (uint32_t);
1602         else {
1603                 /* fallback to ddi_prop_op */
1604                 return (ddi_prop_op(dev, dip, prop_op, mod_flags,
1605                     name, valuep, lengthp));
1606         }
1607 
1608         /* service request for the length of the property */
1609         if (prop_op == PROP_LEN)
1610                 return (DDI_PROP_SUCCESS);
1611 
1612         switch (prop_op) {
1613         case PROP_LEN_AND_VAL_ALLOC:
1614                 if ((buffer = kmem_alloc(*lengthp,
1615                     (mod_flags & DDI_PROP_CANSLEEP) ?
1616                     KM_SLEEP : KM_NOSLEEP)) == NULL)
1617                         return (DDI_PROP_NO_MEMORY);
1618 
1619                 *(caddr_t *)valuep = buffer;    /* set callers buf ptr */
1620                 break;
1621 
1622         case PROP_LEN_AND_VAL_BUF:
1623                 /* the length of the property and the request must match */
1624                 if (callers_length != *lengthp)
1625                         return (DDI_PROP_INVAL_ARG);
1626 
1627                 buffer = valuep;                /* get callers buf ptr */
1628                 break;
1629 
1630         default:
1631                 return (DDI_PROP_INVAL_ARG);
1632         }
1633 
1634         /* transfer the value into the buffer */
1635         if (strcmp(name, "Nblocks") == 0)
1636                 *((uint64_t *)buffer) = nblocks64;
1637         else if (strcmp(name, "Size") == 0)
1638                 *((uint64_t *)buffer) = size64;
1639         else if (strcmp(name, "nblocks") == 0)
1640                 *((uint32_t *)buffer) = (uint32_t)nblocks64;
1641         else if (strcmp(name, "size") == 0)
1642                 *((uint32_t *)buffer) = (uint32_t)size64;
1643         else if (strcmp(name, "blksize") == 0)
1644                 *((uint32_t *)buffer) = (uint32_t)blksize;
1645         return (DDI_PROP_SUCCESS);
1646 }
1647 
1648 /*
1649  * ddi_prop_op_size: ddi_prop_op_size_blksize with DEV_BSIZE block size.
1650  */
1651 int
1652 ddi_prop_op_size(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1653     int mod_flags, char *name, caddr_t valuep, int *lengthp, uint64_t size64)
1654 {
1655         return (ddi_prop_op_size_blksize(dev, dip, prop_op,
1656             mod_flags, name, valuep, lengthp, size64, DEV_BSIZE));
1657 }
1658 
1659 /*
1660  * Variable length props...
1661  */
1662 
1663 /*
1664  * ddi_getlongprop:     Get variable length property len+val into a buffer
1665  *              allocated by property provider via kmem_alloc. Requester
1666  *              is responsible for freeing returned property via kmem_free.
1667  *
1668  *      Arguments:
1669  *
1670  *      dev_t:  Input:  dev_t of property.
1671  *      dip:    Input:  dev_info_t pointer of child.
1672  *      flags:  Input:  Possible flag modifiers are:
1673  *              DDI_PROP_DONTPASS:      Don't pass to parent if prop not found.
1674  *              DDI_PROP_CANSLEEP:      Memory allocation may sleep.
1675  *      name:   Input:  name of property.
1676  *      valuep: Output: Addr of callers buffer pointer.
1677  *      lengthp:Output: *lengthp will contain prop length on exit.
1678  *
1679  *      Possible Returns:
1680  *
1681  *              DDI_PROP_SUCCESS:       Prop found and returned.
1682  *              DDI_PROP_NOT_FOUND:     Prop not found
1683  *              DDI_PROP_UNDEFINED:     Prop explicitly undefined.
1684  *              DDI_PROP_NO_MEMORY:     Prop found, but unable to alloc mem.
1685  */
1686 
1687 int
1688 ddi_getlongprop(dev_t dev, dev_info_t *dip, int flags,
1689     char *name, caddr_t valuep, int *lengthp)
1690 {
1691         return (ddi_prop_op(dev, dip, PROP_LEN_AND_VAL_ALLOC,
1692             flags, name, valuep, lengthp));
1693 }
1694 
1695 /*
1696  *
1697  * ddi_getlongprop_buf:         Get long prop into pre-allocated callers
1698  *                              buffer. (no memory allocation by provider).
1699  *
1700  *      dev_t:  Input:  dev_t of property.
1701  *      dip:    Input:  dev_info_t pointer of child.
1702  *      flags:  Input:  DDI_PROP_DONTPASS or NULL
1703  *      name:   Input:  name of property
1704  *      valuep: Input:  ptr to callers buffer.
1705  *      lengthp:I/O:    ptr to length of callers buffer on entry,
1706  *                      actual length of property on exit.
1707  *
1708  *      Possible returns:
1709  *
1710  *              DDI_PROP_SUCCESS        Prop found and returned
1711  *              DDI_PROP_NOT_FOUND      Prop not found
1712  *              DDI_PROP_UNDEFINED      Prop explicitly undefined.
1713  *              DDI_PROP_BUF_TOO_SMALL  Prop found, callers buf too small,
1714  *                                      no value returned, but actual prop
1715  *                                      length returned in *lengthp
1716  *
1717  */
1718 
1719 int
1720 ddi_getlongprop_buf(dev_t dev, dev_info_t *dip, int flags,
1721     char *name, caddr_t valuep, int *lengthp)
1722 {
1723         return (ddi_prop_op(dev, dip, PROP_LEN_AND_VAL_BUF,
1724             flags, name, valuep, lengthp));
1725 }
1726 
1727 /*
1728  * Integer/boolean sized props.
1729  *
1730  * Call is value only... returns found boolean or int sized prop value or
1731  * defvalue if prop not found or is wrong length or is explicitly undefined.
1732  * Only flag is DDI_PROP_DONTPASS...
1733  *
1734  * By convention, this interface returns boolean (0) sized properties
1735  * as value (int)1.
1736  *
1737  * This never returns an error, if property not found or specifically
1738  * undefined, the input `defvalue' is returned.
1739  */
1740 
1741 int
1742 ddi_getprop(dev_t dev, dev_info_t *dip, int flags, char *name, int defvalue)
1743 {
1744         int     propvalue = defvalue;
1745         int     proplength = sizeof (int);
1746         int     error;
1747 
1748         error = ddi_prop_op(dev, dip, PROP_LEN_AND_VAL_BUF,
1749             flags, name, (caddr_t)&propvalue, &proplength);
1750 
1751         if ((error == DDI_PROP_SUCCESS) && (proplength == 0))
1752                 propvalue = 1;
1753 
1754         return (propvalue);
1755 }
1756 
1757 /*
1758  * Get prop length interface: flags are 0 or DDI_PROP_DONTPASS
1759  * if returns DDI_PROP_SUCCESS, length returned in *lengthp.
1760  */
1761 
1762 int
1763 ddi_getproplen(dev_t dev, dev_info_t *dip, int flags, char *name, int *lengthp)
1764 {
1765         return (ddi_prop_op(dev, dip, PROP_LEN, flags, name, NULL, lengthp));
1766 }
1767 
1768 /*
1769  * Allocate a struct prop_driver_data, along with 'size' bytes
1770  * for decoded property data.  This structure is freed by
1771  * calling ddi_prop_free(9F).
1772  */
1773 static void *
1774 ddi_prop_decode_alloc(size_t size, void (*prop_free)(struct prop_driver_data *))
1775 {
1776         struct prop_driver_data *pdd;
1777 
1778         /*
1779          * Allocate a structure with enough memory to store the decoded data.
1780          */
1781         pdd = kmem_zalloc(sizeof (struct prop_driver_data) + size, KM_SLEEP);
1782         pdd->pdd_size = (sizeof (struct prop_driver_data) + size);
1783         pdd->pdd_prop_free = prop_free;
1784 
1785         /*
1786          * Return a pointer to the location to put the decoded data.
1787          */
1788         return ((void *)((caddr_t)pdd + sizeof (struct prop_driver_data)));
1789 }
1790 
1791 /*
1792  * Allocated the memory needed to store the encoded data in the property
1793  * handle.
1794  */
1795 static int
1796 ddi_prop_encode_alloc(prop_handle_t *ph, size_t size)
1797 {
1798         /*
1799          * If size is zero, then set data to NULL and size to 0.  This
1800          * is a boolean property.
1801          */
1802         if (size == 0) {
1803                 ph->ph_size = 0;
1804                 ph->ph_data = NULL;
1805                 ph->ph_cur_pos = NULL;
1806                 ph->ph_save_pos = NULL;
1807         } else {
1808                 if (ph->ph_flags == DDI_PROP_DONTSLEEP) {
1809                         ph->ph_data = kmem_zalloc(size, KM_NOSLEEP);
1810                         if (ph->ph_data == NULL)
1811                                 return (DDI_PROP_NO_MEMORY);
1812                 } else
1813                         ph->ph_data = kmem_zalloc(size, KM_SLEEP);
1814                 ph->ph_size = size;
1815                 ph->ph_cur_pos = ph->ph_data;
1816                 ph->ph_save_pos = ph->ph_data;
1817         }
1818         return (DDI_PROP_SUCCESS);
1819 }
1820 
1821 /*
1822  * Free the space allocated by the lookup routines.  Each lookup routine
1823  * returns a pointer to the decoded data to the driver.  The driver then
1824  * passes this pointer back to us.  This data actually lives in a struct
1825  * prop_driver_data.  We use negative indexing to find the beginning of
1826  * the structure and then free the entire structure using the size and
1827  * the free routine stored in the structure.
1828  */
1829 void
1830 ddi_prop_free(void *datap)
1831 {
1832         struct prop_driver_data *pdd;
1833 
1834         /*
1835          * Get the structure
1836          */
1837         pdd = (struct prop_driver_data *)
1838             ((caddr_t)datap - sizeof (struct prop_driver_data));
1839         /*
1840          * Call the free routine to free it
1841          */
1842         (*pdd->pdd_prop_free)(pdd);
1843 }
1844 
1845 /*
1846  * Free the data associated with an array of ints,
1847  * allocated with ddi_prop_decode_alloc().
1848  */
1849 static void
1850 ddi_prop_free_ints(struct prop_driver_data *pdd)
1851 {
1852         kmem_free(pdd, pdd->pdd_size);
1853 }
1854 
1855 /*
1856  * Free a single string property or a single string contained within
1857  * the argv style return value of an array of strings.
1858  */
1859 static void
1860 ddi_prop_free_string(struct prop_driver_data *pdd)
1861 {
1862         kmem_free(pdd, pdd->pdd_size);
1863 
1864 }
1865 
1866 /*
1867  * Free an array of strings.
1868  */
1869 static void
1870 ddi_prop_free_strings(struct prop_driver_data *pdd)
1871 {
1872         kmem_free(pdd, pdd->pdd_size);
1873 }
1874 
1875 /*
1876  * Free the data associated with an array of bytes.
1877  */
1878 static void
1879 ddi_prop_free_bytes(struct prop_driver_data *pdd)
1880 {
1881         kmem_free(pdd, pdd->pdd_size);
1882 }
1883 
1884 /*
1885  * Reset the current location pointer in the property handle to the
1886  * beginning of the data.
1887  */
1888 void
1889 ddi_prop_reset_pos(prop_handle_t *ph)
1890 {
1891         ph->ph_cur_pos = ph->ph_data;
1892         ph->ph_save_pos = ph->ph_data;
1893 }
1894 
1895 /*
1896  * Restore the current location pointer in the property handle to the
1897  * saved position.
1898  */
1899 void
1900 ddi_prop_save_pos(prop_handle_t *ph)
1901 {
1902         ph->ph_save_pos = ph->ph_cur_pos;
1903 }
1904 
1905 /*
1906  * Save the location that the current location pointer is pointing to..
1907  */
1908 void
1909 ddi_prop_restore_pos(prop_handle_t *ph)
1910 {
1911         ph->ph_cur_pos = ph->ph_save_pos;
1912 }
1913 
1914 /*
1915  * Property encode/decode functions
1916  */
1917 
1918 /*
1919  * Decode a single integer property
1920  */
1921 static int
1922 ddi_prop_fm_decode_int(prop_handle_t *ph, void *data, uint_t *nelements)
1923 {
1924         int     i;
1925         int     tmp;
1926 
1927         /*
1928          * If there is nothing to decode return an error
1929          */
1930         if (ph->ph_size == 0)
1931                 return (DDI_PROP_END_OF_DATA);
1932 
1933         /*
1934          * Decode the property as a single integer and return it
1935          * in data if we were able to decode it.
1936          */
1937         i = DDI_PROP_INT(ph, DDI_PROP_CMD_DECODE, &tmp);
1938         if (i < DDI_PROP_RESULT_OK) {
1939                 switch (i) {
1940                 case DDI_PROP_RESULT_EOF:
1941                         return (DDI_PROP_END_OF_DATA);
1942 
1943                 case DDI_PROP_RESULT_ERROR:
1944                         return (DDI_PROP_CANNOT_DECODE);
1945                 }
1946         }
1947 
1948         *(int *)data = tmp;
1949         *nelements = 1;
1950         return (DDI_PROP_SUCCESS);
1951 }
1952 
1953 /*
1954  * Decode a single 64 bit integer property
1955  */
1956 static int
1957 ddi_prop_fm_decode_int64(prop_handle_t *ph, void *data, uint_t *nelements)
1958 {
1959         int     i;
1960         int64_t tmp;
1961 
1962         /*
1963          * If there is nothing to decode return an error
1964          */
1965         if (ph->ph_size == 0)
1966                 return (DDI_PROP_END_OF_DATA);
1967 
1968         /*
1969          * Decode the property as a single integer and return it
1970          * in data if we were able to decode it.
1971          */
1972         i = DDI_PROP_INT64(ph, DDI_PROP_CMD_DECODE, &tmp);
1973         if (i < DDI_PROP_RESULT_OK) {
1974                 switch (i) {
1975                 case DDI_PROP_RESULT_EOF:
1976                         return (DDI_PROP_END_OF_DATA);
1977 
1978                 case DDI_PROP_RESULT_ERROR:
1979                         return (DDI_PROP_CANNOT_DECODE);
1980                 }
1981         }
1982 
1983         *(int64_t *)data = tmp;
1984         *nelements = 1;
1985         return (DDI_PROP_SUCCESS);
1986 }
1987 
1988 /*
1989  * Decode an array of integers property
1990  */
1991 static int
1992 ddi_prop_fm_decode_ints(prop_handle_t *ph, void *data, uint_t *nelements)
1993 {
1994         int     i;
1995         int     cnt = 0;
1996         int     *tmp;
1997         int     *intp;
1998         int     n;
1999 
2000         /*
2001          * Figure out how many array elements there are by going through the
2002          * data without decoding it first and counting.
2003          */
2004         for (;;) {
2005                 i = DDI_PROP_INT(ph, DDI_PROP_CMD_SKIP, NULL);
2006                 if (i < 0)
2007                         break;
2008                 cnt++;
2009         }
2010 
2011         /*
2012          * If there are no elements return an error
2013          */
2014         if (cnt == 0)
2015                 return (DDI_PROP_END_OF_DATA);
2016 
2017         /*
2018          * If we cannot skip through the data, we cannot decode it
2019          */
2020         if (i == DDI_PROP_RESULT_ERROR)
2021                 return (DDI_PROP_CANNOT_DECODE);
2022 
2023         /*
2024          * Reset the data pointer to the beginning of the encoded data
2025          */
2026         ddi_prop_reset_pos(ph);
2027 
2028         /*
2029          * Allocated memory to store the decoded value in.
2030          */
2031         intp = ddi_prop_decode_alloc((cnt * sizeof (int)),
2032             ddi_prop_free_ints);
2033 
2034         /*
2035          * Decode each element and place it in the space we just allocated
2036          */
2037         tmp = intp;
2038         for (n = 0; n < cnt; n++, tmp++) {
2039                 i = DDI_PROP_INT(ph, DDI_PROP_CMD_DECODE, tmp);
2040                 if (i < DDI_PROP_RESULT_OK) {
2041                         /*
2042                          * Free the space we just allocated
2043                          * and return an error.
2044                          */
2045                         ddi_prop_free(intp);
2046                         switch (i) {
2047                         case DDI_PROP_RESULT_EOF:
2048                                 return (DDI_PROP_END_OF_DATA);
2049 
2050                         case DDI_PROP_RESULT_ERROR:
2051                                 return (DDI_PROP_CANNOT_DECODE);
2052                         }
2053                 }
2054         }
2055 
2056         *nelements = cnt;
2057         *(int **)data = intp;
2058 
2059         return (DDI_PROP_SUCCESS);
2060 }
2061 
2062 /*
2063  * Decode a 64 bit integer array property
2064  */
2065 static int
2066 ddi_prop_fm_decode_int64_array(prop_handle_t *ph, void *data, uint_t *nelements)
2067 {
2068         int     i;
2069         int     n;
2070         int     cnt = 0;
2071         int64_t *tmp;
2072         int64_t *intp;
2073 
2074         /*
2075          * Count the number of array elements by going
2076          * through the data without decoding it.
2077          */
2078         for (;;) {
2079                 i = DDI_PROP_INT64(ph, DDI_PROP_CMD_SKIP, NULL);
2080                 if (i < 0)
2081                         break;
2082                 cnt++;
2083         }
2084 
2085         /*
2086          * If there are no elements return an error
2087          */
2088         if (cnt == 0)
2089                 return (DDI_PROP_END_OF_DATA);
2090 
2091         /*
2092          * If we cannot skip through the data, we cannot decode it
2093          */
2094         if (i == DDI_PROP_RESULT_ERROR)
2095                 return (DDI_PROP_CANNOT_DECODE);
2096 
2097         /*
2098          * Reset the data pointer to the beginning of the encoded data
2099          */
2100         ddi_prop_reset_pos(ph);
2101 
2102         /*
2103          * Allocate memory to store the decoded value.
2104          */
2105         intp = ddi_prop_decode_alloc((cnt * sizeof (int64_t)),
2106             ddi_prop_free_ints);
2107 
2108         /*
2109          * Decode each element and place it in the space allocated
2110          */
2111         tmp = intp;
2112         for (n = 0; n < cnt; n++, tmp++) {
2113                 i = DDI_PROP_INT64(ph, DDI_PROP_CMD_DECODE, tmp);
2114                 if (i < DDI_PROP_RESULT_OK) {
2115                         /*
2116                          * Free the space we just allocated
2117                          * and return an error.
2118                          */
2119                         ddi_prop_free(intp);
2120                         switch (i) {
2121                         case DDI_PROP_RESULT_EOF:
2122                                 return (DDI_PROP_END_OF_DATA);
2123 
2124                         case DDI_PROP_RESULT_ERROR:
2125                                 return (DDI_PROP_CANNOT_DECODE);
2126                         }
2127                 }
2128         }
2129 
2130         *nelements = cnt;
2131         *(int64_t **)data = intp;
2132 
2133         return (DDI_PROP_SUCCESS);
2134 }
2135 
2136 /*
2137  * Encode an array of integers property (Can be one element)
2138  */
2139 int
2140 ddi_prop_fm_encode_ints(prop_handle_t *ph, void *data, uint_t nelements)
2141 {
2142         int     i;
2143         int     *tmp;
2144         int     cnt;
2145         int     size;
2146 
2147         /*
2148          * If there is no data, we cannot do anything
2149          */
2150         if (nelements == 0)
2151                 return (DDI_PROP_CANNOT_ENCODE);
2152 
2153         /*
2154          * Get the size of an encoded int.
2155          */
2156         size = DDI_PROP_INT(ph, DDI_PROP_CMD_GET_ESIZE, NULL);
2157 
2158         if (size < DDI_PROP_RESULT_OK) {
2159                 switch (size) {
2160                 case DDI_PROP_RESULT_EOF:
2161                         return (DDI_PROP_END_OF_DATA);
2162 
2163                 case DDI_PROP_RESULT_ERROR:
2164                         return (DDI_PROP_CANNOT_ENCODE);
2165                 }
2166         }
2167 
2168         /*
2169          * Allocate space in the handle to store the encoded int.
2170          */
2171         if (ddi_prop_encode_alloc(ph, size * nelements) !=
2172             DDI_PROP_SUCCESS)
2173                 return (DDI_PROP_NO_MEMORY);
2174 
2175         /*
2176          * Encode the array of ints.
2177          */
2178         tmp = (int *)data;
2179         for (cnt = 0; cnt < nelements; cnt++, tmp++) {
2180                 i = DDI_PROP_INT(ph, DDI_PROP_CMD_ENCODE, tmp);
2181                 if (i < DDI_PROP_RESULT_OK) {
2182                         switch (i) {
2183                         case DDI_PROP_RESULT_EOF:
2184                                 return (DDI_PROP_END_OF_DATA);
2185 
2186                         case DDI_PROP_RESULT_ERROR:
2187                                 return (DDI_PROP_CANNOT_ENCODE);
2188                         }
2189                 }
2190         }
2191 
2192         return (DDI_PROP_SUCCESS);
2193 }
2194 
2195 
2196 /*
2197  * Encode a 64 bit integer array property
2198  */
2199 int
2200 ddi_prop_fm_encode_int64(prop_handle_t *ph, void *data, uint_t nelements)
2201 {
2202         int i;
2203         int cnt;
2204         int size;
2205         int64_t *tmp;
2206 
2207         /*
2208          * If there is no data, we cannot do anything
2209          */
2210         if (nelements == 0)
2211                 return (DDI_PROP_CANNOT_ENCODE);
2212 
2213         /*
2214          * Get the size of an encoded 64 bit int.
2215          */
2216         size = DDI_PROP_INT64(ph, DDI_PROP_CMD_GET_ESIZE, NULL);
2217 
2218         if (size < DDI_PROP_RESULT_OK) {
2219                 switch (size) {
2220                 case DDI_PROP_RESULT_EOF:
2221                         return (DDI_PROP_END_OF_DATA);
2222 
2223                 case DDI_PROP_RESULT_ERROR:
2224                         return (DDI_PROP_CANNOT_ENCODE);
2225                 }
2226         }
2227 
2228         /*
2229          * Allocate space in the handle to store the encoded int.
2230          */
2231         if (ddi_prop_encode_alloc(ph, size * nelements) !=
2232             DDI_PROP_SUCCESS)
2233                 return (DDI_PROP_NO_MEMORY);
2234 
2235         /*
2236          * Encode the array of ints.
2237          */
2238         tmp = (int64_t *)data;
2239         for (cnt = 0; cnt < nelements; cnt++, tmp++) {
2240                 i = DDI_PROP_INT64(ph, DDI_PROP_CMD_ENCODE, tmp);
2241                 if (i < DDI_PROP_RESULT_OK) {
2242                         switch (i) {
2243                         case DDI_PROP_RESULT_EOF:
2244                                 return (DDI_PROP_END_OF_DATA);
2245 
2246                         case DDI_PROP_RESULT_ERROR:
2247                                 return (DDI_PROP_CANNOT_ENCODE);
2248                         }
2249                 }
2250         }
2251 
2252         return (DDI_PROP_SUCCESS);
2253 }
2254 
2255 /*
2256  * Decode a single string property
2257  */
2258 static int
2259 ddi_prop_fm_decode_string(prop_handle_t *ph, void *data, uint_t *nelements)
2260 {
2261         char            *tmp;
2262         char            *str;
2263         int             i;
2264         int             size;
2265 
2266         /*
2267          * If there is nothing to decode return an error
2268          */
2269         if (ph->ph_size == 0)
2270                 return (DDI_PROP_END_OF_DATA);
2271 
2272         /*
2273          * Get the decoded size of the encoded string.
2274          */
2275         size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_DSIZE, NULL);
2276         if (size < DDI_PROP_RESULT_OK) {
2277                 switch (size) {
2278                 case DDI_PROP_RESULT_EOF:
2279                         return (DDI_PROP_END_OF_DATA);
2280 
2281                 case DDI_PROP_RESULT_ERROR:
2282                         return (DDI_PROP_CANNOT_DECODE);
2283                 }
2284         }
2285 
2286         /*
2287          * Allocated memory to store the decoded value in.
2288          */
2289         str = ddi_prop_decode_alloc((size_t)size, ddi_prop_free_string);
2290 
2291         ddi_prop_reset_pos(ph);
2292 
2293         /*
2294          * Decode the str and place it in the space we just allocated
2295          */
2296         tmp = str;
2297         i = DDI_PROP_STR(ph, DDI_PROP_CMD_DECODE, tmp);
2298         if (i < DDI_PROP_RESULT_OK) {
2299                 /*
2300                  * Free the space we just allocated
2301                  * and return an error.
2302                  */
2303                 ddi_prop_free(str);
2304                 switch (i) {
2305                 case DDI_PROP_RESULT_EOF:
2306                         return (DDI_PROP_END_OF_DATA);
2307 
2308                 case DDI_PROP_RESULT_ERROR:
2309                         return (DDI_PROP_CANNOT_DECODE);
2310                 }
2311         }
2312 
2313         *(char **)data = str;
2314         *nelements = 1;
2315 
2316         return (DDI_PROP_SUCCESS);
2317 }
2318 
2319 /*
2320  * Decode an array of strings.
2321  */
2322 int
2323 ddi_prop_fm_decode_strings(prop_handle_t *ph, void *data, uint_t *nelements)
2324 {
2325         int             cnt = 0;
2326         char            **strs;
2327         char            **tmp;
2328         char            *ptr;
2329         int             i;
2330         int             n;
2331         int             size;
2332         size_t          nbytes;
2333 
2334         /*
2335          * Figure out how many array elements there are by going through the
2336          * data without decoding it first and counting.
2337          */
2338         for (;;) {
2339                 i = DDI_PROP_STR(ph, DDI_PROP_CMD_SKIP, NULL);
2340                 if (i < 0)
2341                         break;
2342                 cnt++;
2343         }
2344 
2345         /*
2346          * If there are no elements return an error
2347          */
2348         if (cnt == 0)
2349                 return (DDI_PROP_END_OF_DATA);
2350 
2351         /*
2352          * If we cannot skip through the data, we cannot decode it
2353          */
2354         if (i == DDI_PROP_RESULT_ERROR)
2355                 return (DDI_PROP_CANNOT_DECODE);
2356 
2357         /*
2358          * Reset the data pointer to the beginning of the encoded data
2359          */
2360         ddi_prop_reset_pos(ph);
2361 
2362         /*
2363          * Figure out how much memory we need for the sum total
2364          */
2365         nbytes = (cnt + 1) * sizeof (char *);
2366 
2367         for (n = 0; n < cnt; n++) {
2368                 /*
2369                  * Get the decoded size of the current encoded string.
2370                  */
2371                 size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_DSIZE, NULL);
2372                 if (size < DDI_PROP_RESULT_OK) {
2373                         switch (size) {
2374                         case DDI_PROP_RESULT_EOF:
2375                                 return (DDI_PROP_END_OF_DATA);
2376 
2377                         case DDI_PROP_RESULT_ERROR:
2378                                 return (DDI_PROP_CANNOT_DECODE);
2379                         }
2380                 }
2381 
2382                 nbytes += size;
2383         }
2384 
2385         /*
2386          * Allocate memory in which to store the decoded strings.
2387          */
2388         strs = ddi_prop_decode_alloc(nbytes, ddi_prop_free_strings);
2389 
2390         /*
2391          * Set up pointers for each string by figuring out yet
2392          * again how long each string is.
2393          */
2394         ddi_prop_reset_pos(ph);
2395         ptr = (caddr_t)strs + ((cnt + 1) * sizeof (char *));
2396         for (tmp = strs, n = 0; n < cnt; n++, tmp++) {
2397                 /*
2398                  * Get the decoded size of the current encoded string.
2399                  */
2400                 size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_DSIZE, NULL);
2401                 if (size < DDI_PROP_RESULT_OK) {
2402                         ddi_prop_free(strs);
2403                         switch (size) {
2404                         case DDI_PROP_RESULT_EOF:
2405                                 return (DDI_PROP_END_OF_DATA);
2406 
2407                         case DDI_PROP_RESULT_ERROR:
2408                                 return (DDI_PROP_CANNOT_DECODE);
2409                         }
2410                 }
2411 
2412                 *tmp = ptr;
2413                 ptr += size;
2414         }
2415 
2416         /*
2417          * String array is terminated by a NULL
2418          */
2419         *tmp = NULL;
2420 
2421         /*
2422          * Finally, we can decode each string
2423          */
2424         ddi_prop_reset_pos(ph);
2425         for (tmp = strs, n = 0; n < cnt; n++, tmp++) {
2426                 i = DDI_PROP_STR(ph, DDI_PROP_CMD_DECODE, *tmp);
2427                 if (i < DDI_PROP_RESULT_OK) {
2428                         /*
2429                          * Free the space we just allocated
2430                          * and return an error
2431                          */
2432                         ddi_prop_free(strs);
2433                         switch (i) {
2434                         case DDI_PROP_RESULT_EOF:
2435                                 return (DDI_PROP_END_OF_DATA);
2436 
2437                         case DDI_PROP_RESULT_ERROR:
2438                                 return (DDI_PROP_CANNOT_DECODE);
2439                         }
2440                 }
2441         }
2442 
2443         *(char ***)data = strs;
2444         *nelements = cnt;
2445 
2446         return (DDI_PROP_SUCCESS);
2447 }
2448 
2449 /*
2450  * Encode a string.
2451  */
2452 int
2453 ddi_prop_fm_encode_string(prop_handle_t *ph, void *data, uint_t nelements)
2454 {
2455         char            **tmp;
2456         int             size;
2457         int             i;
2458 
2459         /*
2460          * If there is no data, we cannot do anything
2461          */
2462         if (nelements == 0)
2463                 return (DDI_PROP_CANNOT_ENCODE);
2464 
2465         /*
2466          * Get the size of the encoded string.
2467          */
2468         tmp = (char **)data;
2469         size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_ESIZE, *tmp);
2470         if (size < DDI_PROP_RESULT_OK) {
2471                 switch (size) {
2472                 case DDI_PROP_RESULT_EOF:
2473                         return (DDI_PROP_END_OF_DATA);
2474 
2475                 case DDI_PROP_RESULT_ERROR:
2476                         return (DDI_PROP_CANNOT_ENCODE);
2477                 }
2478         }
2479 
2480         /*
2481          * Allocate space in the handle to store the encoded string.
2482          */
2483         if (ddi_prop_encode_alloc(ph, size) != DDI_PROP_SUCCESS)
2484                 return (DDI_PROP_NO_MEMORY);
2485 
2486         ddi_prop_reset_pos(ph);
2487 
2488         /*
2489          * Encode the string.
2490          */
2491         tmp = (char **)data;
2492         i = DDI_PROP_STR(ph, DDI_PROP_CMD_ENCODE, *tmp);
2493         if (i < DDI_PROP_RESULT_OK) {
2494                 switch (i) {
2495                 case DDI_PROP_RESULT_EOF:
2496                         return (DDI_PROP_END_OF_DATA);
2497 
2498                 case DDI_PROP_RESULT_ERROR:
2499                         return (DDI_PROP_CANNOT_ENCODE);
2500                 }
2501         }
2502 
2503         return (DDI_PROP_SUCCESS);
2504 }
2505 
2506 
2507 /*
2508  * Encode an array of strings.
2509  */
2510 int
2511 ddi_prop_fm_encode_strings(prop_handle_t *ph, void *data, uint_t nelements)
2512 {
2513         int             cnt = 0;
2514         char            **tmp;
2515         int             size;
2516         uint_t          total_size;
2517         int             i;
2518 
2519         /*
2520          * If there is no data, we cannot do anything
2521          */
2522         if (nelements == 0)
2523                 return (DDI_PROP_CANNOT_ENCODE);
2524 
2525         /*
2526          * Get the total size required to encode all the strings.
2527          */
2528         total_size = 0;
2529         tmp = (char **)data;
2530         for (cnt = 0; cnt < nelements; cnt++, tmp++) {
2531                 size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_ESIZE, *tmp);
2532                 if (size < DDI_PROP_RESULT_OK) {
2533                         switch (size) {
2534                         case DDI_PROP_RESULT_EOF:
2535                                 return (DDI_PROP_END_OF_DATA);
2536 
2537                         case DDI_PROP_RESULT_ERROR:
2538                                 return (DDI_PROP_CANNOT_ENCODE);
2539                         }
2540                 }
2541                 total_size += (uint_t)size;
2542         }
2543 
2544         /*
2545          * Allocate space in the handle to store the encoded strings.
2546          */
2547         if (ddi_prop_encode_alloc(ph, total_size) != DDI_PROP_SUCCESS)
2548                 return (DDI_PROP_NO_MEMORY);
2549 
2550         ddi_prop_reset_pos(ph);
2551 
2552         /*
2553          * Encode the array of strings.
2554          */
2555         tmp = (char **)data;
2556         for (cnt = 0; cnt < nelements; cnt++, tmp++) {
2557                 i = DDI_PROP_STR(ph, DDI_PROP_CMD_ENCODE, *tmp);
2558                 if (i < DDI_PROP_RESULT_OK) {
2559                         switch (i) {
2560                         case DDI_PROP_RESULT_EOF:
2561                                 return (DDI_PROP_END_OF_DATA);
2562 
2563                         case DDI_PROP_RESULT_ERROR:
2564                                 return (DDI_PROP_CANNOT_ENCODE);
2565                         }
2566                 }
2567         }
2568 
2569         return (DDI_PROP_SUCCESS);
2570 }
2571 
2572 
2573 /*
2574  * Decode an array of bytes.
2575  */
2576 static int
2577 ddi_prop_fm_decode_bytes(prop_handle_t *ph, void *data, uint_t *nelements)
2578 {
2579         uchar_t         *tmp;
2580         int             nbytes;
2581         int             i;
2582 
2583         /*
2584          * If there are no elements return an error
2585          */
2586         if (ph->ph_size == 0)
2587                 return (DDI_PROP_END_OF_DATA);
2588 
2589         /*
2590          * Get the size of the encoded array of bytes.
2591          */
2592         nbytes = DDI_PROP_BYTES(ph, DDI_PROP_CMD_GET_DSIZE,
2593             data, ph->ph_size);
2594         if (nbytes < DDI_PROP_RESULT_OK) {
2595                 switch (nbytes) {
2596                 case DDI_PROP_RESULT_EOF:
2597                         return (DDI_PROP_END_OF_DATA);
2598 
2599                 case DDI_PROP_RESULT_ERROR:
2600                         return (DDI_PROP_CANNOT_DECODE);
2601                 }
2602         }
2603 
2604         /*
2605          * Allocated memory to store the decoded value in.
2606          */
2607         tmp = ddi_prop_decode_alloc(nbytes, ddi_prop_free_bytes);
2608 
2609         /*
2610          * Decode each element and place it in the space we just allocated
2611          */
2612         i = DDI_PROP_BYTES(ph, DDI_PROP_CMD_DECODE, tmp, nbytes);
2613         if (i < DDI_PROP_RESULT_OK) {
2614                 /*
2615                  * Free the space we just allocated
2616                  * and return an error
2617                  */
2618                 ddi_prop_free(tmp);
2619                 switch (i) {
2620                 case DDI_PROP_RESULT_EOF:
2621                         return (DDI_PROP_END_OF_DATA);
2622 
2623                 case DDI_PROP_RESULT_ERROR:
2624                         return (DDI_PROP_CANNOT_DECODE);
2625                 }
2626         }
2627 
2628         *(uchar_t **)data = tmp;
2629         *nelements = nbytes;
2630 
2631         return (DDI_PROP_SUCCESS);
2632 }
2633 
2634 /*
2635  * Encode an array of bytes.
2636  */
2637 int
2638 ddi_prop_fm_encode_bytes(prop_handle_t *ph, void *data, uint_t nelements)
2639 {
2640         int             size;
2641         int             i;
2642 
2643         /*
2644          * If there are no elements, then this is a boolean property,
2645          * so just create a property handle with no data and return.
2646          */
2647         if (nelements == 0) {
2648                 (void) ddi_prop_encode_alloc(ph, 0);
2649                 return (DDI_PROP_SUCCESS);
2650         }
2651 
2652         /*
2653          * Get the size of the encoded array of bytes.
2654          */
2655         size = DDI_PROP_BYTES(ph, DDI_PROP_CMD_GET_ESIZE, (uchar_t *)data,
2656             nelements);
2657         if (size < DDI_PROP_RESULT_OK) {
2658                 switch (size) {
2659                 case DDI_PROP_RESULT_EOF:
2660                         return (DDI_PROP_END_OF_DATA);
2661 
2662                 case DDI_PROP_RESULT_ERROR:
2663                         return (DDI_PROP_CANNOT_DECODE);
2664                 }
2665         }
2666 
2667         /*
2668          * Allocate space in the handle to store the encoded bytes.
2669          */
2670         if (ddi_prop_encode_alloc(ph, (uint_t)size) != DDI_PROP_SUCCESS)
2671                 return (DDI_PROP_NO_MEMORY);
2672 
2673         /*
2674          * Encode the array of bytes.
2675          */
2676         i = DDI_PROP_BYTES(ph, DDI_PROP_CMD_ENCODE, (uchar_t *)data,
2677             nelements);
2678         if (i < DDI_PROP_RESULT_OK) {
2679                 switch (i) {
2680                 case DDI_PROP_RESULT_EOF:
2681                         return (DDI_PROP_END_OF_DATA);
2682 
2683                 case DDI_PROP_RESULT_ERROR:
2684                         return (DDI_PROP_CANNOT_ENCODE);
2685                 }
2686         }
2687 
2688         return (DDI_PROP_SUCCESS);
2689 }
2690 
2691 /*
2692  * OBP 1275 integer, string and byte operators.
2693  *
2694  * DDI_PROP_CMD_DECODE:
2695  *
2696  *      DDI_PROP_RESULT_ERROR:          cannot decode the data
2697  *      DDI_PROP_RESULT_EOF:            end of data
2698  *      DDI_PROP_OK:                    data was decoded
2699  *
2700  * DDI_PROP_CMD_ENCODE:
2701  *
2702  *      DDI_PROP_RESULT_ERROR:          cannot encode the data
2703  *      DDI_PROP_RESULT_EOF:            end of data
2704  *      DDI_PROP_OK:                    data was encoded
2705  *
2706  * DDI_PROP_CMD_SKIP:
2707  *
2708  *      DDI_PROP_RESULT_ERROR:          cannot skip the data
2709  *      DDI_PROP_RESULT_EOF:            end of data
2710  *      DDI_PROP_OK:                    data was skipped
2711  *
2712  * DDI_PROP_CMD_GET_ESIZE:
2713  *
2714  *      DDI_PROP_RESULT_ERROR:          cannot get encoded size
2715  *      DDI_PROP_RESULT_EOF:            end of data
2716  *      > 0:                         the encoded size
2717  *
2718  * DDI_PROP_CMD_GET_DSIZE:
2719  *
2720  *      DDI_PROP_RESULT_ERROR:          cannot get decoded size
2721  *      DDI_PROP_RESULT_EOF:            end of data
2722  *      > 0:                         the decoded size
2723  */
2724 
2725 /*
2726  * OBP 1275 integer operator
2727  *
2728  * OBP properties are a byte stream of data, so integers may not be
2729  * properly aligned.  Therefore we need to copy them one byte at a time.
2730  */
2731 int
2732 ddi_prop_1275_int(prop_handle_t *ph, uint_t cmd, int *data)
2733 {
2734         int     i;
2735 
2736         switch (cmd) {
2737         case DDI_PROP_CMD_DECODE:
2738                 /*
2739                  * Check that there is encoded data
2740                  */
2741                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0)
2742                         return (DDI_PROP_RESULT_ERROR);
2743                 if (ph->ph_flags & PH_FROM_PROM) {
2744                         i = MIN(ph->ph_size, PROP_1275_INT_SIZE);
2745                         if ((int *)ph->ph_cur_pos > ((int *)ph->ph_data +
2746                             ph->ph_size - i))
2747                                 return (DDI_PROP_RESULT_ERROR);
2748                 } else {
2749                         if (ph->ph_size < sizeof (int) ||
2750                             ((int *)ph->ph_cur_pos > ((int *)ph->ph_data +
2751                             ph->ph_size - sizeof (int))))
2752                                 return (DDI_PROP_RESULT_ERROR);
2753                 }
2754 
2755                 /*
2756                  * Copy the integer, using the implementation-specific
2757                  * copy function if the property is coming from the PROM.
2758                  */
2759                 if (ph->ph_flags & PH_FROM_PROM) {
2760                         *data = impl_ddi_prop_int_from_prom(
2761                             (uchar_t *)ph->ph_cur_pos,
2762                             (ph->ph_size < PROP_1275_INT_SIZE) ?
2763                             ph->ph_size : PROP_1275_INT_SIZE);
2764                 } else {
2765                         bcopy(ph->ph_cur_pos, data, sizeof (int));
2766                 }
2767 
2768                 /*
2769                  * Move the current location to the start of the next
2770                  * bit of undecoded data.
2771                  */
2772                 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos +
2773                     PROP_1275_INT_SIZE;
2774                 return (DDI_PROP_RESULT_OK);
2775 
2776         case DDI_PROP_CMD_ENCODE:
2777                 /*
2778                  * Check that there is room to encoded the data
2779                  */
2780                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
2781                     ph->ph_size < PROP_1275_INT_SIZE ||
2782                     ((int *)ph->ph_cur_pos > ((int *)ph->ph_data +
2783                     ph->ph_size - sizeof (int))))
2784                         return (DDI_PROP_RESULT_ERROR);
2785 
2786                 /*
2787                  * Encode the integer into the byte stream one byte at a
2788                  * time.
2789                  */
2790                 bcopy(data, ph->ph_cur_pos, sizeof (int));
2791 
2792                 /*
2793                  * Move the current location to the start of the next bit of
2794                  * space where we can store encoded data.
2795                  */
2796                 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos + PROP_1275_INT_SIZE;
2797                 return (DDI_PROP_RESULT_OK);
2798 
2799         case DDI_PROP_CMD_SKIP:
2800                 /*
2801                  * Check that there is encoded data
2802                  */
2803                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
2804                     ph->ph_size < PROP_1275_INT_SIZE)
2805                         return (DDI_PROP_RESULT_ERROR);
2806 
2807 
2808                 if ((caddr_t)ph->ph_cur_pos ==
2809                     (caddr_t)ph->ph_data + ph->ph_size) {
2810                         return (DDI_PROP_RESULT_EOF);
2811                 } else if ((caddr_t)ph->ph_cur_pos >
2812                     (caddr_t)ph->ph_data + ph->ph_size) {
2813                         return (DDI_PROP_RESULT_EOF);
2814                 }
2815 
2816                 /*
2817                  * Move the current location to the start of the next bit of
2818                  * undecoded data.
2819                  */
2820                 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos + PROP_1275_INT_SIZE;
2821                 return (DDI_PROP_RESULT_OK);
2822 
2823         case DDI_PROP_CMD_GET_ESIZE:
2824                 /*
2825                  * Return the size of an encoded integer on OBP
2826                  */
2827                 return (PROP_1275_INT_SIZE);
2828 
2829         case DDI_PROP_CMD_GET_DSIZE:
2830                 /*
2831                  * Return the size of a decoded integer on the system.
2832                  */
2833                 return (sizeof (int));
2834 
2835         default:
2836 #ifdef DEBUG
2837                 panic("ddi_prop_1275_int: %x impossible", cmd);
2838                 /*NOTREACHED*/
2839 #else
2840                 return (DDI_PROP_RESULT_ERROR);
2841 #endif  /* DEBUG */
2842         }
2843 }
2844 
2845 /*
2846  * 64 bit integer operator.
2847  *
2848  * This is an extension, defined by Sun, to the 1275 integer
2849  * operator.  This routine handles the encoding/decoding of
2850  * 64 bit integer properties.
2851  */
2852 int
2853 ddi_prop_int64_op(prop_handle_t *ph, uint_t cmd, int64_t *data)
2854 {
2855 
2856         switch (cmd) {
2857         case DDI_PROP_CMD_DECODE:
2858                 /*
2859                  * Check that there is encoded data
2860                  */
2861                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0)
2862                         return (DDI_PROP_RESULT_ERROR);
2863                 if (ph->ph_flags & PH_FROM_PROM) {
2864                         return (DDI_PROP_RESULT_ERROR);
2865                 } else {
2866                         if (ph->ph_size < sizeof (int64_t) ||
2867                             ((int64_t *)ph->ph_cur_pos >
2868                             ((int64_t *)ph->ph_data +
2869                             ph->ph_size - sizeof (int64_t))))
2870                                 return (DDI_PROP_RESULT_ERROR);
2871                 }
2872                 /*
2873                  * Copy the integer, using the implementation-specific
2874                  * copy function if the property is coming from the PROM.
2875                  */
2876                 if (ph->ph_flags & PH_FROM_PROM) {
2877                         return (DDI_PROP_RESULT_ERROR);
2878                 } else {
2879                         bcopy(ph->ph_cur_pos, data, sizeof (int64_t));
2880                 }
2881 
2882                 /*
2883                  * Move the current location to the start of the next
2884                  * bit of undecoded data.
2885                  */
2886                 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos +
2887                     sizeof (int64_t);
2888                         return (DDI_PROP_RESULT_OK);
2889 
2890         case DDI_PROP_CMD_ENCODE:
2891                 /*
2892                  * Check that there is room to encoded the data
2893                  */
2894                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
2895                     ph->ph_size < sizeof (int64_t) ||
2896                     ((int64_t *)ph->ph_cur_pos > ((int64_t *)ph->ph_data +
2897                     ph->ph_size - sizeof (int64_t))))
2898                         return (DDI_PROP_RESULT_ERROR);
2899 
2900                 /*
2901                  * Encode the integer into the byte stream one byte at a
2902                  * time.
2903                  */
2904                 bcopy(data, ph->ph_cur_pos, sizeof (int64_t));
2905 
2906                 /*
2907                  * Move the current location to the start of the next bit of
2908                  * space where we can store encoded data.
2909                  */
2910                 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos +
2911                     sizeof (int64_t);
2912                 return (DDI_PROP_RESULT_OK);
2913 
2914         case DDI_PROP_CMD_SKIP:
2915                 /*
2916                  * Check that there is encoded data
2917                  */
2918                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
2919                     ph->ph_size < sizeof (int64_t))
2920                         return (DDI_PROP_RESULT_ERROR);
2921 
2922                 if ((caddr_t)ph->ph_cur_pos ==
2923                     (caddr_t)ph->ph_data + ph->ph_size) {
2924                         return (DDI_PROP_RESULT_EOF);
2925                 } else if ((caddr_t)ph->ph_cur_pos >
2926                     (caddr_t)ph->ph_data + ph->ph_size) {
2927                         return (DDI_PROP_RESULT_EOF);
2928                 }
2929 
2930                 /*
2931                  * Move the current location to the start of
2932                  * the next bit of undecoded data.
2933                  */
2934                 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos +
2935                     sizeof (int64_t);
2936                         return (DDI_PROP_RESULT_OK);
2937 
2938         case DDI_PROP_CMD_GET_ESIZE:
2939                 /*
2940                  * Return the size of an encoded integer on OBP
2941                  */
2942                 return (sizeof (int64_t));
2943 
2944         case DDI_PROP_CMD_GET_DSIZE:
2945                 /*
2946                  * Return the size of a decoded integer on the system.
2947                  */
2948                 return (sizeof (int64_t));
2949 
2950         default:
2951 #ifdef DEBUG
2952                 panic("ddi_prop_int64_op: %x impossible", cmd);
2953                 /*NOTREACHED*/
2954 #else
2955                 return (DDI_PROP_RESULT_ERROR);
2956 #endif  /* DEBUG */
2957         }
2958 }
2959 
2960 /*
2961  * OBP 1275 string operator.
2962  *
2963  * OBP strings are NULL terminated.
2964  */
2965 int
2966 ddi_prop_1275_string(prop_handle_t *ph, uint_t cmd, char *data)
2967 {
2968         int     n;
2969         char    *p;
2970         char    *end;
2971 
2972         switch (cmd) {
2973         case DDI_PROP_CMD_DECODE:
2974                 /*
2975                  * Check that there is encoded data
2976                  */
2977                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0) {
2978                         return (DDI_PROP_RESULT_ERROR);
2979                 }
2980 
2981                 /*
2982                  * Match DDI_PROP_CMD_GET_DSIZE logic for when to stop and
2983                  * how to NULL terminate result.
2984                  */
2985                 p = (char *)ph->ph_cur_pos;
2986                 end = (char *)ph->ph_data + ph->ph_size;
2987                 if (p >= end)
2988                         return (DDI_PROP_RESULT_EOF);
2989 
2990                 while (p < end) {
2991                         *data++ = *p;
2992                         if (*p++ == 0) {        /* NULL from OBP */
2993                                 ph->ph_cur_pos = p;
2994                                 return (DDI_PROP_RESULT_OK);
2995                         }
2996                 }
2997 
2998                 /*
2999                  * If OBP did not NULL terminate string, which happens
3000                  * (at least) for 'true'/'false' boolean values, account for
3001                  * the space and store null termination on decode.
3002                  */
3003                 ph->ph_cur_pos = p;
3004                 *data = 0;
3005                 return (DDI_PROP_RESULT_OK);
3006 
3007         case DDI_PROP_CMD_ENCODE:
3008                 /*
3009                  * Check that there is room to encoded the data
3010                  */
3011                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0) {
3012                         return (DDI_PROP_RESULT_ERROR);
3013                 }
3014 
3015                 n = strlen(data) + 1;
3016                 if ((char *)ph->ph_cur_pos > ((char *)ph->ph_data +
3017                     ph->ph_size - n)) {
3018                         return (DDI_PROP_RESULT_ERROR);
3019                 }
3020 
3021                 /*
3022                  * Copy the NULL terminated string
3023                  */
3024                 bcopy(data, ph->ph_cur_pos, n);
3025 
3026                 /*
3027                  * Move the current location to the start of the next bit of
3028                  * space where we can store encoded data.
3029                  */
3030                 ph->ph_cur_pos = (char *)ph->ph_cur_pos + n;
3031                 return (DDI_PROP_RESULT_OK);
3032 
3033         case DDI_PROP_CMD_SKIP:
3034                 /*
3035                  * Check that there is encoded data
3036                  */
3037                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0) {
3038                         return (DDI_PROP_RESULT_ERROR);
3039                 }
3040 
3041                 /*
3042                  * Return the string length plus one for the NULL
3043                  * We know the size of the property, we need to
3044                  * ensure that the string is properly formatted,
3045                  * since we may be looking up random OBP data.
3046                  */
3047                 p = (char *)ph->ph_cur_pos;
3048                 end = (char *)ph->ph_data + ph->ph_size;
3049                 if (p >= end)
3050                         return (DDI_PROP_RESULT_EOF);
3051 
3052                 while (p < end) {
3053                         if (*p++ == 0) {        /* NULL from OBP */
3054                                 ph->ph_cur_pos = p;
3055                                 return (DDI_PROP_RESULT_OK);
3056                         }
3057                 }
3058 
3059                 /*
3060                  * Accommodate the fact that OBP does not always NULL
3061                  * terminate strings.
3062                  */
3063                 ph->ph_cur_pos = p;
3064                 return (DDI_PROP_RESULT_OK);
3065 
3066         case DDI_PROP_CMD_GET_ESIZE:
3067                 /*
3068                  * Return the size of the encoded string on OBP.
3069                  */
3070                 return (strlen(data) + 1);
3071 
3072         case DDI_PROP_CMD_GET_DSIZE:
3073                 /*
3074                  * Return the string length plus one for the NULL.
3075                  * We know the size of the property, we need to
3076                  * ensure that the string is properly formatted,
3077                  * since we may be looking up random OBP data.
3078                  */
3079                 p = (char *)ph->ph_cur_pos;
3080                 end = (char *)ph->ph_data + ph->ph_size;
3081                 if (p >= end)
3082                         return (DDI_PROP_RESULT_EOF);
3083 
3084                 for (n = 0; p < end; n++) {
3085                         if (*p++ == 0) {        /* NULL from OBP */
3086                                 ph->ph_cur_pos = p;
3087                                 return (n + 1);
3088                         }
3089                 }
3090 
3091                 /*
3092                  * If OBP did not NULL terminate string, which happens for
3093                  * 'true'/'false' boolean values, account for the space
3094                  * to store null termination here.
3095                  */
3096                 ph->ph_cur_pos = p;
3097                 return (n + 1);
3098 
3099         default:
3100 #ifdef DEBUG
3101                 panic("ddi_prop_1275_string: %x impossible", cmd);
3102                 /*NOTREACHED*/
3103 #else
3104                 return (DDI_PROP_RESULT_ERROR);
3105 #endif  /* DEBUG */
3106         }
3107 }
3108 
3109 /*
3110  * OBP 1275 byte operator
3111  *
3112  * Caller must specify the number of bytes to get.  OBP encodes bytes
3113  * as a byte so there is a 1-to-1 translation.
3114  */
3115 int
3116 ddi_prop_1275_bytes(prop_handle_t *ph, uint_t cmd, uchar_t *data,
3117         uint_t nelements)
3118 {
3119         switch (cmd) {
3120         case DDI_PROP_CMD_DECODE:
3121                 /*
3122                  * Check that there is encoded data
3123                  */
3124                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3125                     ph->ph_size < nelements ||
3126                     ((char *)ph->ph_cur_pos > ((char *)ph->ph_data +
3127                     ph->ph_size - nelements)))
3128                         return (DDI_PROP_RESULT_ERROR);
3129 
3130                 /*
3131                  * Copy out the bytes
3132                  */
3133                 bcopy(ph->ph_cur_pos, data, nelements);
3134 
3135                 /*
3136                  * Move the current location
3137                  */
3138                 ph->ph_cur_pos = (char *)ph->ph_cur_pos + nelements;
3139                 return (DDI_PROP_RESULT_OK);
3140 
3141         case DDI_PROP_CMD_ENCODE:
3142                 /*
3143                  * Check that there is room to encode the data
3144                  */
3145                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3146                     ph->ph_size < nelements ||
3147                     ((char *)ph->ph_cur_pos > ((char *)ph->ph_data +
3148                     ph->ph_size - nelements)))
3149                         return (DDI_PROP_RESULT_ERROR);
3150 
3151                 /*
3152                  * Copy in the bytes
3153                  */
3154                 bcopy(data, ph->ph_cur_pos, nelements);
3155 
3156                 /*
3157                  * Move the current location to the start of the next bit of
3158                  * space where we can store encoded data.
3159                  */
3160                 ph->ph_cur_pos = (char *)ph->ph_cur_pos + nelements;
3161                 return (DDI_PROP_RESULT_OK);
3162 
3163         case DDI_PROP_CMD_SKIP:
3164                 /*
3165                  * Check that there is encoded data
3166                  */
3167                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3168                     ph->ph_size < nelements)
3169                         return (DDI_PROP_RESULT_ERROR);
3170 
3171                 if ((char *)ph->ph_cur_pos > ((char *)ph->ph_data +
3172                     ph->ph_size - nelements))
3173                         return (DDI_PROP_RESULT_EOF);
3174 
3175                 /*
3176                  * Move the current location
3177                  */
3178                 ph->ph_cur_pos = (char *)ph->ph_cur_pos + nelements;
3179                 return (DDI_PROP_RESULT_OK);
3180 
3181         case DDI_PROP_CMD_GET_ESIZE:
3182                 /*
3183                  * The size in bytes of the encoded size is the
3184                  * same as the decoded size provided by the caller.
3185                  */
3186                 return (nelements);
3187 
3188         case DDI_PROP_CMD_GET_DSIZE:
3189                 /*
3190                  * Just return the number of bytes specified by the caller.
3191                  */
3192                 return (nelements);
3193 
3194         default:
3195 #ifdef DEBUG
3196                 panic("ddi_prop_1275_bytes: %x impossible", cmd);
3197                 /*NOTREACHED*/
3198 #else
3199                 return (DDI_PROP_RESULT_ERROR);
3200 #endif  /* DEBUG */
3201         }
3202 }
3203 
3204 /*
3205  * Used for properties that come from the OBP, hardware configuration files,
3206  * or that are created by calls to ddi_prop_update(9F).
3207  */
3208 static struct prop_handle_ops prop_1275_ops = {
3209         ddi_prop_1275_int,
3210         ddi_prop_1275_string,
3211         ddi_prop_1275_bytes,
3212         ddi_prop_int64_op
3213 };
3214 
3215 
3216 /*
3217  * Interface to create/modify a managed property on child's behalf...
3218  * Flags interpreted are:
3219  *      DDI_PROP_CANSLEEP:      Allow memory allocation to sleep.
3220  *      DDI_PROP_SYSTEM_DEF:    Manipulate system list rather than driver list.
3221  *
3222  * Use same dev_t when modifying or undefining a property.
3223  * Search for properties with DDI_DEV_T_ANY to match first named
3224  * property on the list.
3225  *
3226  * Properties are stored LIFO and subsequently will match the first
3227  * `matching' instance.
3228  */
3229 
3230 /*
3231  * ddi_prop_add:        Add a software defined property
3232  */
3233 
3234 /*
3235  * define to get a new ddi_prop_t.
3236  * km_flags are KM_SLEEP or KM_NOSLEEP.
3237  */
3238 
3239 #define DDI_NEW_PROP_T(km_flags)        \
3240         (kmem_zalloc(sizeof (ddi_prop_t), km_flags))
3241 
3242 static int
3243 ddi_prop_add(dev_t dev, dev_info_t *dip, int flags,
3244     char *name, caddr_t value, int length)
3245 {
3246         ddi_prop_t      *new_propp, *propp;
3247         ddi_prop_t      **list_head = &(DEVI(dip)->devi_drv_prop_ptr);
3248         int             km_flags = KM_NOSLEEP;
3249         int             name_buf_len;
3250 
3251         /*
3252          * If dev_t is DDI_DEV_T_ANY or name's length is zero return error.
3253          */
3254 
3255         if (dev == DDI_DEV_T_ANY || name == (char *)0 || strlen(name) == 0)
3256                 return (DDI_PROP_INVAL_ARG);
3257 
3258         if (flags & DDI_PROP_CANSLEEP)
3259                 km_flags = KM_SLEEP;
3260 
3261         if (flags & DDI_PROP_SYSTEM_DEF)
3262                 list_head = &(DEVI(dip)->devi_sys_prop_ptr);
3263         else if (flags & DDI_PROP_HW_DEF)
3264                 list_head = &(DEVI(dip)->devi_hw_prop_ptr);
3265 
3266         if ((new_propp = DDI_NEW_PROP_T(km_flags)) == NULL)  {
3267                 cmn_err(CE_CONT, prop_no_mem_msg, name);
3268                 return (DDI_PROP_NO_MEMORY);
3269         }
3270 
3271         /*
3272          * If dev is major number 0, then we need to do a ddi_name_to_major
3273          * to get the real major number for the device.  This needs to be
3274          * done because some drivers need to call ddi_prop_create in their
3275          * attach routines but they don't have a dev.  By creating the dev
3276          * ourself if the major number is 0, drivers will not have to know what
3277          * their major number.  They can just create a dev with major number
3278          * 0 and pass it in.  For device 0, we will be doing a little extra
3279          * work by recreating the same dev that we already have, but its the
3280          * price you pay :-).
3281          *
3282          * This fixes bug #1098060.
3283          */
3284         if (getmajor(dev) == DDI_MAJOR_T_UNKNOWN) {
3285                 new_propp->prop_dev =
3286                     makedevice(ddi_name_to_major(DEVI(dip)->devi_binding_name),
3287                     getminor(dev));
3288         } else
3289                 new_propp->prop_dev = dev;
3290 
3291         /*
3292          * Allocate space for property name and copy it in...
3293          */
3294 
3295         name_buf_len = strlen(name) + 1;
3296         new_propp->prop_name = kmem_alloc(name_buf_len, km_flags);
3297         if (new_propp->prop_name == 0)       {
3298                 kmem_free(new_propp, sizeof (ddi_prop_t));
3299                 cmn_err(CE_CONT, prop_no_mem_msg, name);
3300                 return (DDI_PROP_NO_MEMORY);
3301         }
3302         bcopy(name, new_propp->prop_name, name_buf_len);
3303 
3304         /*
3305          * Set the property type
3306          */
3307         new_propp->prop_flags = flags & DDI_PROP_TYPE_MASK;
3308 
3309         /*
3310          * Set length and value ONLY if not an explicit property undefine:
3311          * NOTE: value and length are zero for explicit undefines.
3312          */
3313 
3314         if (flags & DDI_PROP_UNDEF_IT) {
3315                 new_propp->prop_flags |= DDI_PROP_UNDEF_IT;
3316         } else {
3317                 if ((new_propp->prop_len = length) != 0) {
3318                         new_propp->prop_val = kmem_alloc(length, km_flags);
3319                         if (new_propp->prop_val == 0)  {
3320                                 kmem_free(new_propp->prop_name, name_buf_len);
3321                                 kmem_free(new_propp, sizeof (ddi_prop_t));
3322                                 cmn_err(CE_CONT, prop_no_mem_msg, name);
3323                                 return (DDI_PROP_NO_MEMORY);
3324                         }
3325                         bcopy(value, new_propp->prop_val, length);
3326                 }
3327         }
3328 
3329         /*
3330          * Link property into beginning of list. (Properties are LIFO order.)
3331          */
3332 
3333         mutex_enter(&(DEVI(dip)->devi_lock));
3334         propp = *list_head;
3335         new_propp->prop_next = propp;
3336         *list_head = new_propp;
3337         mutex_exit(&(DEVI(dip)->devi_lock));
3338         return (DDI_PROP_SUCCESS);
3339 }
3340 
3341 
3342 /*
3343  * ddi_prop_change:     Modify a software managed property value
3344  *
3345  *                      Set new length and value if found.
3346  *                      returns DDI_PROP_INVAL_ARG if dev is DDI_DEV_T_ANY or
3347  *                      input name is the NULL string.
3348  *                      returns DDI_PROP_NO_MEMORY if unable to allocate memory
3349  *
3350  *                      Note: an undef can be modified to be a define,
3351  *                      (you can't go the other way.)
3352  */
3353 
3354 static int
3355 ddi_prop_change(dev_t dev, dev_info_t *dip, int flags,
3356     char *name, caddr_t value, int length)
3357 {
3358         ddi_prop_t      *propp;
3359         ddi_prop_t      **ppropp;
3360         caddr_t         p = NULL;
3361 
3362         if ((dev == DDI_DEV_T_ANY) || (name == NULL) || (strlen(name) == 0))
3363                 return (DDI_PROP_INVAL_ARG);
3364 
3365         /*
3366          * Preallocate buffer, even if we don't need it...
3367          */
3368         if (length != 0)  {
3369                 p = kmem_alloc(length, (flags & DDI_PROP_CANSLEEP) ?
3370                     KM_SLEEP : KM_NOSLEEP);
3371                 if (p == NULL)  {
3372                         cmn_err(CE_CONT, prop_no_mem_msg, name);
3373                         return (DDI_PROP_NO_MEMORY);
3374                 }
3375         }
3376 
3377         /*
3378          * If the dev_t value contains DDI_MAJOR_T_UNKNOWN for the major
3379          * number, a real dev_t value should be created based upon the dip's
3380          * binding driver.  See ddi_prop_add...
3381          */
3382         if (getmajor(dev) == DDI_MAJOR_T_UNKNOWN)
3383                 dev = makedevice(
3384                     ddi_name_to_major(DEVI(dip)->devi_binding_name),
3385                     getminor(dev));
3386 
3387         /*
3388          * Check to see if the property exists.  If so we modify it.
3389          * Else we create it by calling ddi_prop_add().
3390          */
3391         mutex_enter(&(DEVI(dip)->devi_lock));
3392         ppropp = &DEVI(dip)->devi_drv_prop_ptr;
3393         if (flags & DDI_PROP_SYSTEM_DEF)
3394                 ppropp = &DEVI(dip)->devi_sys_prop_ptr;
3395         else if (flags & DDI_PROP_HW_DEF)
3396                 ppropp = &DEVI(dip)->devi_hw_prop_ptr;
3397 
3398         if ((propp = i_ddi_prop_search(dev, name, flags, ppropp)) != NULL) {
3399                 /*
3400                  * Need to reallocate buffer?  If so, do it
3401                  * carefully (reuse same space if new prop
3402                  * is same size and non-NULL sized).
3403                  */
3404                 if (length != 0)
3405                         bcopy(value, p, length);
3406 
3407                 if (propp->prop_len != 0)
3408                         kmem_free(propp->prop_val, propp->prop_len);
3409 
3410                 propp->prop_len = length;
3411                 propp->prop_val = p;
3412                 propp->prop_flags &= ~DDI_PROP_UNDEF_IT;
3413                 mutex_exit(&(DEVI(dip)->devi_lock));
3414                 return (DDI_PROP_SUCCESS);
3415         }
3416 
3417         mutex_exit(&(DEVI(dip)->devi_lock));
3418         if (length != 0)
3419                 kmem_free(p, length);
3420 
3421         return (ddi_prop_add(dev, dip, flags, name, value, length));
3422 }
3423 
3424 /*
3425  * Common update routine used to update and encode a property.  Creates
3426  * a property handle, calls the property encode routine, figures out if
3427  * the property already exists and updates if it does.  Otherwise it
3428  * creates if it does not exist.
3429  */
3430 int
3431 ddi_prop_update_common(dev_t match_dev, dev_info_t *dip, int flags,
3432     char *name, void *data, uint_t nelements,
3433     int (*prop_create)(prop_handle_t *, void *data, uint_t nelements))
3434 {
3435         prop_handle_t   ph;
3436         int             rval;
3437         uint_t          ourflags;
3438 
3439         /*
3440          * If dev_t is DDI_DEV_T_ANY or name's length is zero,
3441          * return error.
3442          */
3443         if (match_dev == DDI_DEV_T_ANY || name == NULL || strlen(name) == 0)
3444                 return (DDI_PROP_INVAL_ARG);
3445 
3446         /*
3447          * Create the handle
3448          */
3449         ph.ph_data = NULL;
3450         ph.ph_cur_pos = NULL;
3451         ph.ph_save_pos = NULL;
3452         ph.ph_size = 0;
3453         ph.ph_ops = &prop_1275_ops;
3454 
3455         /*
3456          * ourflags:
3457          * For compatibility with the old interfaces.  The old interfaces
3458          * didn't sleep by default and slept when the flag was set.  These
3459          * interfaces to the opposite.  So the old interfaces now set the
3460          * DDI_PROP_DONTSLEEP flag by default which tells us not to sleep.
3461          *
3462          * ph.ph_flags:
3463          * Blocked data or unblocked data allocation
3464          * for ph.ph_data in ddi_prop_encode_alloc()
3465          */
3466         if (flags & DDI_PROP_DONTSLEEP) {
3467                 ourflags = flags;
3468                 ph.ph_flags = DDI_PROP_DONTSLEEP;
3469         } else {
3470                 ourflags = flags | DDI_PROP_CANSLEEP;
3471                 ph.ph_flags = DDI_PROP_CANSLEEP;
3472         }
3473 
3474         /*
3475          * Encode the data and store it in the property handle by
3476          * calling the prop_encode routine.
3477          */
3478         if ((rval = (*prop_create)(&ph, data, nelements)) !=
3479             DDI_PROP_SUCCESS) {
3480                 if (rval == DDI_PROP_NO_MEMORY)
3481                         cmn_err(CE_CONT, prop_no_mem_msg, name);
3482                 if (ph.ph_size != 0)
3483                         kmem_free(ph.ph_data, ph.ph_size);
3484                 return (rval);
3485         }
3486 
3487         /*
3488          * The old interfaces use a stacking approach to creating
3489          * properties.  If we are being called from the old interfaces,
3490          * the DDI_PROP_STACK_CREATE flag will be set, so we just do a
3491          * create without checking.
3492          */
3493         if (flags & DDI_PROP_STACK_CREATE) {
3494                 rval = ddi_prop_add(match_dev, dip,
3495                     ourflags, name, ph.ph_data, ph.ph_size);
3496         } else {
3497                 rval = ddi_prop_change(match_dev, dip,
3498                     ourflags, name, ph.ph_data, ph.ph_size);
3499         }
3500 
3501         /*
3502          * Free the encoded data allocated in the prop_encode routine.
3503          */
3504         if (ph.ph_size != 0)
3505                 kmem_free(ph.ph_data, ph.ph_size);
3506 
3507         return (rval);
3508 }
3509 
3510 
3511 /*
3512  * ddi_prop_create:     Define a managed property:
3513  *                      See above for details.
3514  */
3515 
3516 int
3517 ddi_prop_create(dev_t dev, dev_info_t *dip, int flag,
3518     char *name, caddr_t value, int length)
3519 {
3520         if (!(flag & DDI_PROP_CANSLEEP)) {
3521                 flag |= DDI_PROP_DONTSLEEP;
3522 #ifdef DDI_PROP_DEBUG
3523                 if (length != 0)
3524                         cmn_err(CE_NOTE, "!ddi_prop_create: interface obsolete,"
3525                             "use ddi_prop_update (prop = %s, node = %s%d)",
3526                             name, ddi_driver_name(dip), ddi_get_instance(dip));
3527 #endif /* DDI_PROP_DEBUG */
3528         }
3529         flag &= ~DDI_PROP_SYSTEM_DEF;
3530         flag |= DDI_PROP_STACK_CREATE | DDI_PROP_TYPE_ANY;
3531         return (ddi_prop_update_common(dev, dip, flag, name,
3532             value, length, ddi_prop_fm_encode_bytes));
3533 }
3534 
3535 int
3536 e_ddi_prop_create(dev_t dev, dev_info_t *dip, int flag,
3537     char *name, caddr_t value, int length)
3538 {
3539         if (!(flag & DDI_PROP_CANSLEEP))
3540                 flag |= DDI_PROP_DONTSLEEP;
3541         flag |= DDI_PROP_SYSTEM_DEF | DDI_PROP_STACK_CREATE | DDI_PROP_TYPE_ANY;
3542         return (ddi_prop_update_common(dev, dip, flag,
3543             name, value, length, ddi_prop_fm_encode_bytes));
3544 }
3545 
3546 int
3547 ddi_prop_modify(dev_t dev, dev_info_t *dip, int flag,
3548     char *name, caddr_t value, int length)
3549 {
3550         ASSERT((flag & DDI_PROP_TYPE_MASK) == 0);
3551 
3552         /*
3553          * If dev_t is DDI_DEV_T_ANY or name's length is zero,
3554          * return error.
3555          */
3556         if (dev == DDI_DEV_T_ANY || name == NULL || strlen(name) == 0)
3557                 return (DDI_PROP_INVAL_ARG);
3558 
3559         if (!(flag & DDI_PROP_CANSLEEP))
3560                 flag |= DDI_PROP_DONTSLEEP;
3561         flag &= ~DDI_PROP_SYSTEM_DEF;
3562         if (ddi_prop_exists(dev, dip, (flag | DDI_PROP_NOTPROM), name) == 0)
3563                 return (DDI_PROP_NOT_FOUND);
3564 
3565         return (ddi_prop_update_common(dev, dip,
3566             (flag | DDI_PROP_TYPE_BYTE), name,
3567             value, length, ddi_prop_fm_encode_bytes));
3568 }
3569 
3570 int
3571 e_ddi_prop_modify(dev_t dev, dev_info_t *dip, int flag,
3572     char *name, caddr_t value, int length)
3573 {
3574         ASSERT((flag & DDI_PROP_TYPE_MASK) == 0);
3575 
3576         /*
3577          * If dev_t is DDI_DEV_T_ANY or name's length is zero,
3578          * return error.
3579          */
3580         if (dev == DDI_DEV_T_ANY || name == NULL || strlen(name) == 0)
3581                 return (DDI_PROP_INVAL_ARG);
3582 
3583         if (ddi_prop_exists(dev, dip, (flag | DDI_PROP_SYSTEM_DEF), name) == 0)
3584                 return (DDI_PROP_NOT_FOUND);
3585 
3586         if (!(flag & DDI_PROP_CANSLEEP))
3587                 flag |= DDI_PROP_DONTSLEEP;
3588         return (ddi_prop_update_common(dev, dip,
3589             (flag | DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_BYTE),
3590             name, value, length, ddi_prop_fm_encode_bytes));
3591 }
3592 
3593 
3594 /*
3595  * Common lookup routine used to lookup and decode a property.
3596  * Creates a property handle, searches for the raw encoded data,
3597  * fills in the handle, and calls the property decode functions
3598  * passed in.
3599  *
3600  * This routine is not static because ddi_bus_prop_op() which lives in
3601  * ddi_impl.c calls it.  No driver should be calling this routine.
3602  */
3603 int
3604 ddi_prop_lookup_common(dev_t match_dev, dev_info_t *dip,
3605     uint_t flags, char *name, void *data, uint_t *nelements,
3606     int (*prop_decoder)(prop_handle_t *, void *data, uint_t *nelements))
3607 {
3608         int             rval;
3609         uint_t          ourflags;
3610         prop_handle_t   ph;
3611 
3612         if ((match_dev == DDI_DEV_T_NONE) ||
3613             (name == NULL) || (strlen(name) == 0))
3614                 return (DDI_PROP_INVAL_ARG);
3615 
3616         ourflags = (flags & DDI_PROP_DONTSLEEP) ? flags :
3617             flags | DDI_PROP_CANSLEEP;
3618 
3619         /*
3620          * Get the encoded data
3621          */
3622         bzero(&ph, sizeof (prop_handle_t));
3623 
3624         if ((flags & DDI_UNBND_DLPI2) || (flags & DDI_PROP_ROOTNEX_GLOBAL)) {
3625                 /*
3626                  * For rootnex and unbound dlpi style-2 devices, index into
3627                  * the devnames' array and search the global
3628                  * property list.
3629                  */
3630                 ourflags &= ~DDI_UNBND_DLPI2;
3631                 rval = i_ddi_prop_search_global(match_dev,
3632                     ourflags, name, &ph.ph_data, &ph.ph_size);
3633         } else {
3634                 rval = ddi_prop_search_common(match_dev, dip,
3635                     PROP_LEN_AND_VAL_ALLOC, ourflags, name,
3636                     &ph.ph_data, &ph.ph_size);
3637 
3638         }
3639 
3640         if (rval != DDI_PROP_SUCCESS && rval != DDI_PROP_FOUND_1275) {
3641                 ASSERT(ph.ph_data == NULL);
3642                 ASSERT(ph.ph_size == 0);
3643                 return (rval);
3644         }
3645 
3646         /*
3647          * If the encoded data came from a OBP or software
3648          * use the 1275 OBP decode/encode routines.
3649          */
3650         ph.ph_cur_pos = ph.ph_data;
3651         ph.ph_save_pos = ph.ph_data;
3652         ph.ph_ops = &prop_1275_ops;
3653         ph.ph_flags = (rval == DDI_PROP_FOUND_1275) ? PH_FROM_PROM : 0;
3654 
3655         rval = (*prop_decoder)(&ph, data, nelements);
3656 
3657         /*
3658          * Free the encoded data
3659          */
3660         if (ph.ph_size != 0)
3661                 kmem_free(ph.ph_data, ph.ph_size);
3662 
3663         return (rval);
3664 }
3665 
3666 /*
3667  * Lookup and return an array of composite properties.  The driver must
3668  * provide the decode routine.
3669  */
3670 int
3671 ddi_prop_lookup(dev_t match_dev, dev_info_t *dip,
3672     uint_t flags, char *name, void *data, uint_t *nelements,
3673     int (*prop_decoder)(prop_handle_t *, void *data, uint_t *nelements))
3674 {
3675         return (ddi_prop_lookup_common(match_dev, dip,
3676             (flags | DDI_PROP_TYPE_COMPOSITE), name,
3677             data, nelements, prop_decoder));
3678 }
3679 
3680 /*
3681  * Return 1 if a property exists (no type checking done).
3682  * Return 0 if it does not exist.
3683  */
3684 int
3685 ddi_prop_exists(dev_t match_dev, dev_info_t *dip, uint_t flags, char *name)
3686 {
3687         int     i;
3688         uint_t  x = 0;
3689 
3690         i = ddi_prop_search_common(match_dev, dip, PROP_EXISTS,
3691             flags | DDI_PROP_TYPE_MASK, name, NULL, &x);
3692         return (i == DDI_PROP_SUCCESS || i == DDI_PROP_FOUND_1275);
3693 }
3694 
3695 
3696 /*
3697  * Update an array of composite properties.  The driver must
3698  * provide the encode routine.
3699  */
3700 int
3701 ddi_prop_update(dev_t match_dev, dev_info_t *dip,
3702     char *name, void *data, uint_t nelements,
3703     int (*prop_create)(prop_handle_t *, void *data, uint_t nelements))
3704 {
3705         return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_COMPOSITE,
3706             name, data, nelements, prop_create));
3707 }
3708 
3709 /*
3710  * Get a single integer or boolean property and return it.
3711  * If the property does not exists, or cannot be decoded,
3712  * then return the defvalue passed in.
3713  *
3714  * This routine always succeeds.
3715  */
3716 int
3717 ddi_prop_get_int(dev_t match_dev, dev_info_t *dip, uint_t flags,
3718     char *name, int defvalue)
3719 {
3720         int     data;
3721         uint_t  nelements;
3722         int     rval;
3723 
3724         if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3725             LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) {
3726 #ifdef DEBUG
3727                 if (dip != NULL) {
3728                         cmn_err(CE_WARN, "ddi_prop_get_int: invalid flag"
3729                             " 0x%x (prop = %s, node = %s%d)", flags,
3730                             name, ddi_driver_name(dip), ddi_get_instance(dip));
3731                 }
3732 #endif /* DEBUG */
3733                 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3734                     LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
3735         }
3736 
3737         if ((rval = ddi_prop_lookup_common(match_dev, dip,
3738             (flags | DDI_PROP_TYPE_INT), name, &data, &nelements,
3739             ddi_prop_fm_decode_int)) != DDI_PROP_SUCCESS) {
3740                 if (rval == DDI_PROP_END_OF_DATA)
3741                         data = 1;
3742                 else
3743                         data = defvalue;
3744         }
3745         return (data);
3746 }
3747 
3748 /*
3749  * Get a single 64 bit integer or boolean property and return it.
3750  * If the property does not exists, or cannot be decoded,
3751  * then return the defvalue passed in.
3752  *
3753  * This routine always succeeds.
3754  */
3755 int64_t
3756 ddi_prop_get_int64(dev_t match_dev, dev_info_t *dip, uint_t flags,
3757     char *name, int64_t defvalue)
3758 {
3759         int64_t data;
3760         uint_t  nelements;
3761         int     rval;
3762 
3763         if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3764             LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) {
3765 #ifdef DEBUG
3766                 if (dip != NULL) {
3767                         cmn_err(CE_WARN, "ddi_prop_get_int64: invalid flag"
3768                             " 0x%x (prop = %s, node = %s%d)", flags,
3769                             name, ddi_driver_name(dip), ddi_get_instance(dip));
3770                 }
3771 #endif /* DEBUG */
3772                 return (DDI_PROP_INVAL_ARG);
3773         }
3774 
3775         if ((rval = ddi_prop_lookup_common(match_dev, dip,
3776             (flags | DDI_PROP_TYPE_INT64 | DDI_PROP_NOTPROM),
3777             name, &data, &nelements, ddi_prop_fm_decode_int64))
3778             != DDI_PROP_SUCCESS) {
3779                 if (rval == DDI_PROP_END_OF_DATA)
3780                         data = 1;
3781                 else
3782                         data = defvalue;
3783         }
3784         return (data);
3785 }
3786 
3787 /*
3788  * Get an array of integer property
3789  */
3790 int
3791 ddi_prop_lookup_int_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
3792     char *name, int **data, uint_t *nelements)
3793 {
3794         if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3795             LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) {
3796 #ifdef DEBUG
3797                 if (dip != NULL) {
3798                         cmn_err(CE_WARN, "ddi_prop_lookup_int_array: "
3799                             "invalid flag 0x%x (prop = %s, node = %s%d)",
3800                             flags, name, ddi_driver_name(dip),
3801                             ddi_get_instance(dip));
3802                 }
3803 #endif /* DEBUG */
3804                 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3805                     LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
3806         }
3807 
3808         return (ddi_prop_lookup_common(match_dev, dip,
3809             (flags | DDI_PROP_TYPE_INT), name, data,
3810             nelements, ddi_prop_fm_decode_ints));
3811 }
3812 
3813 /*
3814  * Get an array of 64 bit integer properties
3815  */
3816 int
3817 ddi_prop_lookup_int64_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
3818     char *name, int64_t **data, uint_t *nelements)
3819 {
3820         if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3821             LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) {
3822 #ifdef DEBUG
3823                 if (dip != NULL) {
3824                         cmn_err(CE_WARN, "ddi_prop_lookup_int64_array: "
3825                             "invalid flag 0x%x (prop = %s, node = %s%d)",
3826                             flags, name, ddi_driver_name(dip),
3827                             ddi_get_instance(dip));
3828                 }
3829 #endif /* DEBUG */
3830                 return (DDI_PROP_INVAL_ARG);
3831         }
3832 
3833         return (ddi_prop_lookup_common(match_dev, dip,
3834             (flags | DDI_PROP_TYPE_INT64 | DDI_PROP_NOTPROM),
3835             name, data, nelements, ddi_prop_fm_decode_int64_array));
3836 }
3837 
3838 /*
3839  * Update a single integer property.  If the property exists on the drivers
3840  * property list it updates, else it creates it.
3841  */
3842 int
3843 ddi_prop_update_int(dev_t match_dev, dev_info_t *dip,
3844     char *name, int data)
3845 {
3846         return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT,
3847             name, &data, 1, ddi_prop_fm_encode_ints));
3848 }
3849 
3850 /*
3851  * Update a single 64 bit integer property.
3852  * Update the driver property list if it exists, else create it.
3853  */
3854 int
3855 ddi_prop_update_int64(dev_t match_dev, dev_info_t *dip,
3856     char *name, int64_t data)
3857 {
3858         return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT64,
3859             name, &data, 1, ddi_prop_fm_encode_int64));
3860 }
3861 
3862 int
3863 e_ddi_prop_update_int(dev_t match_dev, dev_info_t *dip,
3864     char *name, int data)
3865 {
3866         return (ddi_prop_update_common(match_dev, dip,
3867             DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT,
3868             name, &data, 1, ddi_prop_fm_encode_ints));
3869 }
3870 
3871 int
3872 e_ddi_prop_update_int64(dev_t match_dev, dev_info_t *dip,
3873     char *name, int64_t data)
3874 {
3875         return (ddi_prop_update_common(match_dev, dip,
3876             DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT64,
3877             name, &data, 1, ddi_prop_fm_encode_int64));
3878 }
3879 
3880 /*
3881  * Update an array of integer property.  If the property exists on the drivers
3882  * property list it updates, else it creates it.
3883  */
3884 int
3885 ddi_prop_update_int_array(dev_t match_dev, dev_info_t *dip,
3886     char *name, int *data, uint_t nelements)
3887 {
3888         return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT,
3889             name, data, nelements, ddi_prop_fm_encode_ints));
3890 }
3891 
3892 /*
3893  * Update an array of 64 bit integer properties.
3894  * Update the driver property list if it exists, else create it.
3895  */
3896 int
3897 ddi_prop_update_int64_array(dev_t match_dev, dev_info_t *dip,
3898     char *name, int64_t *data, uint_t nelements)
3899 {
3900         return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT64,
3901             name, data, nelements, ddi_prop_fm_encode_int64));
3902 }
3903 
3904 int
3905 e_ddi_prop_update_int64_array(dev_t match_dev, dev_info_t *dip,
3906     char *name, int64_t *data, uint_t nelements)
3907 {
3908         return (ddi_prop_update_common(match_dev, dip,
3909             DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT64,
3910             name, data, nelements, ddi_prop_fm_encode_int64));
3911 }
3912 
3913 int
3914 e_ddi_prop_update_int_array(dev_t match_dev, dev_info_t *dip,
3915     char *name, int *data, uint_t nelements)
3916 {
3917         return (ddi_prop_update_common(match_dev, dip,
3918             DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT,
3919             name, data, nelements, ddi_prop_fm_encode_ints));
3920 }
3921 
3922 /*
3923  * Get a single string property.
3924  */
3925 int
3926 ddi_prop_lookup_string(dev_t match_dev, dev_info_t *dip, uint_t flags,
3927     char *name, char **data)
3928 {
3929         uint_t x;
3930 
3931         if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3932             LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) {
3933 #ifdef DEBUG
3934                 if (dip != NULL) {
3935                         cmn_err(CE_WARN, "%s: invalid flag 0x%x "
3936                             "(prop = %s, node = %s%d); invalid bits ignored",
3937                             "ddi_prop_lookup_string", flags, name,
3938                             ddi_driver_name(dip), ddi_get_instance(dip));
3939                 }
3940 #endif /* DEBUG */
3941                 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3942                     LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
3943         }
3944 
3945         return (ddi_prop_lookup_common(match_dev, dip,
3946             (flags | DDI_PROP_TYPE_STRING), name, data,
3947             &x, ddi_prop_fm_decode_string));
3948 }
3949 
3950 /*
3951  * Get an array of strings property.
3952  */
3953 int
3954 ddi_prop_lookup_string_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
3955     char *name, char ***data, uint_t *nelements)
3956 {
3957         if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3958             LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) {
3959 #ifdef DEBUG
3960                 if (dip != NULL) {
3961                         cmn_err(CE_WARN, "ddi_prop_lookup_string_array: "
3962                             "invalid flag 0x%x (prop = %s, node = %s%d)",
3963                             flags, name, ddi_driver_name(dip),
3964                             ddi_get_instance(dip));
3965                 }
3966 #endif /* DEBUG */
3967                 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3968                     LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
3969         }
3970 
3971         return (ddi_prop_lookup_common(match_dev, dip,
3972             (flags | DDI_PROP_TYPE_STRING), name, data,
3973             nelements, ddi_prop_fm_decode_strings));
3974 }
3975 
3976 /*
3977  * Update a single string property.
3978  */
3979 int
3980 ddi_prop_update_string(dev_t match_dev, dev_info_t *dip,
3981     char *name, char *data)
3982 {
3983         return (ddi_prop_update_common(match_dev, dip,
3984             DDI_PROP_TYPE_STRING, name, &data, 1,
3985             ddi_prop_fm_encode_string));
3986 }
3987 
3988 int
3989 e_ddi_prop_update_string(dev_t match_dev, dev_info_t *dip,
3990     char *name, char *data)
3991 {
3992         return (ddi_prop_update_common(match_dev, dip,
3993             DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_STRING,
3994             name, &data, 1, ddi_prop_fm_encode_string));
3995 }
3996 
3997 
3998 /*
3999  * Update an array of strings property.
4000  */
4001 int
4002 ddi_prop_update_string_array(dev_t match_dev, dev_info_t *dip,
4003     char *name, char **data, uint_t nelements)
4004 {
4005         return (ddi_prop_update_common(match_dev, dip,
4006             DDI_PROP_TYPE_STRING, name, data, nelements,
4007             ddi_prop_fm_encode_strings));
4008 }
4009 
4010 int
4011 e_ddi_prop_update_string_array(dev_t match_dev, dev_info_t *dip,
4012     char *name, char **data, uint_t nelements)
4013 {
4014         return (ddi_prop_update_common(match_dev, dip,
4015             DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_STRING,
4016             name, data, nelements,
4017             ddi_prop_fm_encode_strings));
4018 }
4019 
4020 
4021 /*
4022  * Get an array of bytes property.
4023  */
4024 int
4025 ddi_prop_lookup_byte_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
4026     char *name, uchar_t **data, uint_t *nelements)
4027 {
4028         if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4029             LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) {
4030 #ifdef DEBUG
4031                 if (dip != NULL) {
4032                         cmn_err(CE_WARN, "ddi_prop_lookup_byte_array: "
4033                             " invalid flag 0x%x (prop = %s, node = %s%d)",
4034                             flags, name, ddi_driver_name(dip),
4035                             ddi_get_instance(dip));
4036                 }
4037 #endif /* DEBUG */
4038                 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4039                     LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
4040         }
4041 
4042         return (ddi_prop_lookup_common(match_dev, dip,
4043             (flags | DDI_PROP_TYPE_BYTE), name, data,
4044             nelements, ddi_prop_fm_decode_bytes));
4045 }
4046 
4047 /*
4048  * Update an array of bytes property.
4049  */
4050 int
4051 ddi_prop_update_byte_array(dev_t match_dev, dev_info_t *dip,
4052     char *name, uchar_t *data, uint_t nelements)
4053 {
4054         if (nelements == 0)
4055                 return (DDI_PROP_INVAL_ARG);
4056 
4057         return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_BYTE,
4058             name, data, nelements, ddi_prop_fm_encode_bytes));
4059 }
4060 
4061 
4062 int
4063 e_ddi_prop_update_byte_array(dev_t match_dev, dev_info_t *dip,
4064     char *name, uchar_t *data, uint_t nelements)
4065 {
4066         if (nelements == 0)
4067                 return (DDI_PROP_INVAL_ARG);
4068 
4069         return (ddi_prop_update_common(match_dev, dip,
4070             DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_BYTE,
4071             name, data, nelements, ddi_prop_fm_encode_bytes));
4072 }
4073 
4074 
4075 /*
4076  * ddi_prop_remove_common:      Undefine a managed property:
4077  *                      Input dev_t must match dev_t when defined.
4078  *                      Returns DDI_PROP_NOT_FOUND, possibly.
4079  *                      DDI_PROP_INVAL_ARG is also possible if dev is
4080  *                      DDI_DEV_T_ANY or incoming name is the NULL string.
4081  */
4082 int
4083 ddi_prop_remove_common(dev_t dev, dev_info_t *dip, char *name, int flag)
4084 {
4085         ddi_prop_t      **list_head = &(DEVI(dip)->devi_drv_prop_ptr);
4086         ddi_prop_t      *propp;
4087         ddi_prop_t      *lastpropp = NULL;
4088 
4089         if ((dev == DDI_DEV_T_ANY) || (name == (char *)0) ||
4090             (strlen(name) == 0)) {
4091                 return (DDI_PROP_INVAL_ARG);
4092         }
4093 
4094         if (flag & DDI_PROP_SYSTEM_DEF)
4095                 list_head = &(DEVI(dip)->devi_sys_prop_ptr);
4096         else if (flag & DDI_PROP_HW_DEF)
4097                 list_head = &(DEVI(dip)->devi_hw_prop_ptr);
4098 
4099         mutex_enter(&(DEVI(dip)->devi_lock));
4100 
4101         for (propp = *list_head; propp != NULL; propp = propp->prop_next)  {
4102                 if (DDI_STRSAME(propp->prop_name, name) &&
4103                     (dev == propp->prop_dev)) {
4104                         /*
4105                          * Unlink this propp allowing for it to
4106                          * be first in the list:
4107                          */
4108 
4109                         if (lastpropp == NULL)
4110                                 *list_head = propp->prop_next;
4111                         else
4112                                 lastpropp->prop_next = propp->prop_next;
4113 
4114                         mutex_exit(&(DEVI(dip)->devi_lock));
4115 
4116                         /*
4117                          * Free memory and return...
4118                          */
4119                         kmem_free(propp->prop_name,
4120                             strlen(propp->prop_name) + 1);
4121                         if (propp->prop_len != 0)
4122                                 kmem_free(propp->prop_val, propp->prop_len);
4123                         kmem_free(propp, sizeof (ddi_prop_t));
4124                         return (DDI_PROP_SUCCESS);
4125                 }
4126                 lastpropp = propp;
4127         }
4128         mutex_exit(&(DEVI(dip)->devi_lock));
4129         return (DDI_PROP_NOT_FOUND);
4130 }
4131 
4132 int
4133 ddi_prop_remove(dev_t dev, dev_info_t *dip, char *name)
4134 {
4135         return (ddi_prop_remove_common(dev, dip, name, 0));
4136 }
4137 
4138 int
4139 e_ddi_prop_remove(dev_t dev, dev_info_t *dip, char *name)
4140 {
4141         return (ddi_prop_remove_common(dev, dip, name, DDI_PROP_SYSTEM_DEF));
4142 }
4143 
4144 /*
4145  * e_ddi_prop_list_delete: remove a list of properties
4146  *      Note that the caller needs to provide the required protection
4147  *      (eg. devi_lock if these properties are still attached to a devi)
4148  */
4149 void
4150 e_ddi_prop_list_delete(ddi_prop_t *props)
4151 {
4152         i_ddi_prop_list_delete(props);
4153 }
4154 
4155 /*
4156  * ddi_prop_remove_all_common:
4157  *      Used before unloading a driver to remove
4158  *      all properties. (undefines all dev_t's props.)
4159  *      Also removes `explicitly undefined' props.
4160  *      No errors possible.
4161  */
4162 void
4163 ddi_prop_remove_all_common(dev_info_t *dip, int flag)
4164 {
4165         ddi_prop_t      **list_head;
4166 
4167         mutex_enter(&(DEVI(dip)->devi_lock));
4168         if (flag & DDI_PROP_SYSTEM_DEF) {
4169                 list_head = &(DEVI(dip)->devi_sys_prop_ptr);
4170         } else if (flag & DDI_PROP_HW_DEF) {
4171                 list_head = &(DEVI(dip)->devi_hw_prop_ptr);
4172         } else {
4173                 list_head = &(DEVI(dip)->devi_drv_prop_ptr);
4174         }
4175         i_ddi_prop_list_delete(*list_head);
4176         *list_head = NULL;
4177         mutex_exit(&(DEVI(dip)->devi_lock));
4178 }
4179 
4180 
4181 /*
4182  * ddi_prop_remove_all:         Remove all driver prop definitions.
4183  */
4184 
4185 void
4186 ddi_prop_remove_all(dev_info_t *dip)
4187 {
4188         i_ddi_prop_dyn_driver_set(dip, NULL);
4189         ddi_prop_remove_all_common(dip, 0);
4190 }
4191 
4192 /*
4193  * e_ddi_prop_remove_all:       Remove all system prop definitions.
4194  */
4195 
4196 void
4197 e_ddi_prop_remove_all(dev_info_t *dip)
4198 {
4199         ddi_prop_remove_all_common(dip, (int)DDI_PROP_SYSTEM_DEF);
4200 }
4201 
4202 
4203 /*
4204  * ddi_prop_undefine:   Explicitly undefine a property.  Property
4205  *                      searches which match this property return
4206  *                      the error code DDI_PROP_UNDEFINED.
4207  *
4208  *                      Use ddi_prop_remove to negate effect of
4209  *                      ddi_prop_undefine
4210  *
4211  *                      See above for error returns.
4212  */
4213 
4214 int
4215 ddi_prop_undefine(dev_t dev, dev_info_t *dip, int flag, char *name)
4216 {
4217         if (!(flag & DDI_PROP_CANSLEEP))
4218                 flag |= DDI_PROP_DONTSLEEP;
4219         flag |= DDI_PROP_STACK_CREATE | DDI_PROP_UNDEF_IT | DDI_PROP_TYPE_ANY;
4220         return (ddi_prop_update_common(dev, dip, flag,
4221             name, NULL, 0, ddi_prop_fm_encode_bytes));
4222 }
4223 
4224 int
4225 e_ddi_prop_undefine(dev_t dev, dev_info_t *dip, int flag, char *name)
4226 {
4227         if (!(flag & DDI_PROP_CANSLEEP))
4228                 flag |= DDI_PROP_DONTSLEEP;
4229         flag |= DDI_PROP_SYSTEM_DEF | DDI_PROP_STACK_CREATE |
4230             DDI_PROP_UNDEF_IT | DDI_PROP_TYPE_ANY;
4231         return (ddi_prop_update_common(dev, dip, flag,
4232             name, NULL, 0, ddi_prop_fm_encode_bytes));
4233 }
4234 
4235 /*
4236  * Support for gathering dynamic properties in devinfo snapshot.
4237  */
4238 void
4239 i_ddi_prop_dyn_driver_set(dev_info_t *dip, i_ddi_prop_dyn_t *dp)
4240 {
4241         DEVI(dip)->devi_prop_dyn_driver = dp;
4242 }
4243 
4244 i_ddi_prop_dyn_t *
4245 i_ddi_prop_dyn_driver_get(dev_info_t *dip)
4246 {
4247         return (DEVI(dip)->devi_prop_dyn_driver);
4248 }
4249 
4250 void
4251 i_ddi_prop_dyn_parent_set(dev_info_t *dip, i_ddi_prop_dyn_t *dp)
4252 {
4253         DEVI(dip)->devi_prop_dyn_parent = dp;
4254 }
4255 
4256 i_ddi_prop_dyn_t *
4257 i_ddi_prop_dyn_parent_get(dev_info_t *dip)
4258 {
4259         return (DEVI(dip)->devi_prop_dyn_parent);
4260 }
4261 
4262 void
4263 i_ddi_prop_dyn_cache_invalidate(dev_info_t *dip, i_ddi_prop_dyn_t *dp)
4264 {
4265         /* for now we invalidate the entire cached snapshot */
4266         if (dip && dp)
4267                 i_ddi_di_cache_invalidate();
4268 }
4269 
4270 /* ARGSUSED */
4271 void
4272 ddi_prop_cache_invalidate(dev_t dev, dev_info_t *dip, char *name, int flags)
4273 {
4274         /* for now we invalidate the entire cached snapshot */
4275         i_ddi_di_cache_invalidate();
4276 }
4277 
4278 
4279 /*
4280  * Code to search hardware layer (PROM), if it exists, on behalf of child.
4281  *
4282  * if input dip != child_dip, then call is on behalf of child
4283  * to search PROM, do it via ddi_prop_search_common() and ascend only
4284  * if allowed.
4285  *
4286  * if input dip == ch_dip (child_dip), call is on behalf of root driver,
4287  * to search for PROM defined props only.
4288  *
4289  * Note that the PROM search is done only if the requested dev
4290  * is either DDI_DEV_T_ANY or DDI_DEV_T_NONE. PROM properties
4291  * have no associated dev, thus are automatically associated with
4292  * DDI_DEV_T_NONE.
4293  *
4294  * Modifying flag DDI_PROP_NOTPROM inhibits the search in the h/w layer.
4295  *
4296  * Returns DDI_PROP_FOUND_1275 if found to indicate to framework
4297  * that the property resides in the prom.
4298  */
4299 int
4300 impl_ddi_bus_prop_op(dev_t dev, dev_info_t *dip, dev_info_t *ch_dip,
4301     ddi_prop_op_t prop_op, int mod_flags,
4302     char *name, caddr_t valuep, int *lengthp)
4303 {
4304         int     len;
4305         caddr_t buffer;
4306 
4307         /*
4308          * If requested dev is DDI_DEV_T_NONE or DDI_DEV_T_ANY, then
4309          * look in caller's PROM if it's a self identifying device...
4310          *
4311          * Note that this is very similar to ddi_prop_op, but we
4312          * search the PROM instead of the s/w defined properties,
4313          * and we are called on by the parent driver to do this for
4314          * the child.
4315          */
4316 
4317         if (((dev == DDI_DEV_T_NONE) || (dev == DDI_DEV_T_ANY)) &&
4318             ndi_dev_is_prom_node(ch_dip) &&
4319             ((mod_flags & DDI_PROP_NOTPROM) == 0)) {
4320                 len = prom_getproplen((pnode_t)DEVI(ch_dip)->devi_nodeid, name);
4321                 if (len == -1) {
4322                         return (DDI_PROP_NOT_FOUND);
4323                 }
4324 
4325                 /*
4326                  * If exists only request, we're done
4327                  */
4328                 if (prop_op == PROP_EXISTS) {
4329                         return (DDI_PROP_FOUND_1275);
4330                 }
4331 
4332                 /*
4333                  * If length only request or prop length == 0, get out
4334                  */
4335                 if ((prop_op == PROP_LEN) || (len == 0)) {
4336                         *lengthp = len;
4337                         return (DDI_PROP_FOUND_1275);
4338                 }
4339 
4340                 /*
4341                  * Allocate buffer if required... (either way `buffer'
4342                  * is receiving address).
4343                  */
4344 
4345                 switch (prop_op) {
4346 
4347                 case PROP_LEN_AND_VAL_ALLOC:
4348 
4349                         buffer = kmem_alloc((size_t)len,
4350                             mod_flags & DDI_PROP_CANSLEEP ?
4351                             KM_SLEEP : KM_NOSLEEP);
4352                         if (buffer == NULL) {
4353                                 return (DDI_PROP_NO_MEMORY);
4354                         }
4355                         *(caddr_t *)valuep = buffer;
4356                         break;
4357 
4358                 case PROP_LEN_AND_VAL_BUF:
4359 
4360                         if (len > (*lengthp)) {
4361                                 *lengthp = len;
4362                                 return (DDI_PROP_BUF_TOO_SMALL);
4363                         }
4364 
4365                         buffer = valuep;
4366                         break;
4367 
4368                 default:
4369                         break;
4370                 }
4371 
4372                 /*
4373                  * Call the PROM function to do the copy.
4374                  */
4375                 (void) prom_getprop((pnode_t)DEVI(ch_dip)->devi_nodeid,
4376                     name, buffer);
4377 
4378                 *lengthp = len; /* return the actual length to the caller */
4379                 (void) impl_fix_props(dip, ch_dip, name, len, buffer);
4380                 return (DDI_PROP_FOUND_1275);
4381         }
4382 
4383         return (DDI_PROP_NOT_FOUND);
4384 }
4385 
4386 /*
4387  * The ddi_bus_prop_op default bus nexus prop op function.
4388  *
4389  * Code to search hardware layer (PROM), if it exists,
4390  * on behalf of child, then, if appropriate, ascend and check
4391  * my own software defined properties...
4392  */
4393 int
4394 ddi_bus_prop_op(dev_t dev, dev_info_t *dip, dev_info_t *ch_dip,
4395     ddi_prop_op_t prop_op, int mod_flags,
4396     char *name, caddr_t valuep, int *lengthp)
4397 {
4398         int     error;
4399 
4400         error = impl_ddi_bus_prop_op(dev, dip, ch_dip, prop_op, mod_flags,
4401             name, valuep, lengthp);
4402 
4403         if (error == DDI_PROP_SUCCESS || error == DDI_PROP_FOUND_1275 ||
4404             error == DDI_PROP_BUF_TOO_SMALL)
4405                 return (error);
4406 
4407         if (error == DDI_PROP_NO_MEMORY) {
4408                 cmn_err(CE_CONT, prop_no_mem_msg, name);
4409                 return (DDI_PROP_NO_MEMORY);
4410         }
4411 
4412         /*
4413          * Check the 'options' node as a last resort
4414          */
4415         if ((mod_flags & DDI_PROP_DONTPASS) != 0)
4416                 return (DDI_PROP_NOT_FOUND);
4417 
4418         if (ch_dip == ddi_root_node())  {
4419                 /*
4420                  * As a last resort, when we've reached
4421                  * the top and still haven't found the
4422                  * property, see if the desired property
4423                  * is attached to the options node.
4424                  *
4425                  * The options dip is attached right after boot.
4426                  */
4427                 ASSERT(options_dip != NULL);
4428                 /*
4429                  * Force the "don't pass" flag to *just* see
4430                  * what the options node has to offer.
4431                  */
4432                 return (ddi_prop_search_common(dev, options_dip, prop_op,
4433                     mod_flags|DDI_PROP_DONTPASS, name, valuep,
4434                     (uint_t *)lengthp));
4435         }
4436 
4437         /*
4438          * Otherwise, continue search with parent's s/w defined properties...
4439          * NOTE: Using `dip' in following call increments the level.
4440          */
4441 
4442         return (ddi_prop_search_common(dev, dip, prop_op, mod_flags,
4443             name, valuep, (uint_t *)lengthp));
4444 }
4445 
4446 /*
4447  * External property functions used by other parts of the kernel...
4448  */
4449 
4450 /*
4451  * e_ddi_getlongprop: See comments for ddi_get_longprop.
4452  */
4453 
4454 int
4455 e_ddi_getlongprop(dev_t dev, vtype_t type, char *name, int flags,
4456     caddr_t valuep, int *lengthp)
4457 {
4458         _NOTE(ARGUNUSED(type))
4459         dev_info_t *devi;
4460         ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_ALLOC;
4461         int error;
4462 
4463         if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4464                 return (DDI_PROP_NOT_FOUND);
4465 
4466         error = cdev_prop_op(dev, devi, prop_op, flags, name, valuep, lengthp);
4467         ddi_release_devi(devi);
4468         return (error);
4469 }
4470 
4471 /*
4472  * e_ddi_getlongprop_buf:       See comments for ddi_getlongprop_buf.
4473  */
4474 
4475 int
4476 e_ddi_getlongprop_buf(dev_t dev, vtype_t type, char *name, int flags,
4477     caddr_t valuep, int *lengthp)
4478 {
4479         _NOTE(ARGUNUSED(type))
4480         dev_info_t *devi;
4481         ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_BUF;
4482         int error;
4483 
4484         if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4485                 return (DDI_PROP_NOT_FOUND);
4486 
4487         error = cdev_prop_op(dev, devi, prop_op, flags, name, valuep, lengthp);
4488         ddi_release_devi(devi);
4489         return (error);
4490 }
4491 
4492 /*
4493  * e_ddi_getprop:       See comments for ddi_getprop.
4494  */
4495 int
4496 e_ddi_getprop(dev_t dev, vtype_t type, char *name, int flags, int defvalue)
4497 {
4498         _NOTE(ARGUNUSED(type))
4499         dev_info_t *devi;
4500         ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_BUF;
4501         int     propvalue = defvalue;
4502         int     proplength = sizeof (int);
4503         int     error;
4504 
4505         if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4506                 return (defvalue);
4507 
4508         error = cdev_prop_op(dev, devi, prop_op,
4509             flags, name, (caddr_t)&propvalue, &proplength);
4510         ddi_release_devi(devi);
4511 
4512         if ((error == DDI_PROP_SUCCESS) && (proplength == 0))
4513                 propvalue = 1;
4514 
4515         return (propvalue);
4516 }
4517 
4518 /*
4519  * e_ddi_getprop_int64:
4520  *
4521  * This is a typed interfaces, but predates typed properties. With the
4522  * introduction of typed properties the framework tries to ensure
4523  * consistent use of typed interfaces. This is why TYPE_INT64 is not
4524  * part of TYPE_ANY.  E_ddi_getprop_int64 is a special case where a
4525  * typed interface invokes legacy (non-typed) interfaces:
4526  * cdev_prop_op(), prop_op(9E), ddi_prop_op(9F)).  In this case the
4527  * fact that TYPE_INT64 is not part of TYPE_ANY matters.  To support
4528  * this type of lookup as a single operation we invoke the legacy
4529  * non-typed interfaces with the special CONSUMER_TYPED bit set. The
4530  * framework ddi_prop_op(9F) implementation is expected to check for
4531  * CONSUMER_TYPED and, if set, expand type bits beyond TYPE_ANY
4532  * (currently TYPE_INT64).
4533  */
4534 int64_t
4535 e_ddi_getprop_int64(dev_t dev, vtype_t type, char *name,
4536     int flags, int64_t defvalue)
4537 {
4538         _NOTE(ARGUNUSED(type))
4539         dev_info_t      *devi;
4540         ddi_prop_op_t   prop_op = PROP_LEN_AND_VAL_BUF;
4541         int64_t         propvalue = defvalue;
4542         int             proplength = sizeof (propvalue);
4543         int             error;
4544 
4545         if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4546                 return (defvalue);
4547 
4548         error = cdev_prop_op(dev, devi, prop_op, flags |
4549             DDI_PROP_CONSUMER_TYPED, name, (caddr_t)&propvalue, &proplength);
4550         ddi_release_devi(devi);
4551 
4552         if ((error == DDI_PROP_SUCCESS) && (proplength == 0))
4553                 propvalue = 1;
4554 
4555         return (propvalue);
4556 }
4557 
4558 /*
4559  * e_ddi_getproplen:    See comments for ddi_getproplen.
4560  */
4561 int
4562 e_ddi_getproplen(dev_t dev, vtype_t type, char *name, int flags, int *lengthp)
4563 {
4564         _NOTE(ARGUNUSED(type))
4565         dev_info_t *devi;
4566         ddi_prop_op_t prop_op = PROP_LEN;
4567         int error;
4568 
4569         if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4570                 return (DDI_PROP_NOT_FOUND);
4571 
4572         error = cdev_prop_op(dev, devi, prop_op, flags, name, NULL, lengthp);
4573         ddi_release_devi(devi);
4574         return (error);
4575 }
4576 
4577 /*
4578  * Routines to get at elements of the dev_info structure
4579  */
4580 
4581 /*
4582  * ddi_binding_name: Return the driver binding name of the devinfo node
4583  *              This is the name the OS used to bind the node to a driver.
4584  */
4585 char *
4586 ddi_binding_name(dev_info_t *dip)
4587 {
4588         return (DEVI(dip)->devi_binding_name);
4589 }
4590 
4591 /*
4592  * ddi_driver_major: Return the major number of the driver that
4593  *      the supplied devinfo is bound to.  If not yet bound,
4594  *      DDI_MAJOR_T_NONE.
4595  *
4596  * When used by the driver bound to 'devi', this
4597  * function will reliably return the driver major number.
4598  * Other ways of determining the driver major number, such as
4599  *      major = ddi_name_to_major(ddi_get_name(devi));
4600  *      major = ddi_name_to_major(ddi_binding_name(devi));
4601  * can return a different result as the driver/alias binding
4602  * can change dynamically, and thus should be avoided.
4603  */
4604 major_t
4605 ddi_driver_major(dev_info_t *devi)
4606 {
4607         return (DEVI(devi)->devi_major);
4608 }
4609 
4610 /*
4611  * ddi_driver_name: Return the normalized driver name. this is the
4612  *              actual driver name
4613  */
4614 const char *
4615 ddi_driver_name(dev_info_t *devi)
4616 {
4617         major_t major;
4618 
4619         if ((major = ddi_driver_major(devi)) != DDI_MAJOR_T_NONE)
4620                 return (ddi_major_to_name(major));
4621 
4622         return (ddi_node_name(devi));
4623 }
4624 
4625 /*
4626  * i_ddi_set_binding_name:      Set binding name.
4627  *
4628  *      Set the binding name to the given name.
4629  *      This routine is for use by the ddi implementation, not by drivers.
4630  */
4631 void
4632 i_ddi_set_binding_name(dev_info_t *dip, char *name)
4633 {
4634         DEVI(dip)->devi_binding_name = name;
4635 
4636 }
4637 
4638 /*
4639  * ddi_get_name: A synonym of ddi_binding_name() ... returns a name
4640  * the implementation has used to bind the node to a driver.
4641  */
4642 char *
4643 ddi_get_name(dev_info_t *dip)
4644 {
4645         return (DEVI(dip)->devi_binding_name);
4646 }
4647 
4648 /*
4649  * ddi_node_name: Return the name property of the devinfo node
4650  *              This may differ from ddi_binding_name if the node name
4651  *              does not define a binding to a driver (i.e. generic names).
4652  */
4653 char *
4654 ddi_node_name(dev_info_t *dip)
4655 {
4656         return (DEVI(dip)->devi_node_name);
4657 }
4658 
4659 
4660 /*
4661  * ddi_get_nodeid:      Get nodeid stored in dev_info structure.
4662  */
4663 int
4664 ddi_get_nodeid(dev_info_t *dip)
4665 {
4666         return (DEVI(dip)->devi_nodeid);
4667 }
4668 
4669 int
4670 ddi_get_instance(dev_info_t *dip)
4671 {
4672         return (DEVI(dip)->devi_instance);
4673 }
4674 
4675 struct dev_ops *
4676 ddi_get_driver(dev_info_t *dip)
4677 {
4678         return (DEVI(dip)->devi_ops);
4679 }
4680 
4681 void
4682 ddi_set_driver(dev_info_t *dip, struct dev_ops *devo)
4683 {
4684         DEVI(dip)->devi_ops = devo;
4685 }
4686 
4687 /*
4688  * ddi_set_driver_private/ddi_get_driver_private:
4689  * Get/set device driver private data in devinfo.
4690  */
4691 void
4692 ddi_set_driver_private(dev_info_t *dip, void *data)
4693 {
4694         DEVI(dip)->devi_driver_data = data;
4695 }
4696 
4697 void *
4698 ddi_get_driver_private(dev_info_t *dip)
4699 {
4700         return (DEVI(dip)->devi_driver_data);
4701 }
4702 
4703 /*
4704  * ddi_get_parent, ddi_get_child, ddi_get_next_sibling
4705  */
4706 
4707 dev_info_t *
4708 ddi_get_parent(dev_info_t *dip)
4709 {
4710         return ((dev_info_t *)DEVI(dip)->devi_parent);
4711 }
4712 
4713 dev_info_t *
4714 ddi_get_child(dev_info_t *dip)
4715 {
4716         return ((dev_info_t *)DEVI(dip)->devi_child);
4717 }
4718 
4719 dev_info_t *
4720 ddi_get_next_sibling(dev_info_t *dip)
4721 {
4722         return ((dev_info_t *)DEVI(dip)->devi_sibling);
4723 }
4724 
4725 dev_info_t *
4726 ddi_get_next(dev_info_t *dip)
4727 {
4728         return ((dev_info_t *)DEVI(dip)->devi_next);
4729 }
4730 
4731 void
4732 ddi_set_next(dev_info_t *dip, dev_info_t *nextdip)
4733 {
4734         DEVI(dip)->devi_next = DEVI(nextdip);
4735 }
4736 
4737 /*
4738  * ddi_root_node:               Return root node of devinfo tree
4739  */
4740 
4741 dev_info_t *
4742 ddi_root_node(void)
4743 {
4744         extern dev_info_t *top_devinfo;
4745 
4746         return (top_devinfo);
4747 }
4748 
4749 /*
4750  * Miscellaneous functions:
4751  */
4752 
4753 /*
4754  * Implementation specific hooks
4755  */
4756 
4757 void
4758 ddi_report_dev(dev_info_t *d)
4759 {
4760         (void) ddi_ctlops(d, d, DDI_CTLOPS_REPORTDEV, (void *)0, (void *)0);
4761 }
4762 
4763 /*
4764  * ddi_ctlops() is described in the assembler not to buy a new register
4765  * window when it's called and can reduce cost in climbing the device tree
4766  * without using the tail call optimization.
4767  */
4768 int
4769 ddi_dev_regsize(dev_info_t *dev, uint_t rnumber, off_t *result)
4770 {
4771         int ret;
4772 
4773         ret = ddi_ctlops(dev, dev, DDI_CTLOPS_REGSIZE,
4774             (void *)&rnumber, (void *)result);
4775 
4776         return (ret == DDI_SUCCESS ? DDI_SUCCESS : DDI_FAILURE);
4777 }
4778 
4779 int
4780 ddi_dev_nregs(dev_info_t *dev, int *result)
4781 {
4782         return (ddi_ctlops(dev, dev, DDI_CTLOPS_NREGS, 0, (void *)result));
4783 }
4784 
4785 int
4786 ddi_dev_is_sid(dev_info_t *d)
4787 {
4788         return (ddi_ctlops(d, d, DDI_CTLOPS_SIDDEV, (void *)0, (void *)0));
4789 }
4790 
4791 int
4792 ddi_slaveonly(dev_info_t *d)
4793 {
4794         return (ddi_ctlops(d, d, DDI_CTLOPS_SLAVEONLY, (void *)0, (void *)0));
4795 }
4796 
4797 int
4798 ddi_dev_affinity(dev_info_t *a, dev_info_t *b)
4799 {
4800         return (ddi_ctlops(a, a, DDI_CTLOPS_AFFINITY, (void *)b, (void *)0));
4801 }
4802 
4803 int
4804 ddi_streams_driver(dev_info_t *dip)
4805 {
4806         if (i_ddi_devi_attached(dip) &&
4807             (DEVI(dip)->devi_ops->devo_cb_ops != NULL) &&
4808             (DEVI(dip)->devi_ops->devo_cb_ops->cb_str != NULL))
4809                 return (DDI_SUCCESS);
4810         return (DDI_FAILURE);
4811 }
4812 
4813 /*
4814  * callback free list
4815  */
4816 
4817 static int ncallbacks;
4818 static int nc_low = 170;
4819 static int nc_med = 512;
4820 static int nc_high = 2048;
4821 static struct ddi_callback *callbackq;
4822 static struct ddi_callback *callbackqfree;
4823 
4824 /*
4825  * set/run callback lists
4826  */
4827 struct  cbstats {
4828         kstat_named_t   cb_asked;
4829         kstat_named_t   cb_new;
4830         kstat_named_t   cb_run;
4831         kstat_named_t   cb_delete;
4832         kstat_named_t   cb_maxreq;
4833         kstat_named_t   cb_maxlist;
4834         kstat_named_t   cb_alloc;
4835         kstat_named_t   cb_runouts;
4836         kstat_named_t   cb_L2;
4837         kstat_named_t   cb_grow;
4838 } cbstats = {
4839         {"asked",       KSTAT_DATA_UINT32},
4840         {"new",         KSTAT_DATA_UINT32},
4841         {"run",         KSTAT_DATA_UINT32},
4842         {"delete",      KSTAT_DATA_UINT32},
4843         {"maxreq",      KSTAT_DATA_UINT32},
4844         {"maxlist",     KSTAT_DATA_UINT32},
4845         {"alloc",       KSTAT_DATA_UINT32},
4846         {"runouts",     KSTAT_DATA_UINT32},
4847         {"L2",          KSTAT_DATA_UINT32},
4848         {"grow",        KSTAT_DATA_UINT32},
4849 };
4850 
4851 #define nc_asked        cb_asked.value.ui32
4852 #define nc_new          cb_new.value.ui32
4853 #define nc_run          cb_run.value.ui32
4854 #define nc_delete       cb_delete.value.ui32
4855 #define nc_maxreq       cb_maxreq.value.ui32
4856 #define nc_maxlist      cb_maxlist.value.ui32
4857 #define nc_alloc        cb_alloc.value.ui32
4858 #define nc_runouts      cb_runouts.value.ui32
4859 #define nc_L2           cb_L2.value.ui32
4860 #define nc_grow         cb_grow.value.ui32
4861 
4862 static kmutex_t ddi_callback_mutex;
4863 
4864 /*
4865  * callbacks are handled using a L1/L2 cache. The L1 cache
4866  * comes out of kmem_cache_alloc and can expand/shrink dynamically. If
4867  * we can't get callbacks from the L1 cache [because pageout is doing
4868  * I/O at the time freemem is 0], we allocate callbacks out of the
4869  * L2 cache. The L2 cache is static and depends on the memory size.
4870  * [We might also count the number of devices at probe time and
4871  * allocate one structure per device and adjust for deferred attach]
4872  */
4873 void
4874 impl_ddi_callback_init(void)
4875 {
4876         int     i;
4877         uint_t  physmegs;
4878         kstat_t *ksp;
4879 
4880         physmegs = physmem >> (20 - PAGESHIFT);
4881         if (physmegs < 48) {
4882                 ncallbacks = nc_low;
4883         } else if (physmegs < 128) {
4884                 ncallbacks = nc_med;
4885         } else {
4886                 ncallbacks = nc_high;
4887         }
4888 
4889         /*
4890          * init free list
4891          */
4892         callbackq = kmem_zalloc(
4893             ncallbacks * sizeof (struct ddi_callback), KM_SLEEP);
4894         for (i = 0; i < ncallbacks-1; i++)
4895                 callbackq[i].c_nfree = &callbackq[i+1];
4896         callbackqfree = callbackq;
4897 
4898         /* init kstats */
4899         if (ksp = kstat_create("unix", 0, "cbstats", "misc", KSTAT_TYPE_NAMED,
4900             sizeof (cbstats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) {
4901                 ksp->ks_data = (void *) &cbstats;
4902                 kstat_install(ksp);
4903         }
4904 
4905 }
4906 
4907 static void
4908 callback_insert(int (*funcp)(caddr_t), caddr_t arg, uintptr_t *listid,
4909         int count)
4910 {
4911         struct ddi_callback *list, *marker, *new;
4912         size_t size = sizeof (struct ddi_callback);
4913 
4914         list = marker = (struct ddi_callback *)*listid;
4915         while (list != NULL) {
4916                 if (list->c_call == funcp && list->c_arg == arg) {
4917                         list->c_count += count;
4918                         return;
4919                 }
4920                 marker = list;
4921                 list = list->c_nlist;
4922         }
4923         new = kmem_alloc(size, KM_NOSLEEP);
4924         if (new == NULL) {
4925                 new = callbackqfree;
4926                 if (new == NULL) {
4927                         new = kmem_alloc_tryhard(sizeof (struct ddi_callback),
4928                             &size, KM_NOSLEEP | KM_PANIC);
4929                         cbstats.nc_grow++;
4930                 } else {
4931                         callbackqfree = new->c_nfree;
4932                         cbstats.nc_L2++;
4933                 }
4934         }
4935         if (marker != NULL) {
4936                 marker->c_nlist = new;
4937         } else {
4938                 *listid = (uintptr_t)new;
4939         }
4940         new->c_size = size;
4941         new->c_nlist = NULL;
4942         new->c_call = funcp;
4943         new->c_arg = arg;
4944         new->c_count = count;
4945         cbstats.nc_new++;
4946         cbstats.nc_alloc++;
4947         if (cbstats.nc_alloc > cbstats.nc_maxlist)
4948                 cbstats.nc_maxlist = cbstats.nc_alloc;
4949 }
4950 
4951 void
4952 ddi_set_callback(int (*funcp)(caddr_t), caddr_t arg, uintptr_t *listid)
4953 {
4954         mutex_enter(&ddi_callback_mutex);
4955         cbstats.nc_asked++;
4956         if ((cbstats.nc_asked - cbstats.nc_run) > cbstats.nc_maxreq)
4957                 cbstats.nc_maxreq = (cbstats.nc_asked - cbstats.nc_run);
4958         (void) callback_insert(funcp, arg, listid, 1);
4959         mutex_exit(&ddi_callback_mutex);
4960 }
4961 
4962 static void
4963 real_callback_run(void *Queue)
4964 {
4965         int (*funcp)(caddr_t);
4966         caddr_t arg;
4967         int count, rval;
4968         uintptr_t *listid;
4969         struct ddi_callback *list, *marker;
4970         int check_pending = 1;
4971         int pending = 0;
4972 
4973         do {
4974                 mutex_enter(&ddi_callback_mutex);
4975                 listid = Queue;
4976                 list = (struct ddi_callback *)*listid;
4977                 if (list == NULL) {
4978                         mutex_exit(&ddi_callback_mutex);
4979                         return;
4980                 }
4981                 if (check_pending) {
4982                         marker = list;
4983                         while (marker != NULL) {
4984                                 pending += marker->c_count;
4985                                 marker = marker->c_nlist;
4986                         }
4987                         check_pending = 0;
4988                 }
4989                 ASSERT(pending > 0);
4990                 ASSERT(list->c_count > 0);
4991                 funcp = list->c_call;
4992                 arg = list->c_arg;
4993                 count = list->c_count;
4994                 *(uintptr_t *)Queue = (uintptr_t)list->c_nlist;
4995                 if (list >= &callbackq[0] &&
4996                     list <= &callbackq[ncallbacks-1]) {
4997                         list->c_nfree = callbackqfree;
4998                         callbackqfree = list;
4999                 } else
5000                         kmem_free(list, list->c_size);
5001 
5002                 cbstats.nc_delete++;
5003                 cbstats.nc_alloc--;
5004                 mutex_exit(&ddi_callback_mutex);
5005 
5006                 do {
5007                         if ((rval = (*funcp)(arg)) == 0) {
5008                                 pending -= count;
5009                                 mutex_enter(&ddi_callback_mutex);
5010                                 (void) callback_insert(funcp, arg, listid,
5011                                     count);
5012                                 cbstats.nc_runouts++;
5013                         } else {
5014                                 pending--;
5015                                 mutex_enter(&ddi_callback_mutex);
5016                                 cbstats.nc_run++;
5017                         }
5018                         mutex_exit(&ddi_callback_mutex);
5019                 } while (rval != 0 && (--count > 0));
5020         } while (pending > 0);
5021 }
5022 
5023 void
5024 ddi_run_callback(uintptr_t *listid)
5025 {
5026         softcall(real_callback_run, listid);
5027 }
5028 
5029 /*
5030  * ddi_periodic_t
5031  * ddi_periodic_add(void (*func)(void *), void *arg, hrtime_t interval,
5032  *     int level)
5033  *
5034  * INTERFACE LEVEL
5035  *      Solaris DDI specific (Solaris DDI)
5036  *
5037  * PARAMETERS
5038  *      func: the callback function
5039  *
5040  *            The callback function will be invoked. The function is invoked
5041  *            in kernel context if the argument level passed is the zero.
5042  *            Otherwise it's invoked in interrupt context at the specified
5043  *            level.
5044  *
5045  *       arg: the argument passed to the callback function
5046  *
5047  *  interval: interval time
5048  *
5049  *    level : callback interrupt level
5050  *
5051  *            If the value is the zero, the callback function is invoked
5052  *            in kernel context. If the value is more than the zero, but
5053  *            less than or equal to ten, the callback function is invoked in
5054  *            interrupt context at the specified interrupt level, which may
5055  *            be used for real time applications.
5056  *
5057  *            This value must be in range of 0-10, which can be a numeric
5058  *            number or a pre-defined macro (DDI_IPL_0, ... , DDI_IPL_10).
5059  *
5060  * DESCRIPTION
5061  *      ddi_periodic_add(9F) schedules the specified function to be
5062  *      periodically invoked in the interval time.
5063  *
5064  *      As well as timeout(9F), the exact time interval over which the function
5065  *      takes effect cannot be guaranteed, but the value given is a close
5066  *      approximation.
5067  *
5068  *      Drivers waiting on behalf of processes with real-time constraints must
5069  *      pass non-zero value with the level argument to ddi_periodic_add(9F).
5070  *
5071  * RETURN VALUES
5072  *      ddi_periodic_add(9F) returns a non-zero opaque value (ddi_periodic_t),
5073  *      which must be used for ddi_periodic_delete(9F) to specify the request.
5074  *
5075  * CONTEXT
5076  *      ddi_periodic_add(9F) can be called in user or kernel context, but
5077  *      it cannot be called in interrupt context, which is different from
5078  *      timeout(9F).
5079  */
5080 ddi_periodic_t
5081 ddi_periodic_add(void (*func)(void *), void *arg, hrtime_t interval, int level)
5082 {
5083         /*
5084          * Sanity check of the argument level.
5085          */
5086         if (level < DDI_IPL_0 || level > DDI_IPL_10)
5087                 cmn_err(CE_PANIC,
5088                     "ddi_periodic_add: invalid interrupt level (%d).", level);
5089 
5090         /*
5091          * Sanity check of the context. ddi_periodic_add() cannot be
5092          * called in either interrupt context or high interrupt context.
5093          */
5094         if (servicing_interrupt())
5095                 cmn_err(CE_PANIC,
5096                     "ddi_periodic_add: called in (high) interrupt context.");
5097 
5098         return ((ddi_periodic_t)i_timeout(func, arg, interval, level));
5099 }
5100 
5101 /*
5102  * void
5103  * ddi_periodic_delete(ddi_periodic_t req)
5104  *
5105  * INTERFACE LEVEL
5106  *     Solaris DDI specific (Solaris DDI)
5107  *
5108  * PARAMETERS
5109  *     req: ddi_periodic_t opaque value ddi_periodic_add(9F) returned
5110  *     previously.
5111  *
5112  * DESCRIPTION
5113  *     ddi_periodic_delete(9F) cancels the ddi_periodic_add(9F) request
5114  *     previously requested.
5115  *
5116  *     ddi_periodic_delete(9F) will not return until the pending request
5117  *     is canceled or executed.
5118  *
5119  *     As well as untimeout(9F), calling ddi_periodic_delete(9F) for a
5120  *     timeout which is either running on another CPU, or has already
5121  *     completed causes no problems. However, unlike untimeout(9F), there is
5122  *     no restrictions on the lock which might be held across the call to
5123  *     ddi_periodic_delete(9F).
5124  *
5125  *     Drivers should be structured with the understanding that the arrival of
5126  *     both an interrupt and a timeout for that interrupt can occasionally
5127  *     occur, in either order.
5128  *
5129  * CONTEXT
5130  *     ddi_periodic_delete(9F) can be called in user or kernel context, but
5131  *     it cannot be called in interrupt context, which is different from
5132  *     untimeout(9F).
5133  */
5134 void
5135 ddi_periodic_delete(ddi_periodic_t req)
5136 {
5137         /*
5138          * Sanity check of the context. ddi_periodic_delete() cannot be
5139          * called in either interrupt context or high interrupt context.
5140          */
5141         if (servicing_interrupt())
5142                 cmn_err(CE_PANIC,
5143                     "ddi_periodic_delete: called in (high) interrupt context.");
5144 
5145         i_untimeout((timeout_t)req);
5146 }
5147 
5148 dev_info_t *
5149 nodevinfo(dev_t dev, int otyp)
5150 {
5151         _NOTE(ARGUNUSED(dev, otyp))
5152         return ((dev_info_t *)0);
5153 }
5154 
5155 /*
5156  * A driver should support its own getinfo(9E) entry point. This function
5157  * is provided as a convenience for ON drivers that don't expect their
5158  * getinfo(9E) entry point to be called. A driver that uses this must not
5159  * call ddi_create_minor_node.
5160  */
5161 int
5162 ddi_no_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
5163 {
5164         _NOTE(ARGUNUSED(dip, infocmd, arg, result))
5165         return (DDI_FAILURE);
5166 }
5167 
5168 /*
5169  * A driver should support its own getinfo(9E) entry point. This function
5170  * is provided as a convenience for ON drivers that where the minor number
5171  * is the instance. Drivers that do not have 1:1 mapping must implement
5172  * their own getinfo(9E) function.
5173  */
5174 int
5175 ddi_getinfo_1to1(dev_info_t *dip, ddi_info_cmd_t infocmd,
5176     void *arg, void **result)
5177 {
5178         _NOTE(ARGUNUSED(dip))
5179         int     instance;
5180 
5181         if (infocmd != DDI_INFO_DEVT2INSTANCE)
5182                 return (DDI_FAILURE);
5183 
5184         instance = getminor((dev_t)(uintptr_t)arg);
5185         *result = (void *)(uintptr_t)instance;
5186         return (DDI_SUCCESS);
5187 }
5188 
5189 int
5190 ddifail(dev_info_t *devi, ddi_attach_cmd_t cmd)
5191 {
5192         _NOTE(ARGUNUSED(devi, cmd))
5193         return (DDI_FAILURE);
5194 }
5195 
5196 int
5197 ddi_no_dma_map(dev_info_t *dip, dev_info_t *rdip,
5198     struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep)
5199 {
5200         _NOTE(ARGUNUSED(dip, rdip, dmareqp, handlep))
5201         return (DDI_DMA_NOMAPPING);
5202 }
5203 
5204 int
5205 ddi_no_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
5206     int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
5207 {
5208         _NOTE(ARGUNUSED(dip, rdip, attr, waitfp, arg, handlep))
5209         return (DDI_DMA_BADATTR);
5210 }
5211 
5212 int
5213 ddi_no_dma_freehdl(dev_info_t *dip, dev_info_t *rdip,
5214     ddi_dma_handle_t handle)
5215 {
5216         _NOTE(ARGUNUSED(dip, rdip, handle))
5217         return (DDI_FAILURE);
5218 }
5219 
5220 int
5221 ddi_no_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
5222     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
5223     ddi_dma_cookie_t *cp, uint_t *ccountp)
5224 {
5225         _NOTE(ARGUNUSED(dip, rdip, handle, dmareq, cp, ccountp))
5226         return (DDI_DMA_NOMAPPING);
5227 }
5228 
5229 int
5230 ddi_no_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
5231     ddi_dma_handle_t handle)
5232 {
5233         _NOTE(ARGUNUSED(dip, rdip, handle))
5234         return (DDI_FAILURE);
5235 }
5236 
5237 int
5238 ddi_no_dma_flush(dev_info_t *dip, dev_info_t *rdip,
5239     ddi_dma_handle_t handle, off_t off, size_t len,
5240     uint_t cache_flags)
5241 {
5242         _NOTE(ARGUNUSED(dip, rdip, handle, off, len, cache_flags))
5243         return (DDI_FAILURE);
5244 }
5245 
5246 int
5247 ddi_no_dma_win(dev_info_t *dip, dev_info_t *rdip,
5248     ddi_dma_handle_t handle, uint_t win, off_t *offp,
5249     size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp)
5250 {
5251         _NOTE(ARGUNUSED(dip, rdip, handle, win, offp, lenp, cookiep, ccountp))
5252         return (DDI_FAILURE);
5253 }
5254 
5255 int
5256 ddi_no_dma_mctl(dev_info_t *dip, dev_info_t *rdip,
5257     ddi_dma_handle_t handle, enum ddi_dma_ctlops request,
5258     off_t *offp, size_t *lenp, caddr_t *objp, uint_t flags)
5259 {
5260         _NOTE(ARGUNUSED(dip, rdip, handle, request, offp, lenp, objp, flags))
5261         return (DDI_FAILURE);
5262 }
5263 
5264 void
5265 ddivoid(void)
5266 {}
5267 
5268 int
5269 nochpoll(dev_t dev, short events, int anyyet, short *reventsp,
5270     struct pollhead **pollhdrp)
5271 {
5272         _NOTE(ARGUNUSED(dev, events, anyyet, reventsp, pollhdrp))
5273         return (ENXIO);
5274 }
5275 
5276 cred_t *
5277 ddi_get_cred(void)
5278 {
5279         return (CRED());
5280 }
5281 
5282 clock_t
5283 ddi_get_lbolt(void)
5284 {
5285         return ((clock_t)lbolt_hybrid());
5286 }
5287 
5288 int64_t
5289 ddi_get_lbolt64(void)
5290 {
5291         return (lbolt_hybrid());
5292 }
5293 
5294 time_t
5295 ddi_get_time(void)
5296 {
5297         time_t  now;
5298 
5299         if ((now = gethrestime_sec()) == 0) {
5300                 timestruc_t ts;
5301                 mutex_enter(&tod_lock);
5302                 ts = tod_get();
5303                 mutex_exit(&tod_lock);
5304                 return (ts.tv_sec);
5305         } else {
5306                 return (now);
5307         }
5308 }
5309 
5310 pid_t
5311 ddi_get_pid(void)
5312 {
5313         return (ttoproc(curthread)->p_pid);
5314 }
5315 
5316 kt_did_t
5317 ddi_get_kt_did(void)
5318 {
5319         return (curthread->t_did);
5320 }
5321 
5322 /*
5323  * This function returns B_TRUE if the caller can reasonably expect that a call
5324  * to cv_wait_sig(9F), cv_timedwait_sig(9F), or qwait_sig(9F) could be awakened
5325  * by user-level signal.  If it returns B_FALSE, then the caller should use
5326  * other means to make certain that the wait will not hang "forever."
5327  *
5328  * It does not check the signal mask, nor for reception of any particular
5329  * signal.
5330  *
5331  * Currently, a thread can receive a signal if it's not a kernel thread and it
5332  * is not in the middle of exit(2) tear-down.  Threads that are in that
5333  * tear-down effectively convert cv_wait_sig to cv_wait, cv_timedwait_sig to
5334  * cv_timedwait, and qwait_sig to qwait.
5335  */
5336 boolean_t
5337 ddi_can_receive_sig(void)
5338 {
5339         proc_t *pp;
5340 
5341         if (curthread->t_proc_flag & TP_LWPEXIT)
5342                 return (B_FALSE);
5343         if ((pp = ttoproc(curthread)) == NULL)
5344                 return (B_FALSE);
5345         return (pp->p_as != &kas);
5346 }
5347 
5348 /*
5349  * Swap bytes in 16-bit [half-]words
5350  */
5351 void
5352 swab(void *src, void *dst, size_t nbytes)
5353 {
5354         uchar_t *pf = (uchar_t *)src;
5355         uchar_t *pt = (uchar_t *)dst;
5356         uchar_t tmp;
5357         int nshorts;
5358 
5359         nshorts = nbytes >> 1;
5360 
5361         while (--nshorts >= 0) {
5362                 tmp = *pf++;
5363                 *pt++ = *pf++;
5364                 *pt++ = tmp;
5365         }
5366 }
5367 
5368 static void
5369 ddi_append_minor_node(dev_info_t *ddip, struct ddi_minor_data *dmdp)
5370 {
5371         int                     circ;
5372         struct ddi_minor_data   *dp;
5373 
5374         ndi_devi_enter(ddip, &circ);
5375         if ((dp = DEVI(ddip)->devi_minor) == (struct ddi_minor_data *)NULL) {
5376                 DEVI(ddip)->devi_minor = dmdp;
5377         } else {
5378                 while (dp->next != (struct ddi_minor_data *)NULL)
5379                         dp = dp->next;
5380                 dp->next = dmdp;
5381         }
5382         ndi_devi_exit(ddip, circ);
5383 }
5384 
5385 /*
5386  * Part of the obsolete SunCluster DDI Hooks.
5387  * Keep for binary compatibility
5388  */
5389 minor_t
5390 ddi_getiminor(dev_t dev)
5391 {
5392         return (getminor(dev));
5393 }
5394 
5395 static int
5396 i_log_devfs_minor_create(dev_info_t *dip, char *minor_name)
5397 {
5398         int se_flag;
5399         int kmem_flag;
5400         int se_err;
5401         char *pathname, *class_name;
5402         sysevent_t *ev = NULL;
5403         sysevent_id_t eid;
5404         sysevent_value_t se_val;
5405         sysevent_attr_list_t *ev_attr_list = NULL;
5406 
5407         /* determine interrupt context */
5408         se_flag = (servicing_interrupt()) ? SE_NOSLEEP : SE_SLEEP;
5409         kmem_flag = (se_flag == SE_SLEEP) ? KM_SLEEP : KM_NOSLEEP;
5410 
5411         i_ddi_di_cache_invalidate();
5412 
5413 #ifdef DEBUG
5414         if ((se_flag == SE_NOSLEEP) && sunddi_debug) {
5415                 cmn_err(CE_CONT, "ddi_create_minor_node: called from "
5416                     "interrupt level by driver %s",
5417                     ddi_driver_name(dip));
5418         }
5419 #endif /* DEBUG */
5420 
5421         ev = sysevent_alloc(EC_DEVFS, ESC_DEVFS_MINOR_CREATE, EP_DDI, se_flag);
5422         if (ev == NULL) {
5423                 goto fail;
5424         }
5425 
5426         pathname = kmem_alloc(MAXPATHLEN, kmem_flag);
5427         if (pathname == NULL) {
5428                 sysevent_free(ev);
5429                 goto fail;
5430         }
5431 
5432         (void) ddi_pathname(dip, pathname);
5433         ASSERT(strlen(pathname));
5434         se_val.value_type = SE_DATA_TYPE_STRING;
5435         se_val.value.sv_string = pathname;
5436         if (sysevent_add_attr(&ev_attr_list, DEVFS_PATHNAME,
5437             &se_val, se_flag) != 0) {
5438                 kmem_free(pathname, MAXPATHLEN);
5439                 sysevent_free(ev);
5440                 goto fail;
5441         }
5442         kmem_free(pathname, MAXPATHLEN);
5443 
5444         /* add the device class attribute */
5445         if ((class_name = i_ddi_devi_class(dip)) != NULL) {
5446                 se_val.value_type = SE_DATA_TYPE_STRING;
5447                 se_val.value.sv_string = class_name;
5448                 if (sysevent_add_attr(&ev_attr_list,
5449                     DEVFS_DEVI_CLASS, &se_val, SE_SLEEP) != 0) {
5450                         sysevent_free_attr(ev_attr_list);
5451                         goto fail;
5452                 }
5453         }
5454 
5455         /*
5456          * allow for NULL minor names
5457          */
5458         if (minor_name != NULL) {
5459                 se_val.value.sv_string = minor_name;
5460                 if (sysevent_add_attr(&ev_attr_list, DEVFS_MINOR_NAME,
5461                     &se_val, se_flag) != 0) {
5462                         sysevent_free_attr(ev_attr_list);
5463                         sysevent_free(ev);
5464                         goto fail;
5465                 }
5466         }
5467 
5468         if (sysevent_attach_attributes(ev, ev_attr_list) != 0) {
5469                 sysevent_free_attr(ev_attr_list);
5470                 sysevent_free(ev);
5471                 goto fail;
5472         }
5473 
5474         if ((se_err = log_sysevent(ev, se_flag, &eid)) != 0) {
5475                 if (se_err == SE_NO_TRANSPORT) {
5476                         cmn_err(CE_WARN, "/devices or /dev may not be current "
5477                             "for driver %s (%s). Run devfsadm -i %s",
5478                             ddi_driver_name(dip), "syseventd not responding",
5479                             ddi_driver_name(dip));
5480                 } else {
5481                         sysevent_free(ev);
5482                         goto fail;
5483                 }
5484         }
5485 
5486         sysevent_free(ev);
5487         return (DDI_SUCCESS);
5488 fail:
5489         cmn_err(CE_WARN, "/devices or /dev may not be current "
5490             "for driver %s. Run devfsadm -i %s",
5491             ddi_driver_name(dip), ddi_driver_name(dip));
5492         return (DDI_SUCCESS);
5493 }
5494 
5495 /*
5496  * failing to remove a minor node is not of interest
5497  * therefore we do not generate an error message
5498  */
5499 static int
5500 i_log_devfs_minor_remove(dev_info_t *dip, char *minor_name)
5501 {
5502         char *pathname, *class_name;
5503         sysevent_t *ev;
5504         sysevent_id_t eid;
5505         sysevent_value_t se_val;
5506         sysevent_attr_list_t *ev_attr_list = NULL;
5507 
5508         /*
5509          * only log ddi_remove_minor_node() calls outside the scope
5510          * of attach/detach reconfigurations and when the dip is
5511          * still initialized.
5512          */
5513         if (DEVI_IS_ATTACHING(dip) || DEVI_IS_DETACHING(dip) ||
5514             (i_ddi_node_state(dip) < DS_INITIALIZED)) {
5515                 return (DDI_SUCCESS);
5516         }
5517 
5518         i_ddi_di_cache_invalidate();
5519 
5520         ev = sysevent_alloc(EC_DEVFS, ESC_DEVFS_MINOR_REMOVE, EP_DDI, SE_SLEEP);
5521         if (ev == NULL) {
5522                 return (DDI_SUCCESS);
5523         }
5524 
5525         pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5526         if (pathname == NULL) {
5527                 sysevent_free(ev);
5528                 return (DDI_SUCCESS);
5529         }
5530 
5531         (void) ddi_pathname(dip, pathname);
5532         ASSERT(strlen(pathname));
5533         se_val.value_type = SE_DATA_TYPE_STRING;
5534         se_val.value.sv_string = pathname;
5535         if (sysevent_add_attr(&ev_attr_list, DEVFS_PATHNAME,
5536             &se_val, SE_SLEEP) != 0) {
5537                 kmem_free(pathname, MAXPATHLEN);
5538                 sysevent_free(ev);
5539                 return (DDI_SUCCESS);
5540         }
5541 
5542         kmem_free(pathname, MAXPATHLEN);
5543 
5544         /*
5545          * allow for NULL minor names
5546          */
5547         if (minor_name != NULL) {
5548                 se_val.value.sv_string = minor_name;
5549                 if (sysevent_add_attr(&ev_attr_list, DEVFS_MINOR_NAME,
5550                     &se_val, SE_SLEEP) != 0) {
5551                         sysevent_free_attr(ev_attr_list);
5552                         goto fail;
5553                 }
5554         }
5555 
5556         if ((class_name = i_ddi_devi_class(dip)) != NULL) {
5557                 /* add the device class, driver name and instance attributes */
5558 
5559                 se_val.value_type = SE_DATA_TYPE_STRING;
5560                 se_val.value.sv_string = class_name;
5561                 if (sysevent_add_attr(&ev_attr_list,
5562                     DEVFS_DEVI_CLASS, &se_val, SE_SLEEP) != 0) {
5563                         sysevent_free_attr(ev_attr_list);
5564                         goto fail;
5565                 }
5566 
5567                 se_val.value_type = SE_DATA_TYPE_STRING;
5568                 se_val.value.sv_string = (char *)ddi_driver_name(dip);
5569                 if (sysevent_add_attr(&ev_attr_list,
5570                     DEVFS_DRIVER_NAME, &se_val, SE_SLEEP) != 0) {
5571                         sysevent_free_attr(ev_attr_list);
5572                         goto fail;
5573                 }
5574 
5575                 se_val.value_type = SE_DATA_TYPE_INT32;
5576                 se_val.value.sv_int32 = ddi_get_instance(dip);
5577                 if (sysevent_add_attr(&ev_attr_list,
5578                     DEVFS_INSTANCE, &se_val, SE_SLEEP) != 0) {
5579                         sysevent_free_attr(ev_attr_list);
5580                         goto fail;
5581                 }
5582 
5583         }
5584 
5585         if (sysevent_attach_attributes(ev, ev_attr_list) != 0) {
5586                 sysevent_free_attr(ev_attr_list);
5587         } else {
5588                 (void) log_sysevent(ev, SE_SLEEP, &eid);
5589         }
5590 fail:
5591         sysevent_free(ev);
5592         return (DDI_SUCCESS);
5593 }
5594 
5595 /*
5596  * Derive the device class of the node.
5597  * Device class names aren't defined yet. Until this is done we use
5598  * devfs event subclass names as device class names.
5599  */
5600 static int
5601 derive_devi_class(dev_info_t *dip, char *node_type, int flag)
5602 {
5603         int rv = DDI_SUCCESS;
5604 
5605         if (i_ddi_devi_class(dip) == NULL) {
5606                 if (strncmp(node_type, DDI_NT_BLOCK,
5607                     sizeof (DDI_NT_BLOCK) - 1) == 0 &&
5608                     (node_type[sizeof (DDI_NT_BLOCK) - 1] == '\0' ||
5609                     node_type[sizeof (DDI_NT_BLOCK) - 1] == ':') &&
5610                     strcmp(node_type, DDI_NT_FD) != 0) {
5611 
5612                         rv = i_ddi_set_devi_class(dip, ESC_DISK, flag);
5613 
5614                 } else if (strncmp(node_type, DDI_NT_NET,
5615                     sizeof (DDI_NT_NET) - 1) == 0 &&
5616                     (node_type[sizeof (DDI_NT_NET) - 1] == '\0' ||
5617                     node_type[sizeof (DDI_NT_NET) - 1] == ':')) {
5618 
5619                         rv = i_ddi_set_devi_class(dip, ESC_NETWORK, flag);
5620 
5621                 } else if (strncmp(node_type, DDI_NT_PRINTER,
5622                     sizeof (DDI_NT_PRINTER) - 1) == 0 &&
5623                     (node_type[sizeof (DDI_NT_PRINTER) - 1] == '\0' ||
5624                     node_type[sizeof (DDI_NT_PRINTER) - 1] == ':')) {
5625 
5626                         rv = i_ddi_set_devi_class(dip, ESC_PRINTER, flag);
5627 
5628                 } else if (strncmp(node_type, DDI_PSEUDO,
5629                     sizeof (DDI_PSEUDO) -1) == 0 &&
5630                     (strncmp(ESC_LOFI, ddi_node_name(dip),
5631                     sizeof (ESC_LOFI) -1) == 0)) {
5632                         rv = i_ddi_set_devi_class(dip, ESC_LOFI, flag);
5633                 }
5634         }
5635 
5636         return (rv);
5637 }
5638 
5639 /*
5640  * Check compliance with PSARC 2003/375:
5641  *
5642  * The name must contain only characters a-z, A-Z, 0-9 or _ and it must not
5643  * exceed IFNAMSIZ (16) characters in length.
5644  */
5645 static boolean_t
5646 verify_name(char *name)
5647 {
5648         size_t  len = strlen(name);
5649         char    *cp;
5650 
5651         if (len == 0 || len > IFNAMSIZ)
5652                 return (B_FALSE);
5653 
5654         for (cp = name; *cp != '\0'; cp++) {
5655                 if (!isalnum(*cp) && *cp != '_')
5656                         return (B_FALSE);
5657         }
5658 
5659         return (B_TRUE);
5660 }
5661 
5662 /*
5663  * ddi_create_minor_common:     Create a  ddi_minor_data structure and
5664  *                              attach it to the given devinfo node.
5665  */
5666 
5667 int
5668 ddi_create_minor_common(dev_info_t *dip, char *name, int spec_type,
5669     minor_t minor_num, char *node_type, int flag, ddi_minor_type mtype,
5670     const char *read_priv, const char *write_priv, mode_t priv_mode)
5671 {
5672         struct ddi_minor_data *dmdp;
5673         major_t major;
5674 
5675         if (spec_type != S_IFCHR && spec_type != S_IFBLK)
5676                 return (DDI_FAILURE);
5677 
5678         if (name == NULL)
5679                 return (DDI_FAILURE);
5680 
5681         /*
5682          * Log a message if the minor number the driver is creating
5683          * is not expressible on the on-disk filesystem (currently
5684          * this is limited to 18 bits both by UFS). The device can
5685          * be opened via devfs, but not by device special files created
5686          * via mknod().
5687          */
5688         if (minor_num > L_MAXMIN32) {
5689                 cmn_err(CE_WARN,
5690                     "%s%d:%s minor 0x%x too big for 32-bit applications",
5691                     ddi_driver_name(dip), ddi_get_instance(dip),
5692                     name, minor_num);
5693                 return (DDI_FAILURE);
5694         }
5695 
5696         /* dip must be bound and attached */
5697         major = ddi_driver_major(dip);
5698         ASSERT(major != DDI_MAJOR_T_NONE);
5699 
5700         /*
5701          * Default node_type to DDI_PSEUDO and issue notice in debug mode
5702          */
5703         if (node_type == NULL) {
5704                 node_type = DDI_PSEUDO;
5705                 NDI_CONFIG_DEBUG((CE_NOTE, "!illegal node_type NULL for %s%d "
5706                     " minor node %s; default to DDI_PSEUDO",
5707                     ddi_driver_name(dip), ddi_get_instance(dip), name));
5708         }
5709 
5710         /*
5711          * If the driver is a network driver, ensure that the name falls within
5712          * the interface naming constraints specified by PSARC/2003/375.
5713          */
5714         if (strcmp(node_type, DDI_NT_NET) == 0) {
5715                 if (!verify_name(name))
5716                         return (DDI_FAILURE);
5717 
5718                 if (mtype == DDM_MINOR) {
5719                         struct devnames *dnp = &devnamesp[major];
5720 
5721                         /* Mark driver as a network driver */
5722                         LOCK_DEV_OPS(&dnp->dn_lock);
5723                         dnp->dn_flags |= DN_NETWORK_DRIVER;
5724 
5725                         /*
5726                          * If this minor node is created during the device
5727                          * attachment, this is a physical network device.
5728                          * Mark the driver as a physical network driver.
5729                          */
5730                         if (DEVI_IS_ATTACHING(dip))
5731                                 dnp->dn_flags |= DN_NETWORK_PHYSDRIVER;
5732                         UNLOCK_DEV_OPS(&dnp->dn_lock);
5733                 }
5734         }
5735 
5736         if (mtype == DDM_MINOR) {
5737                 if (derive_devi_class(dip,  node_type, KM_NOSLEEP) !=
5738                     DDI_SUCCESS)
5739                         return (DDI_FAILURE);
5740         }
5741 
5742         /*
5743          * Take care of minor number information for the node.
5744          */
5745 
5746         if ((dmdp = kmem_zalloc(sizeof (struct ddi_minor_data),
5747             KM_NOSLEEP)) == NULL) {
5748                 return (DDI_FAILURE);
5749         }
5750         if ((dmdp->ddm_name = i_ddi_strdup(name, KM_NOSLEEP)) == NULL) {
5751                 kmem_free(dmdp, sizeof (struct ddi_minor_data));
5752                 return (DDI_FAILURE);
5753         }
5754         dmdp->dip = dip;
5755         dmdp->ddm_dev = makedevice(major, minor_num);
5756         dmdp->ddm_spec_type = spec_type;
5757         dmdp->ddm_node_type = node_type;
5758         dmdp->type = mtype;
5759         if (flag & CLONE_DEV) {
5760                 dmdp->type = DDM_ALIAS;
5761                 dmdp->ddm_dev = makedevice(ddi_driver_major(clone_dip), major);
5762         }
5763         if (flag & PRIVONLY_DEV) {
5764                 dmdp->ddm_flags |= DM_NO_FSPERM;
5765         }
5766         if (read_priv || write_priv) {
5767                 dmdp->ddm_node_priv =
5768                     devpolicy_priv_by_name(read_priv, write_priv);
5769         }
5770         dmdp->ddm_priv_mode = priv_mode;
5771 
5772         ddi_append_minor_node(dip, dmdp);
5773 
5774         /*
5775          * only log ddi_create_minor_node() calls which occur
5776          * outside the scope of attach(9e)/detach(9e) reconfigurations
5777          */
5778         if (!(DEVI_IS_ATTACHING(dip) || DEVI_IS_DETACHING(dip)) &&
5779             mtype != DDM_INTERNAL_PATH) {
5780                 (void) i_log_devfs_minor_create(dip, name);
5781         }
5782 
5783         /*
5784          * Check if any dacf rules match the creation of this minor node
5785          */
5786         dacfc_match_create_minor(name, node_type, dip, dmdp, flag);
5787         return (DDI_SUCCESS);
5788 }
5789 
5790 int
5791 ddi_create_minor_node(dev_info_t *dip, char *name, int spec_type,
5792     minor_t minor_num, char *node_type, int flag)
5793 {
5794         return (ddi_create_minor_common(dip, name, spec_type, minor_num,
5795             node_type, flag, DDM_MINOR, NULL, NULL, 0));
5796 }
5797 
5798 int
5799 ddi_create_priv_minor_node(dev_info_t *dip, char *name, int spec_type,
5800     minor_t minor_num, char *node_type, int flag,
5801     const char *rdpriv, const char *wrpriv, mode_t priv_mode)
5802 {
5803         return (ddi_create_minor_common(dip, name, spec_type, minor_num,
5804             node_type, flag, DDM_MINOR, rdpriv, wrpriv, priv_mode));
5805 }
5806 
5807 int
5808 ddi_create_default_minor_node(dev_info_t *dip, char *name, int spec_type,
5809     minor_t minor_num, char *node_type, int flag)
5810 {
5811         return (ddi_create_minor_common(dip, name, spec_type, minor_num,
5812             node_type, flag, DDM_DEFAULT, NULL, NULL, 0));
5813 }
5814 
5815 /*
5816  * Internal (non-ddi) routine for drivers to export names known
5817  * to the kernel (especially ddi_pathname_to_dev_t and friends)
5818  * but not exported externally to /dev
5819  */
5820 int
5821 ddi_create_internal_pathname(dev_info_t *dip, char *name, int spec_type,
5822     minor_t minor_num)
5823 {
5824         return (ddi_create_minor_common(dip, name, spec_type, minor_num,
5825             "internal", 0, DDM_INTERNAL_PATH, NULL, NULL, 0));
5826 }
5827 
5828 void
5829 ddi_remove_minor_node(dev_info_t *dip, char *name)
5830 {
5831         int                     circ;
5832         struct ddi_minor_data   *dmdp, *dmdp1;
5833         struct ddi_minor_data   **dmdp_prev;
5834 
5835         ndi_devi_enter(dip, &circ);
5836         dmdp_prev = &DEVI(dip)->devi_minor;
5837         dmdp = DEVI(dip)->devi_minor;
5838         while (dmdp != NULL) {
5839                 dmdp1 = dmdp->next;
5840                 if ((name == NULL || (dmdp->ddm_name != NULL &&
5841                     strcmp(name, dmdp->ddm_name) == 0))) {
5842                         if (dmdp->ddm_name != NULL) {
5843                                 if (dmdp->type != DDM_INTERNAL_PATH)
5844                                         (void) i_log_devfs_minor_remove(dip,
5845                                             dmdp->ddm_name);
5846                                 kmem_free(dmdp->ddm_name,
5847                                     strlen(dmdp->ddm_name) + 1);
5848                         }
5849                         /*
5850                          * Release device privilege, if any.
5851                          * Release dacf client data associated with this minor
5852                          * node by storing NULL.
5853                          */
5854                         if (dmdp->ddm_node_priv)
5855                                 dpfree(dmdp->ddm_node_priv);
5856                         dacf_store_info((dacf_infohdl_t)dmdp, NULL);
5857                         kmem_free(dmdp, sizeof (struct ddi_minor_data));
5858                         *dmdp_prev = dmdp1;
5859                         /*
5860                          * OK, we found it, so get out now -- if we drive on,
5861                          * we will strcmp against garbage.  See 1139209.
5862                          */
5863                         if (name != NULL)
5864                                 break;
5865                 } else {
5866                         dmdp_prev = &dmdp->next;
5867                 }
5868                 dmdp = dmdp1;
5869         }
5870         ndi_devi_exit(dip, circ);
5871 }
5872 
5873 
5874 int
5875 ddi_in_panic()
5876 {
5877         return (panicstr != NULL);
5878 }
5879 
5880 
5881 /*
5882  * Find first bit set in a mask (returned counting from 1 up)
5883  */
5884 
5885 int
5886 ddi_ffs(long mask)
5887 {
5888         return (ffs(mask));
5889 }
5890 
5891 /*
5892  * Find last bit set. Take mask and clear
5893  * all but the most significant bit, and
5894  * then let ffs do the rest of the work.
5895  *
5896  * Algorithm courtesy of Steve Chessin.
5897  */
5898 
5899 int
5900 ddi_fls(long mask)
5901 {
5902         while (mask) {
5903                 long nx;
5904 
5905                 if ((nx = (mask & (mask - 1))) == 0)
5906                         break;
5907                 mask = nx;
5908         }
5909         return (ffs(mask));
5910 }
5911 
5912 /*
5913  * The ddi_soft_state_* routines comprise generic storage management utilities
5914  * for driver soft state structures (in "the old days," this was done with
5915  * statically sized array - big systems and dynamic loading and unloading
5916  * make heap allocation more attractive).
5917  */
5918 
5919 /*
5920  * Allocate a set of pointers to 'n_items' objects of size 'size'
5921  * bytes.  Each pointer is initialized to nil.
5922  *
5923  * The 'size' and 'n_items' values are stashed in the opaque
5924  * handle returned to the caller.
5925  *
5926  * This implementation interprets 'set of pointers' to mean 'array
5927  * of pointers' but note that nothing in the interface definition
5928  * precludes an implementation that uses, for example, a linked list.
5929  * However there should be a small efficiency gain from using an array
5930  * at lookup time.
5931  *
5932  * NOTE As an optimization, we make our growable array allocations in
5933  *      powers of two (bytes), since that's how much kmem_alloc (currently)
5934  *      gives us anyway.  It should save us some free/realloc's ..
5935  *
5936  *      As a further optimization, we make the growable array start out
5937  *      with MIN_N_ITEMS in it.
5938  */
5939 
5940 #define MIN_N_ITEMS     8       /* 8 void *'s == 32 bytes */
5941 
5942 int
5943 ddi_soft_state_init(void **state_p, size_t size, size_t n_items)
5944 {
5945         i_ddi_soft_state        *ss;
5946 
5947         if (state_p == NULL || size == 0)
5948                 return (EINVAL);
5949 
5950         ss = kmem_zalloc(sizeof (*ss), KM_SLEEP);
5951         mutex_init(&ss->lock, NULL, MUTEX_DRIVER, NULL);
5952         ss->size = size;
5953 
5954         if (n_items < MIN_N_ITEMS)
5955                 ss->n_items = MIN_N_ITEMS;
5956         else {
5957                 int bitlog;
5958 
5959                 if ((bitlog = ddi_fls(n_items)) == ddi_ffs(n_items))
5960                         bitlog--;
5961                 ss->n_items = 1 << bitlog;
5962         }
5963 
5964         ASSERT(ss->n_items >= n_items);
5965 
5966         ss->array = kmem_zalloc(ss->n_items * sizeof (void *), KM_SLEEP);
5967 
5968         *state_p = ss;
5969         return (0);
5970 }
5971 
5972 /*
5973  * Allocate a state structure of size 'size' to be associated
5974  * with item 'item'.
5975  *
5976  * In this implementation, the array is extended to
5977  * allow the requested offset, if needed.
5978  */
5979 int
5980 ddi_soft_state_zalloc(void *state, int item)
5981 {
5982         i_ddi_soft_state        *ss = (i_ddi_soft_state *)state;
5983         void                    **array;
5984         void                    *new_element;
5985 
5986         if ((state == NULL) || (item < 0))
5987                 return (DDI_FAILURE);
5988 
5989         mutex_enter(&ss->lock);
5990         if (ss->size == 0) {
5991                 mutex_exit(&ss->lock);
5992                 cmn_err(CE_WARN, "ddi_soft_state_zalloc: bad handle: %s",
5993                     mod_containing_pc(caller()));
5994                 return (DDI_FAILURE);
5995         }
5996 
5997         array = ss->array;   /* NULL if ss->n_items == 0 */
5998         ASSERT(ss->n_items != 0 && array != NULL);
5999 
6000         /*
6001          * refuse to tread on an existing element
6002          */
6003         if (item < ss->n_items && array[item] != NULL) {
6004                 mutex_exit(&ss->lock);
6005                 return (DDI_FAILURE);
6006         }
6007 
6008         /*
6009          * Allocate a new element to plug in
6010          */
6011         new_element = kmem_zalloc(ss->size, KM_SLEEP);
6012 
6013         /*
6014          * Check if the array is big enough, if not, grow it.
6015          */
6016         if (item >= ss->n_items) {
6017                 void                    **new_array;
6018                 size_t                  new_n_items;
6019                 struct i_ddi_soft_state *dirty;
6020 
6021                 /*
6022                  * Allocate a new array of the right length, copy
6023                  * all the old pointers to the new array, then
6024                  * if it exists at all, put the old array on the
6025                  * dirty list.
6026                  *
6027                  * Note that we can't kmem_free() the old array.
6028                  *
6029                  * Why -- well the 'get' operation is 'mutex-free', so we
6030                  * can't easily catch a suspended thread that is just about
6031                  * to dereference the array we just grew out of.  So we
6032                  * cons up a header and put it on a list of 'dirty'
6033                  * pointer arrays.  (Dirty in the sense that there may
6034                  * be suspended threads somewhere that are in the middle
6035                  * of referencing them).  Fortunately, we -can- garbage
6036                  * collect it all at ddi_soft_state_fini time.
6037                  */
6038                 new_n_items = ss->n_items;
6039                 while (new_n_items < (1 + item))
6040                         new_n_items <<= 1;        /* double array size .. */
6041 
6042                 ASSERT(new_n_items >= (1 + item));   /* sanity check! */
6043 
6044                 new_array = kmem_zalloc(new_n_items * sizeof (void *),
6045                     KM_SLEEP);
6046                 /*
6047                  * Copy the pointers into the new array
6048                  */
6049                 bcopy(array, new_array, ss->n_items * sizeof (void *));
6050 
6051                 /*
6052                  * Save the old array on the dirty list
6053                  */
6054                 dirty = kmem_zalloc(sizeof (*dirty), KM_SLEEP);
6055                 dirty->array = ss->array;
6056                 dirty->n_items = ss->n_items;
6057                 dirty->next = ss->next;
6058                 ss->next = dirty;
6059 
6060                 ss->array = (array = new_array);
6061                 ss->n_items = new_n_items;
6062         }
6063 
6064         ASSERT(array != NULL && item < ss->n_items && array[item] == NULL);
6065 
6066         array[item] = new_element;
6067 
6068         mutex_exit(&ss->lock);
6069         return (DDI_SUCCESS);
6070 }
6071 
6072 /*
6073  * Fetch a pointer to the allocated soft state structure.
6074  *
6075  * This is designed to be cheap.
6076  *
6077  * There's an argument that there should be more checking for
6078  * nil pointers and out of bounds on the array.. but we do a lot
6079  * of that in the alloc/free routines.
6080  *
6081  * An array has the convenience that we don't need to lock read-access
6082  * to it c.f. a linked list.  However our "expanding array" strategy
6083  * means that we should hold a readers lock on the i_ddi_soft_state
6084  * structure.
6085  *
6086  * However, from a performance viewpoint, we need to do it without
6087  * any locks at all -- this also makes it a leaf routine.  The algorithm
6088  * is 'lock-free' because we only discard the pointer arrays at
6089  * ddi_soft_state_fini() time.
6090  */
6091 void *
6092 ddi_get_soft_state(void *state, int item)
6093 {
6094         i_ddi_soft_state        *ss = (i_ddi_soft_state *)state;
6095 
6096         ASSERT((ss != NULL) && (item >= 0));
6097 
6098         if (item < ss->n_items && ss->array != NULL)
6099                 return (ss->array[item]);
6100         return (NULL);
6101 }
6102 
6103 /*
6104  * Free the state structure corresponding to 'item.'   Freeing an
6105  * element that has either gone or was never allocated is not
6106  * considered an error.  Note that we free the state structure, but
6107  * we don't shrink our pointer array, or discard 'dirty' arrays,
6108  * since even a few pointers don't really waste too much memory.
6109  *
6110  * Passing an item number that is out of bounds, or a null pointer will
6111  * provoke an error message.
6112  */
6113 void
6114 ddi_soft_state_free(void *state, int item)
6115 {
6116         i_ddi_soft_state        *ss = (i_ddi_soft_state *)state;
6117         void                    **array;
6118         void                    *element;
6119         static char             msg[] = "ddi_soft_state_free:";
6120 
6121         if (ss == NULL) {
6122                 cmn_err(CE_WARN, "%s null handle: %s",
6123                     msg, mod_containing_pc(caller()));
6124                 return;
6125         }
6126 
6127         element = NULL;
6128 
6129         mutex_enter(&ss->lock);
6130 
6131         if ((array = ss->array) == NULL || ss->size == 0) {
6132                 cmn_err(CE_WARN, "%s bad handle: %s",
6133                     msg, mod_containing_pc(caller()));
6134         } else if (item < 0 || item >= ss->n_items) {
6135                 cmn_err(CE_WARN, "%s item %d not in range [0..%lu]: %s",
6136                     msg, item, ss->n_items - 1, mod_containing_pc(caller()));
6137         } else if (array[item] != NULL) {
6138                 element = array[item];
6139                 array[item] = NULL;
6140         }
6141 
6142         mutex_exit(&ss->lock);
6143 
6144         if (element)
6145                 kmem_free(element, ss->size);
6146 }
6147 
6148 /*
6149  * Free the entire set of pointers, and any
6150  * soft state structures contained therein.
6151  *
6152  * Note that we don't grab the ss->lock mutex, even though
6153  * we're inspecting the various fields of the data structure.
6154  *
6155  * There is an implicit assumption that this routine will
6156  * never run concurrently with any of the above on this
6157  * particular state structure i.e. by the time the driver
6158  * calls this routine, there should be no other threads
6159  * running in the driver.
6160  */
6161 void
6162 ddi_soft_state_fini(void **state_p)
6163 {
6164         i_ddi_soft_state        *ss, *dirty;
6165         int                     item;
6166         static char             msg[] = "ddi_soft_state_fini:";
6167 
6168         if (state_p == NULL ||
6169             (ss = (i_ddi_soft_state *)(*state_p)) == NULL) {
6170                 cmn_err(CE_WARN, "%s null handle: %s",
6171                     msg, mod_containing_pc(caller()));
6172                 return;
6173         }
6174 
6175         if (ss->size == 0) {
6176                 cmn_err(CE_WARN, "%s bad handle: %s",
6177                     msg, mod_containing_pc(caller()));
6178                 return;
6179         }
6180 
6181         if (ss->n_items > 0) {
6182                 for (item = 0; item < ss->n_items; item++)
6183                         ddi_soft_state_free(ss, item);
6184                 kmem_free(ss->array, ss->n_items * sizeof (void *));
6185         }
6186 
6187         /*
6188          * Now delete any dirty arrays from previous 'grow' operations
6189          */
6190         for (dirty = ss->next; dirty; dirty = ss->next) {
6191                 ss->next = dirty->next;
6192                 kmem_free(dirty->array, dirty->n_items * sizeof (void *));
6193                 kmem_free(dirty, sizeof (*dirty));
6194         }
6195 
6196         mutex_destroy(&ss->lock);
6197         kmem_free(ss, sizeof (*ss));
6198 
6199         *state_p = NULL;
6200 }
6201 
6202 #define SS_N_ITEMS_PER_HASH     16
6203 #define SS_MIN_HASH_SZ          16
6204 #define SS_MAX_HASH_SZ          4096
6205 
6206 int
6207 ddi_soft_state_bystr_init(ddi_soft_state_bystr **state_p, size_t size,
6208     int n_items)
6209 {
6210         i_ddi_soft_state_bystr  *sss;
6211         int                     hash_sz;
6212 
6213         ASSERT(state_p && size && n_items);
6214         if ((state_p == NULL) || (size == 0) || (n_items == 0))
6215                 return (EINVAL);
6216 
6217         /* current implementation is based on hash, convert n_items to hash */
6218         hash_sz = n_items / SS_N_ITEMS_PER_HASH;
6219         if (hash_sz < SS_MIN_HASH_SZ)
6220                 hash_sz = SS_MIN_HASH_SZ;
6221         else if (hash_sz > SS_MAX_HASH_SZ)
6222                 hash_sz = SS_MAX_HASH_SZ;
6223 
6224         /* allocate soft_state pool */
6225         sss = kmem_zalloc(sizeof (*sss), KM_SLEEP);
6226         sss->ss_size = size;
6227         sss->ss_mod_hash = mod_hash_create_strhash("soft_state_bystr",
6228             hash_sz, mod_hash_null_valdtor);
6229         *state_p = (ddi_soft_state_bystr *)sss;
6230         return (0);
6231 }
6232 
6233 int
6234 ddi_soft_state_bystr_zalloc(ddi_soft_state_bystr *state, const char *str)
6235 {
6236         i_ddi_soft_state_bystr  *sss = (i_ddi_soft_state_bystr *)state;
6237         void                    *sso;
6238         char                    *dup_str;
6239 
6240         ASSERT(sss && str && sss->ss_mod_hash);
6241         if ((sss == NULL) || (str == NULL) || (sss->ss_mod_hash == NULL))
6242                 return (DDI_FAILURE);
6243         sso = kmem_zalloc(sss->ss_size, KM_SLEEP);
6244         dup_str = i_ddi_strdup((char *)str, KM_SLEEP);
6245         if (mod_hash_insert(sss->ss_mod_hash,
6246             (mod_hash_key_t)dup_str, (mod_hash_val_t)sso) == 0)
6247                 return (DDI_SUCCESS);
6248 
6249         /*
6250          * The only error from an strhash insert is caused by a duplicate key.
6251          * We refuse to tread on an existing elements, so free and fail.
6252          */
6253         kmem_free(dup_str, strlen(dup_str) + 1);
6254         kmem_free(sso, sss->ss_size);
6255         return (DDI_FAILURE);
6256 }
6257 
6258 void *
6259 ddi_soft_state_bystr_get(ddi_soft_state_bystr *state, const char *str)
6260 {
6261         i_ddi_soft_state_bystr  *sss = (i_ddi_soft_state_bystr *)state;
6262         void                    *sso;
6263 
6264         ASSERT(sss && str && sss->ss_mod_hash);
6265         if ((sss == NULL) || (str == NULL) || (sss->ss_mod_hash == NULL))
6266                 return (NULL);
6267 
6268         if (mod_hash_find(sss->ss_mod_hash,
6269             (mod_hash_key_t)str, (mod_hash_val_t *)&sso) == 0)
6270                 return (sso);
6271         return (NULL);
6272 }
6273 
6274 void
6275 ddi_soft_state_bystr_free(ddi_soft_state_bystr *state, const char *str)
6276 {
6277         i_ddi_soft_state_bystr  *sss = (i_ddi_soft_state_bystr *)state;
6278         void                    *sso;
6279 
6280         ASSERT(sss && str && sss->ss_mod_hash);
6281         if ((sss == NULL) || (str == NULL) || (sss->ss_mod_hash == NULL))
6282                 return;
6283 
6284         (void) mod_hash_remove(sss->ss_mod_hash,
6285             (mod_hash_key_t)str, (mod_hash_val_t *)&sso);
6286         kmem_free(sso, sss->ss_size);
6287 }
6288 
6289 void
6290 ddi_soft_state_bystr_fini(ddi_soft_state_bystr **state_p)
6291 {
6292         i_ddi_soft_state_bystr  *sss;
6293 
6294         ASSERT(state_p);
6295         if (state_p == NULL)
6296                 return;
6297 
6298         sss = (i_ddi_soft_state_bystr *)(*state_p);
6299         if (sss == NULL)
6300                 return;
6301 
6302         ASSERT(sss->ss_mod_hash);
6303         if (sss->ss_mod_hash) {
6304                 mod_hash_destroy_strhash(sss->ss_mod_hash);
6305                 sss->ss_mod_hash = NULL;
6306         }
6307 
6308         kmem_free(sss, sizeof (*sss));
6309         *state_p = NULL;
6310 }
6311 
6312 /*
6313  * The ddi_strid_* routines provide string-to-index management utilities.
6314  */
6315 /* allocate and initialize an strid set */
6316 int
6317 ddi_strid_init(ddi_strid **strid_p, int n_items)
6318 {
6319         i_ddi_strid     *ss;
6320         int             hash_sz;
6321 
6322         if (strid_p == NULL)
6323                 return (DDI_FAILURE);
6324 
6325         /* current implementation is based on hash, convert n_items to hash */
6326         hash_sz = n_items / SS_N_ITEMS_PER_HASH;
6327         if (hash_sz < SS_MIN_HASH_SZ)
6328                 hash_sz = SS_MIN_HASH_SZ;
6329         else if (hash_sz > SS_MAX_HASH_SZ)
6330                 hash_sz = SS_MAX_HASH_SZ;
6331 
6332         ss = kmem_alloc(sizeof (*ss), KM_SLEEP);
6333         ss->strid_chunksz = n_items;
6334         ss->strid_spacesz = n_items;
6335         ss->strid_space = id_space_create("strid", 1, n_items);
6336         ss->strid_bystr = mod_hash_create_strhash("strid_bystr", hash_sz,
6337             mod_hash_null_valdtor);
6338         ss->strid_byid = mod_hash_create_idhash("strid_byid", hash_sz,
6339             mod_hash_null_valdtor);
6340         *strid_p = (ddi_strid *)ss;
6341         return (DDI_SUCCESS);
6342 }
6343 
6344 /* allocate an id mapping within the specified set for str, return id */
6345 static id_t
6346 i_ddi_strid_alloc(ddi_strid *strid, char *str)
6347 {
6348         i_ddi_strid     *ss = (i_ddi_strid *)strid;
6349         id_t            id;
6350         char            *s;
6351 
6352         ASSERT(ss && str);
6353         if ((ss == NULL) || (str == NULL))
6354                 return (0);
6355 
6356         /*
6357          * Allocate an id using VM_FIRSTFIT in order to keep allocated id
6358          * range as compressed as possible.  This is important to minimize
6359          * the amount of space used when the id is used as a ddi_soft_state
6360          * index by the caller.
6361          *
6362          * If the id list is exhausted, increase the size of the list
6363          * by the chuck size specified in ddi_strid_init and reattempt
6364          * the allocation
6365          */
6366         if ((id = id_allocff_nosleep(ss->strid_space)) == (id_t)-1) {
6367                 id_space_extend(ss->strid_space, ss->strid_spacesz,
6368                     ss->strid_spacesz + ss->strid_chunksz);
6369                 ss->strid_spacesz += ss->strid_chunksz;
6370                 if ((id = id_allocff_nosleep(ss->strid_space)) == (id_t)-1)
6371                         return (0);
6372         }
6373 
6374         /*
6375          * NOTE: since we create and destroy in unison we can save space by
6376          * using bystr key as the byid value.  This means destroy must occur
6377          * in (byid, bystr) order.
6378          */
6379         s = i_ddi_strdup(str, KM_SLEEP);
6380         if (mod_hash_insert(ss->strid_bystr, (mod_hash_key_t)s,
6381             (mod_hash_val_t)(intptr_t)id) != 0) {
6382                 ddi_strid_free(strid, id);
6383                 return (0);
6384         }
6385         if (mod_hash_insert(ss->strid_byid, (mod_hash_key_t)(intptr_t)id,
6386             (mod_hash_val_t)s) != 0) {
6387                 ddi_strid_free(strid, id);
6388                 return (0);
6389         }
6390 
6391         /* NOTE: s if freed on mod_hash_destroy by mod_hash_strval_dtor */
6392         return (id);
6393 }
6394 
6395 /* allocate an id mapping within the specified set for str, return id */
6396 id_t
6397 ddi_strid_alloc(ddi_strid *strid, char *str)
6398 {
6399         return (i_ddi_strid_alloc(strid, str));
6400 }
6401 
6402 /* return the id within the specified strid given the str */
6403 id_t
6404 ddi_strid_str2id(ddi_strid *strid, char *str)
6405 {
6406         i_ddi_strid     *ss = (i_ddi_strid *)strid;
6407         id_t            id = 0;
6408         mod_hash_val_t  hv;
6409 
6410         ASSERT(ss && str);
6411         if (ss && str && (mod_hash_find(ss->strid_bystr,
6412             (mod_hash_key_t)str, &hv) == 0))
6413                 id = (int)(intptr_t)hv;
6414         return (id);
6415 }
6416 
6417 /* return str within the specified strid given the id */
6418 char *
6419 ddi_strid_id2str(ddi_strid *strid, id_t id)
6420 {
6421         i_ddi_strid     *ss = (i_ddi_strid *)strid;
6422         char            *str = NULL;
6423         mod_hash_val_t  hv;
6424 
6425         ASSERT(ss && id > 0);
6426         if (ss && (id > 0) && (mod_hash_find(ss->strid_byid,
6427             (mod_hash_key_t)(uintptr_t)id, &hv) == 0))
6428                 str = (char *)hv;
6429         return (str);
6430 }
6431 
6432 /* free the id mapping within the specified strid */
6433 void
6434 ddi_strid_free(ddi_strid *strid, id_t id)
6435 {
6436         i_ddi_strid     *ss = (i_ddi_strid *)strid;
6437         char            *str;
6438 
6439         ASSERT(ss && id > 0);
6440         if ((ss == NULL) || (id <= 0))
6441                 return;
6442 
6443         /* bystr key is byid value: destroy order must be (byid, bystr) */
6444         str = ddi_strid_id2str(strid, id);
6445         (void) mod_hash_destroy(ss->strid_byid, (mod_hash_key_t)(uintptr_t)id);
6446         id_free(ss->strid_space, id);
6447 
6448         if (str)
6449                 (void) mod_hash_destroy(ss->strid_bystr, (mod_hash_key_t)str);
6450 }
6451 
6452 /* destroy the strid set */
6453 void
6454 ddi_strid_fini(ddi_strid **strid_p)
6455 {
6456         i_ddi_strid     *ss;
6457 
6458         ASSERT(strid_p);
6459         if (strid_p == NULL)
6460                 return;
6461 
6462         ss = (i_ddi_strid *)(*strid_p);
6463         if (ss == NULL)
6464                 return;
6465 
6466         /* bystr key is byid value: destroy order must be (byid, bystr) */
6467         if (ss->strid_byid)
6468                 mod_hash_destroy_hash(ss->strid_byid);
6469         if (ss->strid_byid)
6470                 mod_hash_destroy_hash(ss->strid_bystr);
6471         if (ss->strid_space)
6472                 id_space_destroy(ss->strid_space);
6473         kmem_free(ss, sizeof (*ss));
6474         *strid_p = NULL;
6475 }
6476 
6477 /*
6478  * This sets the devi_addr entry in the dev_info structure 'dip' to 'name'.
6479  * Storage is double buffered to prevent updates during devi_addr use -
6480  * double buffering is adaquate for reliable ddi_deviname() consumption.
6481  * The double buffer is not freed until dev_info structure destruction
6482  * (by i_ddi_free_node).
6483  */
6484 void
6485 ddi_set_name_addr(dev_info_t *dip, char *name)
6486 {
6487         char    *buf = DEVI(dip)->devi_addr_buf;
6488         char    *newaddr;
6489 
6490         if (buf == NULL) {
6491                 buf = kmem_zalloc(2 * MAXNAMELEN, KM_SLEEP);
6492                 DEVI(dip)->devi_addr_buf = buf;
6493         }
6494 
6495         if (name) {
6496                 ASSERT(strlen(name) < MAXNAMELEN);
6497                 newaddr = (DEVI(dip)->devi_addr == buf) ?
6498                     (buf + MAXNAMELEN) : buf;
6499                 (void) strlcpy(newaddr, name, MAXNAMELEN);
6500         } else
6501                 newaddr = NULL;
6502 
6503         DEVI(dip)->devi_addr = newaddr;
6504 }
6505 
6506 char *
6507 ddi_get_name_addr(dev_info_t *dip)
6508 {
6509         return (DEVI(dip)->devi_addr);
6510 }
6511 
6512 void
6513 ddi_set_parent_data(dev_info_t *dip, void *pd)
6514 {
6515         DEVI(dip)->devi_parent_data = pd;
6516 }
6517 
6518 void *
6519 ddi_get_parent_data(dev_info_t *dip)
6520 {
6521         return (DEVI(dip)->devi_parent_data);
6522 }
6523 
6524 /*
6525  * ddi_name_to_major: returns the major number of a named module,
6526  * derived from the current driver alias binding.
6527  *
6528  * Caveat: drivers should avoid the use of this function, in particular
6529  * together with ddi_get_name/ddi_binding name, as per
6530  *      major = ddi_name_to_major(ddi_get_name(devi));
6531  * ddi_name_to_major() relies on the state of the device/alias binding,
6532  * which can and does change dynamically as aliases are administered
6533  * over time.  An attached device instance cannot rely on the major
6534  * number returned by ddi_name_to_major() to match its own major number.
6535  *
6536  * For driver use, ddi_driver_major() reliably returns the major number
6537  * for the module to which the device was bound at attach time over
6538  * the life of the instance.
6539  *      major = ddi_driver_major(dev_info_t *)
6540  */
6541 major_t
6542 ddi_name_to_major(char *name)
6543 {
6544         return (mod_name_to_major(name));
6545 }
6546 
6547 /*
6548  * ddi_major_to_name: Returns the module name bound to a major number.
6549  */
6550 char *
6551 ddi_major_to_name(major_t major)
6552 {
6553         return (mod_major_to_name(major));
6554 }
6555 
6556 /*
6557  * Return the name of the devinfo node pointed at by 'dip' in the buffer
6558  * pointed at by 'name.'  A devinfo node is named as a result of calling
6559  * ddi_initchild().
6560  *
6561  * Note: the driver must be held before calling this function!
6562  */
6563 char *
6564 ddi_deviname(dev_info_t *dip, char *name)
6565 {
6566         char *addrname;
6567         char none = '\0';
6568 
6569         if (dip == ddi_root_node()) {
6570                 *name = '\0';
6571                 return (name);
6572         }
6573 
6574         if (i_ddi_node_state(dip) < DS_BOUND) {
6575                 addrname = &none;
6576         } else {
6577                 /*
6578                  * Use ddi_get_name_addr() without checking state so we get
6579                  * a unit-address if we are called after ddi_set_name_addr()
6580                  * by nexus DDI_CTL_INITCHILD code, but before completing
6581                  * node promotion to DS_INITIALIZED.  We currently have
6582                  * two situations where we are called in this state:
6583                  *   o  For framework processing of a path-oriented alias.
6584                  *   o  If a SCSA nexus driver calls ddi_devid_register()
6585                  *      from it's tran_tgt_init(9E) implementation.
6586                  */
6587                 addrname = ddi_get_name_addr(dip);
6588                 if (addrname == NULL)
6589                         addrname = &none;
6590         }
6591 
6592         if (*addrname == '\0') {
6593                 (void) sprintf(name, "/%s", ddi_node_name(dip));
6594         } else {
6595                 (void) sprintf(name, "/%s@%s", ddi_node_name(dip), addrname);
6596         }
6597 
6598         return (name);
6599 }
6600 
6601 /*
6602  * Spits out the name of device node, typically name@addr, for a given node,
6603  * using the driver name, not the nodename.
6604  *
6605  * Used by match_parent. Not to be used elsewhere.
6606  */
6607 char *
6608 i_ddi_parname(dev_info_t *dip, char *name)
6609 {
6610         char *addrname;
6611 
6612         if (dip == ddi_root_node()) {
6613                 *name = '\0';
6614                 return (name);
6615         }
6616 
6617         ASSERT(i_ddi_node_state(dip) >= DS_INITIALIZED);
6618 
6619         if (*(addrname = ddi_get_name_addr(dip)) == '\0')
6620                 (void) sprintf(name, "%s", ddi_binding_name(dip));
6621         else
6622                 (void) sprintf(name, "%s@%s", ddi_binding_name(dip), addrname);
6623         return (name);
6624 }
6625 
6626 static char *
6627 pathname_work(dev_info_t *dip, char *path)
6628 {
6629         char *bp;
6630 
6631         if (dip == ddi_root_node()) {
6632                 *path = '\0';
6633                 return (path);
6634         }
6635         (void) pathname_work(ddi_get_parent(dip), path);
6636         bp = path + strlen(path);
6637         (void) ddi_deviname(dip, bp);
6638         return (path);
6639 }
6640 
6641 char *
6642 ddi_pathname(dev_info_t *dip, char *path)
6643 {
6644         return (pathname_work(dip, path));
6645 }
6646 
6647 char *
6648 ddi_pathname_minor(struct ddi_minor_data *dmdp, char *path)
6649 {
6650         if (dmdp->dip == NULL)
6651                 *path = '\0';
6652         else {
6653                 (void) ddi_pathname(dmdp->dip, path);
6654                 if (dmdp->ddm_name) {
6655                         (void) strcat(path, ":");
6656                         (void) strcat(path, dmdp->ddm_name);
6657                 }
6658         }
6659         return (path);
6660 }
6661 
6662 static char *
6663 pathname_work_obp(dev_info_t *dip, char *path)
6664 {
6665         char *bp;
6666         char *obp_path;
6667 
6668         /*
6669          * look up the "obp-path" property, return the path if it exists
6670          */
6671         if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
6672             "obp-path", &obp_path) == DDI_PROP_SUCCESS) {
6673                 (void) strcpy(path, obp_path);
6674                 ddi_prop_free(obp_path);
6675                 return (path);
6676         }
6677 
6678         /*
6679          * stop at root, no obp path
6680          */
6681         if (dip == ddi_root_node()) {
6682                 return (NULL);
6683         }
6684 
6685         obp_path = pathname_work_obp(ddi_get_parent(dip), path);
6686         if (obp_path == NULL)
6687                 return (NULL);
6688 
6689         /*
6690          * append our component to parent's obp path
6691          */
6692         bp = path + strlen(path);
6693         if (*(bp - 1) != '/')
6694                 (void) strcat(bp++, "/");
6695         (void) ddi_deviname(dip, bp);
6696         return (path);
6697 }
6698 
6699 /*
6700  * return the 'obp-path' based path for the given node, or NULL if the node
6701  * does not have a different obp path. NOTE: Unlike ddi_pathname, this
6702  * function can't be called from interrupt context (since we need to
6703  * lookup a string property).
6704  */
6705 char *
6706 ddi_pathname_obp(dev_info_t *dip, char *path)
6707 {
6708         ASSERT(!servicing_interrupt());
6709         if (dip == NULL || path == NULL)
6710                 return (NULL);
6711 
6712         /* split work into a separate function to aid debugging */
6713         return (pathname_work_obp(dip, path));
6714 }
6715 
6716 int
6717 ddi_pathname_obp_set(dev_info_t *dip, char *component)
6718 {
6719         dev_info_t *pdip;
6720         char *obp_path = NULL;
6721         int rc = DDI_FAILURE;
6722 
6723         if (dip == NULL)
6724                 return (DDI_FAILURE);
6725 
6726         obp_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6727 
6728         pdip = ddi_get_parent(dip);
6729 
6730         if (ddi_pathname_obp(pdip, obp_path) == NULL) {
6731                 (void) ddi_pathname(pdip, obp_path);
6732         }
6733 
6734         if (component) {
6735                 (void) strncat(obp_path, "/", MAXPATHLEN);
6736                 (void) strncat(obp_path, component, MAXPATHLEN);
6737         }
6738         rc = ndi_prop_update_string(DDI_DEV_T_NONE, dip, "obp-path",
6739             obp_path);
6740 
6741         if (obp_path)
6742                 kmem_free(obp_path, MAXPATHLEN);
6743 
6744         return (rc);
6745 }
6746 
6747 /*
6748  * Given a dev_t, return the pathname of the corresponding device in the
6749  * buffer pointed at by "path."  The buffer is assumed to be large enough
6750  * to hold the pathname of the device (MAXPATHLEN).
6751  *
6752  * The pathname of a device is the pathname of the devinfo node to which
6753  * the device "belongs," concatenated with the character ':' and the name
6754  * of the minor node corresponding to the dev_t.  If spec_type is 0 then
6755  * just the pathname of the devinfo node is returned without driving attach
6756  * of that node.  For a non-zero spec_type, an attach is performed and a
6757  * search of the minor list occurs.
6758  *
6759  * It is possible that the path associated with the dev_t is not
6760  * currently available in the devinfo tree.  In order to have a
6761  * dev_t, a device must have been discovered before, which means
6762  * that the path is always in the instance tree.  The one exception
6763  * to this is if the dev_t is associated with a pseudo driver, in
6764  * which case the device must exist on the pseudo branch of the
6765  * devinfo tree as a result of parsing .conf files.
6766  */
6767 int
6768 ddi_dev_pathname(dev_t devt, int spec_type, char *path)
6769 {
6770         int             circ;
6771         major_t         major = getmajor(devt);
6772         int             instance;
6773         dev_info_t      *dip;
6774         char            *minorname;
6775         char            *drvname;
6776 
6777         if (major >= devcnt)
6778                 goto fail;
6779         if (major == clone_major) {
6780                 /* clone has no minor nodes, manufacture the path here */
6781                 if ((drvname = ddi_major_to_name(getminor(devt))) == NULL)
6782                         goto fail;
6783 
6784                 (void) snprintf(path, MAXPATHLEN, "%s:%s", CLONE_PATH, drvname);
6785                 return (DDI_SUCCESS);
6786         }
6787 
6788         /* extract instance from devt (getinfo(9E) DDI_INFO_DEVT2INSTANCE). */
6789         if ((instance = dev_to_instance(devt)) == -1)
6790                 goto fail;
6791 
6792         /* reconstruct the path given the major/instance */
6793         if (e_ddi_majorinstance_to_path(major, instance, path) != DDI_SUCCESS)
6794                 goto fail;
6795 
6796         /* if spec_type given we must drive attach and search minor nodes */
6797         if ((spec_type == S_IFCHR) || (spec_type == S_IFBLK)) {
6798                 /* attach the path so we can search minors */
6799                 if ((dip = e_ddi_hold_devi_by_path(path, 0)) == NULL)
6800                         goto fail;
6801 
6802                 /* Add minorname to path. */
6803                 ndi_devi_enter(dip, &circ);
6804                 minorname = i_ddi_devtspectype_to_minorname(dip,
6805                     devt, spec_type);
6806                 if (minorname) {
6807                         (void) strcat(path, ":");
6808                         (void) strcat(path, minorname);
6809                 }
6810                 ndi_devi_exit(dip, circ);
6811                 ddi_release_devi(dip);
6812                 if (minorname == NULL)
6813                         goto fail;
6814         }
6815         ASSERT(strlen(path) < MAXPATHLEN);
6816         return (DDI_SUCCESS);
6817 
6818 fail:   *path = 0;
6819         return (DDI_FAILURE);
6820 }
6821 
6822 /*
6823  * Given a major number and an instance, return the path.
6824  * This interface does NOT drive attach.
6825  */
6826 int
6827 e_ddi_majorinstance_to_path(major_t major, int instance, char *path)
6828 {
6829         struct devnames *dnp;
6830         dev_info_t      *dip;
6831 
6832         if ((major >= devcnt) || (instance == -1)) {
6833                 *path = 0;
6834                 return (DDI_FAILURE);
6835         }
6836 
6837         /* look for the major/instance in the instance tree */
6838         if (e_ddi_instance_majorinstance_to_path(major, instance,
6839             path) == DDI_SUCCESS) {
6840                 ASSERT(strlen(path) < MAXPATHLEN);
6841                 return (DDI_SUCCESS);
6842         }
6843 
6844         /*
6845          * Not in instance tree, find the instance on the per driver list and
6846          * construct path to instance via ddi_pathname(). This is how paths
6847          * down the 'pseudo' branch are constructed.
6848          */
6849         dnp = &(devnamesp[major]);
6850         LOCK_DEV_OPS(&(dnp->dn_lock));
6851         for (dip = dnp->dn_head; dip;
6852             dip = (dev_info_t *)DEVI(dip)->devi_next) {
6853                 /* Skip if instance does not match. */
6854                 if (DEVI(dip)->devi_instance != instance)
6855                         continue;
6856 
6857                 /*
6858                  * An ndi_hold_devi() does not prevent DS_INITIALIZED->DS_BOUND
6859                  * node demotion, so it is not an effective way of ensuring
6860                  * that the ddi_pathname result has a unit-address.  Instead,
6861                  * we reverify the node state after calling ddi_pathname().
6862                  */
6863                 if (i_ddi_node_state(dip) >= DS_INITIALIZED) {
6864                         (void) ddi_pathname(dip, path);
6865                         if (i_ddi_node_state(dip) < DS_INITIALIZED)
6866                                 continue;
6867                         UNLOCK_DEV_OPS(&(dnp->dn_lock));
6868                         ASSERT(strlen(path) < MAXPATHLEN);
6869                         return (DDI_SUCCESS);
6870                 }
6871         }
6872         UNLOCK_DEV_OPS(&(dnp->dn_lock));
6873 
6874         /* can't reconstruct the path */
6875         *path = 0;
6876         return (DDI_FAILURE);
6877 }
6878 
6879 #define GLD_DRIVER_PPA "SUNW,gld_v0_ppa"
6880 
6881 /*
6882  * Given the dip for a network interface return the ppa for that interface.
6883  *
6884  * In all cases except GLD v0 drivers, the ppa == instance.
6885  * In the case of GLD v0 drivers, the ppa is equal to the attach order.
6886  * So for these drivers when the attach routine calls gld_register(),
6887  * the GLD framework creates an integer property called "gld_driver_ppa"
6888  * that can be queried here.
6889  *
6890  * The only time this function is used is when a system is booting over nfs.
6891  * In this case the system has to resolve the pathname of the boot device
6892  * to it's ppa.
6893  */
6894 int
6895 i_ddi_devi_get_ppa(dev_info_t *dip)
6896 {
6897         return (ddi_prop_get_int(DDI_DEV_T_ANY, dip,
6898             DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
6899             GLD_DRIVER_PPA, ddi_get_instance(dip)));
6900 }
6901 
6902 /*
6903  * i_ddi_devi_set_ppa() should only be called from gld_register()
6904  * and only for GLD v0 drivers
6905  */
6906 void
6907 i_ddi_devi_set_ppa(dev_info_t *dip, int ppa)
6908 {
6909         (void) e_ddi_prop_update_int(DDI_DEV_T_NONE, dip, GLD_DRIVER_PPA, ppa);
6910 }
6911 
6912 
6913 /*
6914  * Private DDI Console bell functions.
6915  */
6916 void
6917 ddi_ring_console_bell(clock_t duration)
6918 {
6919         if (ddi_console_bell_func != NULL)
6920                 (*ddi_console_bell_func)(duration);
6921 }
6922 
6923 void
6924 ddi_set_console_bell(void (*bellfunc)(clock_t duration))
6925 {
6926         ddi_console_bell_func = bellfunc;
6927 }
6928 
6929 int
6930 ddi_dma_alloc_handle(dev_info_t *dip, ddi_dma_attr_t *attr,
6931         int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
6932 {
6933         int (*funcp)() = ddi_dma_allochdl;
6934         ddi_dma_attr_t dma_attr;
6935         struct bus_ops *bop;
6936 
6937         if (attr == (ddi_dma_attr_t *)0)
6938                 return (DDI_DMA_BADATTR);
6939 
6940         dma_attr = *attr;
6941 
6942         bop = DEVI(dip)->devi_ops->devo_bus_ops;
6943         if (bop && bop->bus_dma_allochdl)
6944                 funcp = bop->bus_dma_allochdl;
6945 
6946         return ((*funcp)(dip, dip, &dma_attr, waitfp, arg, handlep));
6947 }
6948 
6949 void
6950 ddi_dma_free_handle(ddi_dma_handle_t *handlep)
6951 {
6952         ddi_dma_handle_t h = *handlep;
6953         (void) ddi_dma_freehdl(HD, HD, h);
6954 }
6955 
6956 static uintptr_t dma_mem_list_id = 0;
6957 
6958 
6959 int
6960 ddi_dma_mem_alloc(ddi_dma_handle_t handle, size_t length,
6961         ddi_device_acc_attr_t *accattrp, uint_t flags,
6962         int (*waitfp)(caddr_t), caddr_t arg, caddr_t *kaddrp,
6963         size_t *real_length, ddi_acc_handle_t *handlep)
6964 {
6965         ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
6966         dev_info_t *dip = hp->dmai_rdip;
6967         ddi_acc_hdl_t *ap;
6968         ddi_dma_attr_t *attrp = &hp->dmai_attr;
6969         uint_t sleepflag, xfermodes;
6970         int (*fp)(caddr_t);
6971         int rval;
6972 
6973         if (waitfp == DDI_DMA_SLEEP)
6974                 fp = (int (*)())KM_SLEEP;
6975         else if (waitfp == DDI_DMA_DONTWAIT)
6976                 fp = (int (*)())KM_NOSLEEP;
6977         else
6978                 fp = waitfp;
6979         *handlep = impl_acc_hdl_alloc(fp, arg);
6980         if (*handlep == NULL)
6981                 return (DDI_FAILURE);
6982 
6983         /* check if the cache attributes are supported */
6984         if (i_ddi_check_cache_attr(flags) == B_FALSE)
6985                 return (DDI_FAILURE);
6986 
6987         /*
6988          * Transfer the meaningful bits to xfermodes.
6989          * Double-check if the 3rd party driver correctly sets the bits.
6990          * If not, set DDI_DMA_STREAMING to keep compatibility.
6991          */
6992         xfermodes = flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING);
6993         if (xfermodes == 0) {
6994                 xfermodes = DDI_DMA_STREAMING;
6995         }
6996 
6997         /*
6998          * initialize the common elements of data access handle
6999          */
7000         ap = impl_acc_hdl_get(*handlep);
7001         ap->ah_vers = VERS_ACCHDL;
7002         ap->ah_dip = dip;
7003         ap->ah_offset = 0;
7004         ap->ah_len = 0;
7005         ap->ah_xfermodes = flags;
7006         ap->ah_acc = *accattrp;
7007 
7008         sleepflag = ((waitfp == DDI_DMA_SLEEP) ? 1 : 0);
7009         if (xfermodes == DDI_DMA_CONSISTENT) {
7010                 rval = i_ddi_mem_alloc(dip, attrp, length, sleepflag,
7011                     flags, accattrp, kaddrp, NULL, ap);
7012                 *real_length = length;
7013         } else {
7014                 rval = i_ddi_mem_alloc(dip, attrp, length, sleepflag,
7015                     flags, accattrp, kaddrp, real_length, ap);
7016         }
7017         if (rval == DDI_SUCCESS) {
7018                 ap->ah_len = (off_t)(*real_length);
7019                 ap->ah_addr = *kaddrp;
7020         } else {
7021                 impl_acc_hdl_free(*handlep);
7022                 *handlep = (ddi_acc_handle_t)NULL;
7023                 if (waitfp != DDI_DMA_SLEEP && waitfp != DDI_DMA_DONTWAIT) {
7024                         ddi_set_callback(waitfp, arg, &dma_mem_list_id);
7025                 }
7026                 rval = DDI_FAILURE;
7027         }
7028         return (rval);
7029 }
7030 
7031 void
7032 ddi_dma_mem_free(ddi_acc_handle_t *handlep)
7033 {
7034         ddi_acc_hdl_t *ap;
7035 
7036         ap = impl_acc_hdl_get(*handlep);
7037         ASSERT(ap);
7038 
7039         i_ddi_mem_free((caddr_t)ap->ah_addr, ap);
7040 
7041         /*
7042          * free the handle
7043          */
7044         impl_acc_hdl_free(*handlep);
7045         *handlep = (ddi_acc_handle_t)NULL;
7046 
7047         if (dma_mem_list_id != 0) {
7048                 ddi_run_callback(&dma_mem_list_id);
7049         }
7050 }
7051 
7052 int
7053 ddi_dma_buf_bind_handle(ddi_dma_handle_t handle, struct buf *bp,
7054         uint_t flags, int (*waitfp)(caddr_t), caddr_t arg,
7055         ddi_dma_cookie_t *cookiep, uint_t *ccountp)
7056 {
7057         ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7058         dev_info_t *dip, *rdip;
7059         struct ddi_dma_req dmareq;
7060         int (*funcp)();
7061 
7062         dmareq.dmar_flags = flags;
7063         dmareq.dmar_fp = waitfp;
7064         dmareq.dmar_arg = arg;
7065         dmareq.dmar_object.dmao_size = (uint_t)bp->b_bcount;
7066 
7067         if (bp->b_flags & B_PAGEIO) {
7068                 dmareq.dmar_object.dmao_type = DMA_OTYP_PAGES;
7069                 dmareq.dmar_object.dmao_obj.pp_obj.pp_pp = bp->b_pages;
7070                 dmareq.dmar_object.dmao_obj.pp_obj.pp_offset =
7071                     (uint_t)(((uintptr_t)bp->b_un.b_addr) & MMU_PAGEOFFSET);
7072         } else {
7073                 dmareq.dmar_object.dmao_obj.virt_obj.v_addr = bp->b_un.b_addr;
7074                 if (bp->b_flags & B_SHADOW) {
7075                         dmareq.dmar_object.dmao_obj.virt_obj.v_priv =
7076                             bp->b_shadow;
7077                         dmareq.dmar_object.dmao_type = DMA_OTYP_BUFVADDR;
7078                 } else {
7079                         dmareq.dmar_object.dmao_type =
7080                             (bp->b_flags & (B_PHYS | B_REMAPPED)) ?
7081                             DMA_OTYP_BUFVADDR : DMA_OTYP_VADDR;
7082                         dmareq.dmar_object.dmao_obj.virt_obj.v_priv = NULL;
7083                 }
7084 
7085                 /*
7086                  * If the buffer has no proc pointer, or the proc
7087                  * struct has the kernel address space, or the buffer has
7088                  * been marked B_REMAPPED (meaning that it is now
7089                  * mapped into the kernel's address space), then
7090                  * the address space is kas (kernel address space).
7091                  */
7092                 if ((bp->b_proc == NULL) || (bp->b_proc->p_as == &kas) ||
7093                     (bp->b_flags & B_REMAPPED)) {
7094                         dmareq.dmar_object.dmao_obj.virt_obj.v_as = 0;
7095                 } else {
7096                         dmareq.dmar_object.dmao_obj.virt_obj.v_as =
7097                             bp->b_proc->p_as;
7098                 }
7099         }
7100 
7101         dip = rdip = hp->dmai_rdip;
7102         if (dip != ddi_root_node())
7103                 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_bindhdl;
7104         funcp = DEVI(rdip)->devi_bus_dma_bindfunc;
7105         return ((*funcp)(dip, rdip, handle, &dmareq, cookiep, ccountp));
7106 }
7107 
7108 int
7109 ddi_dma_addr_bind_handle(ddi_dma_handle_t handle, struct as *as,
7110         caddr_t addr, size_t len, uint_t flags, int (*waitfp)(caddr_t),
7111         caddr_t arg, ddi_dma_cookie_t *cookiep, uint_t *ccountp)
7112 {
7113         ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7114         dev_info_t *dip, *rdip;
7115         struct ddi_dma_req dmareq;
7116         int (*funcp)();
7117 
7118         if (len == (uint_t)0) {
7119                 return (DDI_DMA_NOMAPPING);
7120         }
7121         dmareq.dmar_flags = flags;
7122         dmareq.dmar_fp = waitfp;
7123         dmareq.dmar_arg = arg;
7124         dmareq.dmar_object.dmao_size = len;
7125         dmareq.dmar_object.dmao_type = DMA_OTYP_VADDR;
7126         dmareq.dmar_object.dmao_obj.virt_obj.v_as = as;
7127         dmareq.dmar_object.dmao_obj.virt_obj.v_addr = addr;
7128         dmareq.dmar_object.dmao_obj.virt_obj.v_priv = NULL;
7129 
7130         dip = rdip = hp->dmai_rdip;
7131         if (dip != ddi_root_node())
7132                 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_bindhdl;
7133         funcp = DEVI(rdip)->devi_bus_dma_bindfunc;
7134         return ((*funcp)(dip, rdip, handle, &dmareq, cookiep, ccountp));
7135 }
7136 
7137 void
7138 ddi_dma_nextcookie(ddi_dma_handle_t handle, ddi_dma_cookie_t *cookiep)
7139 {
7140         ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7141         ddi_dma_cookie_t *cp;
7142 
7143         cp = hp->dmai_cookie;
7144         ASSERT(cp);
7145 
7146         cookiep->dmac_notused = cp->dmac_notused;
7147         cookiep->dmac_type = cp->dmac_type;
7148         cookiep->dmac_address = cp->dmac_address;
7149         cookiep->dmac_size = cp->dmac_size;
7150         hp->dmai_cookie++;
7151 }
7152 
7153 int
7154 ddi_dma_numwin(ddi_dma_handle_t handle, uint_t *nwinp)
7155 {
7156         ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7157         if ((hp->dmai_rflags & DDI_DMA_PARTIAL) == 0) {
7158                 return (DDI_FAILURE);
7159         } else {
7160                 *nwinp = hp->dmai_nwin;
7161                 return (DDI_SUCCESS);
7162         }
7163 }
7164 
7165 int
7166 ddi_dma_getwin(ddi_dma_handle_t h, uint_t win, off_t *offp,
7167         size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp)
7168 {
7169         int (*funcp)() = ddi_dma_win;
7170         struct bus_ops *bop;
7171 
7172         bop = DEVI(HD)->devi_ops->devo_bus_ops;
7173         if (bop && bop->bus_dma_win)
7174                 funcp = bop->bus_dma_win;
7175 
7176         return ((*funcp)(HD, HD, h, win, offp, lenp, cookiep, ccountp));
7177 }
7178 
7179 int
7180 ddi_dma_set_sbus64(ddi_dma_handle_t h, ulong_t burstsizes)
7181 {
7182         return (ddi_dma_mctl(HD, HD, h, DDI_DMA_SET_SBUS64, 0,
7183             &burstsizes, 0, 0));
7184 }
7185 
7186 int
7187 i_ddi_dma_fault_check(ddi_dma_impl_t *hp)
7188 {
7189         return (hp->dmai_fault);
7190 }
7191 
7192 int
7193 ddi_check_dma_handle(ddi_dma_handle_t handle)
7194 {
7195         ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7196         int (*check)(ddi_dma_impl_t *);
7197 
7198         if ((check = hp->dmai_fault_check) == NULL)
7199                 check = i_ddi_dma_fault_check;
7200 
7201         return (((*check)(hp) == DDI_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE);
7202 }
7203 
7204 void
7205 i_ddi_dma_set_fault(ddi_dma_handle_t handle)
7206 {
7207         ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7208         void (*notify)(ddi_dma_impl_t *);
7209 
7210         if (!hp->dmai_fault) {
7211                 hp->dmai_fault = 1;
7212                 if ((notify = hp->dmai_fault_notify) != NULL)
7213                         (*notify)(hp);
7214         }
7215 }
7216 
7217 void
7218 i_ddi_dma_clr_fault(ddi_dma_handle_t handle)
7219 {
7220         ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7221         void (*notify)(ddi_dma_impl_t *);
7222 
7223         if (hp->dmai_fault) {
7224                 hp->dmai_fault = 0;
7225                 if ((notify = hp->dmai_fault_notify) != NULL)
7226                         (*notify)(hp);
7227         }
7228 }
7229 
7230 /*
7231  * register mapping routines.
7232  */
7233 int
7234 ddi_regs_map_setup(dev_info_t *dip, uint_t rnumber, caddr_t *addrp,
7235         offset_t offset, offset_t len, ddi_device_acc_attr_t *accattrp,
7236         ddi_acc_handle_t *handle)
7237 {
7238         ddi_map_req_t mr;
7239         ddi_acc_hdl_t *hp;
7240         int result;
7241 
7242         /*
7243          * Allocate and initialize the common elements of data access handle.
7244          */
7245         *handle = impl_acc_hdl_alloc(KM_SLEEP, NULL);
7246         hp = impl_acc_hdl_get(*handle);
7247         hp->ah_vers = VERS_ACCHDL;
7248         hp->ah_dip = dip;
7249         hp->ah_rnumber = rnumber;
7250         hp->ah_offset = offset;
7251         hp->ah_len = len;
7252         hp->ah_acc = *accattrp;
7253 
7254         /*
7255          * Set up the mapping request and call to parent.
7256          */
7257         mr.map_op = DDI_MO_MAP_LOCKED;
7258         mr.map_type = DDI_MT_RNUMBER;
7259         mr.map_obj.rnumber = rnumber;
7260         mr.map_prot = PROT_READ | PROT_WRITE;
7261         mr.map_flags = DDI_MF_KERNEL_MAPPING;
7262         mr.map_handlep = hp;
7263         mr.map_vers = DDI_MAP_VERSION;
7264         result = ddi_map(dip, &mr, offset, len, addrp);
7265 
7266         /*
7267          * check for end result
7268          */
7269         if (result != DDI_SUCCESS) {
7270                 impl_acc_hdl_free(*handle);
7271                 *handle = (ddi_acc_handle_t)NULL;
7272         } else {
7273                 hp->ah_addr = *addrp;
7274         }
7275 
7276         return (result);
7277 }
7278 
7279 void
7280 ddi_regs_map_free(ddi_acc_handle_t *handlep)
7281 {
7282         ddi_map_req_t mr;
7283         ddi_acc_hdl_t *hp;
7284 
7285         hp = impl_acc_hdl_get(*handlep);
7286         ASSERT(hp);
7287 
7288         mr.map_op = DDI_MO_UNMAP;
7289         mr.map_type = DDI_MT_RNUMBER;
7290         mr.map_obj.rnumber = hp->ah_rnumber;
7291         mr.map_prot = PROT_READ | PROT_WRITE;
7292         mr.map_flags = DDI_MF_KERNEL_MAPPING;
7293         mr.map_handlep = hp;
7294         mr.map_vers = DDI_MAP_VERSION;
7295 
7296         /*
7297          * Call my parent to unmap my regs.
7298          */
7299         (void) ddi_map(hp->ah_dip, &mr, hp->ah_offset,
7300             hp->ah_len, &hp->ah_addr);
7301         /*
7302          * free the handle
7303          */
7304         impl_acc_hdl_free(*handlep);
7305         *handlep = (ddi_acc_handle_t)NULL;
7306 }
7307 
7308 int
7309 ddi_device_zero(ddi_acc_handle_t handle, caddr_t dev_addr, size_t bytecount,
7310         ssize_t dev_advcnt, uint_t dev_datasz)
7311 {
7312         uint8_t *b;
7313         uint16_t *w;
7314         uint32_t *l;
7315         uint64_t *ll;
7316 
7317         /* check for total byte count is multiple of data transfer size */
7318         if (bytecount != ((bytecount / dev_datasz) * dev_datasz))
7319                 return (DDI_FAILURE);
7320 
7321         switch (dev_datasz) {
7322         case DDI_DATA_SZ01_ACC:
7323                 for (b = (uint8_t *)dev_addr;
7324                     bytecount != 0; bytecount -= 1, b += dev_advcnt)
7325                         ddi_put8(handle, b, 0);
7326                 break;
7327         case DDI_DATA_SZ02_ACC:
7328                 for (w = (uint16_t *)dev_addr;
7329                     bytecount != 0; bytecount -= 2, w += dev_advcnt)
7330                         ddi_put16(handle, w, 0);
7331                 break;
7332         case DDI_DATA_SZ04_ACC:
7333                 for (l = (uint32_t *)dev_addr;
7334                     bytecount != 0; bytecount -= 4, l += dev_advcnt)
7335                         ddi_put32(handle, l, 0);
7336                 break;
7337         case DDI_DATA_SZ08_ACC:
7338                 for (ll = (uint64_t *)dev_addr;
7339                     bytecount != 0; bytecount -= 8, ll += dev_advcnt)
7340                         ddi_put64(handle, ll, 0x0ll);
7341                 break;
7342         default:
7343                 return (DDI_FAILURE);
7344         }
7345         return (DDI_SUCCESS);
7346 }
7347 
7348 int
7349 ddi_device_copy(
7350         ddi_acc_handle_t src_handle, caddr_t src_addr, ssize_t src_advcnt,
7351         ddi_acc_handle_t dest_handle, caddr_t dest_addr, ssize_t dest_advcnt,
7352         size_t bytecount, uint_t dev_datasz)
7353 {
7354         uint8_t *b_src, *b_dst;
7355         uint16_t *w_src, *w_dst;
7356         uint32_t *l_src, *l_dst;
7357         uint64_t *ll_src, *ll_dst;
7358 
7359         /* check for total byte count is multiple of data transfer size */
7360         if (bytecount != ((bytecount / dev_datasz) * dev_datasz))
7361                 return (DDI_FAILURE);
7362 
7363         switch (dev_datasz) {
7364         case DDI_DATA_SZ01_ACC:
7365                 b_src = (uint8_t *)src_addr;
7366                 b_dst = (uint8_t *)dest_addr;
7367 
7368                 for (; bytecount != 0; bytecount -= 1) {
7369                         ddi_put8(dest_handle, b_dst,
7370                             ddi_get8(src_handle, b_src));
7371                         b_dst += dest_advcnt;
7372                         b_src += src_advcnt;
7373                 }
7374                 break;
7375         case DDI_DATA_SZ02_ACC:
7376                 w_src = (uint16_t *)src_addr;
7377                 w_dst = (uint16_t *)dest_addr;
7378 
7379                 for (; bytecount != 0; bytecount -= 2) {
7380                         ddi_put16(dest_handle, w_dst,
7381                             ddi_get16(src_handle, w_src));
7382                         w_dst += dest_advcnt;
7383                         w_src += src_advcnt;
7384                 }
7385                 break;
7386         case DDI_DATA_SZ04_ACC:
7387                 l_src = (uint32_t *)src_addr;
7388                 l_dst = (uint32_t *)dest_addr;
7389 
7390                 for (; bytecount != 0; bytecount -= 4) {
7391                         ddi_put32(dest_handle, l_dst,
7392                             ddi_get32(src_handle, l_src));
7393                         l_dst += dest_advcnt;
7394                         l_src += src_advcnt;
7395                 }
7396                 break;
7397         case DDI_DATA_SZ08_ACC:
7398                 ll_src = (uint64_t *)src_addr;
7399                 ll_dst = (uint64_t *)dest_addr;
7400 
7401                 for (; bytecount != 0; bytecount -= 8) {
7402                         ddi_put64(dest_handle, ll_dst,
7403                             ddi_get64(src_handle, ll_src));
7404                         ll_dst += dest_advcnt;
7405                         ll_src += src_advcnt;
7406                 }
7407                 break;
7408         default:
7409                 return (DDI_FAILURE);
7410         }
7411         return (DDI_SUCCESS);
7412 }
7413 
7414 #define swap16(value)  \
7415         ((((value) & 0xff) << 8) | ((value) >> 8))
7416 
7417 #define swap32(value)   \
7418         (((uint32_t)swap16((uint16_t)((value) & 0xffff)) << 16) | \
7419         (uint32_t)swap16((uint16_t)((value) >> 16)))
7420 
7421 #define swap64(value)   \
7422         (((uint64_t)swap32((uint32_t)((value) & 0xffffffff)) \
7423             << 32) | \
7424         (uint64_t)swap32((uint32_t)((value) >> 32)))
7425 
7426 uint16_t
7427 ddi_swap16(uint16_t value)
7428 {
7429         return (swap16(value));
7430 }
7431 
7432 uint32_t
7433 ddi_swap32(uint32_t value)
7434 {
7435         return (swap32(value));
7436 }
7437 
7438 uint64_t
7439 ddi_swap64(uint64_t value)
7440 {
7441         return (swap64(value));
7442 }
7443 
7444 /*
7445  * Convert a binding name to a driver name.
7446  * A binding name is the name used to determine the driver for a
7447  * device - it may be either an alias for the driver or the name
7448  * of the driver itself.
7449  */
7450 char *
7451 i_binding_to_drv_name(char *bname)
7452 {
7453         major_t major_no;
7454 
7455         ASSERT(bname != NULL);
7456 
7457         if ((major_no = ddi_name_to_major(bname)) == -1)
7458                 return (NULL);
7459         return (ddi_major_to_name(major_no));
7460 }
7461 
7462 /*
7463  * Search for minor name that has specified dev_t and spec_type.
7464  * If spec_type is zero then any dev_t match works.  Since we
7465  * are returning a pointer to the minor name string, we require the
7466  * caller to do the locking.
7467  */
7468 char *
7469 i_ddi_devtspectype_to_minorname(dev_info_t *dip, dev_t dev, int spec_type)
7470 {
7471         struct ddi_minor_data   *dmdp;
7472 
7473         /*
7474          * The did layered driver currently intentionally returns a
7475          * devinfo ptr for an underlying sd instance based on a did
7476          * dev_t. In this case it is not an error.
7477          *
7478          * The did layered driver is associated with Sun Cluster.
7479          */
7480         ASSERT((ddi_driver_major(dip) == getmajor(dev)) ||
7481             (strcmp(ddi_major_to_name(getmajor(dev)), "did") == 0));
7482 
7483         ASSERT(DEVI_BUSY_OWNED(dip));
7484         for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) {
7485                 if (((dmdp->type == DDM_MINOR) ||
7486                     (dmdp->type == DDM_INTERNAL_PATH) ||
7487                     (dmdp->type == DDM_DEFAULT)) &&
7488                     (dmdp->ddm_dev == dev) &&
7489                     ((((spec_type & (S_IFCHR|S_IFBLK))) == 0) ||
7490                     (dmdp->ddm_spec_type == spec_type)))
7491                         return (dmdp->ddm_name);
7492         }
7493 
7494         return (NULL);
7495 }
7496 
7497 /*
7498  * Find the devt and spectype of the specified minor_name.
7499  * Return DDI_FAILURE if minor_name not found. Since we are
7500  * returning everything via arguments we can do the locking.
7501  */
7502 int
7503 i_ddi_minorname_to_devtspectype(dev_info_t *dip, char *minor_name,
7504         dev_t *devtp, int *spectypep)
7505 {
7506         int                     circ;
7507         struct ddi_minor_data   *dmdp;
7508 
7509         /* deal with clone minor nodes */
7510         if (dip == clone_dip) {
7511                 major_t major;
7512                 /*
7513                  * Make sure minor_name is a STREAMS driver.
7514                  * We load the driver but don't attach to any instances.
7515                  */
7516 
7517                 major = ddi_name_to_major(minor_name);
7518                 if (major == DDI_MAJOR_T_NONE)
7519                         return (DDI_FAILURE);
7520 
7521                 if (ddi_hold_driver(major) == NULL)
7522                         return (DDI_FAILURE);
7523 
7524                 if (STREAMSTAB(major) == NULL) {
7525                         ddi_rele_driver(major);
7526                         return (DDI_FAILURE);
7527                 }
7528                 ddi_rele_driver(major);
7529 
7530                 if (devtp)
7531                         *devtp = makedevice(clone_major, (minor_t)major);
7532 
7533                 if (spectypep)
7534                         *spectypep = S_IFCHR;
7535 
7536                 return (DDI_SUCCESS);
7537         }
7538 
7539         ndi_devi_enter(dip, &circ);
7540         for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) {
7541                 if (((dmdp->type != DDM_MINOR) &&
7542                     (dmdp->type != DDM_INTERNAL_PATH) &&
7543                     (dmdp->type != DDM_DEFAULT)) ||
7544                     strcmp(minor_name, dmdp->ddm_name))
7545                         continue;
7546 
7547                 if (devtp)
7548                         *devtp = dmdp->ddm_dev;
7549 
7550                 if (spectypep)
7551                         *spectypep = dmdp->ddm_spec_type;
7552 
7553                 ndi_devi_exit(dip, circ);
7554                 return (DDI_SUCCESS);
7555         }
7556         ndi_devi_exit(dip, circ);
7557 
7558         return (DDI_FAILURE);
7559 }
7560 
7561 static kmutex_t devid_gen_mutex;
7562 static short    devid_gen_number;
7563 
7564 #ifdef DEBUG
7565 
7566 static int      devid_register_corrupt = 0;
7567 static int      devid_register_corrupt_major = 0;
7568 static int      devid_register_corrupt_hint = 0;
7569 static int      devid_register_corrupt_hint_major = 0;
7570 
7571 static int devid_lyr_debug = 0;
7572 
7573 #define DDI_DEBUG_DEVID_DEVTS(msg, ndevs, devs)         \
7574         if (devid_lyr_debug)                                    \
7575                 ddi_debug_devid_devts(msg, ndevs, devs)
7576 
7577 #else
7578 
7579 #define DDI_DEBUG_DEVID_DEVTS(msg, ndevs, devs)
7580 
7581 #endif /* DEBUG */
7582 
7583 
7584 #ifdef  DEBUG
7585 
7586 static void
7587 ddi_debug_devid_devts(char *msg, int ndevs, dev_t *devs)
7588 {
7589         int i;
7590 
7591         cmn_err(CE_CONT, "%s:\n", msg);
7592         for (i = 0; i < ndevs; i++) {
7593                 cmn_err(CE_CONT, "    0x%lx\n", devs[i]);
7594         }
7595 }
7596 
7597 static void
7598 ddi_debug_devid_paths(char *msg, int npaths, char **paths)
7599 {
7600         int i;
7601 
7602         cmn_err(CE_CONT, "%s:\n", msg);
7603         for (i = 0; i < npaths; i++) {
7604                 cmn_err(CE_CONT, "    %s\n", paths[i]);
7605         }
7606 }
7607 
7608 static void
7609 ddi_debug_devid_devts_per_path(char *path, int ndevs, dev_t *devs)
7610 {
7611         int i;
7612 
7613         cmn_err(CE_CONT, "dev_ts per path %s\n", path);
7614         for (i = 0; i < ndevs; i++) {
7615                 cmn_err(CE_CONT, "    0x%lx\n", devs[i]);
7616         }
7617 }
7618 
7619 #endif  /* DEBUG */
7620 
7621 /*
7622  * Register device id into DDI framework.
7623  * Must be called when the driver is bound.
7624  */
7625 static int
7626 i_ddi_devid_register(dev_info_t *dip, ddi_devid_t devid)
7627 {
7628         impl_devid_t    *i_devid = (impl_devid_t *)devid;
7629         size_t          driver_len;
7630         const char      *driver_name;
7631         char            *devid_str;
7632         major_t         major;
7633 
7634         if ((dip == NULL) ||
7635             ((major = ddi_driver_major(dip)) == DDI_MAJOR_T_NONE))
7636                 return (DDI_FAILURE);
7637 
7638         /* verify that the devid is valid */
7639         if (ddi_devid_valid(devid) != DDI_SUCCESS)
7640                 return (DDI_FAILURE);
7641 
7642         /* Updating driver name hint in devid */
7643         driver_name = ddi_driver_name(dip);
7644         driver_len = strlen(driver_name);
7645         if (driver_len > DEVID_HINT_SIZE) {
7646                 /* Pick up last four characters of driver name */
7647                 driver_name += driver_len - DEVID_HINT_SIZE;
7648                 driver_len = DEVID_HINT_SIZE;
7649         }
7650         bzero(i_devid->did_driver, DEVID_HINT_SIZE);
7651         bcopy(driver_name, i_devid->did_driver, driver_len);
7652 
7653 #ifdef DEBUG
7654         /* Corrupt the devid for testing. */
7655         if (devid_register_corrupt)
7656                 i_devid->did_id[0] += devid_register_corrupt;
7657         if (devid_register_corrupt_major &&
7658             (major == devid_register_corrupt_major))
7659                 i_devid->did_id[0] += 1;
7660         if (devid_register_corrupt_hint)
7661                 i_devid->did_driver[0] += devid_register_corrupt_hint;
7662         if (devid_register_corrupt_hint_major &&
7663             (major == devid_register_corrupt_hint_major))
7664                 i_devid->did_driver[0] += 1;
7665 #endif /* DEBUG */
7666 
7667         /* encode the devid as a string */
7668         if ((devid_str = ddi_devid_str_encode(devid, NULL)) == NULL)
7669                 return (DDI_FAILURE);
7670 
7671         /* add string as a string property */
7672         if (ndi_prop_update_string(DDI_DEV_T_NONE, dip,
7673             DEVID_PROP_NAME, devid_str) != DDI_SUCCESS) {
7674                 cmn_err(CE_WARN, "%s%d: devid property update failed",
7675                     ddi_driver_name(dip), ddi_get_instance(dip));
7676                 ddi_devid_str_free(devid_str);
7677                 return (DDI_FAILURE);
7678         }
7679 
7680         /* keep pointer to devid string for interrupt context fma code */
7681         if (DEVI(dip)->devi_devid_str)
7682                 ddi_devid_str_free(DEVI(dip)->devi_devid_str);
7683         DEVI(dip)->devi_devid_str = devid_str;
7684         return (DDI_SUCCESS);
7685 }
7686 
7687 int
7688 ddi_devid_register(dev_info_t *dip, ddi_devid_t devid)
7689 {
7690         int rval;
7691 
7692         rval = i_ddi_devid_register(dip, devid);
7693         if (rval == DDI_SUCCESS) {
7694                 /*
7695                  * Register devid in devid-to-path cache
7696                  */
7697                 if (e_devid_cache_register(dip, devid) == DDI_SUCCESS) {
7698                         mutex_enter(&DEVI(dip)->devi_lock);
7699                         DEVI(dip)->devi_flags |= DEVI_CACHED_DEVID;
7700                         mutex_exit(&DEVI(dip)->devi_lock);
7701                 } else if (ddi_get_name_addr(dip)) {
7702                         /*
7703                          * We only expect cache_register DDI_FAILURE when we
7704                          * can't form the full path because of NULL devi_addr.
7705                          */
7706                         cmn_err(CE_WARN, "%s%d: failed to cache devid",
7707                             ddi_driver_name(dip), ddi_get_instance(dip));
7708                 }
7709         } else {
7710                 cmn_err(CE_WARN, "%s%d: failed to register devid",
7711                     ddi_driver_name(dip), ddi_get_instance(dip));
7712         }
7713         return (rval);
7714 }
7715 
7716 /*
7717  * Remove (unregister) device id from DDI framework.
7718  * Must be called when device is detached.
7719  */
7720 static void
7721 i_ddi_devid_unregister(dev_info_t *dip)
7722 {
7723         if (DEVI(dip)->devi_devid_str) {
7724                 ddi_devid_str_free(DEVI(dip)->devi_devid_str);
7725                 DEVI(dip)->devi_devid_str = NULL;
7726         }
7727 
7728         /* remove the devid property */
7729         (void) ndi_prop_remove(DDI_DEV_T_NONE, dip, DEVID_PROP_NAME);
7730 }
7731 
7732 void
7733 ddi_devid_unregister(dev_info_t *dip)
7734 {
7735         mutex_enter(&DEVI(dip)->devi_lock);
7736         DEVI(dip)->devi_flags &= ~DEVI_CACHED_DEVID;
7737         mutex_exit(&DEVI(dip)->devi_lock);
7738         e_devid_cache_unregister(dip);
7739         i_ddi_devid_unregister(dip);
7740 }
7741 
7742 /*
7743  * Allocate and initialize a device id.
7744  */
7745 int
7746 ddi_devid_init(
7747         dev_info_t      *dip,
7748         ushort_t        devid_type,
7749         ushort_t        nbytes,
7750         void            *id,
7751         ddi_devid_t     *ret_devid)
7752 {
7753         impl_devid_t    *i_devid;
7754         int             sz = sizeof (*i_devid) + nbytes - sizeof (char);
7755         int             driver_len;
7756         const char      *driver_name;
7757 
7758         switch (devid_type) {
7759         case DEVID_SCSI3_WWN:
7760                 /*FALLTHRU*/
7761         case DEVID_SCSI_SERIAL:
7762                 /*FALLTHRU*/
7763         case DEVID_ATA_SERIAL:
7764                 /*FALLTHRU*/
7765         case DEVID_ENCAP:
7766                 if (nbytes == 0)
7767                         return (DDI_FAILURE);
7768                 if (id == NULL)
7769                         return (DDI_FAILURE);
7770                 break;
7771         case DEVID_FAB:
7772                 if (nbytes != 0)
7773                         return (DDI_FAILURE);
7774                 if (id != NULL)
7775                         return (DDI_FAILURE);
7776                 nbytes = sizeof (int) +
7777                     sizeof (struct timeval32) + sizeof (short);
7778                 sz += nbytes;
7779                 break;
7780         default:
7781                 return (DDI_FAILURE);
7782         }
7783 
7784         if ((i_devid = kmem_zalloc(sz, KM_SLEEP)) == NULL)
7785                 return (DDI_FAILURE);
7786 
7787         i_devid->did_magic_hi = DEVID_MAGIC_MSB;
7788         i_devid->did_magic_lo = DEVID_MAGIC_LSB;
7789         i_devid->did_rev_hi = DEVID_REV_MSB;
7790         i_devid->did_rev_lo = DEVID_REV_LSB;
7791         DEVID_FORMTYPE(i_devid, devid_type);
7792         DEVID_FORMLEN(i_devid, nbytes);
7793 
7794         /* Fill in driver name hint */
7795         driver_name = ddi_driver_name(dip);
7796         driver_len = strlen(driver_name);
7797         if (driver_len > DEVID_HINT_SIZE) {
7798                 /* Pick up last four characters of driver name */
7799                 driver_name += driver_len - DEVID_HINT_SIZE;
7800                 driver_len = DEVID_HINT_SIZE;
7801         }
7802 
7803         bcopy(driver_name, i_devid->did_driver, driver_len);
7804 
7805         /* Fill in id field */
7806         if (devid_type == DEVID_FAB) {
7807                 char            *cp;
7808                 uint32_t        hostid;
7809                 struct timeval32 timestamp32;
7810                 int             i;
7811                 int             *ip;
7812                 short           gen;
7813 
7814                 /* increase the generation number */
7815                 mutex_enter(&devid_gen_mutex);
7816                 gen = devid_gen_number++;
7817                 mutex_exit(&devid_gen_mutex);
7818 
7819                 cp = i_devid->did_id;
7820 
7821                 /* Fill in host id (big-endian byte ordering) */
7822                 hostid = zone_get_hostid(NULL);
7823                 *cp++ = hibyte(hiword(hostid));
7824                 *cp++ = lobyte(hiword(hostid));
7825                 *cp++ = hibyte(loword(hostid));
7826                 *cp++ = lobyte(loword(hostid));
7827 
7828                 /*
7829                  * Fill in timestamp (big-endian byte ordering)
7830                  *
7831                  * (Note that the format may have to be changed
7832                  * before 2038 comes around, though it's arguably
7833                  * unique enough as it is..)
7834                  */
7835                 uniqtime32(&timestamp32);
7836                 ip = (int *)&timestamp32;
7837                 for (i = 0;
7838                     i < sizeof (timestamp32) / sizeof (int); i++, ip++) {
7839                         int     val;
7840                         val = *ip;
7841                         *cp++ = hibyte(hiword(val));
7842                         *cp++ = lobyte(hiword(val));
7843                         *cp++ = hibyte(loword(val));
7844                         *cp++ = lobyte(loword(val));
7845                 }
7846 
7847                 /* fill in the generation number */
7848                 *cp++ = hibyte(gen);
7849                 *cp++ = lobyte(gen);
7850         } else
7851                 bcopy(id, i_devid->did_id, nbytes);
7852 
7853         /* return device id */
7854         *ret_devid = (ddi_devid_t)i_devid;
7855         return (DDI_SUCCESS);
7856 }
7857 
7858 int
7859 ddi_devid_get(dev_info_t *dip, ddi_devid_t *ret_devid)
7860 {
7861         return (i_ddi_devi_get_devid(DDI_DEV_T_ANY, dip, ret_devid));
7862 }
7863 
7864 int
7865 i_ddi_devi_get_devid(dev_t dev, dev_info_t *dip, ddi_devid_t *ret_devid)
7866 {
7867         char            *devidstr;
7868 
7869         ASSERT(dev != DDI_DEV_T_NONE);
7870 
7871         /* look up the property, devt specific first */
7872         if (ddi_prop_lookup_string(dev, dip, DDI_PROP_DONTPASS,
7873             DEVID_PROP_NAME, &devidstr) != DDI_PROP_SUCCESS) {
7874                 if ((dev == DDI_DEV_T_ANY) ||
7875                     (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip,
7876                     DDI_PROP_DONTPASS, DEVID_PROP_NAME, &devidstr) !=
7877                     DDI_PROP_SUCCESS)) {
7878                         return (DDI_FAILURE);
7879                 }
7880         }
7881 
7882         /* convert to binary form */
7883         if (ddi_devid_str_decode(devidstr, ret_devid, NULL) == -1) {
7884                 ddi_prop_free(devidstr);
7885                 return (DDI_FAILURE);
7886         }
7887         ddi_prop_free(devidstr);
7888         return (DDI_SUCCESS);
7889 }
7890 
7891 /*
7892  * Return a copy of the device id for dev_t
7893  */
7894 int
7895 ddi_lyr_get_devid(dev_t dev, ddi_devid_t *ret_devid)
7896 {
7897         dev_info_t      *dip;
7898         int             rval;
7899 
7900         /* get the dip */
7901         if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
7902                 return (DDI_FAILURE);
7903 
7904         rval = i_ddi_devi_get_devid(dev, dip, ret_devid);
7905 
7906         ddi_release_devi(dip);          /* e_ddi_hold_devi_by_dev() */
7907         return (rval);
7908 }
7909 
7910 /*
7911  * Return a copy of the minor name for dev_t and spec_type
7912  */
7913 int
7914 ddi_lyr_get_minor_name(dev_t dev, int spec_type, char **minor_name)
7915 {
7916         char            *buf;
7917         int             circ;
7918         dev_info_t      *dip;
7919         char            *nm;
7920         int             rval;
7921 
7922         if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) {
7923                 *minor_name = NULL;
7924                 return (DDI_FAILURE);
7925         }
7926 
7927         /* Find the minor name and copy into max size buf */
7928         buf = kmem_alloc(MAXNAMELEN, KM_SLEEP);
7929         ndi_devi_enter(dip, &circ);
7930         nm = i_ddi_devtspectype_to_minorname(dip, dev, spec_type);
7931         if (nm)
7932                 (void) strcpy(buf, nm);
7933         ndi_devi_exit(dip, circ);
7934         ddi_release_devi(dip);  /* e_ddi_hold_devi_by_dev() */
7935 
7936         if (nm) {
7937                 /* duplicate into min size buf for return result */
7938                 *minor_name = i_ddi_strdup(buf, KM_SLEEP);
7939                 rval = DDI_SUCCESS;
7940         } else {
7941                 *minor_name = NULL;
7942                 rval = DDI_FAILURE;
7943         }
7944 
7945         /* free max size buf and return */
7946         kmem_free(buf, MAXNAMELEN);
7947         return (rval);
7948 }
7949 
7950 int
7951 ddi_lyr_devid_to_devlist(
7952         ddi_devid_t     devid,
7953         char            *minor_name,
7954         int             *retndevs,
7955         dev_t           **retdevs)
7956 {
7957         ASSERT(ddi_devid_valid(devid) == DDI_SUCCESS);
7958 
7959         if (e_devid_cache_to_devt_list(devid, minor_name,
7960             retndevs, retdevs) == DDI_SUCCESS) {
7961                 ASSERT(*retndevs > 0);
7962                 DDI_DEBUG_DEVID_DEVTS("ddi_lyr_devid_to_devlist",
7963                     *retndevs, *retdevs);
7964                 return (DDI_SUCCESS);
7965         }
7966 
7967         if (e_ddi_devid_discovery(devid) == DDI_FAILURE) {
7968                 return (DDI_FAILURE);
7969         }
7970 
7971         if (e_devid_cache_to_devt_list(devid, minor_name,
7972             retndevs, retdevs) == DDI_SUCCESS) {
7973                 ASSERT(*retndevs > 0);
7974                 DDI_DEBUG_DEVID_DEVTS("ddi_lyr_devid_to_devlist",
7975                     *retndevs, *retdevs);
7976                 return (DDI_SUCCESS);
7977         }
7978 
7979         return (DDI_FAILURE);
7980 }
7981 
7982 void
7983 ddi_lyr_free_devlist(dev_t *devlist, int ndevs)
7984 {
7985         kmem_free(devlist, sizeof (dev_t) * ndevs);
7986 }
7987 
7988 /*
7989  * Note: This will need to be fixed if we ever allow processes to
7990  * have more than one data model per exec.
7991  */
7992 model_t
7993 ddi_mmap_get_model(void)
7994 {
7995         return (get_udatamodel());
7996 }
7997 
7998 model_t
7999 ddi_model_convert_from(model_t model)
8000 {
8001         return ((model & DDI_MODEL_MASK) & ~DDI_MODEL_NATIVE);
8002 }
8003 
8004 /*
8005  * ddi interfaces managing storage and retrieval of eventcookies.
8006  */
8007 
8008 /*
8009  * Invoke bus nexus driver's implementation of the
8010  * (*bus_remove_eventcall)() interface to remove a registered
8011  * callback handler for "event".
8012  */
8013 int
8014 ddi_remove_event_handler(ddi_callback_id_t id)
8015 {
8016         ndi_event_callbacks_t *cb = (ndi_event_callbacks_t *)id;
8017         dev_info_t *ddip;
8018 
8019         ASSERT(cb);
8020         if (!cb) {
8021                 return (DDI_FAILURE);
8022         }
8023 
8024         ddip = NDI_EVENT_DDIP(cb->ndi_evtcb_cookie);
8025         return (ndi_busop_remove_eventcall(ddip, id));
8026 }
8027 
8028 /*
8029  * Invoke bus nexus driver's implementation of the
8030  * (*bus_add_eventcall)() interface to register a callback handler
8031  * for "event".
8032  */
8033 int
8034 ddi_add_event_handler(dev_info_t *dip, ddi_eventcookie_t event,
8035     void (*handler)(dev_info_t *, ddi_eventcookie_t, void *, void *),
8036     void *arg, ddi_callback_id_t *id)
8037 {
8038         return (ndi_busop_add_eventcall(dip, dip, event, handler, arg, id));
8039 }
8040 
8041 
8042 /*
8043  * Return a handle for event "name" by calling up the device tree
8044  * hierarchy via  (*bus_get_eventcookie)() interface until claimed
8045  * by a bus nexus or top of dev_info tree is reached.
8046  */
8047 int
8048 ddi_get_eventcookie(dev_info_t *dip, char *name,
8049     ddi_eventcookie_t *event_cookiep)
8050 {
8051         return (ndi_busop_get_eventcookie(dip, dip,
8052             name, event_cookiep));
8053 }
8054 
8055 /*
8056  * This procedure is provided as the general callback function when
8057  * umem_lockmemory calls as_add_callback for long term memory locking.
8058  * When as_unmap, as_setprot, or as_free encounter segments which have
8059  * locked memory, this callback will be invoked.
8060  */
8061 void
8062 umem_lock_undo(struct as *as, void *arg, uint_t event)
8063 {
8064         _NOTE(ARGUNUSED(as, event))
8065         struct ddi_umem_cookie *cp = (struct ddi_umem_cookie *)arg;
8066 
8067         /*
8068          * Call the cleanup function.  Decrement the cookie reference
8069          * count, if it goes to zero, return the memory for the cookie.
8070          * The i_ddi_umem_unlock for this cookie may or may not have been
8071          * called already.  It is the responsibility of the caller of
8072          * umem_lockmemory to handle the case of the cleanup routine
8073          * being called after a ddi_umem_unlock for the cookie
8074          * was called.
8075          */
8076 
8077         (*cp->callbacks.cbo_umem_lock_cleanup)((ddi_umem_cookie_t)cp);
8078 
8079         /* remove the cookie if reference goes to zero */
8080         if (atomic_dec_ulong_nv((ulong_t *)(&(cp->cook_refcnt))) == 0) {
8081                 kmem_free(cp, sizeof (struct ddi_umem_cookie));
8082         }
8083 }
8084 
8085 /*
8086  * The following two Consolidation Private routines provide generic
8087  * interfaces to increase/decrease the amount of device-locked memory.
8088  *
8089  * To keep project_rele and project_hold consistent, i_ddi_decr_locked_memory()
8090  * must be called every time i_ddi_incr_locked_memory() is called.
8091  */
8092 int
8093 /* ARGSUSED */
8094 i_ddi_incr_locked_memory(proc_t *procp, rctl_qty_t inc)
8095 {
8096         ASSERT(procp != NULL);
8097         mutex_enter(&procp->p_lock);
8098         if (rctl_incr_locked_mem(procp, NULL, inc, 1)) {
8099                 mutex_exit(&procp->p_lock);
8100                 return (ENOMEM);
8101         }
8102         mutex_exit(&procp->p_lock);
8103         return (0);
8104 }
8105 
8106 /*
8107  * To keep project_rele and project_hold consistent, i_ddi_incr_locked_memory()
8108  * must be called every time i_ddi_decr_locked_memory() is called.
8109  */
8110 /* ARGSUSED */
8111 void
8112 i_ddi_decr_locked_memory(proc_t *procp, rctl_qty_t dec)
8113 {
8114         ASSERT(procp != NULL);
8115         mutex_enter(&procp->p_lock);
8116         rctl_decr_locked_mem(procp, NULL, dec, 1);
8117         mutex_exit(&procp->p_lock);
8118 }
8119 
8120 /*
8121  * The cookie->upd_max_lock_rctl flag is used to determine if we should
8122  * charge device locked memory to the max-locked-memory rctl.  Tracking
8123  * device locked memory causes the rctl locks to get hot under high-speed
8124  * I/O such as RDSv3 over IB.  If there is no max-locked-memory rctl limit,
8125  * we bypass charging the locked memory to the rctl altogether.  The cookie's
8126  * flag tells us if the rctl value should be updated when unlocking the memory,
8127  * in case the rctl gets changed after the memory was locked.  Any device
8128  * locked memory in that rare case will not be counted toward the rctl limit.
8129  *
8130  * When tracking the locked memory, the kproject_t parameter is always NULL
8131  * in the code paths:
8132  *      i_ddi_incr_locked_memory -> rctl_incr_locked_mem
8133  *      i_ddi_decr_locked_memory -> rctl_decr_locked_mem
8134  * Thus, we always use the tk_proj member to check the projp setting.
8135  */
8136 static void
8137 init_lockedmem_rctl_flag(struct ddi_umem_cookie *cookie)
8138 {
8139         proc_t          *p;
8140         kproject_t      *projp;
8141         zone_t          *zonep;
8142 
8143         ASSERT(cookie);
8144         p = cookie->procp;
8145         ASSERT(p);
8146 
8147         zonep = p->p_zone;
8148         projp = p->p_task->tk_proj;
8149 
8150         ASSERT(zonep);
8151         ASSERT(projp);
8152 
8153         if (zonep->zone_locked_mem_ctl == UINT64_MAX &&
8154             projp->kpj_data.kpd_locked_mem_ctl == UINT64_MAX)
8155                 cookie->upd_max_lock_rctl = 0;
8156         else
8157                 cookie->upd_max_lock_rctl = 1;
8158 }
8159 
8160 /*
8161  * This routine checks if the max-locked-memory resource ctl is
8162  * exceeded, if not increments it, grabs a hold on the project.
8163  * Returns 0 if successful otherwise returns error code
8164  */
8165 static int
8166 umem_incr_devlockmem(struct ddi_umem_cookie *cookie)
8167 {
8168         proc_t          *procp;
8169         int             ret;
8170 
8171         ASSERT(cookie);
8172         if (cookie->upd_max_lock_rctl == 0)
8173                 return (0);
8174 
8175         procp = cookie->procp;
8176         ASSERT(procp);
8177 
8178         if ((ret = i_ddi_incr_locked_memory(procp,
8179             cookie->size)) != 0) {
8180                 return (ret);
8181         }
8182         return (0);
8183 }
8184 
8185 /*
8186  * Decrements the max-locked-memory resource ctl and releases
8187  * the hold on the project that was acquired during umem_incr_devlockmem
8188  */
8189 static void
8190 umem_decr_devlockmem(struct ddi_umem_cookie *cookie)
8191 {
8192         proc_t          *proc;
8193 
8194         if (cookie->upd_max_lock_rctl == 0)
8195                 return;
8196 
8197         proc = (proc_t *)cookie->procp;
8198         if (!proc)
8199                 return;
8200 
8201         i_ddi_decr_locked_memory(proc, cookie->size);
8202 }
8203 
8204 /*
8205  * A consolidation private function which is essentially equivalent to
8206  * ddi_umem_lock but with the addition of arguments ops_vector and procp.
8207  * A call to as_add_callback is done if DDI_UMEMLOCK_LONGTERM is set, and
8208  * the ops_vector is valid.
8209  *
8210  * Lock the virtual address range in the current process and create a
8211  * ddi_umem_cookie (of type UMEM_LOCKED). This can be used to pass to
8212  * ddi_umem_iosetup to create a buf or do devmap_umem_setup/remap to export
8213  * to user space.
8214  *
8215  * Note: The resource control accounting currently uses a full charge model
8216  * in other words attempts to lock the same/overlapping areas of memory
8217  * will deduct the full size of the buffer from the projects running
8218  * counter for the device locked memory.
8219  *
8220  * addr, size should be PAGESIZE aligned
8221  *
8222  * flags - DDI_UMEMLOCK_READ, DDI_UMEMLOCK_WRITE or both
8223  *      identifies whether the locked memory will be read or written or both
8224  *      DDI_UMEMLOCK_LONGTERM  must be set when the locking will
8225  * be maintained for an indefinitely long period (essentially permanent),
8226  * rather than for what would be required for a typical I/O completion.
8227  * When DDI_UMEMLOCK_LONGTERM is set, umem_lockmemory will return EFAULT
8228  * if the memory pertains to a regular file which is mapped MAP_SHARED.
8229  * This is to prevent a deadlock if a file truncation is attempted after
8230  * after the locking is done.
8231  *
8232  * Returns 0 on success
8233  *      EINVAL - for invalid parameters
8234  *      EPERM, ENOMEM and other error codes returned by as_pagelock
8235  *      ENOMEM - is returned if the current request to lock memory exceeds
8236  *              *.max-locked-memory resource control value.
8237  *      EFAULT - memory pertains to a regular file mapped shared and
8238  *              and DDI_UMEMLOCK_LONGTERM flag is set
8239  *      EAGAIN - could not start the ddi_umem_unlock list processing thread
8240  */
8241 int
8242 umem_lockmemory(caddr_t addr, size_t len, int flags, ddi_umem_cookie_t *cookie,
8243                 struct umem_callback_ops *ops_vector,
8244                 proc_t *procp)
8245 {
8246         int     error;
8247         struct ddi_umem_cookie *p;
8248         void    (*driver_callback)() = NULL;
8249         struct as *as;
8250         struct seg              *seg;
8251         vnode_t                 *vp;
8252 
8253         /* Allow device drivers to not have to reference "curproc" */
8254         if (procp == NULL)
8255                 procp = curproc;
8256         as = procp->p_as;
8257         *cookie = NULL;         /* in case of any error return */
8258 
8259         /* These are the only three valid flags */
8260         if ((flags & ~(DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE |
8261             DDI_UMEMLOCK_LONGTERM)) != 0)
8262                 return (EINVAL);
8263 
8264         /* At least one (can be both) of the two access flags must be set */
8265         if ((flags & (DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE)) == 0)
8266                 return (EINVAL);
8267 
8268         /* addr and len must be page-aligned */
8269         if (((uintptr_t)addr & PAGEOFFSET) != 0)
8270                 return (EINVAL);
8271 
8272         if ((len & PAGEOFFSET) != 0)
8273                 return (EINVAL);
8274 
8275         /*
8276          * For longterm locking a driver callback must be specified; if
8277          * not longterm then a callback is optional.
8278          */
8279         if (ops_vector != NULL) {
8280                 if (ops_vector->cbo_umem_callback_version !=
8281                     UMEM_CALLBACK_VERSION)
8282                         return (EINVAL);
8283                 else
8284                         driver_callback = ops_vector->cbo_umem_lock_cleanup;
8285         }
8286         if ((driver_callback == NULL) && (flags & DDI_UMEMLOCK_LONGTERM))
8287                 return (EINVAL);
8288 
8289         /*
8290          * Call i_ddi_umem_unlock_thread_start if necessary.  It will
8291          * be called on first ddi_umem_lock or umem_lockmemory call.
8292          */
8293         if (ddi_umem_unlock_thread == NULL)
8294                 i_ddi_umem_unlock_thread_start();
8295 
8296         /* Allocate memory for the cookie */
8297         p = kmem_zalloc(sizeof (struct ddi_umem_cookie), KM_SLEEP);
8298 
8299         /* Convert the flags to seg_rw type */
8300         if (flags & DDI_UMEMLOCK_WRITE) {
8301                 p->s_flags = S_WRITE;
8302         } else {
8303                 p->s_flags = S_READ;
8304         }
8305 
8306         /* Store procp in cookie for later iosetup/unlock */
8307         p->procp = (void *)procp;
8308 
8309         /*
8310          * Store the struct as pointer in cookie for later use by
8311          * ddi_umem_unlock.  The proc->p_as will be stale if ddi_umem_unlock
8312          * is called after relvm is called.
8313          */
8314         p->asp = as;
8315 
8316         /*
8317          * The size field is needed for lockmem accounting.
8318          */
8319         p->size = len;
8320         init_lockedmem_rctl_flag(p);
8321 
8322         if (umem_incr_devlockmem(p) != 0) {
8323                 /*
8324                  * The requested memory cannot be locked
8325                  */
8326                 kmem_free(p, sizeof (struct ddi_umem_cookie));
8327                 *cookie = (ddi_umem_cookie_t)NULL;
8328                 return (ENOMEM);
8329         }
8330 
8331         /* Lock the pages corresponding to addr, len in memory */
8332         error = as_pagelock(as, &(p->pparray), addr, len, p->s_flags);
8333         if (error != 0) {
8334                 umem_decr_devlockmem(p);
8335                 kmem_free(p, sizeof (struct ddi_umem_cookie));
8336                 *cookie = (ddi_umem_cookie_t)NULL;
8337                 return (error);
8338         }
8339 
8340         /*
8341          * For longterm locking the addr must pertain to a seg_vn segment or
8342          * or a seg_spt segment.
8343          * If the segment pertains to a regular file, it cannot be
8344          * mapped MAP_SHARED.
8345          * This is to prevent a deadlock if a file truncation is attempted
8346          * after the locking is done.
8347          * Doing this after as_pagelock guarantees persistence of the as; if
8348          * an unacceptable segment is found, the cleanup includes calling
8349          * as_pageunlock before returning EFAULT.
8350          *
8351          * segdev is allowed here as it is already locked.  This allows
8352          * for memory exported by drivers through mmap() (which is already
8353          * locked) to be allowed for LONGTERM.
8354          */
8355         if (flags & DDI_UMEMLOCK_LONGTERM) {
8356                 extern  struct seg_ops segspt_shmops;
8357                 extern  struct seg_ops segdev_ops;
8358                 AS_LOCK_ENTER(as, RW_READER);
8359                 for (seg = as_segat(as, addr); ; seg = AS_SEGNEXT(as, seg)) {
8360                         if (seg == NULL || seg->s_base > addr + len)
8361                                 break;
8362                         if (seg->s_ops == &segdev_ops)
8363                                 continue;
8364                         if (((seg->s_ops != &segvn_ops) &&
8365                             (seg->s_ops != &segspt_shmops)) ||
8366                             ((SEGOP_GETVP(seg, addr, &vp) == 0 &&
8367                             vp != NULL && vp->v_type == VREG) &&
8368                             (SEGOP_GETTYPE(seg, addr) & MAP_SHARED))) {
8369                                 as_pageunlock(as, p->pparray,
8370                                     addr, len, p->s_flags);
8371                                 AS_LOCK_EXIT(as);
8372                                 umem_decr_devlockmem(p);
8373                                 kmem_free(p, sizeof (struct ddi_umem_cookie));
8374                                 *cookie = (ddi_umem_cookie_t)NULL;
8375                                 return (EFAULT);
8376                         }
8377                 }
8378                 AS_LOCK_EXIT(as);
8379         }
8380 
8381 
8382         /* Initialize the fields in the ddi_umem_cookie */
8383         p->cvaddr = addr;
8384         p->type = UMEM_LOCKED;
8385         if (driver_callback != NULL) {
8386                 /* i_ddi_umem_unlock and umem_lock_undo may need the cookie */
8387                 p->cook_refcnt = 2;
8388                 p->callbacks = *ops_vector;
8389         } else {
8390                 /* only i_ddi_umme_unlock needs the cookie */
8391                 p->cook_refcnt = 1;
8392         }
8393 
8394         *cookie = (ddi_umem_cookie_t)p;
8395 
8396         /*
8397          * If a driver callback was specified, add an entry to the
8398          * as struct callback list. The as_pagelock above guarantees
8399          * the persistence of as.
8400          */
8401         if (driver_callback) {
8402                 error = as_add_callback(as, umem_lock_undo, p, AS_ALL_EVENT,
8403                     addr, len, KM_SLEEP);
8404                 if (error != 0) {
8405                         as_pageunlock(as, p->pparray,
8406                             addr, len, p->s_flags);
8407                         umem_decr_devlockmem(p);
8408                         kmem_free(p, sizeof (struct ddi_umem_cookie));
8409                         *cookie = (ddi_umem_cookie_t)NULL;
8410                 }
8411         }
8412         return (error);
8413 }
8414 
8415 /*
8416  * Unlock the pages locked by ddi_umem_lock or umem_lockmemory and free
8417  * the cookie.  Called from i_ddi_umem_unlock_thread.
8418  */
8419 
8420 static void
8421 i_ddi_umem_unlock(struct ddi_umem_cookie *p)
8422 {
8423         uint_t  rc;
8424 
8425         /*
8426          * There is no way to determine whether a callback to
8427          * umem_lock_undo was registered via as_add_callback.
8428          * (i.e. umem_lockmemory was called with DDI_MEMLOCK_LONGTERM and
8429          * a valid callback function structure.)  as_delete_callback
8430          * is called to delete a possible registered callback.  If the
8431          * return from as_delete_callbacks is AS_CALLBACK_DELETED, it
8432          * indicates that there was a callback registered, and that is was
8433          * successfully deleted.  Thus, the cookie reference count
8434          * will never be decremented by umem_lock_undo.  Just return the
8435          * memory for the cookie, since both users of the cookie are done.
8436          * A return of AS_CALLBACK_NOTFOUND indicates a callback was
8437          * never registered.  A return of AS_CALLBACK_DELETE_DEFERRED
8438          * indicates that callback processing is taking place and, and
8439          * umem_lock_undo is, or will be, executing, and thus decrementing
8440          * the cookie reference count when it is complete.
8441          *
8442          * This needs to be done before as_pageunlock so that the
8443          * persistence of as is guaranteed because of the locked pages.
8444          *
8445          */
8446         rc = as_delete_callback(p->asp, p);
8447 
8448 
8449         /*
8450          * The proc->p_as will be stale if i_ddi_umem_unlock is called
8451          * after relvm is called so use p->asp.
8452          */
8453         as_pageunlock(p->asp, p->pparray, p->cvaddr, p->size, p->s_flags);
8454 
8455         /*
8456          * Now that we have unlocked the memory decrement the
8457          * *.max-locked-memory rctl
8458          */
8459         umem_decr_devlockmem(p);
8460 
8461         if (rc == AS_CALLBACK_DELETED) {
8462                 /* umem_lock_undo will not happen, return the cookie memory */
8463                 ASSERT(p->cook_refcnt == 2);
8464                 kmem_free(p, sizeof (struct ddi_umem_cookie));
8465         } else {
8466                 /*
8467                  * umem_undo_lock may happen if as_delete_callback returned
8468                  * AS_CALLBACK_DELETE_DEFERRED.  In that case, decrement the
8469                  * reference count, atomically, and return the cookie
8470                  * memory if the reference count goes to zero.  The only
8471                  * other value for rc is AS_CALLBACK_NOTFOUND.  In that
8472                  * case, just return the cookie memory.
8473                  */
8474                 if ((rc != AS_CALLBACK_DELETE_DEFERRED) ||
8475                     (atomic_dec_ulong_nv((ulong_t *)(&(p->cook_refcnt)))
8476                     == 0)) {
8477                         kmem_free(p, sizeof (struct ddi_umem_cookie));
8478                 }
8479         }
8480 }
8481 
8482 /*
8483  * i_ddi_umem_unlock_thread - deferred ddi_umem_unlock list handler.
8484  *
8485  * Call i_ddi_umem_unlock for entries in the ddi_umem_unlock list
8486  * until it is empty.  Then, wait for more to be added.  This thread is awoken
8487  * via calls to ddi_umem_unlock.
8488  */
8489 
8490 static void
8491 i_ddi_umem_unlock_thread(void)
8492 {
8493         struct ddi_umem_cookie  *ret_cookie;
8494         callb_cpr_t     cprinfo;
8495 
8496         /* process the ddi_umem_unlock list */
8497         CALLB_CPR_INIT(&cprinfo, &ddi_umem_unlock_mutex,
8498             callb_generic_cpr, "unlock_thread");
8499         for (;;) {
8500                 mutex_enter(&ddi_umem_unlock_mutex);
8501                 if (ddi_umem_unlock_head != NULL) {     /* list not empty */
8502                         ret_cookie = ddi_umem_unlock_head;
8503                         /* take if off the list */
8504                         if ((ddi_umem_unlock_head =
8505                             ddi_umem_unlock_head->unl_forw) == NULL) {
8506                                 ddi_umem_unlock_tail = NULL;
8507                         }
8508                         mutex_exit(&ddi_umem_unlock_mutex);
8509                         /* unlock the pages in this cookie */
8510                         (void) i_ddi_umem_unlock(ret_cookie);
8511                 } else {   /* list is empty, wait for next ddi_umem_unlock */
8512                         CALLB_CPR_SAFE_BEGIN(&cprinfo);
8513                         cv_wait(&ddi_umem_unlock_cv, &ddi_umem_unlock_mutex);
8514                         CALLB_CPR_SAFE_END(&cprinfo, &ddi_umem_unlock_mutex);
8515                         mutex_exit(&ddi_umem_unlock_mutex);
8516                 }
8517         }
8518         /* ddi_umem_unlock_thread does not exit */
8519         /* NOTREACHED */
8520 }
8521 
8522 /*
8523  * Start the thread that will process the ddi_umem_unlock list if it is
8524  * not already started (i_ddi_umem_unlock_thread).
8525  */
8526 static void
8527 i_ddi_umem_unlock_thread_start(void)
8528 {
8529         mutex_enter(&ddi_umem_unlock_mutex);
8530         if (ddi_umem_unlock_thread == NULL) {
8531                 ddi_umem_unlock_thread = thread_create(NULL, 0,
8532                     i_ddi_umem_unlock_thread, NULL, 0, &p0,
8533                     TS_RUN, minclsyspri);
8534         }
8535         mutex_exit(&ddi_umem_unlock_mutex);
8536 }
8537 
8538 /*
8539  * Lock the virtual address range in the current process and create a
8540  * ddi_umem_cookie (of type UMEM_LOCKED). This can be used to pass to
8541  * ddi_umem_iosetup to create a buf or do devmap_umem_setup/remap to export
8542  * to user space.
8543  *
8544  * Note: The resource control accounting currently uses a full charge model
8545  * in other words attempts to lock the same/overlapping areas of memory
8546  * will deduct the full size of the buffer from the projects running
8547  * counter for the device locked memory. This applies to umem_lockmemory too.
8548  *
8549  * addr, size should be PAGESIZE aligned
8550  * flags - DDI_UMEMLOCK_READ, DDI_UMEMLOCK_WRITE or both
8551  *      identifies whether the locked memory will be read or written or both
8552  *
8553  * Returns 0 on success
8554  *      EINVAL - for invalid parameters
8555  *      EPERM, ENOMEM and other error codes returned by as_pagelock
8556  *      ENOMEM - is returned if the current request to lock memory exceeds
8557  *              *.max-locked-memory resource control value.
8558  *      EAGAIN - could not start the ddi_umem_unlock list processing thread
8559  */
8560 int
8561 ddi_umem_lock(caddr_t addr, size_t len, int flags, ddi_umem_cookie_t *cookie)
8562 {
8563         int     error;
8564         struct ddi_umem_cookie *p;
8565 
8566         *cookie = NULL;         /* in case of any error return */
8567 
8568         /* These are the only two valid flags */
8569         if ((flags & ~(DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE)) != 0) {
8570                 return (EINVAL);
8571         }
8572 
8573         /* At least one of the two flags (or both) must be set */
8574         if ((flags & (DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE)) == 0) {
8575                 return (EINVAL);
8576         }
8577 
8578         /* addr and len must be page-aligned */
8579         if (((uintptr_t)addr & PAGEOFFSET) != 0) {
8580                 return (EINVAL);
8581         }
8582 
8583         if ((len & PAGEOFFSET) != 0) {
8584                 return (EINVAL);
8585         }
8586 
8587         /*
8588          * Call i_ddi_umem_unlock_thread_start if necessary.  It will
8589          * be called on first ddi_umem_lock or umem_lockmemory call.
8590          */
8591         if (ddi_umem_unlock_thread == NULL)
8592                 i_ddi_umem_unlock_thread_start();
8593 
8594         /* Allocate memory for the cookie */
8595         p = kmem_zalloc(sizeof (struct ddi_umem_cookie), KM_SLEEP);
8596 
8597         /* Convert the flags to seg_rw type */
8598         if (flags & DDI_UMEMLOCK_WRITE) {
8599                 p->s_flags = S_WRITE;
8600         } else {
8601                 p->s_flags = S_READ;
8602         }
8603 
8604         /* Store curproc in cookie for later iosetup/unlock */
8605         p->procp = (void *)curproc;
8606 
8607         /*
8608          * Store the struct as pointer in cookie for later use by
8609          * ddi_umem_unlock.  The proc->p_as will be stale if ddi_umem_unlock
8610          * is called after relvm is called.
8611          */
8612         p->asp = curproc->p_as;
8613         /*
8614          * The size field is needed for lockmem accounting.
8615          */
8616         p->size = len;
8617         init_lockedmem_rctl_flag(p);
8618 
8619         if (umem_incr_devlockmem(p) != 0) {
8620                 /*
8621                  * The requested memory cannot be locked
8622                  */
8623                 kmem_free(p, sizeof (struct ddi_umem_cookie));
8624                 *cookie = (ddi_umem_cookie_t)NULL;
8625                 return (ENOMEM);
8626         }
8627 
8628         /* Lock the pages corresponding to addr, len in memory */
8629         error = as_pagelock(((proc_t *)p->procp)->p_as, &(p->pparray),
8630             addr, len, p->s_flags);
8631         if (error != 0) {
8632                 umem_decr_devlockmem(p);
8633                 kmem_free(p, sizeof (struct ddi_umem_cookie));
8634                 *cookie = (ddi_umem_cookie_t)NULL;
8635                 return (error);
8636         }
8637 
8638         /* Initialize the fields in the ddi_umem_cookie */
8639         p->cvaddr = addr;
8640         p->type = UMEM_LOCKED;
8641         p->cook_refcnt = 1;
8642 
8643         *cookie = (ddi_umem_cookie_t)p;
8644         return (error);
8645 }
8646 
8647 /*
8648  * Add the cookie to the ddi_umem_unlock list.  Pages will be
8649  * unlocked by i_ddi_umem_unlock_thread.
8650  */
8651 
8652 void
8653 ddi_umem_unlock(ddi_umem_cookie_t cookie)
8654 {
8655         struct ddi_umem_cookie  *p = (struct ddi_umem_cookie *)cookie;
8656 
8657         ASSERT(p->type == UMEM_LOCKED);
8658         ASSERT(CPU_ON_INTR(CPU) == 0); /* cannot be high level */
8659         ASSERT(ddi_umem_unlock_thread != NULL);
8660 
8661         p->unl_forw = (struct ddi_umem_cookie *)NULL;        /* end of list */
8662         /*
8663          * Queue the unlock request and notify i_ddi_umem_unlock thread
8664          * if it's called in the interrupt context. Otherwise, unlock pages
8665          * immediately.
8666          */
8667         if (servicing_interrupt()) {
8668                 /* queue the unlock request and notify the thread */
8669                 mutex_enter(&ddi_umem_unlock_mutex);
8670                 if (ddi_umem_unlock_head == NULL) {
8671                         ddi_umem_unlock_head = ddi_umem_unlock_tail = p;
8672                         cv_broadcast(&ddi_umem_unlock_cv);
8673                 } else {
8674                         ddi_umem_unlock_tail->unl_forw = p;
8675                         ddi_umem_unlock_tail = p;
8676                 }
8677                 mutex_exit(&ddi_umem_unlock_mutex);
8678         } else {
8679                 /* unlock the pages right away */
8680                 (void) i_ddi_umem_unlock(p);
8681         }
8682 }
8683 
8684 /*
8685  * Create a buf structure from a ddi_umem_cookie
8686  * cookie - is a ddi_umem_cookie for from ddi_umem_lock and ddi_umem_alloc
8687  *              (only UMEM_LOCKED & KMEM_NON_PAGEABLE types supported)
8688  * off, len - identifies the portion of the memory represented by the cookie
8689  *              that the buf points to.
8690  *      NOTE: off, len need to follow the alignment/size restrictions of the
8691  *              device (dev) that this buf will be passed to. Some devices
8692  *              will accept unrestricted alignment/size, whereas others (such as
8693  *              st) require some block-size alignment/size. It is the caller's
8694  *              responsibility to ensure that the alignment/size restrictions
8695  *              are met (we cannot assert as we do not know the restrictions)
8696  *
8697  * direction - is one of B_READ or B_WRITE and needs to be compatible with
8698  *              the flags used in ddi_umem_lock
8699  *
8700  * The following three arguments are used to initialize fields in the
8701  * buf structure and are uninterpreted by this routine.
8702  *
8703  * dev
8704  * blkno
8705  * iodone
8706  *
8707  * sleepflag - is one of DDI_UMEM_SLEEP or DDI_UMEM_NOSLEEP
8708  *
8709  * Returns a buf structure pointer on success (to be freed by freerbuf)
8710  *      NULL on any parameter error or memory alloc failure
8711  *
8712  */
8713 struct buf *
8714 ddi_umem_iosetup(ddi_umem_cookie_t cookie, off_t off, size_t len,
8715         int direction, dev_t dev, daddr_t blkno,
8716         int (*iodone)(struct buf *), int sleepflag)
8717 {
8718         struct ddi_umem_cookie *p = (struct ddi_umem_cookie *)cookie;
8719         struct buf *bp;
8720 
8721         /*
8722          * check for valid cookie offset, len
8723          */
8724         if ((off + len) > p->size) {
8725                 return (NULL);
8726         }
8727 
8728         if (len > p->size) {
8729                 return (NULL);
8730         }
8731 
8732         /* direction has to be one of B_READ or B_WRITE */
8733         if ((direction != B_READ) && (direction != B_WRITE)) {
8734                 return (NULL);
8735         }
8736 
8737         /* These are the only two valid sleepflags */
8738         if ((sleepflag != DDI_UMEM_SLEEP) && (sleepflag != DDI_UMEM_NOSLEEP)) {
8739                 return (NULL);
8740         }
8741 
8742         /*
8743          * Only cookies of type UMEM_LOCKED and KMEM_NON_PAGEABLE are supported
8744          */
8745         if ((p->type != UMEM_LOCKED) && (p->type != KMEM_NON_PAGEABLE)) {
8746                 return (NULL);
8747         }
8748 
8749         /* If type is KMEM_NON_PAGEABLE procp is NULL */
8750         ASSERT((p->type == KMEM_NON_PAGEABLE) ?
8751             (p->procp == NULL) : (p->procp != NULL));
8752 
8753         bp = kmem_alloc(sizeof (struct buf), sleepflag);
8754         if (bp == NULL) {
8755                 return (NULL);
8756         }
8757         bioinit(bp);
8758 
8759         bp->b_flags = B_BUSY | B_PHYS | direction;
8760         bp->b_edev = dev;
8761         bp->b_lblkno = blkno;
8762         bp->b_iodone = iodone;
8763         bp->b_bcount = len;
8764         bp->b_proc = (proc_t *)p->procp;
8765         ASSERT(((uintptr_t)(p->cvaddr) & PAGEOFFSET) == 0);
8766         bp->b_un.b_addr = (caddr_t)((uintptr_t)(p->cvaddr) + off);
8767         if (p->pparray != NULL) {
8768                 bp->b_flags |= B_SHADOW;
8769                 ASSERT(((uintptr_t)(p->cvaddr) & PAGEOFFSET) == 0);
8770                 bp->b_shadow = p->pparray + btop(off);
8771         }
8772         return (bp);
8773 }
8774 
8775 /*
8776  * Fault-handling and related routines
8777  */
8778 
8779 ddi_devstate_t
8780 ddi_get_devstate(dev_info_t *dip)
8781 {
8782         if (DEVI_IS_DEVICE_OFFLINE(dip))
8783                 return (DDI_DEVSTATE_OFFLINE);
8784         else if (DEVI_IS_DEVICE_DOWN(dip) || DEVI_IS_BUS_DOWN(dip))
8785                 return (DDI_DEVSTATE_DOWN);
8786         else if (DEVI_IS_BUS_QUIESCED(dip))
8787                 return (DDI_DEVSTATE_QUIESCED);
8788         else if (DEVI_IS_DEVICE_DEGRADED(dip))
8789                 return (DDI_DEVSTATE_DEGRADED);
8790         else
8791                 return (DDI_DEVSTATE_UP);
8792 }
8793 
8794 void
8795 ddi_dev_report_fault(dev_info_t *dip, ddi_fault_impact_t impact,
8796         ddi_fault_location_t location, const char *message)
8797 {
8798         struct ddi_fault_event_data fd;
8799         ddi_eventcookie_t ec;
8800 
8801         /*
8802          * Assemble all the information into a fault-event-data structure
8803          */
8804         fd.f_dip = dip;
8805         fd.f_impact = impact;
8806         fd.f_location = location;
8807         fd.f_message = message;
8808         fd.f_oldstate = ddi_get_devstate(dip);
8809 
8810         /*
8811          * Get eventcookie from defining parent.
8812          */
8813         if (ddi_get_eventcookie(dip, DDI_DEVI_FAULT_EVENT, &ec) !=
8814             DDI_SUCCESS)
8815                 return;
8816 
8817         (void) ndi_post_event(dip, dip, ec, &fd);
8818 }
8819 
8820 char *
8821 i_ddi_devi_class(dev_info_t *dip)
8822 {
8823         return (DEVI(dip)->devi_device_class);
8824 }
8825 
8826 int
8827 i_ddi_set_devi_class(dev_info_t *dip, char *devi_class, int flag)
8828 {
8829         struct dev_info *devi = DEVI(dip);
8830 
8831         mutex_enter(&devi->devi_lock);
8832 
8833         if (devi->devi_device_class)
8834                 kmem_free(devi->devi_device_class,
8835                     strlen(devi->devi_device_class) + 1);
8836 
8837         if ((devi->devi_device_class = i_ddi_strdup(devi_class, flag))
8838             != NULL) {
8839                 mutex_exit(&devi->devi_lock);
8840                 return (DDI_SUCCESS);
8841         }
8842 
8843         mutex_exit(&devi->devi_lock);
8844 
8845         return (DDI_FAILURE);
8846 }
8847 
8848 
8849 /*
8850  * Task Queues DDI interfaces.
8851  */
8852 
8853 /* ARGSUSED */
8854 ddi_taskq_t *
8855 ddi_taskq_create(dev_info_t *dip, const char *name, int nthreads,
8856     pri_t pri, uint_t cflags)
8857 {
8858         char full_name[TASKQ_NAMELEN];
8859         const char *tq_name;
8860         int nodeid = 0;
8861 
8862         if (dip == NULL)
8863                 tq_name = name;
8864         else {
8865                 nodeid = ddi_get_instance(dip);
8866 
8867                 if (name == NULL)
8868                         name = "tq";
8869 
8870                 (void) snprintf(full_name, sizeof (full_name), "%s_%s",
8871                     ddi_driver_name(dip), name);
8872 
8873                 tq_name = full_name;
8874         }
8875 
8876         return ((ddi_taskq_t *)taskq_create_instance(tq_name, nodeid, nthreads,
8877             pri == TASKQ_DEFAULTPRI ? minclsyspri : pri,
8878             nthreads, INT_MAX, TASKQ_PREPOPULATE));
8879 }
8880 
8881 void
8882 ddi_taskq_destroy(ddi_taskq_t *tq)
8883 {
8884         taskq_destroy((taskq_t *)tq);
8885 }
8886 
8887 int
8888 ddi_taskq_dispatch(ddi_taskq_t *tq, void (* func)(void *),
8889     void *arg, uint_t dflags)
8890 {
8891         taskqid_t id = taskq_dispatch((taskq_t *)tq, func, arg,
8892             dflags == DDI_SLEEP ? TQ_SLEEP : TQ_NOSLEEP);
8893 
8894         return (id != 0 ? DDI_SUCCESS : DDI_FAILURE);
8895 }
8896 
8897 void
8898 ddi_taskq_wait(ddi_taskq_t *tq)
8899 {
8900         taskq_wait((taskq_t *)tq);
8901 }
8902 
8903 void
8904 ddi_taskq_suspend(ddi_taskq_t *tq)
8905 {
8906         taskq_suspend((taskq_t *)tq);
8907 }
8908 
8909 boolean_t
8910 ddi_taskq_suspended(ddi_taskq_t *tq)
8911 {
8912         return (taskq_suspended((taskq_t *)tq));
8913 }
8914 
8915 void
8916 ddi_taskq_resume(ddi_taskq_t *tq)
8917 {
8918         taskq_resume((taskq_t *)tq);
8919 }
8920 
8921 int
8922 ddi_parse(
8923         const char      *ifname,
8924         char            *alnum,
8925         uint_t          *nump)
8926 {
8927         const char      *p;
8928         int             l;
8929         ulong_t         num;
8930         boolean_t       nonum = B_TRUE;
8931         char            c;
8932 
8933         l = strlen(ifname);
8934         for (p = ifname + l; p != ifname; l--) {
8935                 c = *--p;
8936                 if (!isdigit(c)) {
8937                         (void) strlcpy(alnum, ifname, l + 1);
8938                         if (ddi_strtoul(p + 1, NULL, 10, &num) != 0)
8939                                 return (DDI_FAILURE);
8940                         break;
8941                 }
8942                 nonum = B_FALSE;
8943         }
8944         if (l == 0 || nonum)
8945                 return (DDI_FAILURE);
8946 
8947         *nump = num;
8948         return (DDI_SUCCESS);
8949 }
8950 
8951 /*
8952  * Default initialization function for drivers that don't need to quiesce.
8953  */
8954 /* ARGSUSED */
8955 int
8956 ddi_quiesce_not_needed(dev_info_t *dip)
8957 {
8958         return (DDI_SUCCESS);
8959 }
8960 
8961 /*
8962  * Initialization function for drivers that should implement quiesce()
8963  * but haven't yet.
8964  */
8965 /* ARGSUSED */
8966 int
8967 ddi_quiesce_not_supported(dev_info_t *dip)
8968 {
8969         return (DDI_FAILURE);
8970 }
8971 
8972 char *
8973 ddi_strdup(const char *str, int flag)
8974 {
8975         int     n;
8976         char    *ptr;
8977 
8978         ASSERT(str != NULL);
8979         ASSERT((flag == KM_SLEEP) || (flag == KM_NOSLEEP));
8980 
8981         n = strlen(str);
8982         if ((ptr = kmem_alloc(n + 1, flag)) == NULL)
8983                 return (NULL);
8984         bcopy(str, ptr, n + 1);
8985         return (ptr);
8986 }
8987 
8988 char *
8989 strdup(const char *str)
8990 {
8991         return (ddi_strdup(str, KM_SLEEP));
8992 }
8993 
8994 void
8995 strfree(char *str)
8996 {
8997         ASSERT(str != NULL);
8998         kmem_free(str, strlen(str) + 1);
8999 }
9000 
9001 /*
9002  * Generic DDI callback interfaces.
9003  */
9004 
9005 int
9006 ddi_cb_register(dev_info_t *dip, ddi_cb_flags_t flags, ddi_cb_func_t cbfunc,
9007     void *arg1, void *arg2, ddi_cb_handle_t *ret_hdlp)
9008 {
9009         ddi_cb_t        *cbp;
9010 
9011         ASSERT(dip != NULL);
9012         ASSERT(DDI_CB_FLAG_VALID(flags));
9013         ASSERT(cbfunc != NULL);
9014         ASSERT(ret_hdlp != NULL);
9015 
9016         /* Sanity check the context */
9017         ASSERT(!servicing_interrupt());
9018         if (servicing_interrupt())
9019                 return (DDI_FAILURE);
9020 
9021         /* Validate parameters */
9022         if ((dip == NULL) || !DDI_CB_FLAG_VALID(flags) ||
9023             (cbfunc == NULL) || (ret_hdlp == NULL))
9024                 return (DDI_EINVAL);
9025 
9026         /* Check for previous registration */
9027         if (DEVI(dip)->devi_cb_p != NULL)
9028                 return (DDI_EALREADY);
9029 
9030         /* Allocate and initialize callback */
9031         cbp = kmem_zalloc(sizeof (ddi_cb_t), KM_SLEEP);
9032         cbp->cb_dip = dip;
9033         cbp->cb_func = cbfunc;
9034         cbp->cb_arg1 = arg1;
9035         cbp->cb_arg2 = arg2;
9036         cbp->cb_flags = flags;
9037         DEVI(dip)->devi_cb_p = cbp;
9038 
9039         /* If adding an IRM callback, notify IRM */
9040         if (flags & DDI_CB_FLAG_INTR)
9041                 i_ddi_irm_set_cb(dip, B_TRUE);
9042 
9043         *ret_hdlp = (ddi_cb_handle_t)&(DEVI(dip)->devi_cb_p);
9044         return (DDI_SUCCESS);
9045 }
9046 
9047 int
9048 ddi_cb_unregister(ddi_cb_handle_t hdl)
9049 {
9050         ddi_cb_t        *cbp;
9051         dev_info_t      *dip;
9052 
9053         ASSERT(hdl != NULL);
9054 
9055         /* Sanity check the context */
9056         ASSERT(!servicing_interrupt());
9057         if (servicing_interrupt())
9058                 return (DDI_FAILURE);
9059 
9060         /* Validate parameters */
9061         if ((hdl == NULL) || ((cbp = *(ddi_cb_t **)hdl) == NULL) ||
9062             ((dip = cbp->cb_dip) == NULL))
9063                 return (DDI_EINVAL);
9064 
9065         /* If removing an IRM callback, notify IRM */
9066         if (cbp->cb_flags & DDI_CB_FLAG_INTR)
9067                 i_ddi_irm_set_cb(dip, B_FALSE);
9068 
9069         /* Destroy the callback */
9070         kmem_free(cbp, sizeof (ddi_cb_t));
9071         DEVI(dip)->devi_cb_p = NULL;
9072 
9073         return (DDI_SUCCESS);
9074 }
9075 
9076 /*
9077  * Platform independent DR routines
9078  */
9079 
9080 static int
9081 ndi2errno(int n)
9082 {
9083         int err = 0;
9084 
9085         switch (n) {
9086                 case NDI_NOMEM:
9087                         err = ENOMEM;
9088                         break;
9089                 case NDI_BUSY:
9090                         err = EBUSY;
9091                         break;
9092                 case NDI_FAULT:
9093                         err = EFAULT;
9094                         break;
9095                 case NDI_FAILURE:
9096                         err = EIO;
9097                         break;
9098                 case NDI_SUCCESS:
9099                         break;
9100                 case NDI_BADHANDLE:
9101                 default:
9102                         err = EINVAL;
9103                         break;
9104         }
9105         return (err);
9106 }
9107 
9108 /*
9109  * Prom tree node list
9110  */
9111 struct ptnode {
9112         pnode_t         nodeid;
9113         struct ptnode   *next;
9114 };
9115 
9116 /*
9117  * Prom tree walk arg
9118  */
9119 struct pta {
9120         dev_info_t      *pdip;
9121         devi_branch_t   *bp;
9122         uint_t          flags;
9123         dev_info_t      *fdip;
9124         struct ptnode   *head;
9125 };
9126 
9127 static void
9128 visit_node(pnode_t nodeid, struct pta *ap)
9129 {
9130         struct ptnode   **nextp;
9131         int             (*select)(pnode_t, void *, uint_t);
9132 
9133         ASSERT(nodeid != OBP_NONODE && nodeid != OBP_BADNODE);
9134 
9135         select = ap->bp->create.prom_branch_select;
9136 
9137         ASSERT(select);
9138 
9139         if (select(nodeid, ap->bp->arg, 0) == DDI_SUCCESS) {
9140 
9141                 for (nextp = &ap->head; *nextp; nextp = &(*nextp)->next)
9142                         ;
9143 
9144                 *nextp = kmem_zalloc(sizeof (struct ptnode), KM_SLEEP);
9145 
9146                 (*nextp)->nodeid = nodeid;
9147         }
9148 
9149         if ((ap->flags & DEVI_BRANCH_CHILD) == DEVI_BRANCH_CHILD)
9150                 return;
9151 
9152         nodeid = prom_childnode(nodeid);
9153         while (nodeid != OBP_NONODE && nodeid != OBP_BADNODE) {
9154                 visit_node(nodeid, ap);
9155                 nodeid = prom_nextnode(nodeid);
9156         }
9157 }
9158 
9159 /*
9160  * NOTE: The caller of this function must check for device contracts
9161  * or LDI callbacks against this dip before setting the dip offline.
9162  */
9163 static int
9164 set_infant_dip_offline(dev_info_t *dip, void *arg)
9165 {
9166         char    *path = (char *)arg;
9167 
9168         ASSERT(dip);
9169         ASSERT(arg);
9170 
9171         if (i_ddi_node_state(dip) >= DS_ATTACHED) {
9172                 (void) ddi_pathname(dip, path);
9173                 cmn_err(CE_WARN, "Attempt to set offline flag on attached "
9174                     "node: %s", path);
9175                 return (DDI_FAILURE);
9176         }
9177 
9178         mutex_enter(&(DEVI(dip)->devi_lock));
9179         if (!DEVI_IS_DEVICE_OFFLINE(dip))
9180                 DEVI_SET_DEVICE_OFFLINE(dip);
9181         mutex_exit(&(DEVI(dip)->devi_lock));
9182 
9183         return (DDI_SUCCESS);
9184 }
9185 
9186 typedef struct result {
9187         char    *path;
9188         int     result;
9189 } result_t;
9190 
9191 static int
9192 dip_set_offline(dev_info_t *dip, void *arg)
9193 {
9194         int end;
9195         result_t *resp = (result_t *)arg;
9196 
9197         ASSERT(dip);
9198         ASSERT(resp);
9199 
9200         /*
9201          * We stop the walk if e_ddi_offline_notify() returns
9202          * failure, because this implies that one or more consumers
9203          * (either LDI or contract based) has blocked the offline.
9204          * So there is no point in conitnuing the walk
9205          */
9206         if (e_ddi_offline_notify(dip) == DDI_FAILURE) {
9207                 resp->result = DDI_FAILURE;
9208                 return (DDI_WALK_TERMINATE);
9209         }
9210 
9211         /*
9212          * If set_infant_dip_offline() returns failure, it implies
9213          * that we failed to set a particular dip offline. This
9214          * does not imply that the offline as a whole should fail.
9215          * We want to do the best we can, so we continue the walk.
9216          */
9217         if (set_infant_dip_offline(dip, resp->path) == DDI_SUCCESS)
9218                 end = DDI_SUCCESS;
9219         else
9220                 end = DDI_FAILURE;
9221 
9222         e_ddi_offline_finalize(dip, end);
9223 
9224         return (DDI_WALK_CONTINUE);
9225 }
9226 
9227 /*
9228  * The call to e_ddi_offline_notify() exists for the
9229  * unlikely error case that a branch we are trying to
9230  * create already exists and has device contracts or LDI
9231  * event callbacks against it.
9232  *
9233  * We allow create to succeed for such branches only if
9234  * no constraints block the offline.
9235  */
9236 static int
9237 branch_set_offline(dev_info_t *dip, char *path)
9238 {
9239         int             circ;
9240         int             end;
9241         result_t        res;
9242 
9243 
9244         if (e_ddi_offline_notify(dip) == DDI_FAILURE) {
9245                 return (DDI_FAILURE);
9246         }
9247 
9248         if (set_infant_dip_offline(dip, path) == DDI_SUCCESS)
9249                 end = DDI_SUCCESS;
9250         else
9251                 end = DDI_FAILURE;
9252 
9253         e_ddi_offline_finalize(dip, end);
9254 
9255         if (end == DDI_FAILURE)
9256                 return (DDI_FAILURE);
9257 
9258         res.result = DDI_SUCCESS;
9259         res.path = path;
9260 
9261         ndi_devi_enter(dip, &circ);
9262         ddi_walk_devs(ddi_get_child(dip), dip_set_offline, &res);
9263         ndi_devi_exit(dip, circ);
9264 
9265         return (res.result);
9266 }
9267 
9268 /*ARGSUSED*/
9269 static int
9270 create_prom_branch(void *arg, int has_changed)
9271 {
9272         int             circ;
9273         int             exists, rv;
9274         pnode_t         nodeid;
9275         struct ptnode   *tnp;
9276         dev_info_t      *dip;
9277         struct pta      *ap = arg;
9278         devi_branch_t   *bp;
9279         char            *path;
9280 
9281         ASSERT(ap);
9282         ASSERT(ap->fdip == NULL);
9283         ASSERT(ap->pdip && ndi_dev_is_prom_node(ap->pdip));
9284 
9285         bp = ap->bp;
9286 
9287         nodeid = ddi_get_nodeid(ap->pdip);
9288         if (nodeid == OBP_NONODE || nodeid == OBP_BADNODE) {
9289                 cmn_err(CE_WARN, "create_prom_branch: invalid "
9290                     "nodeid: 0x%x", nodeid);
9291                 return (EINVAL);
9292         }
9293 
9294         ap->head = NULL;
9295 
9296         nodeid = prom_childnode(nodeid);
9297         while (nodeid != OBP_NONODE && nodeid != OBP_BADNODE) {
9298                 visit_node(nodeid, ap);
9299                 nodeid = prom_nextnode(nodeid);
9300         }
9301 
9302         if (ap->head == NULL)
9303                 return (ENODEV);
9304 
9305         path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
9306         rv = 0;
9307         while ((tnp = ap->head) != NULL) {
9308                 ap->head = tnp->next;
9309 
9310                 ndi_devi_enter(ap->pdip, &circ);
9311 
9312                 /*
9313                  * Check if the branch already exists.
9314                  */
9315                 exists = 0;
9316                 dip = e_ddi_nodeid_to_dip(tnp->nodeid);
9317                 if (dip != NULL) {
9318                         exists = 1;
9319 
9320                         /* Parent is held busy, so release hold */
9321                         ndi_rele_devi(dip);
9322 #ifdef  DEBUG
9323                         cmn_err(CE_WARN, "create_prom_branch: dip(%p) exists"
9324                             " for nodeid 0x%x", (void *)dip, tnp->nodeid);
9325 #endif
9326                 } else {
9327                         dip = i_ddi_create_branch(ap->pdip, tnp->nodeid);
9328                 }
9329 
9330                 kmem_free(tnp, sizeof (struct ptnode));
9331 
9332                 /*
9333                  * Hold the branch if it is not already held
9334                  */
9335                 if (dip && !exists) {
9336                         e_ddi_branch_hold(dip);
9337                 }
9338 
9339                 ASSERT(dip == NULL || e_ddi_branch_held(dip));
9340 
9341                 /*
9342                  * Set all dips in the newly created branch offline so that
9343                  * only a "configure" operation can attach
9344                  * the branch
9345                  */
9346                 if (dip == NULL || branch_set_offline(dip, path)
9347                     == DDI_FAILURE) {
9348                         ndi_devi_exit(ap->pdip, circ);
9349                         rv = EIO;
9350                         continue;
9351                 }
9352 
9353                 ASSERT(ddi_get_parent(dip) == ap->pdip);
9354 
9355                 ndi_devi_exit(ap->pdip, circ);
9356 
9357                 if (ap->flags & DEVI_BRANCH_CONFIGURE) {
9358                         int error = e_ddi_branch_configure(dip, &ap->fdip, 0);
9359                         if (error && rv == 0)
9360                                 rv = error;
9361                 }
9362 
9363                 /*
9364                  * Invoke devi_branch_callback() (if it exists) only for
9365                  * newly created branches
9366                  */
9367                 if (bp->devi_branch_callback && !exists)
9368                         bp->devi_branch_callback(dip, bp->arg, 0);
9369         }
9370 
9371         kmem_free(path, MAXPATHLEN);
9372 
9373         return (rv);
9374 }
9375 
9376 static int
9377 sid_node_create(dev_info_t *pdip, devi_branch_t *bp, dev_info_t **rdipp)
9378 {
9379         int                     rv, circ, len;
9380         int                     i, flags, ret;
9381         dev_info_t              *dip;
9382         char                    *nbuf;
9383         char                    *path;
9384         static const char       *noname = "<none>";
9385 
9386         ASSERT(pdip);
9387         ASSERT(DEVI_BUSY_OWNED(pdip));
9388 
9389         flags = 0;
9390 
9391         /*
9392          * Creating the root of a branch ?
9393          */
9394         if (rdipp) {
9395                 *rdipp = NULL;
9396                 flags = DEVI_BRANCH_ROOT;
9397         }
9398 
9399         ndi_devi_alloc_sleep(pdip, (char *)noname, DEVI_SID_NODEID, &dip);
9400         rv = bp->create.sid_branch_create(dip, bp->arg, flags);
9401 
9402         nbuf = kmem_alloc(OBP_MAXDRVNAME, KM_SLEEP);
9403 
9404         if (rv == DDI_WALK_ERROR) {
9405                 cmn_err(CE_WARN, "e_ddi_branch_create: Error setting"
9406                     " properties on devinfo node %p",  (void *)dip);
9407                 goto fail;
9408         }
9409 
9410         len = OBP_MAXDRVNAME;
9411         if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip,
9412             DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "name", nbuf, &len)
9413             != DDI_PROP_SUCCESS) {
9414                 cmn_err(CE_WARN, "e_ddi_branch_create: devinfo node %p has"
9415                     "no name property", (void *)dip);
9416                 goto fail;
9417         }
9418 
9419         ASSERT(i_ddi_node_state(dip) == DS_PROTO);
9420         if (ndi_devi_set_nodename(dip, nbuf, 0) != NDI_SUCCESS) {
9421                 cmn_err(CE_WARN, "e_ddi_branch_create: cannot set name (%s)"
9422                     " for devinfo node %p", nbuf, (void *)dip);
9423                 goto fail;
9424         }
9425 
9426         kmem_free(nbuf, OBP_MAXDRVNAME);
9427 
9428         /*
9429          * Ignore bind failures just like boot does
9430          */
9431         (void) ndi_devi_bind_driver(dip, 0);
9432 
9433         switch (rv) {
9434         case DDI_WALK_CONTINUE:
9435         case DDI_WALK_PRUNESIB:
9436                 ndi_devi_enter(dip, &circ);
9437 
9438                 i = DDI_WALK_CONTINUE;
9439                 for (; i == DDI_WALK_CONTINUE; ) {
9440                         i = sid_node_create(dip, bp, NULL);
9441                 }
9442 
9443                 ASSERT(i == DDI_WALK_ERROR || i == DDI_WALK_PRUNESIB);
9444                 if (i == DDI_WALK_ERROR)
9445                         rv = i;
9446                 /*
9447                  * If PRUNESIB stop creating siblings
9448                  * of dip's child. Subsequent walk behavior
9449                  * is determined by rv returned by dip.
9450                  */
9451 
9452                 ndi_devi_exit(dip, circ);
9453                 break;
9454         case DDI_WALK_TERMINATE:
9455                 /*
9456                  * Don't create children and ask our parent
9457                  * to not create siblings either.
9458                  */
9459                 rv = DDI_WALK_PRUNESIB;
9460                 break;
9461         case DDI_WALK_PRUNECHILD:
9462                 /*
9463                  * Don't create children, but ask parent to continue
9464                  * with siblings.
9465                  */
9466                 rv = DDI_WALK_CONTINUE;
9467                 break;
9468         default:
9469                 ASSERT(0);
9470                 break;
9471         }
9472 
9473         if (rdipp)
9474                 *rdipp = dip;
9475 
9476         /*
9477          * Set device offline - only the "configure" op should cause an attach.
9478          * Note that it is safe to set the dip offline without checking
9479          * for either device contract or layered driver (LDI) based constraints
9480          * since there cannot be any contracts or LDI opens of this device.
9481          * This is because this node is a newly created dip with the parent busy
9482          * held, so no other thread can come in and attach this dip. A dip that
9483          * has never been attached cannot have contracts since by definition
9484          * a device contract (an agreement between a process and a device minor
9485          * node) can only be created against a device that has minor nodes
9486          * i.e is attached. Similarly an LDI open will only succeed if the
9487          * dip is attached. We assert below that the dip is not attached.
9488          */
9489         ASSERT(i_ddi_node_state(dip) < DS_ATTACHED);
9490         path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
9491         ret = set_infant_dip_offline(dip, path);
9492         ASSERT(ret == DDI_SUCCESS);
9493         kmem_free(path, MAXPATHLEN);
9494 
9495         return (rv);
9496 fail:
9497         (void) ndi_devi_free(dip);
9498         kmem_free(nbuf, OBP_MAXDRVNAME);
9499         return (DDI_WALK_ERROR);
9500 }
9501 
9502 static int
9503 create_sid_branch(
9504         dev_info_t      *pdip,
9505         devi_branch_t   *bp,
9506         dev_info_t      **dipp,
9507         uint_t          flags)
9508 {
9509         int             rv = 0, state = DDI_WALK_CONTINUE;
9510         dev_info_t      *rdip;
9511 
9512         while (state == DDI_WALK_CONTINUE) {
9513                 int     circ;
9514 
9515                 ndi_devi_enter(pdip, &circ);
9516 
9517                 state = sid_node_create(pdip, bp, &rdip);
9518                 if (rdip == NULL) {
9519                         ndi_devi_exit(pdip, circ);
9520                         ASSERT(state == DDI_WALK_ERROR);
9521                         break;
9522                 }
9523 
9524                 e_ddi_branch_hold(rdip);
9525 
9526                 ndi_devi_exit(pdip, circ);
9527 
9528                 if (flags & DEVI_BRANCH_CONFIGURE) {
9529                         int error = e_ddi_branch_configure(rdip, dipp, 0);
9530                         if (error && rv == 0)
9531                                 rv = error;
9532                 }
9533 
9534                 /*
9535                  * devi_branch_callback() is optional
9536                  */
9537                 if (bp->devi_branch_callback)
9538                         bp->devi_branch_callback(rdip, bp->arg, 0);
9539         }
9540 
9541         ASSERT(state == DDI_WALK_ERROR || state == DDI_WALK_PRUNESIB);
9542 
9543         return (state == DDI_WALK_ERROR ? EIO : rv);
9544 }
9545 
9546 int
9547 e_ddi_branch_create(
9548         dev_info_t      *pdip,
9549         devi_branch_t   *bp,
9550         dev_info_t      **dipp,
9551         uint_t          flags)
9552 {
9553         int prom_devi, sid_devi, error;
9554 
9555         if (pdip == NULL || bp == NULL || bp->type == 0)
9556                 return (EINVAL);
9557 
9558         prom_devi = (bp->type == DEVI_BRANCH_PROM) ? 1 : 0;
9559         sid_devi = (bp->type == DEVI_BRANCH_SID) ? 1 : 0;
9560 
9561         if (prom_devi && bp->create.prom_branch_select == NULL)
9562                 return (EINVAL);
9563         else if (sid_devi && bp->create.sid_branch_create == NULL)
9564                 return (EINVAL);
9565         else if (!prom_devi && !sid_devi)
9566                 return (EINVAL);
9567 
9568         if (flags & DEVI_BRANCH_EVENT)
9569                 return (EINVAL);
9570 
9571         if (prom_devi) {
9572                 struct pta pta = {0};
9573 
9574                 pta.pdip = pdip;
9575                 pta.bp = bp;
9576                 pta.flags = flags;
9577 
9578                 error = prom_tree_access(create_prom_branch, &pta, NULL);
9579 
9580                 if (dipp)
9581                         *dipp = pta.fdip;
9582                 else if (pta.fdip)
9583                         ndi_rele_devi(pta.fdip);
9584         } else {
9585                 error = create_sid_branch(pdip, bp, dipp, flags);
9586         }
9587 
9588         return (error);
9589 }
9590 
9591 int
9592 e_ddi_branch_configure(dev_info_t *rdip, dev_info_t **dipp, uint_t flags)
9593 {
9594         int             rv;
9595         char            *devnm;
9596         dev_info_t      *pdip;
9597 
9598         if (dipp)
9599                 *dipp = NULL;
9600 
9601         if (rdip == NULL || flags != 0 || (flags & DEVI_BRANCH_EVENT))
9602                 return (EINVAL);
9603 
9604         pdip = ddi_get_parent(rdip);
9605 
9606         ndi_hold_devi(pdip);
9607 
9608         if (!e_ddi_branch_held(rdip)) {
9609                 ndi_rele_devi(pdip);
9610                 cmn_err(CE_WARN, "e_ddi_branch_configure: "
9611                     "dip(%p) not held", (void *)rdip);
9612                 return (EINVAL);
9613         }
9614 
9615         if (i_ddi_node_state(rdip) < DS_INITIALIZED) {
9616                 /*
9617                  * First attempt to bind a driver. If we fail, return
9618                  * success (On some platforms, dips for some device
9619                  * types (CPUs) may not have a driver)
9620                  */
9621                 if (ndi_devi_bind_driver(rdip, 0) != NDI_SUCCESS) {
9622                         ndi_rele_devi(pdip);
9623                         return (0);
9624                 }
9625 
9626                 if (ddi_initchild(pdip, rdip) != DDI_SUCCESS) {
9627                         rv = NDI_FAILURE;
9628                         goto out;
9629                 }
9630         }
9631 
9632         ASSERT(i_ddi_node_state(rdip) >= DS_INITIALIZED);
9633 
9634         devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP);
9635 
9636         (void) ddi_deviname(rdip, devnm);
9637 
9638         if ((rv = ndi_devi_config_one(pdip, devnm+1, &rdip,
9639             NDI_DEVI_ONLINE | NDI_CONFIG)) == NDI_SUCCESS) {
9640                 /* release hold from ndi_devi_config_one() */
9641                 ndi_rele_devi(rdip);
9642         }
9643 
9644         kmem_free(devnm, MAXNAMELEN + 1);
9645 out:
9646         if (rv != NDI_SUCCESS && dipp && rdip) {
9647                 ndi_hold_devi(rdip);
9648                 *dipp = rdip;
9649         }
9650         ndi_rele_devi(pdip);
9651         return (ndi2errno(rv));
9652 }
9653 
9654 void
9655 e_ddi_branch_hold(dev_info_t *rdip)
9656 {
9657         if (e_ddi_branch_held(rdip)) {
9658                 cmn_err(CE_WARN, "e_ddi_branch_hold: branch already held");
9659                 return;
9660         }
9661 
9662         mutex_enter(&DEVI(rdip)->devi_lock);
9663         if ((DEVI(rdip)->devi_flags & DEVI_BRANCH_HELD) == 0) {
9664                 DEVI(rdip)->devi_flags |= DEVI_BRANCH_HELD;
9665                 DEVI(rdip)->devi_ref++;
9666         }
9667         ASSERT(DEVI(rdip)->devi_ref > 0);
9668         mutex_exit(&DEVI(rdip)->devi_lock);
9669 }
9670 
9671 int
9672 e_ddi_branch_held(dev_info_t *rdip)
9673 {
9674         int rv = 0;
9675 
9676         mutex_enter(&DEVI(rdip)->devi_lock);
9677         if ((DEVI(rdip)->devi_flags & DEVI_BRANCH_HELD) &&
9678             DEVI(rdip)->devi_ref > 0) {
9679                 rv = 1;
9680         }
9681         mutex_exit(&DEVI(rdip)->devi_lock);
9682 
9683         return (rv);
9684 }
9685 
9686 void
9687 e_ddi_branch_rele(dev_info_t *rdip)
9688 {
9689         mutex_enter(&DEVI(rdip)->devi_lock);
9690         DEVI(rdip)->devi_flags &= ~DEVI_BRANCH_HELD;
9691         DEVI(rdip)->devi_ref--;
9692         mutex_exit(&DEVI(rdip)->devi_lock);
9693 }
9694 
9695 int
9696 e_ddi_branch_unconfigure(
9697         dev_info_t *rdip,
9698         dev_info_t **dipp,
9699         uint_t flags)
9700 {
9701         int     circ, rv;
9702         int     destroy;
9703         char    *devnm;
9704         uint_t  nflags;
9705         dev_info_t *pdip;
9706 
9707         if (dipp)
9708                 *dipp = NULL;
9709 
9710         if (rdip == NULL)
9711                 return (EINVAL);
9712 
9713         pdip = ddi_get_parent(rdip);
9714 
9715         ASSERT(pdip);
9716 
9717         /*
9718          * Check if caller holds pdip busy - can cause deadlocks during
9719          * devfs_clean()
9720          */
9721         if (DEVI_BUSY_OWNED(pdip)) {
9722                 cmn_err(CE_WARN, "e_ddi_branch_unconfigure: failed: parent"
9723                     " devinfo node(%p) is busy held", (void *)pdip);
9724                 return (EINVAL);
9725         }
9726 
9727         destroy = (flags & DEVI_BRANCH_DESTROY) ? 1 : 0;
9728 
9729         devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP);
9730 
9731         ndi_devi_enter(pdip, &circ);
9732         (void) ddi_deviname(rdip, devnm);
9733         ndi_devi_exit(pdip, circ);
9734 
9735         /*
9736          * ddi_deviname() returns a component name with / prepended.
9737          */
9738         (void) devfs_clean(pdip, devnm + 1, DV_CLEAN_FORCE);
9739 
9740         ndi_devi_enter(pdip, &circ);
9741 
9742         /*
9743          * Recreate device name as it may have changed state (init/uninit)
9744          * when parent busy lock was dropped for devfs_clean()
9745          */
9746         (void) ddi_deviname(rdip, devnm);
9747 
9748         if (!e_ddi_branch_held(rdip)) {
9749                 kmem_free(devnm, MAXNAMELEN + 1);
9750                 ndi_devi_exit(pdip, circ);
9751                 cmn_err(CE_WARN, "e_ddi_%s_branch: dip(%p) not held",
9752                     destroy ? "destroy" : "unconfigure", (void *)rdip);
9753                 return (EINVAL);
9754         }
9755 
9756         /*
9757          * Release hold on the branch. This is ok since we are holding the
9758          * parent busy. If rdip is not removed, we must do a hold on the
9759          * branch before returning.
9760          */
9761         e_ddi_branch_rele(rdip);
9762 
9763         nflags = NDI_DEVI_OFFLINE;
9764         if (destroy || (flags & DEVI_BRANCH_DESTROY)) {
9765                 nflags |= NDI_DEVI_REMOVE;
9766                 destroy = 1;
9767         } else {
9768                 nflags |= NDI_UNCONFIG;         /* uninit but don't remove */
9769         }
9770 
9771         if (flags & DEVI_BRANCH_EVENT)
9772                 nflags |= NDI_POST_EVENT;
9773 
9774         if (i_ddi_devi_attached(pdip) &&
9775             (i_ddi_node_state(rdip) >= DS_INITIALIZED)) {
9776                 rv = ndi_devi_unconfig_one(pdip, devnm+1, dipp, nflags);
9777         } else {
9778                 rv = e_ddi_devi_unconfig(rdip, dipp, nflags);
9779                 if (rv == NDI_SUCCESS) {
9780                         ASSERT(!destroy || ddi_get_child(rdip) == NULL);
9781                         rv = ndi_devi_offline(rdip, nflags);
9782                 }
9783         }
9784 
9785         if (!destroy || rv != NDI_SUCCESS) {
9786                 /* The dip still exists, so do a hold */
9787                 e_ddi_branch_hold(rdip);
9788         }
9789 out:
9790         kmem_free(devnm, MAXNAMELEN + 1);
9791         ndi_devi_exit(pdip, circ);
9792         return (ndi2errno(rv));
9793 }
9794 
9795 int
9796 e_ddi_branch_destroy(dev_info_t *rdip, dev_info_t **dipp, uint_t flag)
9797 {
9798         return (e_ddi_branch_unconfigure(rdip, dipp,
9799             flag|DEVI_BRANCH_DESTROY));
9800 }
9801 
9802 /*
9803  * Number of chains for hash table
9804  */
9805 #define NUMCHAINS       17
9806 
9807 /*
9808  * Devinfo busy arg
9809  */
9810 struct devi_busy {
9811         int dv_total;
9812         int s_total;
9813         mod_hash_t *dv_hash;
9814         mod_hash_t *s_hash;
9815         int (*callback)(dev_info_t *, void *, uint_t);
9816         void *arg;
9817 };
9818 
9819 static int
9820 visit_dip(dev_info_t *dip, void *arg)
9821 {
9822         uintptr_t sbusy, dvbusy, ref;
9823         struct devi_busy *bsp = arg;
9824 
9825         ASSERT(bsp->callback);
9826 
9827         /*
9828          * A dip cannot be busy if its reference count is 0
9829          */
9830         if ((ref = e_ddi_devi_holdcnt(dip)) == 0) {
9831                 return (bsp->callback(dip, bsp->arg, 0));
9832         }
9833 
9834         if (mod_hash_find(bsp->dv_hash, dip, (mod_hash_val_t *)&dvbusy))
9835                 dvbusy = 0;
9836 
9837         /*
9838          * To catch device opens currently maintained on specfs common snodes.
9839          */
9840         if (mod_hash_find(bsp->s_hash, dip, (mod_hash_val_t *)&sbusy))
9841                 sbusy = 0;
9842 
9843 #ifdef  DEBUG
9844         if (ref < sbusy || ref < dvbusy) {
9845                 cmn_err(CE_WARN, "dip(%p): sopen = %lu, dvopen = %lu "
9846                     "dip ref = %lu\n", (void *)dip, sbusy, dvbusy, ref);
9847         }
9848 #endif
9849 
9850         dvbusy = (sbusy > dvbusy) ? sbusy : dvbusy;
9851 
9852         return (bsp->callback(dip, bsp->arg, dvbusy));
9853 }
9854 
9855 static int
9856 visit_snode(struct snode *sp, void *arg)
9857 {
9858         uintptr_t sbusy;
9859         dev_info_t *dip;
9860         int count;
9861         struct devi_busy *bsp = arg;
9862 
9863         ASSERT(sp);
9864 
9865         /*
9866          * The stable lock is held. This prevents
9867          * the snode and its associated dip from
9868          * going away.
9869          */
9870         dip = NULL;
9871         count = spec_devi_open_count(sp, &dip);
9872 
9873         if (count <= 0)
9874                 return (DDI_WALK_CONTINUE);
9875 
9876         ASSERT(dip);
9877 
9878         if (mod_hash_remove(bsp->s_hash, dip, (mod_hash_val_t *)&sbusy))
9879                 sbusy = count;
9880         else
9881                 sbusy += count;
9882 
9883         if (mod_hash_insert(bsp->s_hash, dip, (mod_hash_val_t)sbusy)) {
9884                 cmn_err(CE_WARN, "%s: s_hash insert failed: dip=0x%p, "
9885                     "sbusy = %lu", "e_ddi_branch_referenced",
9886                     (void *)dip, sbusy);
9887         }
9888 
9889         bsp->s_total += count;
9890 
9891         return (DDI_WALK_CONTINUE);
9892 }
9893 
9894 static void
9895 visit_dvnode(struct dv_node *dv, void *arg)
9896 {
9897         uintptr_t dvbusy;
9898         uint_t count;
9899         struct vnode *vp;
9900         struct devi_busy *bsp = arg;
9901 
9902         ASSERT(dv && dv->dv_devi);
9903 
9904         vp = DVTOV(dv);
9905 
9906         mutex_enter(&vp->v_lock);
9907         count = vp->v_count;
9908         mutex_exit(&vp->v_lock);
9909 
9910         if (!count)
9911                 return;
9912 
9913         if (mod_hash_remove(bsp->dv_hash, dv->dv_devi,
9914             (mod_hash_val_t *)&dvbusy))
9915                 dvbusy = count;
9916         else
9917                 dvbusy += count;
9918 
9919         if (mod_hash_insert(bsp->dv_hash, dv->dv_devi,
9920             (mod_hash_val_t)dvbusy)) {
9921                 cmn_err(CE_WARN, "%s: dv_hash insert failed: dip=0x%p, "
9922                     "dvbusy=%lu", "e_ddi_branch_referenced",
9923                     (void *)dv->dv_devi, dvbusy);
9924         }
9925 
9926         bsp->dv_total += count;
9927 }
9928 
9929 /*
9930  * Returns reference count on success or -1 on failure.
9931  */
9932 int
9933 e_ddi_branch_referenced(
9934         dev_info_t *rdip,
9935         int (*callback)(dev_info_t *dip, void *arg, uint_t ref),
9936         void *arg)
9937 {
9938         int circ;
9939         char *path;
9940         dev_info_t *pdip;
9941         struct devi_busy bsa = {0};
9942 
9943         ASSERT(rdip);
9944 
9945         path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
9946 
9947         ndi_hold_devi(rdip);
9948 
9949         pdip = ddi_get_parent(rdip);
9950 
9951         ASSERT(pdip);
9952 
9953         /*
9954          * Check if caller holds pdip busy - can cause deadlocks during
9955          * devfs_walk()
9956          */
9957         if (!e_ddi_branch_held(rdip) || DEVI_BUSY_OWNED(pdip)) {
9958                 cmn_err(CE_WARN, "e_ddi_branch_referenced: failed: "
9959                     "devinfo branch(%p) not held or parent busy held",
9960                     (void *)rdip);
9961                 ndi_rele_devi(rdip);
9962                 kmem_free(path, MAXPATHLEN);
9963                 return (-1);
9964         }
9965 
9966         ndi_devi_enter(pdip, &circ);
9967         (void) ddi_pathname(rdip, path);
9968         ndi_devi_exit(pdip, circ);
9969 
9970         bsa.dv_hash = mod_hash_create_ptrhash("dv_node busy hash", NUMCHAINS,
9971             mod_hash_null_valdtor, sizeof (struct dev_info));
9972 
9973         bsa.s_hash = mod_hash_create_ptrhash("snode busy hash", NUMCHAINS,
9974             mod_hash_null_valdtor, sizeof (struct snode));
9975 
9976         if (devfs_walk(path, visit_dvnode, &bsa)) {
9977                 cmn_err(CE_WARN, "e_ddi_branch_referenced: "
9978                     "devfs walk failed for: %s", path);
9979                 kmem_free(path, MAXPATHLEN);
9980                 bsa.s_total = bsa.dv_total = -1;
9981                 goto out;
9982         }
9983 
9984         kmem_free(path, MAXPATHLEN);
9985 
9986         /*
9987          * Walk the snode table to detect device opens, which are currently
9988          * maintained on specfs common snodes.
9989          */
9990         spec_snode_walk(visit_snode, &bsa);
9991 
9992         if (callback == NULL)
9993                 goto out;
9994 
9995         bsa.callback = callback;
9996         bsa.arg = arg;
9997 
9998         if (visit_dip(rdip, &bsa) == DDI_WALK_CONTINUE) {
9999                 ndi_devi_enter(rdip, &circ);
10000                 ddi_walk_devs(ddi_get_child(rdip), visit_dip, &bsa);
10001                 ndi_devi_exit(rdip, circ);
10002         }
10003 
10004 out:
10005         ndi_rele_devi(rdip);
10006         mod_hash_destroy_ptrhash(bsa.s_hash);
10007         mod_hash_destroy_ptrhash(bsa.dv_hash);
10008         return (bsa.s_total > bsa.dv_total ? bsa.s_total : bsa.dv_total);
10009 }